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idden Markov models (HMMs) are used for the statistical modelling 
of non-stationary signal processes such as speech signals, image 
sequences and time-varying noise. An HMM models the time 

variations (and/or the space variations) of the statistics of a random process 
with a Markovian chain of state-dependent stationary subprocesses. An 
HMM is essentially a Bayesian finite state process, with a Markovian prior 
for modelling the transitions between the states, and a set of state probability 
density functions for modelling the random variations of the signal process 
within each state. This chapter begins with a brief introduction to 
continuous and finite state non-stationary models, before concentrating on 
the theory and applications of hidden Markov models. We study the various 
HMM structures, the Baum–Welch method for the maximum-likelihood 
training of the parameters of an HMM, and the use of HMMs and the 
Viterbi decoding algorithm for the classification and decoding of an 
unlabelled observation signal sequence. Finally, applications of the HMMs 
for the enhancement of noisy signals are considered. 
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5.1 Statistical Models for Non-Stationary Processes 
  
A non-stationary process can be defined as one whose statistical parameters 
vary over time. Most “naturally generated” signals, such as audio signals, 
image signals, biomedical signals and seismic signals, are non-stationary, in 
that the parameters of the systems that generate the signals, and the 
environments in which the signals propagate, change with time.  
 A non-stationary process can be modelled as a double-layered 
stochastic process, with a hidden process that controls the time variations of 
the statistics of an observable process, as illustrated in Figure 5.1. In 
general, non-stationary processes can be classified into one of two broad 
categories:  
 

(a) Continuously variable state processes. 
(b) Finite state processes.  
 

A continuously variable state process is defined as one whose underlying 
statistics vary continuously with time. Examples of this class of random 
processes are audio signals such as speech and music, whose power and 
spectral composition vary continuously with time. A finite state process is 
one whose statistical characteristics can switch between a finite number of 
stationary or non-stationary states. For example, impulsive noise is a binary-
state process. Continuously variable processes can be approximated by an 
appropriate finite state process.  
 Figure 5.2(a) illustrates a non-stationary first-order autoregressive (AR) 
process. This process is modelled as the combination of a hidden stationary 
AR model of the signal parameters, and an observable time-varying AR 
model of the signal. The hidden model controls the time variations of the 
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Figure 5.1 Illustration of a two-layered model of a non-stationary process. 
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parameters of the non-stationary AR model. For this model, the observation 
signal equation and the parameter state equation can be expressed as 
 

x(m) = a(m)x(m −1) +e(m)   Observation equation  (5.1) 
 

)()1()( mmama εβ +−=    Hidden state equation   (5.2) 
 

where a(m) is the time-varying coefficient of the observable AR process and 
β is the coefficient of the hidden state-control process.  
 A simple example of a finite state non-stationary model is the binary-
state autoregressive process illustrated in Figure 5.2(b), where at each time 
instant a random switch selects one of the two AR models for connection to 
the output terminal. For this model, the output signal x(m) can be expressed 
as 

)()()()()( 10 mxmsmxmsmx +=        (5.3) 
 
where the binary switch s(m) selects the state of the process at time m, and 

)(ms  denotes the Boolean complement of s(m). 
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Figure 5.2 (a) A continuously variable state AR process. (b) A binary-state AR 
process. 
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Figure 5.3 (a) Illustration of a two-layered random process. (b) An HMM model of 

the process in (a). 
 
 

5.2 Hidden Markov Models 
 
A  hidden Markov model (HMM) is a double-layered finite state process, 
with a hidden Markovian process that controls the selection of the states of 
an observable process. As a simple illustration of a binary-state Markovian 
process, consider Figure 5.3, which shows two containers of different 
mixtures of black and white balls. The probability of the black and the white 
balls in each container, denoted as PB and PW respectively, are as shown 
above Figure 5.3. Assume that at successive time intervals a hidden 
selection process selects one of the two containers to release a ball. The 
balls released are replaced so that the mixture density of the black and the 
white balls in each container remains unaffected. Each container can be 
considered as an underlying state of the output process. Now for an example 
assume that the hidden container-selection process is governed by the 
following rule: at any time, if the output from the currently selected 
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container is a white ball then the same container is selected to output the 
next ball, otherwise the other container is selected. This is an example of a 
Markovian process because the next state of the process depends on the 
current state as shown in the binary state model of Figure 5.3(b). Note that 
in this example the observable outcome does not unambiguously indicate 
the underlying hidden state, because both states are capable of releasing 
black and white balls.  
 In general, a hidden Markov model has N sates, with each state trained 
to model a distinct segment of a signal process. A hidden Markov model can 
be used to model a time-varying random process as a probabilistic 
Markovian chain of N stationary, or quasi-stationary, elementary sub-
processes. A general form of a three-state HMM is shown in Figure 5.4. 
This structure is known as an ergodic HMM. In the context of an HMM, the 
term “ergodic” implies that there are no structural constraints for connecting 
any state to any other state.  
 A more constrained form of an HMM is the left–right model of Figure 
5.5, so-called because the allowed state transitions are those from a left state 
to a right state and the self-loop transitions. The left–right constraint is 
useful for the characterisation of temporal or sequential structures of 
stochastic signals such as speech and musical signals, because time may be 
visualised as having a direction from left to right.  
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Figure 5.4 A three-state ergodic HMM structure. 
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Figure 5.5 A 5-state left–right HMM speech model.  

