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he power spectrum reveals the existence, or the absence, of repetitive 
patterns and correlation structures in a signal process. These 
structural patterns are important in a wide range of applications such 

as data forecasting, signal coding, signal detection, radar, pattern 
recognition, and decision-making systems. The most common method of 
spectral estimation is based on the fast Fourier transform (FFT). For many 
applications, FFT-based methods produce sufficiently good results. 
However, more advanced methods of spectral estimation can offer better 
frequency resolution, and less variance. This chapter begins with an 
introduction to the Fourier series and transform and the basic principles of 
spectral estimation. The classical methods for power spectrum estimation 
are based on periodograms. Various methods of averaging periodograms, 
and their effects on the variance of spectral estimates, are considered. We 
then study the maximum entropy and the model-based spectral estimation 
methods. We also consider several high-resolution spectral estimation 
methods, based on eigen-analysis, for the estimation of sinusoids observed 
in additive white noise. 
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9.1 Power Spectrum and Correlation 
 
The power spectrum of a signal gives the distribution of the signal power 
among various frequencies. The power spectrum is the Fourier transform of 
the correlation function, and reveals information on the correlation structure 
of the signal. The strength of the Fourier transform in signal analysis and 
pattern recognition is its ability to reveal spectral structures that may be used 
to characterise a signal. This is illustrated in Figure 9.1 for the two extreme 
cases of a sine wave and a purely random signal. For a periodic signal, the 
power is concentrated in extremely narrow bands of frequencies, indicating 
the existence of structure and the predictable character of the signal. In the 
case of a pure sine wave as shown in Figure 9.1(a) the signal power is 
concentrated in one frequency. For a purely random signal as shown in 
Figure 9.1(b) the signal power is spread equally in the frequency domain, 
indicating the lack of structure in the signal.  

In general, the more correlated or predictable a signal, the more 
concentrated its power spectrum, and conversely the more random or 
unpredictable a signal, the more spread its power spectrum. Therefore the 
power spectrum of a signal can be used to deduce the existence of repetitive 
structures or correlated patterns in the signal process. Such information is 
crucial in detection, decision making and estimation problems, and in 
systems analysis.  
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Figure 9.1 The concentration/spread of power in frequency indicates the 
correlated or random character of a signal: (a) a predictable signal, (b) a 

random signal. 
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9.2 Fourier Series: Representation of Periodic Signals 
 
The following three sinusoidal functions form the basis functions for the 
Fourier analysis: 
 

ttx 01 cos)( ω=           (9.1) 

ttx 02 sin)( ω=              (9.2) 
tjetjttx 0 sincos)( 003

ωωω =+=        (9.3) 

 
Figure 9.2(a) shows the cosine and the sine components of the complex 
exponential (cisoidal) signal of Equation (9.3), and Figure 9.2(b) shows a 
vector representation of the complex exponential in a complex plane with 
real (Re) and imaginary (Im) dimensions. The Fourier basis functions are 
periodic with an angular frequency of ω0 (rad/s) and a period of 

T0=2π/ω0=1/F0, where F0 is the frequency (Hz). The following properties 
make the sinusoids the ideal choice as the elementary building block basis 
functions for signal analysis and synthesis:  
 

(i) Orthogonality: two sinusoidal functions of different frequencies 
have the following orthogonal property: 
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Figure 9.2 Fourier basis functions: (a) real and imaginary parts of a complex 
sinusoid, (b) vector representation of a complex exponential. 
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For harmonically related sinusoids, the integration can be taken 
over one period. Similar equations can be derived for the product of 
cosines, or sine and cosine, of different frequencies. Orthogonality 
implies that the sinusoidal basis functions are independent and can 
be processed independently. For example, in a graphic equaliser, 
we can change the relative amplitudes of one set of frequencies, 
such as the bass, without affecting other frequencies, and in sub-
band coding different frequency bands are coded independently and 
allocated different numbers of bits. 
 

(ii) Sinusoidal functions are infinitely differentiable. This is important, 
as most signal analysis, synthesis and manipulation methods 
require the signals to be differentiable. 

 
(iii) Sine and cosine signals of the same frequency have only a phase 

difference of π/2 or equivalently a relative time delay of a quarter 
of one period i.e. T0/4.  

 

 Associated with the complex exponential function tje 0ω  is a set of 
harmonically related complex exponentials of the form 
 

],,,,1[ 000 32
�

tjtjtj eee ωωω ±±±        (9.5) 
 
The set of exponential signals in Equation (9.5) are periodic with a 
fundamental frequency ω0=2π/T0=2πF0, where T0 is the period and F0 is the 
fundamental frequency. These signals form the set of basis functions for the 
Fourier analysis. Any linear combination of these signals of the form 
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is also periodic with a period T0. Conversely any periodic signal x(t) can be 
synthesised from a linear combination of harmonically related exponentials. 
The Fourier series representation of a periodic signal is given by the 
following synthesis and analysis equations:  
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The complex-valued coefficient ck conveys the amplitude (a measure of the 

strength) and the phase of the frequency content of the signal at kω0 (Hz). 
Note from Equation (9.8) that the coefficient ck may be interpreted as a 
measure of the correlation of the signal x(t) and the complex exponential 

tjke 0ω− .  
 
