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robability models form the foundation of information theory. 
Information itself is quantified in terms of the logarithm of 
probability. Probability models are used to characterise and predict 

the occurrence of random events in such diverse areas of applications as 
predicting the number of telephone calls on a trunk line in a specified period 
of the day, road traffic modelling, weather forecasting, financial data 
modelling, predicting the effect of drugs given data from medical trials, etc. 
In signal processing, probability models are used to describe the variations 
of random signals in applications such as pattern recognition, signal coding 
and signal estimation. This chapter begins with a study of the basic concepts 
of random signals and stochastic processes and the models that are used for 
the characterisation of random processes. Stochastic processes are classes of 
signals whose fluctuations in time are partially or completely random, such 
as speech, music, image, time-varying channels, noise and video. Stochastic 
signals are completely described in terms of a probability model, but can 
also be characterised with relatively simple statistics, such as the mean, the 
correlation and the power spectrum. We study the concept of ergodic 
stationary processes in which time averages obtained from a single 
realisation of a process can be used instead of ensemble averages. We 
consider some useful and widely used classes of random signals, and study 
the effect of filtering or transformation of a signal on its probability 
distribution. 
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The small probability of collision of the Earth and a comet can become very 
great in adding over a long sequence of centuries. It is easy to picture the 
effects of this impact on the Earth. The axis and the motion of rotation have 
changed, the seas abandoning their old position... 
         Pierre-Simon Laplace 
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3.1 Random Signals and Stochastic Processes 
 
Signals, in terms of one of their most fundamental characteristics, can be 
classified into two broad categories: deterministic signals and random 
signals. Random functions of time are often referred to as stochastic signals. 
In each class, a signal may be continuous or discrete in time, and may have 
continuous-valued or discrete-valued amplitudes.  
 A deterministic signal can be defined as one that traverses a 
predetermined trajectory in time and space. The exact fluctuations of a 
deterministic signal can be completely described in terms of a function of 
time, and the exact value of the signal at any time is predictable from the 
functional description and the past history of the signal. For example, a sine 
wave x(t) can be modelled, and accurately predicted either by a second-order 
linear predictive model or by the more familiar equation x(t)=A sin(2πft+φ). 
 Random signals have unpredictable fluctuations; hence it is not possible 
to formulate an equation that can predict the exact future value of a random 
signal from its past history. Most signals such as speech and noise are at 
least in part random. The concept of randomness is closely associated with 
the concepts of information and noise. Indeed, much of the work on the 
processing of random signals is concerned with the extraction of 
information from noisy observations. If a signal is to have a capacity to 
convey information, it must have a degree of randomness: a predictable 
signal conveys no information. Therefore the random part of a signal is 
either the information content of the signal, or noise, or a mixture of both 
information and noise. Although a random signal is not completely 
predictable, it often exhibits a set of well-defined statistical characteristic 
values such as the maximum, the minimum, the mean, the median, the 
variance and the power spectrum. A random process is described in terms of 
its statistics, and most completely in terms of a probability model from 
which all its statistics can be calculated.  
 
Example 3.1 Figure 3.1(a) shows a block diagram model of a 
deterministic discrete-time signal. The model generates an output signal 
x(m) from the  P past samples as 
 

( ))(...,),2(),1()( 1 Pmxmxmxhmx −−−=          (3.1) 
 
where the function h1 may be a linear or a non-linear model. A functional 
description of the model h1 and the P initial sample values are all that is 
required to predict the future values of the signal x(m). For example for a 
sinusoidal signal generator (or oscillator) Equation (3.1) becomes 
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x(m)= a x (m −1) − x(m − 2)                 (3.2) 

 
where the choice of the parameter a=2cos(2πF0 /Fs) determines the 
oscillation frequency F0 of the sinusoid, at a sampling frequency of Fs. 
Figure 3.1(b) is a model for a stochastic random process given by 
 

( ) )()(...,),2(),1()( 2 mePmxmxmxhmx +−−−=        (3.3) 
 
where the random input e(m) models the unpredictable part of the signal 
x(m) , and the function h2 models the part of the signal that is correlated 
with the past samples. For example, a narrowband, second-order 
autoregressive process can be modelled as 
 

x(m)= a1 x(m −1) + a2 x(m − 2)+e(m)         (3.4) 
 
where the choice of the parameters a1 and a2 will determine the centre 
frequency and the bandwidth of the process. 
 

 

x(m)=h1(x(m–1), ..., x(m–P)) 
h1(·)

–1z–1z. . .–1z
 

(a) 
 
 

x(m)=h
2
(x(m–1), ..., x(m–P))

+e(m)

Random  
input e(m)

h2(·)

–1z–1z–1z . . .
 

(b) 
 

Figure 3.1 Illustration of deterministic and stochastic signal models: (a) a 
deterministic signal model, (b) a stochastic signal model. 
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3.1.1 Stochastic Processes  
 
The term “stochastic process” is broadly used to describe a random process 
that generates sequential signals such as speech or noise. In signal 
processing terminology, a stochastic process is a probability model of a class 
of random signals, e.g. Gaussian process, Markov process, Poisson process, 
etc. The classic example of a stochastic process is the so-called Brownian 
motion of particles in a fluid. Particles in the space of a fluid move 
randomly due to bombardment by fluid molecules. The random motion of 
each particle is a single realisation of a stochastic process. The motion of all 
particles in the fluid forms the collection or the space of different 
realisations of the process.  
 In this chapter, we are mainly concerned with discrete-time random 
processes that may occur naturally or may be obtained by sampling a 
continuous-time band-limited random process. The term “discrete-time 
stochastic process” refers to a class of discrete-time random signals, X(m), 
characterised by a probabilistic model. Each realisation of a discrete 
stochastic process X(m) may be indexed in time and space as x(m,s), 
where m is the discrete time index, and s is an integer variable that 
designates a space index to each realisation of the process.  
 
3.1.2 The Space or Ensemble of a Random Process 
 
The collection of all realisations of a random process is known as the 
ensemble, or the space, of the process. For an illustration, consider a random 
noise process over a telecommunication network as shown in Figure 3.2. 
The noise on each telephone line fluctuates randomly with time, and may be 
denoted as n(m,s), where m is the discrete time index and s denotes the line 
index. The collection of noise on different lines form the ensemble (or the 
space) of the noise process denoted by N(m)={n(m,s)}, where n(m,s) 
denotes a realisation of the noise process N(m) on the line s. The “true” 
statistics of a random process are obtained from the averages taken over the 
ensemble of many different realisations of the process. However, in many 
practical cases, only one realisation of a process is available. In Section 3.4, 
we consider the so-called ergodic processes in which time-averaged 
statistics, from a single realisation of a process, may be used instead of the 
ensemble-averaged statistics.   
 