 
 
 
5.2.1 A Physical Interpretation of Hidden Markov Models 
 
For a physical interpretation of the use of HMMs in modelling a signal 
process, consider the illustration of Figure 5.5 which shows a left–right 
HMM of a spoken letter “C”, phonetically transcribed as ‘s-iy’, together 
with a plot of the speech signal waveform for “C”. In general, there are two 
main types of variation in speech and other stochastic signals: variations in 
the spectral composition, and variations in the time-scale or the articulation 
rate. In a hidden Markov model, these variations are modelled by the state 
observation and the state transition probabilities. A useful way of 
interpreting and using HMMs is to consider each state of an HMM as a 
model of a segment of a stochastic process. For example, in Figure 5.5, state 
S1 models the first segment of the spoken letter “C”, state S2 models the 
second segment, and so on. Each state must have a mechanism to 
accommodate the random variations in different realisations of the segments 
that it models. The state transition probabilities provide a mechanism for 
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connection of various states, and for the modelling the variations in the 
duration and time-scales of the signals in each state. For example if a 
segment of a speech utterance is elongated, owing, say, to slow articulation, 
then this can be accommodated by more self-loop transitions into the state 
that models the segment. Conversely, if a segment of a word is omitted, 
owing, say, to fast speaking, then the skip-next-state connection 
accommodates that situation. The state observation pdfs model the 
probability distributions of the spectral composition of the signal segments 
associated with each state. 
 
 
5.2.2 Hidden Markov Model as a Bayesian Model 
 
A hidden Markov model M is a Bayesian structure with a Markovian state 
transition probability and a state observation likelihood that can be either a 
discrete pmf or a continuous pdf. The posterior pmf of a state sequence s of 
a model M, given an observation sequence X, can be expressed using Bayes’ 
rule as the product of a state prior pmf and an observation likelihood 
function: 
 

( )
( )

( ) ( )MMM MMM s,Xs
X

X,s S,XS
X

X,S |||
1

fP
f

P =      (5.4) 

 
where the observation sequence X is modelled by a probability density 
function PS|X,M(s|X,M).  

 The posterior probability that an observation signal sequence X was 
generated by the model M is summed over all likely state sequences, and 
may also be weighted by the model prior )(MMP : 
 

( )
( )

( ) ( )∑=
s

S,X|S
X

X s,Xs
X

X
�� ��� ����������

likelihoodnObservatioriorpStateriorpModel

fPP
f

P MMMM MMMM || )(
1

   (5.5) 

 
The Markovian state transition prior can be used to model the time 
variations and the sequential dependence of most non-stationary processes. 
However, for many applications, such as speech recognition, the state 
observation likelihood has far more influence on the posterior probability 
than the state transition prior.  
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 5.2.3 Parameters of a Hidden Markov Model 
 
A hidden Markov model has the following parameters:  
 
Number of states N. This is usually set to the total number of distinct, or 

elementary, stochastic events in a signal process. For example, in 
modelling a binary-state process such as impulsive noise, N is set to 2, 
and in isolated-word speech modelling N is set between 5 to 10. 

 
State transition-probability matrix A={aij, i,j=1, ... N}. This provides a 

Markovian connection network between the states, and models the 
variations in the duration of the signals associated with each state. For 
a left–right HMM (see Figure 5.5), aij=0 for i>j, and hence the 
transition matrix A is upper-triangular. 

 
State observation vectors {µi1, µi2, ..., µiM, i=1, ..., N}. For each state a set 

of M prototype vectors model the centroids of the signal space 
associated with each state. 

 

State observation vector probability model. This can be either a discrete 
model composed of the M prototype vectors and their associated 
probability mass function (pmf) P={Pij(· ); i=1, ..., N, j=1, ... M}, or it 
may be a continuous (usually Gaussian) pdf model F={fij(· ); i=1, ..., 
N, j=1, ..., M}.  

 
Initial state probability vector π=[π1, π2, ..., πN]. 
 
 5.2.4 State Observation Models 
 
Depending on whether a signal process is discrete-valued or continuous-
valued, the state observation model for the process can be either a discrete-
valued probability mass function (pmf), or a continuous-valued probability 
density function (pdf). The discrete models can also be used for the 
modelling of the space of a continuous-valued process quantised into a 
number of discrete points. First, consider a discrete state observation density 
model. Assume that associated with the ith state of an HMM there are M 
discrete centroid vectors [µi1, ..., µiM] with a pmf [Pi1, ..., PiM]. These 
centroid vectors and their probabilities are normally obtained through 
clustering of a set of training signals associated with each state. 
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 For the modelling of a continuous-valued process, the signal space 
associated with each state is partitioned into a number of clusters as in 
Figure 5.6. If the signals within each cluster are modelled by a uniform 
distribution then each cluster is described by the centroid vector and the 
cluster probability, and the state observation model consists of M cluster 
centroids and the associated pmf {µik, Pik; i=1, ..., N, k=1, ..., M}. In effect, 
this results in a discrete state observation HMM for a continuous-valued 
process. Figure 5.6(a) shows a partitioning, and quantisation, of a signal 
space into a number of centroids. 
 Now if each cluster of the state observation space is modelled by a 
continuous pdf, such as a Gaussian pdf, then a continuous density HMM 
results. The most widely used state observation pdf for an HMM is the 
mixture Gaussian density defined as 

