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ayesian estimation is a framework for the formulation of statistical 
inference problems. In the prediction or estimation of a random 
process from a related observation signal, the Bayesian philosophy is 

based on combining the evidence contained in the signal with prior 
knowledge of the probability distribution of the process. Bayesian 
methodology includes the classical estimators such as maximum a posteriori 
(MAP), maximum-likelihood (ML), minimum mean square error (MMSE) 
and minimum mean absolute value of error (MAVE) as special cases. The 
hidden Markov model, widely used in statistical signal processing, is an 
example of a Bayesian model. Bayesian inference is based on minimisation 
of the so-called Bayes’ risk function, which includes a posterior model of 
the unknown parameters given the observation and a cost-of-error function. 
This chapter begins with an introduction to the basic concepts of estimation 
theory, and considers the statistical measures that are used to quantify the 
performance of an estimator. We study Bayesian estimation methods and 
consider the effect of using a prior model on the mean and the variance of an 
estimate. The estimate–maximise (EM) method for the estimation of a set of 
unknown parameters from an incomplete observation is studied, and applied 
to the mixture Gaussian modelling of the space of a continuous random 
variable. This chapter concludes with an introduction to the Bayesian 
classification of discrete or finite-state signals, and the K-means clustering 
method. 
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4.1 Bayesian Estimation Theory: Basic Definitions 
 
Estimation theory is concerned with the determination of the best estimate 
of an unknown parameter vector from an observation signal, or the recovery 
of a clean signal degraded by noise and distortion. For example, given a 
noisy sine wave, we may be interested in estimating its basic parameters 
(i.e. amplitude, frequency and phase), or we may wish to recover the signal 
itself. An estimator takes as the input a set of noisy or incomplete 
observations, and, using a dynamic model (e.g. a linear predictive model) 
and/or a probabilistic model (e.g. Gaussian model) of the process, estimates 
the unknown parameters. The estimation accuracy depends on the available 
information and on the efficiency of the estimator. In this chapter, the 
Bayesian estimation of continuous-valued parameters is studied. The 
modelling and classification of finite-state parameters is covered in the next 
chapter. 
 Bayesian theory is a general inference framework. In the estimation or 
prediction of the state of a process, the Bayesian method employs both the 
evidence contained in the observation signal and the accumulated prior 
probability of the process. Consider the estimation of the value of a random 
parameter vector θ, given a related observation vector y. From Bayes’ rule 
the posterior probability density function (pdf) of the parameter vector θ 
given y, f Θ |Y (θ | y) , can be expressed as 
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where for a given observation, fY(y) is a constant and has only a normalising 
effect. Thus there are two variable terms in Equation (4.1): one term 
fY|Θ(y|θ) is the likelihood that the observation signal y was generated by the 

parameter vector θ and the second term is the prior probability of the 
parameter vector having a value of θ. The relative influence of the 
likelihood pdf fY|Θ(y|θ) and the prior pdf fΘ(θ) on the posterior pdf fΘ|Y(θ|y) 
depends on the shape of these function, i.e. on how relatively peaked each 
pdf is. In general the more peaked a probability density function, the more it 
will influence the outcome of the estimation process. Conversely, a uniform 
pdf will have no influence. 
The remainder of this chapter is concerned with different forms of Bayesian 
estimation and its applications. First, in this section, some basic concepts of 
estimation theory are introduced. 
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4.1.1 Dynamic and Probability Models in Estimation 
 
Optimal estimation algorithms utilise dynamic and statistical models of the 
observation signals. A dynamic predictive model captures the correlation 
structure of a signal, and models the dependence of the present and future 
values of the signal on its past trajectory and the input stimulus. A statistical 
probability model characterises the random fluctuations of a signal in terms 
of its statistics, such as the mean and the covariance, and most completely in 
terms of a probability model. Conditional probability models, in addition to 
modelling the random fluctuations of a signal, can also model the 
dependence of the signal on its past values or on some other related process.  
 As an illustration consider the estimation of a P-dimensional parameter 
vector θ =[θ0,θ1, ..., θP–1] from a noisy observation vector y=[y(0), y(1), ..., 
y(N–1)] modelled as 
 

nexy += )( ,,h θ           (4.2) 
 
where, as illustrated in Figure 4.1, the function h(· ) with a random input e, 
output x, and parameter vector θ, is a predictive model of the signal x, and n 
is an additive random noise process. In Figure 4.1, the distributions of the 
random noise n, the random input e and the parameter vector θ are modelled 
by probability density functions, fN(n), fE(e), and fΘ(θ) respectively. The pdf 
model most often used is the Gaussian model. Predictive and statistical 
models of a process guide the estimator towards the set of values of the 
unknown parameters that are most consistent with both the prior distribution 
of the model parameters and the noisy observation. In general, the more 
modelling information used in an estimation process, the better the results, 
provided that the models are an accurate characterisation of the observation 
and the parameter process. 
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Figure 4.1 A random process y is described in terms of a predictive model h(· ), 

and statistical models fE(· ), fΘ(· ) and fN(· ). 
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4.1.2 Parameter Space and Signal Space 
 
Consider a random process with a parameter vector θ. For example, each 
instance of θ could be the parameter vector for a dynamic model of a speech 
sound or a musical note. The parameter space of a process Θ is the 
collection of all the values that the parameter vector θ can assume. The 
parameters of a random process determine the “character” (i.e. the mean, the 
variance, the power spectrum, etc.) of the signals generated by the process. 
As the process parameters change, so do the characteristics of the signals 
generated by the process. Each value of the parameter vector θ of a process 
has an associated signal space Y; this is the collection of all the signal 
realisations of the process with the parameter value θ.  For example, 
consider a three-dimensional vector-valued Gaussian process with parameter 
vector θ =[µ, Σ ], where µ  is the mean vector and Σ is the covariance matrix 
of the Gaussian process. Figure. 4.2 illustrates three mean vectors in a three-
dimensional parameter space. Also shown is the signal space associated 
with each parameter. As shown, the signal space of each parameter vector of 
a Gaussian process contains an infinite number of points, centred on the 
mean vector µ, and with a spatial volume and orientation that are 
determined by the covariance matrix Σ. For simplicity, the variances are not 
shown in the parameter space, although they are evident in the shape of the 
Gaussian signal clusters in the signal space. 
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Figure 4.2 Illustration of three points in the parameter space of a Gaussian process 
and the associated signal spaces, for simplicity the variances are not shown in 

parameter space. 
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4.1.3 Parameter Estimation and Signal Restoration 
 
Parameter estimation and signal restoration are closely related problems. 
The main difference is due to the rapid fluctuations of most signals in 
comparison with the relatively slow variations of most parameters. For 
example, speech sounds fluctuate at speeds of up to 20 kHz, whereas the 
underlying vocal tract and pitch parameters vary at a relatively lower rate of 
less than 100 Hz. This observation implies that normally more averaging 
can be done in parameter estimation than in signal restoration.  
 As a simple example, consider a signal observed in a zero-mean random 
noise process. Assume we wish to estimate (a) the average of the clean 
signal and (b) the clean signal itself. As the observation length increases, the 
estimate of the signal mean approaches the mean value of the clean signal, 
whereas the estimate of the clean signal samples depends on the correlation 
structure of the signal and the signal-to-noise ratio as well as on the 
estimation method used. 
 As a further example, consider the interpolation of a sequence of lost 
samples of a signal given N recorded samples, as illustrated in Figure 4.3. 
Assume that an autoregressive (AR) process is used to model the signal as  
 

y = Xθ + e +n                 (4.3) 
 
where y is the observation signal, X is the signal matrix, θ is the AR 
parameter vector, e is the random input of the AR model and n is the 
random noise. Using Equation (4.3), the signal restoration process involves 
the estimation of both the model parameter vector θ and the random input e 
for the lost samples. Assuming the parameter vector θ is time-invariant, the 
estimate of θ can be averaged over the entire N observation samples, and as 
N becomes infinitely large, a consistent estimate should approach the true 

 

  Lost  
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Figure 4.3 Illustration of signal restoration using a parametric model of the 
signal process. 
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parameter value. The difficulty in signal interpolation is that the underlying 
excitation e of the signal x is purely random and, unlike θ, it cannot be 
estimated through an averaging operation. In this chapter we are concerned 
with the parameter estimation problem, although the same ideas also apply 
to signal interpolation, which is considered in Chapter 11. 
 
