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lind deconvolution is the process of unravelling two unknown 
signals that have been convolved. An important application of blind 
deconvolution is in blind equalization for restoration of a signal 

distorted in transmission through a communication channel. Blind 
equalization has a wide range of applications, for example in digital 
telecommunications for removal of intersymbol interference, in speech 
recognition for removal of the effects of microphones and channels, in 
deblurring of distorted images, in dereverberation of acoustic recordings, in 
seismic data analysis, etc.  

 In practice, blind equalization is only feasible if some useful statistics 
of the channel input, and perhaps also of the channel itself, are available. 
The success of a blind equalization method depends on how much is known 
about the statistics of the channel input, and how useful this knowledge is in 
the channel identification and equalization process. This chapter begins with 
an introduction to the basic ideas of deconvolution and channel equalization. 
We study blind equalization based on the channel input power spectrum, 
equalization through separation of the input signal and channel response 
models, Bayesian equalization, nonlinear adaptive equalization for digital 
communication channels, and equalization of maximum-phase channels 
using higher-order statistics. 
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15.1 Introduction 
 
In this chapter we consider the recovery of a signal distorted, in 
transmission through a channel, by a convolutional process and observed in 
additive noise. The process of recovery of a signal convolved with the 
impulse response of a communication channel, or a recording medium, is 
known as deconvolution or equalization. Figure 15.1 illustrates a typical 
model for a distorted and noisy signal, followed by an equalizer. Let x(m), 
n(m) and y(m)  denote the channel input, the channel noise and the observed 
channel output respectively. The channel input/output relation can be 
expressed as  
 

)()]([)( mnmxhmy +=            (15.1) 
 
where the function h[· ] is the channel distortion. In general, the channel 
response may be time-varying and non-linear. In this chapter, it is assumed 
that the effects of a channel can be modelled using a stationary, or a slowly 
time-varying, linear transversal filter. For a linear transversal filter model of 
the channel, Equation (15.1) becomes 
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where hk(m) are the coefficients of a Pth order linear FIR filter model of the 
channel. For a time-invariant channel model, hk(m)=hk.  
 In the frequency domain, Equation (15.2) becomes 
 

)()()()( fNfHfXfY +=          (15.3) 
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Figure 15.1 Illustration of a channel distortion model followed by an equalizer. 
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where Y(f), X(f), H(f) and N(f) are the frequency spectra of the channel 
output, the channel input, the channel response and the additive noise 
respectively. Ignoring the noise term and taking the logarithm of Equation 
(15.3) yields 

)(ln)(ln)(ln fHfXfY +=         (15.4) 
 

From Equation (15.4), in the log-frequency domain the effect of channel 
distortion is the addition of a “tilt” term ln|H(f)| to the signal spectrum. 
 
 
15.1.1 The Ideal Inverse Channel Filter 
 
The ideal inverse-channel filter, or the ideal equalizer, recovers the original 
input from the channel output signal. In the frequency domain, the ideal 
inverse channel filter can be expressed as 
 

1)()( inv =fHfH           (15.5) 
 

In Equation (15.5) )(inv fH  is used to denote the inverse channel filter. For 

the ideal equalizer we have )()( 1inv fHfH −= , or, expressed in the log-

frequency domain )(ln)(ln inv fHfH −= . The general form of Equation 
(15.5) is given by the z-transform relation 
 

NzzHzH −=)()( inv           (15.6) 
 
for some value of the delay N that makes the channel inversion process 
causal. Taking the inverse Fourier transform of Equation (15.5), we have the 
following convolutional relation between the impulse responses of the 

channel {hk} and the ideal inverse channel response { inv
kh }: 

 

)(inv ihh
k

kik δ=∑ −          (15.7) 

 
where δ(i) is the Kronecker delta function. Assuming the channel output is 
noise-free and the channel is invertible, the ideal inverse channel filter can 
be used to reproduce the channel input signal with zero error, as follows. 
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The inverse filter output ˆ x (m) , with the distorted signal y(m) as the input, is 
given as 
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The last line of Equation (15.8) is derived by a change of variables i=k+j in 
the second line and rearrangement of the terms. For the ideal inverse 
channel filter, substitution of Equation (15.7) in Equation (15.8) yields 
 

∑ =−=
i

mximximx )()()()(ˆ δ          (15.9) 

 
which is the desired result. In practice, it is not advisable to implement 
Hinv(f) simply as H–1(f) because, in general, a channel response may be non-
invertible. Even for invertible channels, a straightforward implementation of 
the inverse channel filter H–1(f) can  cause problems. For example, at 
frequencies where H(f) is small, its inverse H–1(f) is large, and this can lead 
to noise amplification if the signal-to-noise ratio is low. 
 
 
15.1.2 Equalization Error, Convolutional Noise 
 
The equalization error signal, also called the convolutional noise, is defined 
as the difference between the channel equalizer output and the desired 
signal: 
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where invˆ
kh  is an estimate of the inverse channel filter. Assuming that there 

is an ideal equalizer inv
kh  that can recover the channel input signal x(m) from 

the channel output y(m), we have 
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Substitution of Equation (15.11) in Equation (15.10) yields 
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where invinvinv ˆ~
kkk hhh −= . The equalization error signal v(m) may be viewed 

as the output of an error filter inv~
kh  in response to the input y(m–k), hence 

the name “convolutional noise” for v(m). When the equalization process is 
proceeding well, such that ˆ x (m)  is a good estimate of the channel input 
x(m), then the convolutional noise is relatively small and decorrelated and 
can be modelled as a zero mean Gaussian random process. 
 
 
15.1.3 Blind Equalization 
 
The equalization problem is relatively simple when the channel response is 
known and invertible, and when the channel output is not noisy. However, 
in most practical cases, the channel response is unknown, time-varying, 
non-linear, and may also be non-invertible. Furthermore, the channel output 
is often observed in additive noise.  
 Digital communication systems provide equalizer-training periods, 
during which a training pseudo-noise (PN) sequence, also available at the 
receiver, is transmitted. A synchronised version of the PN sequence is 
generated at the receiver, where the channel input and output signals are 
used for the identification of the channel equalizer as illustrated in Figure 
15.2(a). The obvious drawback of using training periods for channel 
equalization is that power, time and bandwidth are consumed for the 
equalization process.  
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It is preferable to have a “blind” equalization scheme that can operate 
without access to the channel input, as illustrated in Figure 15.2(b). 
Furthermore, in some applications, such as the restoration of acoustic 
recordings, or blurred images, all that is available is the distorted signal and 
the only restoration method applicable is blind equalization.   
 Blind equalization is feasible only if some statistical knowledge of the 
channel input, and perhaps that of the channel, is available. Blind 
equalization involves two stages of channel identification, and 
deconvolution of the input signal and the channel response, as follows:  
 
(a) Channel identification. The general form of a channel estimator can be 

expressed as 
 

 ),,(ˆ
hxyh MMψ=          (15.13) 

 
 where ψ is the channel estimator, the vector ˆ h  is an estimate of the 

channel response, y is the channel output, and Mx and Mh are statistical 
models of the channel input and the channel response respectively.  
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Figure 15.2 A comparative illustration of (a) a conventional equalizer with 
access to channel input and output, and (b) a blind equalizer. 
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 Channel identification methods rely on utilisation of a knowledge of the 
following characteristics of the input signal and the channel: 

 
(i) The distribution of the channel input signal: for example, in 

decision-directed channel equalization, described in Section 
15.5, the knowledge that the input is a binary signal is used in 
a binary decision device to estimate the channel input and to 
“direct” the equalizer adaptation process.  