9.3 Fourier Transform: Representation of Aperiodic Signals 
 
The Fourier series representation of periodic signals consist of harmonically 
related spectral lines spaced at integer multiples of the fundamental 
frequency. The Fourier representation of aperiodic signals can be developed 
by regarding an aperiodic signal as a special case of a periodic signal with 
an infinite period. If the period of a signal is infinite then the signal does not 
repeat itself, and is aperiodic.  
 Now consider the discrete spectra of a periodic signal with a period of 
T0, as shown in Figure 9.3(a). As the period T0 is increased, the fundamental 

frequency F0=1/T0 decreases, and successive spectral lines become more 
closely spaced. In the limit as the period tends to infinity (i.e. as the signal 
becomes aperiodic), the discrete spectral lines merge and form a continuous 
spectrum. Therefore the Fourier equations for an aperiodic signal (known as 
the Fourier transform) must reflect the fact that the frequency spectrum of an 
aperiodic signal is continuous. Hence, to obtain the Fourier transform 
relation, the discrete-frequency variables and operations in the Fourier series 
Equations (9.7) and (9.8) should be replaced by their continuous-frequency 
counterparts. That is, the discrete summation sign Σ should be replaced by 
the continuous summation integral ∫ ,  the discrete harmonics of the 

fundamental frequency kF0 should be replaced by the continuous frequency 
variable f, and the discrete frequency spectrum ck should be replaced by a 
continuous frequency spectrum say )( fX .  
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The Fourier synthesis and analysis equations for aperiodic signals, the so-
called Fourier transform pair, are given by 
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Note from Equation (9.10), that )( fX may be interpreted as a measure of 

the correlation of the signal x(t) and the complex sinusoid ftje π2− .  
 The condition for existence and computability of the Fourier transform 
integral of a signal x(t) is that the signal must have finite energy: 
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Figure 9.3 (a) A periodic pulse train and its line spectrum. (b) A single pulse from 
the periodic train in (a) with an imagined “off” duration of infinity; its spectrum is 

the envelope of the spectrum of the periodic signal in (a). 
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9.3.1 Discrete Fourier Transform (DFT) 
 
For a finite-duration, discrete-time signal x(m) of length N samples, the 
discrete Fourier transform (DFT) is defined as N uniformly spaced spectral 
samples  
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(see Figure9.4). The inverse discrete Fourier transform (IDFT) is given by 
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From Equation (9.13), the direct calculation of the Fourier transform 
requires N(N−1) multiplications and a similar number of additions. 
Algorithms that reduce the computational complexity of the discrete Fourier 
transform are known as fast Fourier transforms (FFT) methods. FFT 

methods utilise the periodic and symmetric properties of ��1je 2−  to avoid 
redundant calculations.  
 
9.3.2 Time/Frequency Resolutions, The Uncertainty Principle 
 
Signals such as speech, music or image are composed of non-stationary (i.e. 
time-varying and/or space-varying) events. For example, speech is 
composed of a string of short-duration sounds called phonemes, and an 
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Figure 9.4 Illustration of the DFT as a parallel-input, parallel-output processor. 
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image is composed of various objects. When using the DFT, it is desirable 
to have high enough time and space resolution in order to obtain the spectral 
characteristics of each individual elementary event or object in the input 
signal. However, there is a fundamental trade-off between the length, i.e. the 
time or space resolution, of the input signal and the frequency resolution of 
the output spectrum. The DFT takes as the input a window of N uniformly 
spaced time-domain samples [x(0), x(1), …, x(N−1)] of duration ∆T=N.Ts, 

and outputs N spectral samples [X(0), X(1), …, X(N−1)] spaced uniformly 
between zero Hz and the sampling frequency Fs=1/Ts Hz. Hence the 

frequency resolution of the DFT spectrum ∆f, i.e. the space between 
successive frequency samples, is given by 
 

N

F

NT��
�� s

s
=== 11

        (9.14) 

  
Note that the frequency resolution ∆f and the time resolution ∆T are 
inversely proportional in that they cannot both be simultanously increased; 
in fact, ∆T∆f=1. This is known as the uncertainty principle. 
 