4.1.4 Performance Measures and Desirable Properties of   

Estimators  
 
In estimation of a parameter vector θ from N observation samples y, a set of 
performance measures is used to quantify and compare the characteristics of 
different estimators. In general an estimate of a parameter vector is a 
function of the observation vector y, the length of the observation N and the 
process model M. This dependence may be expressed as 
 

),,(ˆ MNf y=θ                 (4.4) 
 
Different parameter estimators produce different results depending on the 
estimation method and utilisation of the observation and the influence of the 
prior information. Due to randomness of the observations, even the same 
estimator would produce different results with different observations from 
the same process. Therefore an estimate is itself a random variable, it has a 
mean and a variance, and it may be described by a probability density 
function. However, for most cases, it is sufficient to characterise an 
estimator in terms of the mean and the variance of the estimation error. The 
most commonly used performance measures for an estimator are the 
following: 
 
 (a) Expected value of estimate:    ]ˆ[θE   

 (b) Bias of estimate:             θθθθ −− ]ˆ[]ˆ[ EE =        

 (c) Covariance of estimate:          ]])ˆ[ˆ])(ˆ[ˆ[(]ˆ[Cov 	θθθθθ EEE −−=         
  
Optimal estimators aim for zero bias and minimum estimation error 
covariance. The desirable properties of an estimator can be listed as follows: 
 

(a) Unbiased estimator: an estimator of θ  is unbiased if the expectation 
of the estimate is equal to the true parameter value:  

 

E [ ˆ θ ] = θ                  (4.5) 
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An estimator is asymptotically unbiased if for increasing length of   
observations N we have 
 

  
lim

N →∞
E [ ˆ θ ] = θ                 (4.6) 

 
(b) Efficient estimator: an unbiased estimator of θ  is an efficient 

estimator if it has the smallest covariance matrix compared with all 
other unbiased estimates of θ : 

 
]ˆ[Cov]ˆ[Cov Efficient θθ ≤              (4.7) 

     
    where ˆ θ   is any other estimate of θ . 

 
(c)  Consistent estimator: an estimator is consistent if the estimate 

improves with the increasing length of the observation N, such that 
the estimate ˆ θ  converges probabilistically to the true value θ  as N 
becomes infinitely large: 

 

0]ˆ[|lim =ε−
∞→

|>P
N

θθ              (4.8) 

 
     where ε  is arbitrary small.  
 

Example 4.1 Consider the bias in the time-averaged estimates of the mean 
µy  and the variance σ y

2  of N observation samples [y(0), ..., y(N–1)], of an 

ergodic random process, given as 
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It is easy to show that ˆ µ y  is an unbiased estimate, since 
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Figure 4.4 Illustration of the decrease in the bias and variance of an asymptotically 

unbiased estimate of the parameter θ with increasing length of observation. 
 

 
 
The expectation of the estimate of the variance can be expressed as 
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From Equation (4.12), the bias in the estimate of the variance is inversely 
proportional to the signal length N, and vanishes as N tends to infinity; 
hence the estimate is asymptotically unbiased. In general, the bias and the 
variance of an estimate decrease with increasing number of observation 
samples N and with improved modelling. Figure 4.4 illustrates the general 
dependence of the distribution and the bias and the variance of an 
asymptotically unbiased estimator on the number of observation samples N.   
 
4.1.5 Prior and Posterior Spaces and Distributions 
  
The prior space of a signal or a parameter vector is the collection of all 
possible values that the signal or the parameter vector can assume. The 
posterior signal or parameter space is the subspace of all the likely values 
of a signal or a parameter consistent with both the prior information and the 
evidence in the observation. Consider a random process with a parameter 
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space Θ observation space Y and a joint pdf fY,Θ(y,θ). From the Bayes’ rule 

the posterior pdf of the parameter vector θ, given an observation vector y, 
f Θ |Y (θ | y) , can be expressed as 
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where, for a given observation vector y, the pdf fY(y) is a constant and has 
only a normalising effect. From Equation (4.13), the posterior pdf is 
proportional to the product of the likelihood fY|Θ(y|θ) that the observation y 

was generated by the parameter vector θ, and the prior pdf f Θ (θ ). The prior 
pdf gives the unconditional parameter distribution averaged over the entire 
observation space as 
 

∫=
Y

Y yy dff ),()( , θθ ΘΘ             (4.14) 
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Figure 4.5 Illustration of joint distribution of signal y and parameter θ and the 
posterior distribution of θ given y. 
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For most applications, it is relatively convenient to obtain the likelihood 
function fY|Θ(y|θ). The prior pdf influences the inference drawn from the 
likelihood function by weighting it with f Θ (θ ). The influence of the prior 
is particularly important for short-length and/or noisy observations, where 
the confidence in the estimate is limited by the lack of a sufficiently long 
observation and by the noise. The influence of the prior on the bias and the 
variance of an estimate are considered in Section 4.4.1.  
 A prior knowledge of the signal distribution can be used to confine the 
estimate to the prior signal space. The observation then guides the estimator 
to focus on the posterior space: that is the subspace consistent with both the 
prior and the observation. Figure 4.5 illustrates the joint pdf of a signal y(m) 
and a parameter θ. The prior pdf of θ can be obtained by integrating 
fY|Θ(y(m)|θ) with respect to y(m). As shown, an observation y(m) cuts a 

posterior pdf fΘ|Y(θ|y(m)) through the joint distribution.  
 
Example 4.2 A noisy signal vector of length N samples is modelled as 
 

y(m) =x(m)+n(m)               (4.15) 
 
Assume that the signal x(m) is Gaussian with mean vector µx and covariance 

matrix Σxx, and that the noise n(m) is also Gaussian with mean vector µn 
and covariance matrix Σnn. The signal and noise pdfs model the prior spaces 
of the signal and the noise respectively. Given an observation vector y(m), 
the underlying signal x(m) would have a likelihood distribution with a mean 
vector of y(m) – µn and covariance matrix Σnn as shown in Figure 4.6.The 
likelihood function is given by 
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(4.16) 
 

where the terms in the exponential function have been rearranged to 
emphasize the illustration of the likelihood space in Figure 4.6. Hence the 
posterior pdf can be expressed as 
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 (4.17) 

 
For a two-dimensional signal and noise process, the prior spaces of the 
signal, the noise, and the noisy signal are illustrated in Figure 4.6. Also 
illustrated are the likelihood and posterior spaces for a noisy observation 
vector y. Note that the centre of the posterior space is obtained by 
subtracting the noise mean vector from the noisy signal vector. The clean 
signal is then somewhere within a subspace determined by the noise 
variance.  
 