(ii)  the relative durations of the channel input and the channel 
impulse response: the duration of a channel impulse response 
is usually orders of magnitude smaller than that of the channel 
input. This observation is used in Section 15.3.1 to estimate a 
stationary channel from the long-time averages of the channel 
output.  

(iii) The stationary, or time-varying characteristics of the input 
signal process and the channel: in Section 15.3.1, a method is 
described for the recovery of a non-stationary signal convolved 
with the impulse response of a stationary channel. 

 
(b) Channel equalization. Assuming that the channel is invertible, the 

channel input signal x(m) can be recovered using an inverse channel 
filter as 
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In the frequency domain, Equation (15.14) becomes 
 

)()(ˆ)(ˆ inv fYfHfX =        (15.15) 
 

 In practice, perfect recovery of the channel input may not be possible, 
either because the channel is non-invertible or because the output is 
observed in noise. A channel is non-invertible if:  

 
(i) The channel transfer function is maximum-phase: the transfer 

function of a maximum-phase channel has zeros outside the 
unit circle, and hence the inverse channel has unstable poles. 
Maximum-phase channels are considered in the following 
section. 
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(ii) The channel transfer function maps many inputs to the same 

output: in these situations, a stable closed-form equation for 
the inverse channel does not exist, and instead an iterative 
deconvolution method is used. Figure 15.3 illustrates the 
frequency response of a channel that has one invertible and 
two non-invertible regions. In the non-invertible regions, the 
signal frequencies are heavily attenuated and lost to channel 
noise. In the invertible region, the signal is distorted but 
recoverable. This example illustrates that the inverse filter 
must be implemented with care in order to avoid undesirable 
results such as noise amplification at frequencies with low 
SNR. 

 
 
15.1.4 Minimum- and Maximum-Phase Channels 
 
For stability, all the poles of the transfer function of a channel must lie 
inside the unit circle. If all the zeros of the transfer function are also inside 
the unit circle then the channel is said to be a minimum-phase channel. If 
some of the zeros are outside the unit circle then the channel is said to be a 
maximum-phase channel. The inverse of a minimum-phase channel has all 
its poles inside the unit circle, and is therefore stable. The inverse of a 
maximum-phase channel has some of its poles outside the unit circle; 
therefore it has an exponentially growing impulse response and is unstable. 
However, a stable approximation of the inverse of a maximum-phase 
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Figure 15.3 Illustration of the invertible and noninvertible regions of a channel. 
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channel may be obtained by truncating the impulse response of the inverse 
filter. Figure 15.3 illustrates examples of maximum-phase and minimum-
phase fourth-order FIR filters. 

When both the channel input and output signals are available, in the 
correct synchrony, it is possible to estimate the channel magnitude and 
phase response using the conventional least square error criterion. In blind 
deconvolution, there is no access to the exact instantaneous value or the 
timing of the channel input signal. The only information available is the 
channel output and some statistics of the channel input. The second order 
statistics of a signal (i.e. the correlation or the power spectrum) do not 
include the phase information; hence it is not possible to estimate the 
channel phase from the second-order statistics. Furthermore, the channel 
phase cannot be recovered if the input signal is Gaussian, because a 
Gaussian process of known mean is entirely specified by the autocovariance 
matrix, and autocovariance matrices do not include any phase information. 
For estimation of the phase of a channel, we can either use a non-linear 
estimate of the desired signal to direct the adaptation of a channel equalizer 
as in Section 15.5, or we can use the higher-order statistics as in Section 
15.6.  

k

Minimum-phase Maximum-phase

hmax(k)

k

hmin(k)

 
 
Figure 15.4 Illustration of the zero diagram and impulse response of fourth order 

maximum-phase and minimum-phase FIR filters. 
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15.1.5 Wiener Equalizer 
 
In this section, we consider the least squared error Wiener equalization. 
Note that, in its conventional form, Wiener equalization is not a form of 
blind equalization, because the implementation of a Wiener equalizer 
requires the cross-correlation of the channel input and output signals, which 
are not available in a blind equalization application. The Wiener filter 
estimate of the channel input signal is given by 
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where invˆ
kh  is an FIR Wiener filter estimate of the inverse channel impulse 

response. The equalization error signal v(m)  is defined as 
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The Wiener equalizer with input y(m) and desired output x(m) is obtained 
from Equation (6.10) in Chapter 6 as 
 

xyyy rRh 1invˆ −=            (15.18) 

 
where Ryy is the P × P  autocorrelation matrix of the channel output, and rxy 

is the P-dimensional cross-correlation vector of the channel input and output 
signals. A more expressive form of Equation (15.18) can be obtained by 
writing the noisy channel output signal in vector equation form as 
 

nHxy +=                 (4.19) 
 
where y is an N-sample channel output vector, x is an N+P-sample channel 
input vector including the P initial samples, H is an N×(N+P) channel 
distortion matrix whose elements are composed of the coefficients of the 
channel filter, and n is a noise vector. The autocorrelation matrix of the 
channel output can be obtained from Equation (15.19) as 
 

nnxxyy RHHRyyR += TT ][E=          (15.20) 
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where E [· ] is the expectation operator. The cross-correlation vector rxy  of 
the channel input and output signals becomes 
 

xxxy Hryr =x ][E=            (15.21) 

 
Substitution of Equation (15.20) and (15.21) in (15.18) yields the Wiener 
equalizer as 

( ) xxnnxx HrRHHRh
1Tinvˆ −

= +         (15.22) 
 
The derivation of the Wiener equalizer in the frequency domain is as 
follows. The Fourier transform of the equalizer output is given by 

 

)()(ˆ)(ˆ inv fYfHfX =           (15.23) 
 

where Y(f), the channel output and )(ˆ inv fH  is the frequency response of the 
Wiener equalizer. The error signal V(f) is defined as 
 

)()(ˆ)(

)(ˆ)()(
inv fYfHfX

fXfXfV

−=

−=
        (15.24) 

 
As in Section 6.5 minimisation of the expectation of the squared magnitude 
of V(f)  results in the frequency Wiener equalizer given by  
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where PXX(f) is the channel input power spectrum, PNN(f) is the noise power 
spectrum, PXY(f) is the cross-power spectrum of the channel input and 
output signals, and H(f) is the frequency response of the channel. Note that 
in the absence of noise, PNN(f)=0 and the Wiener inverse filter becomes 

)()( 1inv fHfH −= .  
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15.2 Blind Equalization Using Channel Input Power Spectrum 
 
One of the early papers on blind deconvolution was by Stockham et al. 
(1975) on dereverberation of old acoustic recordings. Acoustic recorders, as 
illustrated in Figure 15.5, had a bandwidth of about 200 Hz to 4 kHz. 
However, the limited bandwidth, or even the additive noise or scratch noise 
pulses, are not considered as the major causes of distortions of acoustic 
recordings. The main distortion on acoustic recordings is due to 
reverberations of the recording horn instrument. An acoustic recording can 
be modelled as the convolution of the input audio signal x(m) and the 
impulse response of a linear filter model of the recording instrument {hk}, as 
in Equation (15.2), reproduced here for convenience 
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or in the frequency domain as 
 

)()()()( fNfHfXfY +=          (15.27) 
 
where H(f) is the frequency response of a linear time-invariant model of the 
acoustic recording instrument, and N(f) is an additive noise. Multiplying 

 
 

 
 

Figure 15.5 Illustration of the early acoustic recording process on a wax disc. 
Acoustic recordings were made by focusing the sound energy, through a horn  

via a sound box, diaphragm and stylus mechanism, onto a wax disc. The  
sound was distorted by reverberations of the horn. 
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both sides of Equation (15.27) with their complex conjugates, and taking the 
expectation, we obtain  
 

( )( ) ][ )()()()()()()]()([ ∗∗ ++= fNfHfXfNfHfXfYfY EE    (15.28) 

 
Assuming the signal X(f) and the noise N(f) are uncorrelated Equation 
(15.28) becomes 
 

)()()()(
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where PYY(f), PXX(f) and PNN(f) are the power spectra of the distorted signal, 
the original signal and the noise respectively. From Equation (15.29) an 
estimate of the spectrum of the channel response can be obtained as 
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In practice, Equation (15.30) is implemented using time-averaged estimates 
of the of the power spectra.
 
