
 

   

8 

 
 
LINEAR PREDICTION MODELS 
 
8.1 Linear Prediction Coding          
8.2  Forward, Backward and Lattice Predictors   
8.3  Short-term and Long-Term Linear Predictors    
8.4 MAP Estimation of Predictor Coefficients           
8.5 Sub-Band Linear Prediction 
8.6 Signal Restoration Using Linear Prediction Models 
8.7 Summary 
 
     

                   
inear prediction modelling is used in a diverse area of applications, 
such as data forecasting, speech coding, video coding, speech 
recognition, model-based spectral analysis, model-based 

interpolation, signal restoration, and impulse/step event detection. In the 
statistical literature, linear prediction models are often referred to as 
autoregressive (AR) processes. In this chapter, we introduce the theory of 
linear prediction modelling and consider efficient methods for the 
computation of predictor coefficients. We study the forward, backward and 
lattice predictors, and consider various methods for the formulation and 
calculation of predictor coefficients, including the least square error and 
maximum a posteriori methods. For the modelling of signals with a quasi-
periodic structure, such as voiced speech, an extended linear predictor that 
simultaneously utilizes the short and long-term correlation structures is 
introduced. We study sub-band linear predictors that are particularly useful 
for sub-band processing of noisy signals. Finally, the application of linear 
prediction in enhancement of noisy speech is considered. Further 
applications of linear prediction models in this book are in Chapter 11 on 
the interpolation of a sequence of lost samples, and in Chapters 12 and 13 
on the detection and removal of impulsive noise and transient noise pulses. 
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8.1 Linear Prediction Coding 
 
The success with which a signal can be predicted from its past samples 
depends on the autocorrelation function, or equivalently the bandwidth and 
the power spectrum, of the signal. As illustrated in Figure 8.1, in the time 
domain, a predictable signal has a smooth and correlated fluctuation, and in 
the frequency domain, the energy of a predictable signal is concentrated in 
narrow band/s of frequencies. In contrast, the energy of an unpredictable 
signal, such as a white noise, is spread over a wide band of frequencies.  
 For a signal to have a capacity to convey information it must have a 
degree of randomness. Most signals, such as speech, music and video 
signals, are partially predictable and partially random. These signals can be 
modelled as the output of a filter excited by an uncorrelated input. The 
random input models the unpredictable part of the signal, whereas the filter 
models the predictable structure of the signal. The aim of linear prediction is 
to model the mechanism that introduces the correlation in a signal.  
 Linear prediction models are extensively used in speech processing, in 
low bit-rate speech coders, speech enhancement and speech recognition. 
Speech is generated by inhaling air and then exhaling it through the glottis 
and the vocal tract. The noise-like air, from the lung, is modulated and 
shaped by the vibrations of the glottal cords and the resonance of the vocal 
tract. Figure 8.2 illustrates a source-filter model of speech. The source 
models the lung, and emits a random input excitation signal which is filtered 
by a pitch filter.  
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Figure 8.1 The concentration or spread of power in frequency indicates the 

predictable or random character of a signal: (a) a predictable signal;  
(b) a random signal. 
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The pitch filter models the vibrations of the glottal cords, and generates a 
sequence of quasi-periodic excitation pulses for voiced sounds as shown in 
Figure 8.2. The pitch filter model is also termed the “long-term predictor” 
since it models the correlation of each sample with the samples a pitch 
period away. The main source of correlation and power in speech is the 
vocal tract. The vocal tract is modelled by a linear predictor model, which is 
also termed the “short-term predictor”, because it models the correlation of 
each sample with the few preceding samples. In this section, we study the 
short-term linear prediction model. In Section 8.3, the predictor model is 
extended to include long-term pitch period correlations. 
 A linear predictor model forecasts the amplitude of a signal at time m, 
x(m), using a linearly weighted combination of P past samples [x(m−1), 
x(m−2), ..., x(m−P)] as 
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where the integer variable m is the discrete time index, ˆ x (m)  is the 
prediction of x(m), and ak are the predictor coefficients. A block-diagram 
implementation of the predictor of Equation (8.1) is illustrated in Figure 8.3.  
 The prediction error e(m), defined as the difference between the actual 
sample value x(m) and its predicted value ˆ x (m) , is given by 
 

e(m) = x(m) − ˆ x (m)

= x(m ) − akx(m − k)
k=1

P

∑          (8.2) 
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Figure 8.2 A source–filter model of speech production. 
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For information-bearing signals, the prediction error e(m) may be regarded 
as the information, or the innovation, content of the sample x(m). From 
Equation (8.2) a signal generated, or modelled, by a linear predictor can be 
described by the following feedback equation 
 

x(m) = ak x(m − k) + e(m)
k=1

P

∑          (8.3) 

