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INTERPOLATION 
 

10.1 Introduction 

10.2 Polynomial Interpolation 

10.3 Model-Based Interpolation 

10.4 Summary 
 
 

nterpolation is the estimation of the unknown, or the lost, samples of a 
signal using a weighted average of a number of known samples at the 
neighbourhood points. Interpolators are used in various forms in most 

signal processing and decision making systems. Applications of 
interpolators include conversion of a discrete-time signal to a continuous-
time signal, sampling rate conversion in multirate communication systems, 
low-bit-rate speech coding, up-sampling of a signal for improved graphical 
representation, and restoration of a sequence of samples irrevocably 
distorted by transmission errors, impulsive noise, dropouts, etc. This 
chapter begins with a study of the basic concept of ideal interpolation of a 
band-limited signal, a simple model for the effects of a number of missing 
samples, and the factors that affect the interpolation process. The classical 
approach to interpolation is to construct a polynomial that passes through 
the known samples. In Section 10.2, a general form of polynomial 
interpolation and its special forms, Lagrange, Newton, Hermite and cubic 
spline interpolators, are considered. Optimal interpolators utilise predictive 
and statistical models of the signal process. In Section 10.3, a number of 
model-based interpolation methods are considered. These methods include 
maximum a posteriori interpolation, and least square error interpolation 
based on an autoregressive model. Finally, we consider time–frequency 
interpolation, and interpolation through searching an adaptive signal 
codebook for the best-matching signal. 
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10.1 Introduction 
  
The objective of interpolation is to obtain a high-fidelity reconstruction of 
the unknown or the missing samples of a signal. The emphasis in this 
chapter is on the interpolation of a sequence of lost samples. However, first 
in this section, the theory of ideal interpolation of a band-limited signal is 
introduced, and its applications in conversion of a discrete-time signal to a 
continuous-time signal and in conversion of the sampling rate of a digital 
signal are considered. Then a simple distortion model is used to gain insight 
on the effects of a sequence of lost samples and on the methods of recovery 
of the lost samples. The factors that affect interpolation error are also 
considered in this section.  
 
10.1.1 Interpolation of a Sampled Signal 
 
A common application of interpolation is the reconstruction of a 
continuous-time signal x(t) from a discrete-time signal x(m). The condition 
for the recovery of a continuous-time signal from its samples is given by the 
Nyquist sampling theorem. The Nyquist theorem states that a band-limited 
signal, with a highest frequency content of Fc (Hz), can be reconstructed 
from its samples if the sampling speed is greater than 2Fc samples per 
second. Consider a band-limited continuous-time signal x(t), sampled at a 
rate of Fs samples per second. The discrete-time signal x(m) may be 
expressed as the following product: 

x(t)

0 0

time time time

–Fs/2 0 freqfreqfreq

sinc(πfct)

Low pass filter
(Sinc interpolator)XP(f)

x(t)

X( f )

–Fc/2Fs/2

Time

Frequency

–Fs/2 Fs/2 Fc/2  
 

Figure 10.1 Reconstruction of a continuous-time signal from its samples. In 
frequency domain interpolation is equivalent to low-pass filtering. 
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where p(t)=Σδ(t–mTs) is the sampling function and Ts=1/Fs is the sampling 
interval. Taking the Fourier transform of Equation (10.1), it can be shown 
that the spectrum of the sampled signal is given by 
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where X(f) and P(f) are the spectra of the signal x(t) and the sampling 
function p(t) respectively, and * denotes the convolution operation. 
Equation (10.2), illustrated in Figure 10.1, states that the spectrum of a 
sampled signal is composed of the original base-band spectrum X(f) and the 
repetitions or images of X(f) spaced uniformly at frequency intervals of 
Fs=1/Ts. When the sampling frequency is above the Nyquist rate, the base-
band spectrum X(f) is not overlapped by its images X(f±kFs), and the 
original signal can be recovered by a low-pass filter as shown in Figure 
10.1. Hence the ideal interpolator of a band-limited discrete-time signal is 
an ideal low-pass filter with a sinc impulse response. The recovery of a 
continuous-time signal through sinc interpolation can be expressed as 
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In practice, the sampling rate Fs should be sufficiently greater than 2Fc, say 
2.5Fc, in order to accommodate the transition bandwidth of the 
interpolating low-pass filter. 

time time time

Original signal Zero inserted signal Interpolated signal

Figure 10.2 Illustration of up-sampling by a factor of 3 using a two-stage process 
of zero-insertion and digital low-pass filtering. 
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10.1.2 Digital Interpolation by a Factor of I 
 
Applications of digital interpolators include sampling rate conversion in 
multirate communication systems and up-sampling for improved graphical 
representation. To change a sampling rate by a factor of V=I/D (where I and 
D are integers), the signal is first interpolated by a factor of I, and then the 
interpolated signal is decimated by a factor of D.  
 Consider a band-limited discrete-time signal x(m) with a base-band 
spectrum X(f) as shown in Figure 10.2. The sampling rate can be increased 
by a factor of I through interpolation of I–1 samples between every two 
samples of x(m). In the following it is shown that digital interpolation by a 
factor of I can be achieved through a two-stage process of (a) insertion of I–
1 zeros in between every two samples and (b) low-pass filtering of the zero-
inserted signal by a filter with a cutoff frequency of Fs/2I, where Fs is the 
sampling rate. Consider the zero-inserted signal xz(m) obtained by inserting 
I–1 zeros between every two samples of x(m) and expressed as  
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The spectrum of the zero-inserted signal is related to the spectrum of the 
original discrete-time signal by 
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Equation (10.5) states that the spectrum of the zero-inserted signal Xz(f) is a 
frequency-scaled version of the spectrum of the original signal X(f). Figure 
10.2 shows that the base-band spectrum of the zero-inserted signal is 
composed of I repetitions of the based band spectrum of the original signal. 
The interpolation of the zero-inserted signal is therefore equivalent to 
filtering out the repetitions of X(f) in the base band of Xz(f), as illustrated in 
Figure 10.2. Note that to maintain the real-time duration of the signal the 
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sampling rate of the interpolated signal xz(m) needs to be increased by a 
factor of I.  
 