 

( ) ( )∑
=

==
M

k
ikikikS Pisf

1

,, ΣµxxX N               (5.6) 

 
where ( )ikik Σµ ,,xN  is a Gaussian density with mean vector µik and 

covariance matrix Σik, and Pik is a mixture weighting factor for the kth 
Gaussian pdf of the state i. Note that Pik  is the prior probability of the kth 
mode of the mixture pdf for the state i. Figure 5.6(b) shows the space of a 
mixture Gaussian model of an observation signal space. A 5-mode mixture 
Gaussian pdf is shown in Figure 5.7.
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   (a)      (b) 
 

Figure 5.6 Modelling a random signal space using (a) a discrete-valued pmf 
and (b) a continuous-valued mixture Gaussian density. 
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5.2.5  State Transition Probabilities 
 
The first-order Markovian property of an HMM entails that the transition 
probability to any state s(t) at time t depends only on the state of the process 
at time t–1, s(t–1), and is independent of the previous states of the HMM. 
This can be expressed as 
 

( )
( ) ijaitsjtsProb

lNtsktsitsjtsProb

==−==
=−=−=−=

)1()(

)(,,)2(,)1()( �

   
 (5.7) 

 
where s(t) denotes the state of HMM at time t. The transition probabilities 
provide a probabilistic mechanism for connecting the states of an HMM, 
and for modelling the variations in the duration of the signals associated 
with each state. The probability of occupancy of a state i for d consecutive 
time units, Pi(d), can be expressed in terms of the state self-loop transition 
probabilities aii as 

( ) ( )ii
d
iii aadP −= − 11         (5.8) 

 
From Equation (5.8), using the geometric series conversion formula, the 
mean occupancy duration for each state of an HMM can be derived as 
 

iid
i a

dPdi
−

== ∑
∞

= 1

1
)(stateofoccupancyMean

0
      (5.9) 

µ 1 µ µ µ µ

f (x)

x2 3 4 5

Figure 5.7 A mixture Gaussian probability density function. 
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Figure 5.8  (a) A 4-state left–right HMM, and (b) its state–time trellis diagram. 
 

5.2.6 State–Time Trellis Diagram 
 
A state–time trellis diagram shows the HMM states together with all the 
different paths that can be taken through various states as time unfolds. 
Figure 5.8(a) and 5.8(b) illustrate a 4-state HMM and its state–time 
diagram. Since the number of states and the state parameters of an HMM are 
time-invariant, a state-time diagram is a repetitive and regular trellis 
structure. Note that in Figure 5.8 for a left–right HMM the state–time trellis 
has to diverge from the first state and converge into the last state. In general, 
there are many different state sequences that start from the initial state and 
end in the final state. Each state sequence has a prior probability that can be 
obtained by multiplication of the state transition probabilities of the 
sequence. For example, the probability of the state sequence 

],,,,,,[ 4332211 SSSSSSS=s  is P(s)=π1a11a12a22a23a33a34. Since each state has 
a different set of prototype observation vectors, different state sequences 
model different observation sequences. In general an N-state HMM can 
reproduce NT different realisations of the random process that it is trained to 
model. 
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 5.3 Training Hidden Markov Models 
 
The first step in training the parameters of an HMM is to collect a training 
database of a sufficiently large number of different examples of the random 
process to be modelled. Assume that the examples in a training database 
consist of L vector-valued sequences [X]=[Xk; k=0, ..., L–1], with each 
sequence Xk=[x(t); t=0, ..., Tk–1] having a variable number of Tk vectors. 
The objective is to train the parameters of an HMM to model the statistics of 
the signals in the training data set. In a probabilistic sense, the fitness of a 
model is measured by the posterior probability PM|X(M|X) of the model M 

given the training data X. The training process aims to maximise the 
posterior probability of the model M and the training data [X], expressed 
using Bayes’ rule as 
 

( )
( )

( ) ( )MMM MMM Pf
f

P
X

X
X

X XX ||
1=     (5.10) 

 
where the denominator fX(X) on the right-hand side of Equation (5.10) has 
only a normalising effect and PM(M) is the prior probability of the model M. 
For a given training data set [X] and a given model M, maximising Equation 
(5.10) is equivalent to maximising the likelihood function PX|M(X|M). The 

likelihood of an observation vector sequence X given a model M can be 
expressed as  
 

( ) ( ) ( )∑=
s

sSXX ssXX MMM MMM |,|| , Pff        (5.11) 

 
where fX|S,M(X(t)|s(t),M), the pdf of the signal sequence X along the state 

sequence 1)]((1)(0)[ −Ts,,s,s= �s  of the model M, is given by  
 

( ) ( ) ( ) ( )1)(1)((1))1((0))0(, |||,| −− TsTfsfsf=f SSS xxxX XXXSX �MM s
 

(5.12) 
where s(t), the state at time t, can be one of N states, and fX|S(X(t)|s(t)), a 
shorthand for fX|S,M(X(t)|s(t),M), is the pdf of x(t) given the state s(t) of the 

model M. The Markovian probability of the state sequence s is given by  
 

( ) 1)2)((2)(1)(1)(0)(0)| −− s(TTssssss aaa=P �πMM sS         (5.13) 
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Substituting Equations (5.12) and (5.13) in Equation (5.11) yields 
 

