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daptive filters are used for non-stationary signals and 
environments, or in applications where a sample-by-sample 
adaptation of a process or a low processing delay is required. 

Applications of adaptive filters include multichannel noise reduction, 
radar/sonar signal processing, channel equalization for cellular mobile 
phones, echo cancellation, and low delay speech coding. This chapter 
begins with a study of the state-space Kalman filter. In Kalman theory a 
state equation models the dynamics of the signal generation process, and an 
observation equation models the channel distortion and additive noise. 
Then we consider recursive least square (RLS) error adaptive filters. The 
RLS filter is a sample-adaptive formulation of the Wiener filter, and for 
stationary signals should converge to the same solution as the Wiener filter. 
In least square error filtering, an alternative to using a Wiener-type closed-
form solution is an iterative gradient-based search for the optimal filter 
coefficients. The steepest-descent search is a gradient-based method for 
searching the least square error performance curve for the minimum error 
filter coefficients. We study the steepest-descent method, and then consider 
the computationally inexpensive LMS gradient search method. 
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7.1 State-Space Kalman Filters 
 

The Kalman filter is a recursive least square error method for estimation of 
a signal distorted in transmission through a channel and observed in noise. 
Kalman filters can be used with time-varying as well as time-invariant 
processes. Kalman filter theory is based on a state-space approach in which 
a state equation models the dynamics of the signal process and an 
observation equation models the noisy observation signal. For a signal x(m) 
and noisy observation  y(m), the state equation model and the observation 
model are defined as 
 

)()1()1,()( mmmmm exx +−−=Φ        (7.1) 
 

)()()()( mmmm nxy += Η           (7.2) 
where 
 
x(m)   is the P-dimensional signal, or the state parameter, vector at time m,  
Φ(m, m–1) is a P × P  dimensional state transition matrix that relates the 

states of the process at times m–1 and m,  
e(m)   is the P-dimensional uncorrelated input excitation vector of the state 

equation, 
Σee(m) is the P × P  covariance matrix of e(m),  
y(m)   is the M-dimensional noisy and distorted observation vector, 
H(m)  is the M × P  channel distortion matrix, 
n(m)   is the M-dimensional additive noise process, 
Σnn(m) is the M × M  covariance matrix of n(m). 
 
The Kalman filter can be derived as a recursive minimum mean square 
error predictor of a signal x(m), given an observation signal y(m). The filter 
derivation assumes that the state transition matrix Φ(m, m–1), the channel 
distortion matrix H(m), the covariance matrix Σee(m) of the state equation 
input and the covariance matrix Σnn(m) of the additive noise are given. 

 In this chapter, we use the notation ( )imm −ŷ  to denote a prediction of 
y(m) based on the observation samples up to the time m–i. Now assume that 

( )1ˆ −mmy  is the least square error prediction of y(m) based on the 
observations [y(0), ..., y(m–1)]. Define a so-called innovation, or prediction 
error signal as 

( )1ˆ)()( −−= mmmm yyv           (7.3) 
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The innovation signal vector v(m) contains all that is unpredictable from the 
past observations, including both the noise and the unpredictable part of the 
signal. For an optimal linear least mean square error estimate, the 
innovation signal must be uncorrelated and orthogonal to the past 
observation vectors; hence we have 
 

[ ] 0)()( T =− kmm yvE ,  k > 0       (7.4) 
and  

[ ] 0)()( T =km vvE ,  km ≠         (7.5) 
 
The concept of innovations is central to the derivation of the Kalman filter. 
The least square error criterion is satisfied if the estimation error is 
orthogonal to the past samples. In the following derivation of the Kalman 
filter, the orthogonality condition of Equation (7.4) is used as the starting 
point to derive an optimal linear filter whose innovations are orthogonal to 
the past observations.  
 Substituting the observation Equation (7.2) in Equation (7.3) and using 
the relation 

( )[ ]
( )1ˆ)(

1ˆ)()1|(ˆ

−=
−=−

mmm

mmmmm

xH

xyy E
          (7.6) 

yields 
( )