9.3.3 Energy-Spectral Density and Power-Spectral Density 
 
Energy, or power, spectrum analysis is concerned with the distribution of 
the signal energy or power in the frequency domain. For a deterministic 
discrete-time signal, the energy-spectral density is defined as  
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The energy spectrum of x(m) may be expressed as the Fourier transform of 
the autocorrelation function of x(m):  
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where the variable rxx (m)  is the autocorrelation function of x(m). The 
Fourier transform exists only for finite-energy signals. An important 
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theoretical class of signals is that of stationary stochastic signals, which, as a 
consequence of the stationarity condition, are infinitely long and have 
infinite energy, and therefore do not possess a Fourier transform. For 
stochastic signals, the quantity of interest is the power-spectral density, 
defined as the Fourier transform of the autocorrelation function:  
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where the autocorrelation function rxx(m)  is defined as  
 

  rxx (m) = E x(m)x(m + k)[ ]       (9.18) 
 
In practice, the autocorrelation function is estimated from a signal record of 
length N samples as 
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In Equation (9.19), as the correlation lag m approaches the record length N, 
the estimate of ˆ r xx (m)  is obtained from the average of fewer samples and 
has a higher variance. A triangular window may be used to “down-weight” 
the correlation estimates for larger values of lag m. The triangular window 
has the form 
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Multiplication of Equation (9.19) by the window of Equation (9.20) yields 
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The expectation of the windowed correlation estimate ˆ r xx (m)  is given by
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In Jenkins and Watts, it is shown that the variance of ˆ r xx (m)  is given by 
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From Equations (9.22) and (9.23), ˆ r xx (m)  is an asymptotically unbiased and 
consistent estimate. 
 
 
9.4 Non-Parametric Power Spectrum Estimation 
 
The classic method for estimation of the power spectral density of an N-
sample record is the periodogram introduced by Sir Arthur Schuster in 1899. 
The periodogram is defined as  
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The power-spectral density function, or power spectrum for short, defined in 
Equation (9.24), is the basis of non-parametric methods of spectral 
estimation. Owing to the finite length and the random nature of most 
signals, the spectra obtained from different records of a signal vary 
randomly about an average spectrum. A number of methods have been 
developed to reduce the variance of the periodogram. 
 
9.4.1 The Mean and Variance of Periodograms 
 
The mean of the periodogram is obtained by taking the expectation of 
Equation (9.24): 
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As the number of signal samples N increases, we have 
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For a Gaussian random sequence, the variance of the periodogram can be 
obtained as 
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As the length of a signal record N increases, the expectation of the 
periodogram converges to the power spectrum PXX ( f ) and the variance of 
ˆ P XX ( f ) converges to )(2 fPXX . Hence the periodogram is an unbiased but 

not a consistent estimate. The periodograms can be calculated from a DFT 
of the signal x(m), or from a DFT of the autocorrelation estimates ˆ r xx (m) . In 
addition, the signal from which the periodogram, or the autocorrelation 
samples, are obtained can be segmented into overlapping blocks to result in 
a larger number of periodograms, which can then be averaged. These 
methods and their effects on the variance of periodograms are considered in 
the following. 
 
 
9.4.2 Averaging Periodograms (Bartlett Method) 
 
In this method, several periodograms, from different segments of a signal, 
are averaged in order to reduce the variance of the periodogram. The Bartlett 
periodogram is obtained as the average of K periodograms as
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where )(ˆ )( fP i
XX  is the periodogram of the ith segment of the signal. The 

expectation of the Bartlett periodogram )(ˆ fP B
XX  is given by  
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where ( ) NffN 2sinsin ππ  is the frequency response of the triangular 
window 1–|m|/N. From Equation (9.29), the Bartlett periodogram is 

asymptotically unbiased. The variance of )(ˆ fP B
XX  is 1/K of the variance of 

the periodogram, and is given by 
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9.4.3 Welch Method: Averaging Periodograms from Overlapped 

and Windowed Segments 
 
In this method, a signal x(m), of length M samples, is divided into K 
overlapping segments of length N, and each segment is windowed prior to 
computing the periodogram. The ith segment is defined as 
 

xi (m) = x(m + iD),    m=0, . . .,N–1, i=0, . . .,K–1   (9.31) 
        

where D is the overlap. For half-overlap D=N/2, while D=N corresponds to 
no overlap. For the ith windowed segment, the periodogram is given by 
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where w(m) is the window function and U is the power in the window 
function, given by 
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The spectrum of a finite-length signal typically exhibits side-lobes due to 
discontinuities at the endpoints. The window function w(m) alleviates the 
discontinuities and reduces the spread of the spectral energy into the side-
lobes of the spectrum. The Welch power spectrum is the average of K 
periodograms obtained from overlapped and windowed segments of a 
signal: 
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Using Equations (9.32) and (9.34), the expectation of )(ˆ fPW
XX  can be 

obtained as 
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and the variance of the Welch estimate is given by 
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Welch has shown that for the case when there is no overlap, D=N,  
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and for half-overlap, D=N/2 ,  
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9.4.4 Blackman–Tukey Method 
 