A noisy
observation

y

Posterior space

Signal prior
space 

Noise prior
space 

Likelihood space

Noisy signal space

 
Figure 4.6 Sketch of a two-dimensional signal and noise spaces, and the 

likelihood and posterior spaces of a noisy observation y. 
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4.2 Bayesian Estimation 
 
The Bayesian estimation of a parameter vector θ is based on the 
minimisation of a Bayesian risk function defined as an average cost-of-error 
function: 
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where the cost-of-error function )ˆ( θθ ,C  allows the appropriate weighting of 
the various outcomes to achieve desirable objective or subjective properties. 
The cost function can be chosen to associate a high cost with outcomes that 
are undesirable or disastrous. For a given observation vector y, fY(y) is a 
constant and has no effect on the risk-minimisation process. Hence Equation 
(4.18) may be written as a conditional risk function: 
 

∫=
θ Θ θθθθθ d|fC| | )()ˆ()ˆ( y,y YR            (4.19) 

 
The Bayesian estimate obtained as the minimum-risk parameter vector is 
given by 
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Using Bayes’ rule, Equation (4.20) can be written as  
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Assuming that the risk function is differentiable, and has a well-defined 
minimum, the Bayesian estimate can be obtained as  
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4.2.1 Maximum A Posteriori Estimation 
 
The maximum a posteriori (MAP) estimate ˆ θ MAP  is obtained as the 
parameter vector that maximises the posterior pdf f Θ |Y (θ | y). The MAP 

estimate corresponds to a Bayesian estimate with a so-called uniform cost 
function (in fact, as shown in Figure 4.7 the cost function is notch-shaped) 
defined as   

)ˆ(1)ˆ( θθθθ ,, δ−=C                 (4.23) 
 
where )ˆ( θθ ,δ  is the Kronecker delta function. Substitution of the cost 
function in the Bayesian risk equation yields 
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From Equation (4.24), the minimum Bayesian risk estimate corresponds to 
the parameter value where the posterior function attains a maximum. Hence 
the MAP estimate of the parameter vector θ is obtained from a minimisation 
of the risk Equation (4.24) or equivalently maximisation of the posterior 
function: 
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Figure 4.7 Illustration of the Bayesian cost function for the MAP estimate. 
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4.2.2 Maximum-Likelihood Estimation 
 
The maximum-likelihood (ML) estimate MLθ̂  is obtained as the parameter 

vector that maximises the likelihood function )( θΘ |f | yY . The ML estimator 

corresponds to a Bayesian estimator with a uniform cost function and a 
uniform parameter prior pdf: 
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where the prior function fΘ(θ)=const. From a Bayesian point of view the 
main difference between the ML and MAP estimators is that the ML 
assumes that the prior pdf of θ is uniform. Note that a uniform prior, in 
addition to modelling genuinely uniform pdfs, is also used when the 
parameter prior pdf is unknown, or when the parameter is an unknown 
constant. 
 From Equation (4.26), it is evident that minimisation of the risk 
function is achieved by maximisation of the likelihood function: 
 

)(maxargˆ θθ Θ
θ

|f |ML yY=              (4.27) 

 
In practice it is convenient to maximise the log-likelihood function instead 
of the likelihood: 

)|(logmaxarg | θθ θ
θ

YYfML =            (4.28) 

 
The log-likelihood is usually chosen in practice because:  
 

(a) the logarithm is a monotonic function, and hence the log-likelihood 
has the same turning points as the likelihood function;  

(b) the joint log-likelihood of a set of independent variables is the sum 
of the log-likelihood of individual elements; and  

(c) unlike the likelihood function, the log-likelihood has a dynamic 
range that does not cause computational under-flow. 

 
Example 4.3 ML Estimation of the mean and variance of a Gaussian 
process Consider the problem of maximum likelihood estimation of the 
mean vector µ y  and the covariance matrix Σ yy  of a P-dimensional 
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Gaussian vector process from N observation vectors[ ]1),(1)(0) −(N,, yyy � . 
Assuming the observation vectors are uncorrelated, the pdf of the 
observation sequence is given by 
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and the log-likelihood equation is given by 
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(4.30) 
 

Taking the derivative of the log-likelihood equation with respect to the 
mean vector µ y  yields 
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From Equation (4.31), we have 
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To obtain the ML estimate of the covariance matrix we take the derivative 
of the log-likelihood equation with respect to Σ yy

−1: 
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From Equation (4.31), we have an estimate of the covariance matrix as 
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Example 4.4 ML and MAP Estimation of a Gaussian Random Parameter. 
Consider the estimation of a P-dimensional random parameter vector θ from 
an N-dimensional observation vector y. Assume that the relation between 
the signal vector y and the parameter vector θ is described by a linear model 
as 

eGy += θ                  (4.35) 
 
where e is a random excitation input signal. The pdf of the parameter vector 
θ given an observation vector y can be described, using Bayes’ rule, as  
 

)()|(
)(

1
)|( || θθθ ΘΘΘ ff

f
f Y y

y
y Y

Y
=          (4.36) 

 
Assuming that the matrix G in Equation (4.35) is known, the likelihood of 
the signal y given the parameter vector θ is the pdf of the random vector e: 
 

f Y |Θ ( y|θ ) = f E(e = y − Gθ )             (4.37) 
 
Now assume the input e is a zero-mean, Gaussian-distributed, random 
process with a diagonal covariance matrix, and the parameter vector θ  is 
also a Gaussian process with mean of µθ and covariance matrix Σθθ. 
Therefore we have 
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and 
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The ML estimate obtained from maximisation of the log-likelihood function 

[ ])|(ln | θΘ yYf  with respect to θ is given by 

 

( ) ( ) yGGGy T1Tˆ −
=MLθ             (4.40) 

 
To obtain the MAP estimate we first form the posterior distribution by 
substituting Equations (4.38) and (4.39) in Equation (4.36)  
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(4.41) 

The MAP parameter estimate is obtained by differentiating the log-
likelihood function )|(ln | yY θΘf  and setting the derivative to zero: 

 

( ) ( ) ( )θθθθθ µΣΣθ 12T112Tˆ −−− ++= eeMAP σσ yGGGy        (4.42) 

  
Note that as the covariance of the Gaussian-distributed parameter increases, 
or equivalently as 01 →−

θθΣ , the Gaussian prior tends to a uniform prior and 

the MAP solution  Equation (4.42) tends to the ML solution given by 
Equation (4.40). Conversely as the pdf of the parameter vector θ becomes 
peaked, i.e. as 0→θθΣ , the estimate tends towards µθ. 

 
4.2.3 Minimum Mean Square Error Estimation 
 
The Bayesian minimum mean square error (MMSE) estimate is obtained as 
the parameter vector that minimises a mean square error cost function 
(Figure 4.8) defined as 
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 In the following, it is shown that the Bayesian MMSE estimate is the 
conditional mean of the posterior pdf. Assuming that the mean square error 
risk function is differentiable and has a well-defined minimum, the MMSE 
solution can be obtained by setting the gradient of the mean square error risk 
function to zero: 
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Since the first integral on the right hand-side of Equation (4.42) is equal to 
1, we have 
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θ
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∂
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The MMSE solution is obtained by setting Equation (4.45) to zero: 

 
       ∫=

θ
Θ θθθθ dfMMSE )|()(ˆ

| yy Y               (4.46) 

 
For cases where we do not have a pdf model of the parameter process, the 
minimum mean square error (known as the least square error, LSE) estimate 
is obtained through minimisation of a mean square error function 

  E [e2(θ | y)]: 

)]|([minargˆ 2 yeLSE θθ
θ

E=             (4.47) 

 
Th LSE estimation of Equation (4.47) does not use any prior knowledge of 
the distribution of the signals and the parameters. This can be considered as 
a strength of LSE in situations where the prior pdfs are unknown, but it can 
also be considered as a weakness in cases where fairly accurate models of 
the priors are available but not utilised.  
 