 
Figure 8.4 illustrates a linear predictor model of a signal x(m). In this model, 
the random input excitation (i.e. the prediction error) is e(m)=Gu(m), where 
u(m) is a zero-mean, unit-variance random signal, and G, a gain term, is the 
square root of the variance of e(m): 
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Figure 8.4 Illustration of a signal generated by a linear predictive model. 
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Figure 8.3 Block-diagram illustration of a linear predictor. 
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where E[· ] is an averaging, or expectation, operator. Taking the z-transform 
of Equation (8.3) shows that the linear prediction model is an all-pole digital 
filter with z-transfer function  
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In general, a linear predictor of order P has P/2 complex pole pairs, and can 
model up to P/2 resonance of the signal spectrum as illustrated in Figure 8.5. 
Spectral analysis using linear prediction models is discussed in Chapter 9.  
 
 
8.1.1 Least Mean Square Error Predictor 
 
The “best” predictor coefficients are normally obtained by minimising a 
mean square error criterion defined as 
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Figure 8.5 The pole–zero position and frequency response of a linear predictor. 
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where Rxx =E[xxT] is the autocorrelation matrix of the input vector 
xT=[x(m−1), x(m−2), . . ., x(m−P)], rxx=E[x(m)x] is the autocorrelation 
vector and aT=[a1, a2, . . ., aP] is the predictor coefficient vector. From 
Equation (8.6), the gradient of the mean square prediction error with respect 
to the predictor coefficient vector a is given by 
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where the gradient vector is defined as 
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The least mean square error solution, obtained by setting Equation (8.7) to 
zero, is given by 

Rxx a = rxx                 (8.9) 
 
From Equation (8.9) the predictor coefficient vector is given by  
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Equation (8.10) may also be written in an expanded form as 
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An alternative formulation of the least square error problem is as follows. 
For a signal block of N samples [x(0), ..., x(N−1)], we can write a set of N 
linear prediction error equations as 
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(8.12) 
where xT= [x(−1), ..., x(−P)] is the initial vector. In a compact vector/matrix  
notation Equation (8.12) can be written as 
 

e = x − Xa              (8.13) 
 
Using Equation (8.13), the sum of squared prediction errors over a block of 
N samples can be expressed as  
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The least squared error predictor is obtained by setting the derivative of 
Equation (8.14) with respect to the parameter vector a to zero: 
 

0=2 TTT
T

XXaXx
a

ee −−=
∂

∂
             (8.15) 

 
From Equation (8.15), the least square error predictor is given by 
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A comparison of Equations (8.11) and (8.16) shows that in Equation (8.16) 
the autocorrelation matrix and vector of Equation (8.11) are replaced by the 
time-averaged estimates as 
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Equations (8.11) and ( 8.16) may be solved efficiently by utilising the 
regular Toeplitz structure of the correlation matrix Rxx. In a Toeplitz matrix, 
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all the elements on a left–right diagonal are equal. The correlation matrix is 
also cross-diagonal symmetric. Note that altogether there are only P+1 
unique elements [rxx(0), rxx(1), . . . , rxx(P)] in the correlation matrix and the 
cross-correlation vector. An efficient method for solution of Equation (8.10) 
is the Levinson–Durbin algorithm, introduced in Section 8.2.2.  
 
 
8.1.2 The Inverse Filter: Spectral Whitening 
 
The all-pole linear predictor model, in Figure 8.4, shapes the spectrum of 
the input signal by transforming an uncorrelated excitation signal u(m) to a 
correlated output signal x(m). In the frequency domain the input–output 
relation of the all-pole filter of Figure 8.6 is given by 
 

∑
=

−−
==

P

k

fk
k ea

fE

fA

fUG
fX

1

2j1

)(

)(

)(
)(

π
         (8.18) 

 
where X(f), E(f) and U(f) are the spectra of x(m), e(m) and u(m) respectively, 
G is the input gain factor, and A(f) is the frequency response of the inverse 
predictor. As the excitation signal e(m) is assumed to have a flat spectrum, it 
follows that the shape of the signal spectrum X(f) is due to the frequency 
response 1/A(f) of the all-pole predictor model. The inverse linear predictor, 
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Figure 8.6 Illustration of the inverse (or whitening) filter. 
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as the name implies, transforms a correlated signal x(m) back to an 
uncorrelated flat-spectrum signal e(m). The inverse filter, also known as the 
prediction error filter, is an all-zero finite impulse response filter defined as 
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where the inverse filter (ainv)T =[1, −a1, . . ., −aP]=[1, −a], and xT=[x(m), ..., 
x(m−P)]. The z-transfer function of the inverse predictor model is given by  
 