)()(~)(

1ˆ)()()()()(

mmm

mmmmmmm

nxH

xHnxHv

+=
−−+=

         (7.7) 

 
where ˜ x (m)  is the signal prediction error vector defined as 
  

( )1ˆ)()(~ −−= mmmm xxx              (7.8) 

x(m)e (m)

H(m)

n (m)

y (m)

Z -1Φ (m,m-1)

+ +

 
Figure 7.1 Illustration of signal and observation models in Kalman filter theory. 
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From Equation (7.7) the covariance matrix of the innovation signal is given 
by 

[ ]
)()()()(

)()()(
T~~

T

mmmm

mmm

nnxx

vv

HH

vv

ΣΣ

Σ

+=

= E
       (7.9) 

 
where Σ ˜ x ̃  x (m) is the covariance matrix of the prediction error ˜ x (m) . Let 
ˆ x m +1 m( ) denote the least square error prediction of the signal x(m+1). 

Now, the prediction of x(m+1), based on the samples available up to the 
time m, can be expressed recursively as a linear combination of the 
prediction based on the samples available up to the time m–1 and the 
innovation signal at time m as 
 

( ) ( ) )()(11ˆ1ˆ mmmmmm vKx=x +−++        (7.10) 
 
where the P × M  matrix K(m) is the Kalman gain matrix. Now, from 
Equation (7.1), we have 
 

( ) ( )1ˆ),1(11ˆ −+=−+ mmmmmm xx Φ        (7.11) 
 
Substituting Equation (7.11) in (7.10) gives a recursive prediction equation 
as 

( ) ( ) )()(1ˆ),1(1ˆ mmmmmmmm vKx=x +−++ Φ     (7.12) 
 
To obtain a recursive relation for the computation and update of the 
Kalman gain matrix, we multiply both sides of Equation (7.12) by vT(m) 
and take the expectation of the results to yield 
 

( )[ ] ( )[ ] [ ])()()()(1ˆ),1()(1ˆ TTT mmmmmmmmmmm vvK+vxvx EEE −+=+ Φ
 (7.13) 

Owing to the required orthogonality of the innovation sequence and the past 
samples, we have 

( )[ ] 0)(1ˆ T =− mmm vxE            (7.14) 
 
Hence, from Equations (7.13) and (7.14), the Kalman gain matrix is given 
by 

( )[ ] )()(1ˆ)( 1T mmmmm −+= vvvxK ΣE        (7.15) 



State-Space Kalman Filters 209 

 

 

The first term on the right-hand side of Equation (7.15) can be expressed as 
 

( )[ ] ( ) ( )( )[ ]
( )[ ]

( ) ( )( )[ ]
( ) ( )( )[ ] ( )( )[ ]

( ) ( )[ ] )(1~1~),1(

)(1~)(1~1ˆ),1(
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E

E

EE

Φ

Φ
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(7.16) 
In developing the successive lines of Equation (7.16), we have used the 
following relations: 

( )[ ] 0)(|1~ T =+ mmm vxE           (7.17) 
 

( )( )[ ] 01|ˆ)()1( T =−−+ mmmm yyeE       (7.18) 

 
x(m) = ˆ x (m| m −1)+ ˜ x m |m − 1( )          (7.19) 

 
( )[ ] 01|~)1|(ˆ =−− mmmm xxE          (7.20) 

 
and we have also used the assumption that the signal and the noise are 
uncorrelated. Substitution of Equations (7.9) and (7.16) in Equation (7.15) 
yields the following equation for the Kalman gain matrix: 
 

( ) [ ] 1T~~T~~ )()()()()()(),1(
−

++= mmmmmmmmm nnxxxx HHHK ΣΣΣΦ      (7.21) 
 
where Σ ˜ x ̃  x (m) is the covariance matrix of the signal prediction error 
˜ x (m|m −1) . To derive a recursive relation for Σ ˜ x ̃  x (m), we consider 
 

( ) ( ) ( )1ˆ1~ −−=− mmmmm xxx           (7.22) 
 

Substitution of Equation (7.1) and (7.12) in Equation (7.22) and 
rearrangement of the terms yields 
 