In this method, an estimate of a signal power spectrum is obtained from the 
Fourier transform of the windowed estimate of the autocorrelation function 
as 
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For a signal of N samples, the number of samples available for estimation of 
the autocorrelation value at the lag m, ˆ r xx (m) , decrease as m approaches N. 
Therefore, for large m, the variance of the autocorrelation estimate 
increases, and the estimate becomes less reliable. The window w(m) has the 
effect of down-weighting the high variance coefficients at and around the 
end–points. The mean of the Blackman–Tukey power spectrum estimate is  
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Now )()()](ˆ[ mwmrmr Bxxxx =E , where )(mwB  is the Bartlett, or triangular, 
window. Equation (9.41) may be written as 
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where )()()( mwmwmw Bc = . The right-hand side of Equation (9.42) can be 
written in terms of the Fourier transform of the autocorrelation and the 
window functions as  
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where Wc(f) is the Fourier transform of wc(m). The variance of the 
Blackman–Tukey estimate is given by 
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where U is the energy of the window wc(m). 
 
9.4.5 Power Spectrum Estimation from Autocorrelation of 

Overlapped Segments 
 
In the Blackman–Tukey method, in calculating a correlation sequence of 
length N from a signal record of length N, progressively fewer samples are 
admitted in estimation of ˆ r xx (m)  as the lag m approaches the signal length 
N. Hence the variance of ˆ r xx (m)  increases with the lag m. This problem can 
be solved by using a signal of length 2N samples for calculation of N 
correlation values. In a generalisation of this method, the signal record x(m), 
of length M samples, is divided into a number K of overlapping segments of 
length 2N. The ith segment is defined as 
 

xi (m) = x(m + iD), m = 0, 1, . . ., 2N–1  (9.45) 
  i = 0, 1, . . .,K–1                

where D is the overlap. For each segment of length 2N, the correlation 
function in the range of Nm ≥≥0  is given by 
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∑ ,    m = 0, 1, . . ., N–1    (9.46) 
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In Equation (9.46), the estimate of each correlation value is obtained as the 
averaged sum of N products. 
  
 
9.5 Model-Based Power Spectrum Estimation 
 
In non-parametric power spectrum estimation, the autocorrelation function 
is assumed to be zero for lags Nm ≥|| , beyond which no estimates are 
available. In parametric or model-based methods, a model of the signal 
process is used to extrapolate the autocorrelation function beyond the range 

Nm ≤||  for which data is available. Model-based spectral estimators have a 
better resolution than the periodograms, mainly because they do not assume 
that the correlation sequence is zero-valued for the range of lags for which 
no measurements are available.  
 In linear model-based spectral estimation, it is assumed that the signal 
x(m) can be modelled as the output of a linear time-invariant system excited 
with a random, flat-spectrum, excitation. The assumption that the input has 
a flat spectrum implies that the power spectrum of the model output is 
shaped entirely by the frequency response of the model. The input–output 
relation of a generalised discrete linear time-invariant model is given by 
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k
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k
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)()()(       (9.47) 

 
where x(m) is the model output, e(m) is the input, and the ak and bk are the 
parameters of the model. Equation (9.47) is known as an auto-regressive-
moving-average (ARMA) model. The system function H(z) of the discrete 
linear time-invariant model of Equation (9.47) is given by 
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where 1/A(z) and B(z) are the autoregressive and moving-average parts of 
H(z) respectively. The power spectrum of the signal x(m) is given as the 
product of the power spectrum of the input signal and the squared 
magnitude frequency response of the model: 
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2)()()( fHfPfP EEXX =        (9.49) 

 
where H(f)  is the frequency response of the model and PEE(f) is the input 
power spectrum. Assuming that the input is a white noise process with unit 
variance, i.e. PEE(f)=1, Equation (9.49) becomes  
 

2)()( fHfPXX =         (9.50) 
 
Thus the power spectrum of the model output is the squared magnitude of 
the frequency response of the model. An important aspect of model-based 
spectral estimation is the choice of the model. The model may be an auto 
regressive (all-pole), a moving-average (all-zero) or an ARMA (pole–zero) 
model. 
 