A(z) = 1 − ak z−k

k=1

P

∑             (8.20) 

 
A linear predictor model is an all-pole filter, where the poles model the 
resonance of the signal spectrum. The inverse of an all-pole filter is an all- 
zero filter, with the zeros situated at the same positions in the pole–zero plot 
as the poles of the all-pole filter, as illustrated in Figure 8.7. Consequently, 
the zeros of the inverse filter introduce anti-resonances that cancel out the 
resonances of the poles of the predictor. The inverse filter has the effect of 
flattening the spectrum of the input signal, and is also known as a spectral 
whitening, or decorrelation, filter.  
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Figure 8.7 Illustration of the pole-zero diagram, and the frequency responses of an 
all-pole predictor and its all-zero inverse filter. 
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8.1.3 The Prediction Error Signal 
 
The prediction error signal is in general composed of three components:  
 

(a) the input signal, also called the excitation signal; 
(b) the errors due to the modelling inaccuracies; 
(c) the noise. 
 

 The mean square prediction error becomes zero only if the following 
three conditions are satisfied: (a) the signal is deterministic, (b) the signal is 
correctly modelled by a predictor of order P, and (c) the signal is noise-free. 
For example, a mixture of P/2 sine waves can be modelled by a predictor of 
order P, with zero prediction error. However, in practice, the prediction 
error is nonzero because information bearing signals are random, often only 
approximately modelled by a linear system, and usually observed in noise. 
The least mean square prediction error, obtained from substitution of 
Equation (8.9) in Equation (8.6), is  
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where E(P) denotes the prediction error for a predictor of order P. The 
prediction error decreases, initially rapidly and then slowly, with increasing 
predictor order up to the correct model order. For the correct model order, 
the signal e(m) is an uncorrelated zero-mean random process with an 
autocorrelation function defined as 
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 where σe

2  is the variance of e(m).   
 
 
8.2 Forward, Backward and Lattice Predictors 
 
The forward predictor model of Equation (8.1) predicts a sample x(m) from 
a linear combination of P past samples x(m−1), x(m−2), . . .,x(m−P). 
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Similarly, as shown in Figure 8.8, we can define a backward predictor, that 
predicts a sample x(m−P)  from P future samples x(m−P+1), . . ., x(m) as 
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The backward prediction error is defined as the difference between the 
actual sample and its predicted value: 
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From Equation (8.24), a signal generated by a backward predictor is given 
by 
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The coefficients of the least square error backward predictor, obtained in a 
similar method to that of the forward predictor in Section 8.1.1, are given by  
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Figure 8.8 Illustration of forward and backward predictors. 
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Note that the main difference between Equations (8.26) and (8.11) is that the 
correlation vector on the right-hand side of the backward predictor, Equation 
(8.26) is upside-down compared with the forward predictor, Equation 
(8.11). Since the correlation matrix is Toeplitz and symmetric, Equation 
(8.11) for the forward predictor may be rearranged and rewritten in the 
following form: 
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A comparison of Equations (8.27) and (8.26) shows that the coefficients of 
the backward predictor are the time-reversed versions of those of the 
forward predictor 

B

1

2

1

3

2

1

ac =























=























= −

−

a

a

a

a

c

c

c

c

P

P

P

P

��

         (8.28) 

 
where the vector aB is the reversed version of the vector a. The relation 
between the backward and forward predictors is employed in the Levinson–
Durbin algorithm to derive an efficient method for calculation of the 
predictor coefficients as described in Section 8.2.2. 
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8.2.1 Augmented Equations for Forward and Backward 
Predictors 

 
The inverse forward predictor coefficient vector is [1, −a1, ..., −aP]=[1, −aT]. 
Equations (8.11) and (8.21) may be combined to yield a matrix equation for 
the inverse forward predictor coefficients: 
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Equation (8.29) is called the augmented forward predictor equation. 
Similarly, for the inverse backward predictor, we can define an augmented 
backward predictor equation as   
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where [ ])(,),1(T Prr xxxx �=xxr  and [ ])1(,),(BT
xxxx rPr �=xxr . Note that the 

superscript BT denotes backward and transposed. The augmented forward 
and backward matrix Equations (8.29) and (8.30) are used to derive an 
order-update solution for the linear predictor coefficients as follows.  
 