( ) [ ] ( )[ ]
( )

[ ] ( ) )1()1()(1~)1()1()1,(

)1()1()1(~)1()1()(1~)1,(

)1()1(21ˆ)1,()()1()1,(1|~

−−−−−−−=
−−−−−−−−=
−−−−−−−−=−

mm+mmmmmm

mm+mmmmmmm

mmmmmmmmmmmm

nKe+xHK

nKxHKe+x

vK+xe+xx

Φ
Φ

ΦΦ

 (7.23) 
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From Equation (7.23) we can derive the following recursive relation for the 
variance of the signal prediction error 
 

)1()1()1()()(1)()()( TT~~~~ −−−++−= mmmmmmmm KKLL nneexxxx ΣΣΣΣ
 (7.24) 

where the P × P  matrix L(m) is defined as 
 

[ ])1()1()1,()( −−−−= mmmmm HKL Φ       (7.25) 
 
Kalman Filtering Algorithm 

 
Input: observation vectors {y(m)} 
Output: state or signal vectors { ˆ x (m) } 
Initial conditions: 

Iδ=(0)~~xxΣ               (7.26) 

( ) 010ˆ =−x              (7.27) 
For m = 0, 1, ... 
Innovation signal: 

v(m) = y(m ) − H(m) ˆ x (m|m −1)          (7.28) 
 
Kalman gain: 

[ ] 1T~~T~~ )()()()()()(),1()(
−

++= mmmmmmmmm nnxxxx HHHK ΣΣΣΦ       

(7.29) 
Prediction update: 

ˆ x m +1|m( )= Φ (m +1,m) ˆ x m |m −1( ) + K(m)v(m)             (7.30) 
 

Prediction error correlation matrix update:  
 

L(m+1) = Φ (m +1,m) − K(m)H(m)[ ]        (7.31) 
 

)()()()1()1()()1(1)( T~~~~ mmmmmmmm KKLL nneexxxx ΣΣΣΣ +++++=+    
(7.32) 

Example 7.1 Consider the Kalman filtering of a first-order AR process 
x(m) observed in an additive white Gaussian noise n(m). Assume that the 
signal generation and the observation equations are given as  
 

x(m)= a(m)x(m −1) + e(m)           (7.33) 
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y(m)= x(m) +n(m)             (7.34) 
 

Let σe
2(m) and σn

2(m) denote the variances of the excitation signal e(m) 

and the noise n(m) respectively. Substituting Φ(m+1,m)=a(m) and H(m)=1 
in the Kalman filter equations yields the following Kalman filter algorithm: 
 
Initial conditions:  

    δσ =x (0)2~                 (7.35) 

    ( ) 010ˆ =x −                (7.36) 
For m = 0, 1, ... 
Kalman gain: 

)()(

)()1(
)(

22~

2~

mm

mma
mk

nx

x

σσ
σ

+
+=            (7.37) 

Innovation signal: 
v(m)= y(m)− ˆ x m | m −1( )            (7.38) 

 
Prediction signal update: 

ˆ x (m + 1| m)= a(m + 1) ˆ x (m|m −1)+ k(m)v(m)     (7.39) 
 

Prediction error update: 
σ ˜ x 

2 (m + 1) = a(m +1) − k(m)[ ]2 σ ˜ x 
2(m) + σe

2 (m +1) + k2 (m)σn
2(m)  (7.40) 

 
where σ ˜ x 

2(m) is the variance of the prediction error signal.  
 
Example 7.2 Recursive estimation of a constant signal observed in noise. 
Consider the estimation of a constant signal observed in a random noise. 
The state and observation equations for this problem are given by 
 

x(m)= x(m −1) = x                (7.41) 
y(m)= x +n(m)              (7.42) 

 
Note that Φ(m,m–1)=1, state excitation e(m)=0 and H(m)=1. Using the 
Kalman algorithm, we have the following recursive solutions: 
 
Initial Conditions:  

σ ˜ x 
2(0) = δ               (7.43) 

ˆ x 0 −1( ) = 0            (7.44) 
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For m = 0, 1, ... 
Kalman gain: 