9.5.1 Maximum–Entropy Spectral Estimation 
 
The power spectrum of a stationary signal is defined as the Fourier 
transform of the autocorrelation sequence: 
 

PXX ( f ) = r xx(m)e− j 2πfm

n=−∞

∞

∑        (9.51) 

 
Equation (9.51) requires the autocorrelation rxx(m) for the lag m in the range 

∞± . In practice, an estimate of the autocorrelation rxx(m) is available only 
for the values of m in a finite range of say ±P. In general, there are an 
infinite number of different correlation sequences that have the same values 
in the range Pm ≤|| | as the measured values. The particular estimate used 
in the non-parametric methods assumes the correlation values are zero for 
the lags beyond ±P, for which no estimates are available. This arbitrary 
assumption results in spectral leakage and loss of frequency resolution. The 
maximum-entropy estimate is based on the principle that the estimate of the 
autocorrelation sequence must correspond to the most random signal whose 
correlation values in the range Pm ≤||  coincide with the measured values. 
The maximum-entropy principle is appealing because it assumes no more 
structure in the correlation sequence than that indicated by the measured 
data. The randomness or entropy of a signal is defined as 
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)(ln)( dffPfPH XXXX       (9.52) 

 
To obtain the maximum-entropy correlation estimate, we differentiate 
Equation (9.53) with respect to the unknown values of the correlation 
coefficients, and set the derivative to zero: 
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 for |m| > P      (9.53) 

 
Now, from Equation (9.17), the derivative of the power spectrum with 
respect to the autocorrelation values is given by 
 

fmj
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XX e
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fP π
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∂ 2

)(

)( −=        (9.54) 

 
From Equation (9.51), for the derivative of the logarithm of the power 
spectrum, we have 

fmj
XX

xx

XX efP
mr

fP π
∂

∂ 21 )(
)(

)(ln −−=      (9.55) 

 
Substitution of Equation (9.55) in Equation (9.53) gives 
 

0)(
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21 =∫
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−− dfefP fmj
XX

π   for |m| > P   (9.56) 

 

Assuming that )(1 fPXX
−  is integrable, it may be associated with an 

autocorrelation sequence c(m) as 
 

∑
∞
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fmj
XX emcfP π21 )()(       (9.57) 
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XX∫
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From Equations (9.56) and (9.58), we have c(m)=0 for |m| > P. Hence, from 
Equation (9.57), the inverse of the maximum-entropy power spectrum may 
be obtained from the Fourier transform of a finite-length autocorrelation 
sequence as 

PXX
−1 ( f ) = c(m)

m=−P

P

∑ e− j2πfm       (9.59) 

 
and the maximum-entropy power spectrum is given by 
 

fmj
P

Pm

ME
XX
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fP
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)(ˆ
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∑

=        (9.60) 

 
Since the denominator polynomial in Equation (9.60) is symmetric, it 
follows that for every zero of this polynomial situated at a radius r, there is a 
zero at radius 1/r. Hence this symmetric polynomial can be factorised and 
expressed as
 

)()(
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)( 1
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σ
      (9.61) 

 
where 1/σ2 is a gain term, and A(z)  is a polynomial of order P defined as 
 

P
p zazazA −− +++= �

1
11)(       (9.62) 

 
From Equations (9.60) and (9.61), the maximum-entropy power spectrum 
may be expressed as  

)()(
)(ˆ

1

2

−=
zAzA

fPME
XX

σ
       (9.63) 

 
Equation (9.63) shows that the maximum-entropy power spectrum estimate 
is the power spectrum of an autoregressive (AR) model. Equation (9.63) 
was obtained by maximising the entropy of the power spectrum with respect 
to the unknown autocorrelation values. The known values of the 
autocorrelation function can be used to obtain the coefficients of the AR 
model of Equation (9.63), as discussed in the next section. 
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9.5.2 Autoregressive Power Spectrum Estimation 
 
In the preceding section, it was shown that the maximum-entropy spectrum 
is equivalent to the spectrum of an autoregressive model of the signal. An 
autoregressive, or linear prediction model, described in detail in Chapter 8, 
is defined as  
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k
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)()()(       (9.64) 

 
where e(m) is a random signal of variance σe

2 . The power spectrum of an 
autoregressive process is given by 
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An AR model extrapolates the correlation sequence beyond the range for 
which estimates are available. The relation between the autocorrelation 
values and the AR model parameters is obtained by multiplying both sides 
of Equation (9.64) by x(m-j) and taking the expectation:   
 

  
E [x(m)x(m − j)] = akE [x(m − k)x(m − j)] + E [e(m)x(m − j)]

k=1

P

∑    (9.66)  

 
Now for the optimal model coefficients the random input e(m) is orthogonal 
to the past samples, and Equation (9.66) becomes 
 

rxx ( j) = ak rxx ( j − k)
k=1

P

∑ ,   j=1, 2, . . .     (9.67) 

 
Given P+1 correlation values, Equation (9.67) can be solved to obtain the 
AR coefficients ak. Equation (9.67) can also be used to extrapolate the 
correlation sequence. The methods of solving the AR model coefficients are 
discussed in Chapter 8. 
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9.5.3 Moving-Average Power Spectrum Estimation 
 
A moving-average model is also known as an all-zero or a finite impulse 
response (FIR) filter. A signal x(m), modelled as a moving-average process, 
is described as 