Notation The following notation is used in this chapter: X(m) denotes a 
random process, the signal x(m,s)  is a particular realisation of the process 
X(m), the random signal x(m) is any realisation of X(m), and the collection 
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of all realisations of X(m), denoted by {x(m,s)}, form the ensemble or the 
space of the random process X(m). 
 
 
3.2 Probabilistic Models 
 
Probability models provide the most complete mathematical description of a 
random process. For a fixed time instant m, the collection of sample 
realisations of a random process {x(m,s)} is a random variable that takes on 
various values across the space s of the process. The main difference 
between a random variable and a random process is that the latter generates 
a time series. Therefore, the probability models used for random variables 
may also be applied to random processes. We start this section with the 
definitions of the probability functions for a random variable. 
 The space of a random variable is the collection of all the values, or 
outcomes, that the variable can assume. The space of a random variable can 
be partitioned, according to some criteria, into a number of subspaces. A 
subspace is a collection of signal values with a common attribute, such as a 
cluster of closely spaced samples, or the collection of samples with their 
amplitude within a given band of values. Each subspace is called an event, 
and the probability of an event A, P(A), is the ratio of the number of 

n(m, s-1)

n(m, s)

n(m, s+1)

m

m

m

Time 
Space

 
Figure 3.2 Illustration of three realisations in the space of a random noise N(m). 
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observed outcomes from the space of A, NA, divided by the total number of 
observations:  

∑
=

i
i

A

N

N
AP

eventsAll

)(                 (3.5) 

 
From Equation (3.5), it is evident that the sum of the probabilities of all 
likely events in an experiment is unity.  
 
Example 3.2 The space of two discrete numbers obtained as outcomes of 
throwing a pair of dice is shown in Figure 3.3. This space can be partitioned 
in different ways; for example, the two subspaces shown in Figure 3.3 are 
associated with the pair of numbers that add up to less than or equal to 8, 
and to greater than 8. In this example, assuming the dice are not loaded, all 
numbers are equally likely, and the probability of each event is proportional 
to the total number of outcomes in the space of the event. 
 
 
3.2.1 Probability Mass Function (pmf) 
 
For a discrete random variable X that can only assume discrete values from a 
finite set of N numbers {x1, x2, ..., xN}, each outcome xi may be considered 
as an event and assigned a probability of occurrence. The probability that a 
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Figure 3.3 A two-dimensional representation of the outcomes of two dice, and the 
subspaces associated with the events corresponding to the sum of the dice being 

greater than 8 or, less than or equal to 8. 
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discrete-valued random variable X takes on a value of xi, P(X= xi), is called 
the probability mass function (pmf). For two such random variables X and Y, 
the probability of an outcome in which X takes on a value of xi and Y takes 
on a value of yj, P(X=xi, Y=yj), is called the joint probability mass function. 
The joint pmf can be described in terms of the conditional and the marginal 
probability mass functions as 
 

)()|(

)()|(),(

|

|,

jYjiYX

iXijXYjiYX

yPyxP

xPxyPyxP

=

=
            (3.6) 

 
where PY | X (yj | xi )  is the probability of the random variable Y taking on a 

value of yj conditioned on X having taken a value of xi, and the so-called 
marginal pmf of X is obtained as 
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             (3.7) 

 
where M is the number of values, or outcomes, in the space of the discrete 
random variable Y. From Equations (3.6) and (3.7), we have Bayes’ rule for 
the conditional probability mass function, given by 
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          (3.8) 

 
 
3.2.2 Probability Density Function (pdf) 
 
Now consider a continuous-valued random variable. A continuous-valued 
variable can assume an infinite number of values, and hence, the probability 
that it takes on a given value vanishes to zero. For a continuous-valued 
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random variable X the cumulative distribution function (cdf) is defined as 
the probability that the outcome is less than x as: 
 

FX (x) = Prob X ≤ x( )                 (3.9) 
 
where Prob(· ) denotes probability. The probability that a random variable X 
takes on a value within a band of ∆ centred on x can be expressed as 
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As ∆ tends to zero we obtain the probability density function (pdf) as 
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  (3.11) 

 
Since FX (x) increases with x, the pdf of x, which is the rate of change of 
FX(x) with x, is a non-negative-valued function; i.e. f X (x) ≥ 0. The integral 
of the pdf of a random variable X in the range ∞± is unity: 
 

1)( =∫
∞

∞−

dxxf X                 (3.12) 

 
The conditional and marginal probability functions and the Bayes rule, of 
Equations (3.6)–(3.8), also apply to probability density functions of 
continuous-valued variables.  
 Now, the probability models for random variables can also be applied to 
random processes. For a continuous-valued random process X(m), the 
simplest probabilistic model is the univariate pdf fX(m)(x), which is the 
probability density function that a sample from the random process X(m) 
takes on a value of x. A bivariate pdf fX(m)X(m+n)(x1, x2) describes the 
probability that the samples of the process at time instants m and m+n take 
on the values x1, and x2 respectively. In general, an M-variate pdf 
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f X(m1 )X(m2 )�X (mM )(x1, x2 ,�, xM ) describes the pdf of M samples of a 

random process taking specific values at specific time instants. For an M-
variate pdf, we can write 

 

),,(),,( 11)()(1)()( 111 −

∞

∞−
−∫ = MmXmXMMmXmX xxfdxxxf
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��
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    (3.13) 

 
and the sum of the pdfs of all possible realisations of a random process is 
unity, i.e. 
 