)()(

)(
)(

22~

2~

mm

m
mk

nx

x

σσ
σ

+
=

       
   (7.45) 

Innovation signal: 
( )1ˆ)()( −−= m|mxmymv          (7.46) 

Prediction signal update: 
)()()1|(ˆ)|1(ˆ mvmkmmxmmx +−=+       (7.47) 

Prediction error update: 

[ ] )()()()(11) 222~
22~ mmkmmk+(m nxx σσσ +−=      (7.48) 

 
7.2 Sample-Adaptive Filters  
 
Sample adaptive filters, namely the RLS, the steepest descent and the LMS, 
are recursive formulations of the least square error Wiener filter. Sample-
adaptive filters have a number of advantages over the block-adaptive filters 
of Chapter 6, including lower processing delay and better tracking of non-
stationary signals. These are essential characteristics in applications such as 
echo cancellation, adaptive delay estimation, low-delay predictive coding, 
noise cancellation, radar, and channel equalisation in mobile telephony, 
where low delay and fast tracking of time-varying processes and 
environments are important objectives.  
 Figure 7.2 illustrates the configuration of a least square error adaptive 
filter. At each sampling time, an adaptation algorithm adjusts the filter 
coefficients to minimise the difference between the filter output and a 
desired, or target, signal.  An adaptive filter starts at some initial state, and 
then the filter coefficients are periodically updated, usually on a sample-by-
sample basis, to minimise the difference between the filter output and a 
desired or target signal. The adaptation formula has the general recursive 
form: 
 

next parameter estimate = previous parameter estimate + update(error) 
 

where the update term is a function of the error signal. In adaptive filtering a 
number of decisions has to be made concerning the filter model and the 
adaptation algorithm: 
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(a) Filter type: This can be a finite impulse response (FIR) filter, or an 
infinite impulse response (IIR) filter. In this chapter we only consider 
FIR filters, since they have good stability and convergence properties 
and for this reason are the type most often used in practice. 

 
(b) Filter order: Often the correct number of filter taps is unknown. The 

filter order is either set using a priori knowledge of the input and the 
desired signals, or it may be obtained by monitoring the changes in the 
error signal as a function of the increasing filter order. 

 
(c)  Adaptation algorithm: The two most widely used adaptation algorithms 

are the recursive least square (RLS) error and the least mean square 
error (LMS) methods. The factors that influence the choice of the 
adaptation algorithm are the computational complexity, the speed of 
convergence to optimal operating condition, the minimum error at 
convergence, the numerical stability and the robustness of the algorithm 
to initial parameter states. 

 
 
7.3 Recursive Least Square (RLS) Adaptive Filters 
 
The recursive least square error (RLS) filter is a sample-adaptive, time-
update, version of the Wiener filter studied in Chapter 6. For stationary 
signals, the RLS filter converges to the same optimal filter coefficients as 
the Wiener filter. For non-stationary signals, the RLS filter tracks the time 
variations of the process. The RLS filter has a relatively fast rate of 
convergence to the optimal filter coefficients. This is useful in applications 
such as speech enhancement, channel equalization, echo cancellation and 
radar where the filter should be able to track relatively fast changes in the 
signal process.  
 In the recursive least square algorithm, the adaptation starts with some 
initial filter state, and successive samples of the input signals are used to 
adapt the filter coefficients. Figure 7.2 illustrates the configuration of an 
adaptive filter where y(m), x(m) and w(m)=[w0(m), w1(m), ..., wP–1(m)] 
denote the filter input, the desired signal and the filter coefficient vector 
respectively. The filter output can be expressed as 
 

)()()(ˆ T mmmx yw=           (7.49) 
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where ˆ x (m)  is an estimate of the desired signal x(m). The filter error signal 
is defined as 

)()()(

)(ˆ)()(
T mmmx

mxmxme

yw−=

−=
          (7.50) 

 
The adaptation process is based on the minimization of the mean square 
error criterion defined as 
 

[ ]