)|(| yf Y θΘ

θMMSEθ̂

)ˆ( θθ ,C

 
Figure 4.8 Illustration of the mean square error cost function and estimate. 
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Example 4.5 Consider the MMSE estimation of a parameter vector θ 
assuming a linear model of the observation y as 
 

eGy += θ                   (4.48) 
 
The LSE estimate is obtained as the parameter vector at which the gradient 
of the mean squared error with respect to θ  is zero: 
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From Equation (4.49) the LSE parameter estimate is given by 
 

yGGG T1T ][ −=LSEθ               (4.50) 

 
Note that for a Gaussian likelihood function, the LSE solution is the same as 
the ML solution of Equation (4.40). 
 
 
4.2.4 Minimum Mean Absolute Value of Error Estimation 
 
The minimum mean absolute value of error (MAVE) estimate (Figure 4.9) 
is obtained through minimisation of a Bayesian risk function defined as 
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 (4.51) 

 
In the following it is shown that the minimum mean absolute value estimate 
is the median of the parameter process. Equation (4.51) can be re-expressed 
as 
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Taking the derivative of the risk function with respect to ˆ θ  yields  
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The minimum absolute value of error is obtained by setting Equation (4.53) 
to zero: 
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MAVE dfdf
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θ
Θ θθθθ ˆ |
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From Equation (4.54) we note the MAVE estimate is the median of the 
posterior density. 
  
 
4.2.5 Equivalence of the MAP, ML, MMSE and MAVE for   

Gaussian Processes With Uniform Distributed Parameters 
 
Example 4.4 shows that for a Gaussian-distributed process the LSE estimate 
and the ML estimate are identical. Furthermore, Equation (4.42), for the 
MAP estimate of a Gaussian-distributed parameter, shows that as the 
parameter variance increases, or equivalently as the parameter prior pdf 
tends to a uniform distribution, the MAP estimate tends to the ML and LSE 
estimates. In general, for any symmetric distribution, centred round the 
maximum, the mode, the mean and the median are identical. Hence, for a 
process with a symmetric pdf, if the prior distribution of the parameter is 
uniform then the MAP, the ML, the MMSE and the MAVE parameter 
estimates are identical. Figure 4.10 illustrates a symmetric pdf, an 
asymmetric pdf, and the relative positions of various estimates.   
 

)|(| yf Y θΘ

θMAVEθ̂

)ˆ( θθ ,C

 
Figure 4.9 Illustration of mean absolute value of error cost function. Note that the 

MAVE estimate coincides with the conditional median of the posterior function. 
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4.2.6 The Influence of the Prior on Estimation Bias and Variance 
 
The use of a prior pdf introduces a bias in the estimate towards the range of 
parameter values with a relatively high prior pdf, and reduces the variance 
of the estimate. To illustrate the effects of the prior pdf on the bias and the 
variance of an estimate, we consider the following examples in which the 
bias and the variance of the ML and the MAP estimates of the mean of a 
process are compared. 
 
Example 4.6 Consider the ML estimation of a random scalar parameter θ, 
observed in a zero-mean additive white Gaussian noise (AWGN) n(m), and 
expressed as 

y(m) = θ + n(m),    m= 0,..., N–1        (4.55) 
 
It is assumed that, for each realisation of the parameter θ, N observation 
samples are available. Note that, since the noise is assumed to be a zero-
mean process, this problem is equivalent to estimation of the mean of the 
process y(m). The likelihood of an observation vector y=[y(0), y(1), …,  
y(N–1)] and a parameter value of θ is given by 
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mean θmode medianθmean, mode,  
median

MAP

MAVE
MMSE

MAP 
ML 

MMSE 
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)( θΘ |yf |Y )( θΘ |yf |Y

Figure 4.10 Illustration of a symmetric and an asymmetric pdf and their respective
mode, mean and median and the relations to MAP, MAVE and MMSE estimates. 
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From Equation (4.56) the log-likelihood function is given by 
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The ML estimate of θ , obtained by setting the derivative of ln f Y|Θ y θ( )  to 
zero, is given by 
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where y  denotes the time average of y(m). From Equation (4.56), we note 
that the ML solution is an unbiased estimate 
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and the variance of the ML estimate is given by 
 

N
my

N
n

N

m
MLML

221

0

2 )(
1

])ˆ[(]ˆ[Var
σθθθθ =


















−=−= ∑

−

=
EE     (4.60) 

 
Note that the variance of the ML estimate decreases with increasing length 
of observation. 
 
Example 4.7 Estimation of a uniformly-distributed parameter observed in 
AWGN. Consider the effects of using a uniform parameter prior on the mean 
and the variance of the estimate in Example 4.6. Assume that the prior for 
the parameter θ is given by 
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as illustrated in Figure 4.11. From Bayes’ rule, the posterior pdf is given by 
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  (4.62) 

The MAP estimate is obtained by maximising the posterior pdf: 
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Note that the MAP estimate is constrained to the range θmin to θmax. This 
constraint is desirable and moderates the estimates that, due to say low 
signal-to-noise ratio, fall outside the range of possible values of θ. It is easy 
to see that the variance of an estimate constrained to a range of θmin to θmax 
is less than the variance of the ML estimate in which there is no constraint 
on the range of the parameter estimate:  
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(4.64) 
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Figure 4.11 Illustration of the effects of a uniform prior. 
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Example 4.8 Estimation of a Gaussian-distributed parameter observed in 
AWGN. In this example, we consider the effect of a Gaussian prior on the 
mean and the variance of the MAP estimate. Assume that the parameter θ is 
Gaussian-distributed with a mean µθ  and a variance σθ

2  as 
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From Bayes rule the posterior pdf is given as the product of the likelihood 
and the prior pdfs as: 
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(4.66) 
The maximum posterior solution is obtained by setting the derivative of the 
log-posterior function, ln f Θ|Y (θ | y), with respect to θ  to zero: 
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Note that the MAP estimate is an interpolation between the ML estimate y  

and the mean of the prior pdf µθ, as shown in Figure 4.12. The expectation 
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Figure 4.12 Illustration of the posterior pdf as product of the likelihood and the prior. 
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of the MAP estimate is obtained by noting that the only random variable on 
the right-hand side of Equation (4.67) is the term y , and that E [ y ]=θ  
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and the variance of the MAP estimate is given as 
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Substitution of Equation (4.58) in Equation (4.67) yields 
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Note that as σθ
2 , the variance of the parameter θ, increases the influence of 

the prior decreases, and the variance of the MAP estimate tends towards the 
variance of the ML estimate.  
 
4.2.7 The Relative Importance of the Prior and the Observation 
 
A fundamental issue in the Bayesian inference method is the relative 
influence of the observation signal and the prior pdf on the outcome. The 
importance of the observation depends on the confidence in the observation, 
and the confidence in turn depends on the length of the observation and on 

θ θµθ
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θ
MAP

θML µθ θ MAP
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)( θΘ |f | yY

)(θΘf

 
Figure 4.13 Illustration of the effect of increasing length of observation on the 

variance an estimator. 
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the signal-to-noise ratio (SNR). In general, as the number of observation 
samples and the SNR increase, the variance of the estimate and the influence 
of the prior decrease. From Equation (4.67) for the estimation of a Gaussian 
distributed parameter observed in AWGN, as the length of the observation N 
increases, the importance of the prior decreases, and the MAP estimate tends 
to the ML estimate: 
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As illustrated in Figure 4.13, as the length of the observation N tends to infinity 
then both the MAP and the ML estimates of the parameter should tend to its true 
value θ. 
 