10.1.3 Interpolation of a Sequence of Lost Samples 
 
In this section, we introduce the problem of interpolation of a sequence of 
M missing samples of a signal given a number of samples on both side of 
the gap, as illustrated in Figure 10.3. Perfect interpolation is only possible if 
the missing samples are redundant, in the sense that they carry no more 
information than that conveyed by the known neighbouring samples. This 
will be the case if the signal is a perfectly predictable signal such as a sine 
wave, or in the case of a band-limited random signal if the sampling rate is 
greater than M times the Nyquist rate. However, in many practical cases, 
the signal is a realisation of a random process, and the sampling rate is only 
marginally above the Nyquist rate. In such cases, the lost samples cannot be 
perfectly recovered, and some interpolation error is inevitable.  
 A simple distortion model for a signal y(m) with M missing samples, 
illustrated in Figure 10.3, is given by 
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where the distortion operator d(m) is defined as 

 
)(1)( mrmd −=         (10.7) 

 
and r(m) is a rectangular pulse of duration M samples starting at the 
sampling time k: 

 

=

x(m)y(m) d(m)

m m m

 
Figure 10.3 Illustration of a distortion model for a signal with a sequence of 

missing samples. 
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In the frequency domain, Equation (10.6) becomes 
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where D(f) is the spectrum of the distortion d(m), δ(f) is the Kronecker delta 
function, and R(f), the frequency spectrum of the rectangular pulse r(m), is 
given by 

( )
( )f

fM
efR Mkfj

π
ππ

sin

sin
)( ]2/)1([2 −+−=      (10.10) 

 
In general, the distortion d(m) is a non-invertible, many-to-one 
transformation, and perfect interpolation with zero error is not possible. 
However, as discussed in Section 10.3, the interpolation error can be 
minimised through optimal utilisation of the signal models and the 
information contained in the neighbouring samples. 
 
Example 10.1 Interpolation of missing samples of a sinusoidal signal. 
Consider a cosine waveform of amplitude A and frequency F0 with M 
missing samples, modelled as 
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where r(m) is the rectangular pulse defined in Equation (10.7). In the 
frequency domain, the distorted signal can be expressed as 
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where R(f) is the spectrum of the pulse r(m) as in Equation (10.9).  
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 From Equation (10.12), it is evident that, for a cosine signal of 
frequency F0, the distortion in the frequency domain due to the missing 
samples is manifested in the appearance of sinc functions centred at ± F0. 
The distortion can be removed by filtering the signal with a very narrow 
band-pass filter. Note that for a cosine signal, perfect restoration is possible 
only because the signal has infinitely narrow bandwidth, or equivalently 
because the signal is completely predictable. In fact, for this example, the 
distortion can also be removed using a linear prediction model, which, for a 
cosine signal, can be regarded as a data-adaptive narrow band-pass filter. 
 
10.1.4 The Factors That Affect Interpolation Accuracy 
 
The interpolation accuracy is affected by a number of factors, the most 
important of which are as follows:  
 

(a) The predictability, or correlation structure of the signal: as the 
correlation of successive samples increases, the predictability of a 
sample from the neighbouring samples increases. In general, 
interpolation improves with the increasing correlation structure, or 
equivalently the decreasing bandwidth, of a signal.  

(b) The sampling rate: as the sampling rate increases, adjacent samples 
become more correlated, the redundant information increases, and 
interpolation improves. 

(c) Non-stationary characteristics of the signal: for time-varying signals 
the available samples some distance in time away from the missing 
samples may not be relevant because the signal characteristics may 
have completely changed. This is particularly important in 
interpolation of a large sequence of samples.  

(d) The length of the missing samples: in general, interpolation quality 
decreases with increasing length of the missing samples.  

(e) Finally, interpolation depends on the optimal use of the data and the 
efficiency of the interpolator.  

 
The classical approach to interpolation is to construct a polynomial 
interpolator function that passes through the known samples. We continue 
this chapter with a study of the general form of polynomial interpolation, 
and consider Lagrange, Newton, Hermite and cubic spline interpolators. 
Polynomial interpolators are not optimal or well suited to make efficient use 
of a relatively large number of known samples, or to interpolate a relatively 
large segment of missing samples.   
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 In Section 10.3, we study several statistical digital signal processing 
methods for  interpolation of a sequence of missing samples. These include 
model-based methods, which are well suited for interpolation of small to 
medium sized gaps of missing samples. We also consider frequency–time 
interpolation methods, and interpolation through waveform substitution, 
which have the ability to replace relatively large gaps of missing samples.  