)()()()()(2)0(

)(])()([)()]()([)(2)]([

)()()()]([

TT

TTT2

2T2

mmmmmr

mmmmmxmmmx

mmmxme

xx wRwrw

wyywyw

yw

yyyx +−=

+−=






 −=

EEE

EE

  (7.51) 
The Wiener filter is obtained by minimising the mean square error with 
respect to the filter coefficients. For stationary signals, the result of this 
minimisation is given in Chapter 6, Equation (6.10), as 
 

yxyy r Rw 1  −=             (7.52) 

Adaptation
algorithm

“Desired” or “target ” 
signal x(m)

Input y(m)
z–1 . . .

y(m–1) y(m-P-1)

x(m)^

w1
w0

Transversal filter

w2

y(m–2)

e(m)

z –1 z–1

w
P–1

 
Figure 7.2 Illustration of the configuration of an adaptive filter. 
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where Ryy is the autocorrelation matrix of the input signal and ryx is the 
cross-correlation vector of the input and the target signals. In the following, 
we formulate a recursive, time-update, adaptive formulation of Equation 
(7.52). From Section 6.2, for a block of N sample vectors, the correlation 
matrix can be written as 

∑
−

=
==

1

0

TT )()(
N

m

mm yyYYRyy          (7.53) 

 
where y(m)=[y(m), ..., y(m–P)]T. Now, the sum of vector product in 
Equation (7.53) can be expressed in recursive fashion as 
 

)()()1()( T mmmm yyRR yyyy +−=        (7.54) 

 
To introduce adaptability to the time variations of the signal statistics, the 
autocorrelation estimate in Equation (7.54) can be windowed by an 
exponentially decaying window: 
 

)()()1()( T mmmm yyRR yyyy +−= λ        (7.55) 

 
where λ is the so-called adaptation, or forgetting factor, and is in the range 
0>λ>1. Similarly, the cross-correlation vector is given by 
 

∑
−

=
=

1

0

)()(
N

m
x mxmyry            (7.56) 

 
The sum of products in Equation (7.56) can be calculated in recursive form 
as 

r yx (m) = r yx(m −1) + y(m)x(m)        (7.57) 

 
Again this equation can be made adaptive using an exponentially decaying 
forgetting factor λ: 
 

)()()1()( mxmmm yrr yy +−= xx λ         (7.58) 

 
For a recursive solution of the least square error Equation (7.58), we need to 
obtain a recursive time-update formula for the inverse matrix in the form 
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)()1()( 11 mUpdatemm +−= −−
yyyy RR

      
  (7.59) 

 
A recursive relation for the matrix inversion is obtained using the following 
lemma. 
 
The Matrix Inversion Lemma Let A and B be two positive-definite 
P × P  matrices related by 

T11 CCDBA −− +=           (7.60) 

 

where D is a positive-definite N × N  matrix and C is a P × N  matrix. The 
matrix inversion lemma states that the inverse of the matrix A can be 
expressed as 

( ) BCBCC+DBCBA T1T1 −− −=         (7.61) 
 

This lemma can be proved by multiplying Equation (7.60) and Equation 
(7.61). The left and right hand sides of the results of multiplication are the 
identity matrix. The matrix inversion lemma can be used to obtain a 
recursive implementation for the inverse of the correlation matrix Ryy

−1(m). 

Let  
ARyy =)(m             (7.62) 

 

BRyy =−−− )1(11 mλ            (7.63) 

 
y(m) = C            (7.64) 

 
D = identity matrix          (7.65) 

 
Substituting Equations (7.62) and (7.63) in Equation (7.61), we obtain 
 

)()1()(1

)1()()()1(
)1()(

1T1

1T12
111

mmm

mmmm
mm

yRy

RyyR
RR

yy

yyyy
yyyy

−+

−−
−−= −−

−−−
−−−

λ

λ
λ

    
(7.66) 

 
Now define the variables Φ(m) and k(m) as 
 

Φ yy(m)= Ryy
−1(m)          (7.67) 
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and 
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mmm
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−
= −−
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or 
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1

mmm
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yy
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−
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−

Φ
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       (7.69) 

 
Using Equations (7.67) and (7.69), the recursive equation (7.66) for 
computing the inverse matrix can be written as 
 

)1()()()1()( T11 −−−= −− mmmmm yyyyyy yk ΦΦΦ λλ    (7.70) 

 
From Equations (7.69) and (7.70),  we have  
 

[ ]
)()(

)()1()()()1()( T11

mm

mmmmmm

y

yykk

yy

yyyy

Φ

ΦΦ

=

−−−= −− λλ
     (7.71) 

 
Now Equations (7.70) and (7.71) are used in the following to derive the 
RLS adaptation algorithm. 
 