( )

( ) ( ) ( )∑

∑
−−=

=

−−
s

s

1)(1)((1)(1)(0)(0)

|(,||(

|1)(2)(|(1)(0)|(0)

|,||

TsTfasfa sf

)Pf)f

TsTssss xxx

ssXX

SXSXSX

sSXX

�π

MMM MMM

 
       (5.14) 

 
where the summation is taken over all state sequences s. In the training 
process, the transition probabilities and the parameters of the observation 
pdfs are estimated to maximise the model likelihood of Equation (5.14). 
Direct maximisation of Equation (5.14) with respect to the model 
parameters is a non-trivial task. Furthermore, for an observation sequence of 
length T vectors, the computational load of Equation (5.14) is O(NT). This is 
an impractically large load, even for such modest values as N=6 and T=30. 
However, the repetitive structure of the trellis state–time diagram of an 
HMM implies that there is a large amount of repeated computation in 
Equation (5.14) that can be avoided in an efficient implementation. In the 
next section we consider the forward-backward method of model likelihood 
calculation, and then proceed to describe an iterative maximum-likelihood 
model optimisation method.  
 
 
5.3.1 Forward–Backward Probability Computation 
 
An efficient recursive algorithm for the computation of the likelihood 
function fX|M(X|M) is the forward–backward algorithm. The forward–

backward computation method exploits the highly regular and repetitive 
structure of the state–time trellis diagram of Figure 5.8.  
 In this method, a forward probability variable αt(i) is defined as the 
joint probability of the partial observation sequence X=[x(0), x(1), ..., x(t)] 
and the state i at time t, of the model M: 
 

( )MM  itstfit == )( ,)(, ,(1),(0))( |, xxxSX �α     (5.15) 

  
The forward probability variable αt(i) of Equation (5.15) can be expressed 
in a recursive form in terms of the forward probabilities at time t–1, αt–1(i):
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Figure 5.9 illustrates, a network for computation of the forward probabilities 
for the 4-state left–right HMM of Figure 5.8. The likelihood of an 
observation sequence X=[x(0), x(1), ..., x(T–1)] given a model M can be 
expressed in terms of the forward probabilities as 
 

( ) ( )

∑

∑

=
−

=

=
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α

MM MM xxxxxx SXX ��

 (5.17) 
 

Similar to the definition of the forward probability concept, a backward 
probability is defined as the probability of the state i at time t followed by 
the partial observation sequence [x(t+1), x(t+2), ..., x(T–1)] as 
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Figure 5.9 A network for computation of forward probabilities for a left-right HMM. 
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In the next section, forward and backward probabilities are used to develop 
a method for the training of HMM parameters. 
 
 
5.3.2 Baum–Welch Model Re-Estimation 
 
The HMM training problem is the estimation of the model parameters 
M=(π, A, F) for a given data set. These parameters are the initial state 
probabilities π, the state transition probability matrix A and the continuous 
(or discrete) density state observation pdfs. The HMM parameters are 
estimated from a set of training examples {X=[x(0), ..., x(T–1)]}, with the 
objective of maximising fX|M(X|M), the likelihood of the model and the 

training data. The Baum–Welch method of training HMMs is an iterative 
likelihood maximisation method based on the forward–backward 
probabilities defined in the preceding section. The Baum–Welch method is 
an instance of the EM algorithm described in Chapter 4. For an HMM M, 
the posterior probability of a transition at time t from state i to state j of the 
model M, given an observation sequence X, can be expressed as 
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where ( )MM XXS, ,)1(,)(| jtsitsf =+=  is the joint pdf of the states s(t) and 
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s(t+1) and the observation sequence X, and ( )itstf S =++ )1()1(| xX  is the 
state observation pdf for the state i. Note that for a discrete observation 
density HMM the state observation pdf in Equation (5.19) is replaced with 
the discrete state observation pmf ( )itstP S =++ )1()1(| xX . The posterior 
probability of state i at time t given the model M and the observation X is  
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Now the state transition probability aij can be interpreted as 
 

i

ji
aij statefromstransitionofnumberexpected

statetostatefromstransitionofnumberexpected=      (5.21) 

 
From Equations (5.19)–(5.21), the state transition probability can be re-
estimated as the ratio 
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Note that for an observation sequence [x(0), ..., x(T–1)] of length T, the last 
transition occurs at time T–2 as indicated in the upper limits of the 
summations in Equation (5.22). The initial-state probabilities are estimated 
as 
 

)(0 ii γπ =       (5.23) 
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5.3.3 Training HMMs with Discrete Density Observation Models 
 