 
15.2.1 Homomorphic Equalization 
 
In homomorphic equalization, the convolutional distortion is transformed, 
first into a multiplicative distortion through a Fourier transform of the 
distorted signal, and then into an additive distortion by taking the logarithm 
of the spectrum of the distorted signal. A further inverse Fourier transform 
operation converts the log-frequency variables into cepstral variables as 
illustrated in Figure 15.6. Through homomorphic transformation 
convolution becomes addition, and equalization becomes subtraction.  
 Ignoring the additive noise term and transforming both sides of 
Equation (15.27) into log-spectral variables yields 

 
)(ln)(ln)(ln fHfXfY +=          (15.31) 

 
Note that in the log-frequency domain, the effect of channel distortion is the 
addition of a tilt to the spectrum of the channel input. Taking the 
expectation of Equation (15.31) yields 
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)(ln)]([ln)]([ln fHfXfY +=EE         (15.32) 
 
In Equation (15.32), it is assumed that the channel is time-invariant; hence 

)(ln)]([ln fHfH =E . Using the relation zjzz ∠+= ||lnln , the term 
)]([ln fXE   can be expressed as 

 
)]([|])(|[ln)]([ln fXjfXfX ∠+= EEE       (15.33) 

 
The first term on the right-hand side of Equation (15.33), |])(|[ln fXE , is 
non-zero, and represents the frequency distribution of the signal power in 
decibels, whereas the second term )]([ fX∠E  is the expectation of the 
phase, and can be assumed to be zero. From Equation (15.32), the log-
frequency spectrum of the channel can be estimated as 
 

)]([ln)]([ln)(ln fXfYfH EE −=           (15.34) 
 
In practice, when only a single record of a signal is available, the signal is 
divided into a number of segments, and the average signal spectrum is 
obtained over time across the segments. Assuming that the length of each 
segment is long compared with the duration of the channel impulse 
response, we can write an approximate convolutional relation for the ith 
signal segment as 

)()()( mhmxmy iii ∗≈            (15.35) 
 
The segments are windowed, using a Hamming or a Hanning window, to 
reduce the spectral leakage due to end effects at the edges of the segment. 
Taking the complex logarithm of the Fourier transform of Equation (15.35) 
yields 
 

ln Yi ( f ) = ln Xi ( f ) + ln Hi ( f )         (15.36) 

y(m)=x(m)*h(m) xc(m)+hc(m)

ln |X(f)|+ln|X(f)|

Homomorphic analysis

Inverse Fourier 
transformln| . |

X(f)H(f)

Fourier 
transform

Figure 15.6 Illustration of homomorphic analysis in deconvolution. 
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Taking the time averages over N segments of the distorted signal record 
yields 
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Estimation of the channel response from Equation (15.37) requires the 
average log spectrum of the undistorted signal X(f). In Stockham's method 
for restoration of acoustic records, the expectation of the signal spectrum is 
obtained from a modern recording of the same musical material as that of 
the acoustic recording. From Equation (15.37), the estimate of the logarithm 
of the channel is given by 
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where XM(f) is the spectrum of a modern recording. The equalizer can then 
be defined as 
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In Equation (15.39), the inverse acoustic channel is implemented in the 
range between 200 and 4000 Hz, where the channel is assumed to be 
invertible. Outside this range, the signal is dominated by noise, and the 
inverse filter is designed to attenuate the noisy signal.  
 
 
15.2.2 Homomorphic Equalization Using a Bank of High-Pass 

Filters 
 
In the log-frequency domain, channel distortion may be eliminated using a 
bank of high-pass filters. Consider a time sequence of log-spectra of the 
output of a channel described as 
 

)(ln)(ln)(ln fHfXfY ttt +=         (15.40) 
 
where Yt(f) and Xt(f) are the channel input and output derived from a Fourier 
transform of the tth signal segment. From Equation (15.40), the effect of a 
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time-invariant channel is to add a constant term ln H(f) to each frequency 
component of the channel input Xt(f), and the overall result is a time-
invariant tilt of the log-frequency spectrum of the original signal. This 
observation suggests the use of a bank of narrowband high-pass notch filters 
for the removal of the additive distortion term lnH(f). A simple first-order 
recursive digital filter with its notch at zero frequency is given by 
 

)(ln)(ln)(ˆln)(ˆln 11 fYfYfXfX tttt −− −+=α        (15.41) 
 
where the parameter α controls the bandwidth of the notch at zero 
frequency. Note that the filter bank also removes any dc component of the 
signal ln X(f); for some applications, such as speech recognition, this is 
acceptable.
 
 
15.3 Equalization Based on Linear Prediction Models 
 
Linear prediction models, described in Chapter 8, are routinely used in 
applications such as seismic signal analysis and speech processing, for the 
modelling and identification of a minimum-phase channel. Linear prediction 
theory is based on two basic assumptions: that the channel is minimum-
phase and that the channel input is a random signal. Standard linear 
prediction analysis can be viewed as a blind deconvolution method, because 
both the channel response and the channel input are unknown, and the only 
information is the channel output and the assumption that the channel input 
is random and hence has a flat power spectrum. In this section, we consider 
blind deconvolution using linear predictive models for the channel and its 
input. The channel input signal is modelled as  
 

)()()( zAzEzX =           (15.42) 
 

where X(z) is the z-transform of the channel input signal, A(z) is the z-
transfer function of a linear predictive model of the channel input and E(z) is 
the z-transform of a random excitation signal. Similarly, the channel output 
can be modelled by a linear predictive model H(z) with input X(z) and 
output Y(z) as 
 

)()()( zHzXzY =           (15.43) 
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Figure 15.7 illustrates a cascade linear prediction model for a channel input 
process X(z) and a channel response H(z). The channel output can be 
expressed as  
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where  
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           (15.45)

  
The z-transfer function of the linear prediction models of the channel input 
signal and the channel can be expanded as 
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where {ak,αk} and {bk,βk} are the coefficients and the poles of the linear 
prediction models for the channel input signal and the channel respectively. 
Substitution of Equations (15.46) and (15.47) in Equation (15.45) yields the 
combined input-channel model as 
 

∏∑
+

=

−
+

=

− −
=

−
=

QP

k
k

QP

k

k
k z

G

z

G
zD

1

1

1

)1(d1

)(

γ
        (15.48) 

 
The total number of poles of the combined model for the input signal and 
the channel is the sum of the poles of the input signal model and the channel 
model.  
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Figure 15.7 A distorted signal modelled as cascade of a signal model and a 

channel model. 
 