Recursive Time-update of Filter Coefficients The least square error 
filter coefficients are 

)()(

)()( )( 1

mm

mmm

yxyy

yxyy

r

r Rw

Φ=

= −

              (7.72) 

 
Substituting the recursive form of the correlation vector in Equation (7.72) 
yields 
 

w(m)= Φ yy(m) λryx (m −1) + y(m)x(m)[ ]
= λΦΦ yy(m)r yx(m −1) + Φ yy(m)y(m)x(m)

    (7.73) 

 
Now substitution of the recursive form of the matrix Φyy(m) from Equation 
(7.70) and k(m)=Φ(m)y(m) from Equation (7.71) in the right-hand side of 
Equation (7.73) yields  
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[ ] )()()1()1()()()1()( T11 mxmmmmmmm krykw yxyyyy +−−−−= −− λλλ ΦΦΦ  

(7.74) 
or 

)()()1()1()()()1()1()( T mxmmmmmmmm krykrw yxyyyxyy +−−−−−= ΦΦ    

 (7.75) 
Substitution of w(m–1)=Φ(m–1)ryx(m–1) in Equation (7.75) yields  
 

[ ])1()()()()1()( T −−−−= mmmxmmm wykww      (7.76) 
 

This equation can be rewritten in the following form 
 

w(m)= w(m −1) − k(m)e(m)        (7.77) 
 
Equation (7.77) is a recursive time-update implementation of the least 
square error Wiener filter. 
 
RLS Adaptation Algorithm 
 
Input signals: y(m) and x(m) 
Initial values:   Iδ=)(myyΦ  

       I)0( ww =  
For m = 1,2, ... 
Filter gain vector: 

)()1()(1

)()1(
)(

T1

1

mmm

mm
m

yy

y
k

yy

yy

−+

−
= −

−

Φ

Φ

λ

λ

     
  (7.78) 

 
Error signal equation: 

)()1()()( T mmmxme yw −−=         (7.79) 
 

Filter coefficients: 
w(m)= w(m −1) − k(m)e(m)          (7.80) 

 
Inverse correlation matrix update: 

 
Φ yy(m)= λ−1 Φ yy(m −1) − λ−1k(m)yT (m)Φ yy(m −1)    (7.81) 
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7.4 The Steepest-Descent Method 
 
The mean square error surface with respect to the coefficients of an FIR 
filter, is a quadratic bowl-shaped curve, with a single global minimum that 
corresponds to the LSE filter coefficients. Figure 7.3 illustrates the mean 
square error curve for a single coefficient filter. This figure also illustrates 
the steepest-descent search for the minimum mean square error coefficient. 
The search is based on taking a number of successive downward steps in 
the direction of negative gradient of the error surface. Starting with a set of 
initial values, the filter coefficients are successively updated in the 
downward direction, until the minimum point, at which the gradient is zero, 
is reached. The steepest-descent adaptation method can be expressed as 
 









−+=+

)(

)]([
)()1(

2

m

me
mm

w
ww

∂
∂µ E

        (7.82) 

 
where µ is the adaptation step size. From Equation (5.7), the gradient of the 
mean square error function is given by 

w(i –2)w(i–1)w(i)woptimal

E [e2(m)]

w

 
Figure 7.3 Illustration of gradient search of the mean square error surface for the 

minimum error point. 
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Substituting Equation (7.83) in Equation (7.82) yields 

 
[ ])()()1( mmm x wRrww yyy −+=+ µ         (7.84) 

 
where the factor of 2 in Equation (7.83) has been absorbed in the adaptation 
step size µ. Let wo denote the optimal LSE filter coefficient vector, we 
define a filter coefficients error vector ˜ w (m) as 
 

owww −= )()(~ mm           (7.85) 
 