 
8.2.2 Levinson–Durbin Recursive Solution 
 
The Levinson–Durbin algorithm is a recursive order-update method for 
calculation of linear predictor coefficients. A forward-prediction error filter 
of order i can be described in terms of the forward and backward prediction 
error filters of order i−1 as 
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or in a more compact vector notation as 
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where ki is called the reflection coefficient. The proof of Equation (8.32) and 
the derivation of the value of the reflection coefficient for ki follows shortly. 
Similarly, a backward prediction error filter of order i is described in terms 
of the forward and backward prediction error filters of order i–1 as  
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To prove the order-update Equation (8.32) (or alternatively Equation 
(8.33)), we multiply both sides of the equation by the (i +1) × (i +1)  

augmented matrix Rxx
(i+1) and use the equality  
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to obtain 
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where in Equation (8.34) and Equation (8.35) [ ])(,),1(T)( irr xxxx
i �=xxr , and 

[ ])1(,),(T)(
xxxx

Bi rir �=xxr  is the reversed version of T)(i
xxr . Matrix–vector 

multiplication of both sides of Equation (8.35) and the use of Equations 
(8.29) and (8.30) yields 
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If Equation (8.36) is true, it follows that Equation (8.32) must also be true. 
The conditions for Equation (8.36) to be true are  
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Substitution of ∆(i-1) from Equation (8.40) into Equation (8.38) yields  
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Note that it can be shown that ∆(i) is the cross-correlation of the forward and 
backward prediction errors: 
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The parameter ∆(i–1) is known as the partial correlation. 
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Durbin’s algorithm 
 
Equations (8.43)–(8.48) are solved recursively for i=1, . . ., P. The Durbin 
algorithm starts with a predictor of order zero for which E(0)=rxx(0). The 
algorithm then computes the coefficients of a predictor of order i, using the 
coefficients of a predictor of order i−1. In the process of solving for the 
coefficients of a predictor of order P, the solutions for the predictor 
coefficients of all orders less than P are also obtained: 
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8.2.3  Lattice Predictors 
 
The lattice structure, shown in Figure 8.9, is a cascade connection of similar 
units, with each unit specified by a single parameter ki, known as the 
reflection coefficient. A major attraction of a lattice structure is its modular 
form and the relative ease with which the model order can be extended. A 
further advantage is that, for a stable model, the magnitude of ki is bounded 
by unity (|ki |<1), and therefore it is relatively easy to check a lattice 
structure for stability. The lattice structure is derived from the forward and 
backward prediction errors as follows. An order-update recursive equation 
can be obtained for the forward prediction error by multiplying both sides of 
Equation (8.32) by the input vector [x(m), x(m−1), . . . , x(m−i)]: 
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Similarly, we can obtain an order-update recursive equation for the 
backward prediction error by multiplying both sides of Equation (8.33) by 
the input vector [x(m–i), x(m–i+1), . . . , x(m)]  as 
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Equations (8.49) and (8.50) are interrelated and may be implemented by a 
lattice network as shown in Figure 8.8. Minimisation of the squared forward 
prediction error of Equation (8.49) over N samples yields  
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Figure 8.9 Configuration of (a) a lattice predictor and (b) the inverse lattice 
predictor. 
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Note that a similar relation for ki can be obtained through minimisation of 
the squared backward prediction error of Equation (8.50) over N samples. 
The reflection coefficients are also known as the normalised partial 
correlation (PARCOR) coefficients.  
 
 
8.2.4 Alternative Formulations of Least Square Error Prediction 
 
The methods described above for derivation of the predictor coefficients are 
based on minimisation of either the forward or the backward prediction 
error. In this section, we consider alternative methods based on the 
minimisation of the sum of the forward and backward prediction errors.  
 
 
Burg's Method Burg’s method is based on minimisation of the sum of the 
forward and backward squared prediction errors. The squared error function 
is defined as 
 

[ ] [ ]{ }∑
−

=
+=

1

0

2)(2)()( )()(
N

m

iii
fb mbmeE             (8.52) 

 
Substitution of Equations (8.49) and (8.50) in Equation (8.52) yields 
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Minimisation of 
)(i

fbE  with respect to the reflection coefficients ki yields 
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Simultaneous Minimisation of the Backward and Forward 
Prediction Errors From Equation (8.28) we have that the backward 
predictor coefficient vector is the reversed version of the forward predictor 
coefficient vector. Hence a predictor of order P can be obtained through 
simultaneous minimisation of the sum of the squared backward and forward 
prediction errors defined by the following equation: 
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(8.55) 
 

where X and x are the signal matrix and vector defined by Equations (8.12) 
and (8.13), and similarly XB and xB

 are the signal matrix and vector for the 
backward predictor. Using an approach similar to that used in derivation of 
Equation (8.16), the minimisation of the mean squared error function of 
Equation (8.54) yields 
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−
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Note that for an ergodic signal as the signal length N increases Equation 
(8.56) converges to the so-called normal Equation (8.10). 
 