Example 4.9 MAP estimation of a signal in additive noise. Consider the 
estimation of a scalar-valued Gaussian signal x(m), observed in an additive 
Gaussian white noise n(m), and modelled as 
 

)()()( mnmxmy +=        (4.72) 
 

The posterior pdf of the signal x(m) is given by 
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where ( )2,),())(( xxX mxmxf σµN=  and ( )2,),())(( nnN mnmnf σµN=  are the 

Gaussian pdfs of the signal and noise respectively. Substitution of the signal 
and noise pdfs in Equation (4.73) yields 
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(4.74) 
This equation can be rewritten as 
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To obtain the MAP estimate we set the derivative of the log-likelihood 
function ( ))(|)(ln | mymxf YX  with respect to x(m)  to zero as 
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From Equation (4.76) the MAP signal estimate is given by 
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Note that the estimate ˆ x (m)  is a weighted linear interpolation between the 
unconditional mean of x(m), µx, and the observed value (y(m)–µn). At a very 

poor SNR i.e. when 22
nx 11 <<  we have ˆ x (m) ≈ µ x ; and, on the other hand, 

for a noise-free signal 02 =n1 and 0=nµ  and we have ˆ x (m) = y(m) .  

 
Example 4.10 MAP estimate of a Gaussian–AR process observed in 
AWGN. Consider a vector of N samples x from an autoregressive (AR) 
process observed in an additive Gaussian noise, and modelled as 
 

y  =  x + n         (4.78) 
 

From Chapter 8, a vector x from an AR process may be expressed as 
 

Axe=          (4.79) 
 

where A is a matrix of the AR model coefficients, and the vector e is the 
input signal of the AR model. Assuming that the signal x is Gaussian, and 
that the P initial samples x0 are known, the pdf of the signal x is given by 
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where it is assumed that the input signal e of the AR model is a zero-mean 

uncorrelated process with variance 2
eσ . The pdf of a zero-mean Gaussian 

noise vector n, with covariance matrix Σnn, is given by 
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From Bayes’ rule, the pdf of the signal given the noisy observation is  
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Substitution of the pdfs of the signal and noise in Equation (4.82) yields 
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  (4.83) 
 

The MAP estimate corresponds to the minimum of the argument of the 
exponential function in Equation (4.83). Assuming that the argument of the 
exponential function is differentiable, and has a well-defined minimum, we 
can obtain the MAP estimate from 
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The MAP estimate is 
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where I is the identity matrix. 



Estimate–Maximise (EM) Method 117 

 

 

4.3 The Estimate–Maximise (EM) Method 
 
The EM algorithm is an iterative likelihood maximisation method with 
applications in blind deconvolution, model-based signal interpolation, 
spectral estimation from noisy observations, estimation of a set of model 
parameters from a training data set, etc. The EM is a framework for solving 
problems where it is difficult to obtain a direct ML estimate either because 
the data is incomplete or because the problem is difficult. 
 To define the term incomplete data, consider a signal x from a random 
process X with an unknown parameter vector θ and a pdf fX;Θ(x;θ). The 

notation fX;Θ(x;θ) expresses the dependence of the pdf of X on the value of 

the unknown parameter θ. The signal x is the so-called complete data and 
the ML estimate of the parameter vector θ may be obtained from fX;Θ(x;θ). 
Now assume that the signal x goes through a many-to-one non-invertible 
transformation (e.g. when a number of samples of the vector x are lost) and 
is observed as y. The observation y is the so-called incomplete data. 
Maximisation of the likelihood of the incomplete data, fY;Θ(y;θ), with 

respect to the parameter vector θ is often a difficult task, whereas 
maximisation of the likelihood of the complete data fX;Θ(x;θ) is relatively 

easy. Since the complete data is unavailable, the parameter estimate is 
obtained through maximisation of the conditional expectation of the log-
likelihood of the complete data defined as  
 

[ ] ( ) xxyxyx
X

XYXX dfff |∫= );(ln;);(ln ;;; θθθ ΘΘΘE   (4.86) 

 
In Equation (4.86), the computation of the term fX|Y;Θ(x|y;θ) requires an 

estimate of the unknown parameter vector θ. For this reason, the expectation 
of the likelihood function is maximised iteratively starting with an initial 
estimate of θ, and updating the estimate as described in the following. 
 
 

Non-invertable
transformation 

Signal process  
with  

parameter θ

“Complete data”

x y
“Incomplete data”

);(; θΘ xXf );(; θΘ yYf
 

 
Figure 4.14 Illustration of transformation of complete data to incomplete data. 
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EM Algorithm 
 
  Step 1: Initialisation Select an initial parameter estimate 0θ , and  

       for i = 0, 1, ... until convergence: 
 
  Step 2: Expectation Compute 
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  Step 3: Maximisation Select 
 

)ˆ(maxargˆ
1 ii ,U= θθθ

θ
+        (4.88) 

  Step 4: Convergence test If not converged then go to Step 2. 
 
4.3.1 Convergence of the EM Algorithm 
 
In this section, it is shown that the EM algorithm converges to a maximum 
of the likelihood of the incomplete data fY;Θ(y;θ). The likelihood of the 
complete data can be written as 
 

);();|();,( ;;; θθθ ΘΘΘ yyxyx YYXYX fff |, =     (4.89) 

 
where fX,Y;Θ(x,y;θ) is the likelihood of x and y with θ as a parameter. From 
Equation (4.89), the log-likelihood of the incomplete data is obtained as 
 

 );|(ln);,(ln);(ln ;;; θθθ ΘΘΘ yxyxy YXYXY |, fff −=   (4.90) 

 
Using an estimate ˆ θ i  of the parameter vector θ, and taking the expectation 
of Equation (4.90) over the space of the complete signal x, we obtain 
 

)ˆ;()ˆ;();(ln ; ii VUf θθθθθΘ −=yY       (4.91) 

 
where for a given y, the expectation of ln fY;Θ(y;θ) is itself, and the function  

U(θ ; ˆ θ )   is the conditional expectation of ln fX,Y;Θ(x,y;θ): 
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The function V(θ, ˆ θ )  is the conditional expectation of ln fX|Y;Θ(x|y;θ): 
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Now, from Equation (4.91), the log-likelihood of the incomplete data y with 
parameter estimate ˆ θ i  at iteration i is   
 

)ˆ;ˆ()ˆ;ˆ()ˆ;(ln ; iiiii VUf θθθθθΘ −=yY       (4.94) 

 
It can be shown (see Dempster et al., 1977) that the function V satisfies the 
inequality  

  )ˆ;ˆ()ˆ;ˆ( 1 iiii VV θθθθ ≤+        (4.95) 
 

and in the maximisation step of EM we choose 1
ˆ

+iθ  such that  

 
)ˆ;ˆ()ˆ;ˆ( 1 iiii UU θθθθ ≥+        (4.96) 

 
From Equation (4.94) and the inequalities (4.95) and (4.96), it follows that 
 

ln f Y;Θ ( y; ˆ θ i+1 ) ≥ ln fY;Θ (y; ˆ θ i )      (4.97) 

 
Therefore at every iteration of the EM algorithm, the conditional likelihood 
of the estimate increases until the estimate converges to a local maximum of 
the log-likelihood function ln fY;Θ(y;θ). 
 The EM algorithm is applied to the solution of a number of problems in 
this book. In Section 4.5, of this chapter the estimation of the parameters of 
a mixture Gaussian model for the signal space of a recorded process is 
formulated in an EM framework. In Chapter 5, the EM is used for estimation 
of the parameters of a hidden Markov model.  
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4.4 Cramer–Rao Bound on the Minimum Estimator Variance  
 
An important measure of the performance of an estimator is the variance of 
the estimate with the varying values of the observation signal y and the 
parameter vector θ. The minimum estimation variance depends on the 
distributions of the parameter vector θ and on the observation signal y. In 
this section, we first consider the lower bound on the variance of the 
estimates of a constant parameter, and then extend the results to random 
parameters.  
 The Cramer–Rao lower bound on the variance of estimate of the ith 
coefficient θi  of a parameter vector θ  is given as  
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An estimator that achieves the lower bound on the variance is called the 
minimum variance, or the most efficient, estimator.   
 