 
 

10.2 Polynomial Interpolation 
 

The classical approach to interpolation is to construct a polynomial 
interpolator that passes through the known samples. Polynomial 
interpolators may be formulated in various forms, such as power series, 
Lagrange interpolation and Newton interpolation. These various forms are 
mathematically equivalent and can be transformed from one into another. 
Suppose the data consists of N+1 samples {x(t0), x(t1), ..., x(tN)}, where 
x(tn) denotes the amplitude of the signal x(t) at time tn. The polynomial of 
order N that passes through the N+1 known samples is unique (Figure 10.4)  
and may be written in power series form as 
 

N
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where PN(t) is a polynomial of order N, and the ak are the polynomial 
coefficients. From Equation  (10.13), and a set of N+1 known samples, a 

 
x(t)

tt0 t1 t2 t3

P(ti)=x(t)

 
Figure 10.4 Illustration of an Interpolation curve through a number of samples. 
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system of N+1 linear equations with N+1 unknown coefficients can be 
formulated as  
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From Equation (10.14). the polynomial coefficients are given by  
 













































=






















−

)(

)(

)(

)(

 

1

1

1

1

 2

1

0

32

2
3
2

2
22

1
3
1

2
11

0
3
0

2
00

2

1

0
1 

N
N
NNNN

N

N

N

N tx

tx

tx

tx

tttt

tttt

tttt

tttt

a

a

a

a

�

�

������

�

�

�

�

    (10.15) 

 
 
The matrix in Equation (10.15) is called a Vandermonde matrix. For a large 
number of samples, N, the Vandermonde matrix becomes large and ill-
conditioned. An ill-conditioned matrix is sensitive to small computational 
errors, such as quantisation errors, and can easily produce inaccurate results. 
There are alternative methods of implementation of the polynomial 
interpolator that are simpler to program and/or better structured, such as 
Lagrange and Newton methods. However, it must be noted that these 
variants of the polynomial interpolation also become ill-conditioned for a 
large number of samples, N.  
 
10.2.1 Lagrange Polynomial Interpolation 
 
To introduce the Lagrange interpolation, consider a line interpolator passing 
through two points x(t0) and x(t1): 
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The line Equation (10.16) may be rearranged and expressed as 
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Equation (10.17) is in the form of a Lagrange polynomial. Note that the 
Lagrange form of a line interpolator is composed of the weighted 
combination of two lines, as illustrated in Figure 10.5. 
In general, the Lagrange polynomial, of order N, passing through N+1 
samples {x(t0), x(t1), ... x(tN)} is given by the polynomial equation 
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where each Lagrange coefficient LN(t) is itself a polynomial of degree N 
given by 
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Note that the ith Lagrange polynomial coefficient Li(t) becomes unity at the 
ith known sample point (i.e. Li(ti)=1), and zero at every other known sample 
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Figure 10.5 The Lagrange line interpolator passing through x(t0) and x(t1),  

described in terms of the combination of two lines: one passing through  
(x(t0), t1) and the other through (x(t1), t0 ). 
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(i.e. Li(tj)=0, ji ≠ ). Therefore PN(ti)=Li(ti)x(ti)=x(ti), and the polynomial 
passes through the known data points as required.  
 The main drawbacks of the Lagrange interpolation method are as 
follows:  
 

(a) The computational complexity is large. 
(b) The coefficients of a polynomial of order N cannot be used in the 

calculations of the coefficients of a higher order polynomial. 
(c) The evaluation of the interpolation error is difficult.  
 

The Newton polynomial, introduced in the next section, overcomes some of 
these difficulties.  
 
10.2.2 Newton Polynomial Interpolation  
  
Newton polynomials have a recursive structure, such that a polynomial of 
order N can be constructed by extension of a polynomial of order N–1 as 
follows: 
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and in general the recursive, order update, form of a Newton polynomial 
can be formulated as 
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For a sequence of N+1 samples {x(t0), x(t1), ... x(tN)}, the polynomial 

coefficients are obtained using the constraint )()( iiN txtp =  as follows: To 
solve for the coefficient a0, equate the polynomial Equation (10.21) at t=t0 
to x(t0): 

00000 )()()( atxtptpN ===       (10.22) 
 

To solve for the coefficient a1, the first-order polynomial p1(t) is evaluated 
at t=t1: 

)–()()–()()( 01100110111 ttatxttaatxtp +=+==    (10.23) 
 

from which  

01

01
1

)()(

tt

txtx
a

−
−

=        (10.24) 

 
Note that the coefficient a1 is the slope of the line passing through the 
points [x(t0), x(t1)]. To solve for the coefficient a2 the second-order 
polynomial p2(t) is evaluated at t=t2: 
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Substituting a0 and a1 from Equations (10.22) and (10.24) in Equation 
(10.25) we obtain 
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Each term in the square brackets of Equation (10.26) is a slope term, and 
the coefficient a2 is the slope of the slope. To formulate a solution for the 
higher-order coefficients, we need to introduce the concept of divided 
differences. Each of the two ratios in the square brackets of Equation 
(10.26) is a so-called “divided difference”. The divided difference between 
two points ti and ti–1 is defined as 
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The divided difference between two points may be interpreted as the 
average difference or the slope of the line passing through the two points. 
The second-order divided difference (i.e. the divided difference of the 
divided difference) over three points ti–2 , ti–1 and ti is given by 
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and the third-order divided difference is  
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and so on. In general the jth order divided difference can be formulated in 
terms of the divided differences of order j–1, in an order-update equation 
given as 
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Note that ),( 1011 ttda = , ),( 2022 ttda =  and ),( 3033 ttda = , and in 
general the Newton polynomial coefficients are obtained from the divided 
differences using the relation 
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A main advantage of the Newton polynomial is its computational 
efficiency, in that a polynomial of order N–1 can be easily extended to a 
higher-order polynomial of order N. This is a useful property in the 
selection of the best polynomial order for a given set of data.  
 