 
8.2.5 Predictor Model Order Selection 
 
One procedure for the determination of the correct model order is to 
increment the model order, and monitor the differential change in the error 
power, until the change levels off. The incremental change in error power 
with the increasing model order from i–1 to i is defined as 
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Figure 8.10 illustrates the decrease in the normalised mean square prediction 
error with the increasing predictor length for a speech signal. The order P 
beyond which the decrease in the error power ∆E(P) becomes less than a 
threshold is taken as the model order.  
 In linear prediction two coefficients are required for modelling each 
spectral peak of the signal spectrum. For example, the modelling of a signal 
with K dominant resonances in the spectrum needs P=2K coefficients. 
Hence a procedure for model selection is to examine the power spectrum of 
the signal process, and to set the model order to twice the number of 
significant spectral peaks in the spectrum. 
 When the model order is less than the correct order, the signal is under-
modelled. In this case the prediction error is not well decorrelated and will 
be more than the optimal minimum. A further consequence of under-
modelling is a decrease in the spectral resolution of the model: adjacent 
spectral peaks of the signal could be merged and appear as a single spectral 
peak when the model order is too small. When the model order is larger than 
the correct order, the signal is over-modelled. An over-modelled problem 
can result in an ill-conditioned matrix equation, unreliable numerical 
solutions and the appearance of spurious spectral peaks in the model. 
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Figure 8.10 Illustration of the decrease in the normalised mean squared 
prediction error with the increasing predictor length for a speech signal. 
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8.3 Short-Term and Long-Term Predictors 
 
For quasi-periodic signals, such as voiced speech, there are two types of 
correlation structures that can be utilised for a more accurate prediction, 
these are:  
 

(a) the short-term correlation, which is the correlation of each sample 
with the P immediate past samples: x(m−1), . . ., x(m−P); 

(b) the long-term correlation, which is the correlation of a sample x(m) 
with say 2Q+1 similar samples a pitch period T away: x(m–T+Q), . . ., 
x(m–T–Q).  

 
Figure 8.11 is an illustration of the short-term relation of a sample with the 
P immediate past samples and its long-term relation with the samples a 
pitch period away. The short-term correlation of a signal may be modelled 
by the linear prediction Equation (8.3). The remaining correlation, in the 
prediction error signal e(m), is called the long-term correlation. The long-
term correlation in the prediction error signal may be modelled by a pitch 
predictor defined as 
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?

P past samples2Q+1 samples a 
pitch period away

m

 
 

Figure 8.11 Illustration of the short-term relation of a sample with the P immediate 
past samples and the long-term relation with the samples a pitch period away. 
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where pk are the coefficients of a long-term predictor of order 2Q+1. The 
pitch period T can be obtained from the autocorrelation function of x(m) or 
that of e(m): it is the first non-zero time lag where the autocorrelation 
function attains a maximum. Assuming that the long-term correlation is 
correctly modelled, the prediction error of the long-term filter is a 
completely random signal with a white spectrum, and is given by 
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Minimisation of E[e2(m)] results in the following solution for the pitch 
predictor: 
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(8.60) 
 
An alternative to the separate, cascade, modelling of the short- and long-
term correlations is to combine the short- and long-term predictors into a 
single model described as  
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     (8.61) 

 
In Equation (8.61), each sample is expressed as a linear combination of P 
immediate past samples and 2Q+1 samples a pitch period away. 
Minimisation of E[e2(m)]  results in the following solution for the pitch 
predictor: 
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(8.62) 
 

In Equation (8.62), for simplicity the subscript xx of rxx(k) has been omitted. 
In Chapter 10, the predictor model of Equation (8.61) is used for 
interpolation of a sequence of missing samples. 
 

8.4 MAP Estimation of Predictor Coefficients 
 
The posterior probability density function of a predictor coefficient vector a, 
given a signal x and the initial samples xI, can be expressed, using Bayes’ 
rule, as 
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In Equation (8.63), the pdfs are conditioned on P initial signal samples 
xI=[x(–P), x(–P+1), ..., x(–1)]. Note that for a given set of samples [x, xI], 

( )I| |
I

xxXXf  is a constant, and it is reasonable to assume that 

( ) ( )axa AXA ff
I

=I| | . 