 
15.3.1 Blind Equalization Through Model Factorisation 
 
A model-based approach to blind equalization is to factorise the channel 
output model D(z)=A(z)H(z) into a channel input signal model A(z) and a 
channel model H(z). If the channel input model A(z) and the channel model 
H(z) are non-factorable then the only factors of D(z) are A(z) and H(z). 
However, z-transfer functions are factorable into the roots, the so-called 
poles and zeros, of the models. One approach to model-based deconvolution 
is to factorize the model for the convolved signal into its poles and zeros, 
and classify the poles and zeros as either belonging to the signal or 
belonging to the channel.  
Spencer and Rayner (1990) developed a method for blind deconvolution 
through  factorization of linear prediction models, based on the assumption 
that the channel is stationary with time-invariant poles whereas the input 
signal is non-stationary with time-varying poles. As an application, they 
considered the restoration of old acoustic recordings where a time-varying 
audio signal is distorted by the time-invariant frequency response of the 
recording equipment. For a simple example, consider the case when the 
signal and the channel are each modelled by a second-order linear predictive 
model. Let the time-varying second-order linear predictive model for the 
channel input signal x(m) be  
 

)()()2()()1()()( 121 memGmxmamxmamx +−+−=     (15.49) 
 
where a1(m) and a2(m) are the time-varying coefficients of the linear 
predictor model, G1(m) is the input gain factor and e(m) is a zero-mean, unit 
variance, random signal. Now let α1(m) and α2(m) denote the time-varying 
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poles of the predictor model of Equation (15.49); these poles are the roots of 
the polynomial 
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Similarly, assume that the channel can be modelled by a second-order 
stationary linear predictive model as 

 
)()2()1()( 221 mxGmyhmyhmy +−+−=         (15.51) 

 
where h1 and h2 are the time-invariant predictor coefficients and G2 is the 
channel gain. Let β1 and β2 denote the poles of the channel model; these are 
the roots of the polynomial 
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The combined cascade of the two second-order models of Equations (15.49) 
and (15.51) can be written as a fourth-order linear predictive model with 
input e(m) and output y(m): 
 

)()4()()3()()2()()1()()( 4321 mGemymdmymdmymdmymdmy +−+−+−+−=  
(15.53) 

where the combined gain G=G1G2. The poles of the fourth order predictor 
model of Equation (15.53) are the roots of the following polynomial: 
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In Equation (15.54) the poles of the fourth order predictor are α1(m) , α2(m), 
β1 and β2 . The above argument on factorisation of the poles of time-varying 
and stationary models can be generalised to a signal model of order P and a 
channel model of order Q. 
 In Spencer and Rayner, the separation of the stationary poles of the 
channel from the time-varying poles of the channel input is achieved 
through a clustering process. The signal record is divided into N segments 
and each segment is modelled by an all-pole model of order P+Q where P 
and Q are the assumed model orders for the channel input and the channel 
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respectively. In all, there are N(P+Q) values which are clustered to form 
P+Q clusters. Even if both the signal and the channel were stationary, the 
poles extracted from different segments would have variations due to the 
random character of the signals from which the poles are extracted. 
Assuming that the variances of the estimates of the stationary poles are 
small compared with the variations of the time-varying poles, it is expected 
that, for each stationary pole of the channel, the N values extracted from N 
segments will form an N-point cluster of a relatively small variance. These 
clusters can be identified and the centre of each cluster taken as a pole of the 
channel model This method assumes that the poles of the time-varying 
signal are well separated in space from the poles of the time-invariant 
signal. 
 
 
15.4 Bayesian Blind Deconvolution and Equalization 
 
The Bayesian inference method, described in Chapter 4, provides a general 
framework for inclusion of statistical models of the channel input and the 
channel response. In this section we consider the Bayesian equalization 
method, and study the case where the channel input is modelled by a set of 
hidden Markov models. The Bayesian risk for a channel estimate ˆ h  is 
defined as 
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where C( ˆ h , h)  is the cost of estimating the channel h as ˆ h , f X ,H|Y x,h y( ) is 

the joint posterior density of the channel h and the channel input x, 
f Y|H y h( )  is the observation likelihood, and fH(h) is the prior pdf of the 

channel. The Bayesian estimate is obtained by minimisation of the risk 

function )|ˆ( yhR . There are a variety of Bayesian-type solutions depending 
on the choice of the cost function and the prior knowledge, as described in 
Chapter 4.  
 In this section, it is assumed that the convolutional channel distortion is 
transformed into an additive distortion through transformation of the 
channel output into log-spectral or cepstral variables. Ignoring the channel 
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noise, the relation between the cepstra of the channel input and output 
signals is given by 
 

hxy += )()( mm          (15.56) 
 
where the cepstral vectors x(m), y(m) and h are the channel input, the 
channel output and the channel respectively.  
 
 
15.4.1 Conditional Mean Channel Estimation  
 
A commonly used cost function in the Bayesian risk of Equation (15.55) is 

the mean square error 2|ˆ|)ˆ( hhhh −=−C , which results in the conditional 
mean (CM) estimate defined as 
 

hyhhh
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The posterior density of the channel input signal may be conditioned on an 

estimate of the channel vector ˆ h  and expressed as )ˆ|(,| hyxHYX ,f . The 

conditional mean of the channel input signal given the channel output y and 

an estimate of the channel ĥ  is  
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Equations (15.57) and (15.58) suggest a two-stage iterative method for 
channel estimation and the recovery of the channel input signal.   
 
 
15.4.2 Maximum-Likelihood Channel Estimation  
 
The ML channel estimate is equivalent to the case when the Bayes cost 
function and the channel prior are uniform. Assuming that the channel input 
signal has a Gaussian distribution with mean vector µx and covariance 
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matrix Σxx, the likelihood of a sequence of N P-dimensional channel output 
vectors {y(m)} given a channel input vector h is  
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 (15.59) 
 

To obtain the ML estimate of the channel h, the derivative of the log 
likelihood function ln fY(y|h) with respect to h is set to zero to yield 
 

 ˆ h ML =
1

N
y(m) − µx( )

m=0

N−1

∑          (15.60) 

 
 
15.4.3 Maximum A Posteriori Channel Estimation 
 
The MAP estimate, like the ML estimate, is equivalent to a Bayesian 
estimator with a uniform cost function. However, the MAP estimate 
includes the prior pdf of the channel. The prior pdf can be used to confine 
the channel estimate within a desired subspace of the parameter space. 
Assuming that the channel input vectors are statistically independent, the 
posterior pdf of the channel given the observation sequence Y={y(0), ..., 
y(N–1)} is 
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(15.61) 

 
Assuming that the channel input x(m) is Gaussian, fX(x(m))=N (x, µx, Σxx), 
with mean vector µx and covariance matrix Σxx, and that the channel h is 
also Gaussian, fH(h)=N (h, µh, Σhh), with mean vector µh and covariance 
matrix Σhh, the logarithm of the posterior pdf is  
 



438 Equalization and Deconvolution 

 

 

( ) ( ) ( )

{ }∑

∑
−

=

−−

−

=

−−+−−−−−

−−−=−

1

0

1T1T

1

0
|

)()(])([])([
2

1

ln
2

1
)2ln()(ln1)((0)ln

N

m

N

m

mm

NPmfN , ,f

hhhhxxxx

hhxxYH

hhhyhy

yyyh

µΣµµΣµ

ΣΣπ�

(15.62) 
The MAP channel estimate, obtained by setting the derivative of the log 
posterior function ln fH|Y(h|y) to zero, is 
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is the time-averaged estimate of the mean of observation vector. Note that 
for a Gaussian process the MAP and conditional mean estimates are 
identical.  
 