10.2.3 Hermite Polynomial Interpolation  
 
Hermite polynomials are formulated to fit not only to the signal  samples, 
but also to the derivatives of the signal as well. Suppose the data consists of 
N+1 samples and assume that all the derivatives up to the Mth order 
derivative are available. Let the data set, i.e. the signal samples and the 

derivatives, be denoted as ],,0),(,),(),(),([ )( Nitxtxtxtx i
M

iii �� =′′′ . There 
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are altogether K=(N+1)(M+1) data points and a polynomial of order K–1 
can be fitted to the data as 
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To obtain the polynomial coefficients, we substitute the given samples in 
the polynomial and its M derivatives as 
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In all, there are K=(M+1)(N+1) equations in (10.33), and these can be used 
to calculate the coefficients of the polynomial Equation (10.32). In theory, 
the constraint that the polynomial must also fit the derivatives should result 
in a better interpolating polynomial that passes through the sampled points 
and is also consistent with the known underlying dynamics (i.e. the 
derivatives) of the curve. However, even for moderate values of N and M, 
the size of Equation (10.33) becomes too large for most practical purposes. 
 
10.2.4 Cubic Spline Interpolation 
 
A polynomial interpolator of order N is constrained to pass through N+1 
known samples, and can have N–1 maxima and minima. In general, the 
interpolation error increases rapidly with the increasing polynomial order, 
as the interpolating curve has to wiggle through the N+1 samples. When a 
large number of samples are to be fitted with a smooth curve, it may be 
better to divide the signal into a number of smaller intervals, and to fit a low 
order interpolating polynomial to each small interval. Care must be taken to 
ensure that the polynomial curves are continuous at the endpoints of each 
interval. In cubic spline interpolation, a cubic polynomial is fitted to each 
interval between two samples. A cubic polynomial has the form 
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A cubic polynomial has four coefficients, and needs four conditions for the 
determination of a unique set of coefficients. For each interval, two 
conditions are set by the samples at the endpoints of the interval. Two 
further conditions are met by the constraints that the first derivatives of the 
polynomial should be continuous across each of the two endpoints. 
Consider an interval 1+≤≤ ii ttt  of length Ti=ti+1–ti as shown in Figure 10.6. 

Using a local coordinate τ=t–ti , the cubic polynomial becomes  
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At τ=0, we obtain the first coefficient a0 as 
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The second derivative of p(τ) is given by 
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Evaluation of the second derivative at τ =0 (i.e. t=ti) gives the coefficient a2 
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tti ti+1Ti–1 Ti  
 

Figure 10.6 Illustration of cubic spline interpolation. 
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Similarly, evaluating the second derivative at the point ti+1 (i.e. τ=Ti ) yields 
the fourth coefficient 
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Now to obtain the coefficient a1, we evaluate p(τ) at τ=Ti: 
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and substitute a0, a2 and a3 from Equations (10.36), (10.38) and (10.39) in 
(10.40) to obtain  
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The cubic polynomial can now be written as 
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To determine the coefficients of the polynomial in Equation (10.42), we 
need the second derivatives 

′  ′  p  
i

 and 1+′′ip . These are obtained from the 
constraint that the first derivatives of the curves at the endpoints of each 
interval must be continuous. From Equation (10.42), the first derivatives of 
p(τ) evaluated at the endpoints ti and ti+1 are  
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Similarly, for the preceding interval, ti–1<t<ti, the first derivative of the 

cubic spline curve evaluated at τ=ti  is given by 
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For continuity of the first derivative at ti, ip′  at the end of the interval (ti–1 

,ti) must be equal to the ip′  at the start of the interval (ti ,ti+1). Equating the 

right-hand sides of Equations (10.43) and (10.45) and repeating this 
exercise yields 
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i = 1, 2, . . ., N–1  (10.46) 
 

In Equation (10.46), there are N–1 equations in N+1 unknowns ip ′′ . For a 

unique solution we need to specify the second derivatives at the points t0 
and tN. This can be done in two ways: (a) setting the second derivatives at 
the endpoints t0 and tN (i.e. 0p ′′

′ ′ p  
0

 and Np ′′
′ ′ p  
N

), to zero, or (b) extrapolating the 

derivatives from the inside data. 
 
 
10.3 Model-Based Interpolation 
 
The statistical signal processing approach to interpolation of a sequence of 
lost samples is based on the utilisation of a predictive and/or a probabilistic 
model of the signal. In this section, we study the maximum a posteriori 
interpolation, an autoregressive model-based interpolation, a frequency–
time interpolation method, and interpolation through searching a signal 
record for the best replacement.  
Figures 10.7 and 10.8 illustrate the problem of interpolation of a sequence 
of lost samples. It is assumed that we have a signal record of N samples, 
and that within this record a segment of M samples, starting at time k, 
xUk={x(k), x(k+1), ..., x(k+M–1)} are missing. The objective is to make an 
optimal estimate of the missing segment xUk, using the remaining N–k 
samples xKn and a model of the signal process. An N-sample signal vector 
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x, composed of M unknown samples and N–M known samples, can be 
written as 
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where the vector xKn=[xKn1  xKn2]T is composed of the known samples, and 
the vector xUk is composed of the unknown samples, as illustrated in Figure 
10.8. The matrices K and U in Equation (10.47) are rearrangement matrices 
that assemble the vector x from xKn and xUk. 