In a discrete density HMM, the observation signal space for each state is 
modelled by a set of discrete symbols or vectors. Assume that a set of M 
vectors [µi1,µi2, ..., µiM] model the space of the signal associated with the ith 
state. These vectors may be obtained from a clustering process as the 
centroids of the clusters of the training signals associated with each state. 
The objective in training discrete density HMMs is to compute the state 
transition probabilities and the state observation probabilities. The forward–
backward equations for discrete density HMMs are the same as those for 
continuous density HMMs, derived in the previous sections, with the 
difference that the probability density functions such as ( )itstf S =)()(| xX  

are substituted with probability mass functions ( )itstP S =)()(| xX  defined 

as 
( ) ( )itstQPitstP SS === )()]([)()( || xx XX   (5.24) 

 
where the function Q[x(t)] quantises the observation vector x(t) to the 
nearest discrete vector in the set [µi1,µi2, ..., µiM]. For discrete density 
HMMs, the probability of a state vector µik can be defined as the ratio of the 
number of occurrences of µik (or vectors quantised to µik ) in the state i,  
divided by the total number of occurrences of all other vectors in the state i: 
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In Equation (5.25) the summation in the numerator is taken over those time 
instants t where the kth symbol µik is observed in the state i.  
 For statistically reliable results, an HMM must be trained on a large 
data set X consisting of a sufficient number of independent realisations of 
the process to be modelled. Assume that the training data set consists of L 
realisations X=[X(0), X(1),  ..., X(L–1)], where X(k)=[x(0), x(1),  ..., x(Tk–
1)]. The re-estimation formula can be averaged over the entire data set as 
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The parameter estimates of Equations (5.26)–(5.28) can be used in further 
iterations of the estimation process until the model converges. 
 
 
5.3.4 HMMs with Continuous Density Observation Models 
 
In continuous density HMMs, continuous probability density functions 
(pdfs) are used to model the space of the observation signals associated with 
each state. Baum et al. generalised the parameter re-estimation method to 
HMMs with concave continuous pdfs such a Gaussian pdf. A continuous P-
variate Gaussian pdf for the state i of an HMM can be defined as 
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where µi and Σi are the mean vector and the covariance matrix associated 
with the state i. The re-estimation formula for the mean vector of the state 
Gaussian pdf can be derived as 
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Similarly, the covariance matrix is estimated as  
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The proof that the Baum–Welch re-estimation algorithm leads to 
maximisation of the likelihood function fX|M(X|M) can be found in Baum. 

 
5.3.5 HMMs with Mixture Gaussian pdfs 
 
The modelling of the space of a signal process with a mixture of Gaussian 
pdfs is considered in Section 4.5. In HMMs with mixture Gaussian pdf state  
models, the signal space associated with the ith state is modelled with a 
mixtures of M Gaussian densities as 
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where Pik is the prior probability of the kth component of the mixture. The 
posterior probability of state i at time t and state j at time t+1 of the model 
M, given an observation sequence X=[x(0), ..., x(T–1)], can be expressed as 
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and the posterior probability of state i at time t given the model M and the 
observation X is given by 
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Now we define the joint posterior probability of the state i and the kth 

Gaussian mixture component pdf model of the state i at time t as 
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where m(t) is the Gaussian mixture component at time t. Equations (5.33) to 
(5.35) are used to derive the re-estimation formula for the mixture 
coefficients, the mean vectors and the covariance matrices of the state 
mixture Gaussian pdfs as 
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Similarly the covariance matrix is estimated as 
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5.4 Decoding of Signals Using Hidden Markov Models 
 
Hidden Markov models are used in applications such as speech recognition, 
image recognition and signal restoration, and for the decoding of the 
underlying states of a signal. For example, in speech recognition, HMMs are 
trained to model the statistical variations of the acoustic realisations of the 
words in a vocabulary of say size V words. In the word recognition phase, 
an utterance is classified and labelled with the most likely of the V+1 
candidate HMMs (including an HMM for silence) as illustrated in Figure 
5.10. In Chapter 12 on the modelling and detection of impulsive noise, a 
binary–state HMM is used to model the impulsive noise process.  
 Consider the decoding of an unlabelled sequence of T signal vectors 
X=[x(0), x(1), ..., X(T–1)] given a set of V candidate HMMs [M1 ,..., MV]. 
The probability score for the observation vector sequence X and the model 
Mk  can be calculated as the likelihood: 

 
( ) ( ) ( ) ( )∑ −−= −−

s

)1(1)1((1))0((0) 1)(2)((1)(0)(0)| Ts)(Tfasfasff STsTsSssSsk xxxX XXXX �πMM

 (5.39) 
 

where the likelihood of the observation sequence X is summed over all 
possible state sequences of the model M. Equation (5.39) can be efficiently 
calculated using the forward–backward method described in Section 5.3.1. 
The observation sequence X is labelled with the HMM that scores the 
highest likelihood as 
 

( ) ( )( )k|X XX MMfLabel
k
maxarg= , k=1, ..., V+1  (5.40) 

 
In decoding applications often the likelihood of an observation sequence X 
and a model Mk is obtained along the single most likely state sequence of 
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model Mk, instead of being summed over all sequences, so Equation (5.40) 
becomes 

 

( ) ( )



= k

k
fLabel MM sXX SX

s
,maxmaxarg ,     (5.41) 