Proof The bias in the estimate ˆ θ i( y)  of the ith coefficient of the parameter 

vector θ, averaged over the observation space Y, is defined as 
 

E [ ˆ θ i( y) − θ i ] = [ ˆ θ i (y) − θ i ] fY|Θ (y|θ )
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Differentiation of Equation (4.99) with respect to θi yields 
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For a probability density function we have  
 

f Y|Θ (y|θ ) dy = 1

−∞

∞

∫        (4.101) 
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Therefore Equation (4.100) can be written as 
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Now, since the derivative of the integral of a pdf is zero, taking the 
derivative of Equation (4.101) and multiplying the result by θBias yields  
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Substituting ii fff θ∂∂θ∂∂ /)|(ln)|(/)|( ||| θθθ ΘΘΘ yyy YYY =  into 

Equation (4.102), and using Equation (4.103), we obtain 
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 Now squaring both sides of Equation (4.104), we obtain  
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For the left-hand side of Equation (4.105) application of the following 
Schwartz inequality  
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yields 
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From Equations (4.105) and (4.107), we have  
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The Cramer–Rao inequality (4.98) results directly from the inequality 
(4.108).   
 
 
4.4.1 Cramer–Rao Bound for Random Parameters 
 
For random parameters the Cramer–Rao bound may be obtained using the 
same procedure as above, with the difference that in Equation (4.98) instead 
of the likelihood fY|Θ(y|θ) we use the joint pdf fY,Θ(y,θ), and we also use the 
logarithmic relation 
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The Cramer–Rao bound for random parameters is obtained as 
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where the second term in the denominator of Equation (4.110) describes the 
effect of the prior pdf of θ. As expected the use of the prior, fΘ(θ), can result 
in a decrease in the variance of the estimate. An alternative form of the 
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minimum bound on estimation variance can be obtained by using the 
likelihood relation   
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as 
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4.4.2 Cramer–Rao Bound for a Vector Parameter 
 
For real-valued P-dimensional vector parameters, the Cramer–Rao bound 
for the covariance matrix of an unbiased estimator of θ is given by  
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where J is the P × P  Fisher information matrix, with elements given by 
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The lower bound on the variance of the ith element of the vector θ is given 
by 
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where (J–1(θ)ii) is the ith diagonal element of the inverse of the Fisher 
matrix.
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4.5 Design of Mixture Gaussian Models 
 
A practical method for the modelling of the probability density function of 
an arbitrary signal space is to fit (or “tile”) the space with a mixture of a 
number of Gaussian probability density functions. Figure 4.15 illustrates the 
modelling of a two-dimensional signal space with a number of circular and 
elliptically shaped Gaussian processes. Note that the Gaussian densities can 
be overlapping, with the result that in an area of overlap, a data point can be 
associated with different probabilities to different components of the 
Gaussian mixture.  
 A main advantage of the use of a mixture Gaussian model is that it 
results in mathematically tractable signal processing solutions. A mixture 
Gaussian pdf model for a process X is defined as 
 

∑
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where N k (x ;µk , Σ k)  denotes the kth component of the mixture Gaussian 

pdf, with mean vector  µk and covariance matrix Σk. The parameter Pk is the 

y
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y
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x
1

x
2  

Figure 4.15 Illustration of probabilistic modelling of a two-dimensional signal 
space with a mixture of five bivariate Gaussian densities. 
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prior probability of the kth mixture, and it can be interpreted as the expected 
fraction of the number of vectors from the process X associated with the kth 
mixture.  
 In general, there are an infinite number of different K-mixture Gaussian 
densities that can be used to “tile up” a signal space. Hence the modelling of 
a signal space with a K-mixture pdf space can be regarded as a many-to-one 
mapping, and the expectation-maximisation (EM) method can be applied for 
the estimation of the parameters of the Gaussian pdf models. 
 
 
4.5.1 The EM Algorithm for Estimation of Mixture Gaussian 

Densities 
 
The EM algorithm, discussed in Section 4.4, is an iterative maximum-
likelihood (ML) estimation method, and can be employed to calculate the 
parameters of a K-mixture Gaussian pdf model for a given data set. To 
apply the EM method we first need to define the so-called complete and 
incomplete data sets. As usual the observation vectors [y(m)  m=0, ..., N–1] 
form the incomplete data. The complete data may be viewed as the 
observation vectors with a label attached to each vector y(m) to indicate the 
component of the mixture Gaussian model that generated the vector. Note 
that if each signal vector y(m) had a mixture component label attached, then 
the computation of the mean vector and the covariance matrix of each 
component of the mixture would be a relatively simple exercise. Therefore 
the complete and incomplete data can be defined as follows: 
 
The incomplete data  10)( −= N,,m,m �y  

The complete data   [ ] ),,1(,1,,0),(),()( KkNmmkmm k �� ∈−== y=yx    

    
The probability of the complete data is the probability that an observation 
vector y(m) has a label k associating it with the kth component of the mixture 
density. The main step in application of the EM method is to define the 
expectation of the complete data, given the observations and a current 
estimate of the parameter vector, as 
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where Θ={θk=[Pk, µk, Σk], k=1,..., K}, are the parameters of the Gaussian 
mixture as in Equation (4.116). Now the joint pdf of y(m) and the kth 
Gaussian component of the mixture density can be written as 
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where ( )kkk m Σµ ˆ,ˆ);(yN  is a Gaussian density with mean vector µk  and 

covariance matrix Σ k : 
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The pdf of y(m) as a mixture of K Gaussian densities is given by 
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Substitution of the Gaussian densities of Equation (4.118) and Equation 
(4.120) in Equation (4.117) yields 
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Equation (4.121) is maximised with respect to the parameter Pk using the 
constrained optimisation method. This involves subtracting the constant 

term ΣPk=1 from the right hand side of Equation (4.121) and then setting 
the derivative of this equation with respect to Pk to zero, this yields 
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The parameters µk and Σk  that maximise the function U are obtained, by 
setting the derivative of the function with respect to these parameters to 
zero: 
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and 
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(4.124)
Equations (4.122)–(4.124) are the estimates of the parameters of a mixture 
Gaussian pdf model. These equations can be used in further iterations of the 
EM method until the parameter estimates converge. 
 