  Lost  
samples

θ^

Input signal  y Restored  signal  x

Parameter  
estimator

Signal  estimator

(Interpolator)

 
Figure 10.7 Illustration of a model-based iterative signal interpolation system. 

 
 

time

??…?

xKn1 x Kn2x Uk

M missing  
samples

P samples before P samples after  
 

Figure 10.8 A signal with M missing samples and N–M known samples. On each 
side of the missing segment, P samples are used to interpolate the segment. 
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10.3.1 Maximum A Posteriori Interpolation 
 
The posterior pdf of an unknown signal segment xUk given a number of 
neighbouring samples xKn can be expressed using Bayes’ rule as 
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In Equation (10.48), for a given sequence of samples xKn, fX(xKn) is a 
constant. Therefore the estimate that maximises the posterior pdf, i.e. the 
MAP estimate, is given by 
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Example 10.2 MAP interpolation of a Gaussian signal. Assume that an 
observation signal x=KxKn+UxUk, from a zero-mean Gaussian process, is 
composed of a sequence of M missing samples xUk and N–M known 
neighbouring samples as in Equation (10.47). The pdf of the signal x is 
given by 
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where Σxx is the covariance matrix of the Gaussian vector process x. 
Substitution of Equation (10.50) in Equation (10.48) yields the conditional 
pdf of the unknown signal xUk given a number of samples xKn: 
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x(t)

 
 

Figure 10.9 Illustration of MAP interpolation of a segment of 20 samples. 
 
 
 

The MAP signal estimate, obtained by setting the derivative of the log-
likelihood function ln fX(x|xKn) of Equation (10.51) with respect to xUk to 
zero, is given by 
 

 ( ) Kn
1T11T

Uk xKUUUx xxxx
−−−−= ΣΣ      (10.52) 

 
An example of MAP interpolation is shown in Figure 10.9. 
 
 
10.3.2 Least Square Error Autoregressive Interpolation 
 
In this section, we describe interpolation based on an autoregressive (AR) 
model  of the signal process. The term “autoregressive model” is an 
alternative terminology for the linear predictive models considered in 
Chapter 7. In this section, the terms “linear predictive model” and 
“autoregressive model” are used interchangeably. The AR interpolation 
algorithm is a two-stage process: in the first stage, the AR model 
coefficients are estimated from the incomplete signal, and in the second 
stage the estimates of the model coefficients are used to interpolate the 
missing samples. For high-quality interpolation, the estimation algorithm 
should utilise all the correlation structures of the signal process, including 
periodic or pitch period structures. In Section 10.3.4, the AR interpolation 
method is extended to include pitch–period correlations.  
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10.3.3 Interpolation Based on a Short-Term Prediction Model 
 
An autoregressive (AR), or linear predictive, signal x(m) is described as 
 

∑
=

+−=
P

k
k mekmxamx

1

)()()(        (10.53) 

 
where x(m) is the AR signal, ak are the model coefficients and e(m) is a zero 
mean excitation signal. The excitation may be a random signal, a quasi-
periodic impulse train, or a mixture of the two. The AR coefficients, ak, 
model the correlation structure or equivalently the spectral patterns of the 
signal.  
 Assume that we have a signal record of N samples and that within this 
record a segment of M samples, starting from the sample k, xUk={x(k), ..., 
x(k+M–1)} are missing. The objective is to estimate the missing samples 
xUk, using the remaining N–k samples and an AR model of the signal. 
Figure 10.8 illustrates the interpolation problem. For this signal record of N 
samples, the AR equation (10.53) can be expanded to form the following 
matrix equation: 
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(10.54) 
 

where the subscript Uk denotes the unknown samples. Equation (10.54) can 
be rewritten in compact vector notation as 
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( ) Xaxaxe −=,Uk         (10.55) 

 
where the error vector e(xUk, a) is expressed as a function of the unknown 
samples and the unknown model coefficient vector. In this section, the 
optimality criteriobbn for the estimation of the model coefficient vector a 
and the missing samples xUk is the minimum mean square error given by 
the inner vector product 
 

( ) xXaXaXaxxaxee TTTTT
Uk

T 2, −+=    (10.56) 
 

The squared error function in Equation (10.56) involves nonlinear unknown 
terms of fourth order, aTXTXa, and cubic order, aTXTx. The least square 
error formulation, obtained by differentiating eTe(xUk ,a), with respect to the 
vectors a or xUk, results in a set of nonlinear equations of cubic order whose 
solution is non-trivial. A suboptimal, but practical and mathematically 
tractable, approach is to solve for the missing samples and the unknown 
model coefficients in two separate stages. This is an instance of the general 
estimate-and-maximise (EM) algorithm, and is similar to the linear-
predictive model-based restoration considered in Section 6.7. In the first 
stage of the solution, Equation (10.54) is linearised by either assuming that 
the missing samples have zero values or discarding the set of equations in 
(10.54), between the two dashed lines, that involve the unknown signal 
samples. The linearised equations are used to solve for the AR model 
coefficient vector a by forming the equation 
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T
Knˆ xXXXa
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where the vector 

â  

 is an estimate of the model coefficients, obtained from the 
available signal samples.   
 The second stage of the solution involves the estimation of the 
unknown signal samples xUk. For an AR model of order P, and an unknown 
signal segment of length M, there are 2M+P nonlinear equations in (10.54) 
that involve the unknown samples; these are 
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The estimate of the predictor coefficient vector 
â 