∫ ∫
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     (3.14) 

 
The probability of a realisation of a random process at a specified time 
instant may be conditioned on the value of the process at some other time 
instant, and expressed in the form of a conditional probability density 
function as 
 

( ) ( )
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If the outcome of a random process at any time is independent of its 
outcomes at other time instants, then the random process is uncorrelated. 
For an uncorrelated process a multivariate pdf can be written in terms of the 
products of univariate pdfs as 
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(3.16) 

 
Discrete-valued stochastic processes can only assume values from a finite 
set of allowable numbers [x1, x2, ..., xn]. An example is the output of a 
binary message coder that generates a sequence of 1s and 0s. Discrete-time, 
discrete-valued, stochastic processes are characterised by multivariate 
probability mass functions (pmf) denoted as 
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The probability that a discrete random process X(m) takes on a value of xm 
at time instant m can be conditioned on the process taking on a value xn at 
some other time instant n, and expressed in the form of a conditional pmf as  
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and for a statistically independent process we have 
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 (3.19) 
 
 

3.3 Stationary and Non-Stationary Random Processes 
 
Although the amplitude of a signal x(m) fluctuates with time m, the 
characteristics of the process that generates the signal may be time-invariant 
(stationary) or time-varying (non-stationary). An example of a non-
stationary process is speech, whose loudness and spectral composition 
changes continuously as the speaker generates various sounds. A process is 
stationary if the parameters of the probability model of the process are time-
invariant; otherwise it is non-stationary (Figure 3.4). The stationarity 
property implies that all the parameters, such as the mean, the variance, the 
power spectral composition and the higher-order moments of the process, 
are time-invariant. In practice, there are various degrees of stationarity: it 
may be that one set of the statistics of a process is stationary, whereas 
another set is time-varying. For example, a random process may have a 
time-invariant mean, but a time-varying power. 

 

 
Figure 3.4 Examples of a quasistationary and a non-stationary speech segment. 
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Example 3.3 In this example, we consider the time-averaged values of the 
mean and the power of: (a) a stationary signal Asinωt and (b) a transient 

signal Ae-αt.  
The mean and power of the sinusoid are 

  

Mean Asin ωt( ) =
1

T
Asinωt dt =

T
∫ 0 ,    constant   (3.20) 

 

Power Asinωt( ) = 1

T
A2 sin2 ωt dt = A2

2
T
∫ ,   constant    (3.21) 

 
Where T is the period of the sine wave. The mean and the power of the 
transient signal are given by: 

 

tT
Tt

t

t ee
T

A
dAe

T
AeMean ααατα

α
τ −−

+
−− −== ∫ )1(

1
)( ,    time-varying      

 (3.22) 
 

Power Ae−αt( ) = 1

T
A2 e−2ατ dτ

t

t +T

∫ = A2

2αT
1− e−2αT( )e−2αt ,   time-varying   

  (3.23) 
 
In Equations (3.22) and (3.23), the signal mean and power are exponentially 
decaying functions of the time variable t. 
 
Example 3.4 Consider a non-stationary signal y(m) generated by a binary-
state random process described by the following equation: 
 

)()()()()( 10 mxmsmxmsmy +=             (3.24) 

 
where s(m) is a binary-valued state indicator variable and )(ms  denotes the 
binary complement of s(m). From Equation (3.24), we have 
 





=
=

=
1)(  if      )(

0)(  if     )(
)(

1

0

msmx

msmx
my              (3.25) 

 



Stationary and Non-Stationary Random Processes  55 

 

        

Let µx 0
 and Px0

 denote the mean and the power of the signal x0(m), and 

µx1
 and Px1

 the mean and the power of x1(m) respectively. The expectation 

of y(m), given the state s(m), is obtained as 
 

[ ] [ ] [ ]
10

)()(

)()()()()()( 10
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µµ +=
+= EEE

        (3.26) 

 
In Equation (3.26), the mean of y(m) is expressed as a function of the state 
of the process at time m. The power of y(m) is given by 
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Although many signals are non-stationary, the concept of a stationary 
process has played an important role in the development of signal 
processing methods. Furthermore, even non-stationary signals such as 
speech can often be considered as approximately stationary for a short 
period of time. In signal processing theory, two classes of stationary 
processes are defined: (a) strict-sense stationary processes and (b) wide-
sense stationary processes, which is a less strict form of stationarity, in that 
it only requires that the first-order and second-order statistics of the process 
should be time-invariant.  
 
 
3.3.1 Strict-Sense Stationary Processes 
 
A random process X(m) is stationary in a strict sense if all its distributions 
and statistical parameters are time-invariant. Strict-sense stationarity implies 
that the nth order distribution is translation-invariant for all n=1, 2,3, … : 
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      (3.28) 

 
From Equation (3.28) the statistics of a strict-sense stationary process 
including the mean, the correlation and the power spectrum, are time-
invariant; therefore we have 
 

xmx µ=)]([E                  (3.29) 
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)()]()([ krkmxmx xx=+E              (3.30) 

and 

)(]|)([|]|),([| 22 fPfXmfX XX==EE          (3.31) 
 

where µx, rxx(m) and PXX(f) are the mean value, the autocorrelation and the 
power spectrum of the signal x(m) respectively, and X(f,m) denotes the 
frequency–time spectrum of x(m). 
 
 
3.3.2 Wide-Sense Stationary Processes 
 
The strict-sense stationarity condition requires that all statistics of the 
process should be time-invariant. A less restrictive form of a stationary 
process is so-called wide-sense stationarity. A process is said to be wide-
sense stationary if the mean and the autocorrelation functions of the process 
are time invariant: 

xmx µ=)]([E                 (3.32) 

 
)()]()([ krkmxmx xx=+E               (3.33) 

 
From the definitions of strict-sense and wide-sense stationary processes, it is 
clear that a strict-sense stationary process is also wide-sense stationary, 
whereas the reverse is not necessarily true. 
 
 
3.3.3 Non-Stationary Processes 
 
A random process is non-stationary if its distributions or statistics vary with 
time. Most stochastic processes such as video signals, audio signals, 
financial data, meteorological data, biomedical signals, etc., are non-
stationary, because they are generated by systems whose environments and 
parameters vary over time. For example, speech is a non-stationary process 
generated by a time-varying articulatory system. The loudness and the 
frequency composition of speech changes over time, and sometimes the 
change can be quite abrupt. Time-varying processes may be modelled by a 
combination of stationary random models as illustrated in Figure 3.5. In 
Figure 3.5(a) a non-stationary process is modelled as the output of a time-
varying system whose parameters are controlled by a stationary process. In 
Figure 3.5(b) a time-varying process is modelled by a chain of time-
invariant states, with each state having a different set of statistics or 
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probability distributions. Finite state statistical models for time-varying 
processes are discussed in detail in Chapter 5.  
 