 
8.4.1 Probability Density Function of Predictor Output    
 
The pdf fX|A,XI(x|a,xI) of the signal x, given the predictor coefficient vector a 
and the initial samples xI, is equal to the pdf of the input signal e: 
 

( ) ( )Xaxxax EXAX −= ff I,| ,|
I

             (8.64) 

 
where the input signal vector is given by 
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Xae −=              (8.65) 

 
and ( )eEf  is the pdf of e. Equation (8.64) can be expanded as 
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(8.66) 
 
Assuming that the input excitation signal e(m) is a zero-mean, uncorrelated, 

Gaussian process with a variance of 2
eσ , the likelihood function in Equation 

(8.64) becomes 
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An alternative form of Equation (8.67) can be obtained by rewriting 
Equation (8.66) in the following form: 
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(8.68) 
In a compact notation Equation (8.68) can be written as 
 

e = Ax               (8.69) 
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Using Equation (8.69), and assuming that the excitation signal e(m) is a zero 
mean, uncorrelated process with variance 2

eσ , the likelihood function of 
Equation (8.67) can be written as 
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8.4.2 Using the Prior pdf of the Predictor Coefficients 
 
The prior pdf of the predictor coefficient vector is assumed to have a 
Gaussian distribution with a mean vector µa and a covariance matrix Σaa: 
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Substituting Equations (8.67) and (8.71) in Equation (8.63), the posterior 
pdf of the predictor coefficient vector ( )I,| ,|

I
xxaXXAf  can be expressed as 
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(8.72) 

The maximum a posteriori estimate is obtained by maximising the log-
likelihood function: 
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(8.73) 
This yields 
 

( ) ( ) aaaaa XXxXXXa
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Note that as the Gaussian prior tends to a uniform prior, the determinant 
covariance matrix Σaa of the Gaussian prior increases, and the MAP solution 
tends to the least square error solution: 
 

( ) ( )xXXXa T1Tˆ
−

=LS               (8.75) 
 

Similarly as the observation length N increases the signal matrix XTX 
becomes more significant than Σaa and again the MAP solution tends to a 
least squared error solution.  
 
 
8.5 Sub-Band Linear Prediction Model 
 
In a Pth order linear prediction model, the P predictor coefficients model the 
signal spectrum over its full spectral bandwidth. The distribution of the LP 
parameters (or equivalently the poles of the LP model) over the signal 
bandwidth depends on the signal correlation and spectral structure. 
Generally, the parameters redistribute themselves over the spectrum to 
minimize the mean square prediction error criterion. An alternative to a 
conventional LP model is to divide the input signal into a number of sub-
bands and to model the signal within each sub-band with a linear prediction 
model as shown in Figure 8.12. The advantages of using a sub-band LP 
model are as follows: 
 

(1) Sub-band linear prediction allows the designer to allocate a specific 
number of model parameters to a given sub-band. Different numbers 
of parameters can be allocated to different bands. 

(2) The solution of a full-band linear predictor equation, i.e. Equation 
(8.10) or (8.16), requires the inversion of a relatively large 
correlation matrix, whereas the solution of the sub-band LP models 
require the inversion of a number of relatively small correlation 
matrices with better numerical stability properties. For example, a 
predictor of order 18 requires the inversion of an 18×18 matrix, 
whereas three sub-band predictors of order 6 require the inversion of 
three 6×6 matrices. 

(3) Sub-band linear prediction is useful for applications such as noise 
reduction where a sub-band approach can offer more flexibility and 
better performance. 
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In sub-band linear prediction, the signal x(m) is passed through a bank of N 
band-pass filters, and is split into N sub-band signals xk(m), k=1, …,N. The 
kth sub-band signal is modelled using a low-order linear prediction model as 
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)()()()(        (8.76) 

 
where [ak, gk] are the coefficients and the gain of the predictor model for the 
kth sub-band. The choice of the model order Pk depends on the width of the 
sub-band and on the signal correlation structure within each sub-band. The 
power spectrum of the input excitation of an ideal LP model for the kth sub-
band signal can be expressed as 
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where fk,start, fk,end are the start and end frequencies of the kth sub-band 
signal. The autocorrelation function of the excitation function in each sub-
band is a sinc function given by 
 

[ ]2/)(incs)( 0kkkee fBmBmr −=       (8.78) 
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Figure 8.12 Configuration of a sub-band linear prediction model. 
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where Bk and fk0 are the bandwidth and the centre frequency of the kth sub-
band respectively. To ensure that each sub-band LP parameters only model 
the signal within that sub-band, the sub-band signals are down-sampled as 
shown in Figure 8.12. 
 