∑
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k
k kmebmx
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)()(        (9.68) 

 
where e(m) is a zero-mean random input and Q is the model order. The 
cross-correlation of the input and output of a moving average process is 
given by 
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and the autocorrelation function of a moving average process is  
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From Equation (9.70), the power spectrum obtained from the Fourier 
transform of the autocorrelation sequence is the same as the power spectrum 
of a moving average model of the signal. Hence the power spectrum of a 
moving-average process may be obtained directly from the Fourier 
transform of the autocorrelation function as 
 

∑
−=

π−=
Q

Qm

fm
xx

MA
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Note that the moving-average spectral estimation is identical to the 
Blackman–Tukey method of estimating periodograms from the 
autocorrelation sequence.   
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9.5.4 Autoregressive Moving-Average Power Spectrum 
Estimation 

  
The ARMA, or pole–zero, model is described by Equation (9.47). The 
relationship between the ARMA parameters and the autocorrelation 
sequence can be obtained by multiplying both sides of Equation (9.47) by 
x(m–j) and taking the expectation: 
 

rxx ( j) = − akrxx ( j − k )
k=1

P

∑ + bkrxe( j − k)
k=0

Q

∑     (9.72) 

 
The moving-average part of Equation (9.72) influences the autocorrelation 
values only up to the lag of Q. Hence, for the autoregressive part of  
Equation (9.72), we have  

rxx (m) = − akrxx(m − k )
k=1

P

∑  for   m > Q    (9.73) 

 
Hence Equation (9.73) can be used to obtain the coefficients ak, which may 
then be substituted in Equation (9.72) for solving the coefficients bk. Once 
the coefficients of an ARMA model are identified, the spectral estimate is 
given by 
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where σe

2  is the variance of the input of the ARMA model. In general, the 
poles model the resonances of the signal spectrum, whereas the zeros model 
the anti-resonances of the spectrum. 
 
 
9.6 High-Resolution Spectral Estimation Based on Subspace 

Eigen-Analysis 
 
The eigen-based methods considered in this section are primarily used for 
estimation of the parameters of sinusoidal signals observed in an additive 
white noise. Eigen-analysis is used for partitioning the eigenvectors and the 
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eigenvalues of the autocorrelation matrix of a noisy signal into two 
subspaces:  
 

(a) the signal subspace composed of the principle eigenvectors 
associated with the largest eigenvalues;  

(b) the noise subspace represented by the smallest eigenvalues.  
 

The decomposition of a noisy signal into a signal subspace and a noise 
subspace forms the basis of the eigen-analysis methods considered in this 
section. 
 
9.6.1 Pisarenko Harmonic Decomposition 
 
A real-valued sine wave can be modelled by a second-order autoregressive 
(AR) model, with its poles on the unit circle at the angular frequency of the 
sinusoid as shown in Figure 9.5. The AR model for a sinusoid of frequency 
Fi at a sampling rate of Fs is given by 
 

( ) )()2()1(/2cos2)( 0tmAmxmxFFmx si −+−−−= δπ   (9.75) 
 

where Aδ(m–t0) is the initial impulse for a sine wave of amplitude A. In 
general, a signal composed of P real sinusoids can be modelled by an AR 
model of order 2P as 
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tmAkmxamx
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Pole 

ω 0 

−ω 0 

X( f ) 

F 0 f 

 
Figure 9.5 A second order all pole model of a sinusoidal signal. 
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The transfer function of the AR model is given by 
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where the angular positions of the poles on the unit circle, kFje π2± , 
correspond to the angular frequencies of the sinusoids. For P real sinusoids 
observed in an additive white noise, we can write  
 

y(m) = x(m) + n(m)

= ak x(m − k)
k=1

2P

∑ + n(m)
      (9.78) 

 
Substituting [y(m–k)–n(m–k)] for x(m–k)  in Equation (9.73) yields 
 

y(m) − aky(m − k)
k=1

2P

∑ = n(m)− akn(m − k)
k=1

2P

∑    (9.79) 

 
From Equation (9.79), the noisy sinusoidal signal y(m) can be modelled by 
an ARMA process in which the AR and the MA sections are identical, and 
the input is the noise process. Equation (9.79) can also be expressed in a 
vector notation as 

anay TT =         (9.80) 
 
where yT=[y(m), . . ., y(m–2P)], aT=[1, a1, . . ., a2P]  and nT=[n(m), . . ., 
n(m–2P)]. To obtain the parameter vector a, we multiply both sides of 
Equation (9.80) by the vector y and take the expectation: 
 

aynayy ][][ TT EE =         (9.81) 

or 
Ryy a = Ryn a          (9.82) 

 

where yyRyy =][ TE , and ynRyn =][ TE  can be written as 
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where σn

2  is the noise variance. Using Equation (9.83), Equation (9.82) 
becomes 
 

aaRyy
2
nσ=         (9.84) 