 
3.4 Expected Values of a Random Process 
 
Expected values of a process play a central role in the modelling and 
processing of signals. Furthermore, the probability models of a random 
process are usually expressed as functions of the expected values. For 
example, a Gaussian pdf is defined as an exponential function of the mean 
and the covariance of the process, and a Poisson pdf is defined in terms of 
the mean of the process. In signal processing applications, we often have a 
suitable statistical model of the process, e.g. a Gaussian pdf, and to complete 
the model we need the values of the expected parameters. Furthermore in 
many signal processing algorithms, such as spectral subtraction for noise 
reduction described in Chapter 11, or linear prediction described in Chapter 
8, what we essentially need is an estimate of the mean or the correlation 
function of the process. The expected value of a function, h(X(m1), X(m2), ..., 
X(mM)), of a random process X is defined as 
 

MMmXmXMM dxdxxxfxxhmXmXh
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�����
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=E

   (3.34) 
The most important, and widely used, expected values are the mean value, 
the correlation, the covariance, and the power spectrum. 

Signal  
excitation 

State model Noise

State excitation

Time-varying 
signal model

(Stationary)

     

S1

S2 S3

 
             (a)                       (b)   
 

Figure 3.5 Two models for non-stationary processes: (a) a stationary process 
drives the parameters of a continuously time-varying model; (b) a finite-state 

model with each state having a different set of statistics. 
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3.4.1 The Mean Value  
 
The mean value of a process plays an important part in signal processing 
and parameter estimation from noisy observations. For example, in Chapter 
3 it is shown that the optimal linear estimate of a signal from a noisy 
observation, is an interpolation between the mean value and the observed 
value of the noisy signal. The mean value of a random vector [X(m1), ..., 
X(mM)] is its average value across the ensemble of the process defined as  
 

MMmXmXMM dxdxxxfxxmXmX
M
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=E

(3.35) 
 
3.4.2 Autocorrelation  
 
The correlation function and its Fourier transform, the power spectral 
density, are used in modelling and identification of patterns and structures in 
a signal process. Correlators play a central role in signal processing and 
telecommunication systems, including predictive coders, equalisers, digital 
decoders, delay estimators, classifiers and signal restoration systems. The 
autocorrelation function of a random process X(m), denoted by rxx(m1,m2), is 
defined as 
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(3.36) 
The autocorrelation function rxx(m1,m2) is a measure of the similarity, or the 
mutual relation, of the outcomes of the process X at time instants m1 and m2. 
If the outcome of a random process at time m1 bears no relation to that at 
time m2 then X(m1) and X(m2) are said to be independent or uncorrelated 
and rxx(m1,m2)=0. For a wide-sense stationary process, the autocorrelation 
function is time-invariant and depends on the time difference m= m1–m2: 
 

)()(),(),( 212121 mrmmrmmrmmr xxxxxxxx =−==++ ττ      (3.37) 
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The autocorrelation function of a real-valued wide-sense stationary process 
is a symmetric function with the following properties: 
 

rxx(–m) = rxx (m)                   (3.38) 

)0()( xxxx rmr ≤                         (3.39) 

   
Note that for a zero-mean signal, rxx(0) is the signal power. 
 
Example 3.5 Autocorrelation of the output of a linear time-invariant (LTI) 
system. Let x(m), y(m) and h(m) denote the input, the output and the impulse 
response of a LTI system respectively. The input–output relation is given by 
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The autocorrelation function of the output signal y(m) can be related to the 
autocorrelation of the input signal x(m) by 
 

∑∑

∑∑
−+=

−+−=

+=

i j
xxji

i j
ji

yy

jikrhh

jkmximxhh

kmymykr

)(

)]()([

)]()([)(

E

E

        (3.41) 

 
When the input x(m) is an uncorrelated random signal with a unit variance, 
Equation (3.41) becomes 
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3.4.3 Autocovariance 
 
The autocovariance function cxx(m1,m2) of a random process X(m) is measure 
of the scatter, or the dispersion, of the random process about the mean value, 
and is defined as 
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where µx(m) is the mean of X(m). Note that for a zero-mean process the 
autocorrelation and the autocovariance functions are identical. Note also that 
cxx(m1,m1) is the variance of the process. For a stationary process the 
autocovariance function of Equation (3.43) becomes  
 

2
212121 )( )(),( xxxxxxx mmrmmcmmc µ−−=−=       (3.44) 

 
 

3.4.4 Power Spectral Density 
 
The power spectral density (PSD) function, also called the power spectrum, 
of a random process gives the spectrum of the distribution of the power 
among the individual frequency contents of the process. The power 
spectrum of a wide sense stationary process X(m) is defined, by the Wiener–
Khinchin theorem in Chapter 9, as the Fourier transform of the 
autocorrelation function:  

          

  

PXX ( f ) =E [X( f )X* ( f )]

= r xx(k)e− j 2πfm

m=− ∞

∞

∑              (3.45) 

 
where rxx(m) and PXX(f) are the autocorrelation and power spectrum of x(m) 
respectively, and f is the frequency variable. For a real-valued stationary 
process, the autocorrelation is symmetric, and the power spectrum may be 
written as 

  
PXX ( f ) = rxx (0) + 2rxx (m)cos(2πfm)

m=1

∞

∑          (3.46) 

 
The power spectral density is a real-valued non-negative function, expressed 
in units of watts per hertz. From Equation (3.45), the autocorrelation 
sequence of a random process may be obtained as the inverse Fourier 
transform of the power spectrum as 
 

rxx (m) = PXX ( f ) e j2π fm df
−1/ 2

1/ 2

∫            (3.47) 

 
Note that the autocorrelation and the power spectrum represent the second 
order statistics of a process in the time and frequency domains respectively. 
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Example 3.6 Power spectrum and autocorrelation of white noise 
(Figure3.6). A noise process with uncorrelated independent samples is 
called a white noise process. The autocorrelation of a stationary white noise 
n(m) is defined as:
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Equation (3.48) is a mathematical statement of the definition of an 
uncorrelated white noise process. The equivalent description in the 
frequency domain is derived by taking the Fourier transform of rnn(k): 
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The power spectrum of a stationary white noise process is spread equally 
across all time instances and across all frequency bins. White noise is one of 
the most difficult types of noise to remove, because it does not have a 
localised structure either in the time domain or in the frequency domain.  
 