For a stationary process, the optimal LSE filter wo is obtained from the 
Wiener filter, Equation (5.10), as 
 

xyyyo rRw 1−=              (7.86) 

 
Subtracting wo from both sides of Equation (7.84), and then substituting 

Ryywo  for r yx , and using Equation (7.85) yields 

 
[ ] )(~)1(~ mm wRw yyµ−=+ I           (7.87) 

 
It is desirable that the filter error vector ˜ w (m) vanishes as rapidly as 
possible. The parameter µ, the adaptation step size, controls the stability 
and the rate of convergence of the adaptive filter. Too large a value for µ 
causes instability; too small a value gives a low convergence rate. The 
stability of the parameter estimation method depends on the choice of the 
adaptation parameter µ and the autocorrelation matrix. From Equation 
(7.87), a recursive equation for the error in each individual filter coefficient 
can be obtained as follows. The correlation matrix can be expressed in 
terms of the matrices of eigenvectors and eigenvalues as  
 

TQQ=R yy Λ           (7.88) 
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where Q is an orthonormal matrix of the eigenvectors of Ryy, and Λ is a 
diagonal matrix with its diagonal elements corresponding to the 
eigenvalues of Ryy. Substituting Ryy  from Equation (7.88) in Equation 
(7.87) yields 

[ ] )(~)1(~ T mm wQQw Λµ−=+ I         (7.89) 
 

Multiplying both sides of Equation (7.89) by QT and using the relation 
QTQ=QQT=I yields 
 

)(~][)1(~ TT mm wQwQ Λµ−=+ I        (7.90) 
Let  

)(~)( T m=m wQv            (7.91) 
Then 

v(m+1)= I − µ ΛΛ[ ] v(m)         (7.92) 
 

As Λ and Ι are both diagonal matrices, Equation (7.92) can be expressed in 
terms of the equations for the individual elements of the error vector v(m) 
as 
 

[ ] )(11)( mv=+mv kkk λ−µ           (7.93) 
 
where λk is the kth eigenvalue of the autocorrelation matrix of the filter 
input y(m). Figure 7.4 is a feedback network model of the time variations of 
the error vector. From Equation (7.93), the condition for the stability of the 
adaptation process and the decay of the coefficient error vector is 
 

−1<1 − µλ k<1          (7.94) 

    

1– µλk

z
–1

vk (m+1)
vk (m)

 
Figure 7.4 A feedback model of the variation of coefficient error with time. 
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Let λmax denote the maximum eigenvalue of the autocorrelation matrix of 

y(m) then, from Equation (7.94) the limits on µ for stable adaptation are 
given by 

0 <µ <
2

λmax
           (7.95) 

 
Convergence Rate The convergence rate of the filter coefficients 
depends on the choice of the adaptation step size µ, where 0<µ<1/λmax. 
When the eigenvalues of the correlation matrix are unevenly spread, the 
filter coefficients converge at different speeds: the smaller the kth 
eigenvalue the slower the speed of convergence of the kth coefficients. The 
filter coefficients with maximum and minimum eigenvalues, λmax and λmin 

converge according to the following equations: 
 

( ) )(11)( maxmaxmax mv=+mv λµ−         (7.96) 
 

( ) )(11)+( minminmin mv=mv λµ−         (7.97) 
 
The ratio of the maximum to the minimum eigenvalue of a correlation 
matrix is called the eigenvalue spread of the correlation matrix: 
 

min

maxspreadeigenvalue
λ
λ

=            (7.98) 

 
Note that the spread in the speed of convergence of filter coefficients is 
proportional to the spread in eigenvalue of the autocorrelation matrix of the 
input signal. 
 