, obtained from the first 
stage of the solution, is substituted in Equation (10.58) so that the only 
remaining unknowns in (10.58) are the missing signal samples. Equation 
(10.58) may be partitioned and rearranged in vector notation in the 
following form: 
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(10.59) 
In Equation (10.59), the unknown and known samples are rearranged and 
grouped into two separate vectors. In a compact vector–matrix notation, 
Equation (10.58) can be written in the form 
 

Kn2Uk1 xAxAe +=        (10.60) 
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where e is the error vector, A1 is the first coefficient matrix, xUk is the 
unknown signal vector being estimated, A2 is the second coefficient matrix 
and the vector xKn consists of the known samples in the signal matrix and 
vectors of Equation (10.58). The total squared error is given by 
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 The least square AR (LSAR) interpolation is obtained by minimisation of 
the squared error function with respect to the unknown signal samples xUk: 
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From Equation (10.62) we have 
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1Ukˆ xAAAAx

−
−=LSAR

       (10.63) 
 

The solution in Equation (10.62) gives the LSAR
Ukx̂ , vector which is the least 

square error estimate of the unknown data vector. 
 
10.3.4 Interpolation Based on Long-Term and Short-term 

Correlations  
 
For the best results, a model-based interpolation algorithm should utilise all 
the correlation structures of the signal process, including any periodic 
structures. For example, the main correlation structures in a voiced speech 
signal are the short-term correlation due to the resonance of the vocal tract 
and the long-term correlation due to the quasi-periodic excitation pulses of 
the glottal cords. For voiced speech, interpolation based on the short-term 
correlation does not perform well if the missing samples coincide with an 
underlying quasi-periodic excitation pulse. In this section, the AR 
interpolation is extended to include both long-term and short-term 
correlations. For most audio signals, the short-term correlation of each 
sample with the immediately preceding samples decays exponentially with 
time, and can be usually modelled with an AR model of order 10–20. In 
order to include the pitch periodicities in the AR model of Equation (10.53), 
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the model order must be greater than the pitch period. For speech signals, 
the pitch period is normally in the range 4–20 milliseconds, equivalent to 
40–200 samples at a sampling rate of 10 kHz. Implementation of an AR 
model of this order is not practical owing to stability problems and 
computational complexity. 
 A more practical AR model that includes the effects of the long-term 
correlations is illustrated in Figure 10.10. This modified AR model may be 
expressed by the following equation: 
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+−−+−=
P

k

Q

Qk
kk mekTmxpkmxamx

1

  )(  )( )( )(    (10.64) 

 
The AR model of Equation (10.64) is composed of a short-term predictor 

Σak x(m-k) that models the contribution of the P immediate past samples, 

and a long-term predictor Σpk x(m–T–k)  that models the contribution of 
2Q+1 samples a pitch period away. The parameter T is the pitch period; it 
can be estimated from the autocorrelation function of x(m) as the time 
difference between the peak of the autocorrelation, which is at the 
correlation lag zero, and the second largest peak, which should happen a 
pitch period away from the lag zero. 
 The AR model of Equation (10.64) is specified by the parameter vector 
c=[a1, ..., aP, p–Q, ..., pQ] and the pitch period T. Note that in Figure 10.10 

?

P past samples
2Q+1 samples a 
pitch period away

m

 
  
Figure 10.10 A quasiperiodic waveform. The sample marked “ ? ” is predicted using 

P immediate past samples and 2Q+1 samples a pitch period away. 
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the sample marked “?” coincides with the onset of an excitation pulse. This 
sample is not well predictable from the P past samples, because they do not 
include a pulse event. The sample is more predictable from the 2Q+1 
samples a pitch period away, since they include the effects of a similar 
excitation pulse. The predictor coefficients are estimated (see Chapter 7) 
using the so-called normal equations: 
 

xxxx rRc 1−=           (10.65) 
 
where Rxx is the autocorrelation matrix of signal x and rxx is the correlation 
vector. In expanded form, Equation (10.65) can be written as 
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(10.66) 

The modified AR model can be used for interpolation in the same way as 
the conventional AR model described in the previous section. Again, it is 
assumed that within a data window of N speech samples, a segment of M 
samples commencing from the sample point k, xUk={x(k), x(k+1), ..., 

M missing  
samples

P samples 
before

P samples 
after

xKn1 xUk
xKn2 

2Q+1
samples

2Q+1 
samples

? ... ? 

 
Figure 10.11 A signal with M missing samples. P immediate samples each side of 

the gap and 2Q+1 samples a pitch period away are used for interpolation. 
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x(k+M–1)} is missing. Figure 10.11 illustrates the interpolation problem. 
The missing samples are estimated using P samples in the immediate 
vicinity and 2Q+1 samples a pitch period away on each side of the missing 
signal. For the signal record of N samples, the modified AR equation 
(10.64) can be written in matrix form as 
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(10.67) 

where the subscript Uk denotes the unknown samples. In compact matrix 
notation, this set of equation can be written in the form 
 

( ) Xcxcxe +=,Uk         (10.68) 
 

As in Section 10.3.2, the interpolation problem is solved in two stages: 
 

(a) In the first stage, the known samples on both sides of the missing 
signal are used to estimate the AR coefficient vector c. 

(b) In the second stage, the AR coefficient estimates are substituted in 
Equation (10.68) so that the only unknowns are the data samples.  

 
The solution follows the same steps as those described in Section 10.3.2.  
 