Example 3.7 Autocorrelation and power spectrum of impulsive noise. 
Impulsive noise is a random, binary-state (“on/off”) sequence of impulses of 
random amplitudes and random time of occurrence. In Chapter 12, a random 
impulsive noise sequence ni(m) is modelled as an amplitude-modulated 
random binary sequence as 
 

)()()( mbmnmni =                 (3.50) 

 
where b(m) is a binary-state random sequence that indicates the presence or 
the absence of an impulse, and n(m) is a random noise process. Assuming 

PXX(f)

f

rxx(m)

m
 

Figure 3.6 Autocorrelation and power spectrum of white noise. 
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that impulsive noise is an uncorrelated process, the autocorrelation of 
impulsive noise can be defined as a binary-state process as 
 

)()()]()([)( 2 mbkkmnmn mk,r niinn δσ=+= E       (3.51) 

 
where σn

2  is the noise variance. Note that in Equation (3.51), the 
autocorrelation is expressed as a binary-state function that depends on the 
on/off state of impulsive noise at time m. The power spectrum of an 
impulsive noise sequence is obtained by taking the Fourier transform of the 
autocorrelation function: 

 )(),( 2 mbmfP nNN σ=               (3.52) 

 
 

3.4.5 Joint Statistical Averages of Two Random Processes 
 
In many signal processing problems, for example in processing the outputs 
of an array of sensors, we deal with more than one random process. Joint 
statistics and joint distributions are used to describe the statistical inter-
relationship between two or more random processes. For two discrete-time 
random processes x(m) and y(m), the joint pdf is denoted by 
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When two random processes, X(m) and Y(m) are uncorrelated, the joint pdf 
can be expressed as product of the pdfs of each process as 
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3.4.6 Cross-Correlation and Cross-Covariance  
 
The cross-correlation of two random process x(m) and y(m) is defined as 
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For wide-sense stationary processes, the cross-correlation function 
rxy(m1,m2) depends only on the time difference m=m1–m2: 
 

)()(),(),( 212121 mrmmrmmrmmr xyxyxyxy =−==++ ττ        (3.56) 

 
The cross-covariance function is defined as 
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Note that for zero-mean processes, the cross-correlation and the cross-
covariance functions are identical. For a wide-sense stationary process the 
cross-covariance function of Equation (3.57) becomes  

 

yxxyxyxy mmrmmcmmc µµ−−=−= )( )( ),( 212121          (3.58) 

 
Example 3.8 Time-delay estimation. Consider two signals y1(m) and 
y2(m), each composed of an information bearing signal x(m) and an additive 
noise, given by 
 

y1(m)= x(m)+ n1(m)               (3.59) 
 

y2 (m)= A x(m − D) +n2(m)            (3.60) 
 
where A is an amplitude factor and D is a time delay variable. The cross-
correlation of the signals y1(m) and y2(m) yields 
 

Correlation lag  mD

rxy(m)

 
Figure 3.7 The peak of the cross-correlation of two delayed signals can be used to 

estimate the time delay D. 
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Assuming that the signal and noise are uncorrelated, we have 
ry1y2

(k) = Arxx (k − D). As shown in Figure 3.7, the cross-correlation 

function has its maximum at the lag D.  
 
 
3.4.7 Cross-Power Spectral Density and Coherence 
 
The cross-power spectral density of two random processes X(m) and Y(m) is 
defined as the Fourier transform of their cross-correlation function: 
 

∑
∞

−∞=

−=

=

m

fmj
xy

XY

emr

fYfXfP

π2

*

)(

)()()( ][E
            (3.62) 

 
Like the cross-correlation the cross-power spectral density of two processes 
is a measure of the similarity, or coherence, of their power spectra. The 
coherence, or spectral coherence, of two random processes is a normalised 
form of the cross-power spectral density, defined as  
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The coherence function is used in applications such as time-delay estimation 
and signal-to-noise ratio measurements. 
 
 
3.4.8 Ergodic Processes and Time-Averaged Statistics 
 
In many signal processing problems, there is only a single realisation of a 
random process from which its statistical parameters, such as the mean, the 
correlation and the power spectrum can be estimated. In such cases, time-
averaged statistics, obtained from averages along the time dimension of a 
single realisation of the process, are used instead of the “true” ensemble 
averages obtained across the space of different realisations of the process. 
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This section considers ergodic random processes for which time-averages 
can be used instead of ensemble averages. A stationary stochastic process is 
said to be ergodic if it exhibits the same statistical characteristics along the 
time dimension of a single realisation as across the space (or ensemble) of 
different realisations of the process. Over a very long time, a single 
realisation of an ergodic process takes on all the values, the characteristics 
and the configurations exhibited across the entire space of the process. For 
an ergodic process {x(m,s)}, we have  
 

)],([)],([ smxaverageslstatisticasmxaverageslstatistica
sspaceacrossmtimealong

=     (3.64) 

 
where the statistical averages[.] function refers to any statistical operation 
such as the mean, the variance, the power spectrum, etc. 
 
 
3.4.9 Mean-Ergodic Processes 
 
The time-averaged estimate of the mean of a signal x(m) obtained from N 
samples is given by 
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A stationary process is said to be mean-ergodic if the time-averaged value of 
an infinitely long realisation of the process is the same as the ensemble-
mean taken across the space of the process. Therefore, for a mean-ergodic 
process, we have  
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               (3.66) 

0]ˆ[varlim =
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X
N

µ               (3.67) 

 
where µX is the “true” ensemble average of the process. Condition (3.67) is 
also referred to as mean-ergodicity in the mean square error (or minimum 
variance of error) sense. The time-averaged estimate of the mean of a signal, 
obtained from a random realisation of the process, is itself a random 
variable, with is own mean, variance and probability density function. If the 
number of observation samples N is relatively large then, from the central 
limit theorem the probability density function of the estimate ˆ µ X  is 
Gaussian. The expectation of ˆ µ X  is given by 
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From Equation (3.68), the time-averaged estimate of the mean is unbiased. 
The variance of ˆ µ X  is given by 
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Now the term E [ ˆ µ x2 ] in Equation (3.69) may be expressed as 
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Substitution of Equation (3.70) in Equation (3.69) yields 
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Therefore the condition for a process to be mean-ergodic, in the mean 
square error sense, is 
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3.4.10 Correlation-Ergodic Processes 
 
The time-averaged estimate of the autocorrelation of a random process, 
estimated from N samples of a realisation of the process, is given by 
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ˆ r xx (m) =
1

N
x(k)x(k + m )

k=0
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∑              (3.73) 

 
A process is correlation-ergodic, in the mean square error sense, if  
 

  
lim

N→∞
E [ˆ r xx (m)] = rxx (m)               (3.74) 

 
lim

N→∞
Var[ˆ r xx(m)] = 0                (3.75) 

 
where rxx(m) is the ensemble-averaged autocorrelation. Taking the 
expectation of ˆ r xx (m)  shows that it is an unbiased estimate, since 
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The variance of ˆ r xx (m)  is given by 
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The term   E [ˆ r xx

2 (m)] in Equation (3.77) may be expressed as 
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where z(i,m)=x(i)x(i+m). Therefore the condition for correlation ergodicity 
in the mean square error sense is given by 
 

0)(),(
||

1
1

lim
1

1

2 =







−





 −∑

−

+−=∞→

N

Nk
xxzz

N
mrmkr

N

k

N
      (3.79) 

 



68 Probability Models 

 

 

3.5 Some Useful Classes of Random Processes 
 
In this section, we consider some important classes of random processes 
extensively used in signal processing applications for the modelling of 
signals and noise.  
 