 
15.4.4 Channel Equalization Based on Hidden Markov Models  
 
This section considers blind deconvolution in applications where the 
statistics of the channel input are modelled by a set of hidden Markov 
models. An application of this method, illustrated in Figure 15.8, is in 
recognition of speech distorted by a communication channel or a 
microphone. A hidden Markov model (HMM) is a finite-state Bayesian 
model, with a Markovian state prior and a Gaussian observation likelihood 
(see chapter 5). An N-state HMM can be used to model a non-stationary 
process, such as speech, as a chain of N stationary states connected by a set 
of Markovian state transitions. The likelihood of an HMM Mi and a 
sequence of N P-dimensional channel input vectors X=[x(0), ..., x(N–1)] can 
be expressed in terms of the state transition and the observation pdfs of Mi 
as 

∑=
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where )f i s,|(,| MM XSX  is the likelihood that the sequence X=[x(0), ..., 

x(N–1)] was generated by the state sequence s=[s(0), ..., s(N–1)] of the 
model Mi, and )P iMM |(| ss  is the Markovian prior pmf of the state sequence 
s. The Markovian prior entails that the probability of a transition to the state 
i at time m depends only on the state at time m–1 and is independent of the 
previous states. The transition probability of a Markov process is defined as 
 

( )imsjmsPaij =−== )1(|)(          (15.66) 

 
where aij is the probability of making a transition from state i to state j. The 
HMM state observation probability is often modelled by a multivariate 
Gaussian pdf as 
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where µx,s and Σxx,s are the mean vector and the covariance matrix of the 
Gaussian observation pdf of the HMM state s of  the model Mi.  
 The HMM-based channel equalization problem can be stated as 
follows: Given a sequence of N P-dimensional channel output vectors 
Y=[y(0), ..., y(N–1)], and the prior knowledge that the channel input 

x

n

y

. 

. 

.

HMMs of the channel input

s1 s2 s
N

a11 a22 aNN

a12
. . .

s1 s2 s
N

a11 a22 aNN

a12
. . .

Channel
h

+
Bayesian 
Estimator

M1

M
V

. 

. 

.

 
Figure 15.8 Illustration of a channel with the input modelled by a set of HMMs. 
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sequence is drawn from a set of V HMMs M={Mi i=1, ..., V}, estimate the 
channel response and the channel input.  
 The joint posterior pdf of an input word Mi  and the channel vector h  
can be expressed as 
 

)|(),()|,( |,||, YhYhYh YHYHYH fP=f ii MM MM     (15.68) 

 
Simultaneous joint estimation of the channel vector h and classification of 
the unknown input word Mi  is a non-trivial exercise. The problem is usually 
approached iteratively by making an estimate of the channel response, and 
then using this estimate to obtain the channel input as follows. From Bayes’ 
rule, the posterior pdf of the channel h conditioned on the assumption that 
the input model is Mi  and given the observation sequence Y can be 
expressed as 
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The likelihood of the observation sequence, given the channel and the input 
word model, can be expressed as 
  

)|(),|( |,| ii f=f MM MM hYhY XHY −          (15.70) 

 
where it is assumed that the channel output is transformed into cepstral 
variables so that the channel distortion is additive. For a given input model 
Mi, and state sequence s=[s(0), s(1), ..., s(N–1)], the pdf of a sequence of N  
independent observation vectors Y=[y(0), y(1), ..., y(N–1)] is  
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Taking the derivative of the log-likelihood of Equation (15.71) with respect 
to the channel vector h  yields a maximum likelihood channel estimate as 
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ˆ h ML(Y,s) = Σ xx ,s(k )
−1

k= 0

N −1

∑ 
 

 
 

−1
Σ xx ,s(m)

−1 y(m) − µ x,s(m)( )
m=0

N−1

∑  (15.72) 

 
Note that when all the state observation covariance matrices are identical the 
channel estimate becomes  
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The ML estimate of Equation (15.73) is based on the ML state sequence s of 
Mi. In the following section we consider the conditional mean estimate over 
all state sequences of a model. 
 
 
15.4.5 MAP Channel Estimate Based on HMMs 
 
The conditional pdf of a channel h averaged over all HMMs can be 
expressed as 
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where )( iP MM  is the prior pmf of the input words. Given a sequence of N 
P-dimensional observation vectors Y=[y(0), ..., y(N–1)], the posterior pdf of 
the channel h along a state sequence s of an HMM Mi is defined as 
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where it is assumed that each state of the HMM has a Gaussian distribution  
with mean vector µx,s(m) and covariance matrix Σxx,s(m), and that the channel 
h  is also Gaussian-distributed, with mean vector µh and covariance matrix 
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Σhh. The MAP estimate along state s, on the left-hand side of Equation 
(15.75), can be obtained as 
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The MAP estimate of the channel over all state sequences of all HMMs can 
be obtained as 
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15.4.6 Implementations of HMM-Based Deconvolution 
  
In this section, we consider three implementation methods for HMM-based 
channel equalization.   
 
Method I: Use of the Statistical Averages Taken Over All HMMs  
 

A simple approach to blind equalization, similar to that proposed by 

Stockham, is to use as the channel input statistics the average of the mean 

vectors and the covariance matrices, taken over all the states of all the 

HMMs as
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where ji ,Mµ  and ji ,MΣ  are the mean and the covariance of the jth state of the 

ith HMM, V and Ns denote the number of models and number of states per 
model respectively. The maximum likelihood estimate of the channel, ˆ h ML , 
is defined as 
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ˆ h ML = y − µ x( )          (15.79) 
 
where y  is the time-averaged channel output. The estimate of the channel 
input is  
 

ˆ x (m) = y(m) − ˆ h ML          (15.80) 
 

Using the averages over all states and models, the MAP channel estimate 
becomes 

ˆ h MAP(Y ) = Σ xx + Σhh( )−1Σ hh y(m) − µx( )
m=0

N−1

∑ + Σxx + Σhh( )−1Σ xx µ h    

(15.81) 
 
 
Method II: Hypothesised-Input HMM Equalization 
 
In this method, for each candidate HMM in the input vocabulary, a channel 
estimate is obtained and then used to equalise the channel output, prior to 
the computation of a likelihood score for the HMM. Thus a channel estimate 
ˆ h w  is based on the hypothesis that the input word is w. It is expected that a 

better channel estimate is obtained from the correctly hypothesised HMM, 
and a poorer estimate from an incorrectly hypothesised HMM. The 
hypothesised-input HMM algorithm is as follows (Figure 15.9): 
 
For  i =1 to number of words V  { 
    step 1 Using each HMM, Mi,  make an estimate of the channel, ˆ h i , 

    step 2 Using the channel estimate, iĥ , estimate the channel input   

imm hyx ˆ)()(ˆ −=   
    step 3 Compute a probability score for model Mi, given the estimate         
              [ ˆ x (m)]. } 
Select the channel estimate associated with the most probable word. 
 