 
Equation (9.84) is in the form of an eigenequation. If the dimension of the 
matrix Ryy  is greater than 2P × 2P  then the largest 2P eigenvalues are 
associated with the eigenvectors of the noisy sinusoids and the minimum 
eigenvalue corresponds to the noise variance σn

2 . The parameter vector a is 
obtained as the eigenvector of Ryy, with its first element unity and associated 
with the minimum eigenvalue. From the AR parameter vector a, we can 
obtain the frequencies of the sinusoids by first calculating the roots of the 
polynomial 
 

01 212
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1 =++++++ −+−+−−− PPP zzazazaza �      (9.85) 

 
Note that for sinusoids, the AR parameters form a symmetric polynomial; 
that is ak=a2P–k. The frequencies Fk of the sinusoids can be obtained from 
the roots zk  of Equation (9.85) using the relation 
 

kFj
k ez π2=         (9.86) 

 
The powers of the sinusoids are calculated as follows. For P sinusoids 
observed in additive white noise, the autocorrelation function is given by 
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i
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     (9.87) 

 

where 2/2
ii AP =  is the power of the sinusoid Ai sin(2πFi), and white noise 

affects only the correlation at lag zero ryy(0). Hence Equation (9.87) for the 
correlation lags k=1, . . ., P  can be written as  
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Given an estimate of the frequencies Fi  from Equations (9.85) and (86), and 
an estimate of the autocorrelation function ˆ r yy (k) , Equation (9.88) can be 

solved to obtain the powers of the sinusoids Pi. The noise variance can then 
be obtained from Equation (9.87) as 
 

σn
2 = ryy(0) − Pi

i=1

P

∑         (9.89) 

 
9.6.2 Multiple Signal Classification (MUSIC) Spectral Estimation 
 
The MUSIC algorithm is an eigen-based subspace decomposition method 
for estimation of the frequencies of complex sinusoids observed in additive 
white noise. Consider a signal y(m) modelled as 
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An N-sample vector y=[y(m), . . ., y(m+N–1)]  of the noisy signal can be 
written as 
 

y = x + n

= Sa + n
        (9.91) 

 
where the signal vector x=Sa is defined as 
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The matrix S and the vector a are defined on the right-hand side of Equation 
(9.92). The autocorrelation matrix of the noisy signal y can be written as the 
sum of the autocorrelation matrices of the signal x and the noise as 
 

I2H
nσ+=
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SPS

RRR nnxxyy
       (9.93) 

 
where Rxx=SPSH and Rnn=σn2I are the autocorrelation matrices of the 
signal and noise processes, the exponent H denotes the Hermitian transpose, 
and the diagonal matrix P defines the power of the sinusoids as 
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where 2
ii AP =  is the power of the complex sinusoid iFje π2− . The 

correlation matrix of the signal can also be expressed in the form 
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where ],,,1[ 1)(H kk FNj2Fj2
k ee −ππ= �s . Now consider an eigen-decomposition 

of the N × N  correlation matrix Rxx   
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where λk and vk are the eigenvalues and eigenvectors of the matrix Rxx 
respectively. We have also used the fact that the autocorrelation matrix Rxx 

of P complex sinusoids has only P non-zero eigenvalues, λP+1=λP+2, ..., 
λN=0. Since the sum of the cross-products of the eigenvectors forms an 
identity matrix we can also express the diagonal autocorrelation matrix of 
the noise in terms of the eigenvectors of Rxx as  
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The correlation matrix of the noisy signal may be expressed in terms of its 
eigenvectors and the associated eigenvalues of the noisy signal as 
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From Equation (9.98), the eigenvectors and the eigenvalues of the 
correlation matrix of the noisy signal can be partitioned into two disjoint 
subsets (see Figure 9.6). The set of eigenvectors {v1, . . ., vP}, associated 
with the P largest eigenvalues span the signal subspace and are called the 
principal eigenvectors. The signal vectors si can be expressed as linear 
combinations of the principal eigenvectors. The second subset of 
eigenvectors {vP+1, . . ., vN} span the noise subspace and have σn

2  as their 
eigenvalues. Since the signal and noise eigenvectors are orthogonal, it 
follows that the signal subspace and the noise subspace are orthogonal. 
Hence the sinusoidal signal vectors si which are in the signal subspace, are 
orthogonal to the noise subspace, and we have 
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Figure 9.6 Decomposition of the eigenvalues of a noisy signal into the principal 
eigenvalues and the noise eigenvalues. 
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Equation (9.99) implies that the frequencies of the P sinusoids can be 
obtained by solving for the zeros of the following polynomial function of 
the frequency variable f: 
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In the MUSIC algorithm, the power spectrum estimate is defined as 
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where s(f) = [1, ej2πf, . . ., ej2π(N-1)f] is the complex sinusoidal vector, and 
{vP+1, . . . ,vN} are the eigenvectors in the noise subspace. From Equations 
(9.102) and (9.96) we have that 
 