 
4.6 Bayesian Classification 
 
Classification is the processing and labelling of an observation sequence 
{y(m)} with one of M classes of signals {Ck; k=1, ..., M} that could have 
generated the observation. Classifiers are present in all modern digital 
communication systems and in applications such as the decoding of 
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discrete-valued symbols in digital communication receivers, speech 
compression, video compression, speech recognition, image recognition, 
character recognition, signal/noise classification and detectors. For example, 
in an M-symbol digital communication system, the channel output signal is 
classified as one of the M signalling symbols; in speech recognition, 
segments of speech signals are labelled with one of about 40 elementary 
phonemes sounds; and in speech or video compression, a segment of speech 
samples or a block of image pixels are quantised and labelled with one of a 
number of prototype signal vectors in a codebook. In the design of a 
classifier, the aim is to reduce the classification error given the constraints 
on the signal-to-noise ratio, the bandwidth and the computational resources.  
 Classification errors are due to overlap of the distributions of different 
classes of signals. This is illustrated in Figure 4.16 for a binary classification 
problem with two Gaussian distributed signal classes C1 and C2. In the 
shaded region, where the signal distributions overlap, a sample x could 
belong to either of the two classes. The shaded area gives a measure of the 
classification error. The obvious solution suggested by Figure 4.16 for 
reducing the classification error is to reduce the overlap of the distributions. 
The overlap can be reduced in two ways: (a) by increasing the distance 
between the mean values of different classes, and (b) by reducing the 
variance of each class. In telecommunication systems the overlap between 
the signal classes is reduced using a combination of several methods 
including increasing the signal-to-noise ratio, increasing the distance 
between signal patterns by adding redundant error control coding bits, and 
signal shaping and post-filtering operations. In pattern recognition, where it 
is not possible to control the signal generation process (as in speech and 

C1 C2

x

fX(x)

µ1 µ2θthrsh
 

Figure 4.16 – Illustration of the overlap of the distribution of two classes of signals. 
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image recognition), the choice of the pattern features and models affects the 
classification error. The design of an efficient classification for pattern 
recognition depends on a number of factors, which can be listed as follows:  
 
(1) Extraction and transformation of a set of discriminative features from 

the signal that can aid the classification process. The features need to 
adequately characterise each class and emphasise the difference 
between various classes. 

(2) Statistical modelling of the observation features for each class. For 
Bayesian classification, a posterior probability model for each class 
should be obtained. 

(3) Labelling of an unlabelled signal with one of the N classes.  
 
 
4.6.1  Binary Classification 
 
The simplest form of classification is the labelling of an observation with 
one of two classes of signals. Figures 4.17(a) and 4.17(b) illustrate two 
examples of a simple binary classification problem in a two-dimensional 
signal space. In each case, the observation is the result of a random mapping 
(e.g. signal plus noise) from the binary source to the continuous observation 
space. In Figure 4.17(a), the binary sources and the observation space 
associated with each source are well separated, and it is possible to make an 
error-free classification of each observation. In Figure 4.17(b) there is less 
distance between the mean of the sources, and the observation signals have a 
greater spread. This results in some overlap of the signal spaces and 
classification error can occur. In binary classification, a signal x is labelled 
with the class that scores the higher a posterior probability: 
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Using Bayes’ rule Equation (4.125) can be rewritten as 
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Letting PC(C1)=P1 and PC(C2)=P2, Equation (4.126) is often written in 
terms of a likelihood ratio test as 
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Taking the likelihood ratio yields the following discriminant function: 
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Now assume that the signal in each class has a Gaussian distribution with a 
probability distribution function given by  
 

( ) 



 −−−= − )()(

2

1
exp 

2

1 1T
iii

i
iC cf µΣµ

Σ
xxxX π

,    i=1,2  (4.129) 

y
1

y
2

Discrete source space Noisy observation  spaces1

s
2

y1

y
2

s1

s2

(a)

(b)
 

Figure 4.17 Illustration of binary classification: (a) the source and observation spaces 
are well separated, (b) the observation spaces overlap. 
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From Equations (4.128) and (4.129), the  discriminant function h(x) 
becomes 
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Example 4.10 For two Gaussian-distributed classes of scalar-valued 

signals with distributions given by ),),(( 2
1 σµmxN  and ),),(( 2

2 σµmxN , 
and equal class probability P1=P2=0.5, the discrimination function of 
Equation (4.130) becomes 
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Hence the rule for signal classification becomes 
 

2
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1
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The signal is labelled with class C1 if x(m)< 2/)( 21 µµ + and as class C2 
otherwise. 
 
4.6.2 Classification Error 
 
Classification errors are due to the overlap of the distributions of different 
classes of signals. This is illustrated in Figure 4.16 for the binary 
classification of a scalar-valued signal and in Figure 4.17 for the binary 
classification of a two-dimensional signal. In each figure the overlapped 
area gives a measure of classification error. The obvious solution for 
reducing the classification error is to reduce the overlap of the distributions. 
This may be achieved by increasing the distance between the mean values of 
various classes or by reducing the variance of each class. In the binary 
classification of a scalar-valued variable x, the probability of classification 
error is given by 
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For two Gaussian-distributed classes of scalar-valued signals with pdfs 

),),(( 2
11 σµmxN  and ),),(( 2

22 σµmxN , Equation (4.133) becomes 
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where the parameter Thrsh is the classification threshold. 
 

 
4.6.3 Bayesian Classification of Discrete-Valued Parameters 
 
Let the set Θ={θi, i =1, ..., M} denote the values that a discrete P-
dimensional parameter vector θ can assume. In general, the observation 
space Y associated with a discrete parameter space Θ may be a discrete-
valued or a continuous-valued space. Assuming that the observation space is 
continuous, the pdf of the parameter vector θi, given observation vector y , 
may be expressed, using Bayes’ rule, as 
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For the case when the observation space Y is discrete-valued, the probability 
density functions are replaced by the appropriate probability mass functions. 
The Bayesian risk in selecting the parameter vector θi given the observation 
y is defined as 
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where C(θi|θj) is the cost of selecting the parameter θi when the true 
parameter is θj. The Bayesian classification Equation (4.136) can be 
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employed to obtain the maximum a posteriori, the maximum likelihood and 
the minimum mean square error classifiers. 
 
 
4.6.4 Maximum A Posteriori Classification  
 
MAP classification corresponds to Bayesian classification with a uniform 
cost function defined as 
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where δ(· ) is the delta function. Substitution of this cost function in the 
Bayesian risk function yields 
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Note that the MAP risk in selecting θi is the classification error probability; 
that is the sum of the probabilities of all other candidates. From Equation 
(4.138) minimisation of the MAP risk function is achieved by maximisation 
of the posterior pmf: 
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4.6.5  Maximum-Likelihood (ML) Classification  
 
The ML classification corresponds to Bayesian classification when the 
parameter θ  has a uniform prior pmf and the cost function is also uniform: 
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where PΘ  is the uniform pmf of θ. Minimisation of the ML risk function 
(4.140) is equivalent to maximisation of the likelihood f Y|Θ (y|θ i )  
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4.6.6 Minimum Mean Square Error Classification  
 
The Bayesian minimum mean square error classification results from 
minimisation of the following risk function: 
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For the case when PΘ |Y (θ j| y)  is not available, the MMSE classifier is 

given by 
2)(min arg)(ˆ yy θθθ

θ
−= iMMSE

i

     (4.143) 

where θ(y) is an estimate based on the observation y. 
 