Figure 15.10 shows the ML channel estimates of two channels using 
unweighted average and hypothesised-input methods.  
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Figure 15.9 Hypothesised channel estimation procedure. 
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Figure 15.10 Illustration of actual and estimated channel response for 

 two channels. 
 
 
Method III: Decision-Directed Equalization  
  
Blind adaptive equalizers are often composed of two distinct sections: an 
adaptive linear equalizer followed by a non-linear estimator to improve the 
equalizer output. The output of the non-linear estimator is the final estimate 
of the channel input, and is used as the desired signal to direct the equalizer 
adaptation. The use of the output of the non-linear estimator as the desired 
signal assumes that the linear equalization filter removes a large part of the 
channel distortion, thereby enabling the non-linear estimator to produce an 
accurate estimate of the channel input. A method of ensuring that the 
equalizer locks into, and cancels a large part of the channel distortion is to 
use a startup, equalizer training period during which a known signal is 
transmitted.  
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Figure 15.11 illustrates a blind equalizer incorporating an adaptive linear 
filter followed by a hidden Markov model classifier/estimator. The HMM 
classifies the output of the filter as one of a number of likely signals and 
provides an enhanced output, which is also used for adaptation of the linear 
filter. The output of the equalizer z(m) is expressed as the sum of the input 
to the channel x(m) and a so-called convolutional noise term v(m) as 
 

)()()( mvmxmz +=          (15.82) 
 
The HMM may incorporate state-based Wiener filters for suppression of the 
convolutional noise v(m) as described in Section 5.5. Assuming that the 
LMS adaptation method is employed, the adaptation of the equalizer 
coefficient vector is governed by the following recursive equation:  
 

)()()1(ˆ)(ˆ invinv mymemhmh µ+−=          (15.83) 
 

where )(ˆinv mh  is an estimate of the optimal inverse channel filter, µ is an 
adaptation step size and the error signal e(m) is defined as 
 

)()(ˆ)( mzmxme HMM −=           (15.84) 
  
where )(ˆ mxHMM  is the output of the HMM-based estimator and is used as 
the correct estimate of the desired signal to direct the adaptation process. 
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Figure 15.11 A decision-directed equalizer. 
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15.5 Blind Equalization for Digital Communication Channels 
 
High speed transmission of digital data over analog channels, such as 
telephone lines or a radio channels, requires adaptive equalization to reduce 
decoding errors caused by channel distortions. In telephone lines, the 
channel distortions are due to the non-ideal magnitude response and the 
nonlinear phase response of the lines. In radio channel environments, the 
distortions are due to non-ideal channel response as well as the effects of 
multipath propagation of the radio waves via a multitude of different routes 
with different attenuations and delays. In general, the main types of 
distortions suffered by transmitted symbols are amplitude distortion, time 
dispersion and fading. Of these, time dispersion is perhaps the most 
important, and has received a great deal of attention. Time dispersion has 
the effect of smearing and elongating the duration of each symbol. In high 
speed communication systems, where the data symbols closely follow each 
other, time dispersion results in an overlap of successive symbols, an effect 
known as intersymbol interference (ISI), illustrated in Figure 15.12.   
 In a digital communication system, the transmitter modem takes N bits 
of binary data at a time, and encodes them into one of 2N analog symbols for 
transmission, at the signalling rate, over an analog channel. At the receiver 
the analog signal is sampled and decoded into the required digital format. 
Most digital modems are based on multilevel phase-shift keying, or 
combined amplitude and phase shift keying schemes. In this section we 
consider multi-level pulse amplitude modulation (M-ary PAM) as a 
convenient scheme for the study of adaptive channel equalization. 
 Assume that at the transmitter modem, the kth set of N binary digits is 
mapped into a pulse of duration Ts seconds and an amplitude a(k). Thus the 
modulator output signal, which is the input to the communication channel, 
is given as 

∑ −=
k

skTtrkatx )()()(           (15.85) 

 

1       1       0      1        0       1

time time

Received waveformTransmitted waveform

 
Figure 15.12 Illustration of intersymbol interference in a binary pulse amplitude 

modulation system. 
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where r(t) is a pulse of duration Ts and with an amplitude a(k) that can 
assume one of M=2N distinct levels. Assuming that the channel is linear, the 
channel output can be modelled as the convolution of the input signal and 
channel response:  
 

∫
∞

∞−

−= τττ dtxhty )()()(           (15.86) 

 
where h(t) is the channel impulse response. The sampled version of the 
channel output is given by the following discrete-time equation: 
 

∑ −=
k
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To remove the channel distortion, the sampled channel output y(m) is passed 

to an equalizer with an impulse response invˆ
kh . The equalizer output z(m) is 

given as  
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         (15.88) 

 
where Equation (15.87) is used to obtain the second line of Equation 
(15.88). The ideal equalizer output is z(m)=x(m–D)=a(m–D) for some delay 
D that depends on the channel response and the length of the equalizer. 
From Equation (15.88), the channel distortion would be cancelled if  
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where hm

c  is the combined impulse response of the cascade of the channel 
and the equalizer. A particular form of channel equalizer, for the elimination 
of ISI, is the Nyquist zero-forcing filter, where the impulse response of the 
combined channel and equalizer is defined as  
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Note that in Equation (15.90), at the sampling instants the channel distortion 
is cancelled, and hence there is no ISI at the sampling instants. A function 
that satisfies Equation (15.90) is the sinc function hc(t)=sin(πfst)/πfst, where 
fs=1/Ts. Zero-forcing methods are sensitive to deviations of hc(t) from the 
requirement of Equation (15.90), and also to jitters in the synchronisation 
and the sampling process. 
 
 
15.5.1 LMS Blind Equalization  
  
In this section, we consider the more general form of the LMS-based 
adaptive equalizer followed by a nonlinear estimator. In a conventional 
sample-adaptive filter, the filter coefficients are adjusted to minimise the 
mean squared distance between the filter output and the desired signal. In 
blind equalization, the desired signal (which is the channel input) is not 
available. The use of an adaptive filter for blind equalization, requires an 
internally generated desired signal as illustrated in Figure 15.13. Digital 
blind equalizers are composed of two distinct sections: an adaptive equalizer 
that removes a large part of the channel distortion, followed by a non-linear 
estimator for an improved estimate of the channel input. The output of the 
non-linear estimator is the final estimate of the channel input, and is used as 
the desired signal to direct the equalizer adaptation. A method of ensuring 
that the equalizer removes a large part of the channel distortion is to use a 
start-up, equalizer training, period during which a known signal is 
transmitted.  
 Assuming that the LMS adaptation method is employed, the adaptation 
of the equalizer coefficient vector is governed by the following recursive 
equation:  

)()()1(ˆ)(ˆ invinv mmemm yhh µ+−=          (15.91) 
 

where )(ˆ inv mh  is an estimate of the optimal inverse channel filter invh , the 
scalar µ is the adaptation step size, and the error signal e(m) is defined as 
 

e(m) = ψ z(m)( ) − z(m)