 
7.5 The LMS Filter 

 
The steepest-descent method employs the gradient of the averaged squared 
error to search for the least square error filter coefficients. A 
computationally simpler version of the gradient search method is the least 
mean square (LMS) filter, in which the gradient of the mean square error is 
substituted with the gradient of the instantaneous squared error function. 
The LMS adaptation method is defined as 
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where the error signal e(m) is given by 
 

)()()()( T mmmxme xw−=          (7.100) 
 

The instantaneous gradient of the squared error can be re-expressed as 
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    (7.101) 

 
Substituting Equation (7.101) into the recursion update equation of the filter 
parameters, Equation (7.99) yields the LMS adaptation equation: 
 

[ ])()()()1( memmm yww µ+=+         (7.102) 
 

It can seen that the filter update equation is very simple. The LMS filter is 
widely used in adaptive filter applications such as adaptive equalisation, 
echo cancellation etc. The main advantage of the LMS algorithm is its 
simplicity both in terms of the memory requirement and the computational 
complexity which is O(P), where P is the filter length.  

z –1

wk(m+1)

α   

y(m) e(m)
µ

α

w(m)

 
 

Figure 7.5 Illustration of LMS adaptation of a filter coefficient. 
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Leaky LMS Algorithm  The stability and the adaptability of the recursive 
LMS adaptation Equation (7.86) can improved by introducing a so-called 
leakage factor α as 
 

[ ])()()()1( memmm yww µα +=+        (7.103) 
 

Note that the feedback equation for the time update of the filter coefficients 
is essentially a recursive (infinite impulse response) system with input 
µy(m)e(m) and its poles at α. When the parameter α<1, the effect is to 
introduce more stability and accelerate the filter adaptation to the changes 
in input signal characteristics. 
 
Steady-State Error: The optimal least mean square error (LSE), Emin, is 
achieved when the filter coefficients approach the optimum value defined 

by the block least square error equation xyyy rRw 1
o

−=  derived in Chapter 6. 

The steepest-decent method employs the average gradient of the error 
surface for incremental updates of the filter coefficients towards the optimal 
value. Hence, when the filter coefficients reach the minimum point of the 
mean square error curve, the averaged gradient is zero and will remain zero 
so long as the error surface is stationary. In contrast, examination of the 
LMS equation shows that for applications in which the LSE is non-zero 
such as noise reduction, the incremental update term µe(m)y(m) would 
remain non-zero even when the optimal point is reached. Thus at the 
convergence, the LMS filter will randomly vary about the LSE point, with 
the result that the LSE for the LMS will be in excess of the LSE for Wiener 
or steepest-descent methods. Note that at, or near, convergence, a gradual 
decrease in µ would decrease the excess LSE at the expense of some loss of 
adaptability to changes in the signal characteristics. 
 
 
7.6 Summary 
 
This chapter began with an introduction to Kalman filter theory. The 
Kalman filter was derived using the orthogonality principle: for the optimal 
filter, the innovation sequence must be an uncorrelated process and 
orthogonal to the past observations. Note that the same principle can also 
be used to derive the Wiener filter coefficients. Although, like the Wiener 
filter, the derivation of the Kalman filter is based on the least squared error 
criterion, the Kalman filter differs from the Wiener filter in two respects. 
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First, the Kalman filter can be applied to non-stationary processes, and 
second, the Kalman theory employs a model of the signal generation 
process in the form of the state equation. This is an important advantage in 
the sense that the Kalman filter can be used to explicitly model the 
dynamics of the signal process.   
 For many practical applications such as echo cancellation, channel 
equalisation, adaptive noise cancellation, time-delay estimation, etc., the 
RLS and LMS filters provide a suitable alternative to the Kalman filter. The 
RLS filter is a recursive implementation of the Wiener filter, and, for 
stationary processes, it should converge to the same solution as the Wiener 
filter. The main advantage of the LMS filter is the relative simplicity of the 
algorithm. However, for signals with a large spectral dynamic range, or 
equivalently a large eigenvalue spread, the LMS has an uneven and slow 
rate of convergence. If, in addition to having a large eigenvalue spread a 
signal is also non-stationary (e.g. speech and audio signals) then the LMS 
can be an unsuitable adaptation method, and the RLS method, with its 
better convergence rate and less sensitivity to the eigenvalue spread, 
becomes a more attractive alternative. 
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