10.3.5 LSAR Interpolation Error 
 
In this section, we discuss the effects of the signal characteristics, the model 
parameters and the number of unknown samples on the interpolation error. 
The interpolation error v(m), defined as the difference between the original 
sample x(m) and the interpolated sample 

ˆ x (m)

)(ˆ mx , is given by 
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)(ˆ)()( mxmxmv −=        (10.69) 
 

A common measure of signal distortion is the mean square error distance 

defined as 

[ ]








+−+= ∑
−

=

1

0

2)(ˆ)(
1

),(
M

m

mkxmkx
M

MD Ec        (10.70) 

 
where k is the beginning of an M-samples long segment of missing signal, 
and E [.] is the expectation operator. In Equation (10.70), the average 
distortion D is expressed as a function of the number of the unknown 
samples M, and also the model coefficient vector c. In general, the quality 
of interpolation depends on the following factors: 
 

(a) The signal correlation structure. For deterministic signals such as 
sine waves, the theoretical interpolation error is zero. However 
information-bearing signals have a degree of randomness that makes 
perfect interpolation with zero error an impossible objective.  

(b) The length of the missing segment. The amount of information lost, 
and hence the interpolation error, increase with the number of 
missing samples. Within a sequence of missing samples the error is 
usually largest for the samples in the middle of the gap. The 
interpolation Equation (10.63) becomes increasingly ill-conditioned 
as the length of the missing samples increases.  

(c) The nature of the excitation underlying the missing samples. The 
LSAR interpolation cannot account for any random excitation 
underlying the missing samples. In particular, the interpolation 
quality suffers when the missing samples coincide with the onset of 
an excitation pulse. In general, the least square error criterion causes 
the interpolator to underestimate the energy of the underlying 
excitation signal. The inclusion of long-term prediction and the use 
of quasi-periodic structure of signals improves the ability of the 
interpolator to restore the missing samples. 

(d) AR model order and the method used for estimation of the AR 
coefficients. The interpolation error depends on the AR model order. 
Usually a model order of 2–3 times the length of missing data 
sequence achieves good result.  
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 The interpolation error also depends on how well the AR parameters 
can be estimated from the incomplete data. In Equation (10.54), in the first 
stage of the solution, where the AR coefficients are estimated, two different 
approaches may be employed to linearise the system of equations. In the 
first approach all equations, between the dashed lines, that involve 
nonlinear terms are discarded. This approach has the advantage that no 
assumption is made about the missing samples. In fact, from a signal-
ensemble point of view, the effect of discarding some equations is 
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Figure 10.12 (a) A section of speech 
showing interpolation of 60 samples 
starting from the sample point 100 (b) 
Interpolation using short and long-term 
correlations. Interpolated samples are 
shown by the light shaded line. 
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Figure 10.13  (a) A section of speech
showing interpolation of 50 samples
starting from the sample point 175 (b)
Interpolation using short and long-term
correlations. Interpolated samples are
shown by the light shaded line. 
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equivalent to that of having a smaller signal record. In the second method, 
starting from an initial estimate of the unknown vector (such as xUk=0), 
Equation (10.54) is solved to obtain the AR parameters. The AR 
coefficients are then used in the second stage of the algorithm to estimate 
the unknown samples. These estimates may be improved in further 
iterations of the algorithm. The algorithm usually converges after one or 
two iterations.  
 Figures 10.12 and 10.13 show the results of application of the least 
square error AR interpolation method to speech signals. The interpolated 
speech segments were chosen to coincide with the onset of an excitation 
pulse. In these experimental cases the original signals are available for 
comparison. Each signal was interpolated by the AR model of Equation 
(10.53) and also by the extended AR model of Equation (10.64). The length 
of the conventional linear predictor model was set to 20. The modified 
linear AR model of Equation (10.64) has a prediction order of (20,7); that 
is, the short-term predictor has 20 coefficients and the long-term predictor 
has 7 coefficients. The figures clearly demonstrate that the modified AR 
model that includes the long-term as well as the short-term correlation 
structures outperforms the conventional AR model.  
 
10.3.6 Interpolation in Frequency–Time Domain  
 
Time-domain, AR model-based interpolation methods are effective for the 
interpolation of a relatively short length of samples (say less than 100 
samples at a 20 kHz sampling rate), but suffer severe performance 
degradations when used for interpolation of large sequence of samples. This 
is partly due to the numerical problems associated with the inversion of a 
large matrix, involved in the time-domain interpolation of a large number of 
samples, Equation (10.58).  
Spectral–time representation provides a useful form for the interpolation of 
a large gap of missing samples. For example, through discrete Fourier 
transformation (DFT) and spectral–time representation of a signal, the 
problem of interpolation of a gap of N samples in the time domain can be 
converted into the problem of interpolation of a gap of one sample, along 
the time, in each of N discrete frequency bins, as explained next. 

  
Spectral–Time Representation with STFT 
 
A relatively simple and practical method for spectral–time representation of 
a signal is the short-time Fourier transform (STFT) method. To construct a 
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two-dimensional STFT from a one-dimensional function of time x(m), the 
input signal is segmented into overlapping blocks of N samples, as 
illustrated in Figure 10.14. Each block is windowed, prior to discrete 
Fourier transformation, to reduce the spectral leakage due to the effects of 
discontinuities at the edges of the block. The frequency spectrum of the mth 
signal block is given by the discrete Fourier transform as 
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where X(k,m) is a spectral–time representation with time index m and 
frequency index k, N is the number of samples in each block, and D is the 
block overlap. In STFT, it is assumed that the signal frequency composition 
is time-invariant within the duration of each block, but it may vary across 
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Figure 10.14 Illustration of segmentation of a signal (with a missing gap) for 

spectral-time representation. 
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Figure 10.15 Spectral-time representation of a signal with a missing gap. 
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the blocks. In general, the kth spectral component of a signal has a time-
varying character, i.e. it is “born”, evolves for some time, disappears, and 
then reappears with a different intensity and a different characteristics. 
Figure 10.15 illustrates a spectralthtime signal with a missing block of 
samples. The aim of interpolation is to fill in the signal gap such that, at the 
beginning and at the end of the gap, the continuity of both the magnitude 
and the phase of each frequency component of the signal is maintained. For 
most time-varying signals (such as speech), a low-order polynomial 
interpolator of the magnitude and the phase of the DFT components of the 
signal, making use of the few adjacent blocks on either side of the gap, 
would produce satisfactory results.  
 