= ˆ x (m ) − z(m)
         (15.92) 

 
where ˆ x (m) = ψ z(m)( )  is a non-linear estimate of the channel input. For 
example, in a binary communication system with an input alphabet {±a} we 
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can use a signum non-linearity such that ˆ x (m) = a.sgn z(m)( )  where the 
function sgn(· ) gives the sign of the argument. In the following,  we use a 
Bayesian framework to formulate the nonlinear estimator ψ(). 
 Assuming that the channel input is an uncorrelated process and the 
equalizer removes a large part of the channel distortion, the equalizer output 
can be expressed as the sum of the desired signal (the channel input) plus an 
uncorrelated additive noise term: 
 

z(m) = x(m) + v(m)           (15.93) 
 
where v(m) is the so-called convolutional noise defined as 
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 In the following, we assume that the non-linear estimates of the channel 
input are correct, and hence the error signals e(m) and v(m) are identical. 
Owing to the averaging effect of the channel and the equalizer, each sample 
of convolutional noise is affected by many samples of the input process. 
From the central limit theorem, the convolutional noise e(m) can be 
modelled by a zero-mean Gaussian process as 
 

y(m) z(m)=x(m)+v(m) x(m)^

e(m) error signal 

– +

Equalisation filter

hinv

LMS adaptation  
algorithm

Decision device

M-level quantiser

+

 
 
Figure 15.13 Configuration of an adaptive channel equalizer with an estimate of 

the channel input used as an “internally” generated desired signal 
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where σe

2 , the noise variance, can be estimated using the recursive time-
update equation 

)()1()1()( 222 memm ee ρσρσ −+−=         (15.96) 
 
where ρ < 1 is the adaptation factor. The Bayesian estimate of the channel 
input given the equalizer output can be expressed in a general form as 
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where ( ))(ˆ),( mxmxC  is a cost function and fX|Z(x(m)|z(m)) is the posterior 
pdf of the channel input signal. The choice of the cost function determines 
the type of the estimator as described in Chapter 4. Using a uniform cost 
function in Equation (15.97) yields the maximum a posteriori (MAP) 
estimate  
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Now, as an example consider an M-ary pulse amplitude modulation system, 
and let {ai  i=1, ..., M} denote the set of M pulse amplitudes with a 
probability mass function 
 

( ) ( )∑
=

−=
M

i
iiX amxPmxP

1

)()( δ          (15.99) 

 
The pdf of the equalizer output z(m) can be expressed as the mixture pdf 
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The posterior density of the channel input is 
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and the MAP estimate is obtained from 
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Note that the classification of the continuous-valued equalizer output z(m) 
into one of M discrete channel input symbols is basically a non-linear 
process. Substitution of the zero-mean Gaussian model for the convolutional 
noise e(m) in Equation (102) yields 
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Note that when the symbols are equiprobable, the MAP estimate reduces to 
a simple threshold decision device. Figure 15.13 shows a channel equalizer 
followed by an M-level quantiser. In this system, the output of the equalizer 
filter is passed to an M-ary decision circuit. The decision device, which is 
essentially an M-level quantiser, classifies the channel output into one of M 
valid symbols. The output of the decision device is taken as an internally 
generated desired signal to direct the equalizer adaptation.  
 
 
15.5.2 Equalization of a Binary Digital Channel 
  
Consider a binary PAM communication system with an input symbol 
alphabet {a0, a1} and symbol probabilities P(a0 )=P0 and P(a1)=P1=1–P0. 
The pmf of the amplitude of the channel input signal can be expressed as 
 

( ) ( ) ( )1100 )()()( amxPamxPmxP −+−= δδ       (15.104) 
 
Assume that at the output of the linear adaptive equalizer in Figure 15.13, 
the convolutional noise v(m) is a zero-mean Gaussian process with variance 
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σv
2 . Therefore the pdf of the equalizer output z(m)=x(m)+v(m) is a mixture 

of two Gaussian pdfs and can be described as  
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The MAP estimate of the channel input signal is 
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 (15.106) 
 
For the case when the channel alphabet consists of a0=–a, a1=a and P0=P1, 
the MAP estimator is identical to the signum function sgn(x(m)), and the 
error signal is given by 
 

e(m) = z(m) − sgn z(m)( )a        (15.107) 
 

Figure 15.14 shows the error signal as a function of z(m). An undesirable 
property of a hard non-linearity, such as the sgn(· ) function, is that it 
produces a large error signal at those instances when z(m) is around zero, 

 
 

e(m)

z(m)0

a

-a

-2a 2a

σ=1

σ ⇒ 0

 
Figure 15.14 Comparison of the error functions produced by the hard non-linearity 

of a sign function Equation (15.107) and the soft non-linearity of Equation 
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and a decision based on the sign of z(m) is most likely to be incorrect. 
 A large error signal based on an incorrect decision would have an 

unsettling effect on the convergence of the adaptive equalizer. It is desirable 
to have an error function that produces small error signals when z(m) is 
around zero. Nowlan and Hinton proposed a soft non-linearity of the 
following form 
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The error e(m) is small when the magnitude of z(m) is small and large when 
magnitude of z(m) is large. 
  
   
15.6 Equalization Based on Higher-Order Statistics 
 
The second-order statistics of a random process, namely the autocorrelation 
or its Fourier transform the power spectrum, are central to the development 
the linear estimation theory, and form the basis of most statistical signal 
processing methods such as Wiener filters and linear predictive models. An 
attraction of the correlation function is that a Gaussian process, of a known 
mean vector, can be completely described in terms of the covariance matrix, 
and many random processes can be well characterised by Gaussian or 
mixture Gaussian models. A shortcoming of second-order statistics is that 
they do not include the phase characteristics of the process. Therefore, given 
the channel output, it is not possible to estimate the channel phase from the 
second-order statistics. Furthermore, as a Gaussian process of known mean 
depends entirely on the autocovariance function, it follows that blind 
deconvolution, based on a Gaussian model of the channel input, cannot 
estimate the channel phase.  

Higher-order statistics, and the probability models based on them, can 
model both the magnitude and the phase characteristics of a random process. 
In this section, we consider blind deconvolution based on higher-order 
statistics and their Fourier transforms known as the higher-order spectra. 
The prime motivation in using the higher-order statistics is their ability to 
model the phase characteristics. Further motivations are the potential of the 
higher order statistics to model channel non-linearities, and to estimate a 
non-Gaussian signal in a high level of Gaussian noise. 
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15.6.1 Higher-Order Moments, Cumulants and Spectra 
 
The kth order moment of a random variable X is defined as 
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where ΦX(ω) is the characteristic function of the random variable X defined 
as 

)][exp()( xjX ωω E=Φ          (15.110) 
 
From Equations (15.109) and (15.110), the first moment of X is m1=E[x], 

the second moment of X is m2=E[x2], and so on. The joint kth order moment 
(k=k1+k2) of two random variables X1 and X2 is defined as 
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and in general the joint kth order moment of N random variables is defined 
as  
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where k=k1+k2+... + kN and the joint characteristic function is 
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Now the higher-order moments can be applied for characterization of 
discrete-time random processes. The kth order moment of a random process 
x(m) is defined as 
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Note that the second-order moment E[x(m)x(m+τ)] is the autocorrelation 
function. 
 