 
8.6  Signal Restoration Using Linear Prediction Models 
 
Linear prediction models are extensively used in speech and audio signal 
restoration. For a noisy signal, linear prediction analysis models the 
combined spectra of the signal and the noise processes. For example, the 
frequency spectrum of a linear prediction model of speech, observed in 
additive white noise, would be flatter than the spectrum of the noise-free 
speech, owing to the influence of the flat spectrum of white noise. In this 
section we consider the estimation of the coefficients of a predictor model 
from noisy observations, and the use of linear prediction models in signal 
restoration. The noisy signal y(m) is modelled as 
 

y(m) = x(m) +n(m)

= ak x(m − k)+ e(m) + n(m)
k=1

P

∑           (8.79) 

 
where the signal x(m) is modelled by a linear prediction model with 
coefficients ak and random input e(m), and it is assumed that the noise n(m) 
is additive. The least square error predictor model of the noisy signal y(m) is 
given by 
 

yyyy raR =ˆ                   (8.80) 

 
where Ryy and ryy are the autocorrelation matrix and vector of the noisy 
signal y(m). For an additive noise model, Equation (8.80) can be written as 
 

( )( ) ( )nxxnnxx rraaRR n+++ =~             (8.81) 
 
where ˜ a  is the error in the predictor coefficients vector due to the noise. A 
simple method for removing the effects of noise is to subtract an estimate of 
the autocorrelation of the noise from that of the noisy signal. The drawback 
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of this approach is that, owing to random variations of noise, correlation 
subtraction can cause numerical instability in Equation (8.80) and result in 
spurious solutions. In the following, we formulate the p.d.f. of the noisy 
signal and describe an iterative signal-restoration/parameter-estimation 
procedure developed by Lee and Oppenheim. 
 From Bayes’ rule, the MAP estimate of the predictor coefficient vector 
a, given an observation signal vector y=[y(0), y(1), ..., y(N–1)], and the 
initial samples vector xI is 
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Now consider the variance of the signal y in the argument of the term 

( )II
f xayXAY ,|,|  in Equation (8.82). The innovation of y(m) can be defined 

as 
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The variance of y(m), given the previous P samples and the coefficient 
vector a, is the variance of the innovation signal ε(m), given by 
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   (8.84) 

 
where σe

2  and σn
2  are the variance of the excitation signal and the noise 

respectively. From Equation (8.84), the variance of y(m) is a function of the 
coefficient vector a. Consequently, maximisation of fY|A,XI

(y|a,x
I
) with 

respect to the vector a is a non-linear and non-trivial exercise.  
 Lim and Oppenheim proposed the following iterative process in which 
an estimate ˆ a  of the predictor coefficient vector is used to make an estimate 
ˆ x  of the signal vector, and the signal estimate ˆ x  is then used to improve the 
estimate of the parameter vector ˆ a , and the process is iterated until 
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convergence. The posterior pdf of the noise-free signal x given the noisy 
signal y  and an estimate of the parameter vector ˆ a  is given by 
 

f X | A,Y x | ˆ a , y( ) =
f Y|A, X y| ˆ a ,x( ) f X |A x| ˆ a ( )

f Y|A y| ˆ a ( )
          (8.85) 

 
Consider the likelihood term fY|A,X( y| ˆ a ,x ). Since the noise is additive, we 
have 
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Assuming that the input of the predictor model is a zero-mean Gaussian 
process with variance σe

2 , the pdf of the signal x given an estimate of the 
predictor coefficient vector a is  
 

( )
( )

( ) 





−=







−=

xAAx

eeaxXAY

ˆˆ
2

1
exp

2

1

2

1
exp

2

1
ˆ|

TT
22/2

T
22/2

,|

e
N

e

e
N

e

f

σπσ

σπσ
        (8.87) 

 
where e = ˆ A x  as in Equation (8.69). Substitution of Equations (8.86) and 
(8.87) in Equation (8.85) yields 
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(8.88) 
 

In Equation (8.88), for a given signal y and coefficient vector ˆ a , fY|A( y| ˆ a ) is 
a constant. From Equation (8.88), the ML signal estimate is obtained by 
maximising the log-likelihood function as 
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(8.89) 
which gives 
 

( ) yAAx
12T22 ˆˆˆ

−
+= Iene σσσ               (8.90) 

 
The signal estimate of Equation (8.90) can be used to obtain an updated 
estimate of the predictor parameter. Assuming that the signal is a zero mean 
Gaussian process, the estimate of the predictor parameter vector a is given 
by 

( ) ( )xXXXxa ˆˆˆˆ)ˆ(ˆ T1T −
=                 (8.91) 

 
Equations (8.90) and (8.91) form the basis for an iterative signal 
restoration/parameter estimation method. 
 