 
3.5.1 Gaussian (Normal) Process 
 
The Gaussian process, also called the normal process, is perhaps the most 
widely applied of all probability models. Some advantages of Gaussian 
probability models are the following:  
 
 (a)  Gaussian pdfs can model the distribution of many processes 

including some important classes of signals and noise. 
 (b)  Non-Gaussian processes can be approximated by a weighted 

combination (i.e. a mixture) of a number of Gaussian pdfs of 
appropriate means and variances.  

 (c)  Optimal estimation methods based on Gaussian models often result 
in linear and mathematically tractable solutions.  

(d)   The sum of many independent random processes has a Gaussian 
distribution. This is known as the central limit theorem.  

 
A scalar Gaussian random variable is described by the following probability 
density function:  
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where µx  and σ x

2  are the mean and the variance of the random variable x. 
The Gaussian process of Equation (3.80) is also denoted by N (x, µx , σ x

2 ). 
The maximum of a Gaussian pdf occurs at the mean µx , and is given by 
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From Equation (3.80), the Gaussian pdf of x decreases exponentially with 
the increasing distance of x from the mean value xµ . The distribution 

function F(x) is given by 
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Figure 3.8 shows the pdf and the cdf of a Gaussian model. 
 

 
3.5.2 Multivariate Gaussian Process 
 
Multivariate densities model vector-valued processes. Consider a P-variate 
Gaussian vector process {x=[x(m0), x(m1), . . ., x(mP–1)]T} with mean vector 

µx, and covariance matrix Σxx. The multivariate Gaussian pdf of x is given 
by  
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where the mean vector µx is defined as 
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      Figure 3.8 Gaussian probability density and cumulative density functions. 
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and the covariance matrix xxΣ  is given by 
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The Gaussian process of Equation (3.83) is also denoted by N (x, µx, Σxx). If 
the elements of a vector process are uncorrelated then the covariance matrix 
is a diagonal matrix with zeros in the off-diagonal elements. In this case the 
multivariate pdf may be described as the product of the pdfs of the 
individual elements of the vector: 
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Example 3.9 Conditional multivariate Gaussian probability density 
function. Consider two vector realisations x(m) and y(m+k) from two 
vector-valued correlated stationary Gaussian processes N (x, µ x , Σ xx ) and 
N (y, µ y , Σ yy). The joint probability density function of x(m) and y(m+k) is 

a multivariate Gaussian density N ([x(m),y(m+k)], µ(x,y), Σ(x,y)), with mean 
vector and covariance matrix given by 
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The conditional density of x(m) given y(m+k) is given from Bayes’ rule as 
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It can be shown that the conditional density is also a multivariate Gaussian 
with its mean vector and covariance matrix given by 
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3.5.3 Mixture Gaussian Process 
 
Probability density functions of many processes, such as speech, are non-
Gaussian. A non-Gaussian pdf may be approximated by a weighted sum (i.e. 
a mixture) of a number of Gaussian densities of appropriate mean vectors 
and covariance matrices. An M-mixture Gaussian density is defined as  
 

f X (x)  = Pi N i(x,µ xi, Σxx i ) 
i=1

M

∑            (3.92) 
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f (x)
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Figure 3.9 A mixture Gaussian pdf. 
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where   N i (x, µxi ,Σ xxi )  is a multivariate Gaussian density with mean vector 

µ xi  and covariance matrix Σ xx i , and Pi are the mixing coefficients. The 

parameter Pi is the prior probability of the ith mixture component, and is 
given by  

Pi =
Ni

Nj
j=1

M

∑
                (3.93) 

 
where Ni is the number of observations associated with the mixture i. Figure 
3.9 shows a non-Gaussian pdf modelled as a mixture of five Gaussian pdfs. 
Algorithms developed for Gaussian processes can be extended to mixture 
Gaussian densities.  
 
 
3.5.4 A Binary-State Gaussian Process 
 
Consider a random process x(m) with two statistical states: such that in the 
state s0 the process has a Gaussian pdf with mean µx ,0  and variance σ x,0

2 , 

and in the state s1 the process is also Gaussian with mean µx ,1 and variance 

σ x,1
2  (Figure 3.10). The state-dependent pdf of x(m) can be expressed as  
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Figure 3.10 Illustration of a binary-state Gaussian process 
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The joint probability distribution of the binary-valued state si and the 
continuous-valued signal x(m)  can be expressed as 
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where PS si( ) is the state probability. For a multistate process we have the 
following probabilistic relations between the joint and marginal 
probabilities: 
 

( ) ( ))(),(, mxfsmxf X
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X
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and 
( ) 1),(, =∑ ∫

S X
iSX dxsmxf               (3.98) 

 
Note that in a multistate model, the statistical parameters of the process 
switch between a number of different states, whereas in a single-state 
mixture pdf, a weighted combination of a number of pdfs models the 
process. In Chapter 5 on hidden Markov models we consider multistate 
models with a mixture pdf per state. 
 