 
In Section 5.5, on the use of HMMs for noise reduction, the most likely state 
sequence is used to obtain the maximum-likelihood estimate of the 
underlying statistics of the signal process. 
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Figure 5.10 Illustration of the use of HMMs in speech recognition. 
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5.4.1 Viterbi Decoding Algorithm 
 
In this section, we consider the decoding of a signal to obtain the maximum 
a posterior (MAP) estimate of the underlying state sequence. The MAP state 
sequence sMAP of a model M given an observation signal sequence X=[x(0), 
..., x(T–1)]  is obtained as 
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The MAP state sequence estimate is used in such applications as the 
calculation of a similarity score between a signal sequence X and an HMM 
M, segmentation of a non-stationary signal into a number of distinct quasi-
stationary segments, and implementation of state-based Wiener filters for 
restoration of noisy signals as described in the next section.  
 For an N-state HMM and an observation sequence of length T, there are 
altogether NT state sequences. Even for moderate values of N and T say 
(N=6 and T=30), an exhaustive search of the state–time trellis for the best 
state sequence is a computationally prohibitive exercise. The Viterbi 
algorithm is an efficient method for the estimation of the most likely state 
sequence of an HMM. In a state–time trellis diagram, such as Figure 5.8, the 
number of paths diverging from each state of a trellis can grow 
exponentially by a factor of N at successive time instants. The Viterbi 
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Figure 5.11 A network illustration of the Viterbi algorithm. 
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method prunes the trellis by selecting the most likely path to each state. At 
each time instant t, for each state i, the algorithm selects the most probable 
path to state i and prunes out the less likely branches. This procedure 
ensures that at any time instant, only a single path survives into each state of 
the trellis.  

For each time instant t and for each state i, the algorithm keeps a record 
of the state j from which the maximum-likelihood path branched into i, and 
also records the cumulative probability of the most likely path into state i at 
time t. The Viterbi algorithm is given on the next page, and Figure 5.11 
gives a network illustration of the algorithm. 
 
Viterbi Algorithm 
 

)(itδ  records the cumulative probability of the best path to state i at time t. 

)(itψ  records the best state sequence to state i at time t. 
 
 Step 1: Initialisation, at time t=0, for states i=1, …, N 
   ))0(()(0 xii fi πδ =  

   0)(0 =iψ  
 
 Step 2: Recursive calculation of the ML state sequences and their   
   probabilities 
   For time t =1, …, T–1 
    For states i = 1, …, N  
     ))((])([max)( 1 tfaji ijit

j
t x−= δδ  

     ])([maxarg)( 1 jit
j

t aji −= δψ  

 
 Step 3: Termination, retrieve the most likely final state 

    )]([maxarg)1( 1 iTs T
i

MAP
−=− δ  

    )]([max 1max iProb T
i

−= δ  

 
 Step 4: Backtracking through the most likely state sequence:  
   For t = T–2, …, 0 

    [ ])1()( 1 += + tsts MAP
t

MAP ψ . 
 



HMM-Based Estimation of Signals in Noise 167 

 

 

The backtracking routine retrieves the most likely state sequence of the 
model M.  Note that the variable Probmax, which is the probability of the 
observation sequence X=[x(0), ..., x(T–1)] and the most likely state 
sequence of the model M, can be used as the probability score for the model 

M and the observation X. For example, in speech recognition, for each 
candidate word model the probability of the observation and the most likely 
state sequence is calculated, and then the observation is labelled with the 
word that achieves the highest probability score. 
 
 
5.5 HMM-Based Estimation of Signals in Noise 
 
In this section, and the following two sections, we consider the use of 
HMMs for estimation of a signal x(t) observed in an additive noise n(t), and 
modelled as 
 

)()()( ttt nxy +=         (5.43) 
 
From Bayes’ rule, the posterior pdf of the signal x(t) given the noisy 
observation y(t) is defined as 
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For a given observation, fY(y(t)) is a constant, and the maximum a posteriori 
(MAP) estimate is obtained as 
 

( ) ( ))()()(maxarg)(ˆ
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tfttftMAP xxyx XN
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−=     (5.45) 

 
The computation of the posterior pdf, Equation (5.44), or the MAP estimate 
Equation (5.45), requires the pdf models of the signal and the noise 
processes. Stationary, continuous-valued, processes are often modelled by a 
Gaussian or a mixture Gaussian pdf that is equivalent to a single-state 
HMM. For a non-stationary process an N-state HMM can model the time-
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varying pdf of the process as a Markovian chain of N stationary Gaussian 
subprocesses. Now assume that we have an Ns-state HMM M for the signal, 
and another Nn-state HMM η for the noise. For signal estimation, we need 
estimates of the underlying state sequences of the signal and the noise 

processes. For an observation sequence of length T, there are T
sN  possible 

signal state sequences and T
nN  possible noise state sequences that could 

have generated the noisy signal. Since it is assumed that the signal and noise 
are uncorrelated, each signal state may be observed in any noisy state; 

therefore the number of noisy signal states is on the order of T
sN × T

nN .  
 Given an observation sequence Y=[y(0), y(1), ..., y(T–1)], the most 
probable state sequences of the signal and the noise HMMs maybe 
expressed as 
 

( )
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ss
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and 
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Given the state sequence estimates for the signal and the noise models, the 
MAP estimation Equation (5.45) becomes 
 

( ) ( )( )MM ,)()()(maxarg)(ˆ signal,noise
MAP

X
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,
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x
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Implementation of Equations (5.46)–(5.48) is computationally prohibitive. 
In Sections 5.6 and 5.7, we consider some practical methods for the 
estimation of signal  in noise. 
 