 
8.6.1 Frequency-Domain Signal Restoration Using Prediction 

Models 
 
The following algorithm is a frequency-domain implementation of the linear 
prediction model-based restoration of a signal observed in additive white 
noise. 
 
Initialisation: Set the initial signal estimate to noisy signal yx =0ˆ , 
For iterations i = 0, 1, ... 
 
Step 1 Estimate the predictor parameter vector ˆ a i : 
 

( ) ( )iiiiii xXXXxa ˆˆˆˆ)ˆ(ˆ T1T −
=                       (8.92) 

 
Step 2 Calculate an estimate of the model gain G using the Parseval's 

theorem: 
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    where ˆ a k,i are the coefficient estimates at iteration i, and N ˆ σ n2  is the 

energy of  white noise over N samples.   
 
Step 3 Calculate an estimate of the power spectrum of speech model: 

 

2

1

/2
,

2

ˆ1

ˆ
)(ˆ

∑
=

−−

=
P

k

Nfkj
ik

iXX

ea

G
fP

i

π
            (8.94) 

 
Step 4 Calculate the Wiener filter frequency response: 
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     where ˆ P Ni Ni

( f ) = ˆ σ n2  is an estimate of the noise power spectrum.  

 
Step 5 Filter the magnitude spectrum of the noisy speech as 
 

)()(ˆ)(ˆ
1 fYfWfX i+i =                 (8.96) 

 

  Restore the time domain signal 1+ˆix  by combining )(ˆ
1+ fXi  with the 

phase of noisy signal and the complex signal to time domain. 
 
Step 6 Goto step 1 and repeat until convergence, or for a specified number 

of iterations.  
 
Figure 8.13 illustrates a block diagram configuration of a Wiener filter using 
a linear prediction estimate of the signal spectrum. Figure 8.14 illustrates the 
result of an iterative restoration of the spectrum of a noisy speech signal.  
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Figure 8.14 Illustration of restoration of a noisy signal with iterative linear prediction 

based method. 
 
 
8.6.2 Implementation of Sub-Band Linear Prediction Wiener 

Filters 
 
Assuming that the noise is additive, the noisy signal in each sub-band is 
modelled as  
 

)()()( mnmxmy kkk +=             (8.97) 

 
The Wiener filter in the frequency domain can be expressed in terms of the 
power spectra, or in terms of LP model frequency responses, of the signal 
and noise process as 
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Figure 8.13 Iterative signal restoration based on linear prediction model of speech.  
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where PX,k(f) and PY,k(f) are the power spectra of the clean signal and the 
noisy signal for the kth subband respectively. From Equation (8.98) the 
square-root Wiener filter is given by 
 

kY

kY

kX

kX
k g

fA

fA

g
fW

,

,

,

,2/1 )(

)(
)( =        (8.99) 

 
The linear prediction Wiener filter of Equation (8.99) can be implemented in 
the time domain with a cascade of a linear predictor of the clean signal, 
followed by an inverse predictor filter of the noisy signal as expressed by 
the following relations (see Figure 8.15): 
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where )(ˆ mxk is the restored estimate of xk(m) the clean speech signal and 

zk(m) is an intermediate signal. 
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Figure 8.15 A cascade implementation of the LP squared-root Wiener filter. 
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8.7 Summary 
 
Linear prediction models are used in a wide range of signal processing 
applications from low-bit-rate speech coding to model-based spectral 
analysis. We began this chapter with an introduction to linear prediction 
theory, and considered different methods of formulation of the prediction 
problem and derivations of the predictor coefficients. The main attraction of 
the linear prediction method is the closed-form solution of the predictor 
coefficients, and the availability of a number of efficient and relatively 
robust methods for solving the prediction equation such as the Levinson–
Durbin method. In Section 8.2, we considered the forward, backward and 
lattice predictors. Although the direct-form implementation of the linear 
predictor is the most convenient method, for many applications, such as 
transmission of the predictor coefficients in speech coding, it is 
advantageous to use the lattice form of the predictor. This is because the 
lattice form can be conveniently checked for stability, and furthermore a 
perturbation of the parameter of any section of the lattice structure has a 
limited and more localised effect. In Section 8.3, we considered a modified 
form of linear prediction that models the short-term and long-term 
correlations of the signal. This method can be used for the modelling of 
signals with a quasi-periodic structure such as voiced speech. In Section 8.4, 
we considered MAP estimation and the use of a prior pdf for derivation of 
the predictor coefficients. In Section 8.5, the sub-band linear prediction 
method was formulated. Finally in Section 8.6, a linear prediction model 
was applied to the restoration of a signal observed in additive noise.  
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