 
3.5.5 Poisson Process 
 
The Poisson process is a continuous-time, integer-valued counting process, 
used for modelling the occurrence of a random event in various time 
intervals. An important area of application of the Poisson process is in 
queuing theory for the analysis and modelling of the distributions of demand 
on a service facility such as a telephone network, a shared computer system, 
a financial service, a petrol station, etc. Other applications of the Poisson 
distribution include the counting of the number of particles emitted in 
physics, the number of times that a component may fail in a system, and 
modelling of radar clutter, shot noise and impulsive noise. Consider an 
event-counting process X(t), in which the probability of occurrence of the 
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event is governed by a rate function λ(t), such that the probability that an 
event occurs in a small time interval ∆t is  
 

( ) ��t��ttProb )(),(intervaltheinoccurrence1 λ=+      (3.99) 
 
Assuming that in the small interval ∆t, no more than one occurrence of the 
event is possible, the probability of no occurrence of the event in a time 
interval of ∆t is given by 
 

( ) ��t��ttProb )(1),(intervaltheinoccurrence0 λ−=+    (3.100) 
 

when the parameter λ(t) is independent of time, λ(t)=λ, and the process is 
called a homogeneous Poisson process. Now, for a homogeneous Poisson 
process, consider the probability of k occurrences of an event in a time 
interval of t+∆t, denoted by P(k, (0, t+∆t)): 
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(3.101) 
Rearranging Equation (3.101), and letting ∆t tend to zero, we obtain the 
following linear differential equation: 
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tkdP −+−= λλ           (3.102) 

 
where P(k,t)=P(k,(0, t)). The solution of this differential equation is given 
by  
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Equation (3.103) can be solved recursively: starting with P(0,t)=e–λt and 
P(1,t)=λt e-λt, we obtain the Poisson density 
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From Equation (3.104), it is easy to show that for a homogenous Poisson 
process, the probability of k occurrences of an event in a time interval (t1, t2) 
is given by 
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21
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         (3.105) 

 
A Poisson counting process X(t) is incremented by one every time the event 
occurs. From Equation (3.104), the mean and variance of a Poisson counting 
process X(t) are 
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Note that the variance of a Poisson process is equal to its mean value. 
 

 
3.5.6 Shot Noise 
 
Shot noise happens when there is randomness in a directional flow of 
particles: as in the flow of electrons from the cathode to the anode of a 
cathode ray tube, the flow of photons in a laser beam, the flow and 
recombination of electrons and holes in semiconductors, and the flow of 
photoelectrons emitted in photodiodes. Shot noise has the form of a random 
pulse sequence. The pulse sequence can be modelled as the response of a 
linear filter excited by a Poisson-distributed binary impulse input sequence 
(Figure 3.11). Consider a Poisson-distributed binary-valued impulse process 
x(t). Divide the time axis into uniform short intervals of ∆t such that only 
one occurrence of an impulse is possible within each time interval. Let 
x(m∆t) be “1” if an impulse is present in the interval m∆t  to (m+1)∆t,  and 
“0” otherwise. For x(m∆t),  we have 
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and 
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A shot noise process y(m) is defined as the output of a linear system with an 
impulse response h(t), excited by a Poisson-distributed binary impulse input 
x(t): 
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where the binary signal x(m∆t) can assume a value of 0 or 1. In Equation 
(3.111) it is assumed that the impulses happen at the beginning of each 
interval. This assumption becomes more valid as ∆t becomes smaller. The 
expectation of y(t) is obtained as 
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and  
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Figure 3.11 Shot noise is modelled as the output of a filter excited with a process. 
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Using Equation (3.110), the autocorrelation of y(t) can be obtained as 
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3.5.7 Poisson–Gaussian Model for Clutters and Impulsive Noise 
  
An impulsive noise process consists of a sequence of short-duration pulses 
of random amplitude and random time of occurrence whose shape and 
duration depends on the characteristics of the channel through which the 
impulse propagates. A Poisson process can be used to model the random 
time of occurrence of impulsive noise, and a Gaussian process can be used 
to model the random amplitude of the impulses. Finally, the finite duration 
character of real impulsive noise may be modelled by the impulse response 
of linear filter. The Poisson–Gaussian impulsive noise model is given by 
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where h(m) is the response of a linear filter that models the shape of 
impulsive noise, Ak is a zero-mean Gaussian process of variance σ 2  and τk is 
a Poisson process. The output of a filter excited by a Poisson-distributed 
sequence of Gaussian amplitude impulses can also be used to model clutters 
in radar. Clutters are due to reflection of radar pulses from a multitude of 
background surfaces and objects other than the radar target.   
 

 
3.5.8 Markov Processes 
 
A first-order discrete-time Markov process is defined as one in which the 
state of the process at time m depends only on its state at time m–1 and is 
independent of the process history before m–1. In probabilistic terms, a first-
order Markov process can be defined as 
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The marginal density of a Markov process at time m can be obtained by 
integrating the conditional density over all values of x(m–1): 
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 (3.117) 
 

A process in which the present state of the system depends on the past n 
states may be described in terms of n first-order Markov processes and is 
known as an nth order Markov process. The term “Markov process” usually 
refers to a first order process. 
 
Example 3.10 A simple example of a Markov process is a first-order auto-
regressive process (Figure 3.12) defined as 
 

)()1()( memxamx +−=              (3.118) 
 
In Equation (3.118), x(m) depends on the previous value x(m–1) and the 
input e(m). The conditional pdf of x(m) given the previous sample value can 
be expressed as 
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where fE(e(m)) is the pdf of the input signal e(m). Assuming that input e(m) 
is a zero-mean Gaussian process with variance σe

2 , we have 
 

 

a

x(m)e(m)

 
 

Figure 3.12 A first order autoregressive (Markov) process. 
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Figure 3.13 A Markov chain model of a four-state discrete-time Markov process. 
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(3.120)  
 

When the input to a Markov model is a Gaussian process the output is 
known as a Gauss–Markov process. 
 
 
3.5.9 Markov Chain Processes 
 
A discrete-time Markov process x(m) with N allowable states may be 
modelled by a Markov chain of N states (Figure 3.13). Each state can be 
associated with one of the N values that x(m) may assume. In a Markov 
chain, the Markovian property is modelled by a set of state transition 
probabilities defined as  
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where aij(m,m–1) is the probability that at time m–1 the process is in the 
state i and then at time m it moves to state j. In Equation (3.121), the 
transition probability is expressed in a general time-dependent form. The 
marginal probability that a Markov process is in the state j at time m, Pj(m), 
can be expressed as  
 

Pj (m) = Pi (m −1)aij(m −1,m)
i=1

N

∑          (3.122) 

 
A Markov chain is defined by the following set of parameters: 
 
 number of states N 
 state probability vector 
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Homogenous and Inhomogeneous Markov Chains 
 
A Markov chain with time-invariant state transition probabilities is known 
as a homogenous Markov chain. For a homogenous Markov process, the 
probability of a transition from state i to state j of the process is independent 
of the time of the transition m, as expressed in the following equation:  

 
( ) ijij ammaimxjmxProb =−==−= ),1()1()(      (3.123) 

 
Inhomgeneous Markov chains have time-dependent transition probabilities. 
In most applications of Markov chains, homogenous models are used 
because they usually provide an adequate model of the signal process, and 
because homogenous Markov models are easier to train and use. Markov 
models are considered in Chapter 5. 
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Figure 3.14 Transformation of a random process x(m) to an output process y(m). 
 