Example Assume a signal, modelled by a binary-state HMM, is observed 
in an additive stationary Gaussian noise. Let the noisy observation be 
modelled as 
 

)()()()()()( 10 tttsttst nxxy ++=      (5.49) 
 
where s(t)  is a hidden binary-state process such that: s(t) = 0  indicates that 
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the signal is from the state S0 with a Gaussian pdf of )(
000

,),( xxxx ΣµtN , 

and s(t) = 1 indicates that the signal is from the state S1 with a Gaussian pdf 

of )(
111

,),( xxxx ΣµtN . Assume that a stationary Gaussian process 

)( ,),( nnnt ΣµnN , equivalent to a single-state HMM, can model the noise. 

Using the Viterbi algorithm the maximum a posteriori (MAP) state 
sequence of the signal model can be estimated as 
 

( ) ( )[ ]MM MM ssYs SSY
s

PfMAP ,maxarg ,|signal =     (5.50) 

 
For a Gaussian-distributed signal and additive Gaussian noise, the 
observation pdf of the noisy signal is also Gaussian. Hence, the state 
observation pdfs of the signal model can be modified to account for the 
additive noise as  
 

( ) ( ))(,)(),()(
0000 0| nnxxnxY yy ΣΣµµ ++= tstf s N   (5.51) 

and 
( ) ( ))(,)(),()(

1111 1| nnxxnxY yy ΣΣµµ ++= tstf s N   (5.52) 

  
where ( )Σµ,),(tyN  

denotes a Gaussian pdf with mean vector µ  and 

covariance matrix Σ . The MAP signal estimate, given a state sequence 
estimate sMAP, is obtained from 

 

( ) ( ) ( )[ ])()(,)(maxargˆ ,| ttftft MAP
S

MAP xysxx NX
x

−= MM   (5.53) 

 
Substitution of the Gaussian pdf of the signal from the most likely state 
sequence, and the pdf of noise, in Equation (5.53) results in the following 
MAP estimate: 
 

ˆ x MAP(t ) = Σ xx ,s(t ) + Σnn( )−1
Σ xx,s(t ) y( t) − µ n( ) + Σ xx ,s( t) + Σnn( )−1

Σ nn µ x,s(t )     

(5.54) 
 

where µ x,s(t)  and Σ xx ,s( t)  are the mean vector and covariance matrix of the 

signal x(t) obtained from the most likely state sequence [s(t)]. 
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Figure 5.12 Outline configuration of HMM-based noisy speech recognition and 

enhancement. 
 
 
5.6 Signal and Noise Model Combination and Decomposition 
 
For Bayesian estimation of a signal observed in additive noise, we need to 
have an estimate of the underlying statistical state sequences of the signal 
and the noise processes.  Figure 5.12 illustrates the outline of an HMM-
based noisy speech recognition and enhancement system. The system 
performs the following functions: 
 

(1) combination of the speech and noise HMMs to form the noisy 
speech HMMs; 

(2) estimation of the best combined noisy speech model given the 
current noisy speech input; 

(3) state decomposition, i.e. the separation of speech and noise states 
given noisy speech states; 

(4) state-based Wiener filtering using the estimates of speech and noise 
states. 

 
5.6.1 Hidden Markov Model Combination 
 
The performance of HMMs trained on clean signals deteriorates rapidly in 
the presence of noise, since noise causes a mismatch between the clean 
HMMs and the noisy signals. The noise-induced mismatch can be reduced: 
either by filtering the noise from the signal (for example using the Wiener 
filtering and the spectral subtraction methods described in Chapters 6 and 
11) or by combining the noise and the signal models to model the noisy 
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signal. The model combination method was developed by Gales and Young. 
In this method HMMs of speech are combined with an HMM of noise to 
form HMMs of noisy speech signals. In the power-spectral domain, the 
mean vector and the covariance matrix of the noisy speech can be 
approximated by adding the mean vectors and the covariance matrices of 
speech and noise models: 
 

nxy µµµ g+=     (5.55) 

nnxxyy ΣΣΣ 2g+=     (5.56) 

  
Model combination also requires an estimate of the current signal-to-noise 
ratio for calculation of the scaling factor g in Equations (5.55) and (5.56). In 
cases such as speech recognition, where the models are trained on cepstral 
features, the model parameters are first transformed from cepstral features 
into power spectral features before using the additive linear combination 
Equations (5.55) and (5.56). Figure 5.13 illustrates the combination of a 4-
state left–right HMM of a speech signal with a 2-state ergodic HMM of 
noise. Assuming that speech and noise are independent processes, each 
speech state must be combined with every possible noise state to give the 
noisy speech model. It is assumed that the noise process only affects the 
mean vectors and the covariance matrices of the speech model; hence the 
transition probabilities of the speech model are not modified. 
 