 
4.6.7 Bayesian Classification of Finite State Processes 
 
In this section, the classification problem is formulated within the 
framework of a finite state random process. A finite state process is 
composed of a probabilistic chain of a number of different random 
processes. Finite state processes are used for modelling non-stationary 
signals such as speech, image, background acoustic noise, and impulsive 
noise as discussed in Chapter 5.  
 Consider a process with a set of M states denoted as S={s1, s2, . . ., sM}, 
where each state has some distinct statistical property. In its simplest form, a 
state is just a single vector, and the finite state process is equivalent to a 
discrete-valued random process with M outcomes. In this case the Bayesian 
state estimation is identical to the Bayesian classification of a signal into 
one of M discrete-valued vectors. More generally, a state generates 
continuous-valued, or discrete-valued vectors from a pdf, or a pmf, 
associated with the state. Figure 4.18 illustrates an M-state process, where 
the output of the ith state is expressed as 
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where in each state the signal x(m) is modelled as the output of a state-
dependent function hi(· ) with parameter θi, input e(m) and an input pdf 
fEi(e(m)). The prior probability of each state is given by  
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where E[N(si)] is the expected number of observation from state si. The pdf 
of the output of a finite state process is a weighted combination of the pdf of 
each state and is given by 
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In Figure 4.18, the noisy observation y(m) is the sum of the process output 
x(m) and an additive noise n(m). From Bayes’ rule, the posterior probability 
of the state si given the observation y(m) can be expressed as 
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Figure 4.18 Illustration of a random process generated by a finite state system. 
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In MAP classification, the state with the maximum posterior probability is 
selected as 
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The Bayesian state classifier assigns a misclassification cost function 
C(si|sj) to the action of selecting the state si when the true state is sj. The risk 
function for the Bayesian classification is given by 
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4.6.8 Bayesian Estimation of the Most Likely State Sequence 
 
Consider the estimation of the most likely state sequence 
s = [si0 ,si1 ,�,siT −1

]  of a finite state process, given a sequence of T 

observation vectors 
��
Y = [y0 , y1,�, yT −1 ]. A state sequence s, of length T, is 

itself a random integer-valued vector process with NT possible values. From 
the Bayes rule, the posterior pmf of a state sequence s, given an observation 
sequence Y, can be expressed as 
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where PS(s) is the pmf of the state sequence s, and for a given observation 
sequence, the denominator 

��
f Y (y0 ,�, yT−1)  is a constant. The Bayesian risk 

in selecting a state sequence si  is expressed as  
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For a statistically independent process, the state of the process at any time is 
independent of the previous states, and hence the conditional probability of 
a state sequence can be written as 
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where sik denotes state si at time instant k. A particular case of a finite state 
process is the Markov chain where the state transition is governed by a 
Markovian process such that the probability of the state i at time m depends 
on the state of the process at time m-1. The conditional pmf of a Markov 
state sequence can be expressed as 
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where aik −1ik

is the probability that the process moves from state sik−1
 to 

state sik  Finite state random processes and computationally efficient 

methods of state sequence estimation are described in detail in Chapter 5. 
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Figure 4.19 A three state Markov Process. 
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4.7 Modelling the Space of a Random Process  
 
In this section, we consider the training of statistical models for a database 
of P-dimensional vectors of a random process. The vectors in the database 
can be visualised as forming a number of clusters or regions in a P-
dimensional space. The statistical modelling method consists of two steps: 
(a) the partitioning of the database into a number of regions, or clusters, and 
(b) the estimation of the parameters of a statistical model for each cluster. A 
simple method for modelling the space of a random signal is to use a set of 
prototype vectors that represent the centroids of the signal space. This 
method effectively quantises the space of a random process into a relatively 
small number of typical vectors, and is known as vector quantisation (VQ). 
In the following, we first consider a VQ model of a random process, and 
then extend this model to a pdf model, based on a mixture of Gaussian 
densities. 
 
 
4.7.1 Vector Quantisation of a Random Process 
 
In vector quantisation, the space of a random vector process X is partitioned 
into K clusters or regions [X1, X2, ...,XK], and each cluster Xi  is represented 
by a cluster centroid ci. The set of centroid vectors [c1, c2, ...,cK] form a VQ 
code book model of  the process X. The VQ code book can then be used to 
classify an unlabelled vector x with the nearest centroid. The codebook is 
searched to find the centroid vector with the minimum distance from x, then 
x is labelled with the index of the minimum distance centroid as 
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i
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where d(x, ci) is a measure of distance between the vectors x and ci. The 
most commonly used distance measure is the mean squared distance.  
 
 
4.7.2 Design of a Vector Quantiser: K-Means Clustering  
 
The K-means algorithm, illustrated in Figure 4.20, is an iterative method for 
the design of a VQ codebook. Each iteration consists of two basic steps : (a) 
Partition the training signal space into K regions or clusters and (b) compute 
the centroid of each region. The steps in K-Means method are as follows: 
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Step 1: Initialisation Use a suitable method to choose a set of K initial 

centroids [ci].  For m = 1, 2, . . . 
 
Step 2: Classification Classify the training vectors {x} into K clusters {[x1], 

[x2], ... [xK]} using the so-called nearest-neighbour rule Equation 
(4.154). 

 
Step 3: Centroid computation Use the vectors [xi] associated with the ith 

cluster to compute an updated cluster centroid ci, and calculate the 
cluster distortion defined as 
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 where it is assumed that a set of Ni  vectors [xi(j) j=0, ..., Ni] are 

associated with cluster i. The total distortion is given by 
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Figure 4.18 Illustration of the K-means clustering method. 
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 Step 4: Convergence test:  
  if  

   D(m −1) − D(m ) ≥ Threshold  stop,       
  else  
   goto Step 2. 
 
A vector quantiser models the regions, or the clusters, of the signal space 
with a set of cluster centroids. A more complete description of the signal 
space can be achieved by modelling each cluster with a Gaussian density as 
described in the next chapter.
 
 
4.8 Summary 
 
This chapter began with an introduction to the basic concepts in estimation 
theory; such as the signal space and the parameter space, the prior and 
posterior spaces, and the statistical measures that are used to quantify the 
performance of an estimator. The Bayesian inference method, with its 
ability to include as much information as is available, provides a general 
framework for statistical signal processing problems. The minimum mean 
square error, the maximum-likelihood, the maximum a posteriori, and the 
minimum absolute value of error methods were derived from the Bayesian 
formulation. Further examples of the applications of Bayesian type models 
in this book include the hidden Markov models for non-stationary processes 
studied in Chapter 5, and blind equalisation of distorted signals studied in 
Chapter 15.  
 We considered a number of examples of the estimation of a signal 
observed in noise, and derived the expressions for the effects of using prior 
pdfs on the mean and the variance of the estimates. The choice of the prior 
pdf is an important consideration in Bayesian estimation. Many processes, 
for example speech or the response of a telecommunication channel, are not 
uniformly distributed in space, but are constrained to a particular region of 
signal or parameter space. The use of a prior pdf can guide the estimator to 
focus on the posterior space that is the subspace consistent with both the 
likelihood and the prior pdfs. The choice of the prior, depending on how 
well it fits the process, can have a significant influence on the solutions. 
 The iterative estimate-maximise method, studied in Section 4.3, 
provides a practical framework for solving many statistical signal 
processing problems, such as the modelling of a signal space with a mixture 
Gaussian densities, and the training of hidden Markov models in Chapter 5. 
In Section 4.4 the Cramer–Rao lower bound on the variance of an estimator 
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was derived, and it was shown that the use of a prior pdf can reduce the 
minimum estimator variance. 
 Finally we considered the modelling of a data space with a mixture 
Gaussian process, and used the EM method to derive a solution for the 
parameters of the mixture Gaussian model. 
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