PXX ( f i ) = 0 ,  i = 1, . . .,  P    (9.102) 
 

Since PXX(f) has its zeros at the frequencies of the sinusoids, it follows that 
the reciprocal of PXX(f) has its poles at these frequencies. The MUSIC 
spectrum is defined as 
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where V=[vP+1, . . . ,vN] is the matrix of eigenvectors of the noise subspace. 
PMUSIC(f) is sharply peaked at the frequencies of the sinusoidal components 
of the signal, and hence the frequencies of its peaks are taken as the MUSIC 
estimates.  
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9.6.3 Estimation of Signal Parameters via Rotational Invariance 
Techniques (ESPRIT)  

 
The ESPIRIT algorithm is an eigen-decomposition approach for estimating 
the frequencies of a number of complex sinusoids observed in additive white 
noise. Consider a signal y(m) composed of P complex-valued sinusoids and 
additive white noise: 
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The ESPIRIT algorithm exploits the deterministic relation between 
sinusoidal component of the signal vector y(m)=[y(m), . . ., y(m+N–1]T and 
that of the time-shifted vector y(m+1)=[y(m+1), . . ., y(m+N)]T. The signal 
component of the noisy vector y(m) may be expressed as 
 

aSx =)(m         (9.105) 
 
where S is the complex sinusoidal matrix and a is the vector containing the 
amplitude and phase of the sinusoids as in Equations (9.91) and (9.92). A 

complex sinusoid 
mFj ie π2  can be time-shifted by one sample through 

multiplication by a phase term iFje π2 . Hence the time-shifted sinusoidal 
signal vector x(m+1)  may be obtained from x(m) by phase-shifting each 
complex sinusoidal component of x(m) as  
 

aSx Φ=+ )1(m        (9.106) 
 
where Φ  is a P × P  phase matrix defined as 
 

],,,[diag 222 21 PFjFjFj eee πππ
�= Φ      (9.107) 

 
The diagonal elements of Φ  are the relative phases between the adjacent 
samples of the sinusoids. The matrix Φ  is a unitary matrix and is known as 
a rotation matrix since it relates the time-shifted vectors x(m) and x(m+1). 
The autocorrelation matrix of the noisy signal vector y(m)  can be written as 
 

I2H
)()( nmm σ+= SPSR yy       (9.108) 
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where the matrix P is diagonal, and its diagonal elements are the powers of 

the complex sinusoids H22
1 ],,[diag= aaP =PAA � . The cross-covariance 

matrix of the vectors y(m) and y(m+1)  is 
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where the autocovariance matrices Ry(m)y(m+1) and Rn(m)n(m+1) are defined as 
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and 
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The correlation matrix of the signal vector x(m)  can be estimated as 
 

H
)()()()()()( SPS=RRR nnyyxx mmmmmm −=     (9.112) 

 
and the cross-correlation matrix of the signal vector x(m) with its time-
shifted version x(m+1) is obtained as 
 

HH
)1()()1()()1()( SSP=RRR nnyyxx Φ+++ −= mmmmmm   (9.113) 

 

Subtraction of a fraction iFj
i e πλ 2−=  of Equation (9.113) from Equation 

(9.112) yields  
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From Equations (9.107) and (9.114), the frequencies of the sinusoids can be 
estimated as the roots of Equation (9.114). 
 
 
9.7 Summary 
 
Power spectrum estimation is perhaps the most widely used method of 
signal analysis. The main objective of any transformation is to express a 
signal in a form that lends itself to more convenient analysis and 
manipulation. The power spectrum is related to the correlation function 
through the Fourier transform. The power spectrum reveals the repetitive 
and correlated patterns of a signal, which are important in detection, 
estimation, data forecasting and decision-making systems. We began this 
chapter with Section 9.1 on basic definitions of the Fourier series/transform, 
energy spectrum and power spectrum. In Section 9.2, we considered non-
parametric DFT-based methods of spectral analysis. These methods do not 
offer the high resolution of parametric and eigen-based methods. However, 
they are attractive in that they are computationally less expensive than 
model-based methods and are relatively robust. In Section 9.3, we 
considered the maximum-entropy and the model-based spectral estimation 
methods. These methods can extrapolate the correlation values beyond the 
range for which data is available, and hence can offer higher resolution and 
less side-lobes. In Section 9.4, we considered the eigen-based spectral 
estimation of noisy signals. These methods decompose the eigen variables 
of the noisy signal into a signal subspace and a noise subspace. The 
orthogonality of the signal and noise subspaces is used to estimate the signal 
and noise parameters. In the next chapter, we use DFT-based spectral 
estimation for restoration of signals observed in noise. 
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