 
 
3.6 Transformation of a Random Process 
 
In this section we consider the effect of filtering or transformation of a 
random process on its probability density function. Figure 3.14 shows a 
generalised mapping operator h(· ) that transforms a random input process X 
into an output process Y. The input and output signals x(m) and y(m) are 
realisations of the random processes X and Y respectively. If x(m) and y(m) 
are both discrete-valued such that 

�
x(m) ∈{x1,�,xN} and y(m) ∈{y1,�, yM} 

then we have 
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where the summation is taken over all values of x(m) that map to y(m)=yj. 
Now consider the transformation of a discrete-time, continuous-valued, 
process. The probability that the output process Y has a value in the range 
y(m)<Y<y(m)+∆y is  
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where the integration is taken over all the values of x(m) that yield an output 
in the range y(m) to y(m)+∆y . 
 
 
3.6.1 Monotonic Transformation of Random Processes 
 
Now for a monotonic one-to-one transformation y(m)=h[x(m)] (e.g. as in 
Figure 3.15) Equation (3.125) becomes  
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Figure 3.15 An example of a monotonic one-to-one mapping. 

 
 
or, in terms of the cumulative distribution functions 
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Multiplication of the left-hand side of Equation (3.127) by ∆y/∆y and the 
right-hand side by ∆x/∆x and re-arrangement of the terms yields 
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Now as the intervals ∆x and ∆y tend to zero, Equation (3.128) becomes 
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where fY(y(m)) is the probability density function. In Equation (3.129), 
substitution of x(m)=h–1(y(m)) yields 
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Equation (3.130) gives the pdf of the output signal in terms of the pdf of the 
input signal and the transformation. 
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Figure 3.16 A log-normal distribution. 

 
Example 3.11 Transformation of a Gaussian process to a log-normal 
process. Log-normal pdfs are used for modelling positive-valued processes 
such as power spectra. If a random variable x(m) has a Gaussian pdf as in 
Equation (3.80) then the non-negative valued variable y(m)=exp(x(m)) has a 
log-normal distribution (Figure 3.16) obtained using Equation (3.130) as  
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Conversely, if the input y to a logarithmic function has a log-normal 
distribution then the output x=ln y is Gaussian. The mapping functions for 
translating the mean and variance of a log-normal distribution to a normal 
distribution can be derived as 
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ln yyyx µσµµ +−=              (3.132) 
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(µx ,σ x

2 ), and (µy ,σ y
2 ) are the mean and variance of x and y respectively. 

The inverse mapping relations for the translation of mean and variances of 
normal to log-normal variables are  
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3.6.2 Many-to-One Mapping of Random Signals 
 
Now consider the case when the transformation h(· ) is a non-monotonic 
function such as that shown in Figure 3.17. Assuming that the equation 
y(m)=h[x(m)] has K roots, there are K different values of x(m) that map to 
the same y(m). The probability that a realisation of the output process Y has 
a value in the range y(m) to y(m)+∆y is given by 
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where xk is the kth root of y(m)=h(x(m)). Similar to the development in 
Section 3.6.1, Equation (3.136) can be written as 
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Equation (3.137) can be rearranged as 
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Now as the intervals ∆x and ∆y tend to zero Equation (3.138) becomes 

∆ x1 ∆ x2 ∆ x3 ∆ x4

∆ y

y=h(x)

x
 

 
Figure 3.17 Illustration of a many to one transformation. 
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where )(/))(())(( mxmxhmxh kkk ∂∂=′ . Note that for a monotonic function, 

K=1 and Equation (3.139) becomes the same as Equation (3.130). Equation 
(3.139) can be expressed as
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where J(xk(m)) = ′ h (xk (m))  is called the Jacobian of the transformation. 
For a multi-variate transformation of a vector-valued process such as 
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the pdf of the output y(m) is given by 
 

( ) ( ) ( )∑
=

−=
K

k
kk mfmmf

1

1 )()()( xxJy XY         (3.142) 

 
where |J(x)|, the Jacobian of the transformation H(· ), is the determinant of a 
matrix of derivatives: 
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For a monotonic linear vector transformation such as 
 

y = H x                   (3.144) 
the pdf of y becomes 

( ) ( )yHJy XY
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where |J| is the Jacobian of the transformation. 
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Example 3.12 The input–output relation of a P × P  linear transformation 
matrix H is given by 

y= H x                  (3.146) 
 

The Jacobian of the linear transformation H is |H|. Assume that the input x 
is a zero-mean Gaussian P-variate process with a covariance matrix of Σ xx  
and a probability density function given by: 
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From Equations (3.145)–(3.147), the pdf of the output y is given by   
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where THH xxyy ΣΣ = . Note that a linear transformation of a Gaussian 

process yields another Gaussian process. 
 
 
3.7 Summary 
 
The theory of statistical processes is central to the development of signal 
processing algorithms. We began this chapter with basic definitions of 
deterministic signals, random signals and random processes. A random 
process generates random signals, and the collection of all signals that can 
be generated by a random process is the space of the process. Probabilistic 
models and statistical measures, originally developed for random variables, 
were extended to model random signals. Although random signals are 
completely described in terms of probabilistic models, for many 
applications it may be sufficient to characterise a process in terms of a set of 
relatively simple statistics such as the mean, the autocorrelation function, 
the covariance and the power spectrum. Much of the theory and application 
of signal processing is concerned with the identification, extraction, and 
utilisation of structures and patterns in a signal process. The correlation and 
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its Fourier transform the power spectrum are particularly important because 
they can be used to identify the patterns in a stochastic process.  
 We considered the concepts of stationary, ergodic stationary and non-
stationary processes. The concept of a stationary process is central to the 
theory of linear time-invariant systems, and furthermore even non-stationary 
processes can be modelled with a chain of stationary subprocesses as 
described in Chapter 5 on hidden Markov models. For signal processing 
applications, a number of useful pdfs, including the Gaussian, the mixture 
Gaussian, the Markov and the Poisson process, were considered. These pdf 
models are extensively employed in the remainder of this book. Signal 
processing normally involves the filtering or transformation of an input 
signal to an output signal. We derived general expressions for the pdf of the 
output of a system in terms of the pdf of the input. We also considered some 
applications of stochastic processes for modelling random noise such as 
white noise, clutters, shot noise and impulsive noise.  
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