 
10.3.7 Interpolation Using Adaptive Code Books 
 
In the LSAR interpolation method, described in Section 10.3.2, the signals 
are modelled as the output of an AR model excited by a random input. 
Given enough samples, the AR coefficients can be estimated with 
reasonable accuracy. However, the instantaneous values of the random 
excitation during the periods when the signal is missing cannot be 
recovered. This leads to a consistent underestimation of the amplitude and 
the energy of the interpolated samples. One solution to this problem is to 
use a zero-input signal model. Zero-input models are feedback oscillator 
systems that produce an output signal without requiring an input. 

The general form of the equation describing a digital nonlinear 
oscillator can be expressed as  

        

 
( ))(,),2(),1()( Pmxmxmxgmx f −−−= �    (10.72) 

 
The mapping function gf(· ) may be a parametric or a non-parametric 
mapping. The model in Equation (10.72) can be considered as a nonlinear 

x(m)=g(x(m–1), ..., x(m–P)) 
g(·)

–1z–1z. . .–1z
 

 
Figure 10.16 Configuration of a digital oscillator. 
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predictor, and the subscript f denotes forward prediction based on the past 
samples. 
 A parametric model of a nonlinear oscillator can be formulated using a 
Volterra filter model. However, in this section, we consider a non-
parametric method for its ease of formulation and stable characteristics. 
Kubin and Kleijin (1994) have described a non-parametric oscillator based 
on a codebook model of the signal process. 
 In this method, each entry in the code book has P+1 samples where the 
(P+1)th sample is intended as an output. Given P input samples x=[x(m–1), 
..., x(m–P)], the codebook output is the (P+1)th sample of the vector in the 
codebook whose first P samples have a minimum distance from the input 
signal x. For a signal record of length N samples, a codebook of size N–P 
vectors can be constructed by dividing the signal into overlapping segments 
of P+1 samples with the successive segments having an overlap of P 
samples. Similarly a backward oscillator can be expressed as 
 

( ))(,),2(),1()( Pmxmxmxgmx bb +++= �     (10.73) 
 
As in the case of a forward oscillator, the backward oscillator can be 
designed using a non-parametric method based on an adaptive codebook of 
the signal process. In this case each entry in the code book has P+1 samples 
where the first sample is intended as an output sample. Given P input 
samples x=[x(m), ..., x(m+P–1)] the codebook output is the first sample of 
the code book vector  whose next P samples have a minimum distance from 
the input signal x.  
 For interpolation of M missing samples, the ouputs of the forward and 
backward nonlinear oscillators may be combined as 
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. 
where it is assumed that the missing samples start at k. 
 
 
10.3.8 Interpolation Through Signal Substitution 
 
Audio signals often have a time-varying but quasi-periodic repetitive 
structure. Therefore most acoustic events in a signal record reoccur with 
some variations. This observation forms the basis for interpolation through 
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pattern matching, where a missing segment of a signal is substituted by the 
best match from a signal record. Consider a relatively long signal record of 
N samples, with a gap of M missing samples at its centre. A section of the 
signal with the gap in the middle can be used to search for the best-match 
segment in the record. The missing samples are then substituted by the 
corresponding section of the best-match signal. This interpolation method is 
particularly useful when the length of the missing signal segment is large. 
For a given class of signals, we may be able to construct a library of 
patterns for use in waveform substitution, Bogner (1989). 
 
 
10.4 Summary 
 
Interpolators, in their various forms, are used in most signal processing 
applications. The obvious example is the estimation of a sequence of 
missing samples. However, the use of an interpolator covers a much wider 
range of applications, from low-bit-rate speech coding to pattern 
recognition and decision making systems. We started this chapter with a 
study of the ideal interpolation of a band-limited signal, and its applications 
in digital-to-analog conversion and in multirate signal processing. In this 
chapter, various interpolation methods were categorised and studied in two 
different sections: one on polynomial interpolation, which is the more 
traditional numerical computing approach, and the other on statistical 
interpolation, which is the digital signal processing approach.  
 The general form of the polynomial interpolator was formulated and its 
special forms, Lagrange, Newton, Hermite and cubic spline interpolators 
were considered. The polynomial methods are not equipped to make 
optimal use of the predictive and statistical structures of the signal, and are 
impractical for interpolation of a relatively large number of samples. A 
number of useful statistical interpolators were studied. These include  
maximum a posteriori interpolation, least square error AR interpolation, 
frequency-time interpolation, and an adaptive code book interpolator. 
Model-based interpolation method based on an autoregressive model is 
satisfactory for most audio applications so long as the length of the missing 
samples is not to large. For interpolation of a relatively large number of 
samples the time–frequency interpolation method and the adaptive code 
book method are more suitable. 
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