 
5.6.2 Decomposition of State Sequences of Signal and Noise  
 
The HMM-based state decomposition problem can be stated as follows: 
given a noisy signal and the HMMs of the signal and the noise processes, 
estimate the underlying states of the signal and the noise.  
 HMM state decomposition can be obtained using the following method: 
 

(a) Given the noisy signal and a set of combined signal and noise 
models, estimate the maximum-likelihood (ML) combined noisy 
HMM for the noisy signal. 

(b) Obtain the ML state sequence of from the ML combined model. 
(c) Extract the signal and noise states from the ML state sequence of the 

ML combined noisy signal model. 
 

The ML state sequences provide the probability density functions for the 
signal and noise processes. The ML estimates of the speech and noise pdfs 
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may then be used in Equation (5.45) to obtain a MAP estimate of the speech 
signal. Alternatively the mean spectral vectors of the speech and noise from 
the ML state sequences can be used to program a state-dependent Wiener 
filter as described in the next section. 
 
 
5.7 HMM-Based Wiener Filters 

 
The least mean square error Wiener filter is derived in Chapter 6. For a 
stationary signal x(m), observed in an additive noise n(m), the Wiener filter 
equations in the time and the frequency domains are derived as : 
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Figure 5.13 Outline configuration of HMM-based noisy speech recognition and 
enhancement. Sij is a combination of the state i of speech with the state j of noise. 
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where Rxx, rxx and PXX(f) denote the autocorrelation matrix, the 
autocorrelation vector and the power-spectral functions respectively. The 
implementation of the Wiener filter, Equation (5.56), requires the signal and 
the noise power spectra. The power-spectral variables may be obtained from 
the ML states of the HMMs trained to model the power spectra of the signal 
and the noise. Figure 5.14 illustrates an implementation of HMM-based 
state-dependent Wiener filters. To implement the state-dependent Wiener 
filter, we need an estimate of the state sequences for the signal and the 
noise. In practice, for signals such as speech there are a number of HMMs; 
one HMM per word, phoneme, or any other elementary unit of the signal. In 
such cases it is necessary to classify the signal, so that the state-based 
Wiener filters are derived from the most likely HMM. Furthermore the noise 
process can also be modelled by an HMM. Assuming that there are V 
HMMs {M1, ..., MV} for the signal process, and one HMM for the noise, the 
state-based Wiener filter can be implemented as follows: 

 
Signal HMM Noise HMM

Wiener Filter Sequence

PXX ( f )

Noisy Signal

PNN ( f )

ML Model Estimation and 
State Decomposition

W( f ) = 
PXX ( f )

PXX  ( f ) + PNN ( f )

Model Combination

 
 

Figure 5.14 Illustrations of HMMs with state-dependent Wiener filters. 
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Step 1: Combine the signal and noise models to form the noisy signal 

models. 
Step 2: Given the noisy signal, and the set of combined noisy signal 

models, obtain the ML combined noisy signal model. 
Step 3:  From the ML combined model, obtain the ML state sequence of 

speech and noise. 
Step 4:  Use the ML estimate of the power spectra of the signal and the 

noise to program the Wiener filter Equation (5.56). 
Step 5: Use the state-dependent Wiener filters to filter the signal. 

 

5.7.1 Modelling Noise Characteristics 
 
The implicit assumption in using an HMM for noise is that noise statistics 
can be modelled by a Markovian chain of N different stationary processes. 
A stationary noise process can be modelled by a single-state HMM. For a 
non-stationary noise, a multi-state HMM can model the time variations of 
the noise process with a finite number of quasi-stationary states. In general, 
the number of states required to accurately model the noise depends on the 
non-stationary character of the noise.   

An example of a non-stationary noise process is the impulsive noise of 
Figure 5.15. Figure 5.16 shows a two-state HMM of the impulsive noise 
sequence where the state S0 models the “off” periods between the impulses 
and the state S1 models an impulse. In cases where each impulse has a well-
defined temporal structure, it may be beneficial to use a multistate HMM to 
model the pulse itself. HMMs are used in Chapter 12 for modelling 
impulsive noise, and in Chapter 15 for channel equalisation. 
 
 
5.8 Summary 
 
HMMs provide a powerful method for the modelling of non-stationary 
processes such as speech, noise and time-varying channels. An HMM is a 
Bayesian finite-state process, with a Markovian state prior, and a state 
likelihood function that can be either a discrete density model or a 
continuous Gaussian pdf model. The Markovian prior models the time 
evolution of a non-stationary process with a chain of stationary sub-
processes. The state observation likelihood models the space of the process 
within each state of the HMM.  
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 In Section 5.3, we studied the Baum–Welch method for the training of 
the parameters of an HMM to model a given data set, and derived the 
forward–backward method for efficient calculation of the likelihood of an 
HMM given an observation signal. In Section 5.4, we considered the use of 
HMMs in signal classification and in the decoding of the underlying state 
sequence of a signal. The Viterbi algorithm is a computationally efficient 
method for estimation of the most likely sequence of an HMM. Given an 
unlabelled observation signal, the decoding of the underlying state sequence 
and the labelling of the observation with one of number of candidate HMMs 
are accomplished using the Viterbi method. In Section 5.5, we considered 
the use of HMMs for MAP estimation of a signal observed in noise, and 
considered the use of HMMs in implementation of state-based Wiener filter 
sequence. 
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