 
Cumulants 
 
Cumulants are similar to moments; the difference is that the moments of a 
random process are derived from the characteristic function ΦX(ω), whereas 
the cumulant generating function CX(ω) is defined as the logarithm of the 
characteristic function as 
 

)]j[exp(ln)(ln)( xC XX ωωω E=Φ=         (15.115) 
 
Using a Taylor series expansion of the term E [exp(jωx)] in Equation 
(15.115) the cumulant generating function can be expanded as 
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where mk=E [xk] is the kth  moment of the random variable x. The kth order 
cumulant of a random variable is defined as 
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From Equations (15.116) and (15.117), we have  
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and so on. The general form of the kth order (k=k1+k2+ ... + kN) joint 
cumulant generating function is 
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The cumulants of a zero mean random process x(m)  are given as  
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and so on. Note that mx(k1, k2, ..., kN)=E[x(m)x(m+k1), x(m+k2), ..., 
x(m+kN)]. The general formulation of the kth order cumulant of a random 
process x(m) (Rosenblatt) is defined as 
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                        for   n = 3, 4, ... 
 

where ),,,( 21 n
G
x kkk �m  is the kth order moment of a Gaussian process 

having the same mean and autocorrelation as the random process x(m). 
From Equation (15.126), it follows that for a Gaussian process, the 
cumulants of order greater than 2 are identically zero.  
 
 
Higher-Order Spectra 
 
The kth order spectrum of a signal x(m) is defined as the (k–1)-dimensional 
Fourier transform of the kth order cumulant sequence as 
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For the case k=2, the second-order spectrum is the power spectrum given as 
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The bi-spectrum is defined as  
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and the tri-spectrum is  
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Since the term ejωt is periodic with a period of 2π, it follows that higher 
order spectra are periodic in each ωk with a period of 2π.   
 
 
15.6.2 Higher-Order Spectra of Linear Time-Invariant Systems 
 
Consider a linear time-invariant system with an impulse response sequence 
{hk}, input signal x(m) and output signal y(m). The relation between the kth-
order cumulant spectra of the input and output signals is given by 
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where H(ω) is the frequency response of the linear system {hk}. The 
magnitude of the kth-order spectrum of the output signal is given as 
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and the phase of the kth-order spectrum is 
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15.6.3 Blind Equalization Based on Higher-Order Cepstra 
 
In this section, we consider blind equalization of a maximum-phase channel, 
based on higher order cepstra. Assume that the channel can be modelled by 
an all-zero filter, and that its z-transfer function H(z) can be expressed as the 
product of a maximum-phase polynomial factor and a minimum-phase 
factor as 
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where G is a gain factor, Hmin(z) is a minimum-phase polynomial with all its 
zeros inside the unit circle, Hmax(z–1) is a maximum-phase polynomial with 
all its zeros outside the unit circle, and z–D inserts D unit delays in order to 
make Equation (15.134) causal. The complex cepstrum of H(z) is defined as  
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where Z–1 denotes the inverse z-transform. At z=ejω, the z-transform is the 
discrete Fourier transform (DFT), and the cepstrum of a signal is obtained 
by taking the inverse DFT of the logarithm of the signal spectrum. In the 
following we consider cepstra based on the power spectrum and the higher-
order spectra, and show that the higher-order cepstra have the ability to 
retain maximum-phase information. Assuming that the channel input x(m) is 
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a zero-mean uncorrelated process with variance σ x
2 , the power spectrum of 

the channel output can be expressed as 
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The cepstrum of the power spectrum of y(m) is defined as 
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where IDFT is the inverse discrete Fourier transform. Substituting 
Equations (15.135) and (15.36) in (15.139), the cepstrum can be expressed 
as 
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where A(m) and B(m) are defined as 
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Note from Equation (15.140) that the along the index m, the maximum-
phase information B(m) and the minimum-phase information A(m) overlap 
and cannot be separated. 
 
Bi-Cepstrum 
 
The bi-cepstrum of a signal is defined as the inverse Fourier transform of 
the logarithm of the bi-spectrum: 
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where IDFT2[.] denotes the two-dimensional inverse discrete Fourier 
transform. The relationship between the bi-spectra of the input and output of 
a linear system is  
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Assuming that the input x(m) of the linear time-invariant system {hk} is an 
uncorrelated non-Gaussian process, the bi-spectrum of the output can be 
written as 
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where 2)3( )2( πγ x  is the third-order cumulant of the uncorrelated random 
input process x(m). Taking the logarithm of Equation (15.145) yields 
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where 23)3( )2( πγ GA x= . The bi-cepstrum is obtained through the inverse 
Discrete Fourier transform of Equation (15.146) as 
 




















<=

>=−

=<

=<−

=>−

=>−

==

=

−

−

−

otherwise,0

0,

0,

0,0,

0,0,

0,0,

0,0,

0,ln

),(

212
)(

212
)(

122
)(

211
)(

122
)(

211
)(

21

21

2

2

2

1

2

1

mmmA

mmmB

mmmB

mmmB

mmmA

mmmA

mmA

mmy

m

m

m

m

m

m

c

      (15.147) 
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Note from Equation (15.147) that the maximum-phase information B(m) and 
the minimum-phase information A(m) are separated and appear in different 
regions of the bi-cepstrum indices m1 and m2.  
 The higher-order cepstral coefficients can be obtained either from the 
IDFT of higher-order spectra as in Equation (15.147) or using parametric 
methods as follows. In general, the cepstral and cumulant coefficients can be 
related by a convolutional equation. Pan and Nikias (1988) have shown that 
the recursive relation between the bi-cepstrum coefficients and the third-
order cumulants of a random process is 
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Substituting Equation (15.147) in Equation (15.148) yields 
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The truncation of the infinite summation in Equation (15.149) provides an 
approximate equation as 
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Equation (15.150) can be used to solve for the cepstral parameters A(m) and 
B(m). 
 
Tri-Cepstrum 
 
The tri-cepstrum of a signal y(m) is defined as the inverse Fourier transform 
of the tri-spectrum: 
 

 )],,([ln),,( 3213321 ωωωYc CIDFTmmmy =       (15.151) 
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where IDFT3[· ] denotes the three-dimensional inverse discrete Fourier 
transform. The tri-spectra of the input and output of the linear system are 
related by  
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Assuming that the channel input x(m) is uncorrelated, Equation (15.152) 
becomes 
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where 
3)4( )2( πγ x  is the fourth-order cumulant of the input signal. Taking 

the logarithm of the tri-spectrum gives 
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From Equations (15.151) and (15.154), we have 
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where 34)4( )2( πγ GA x= . Note from Equation (15.155) that the maximum-
phase information B(m) and the minimum-phase information A(m) are 
separated and appear in different regions of the tri-cepstrum indices m1, m2 
and m3. 
 
Calculation of Equalizer Coefficients from the Tri-cepstrum 
 
Assuming that the channel z-transfer function can be described by Equation 
(15.134), the inverse channel can be written as 
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where it is assumed that the channel gain G is unity. In the time domain 
Equation (15.156) becomes 
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Pan and Nikias (1988) describe an iterative algorithm for estimation of the 
truncated impulse response of the maximum-phase and the minimum-phase 

factors of the inverse channel transfer function. Let ),(ˆinv
min mih , ),(ˆinv

max mih  
denote the estimates of the mth coefficients of the maximum-phase and 
minimum-phase parts of the inverse channel at the ith iteration . The Pan and 
Nikias algorithm is the following: 
(a) Initialisation  

1)0,(ˆ)0,(ˆ inv
max

inv
min == ihih            (15.158) 

 
(b) Calculation of the minimum-phase polynomial 
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(c) Calculation of the maximum-phase polynomial 
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The maximum-phase and minimum-phase components of the inverse 
channel response are combined in Equation (15.157) to give the inverse 
channel equalizer. 
 
 
15.7 Summary 
 
In this chapter, we considered a number of different approaches to channel 
equalization. The chapter began with an introduction to models for channel 
distortions, the definition of an ideal channel equalizer, and the problems 
that arise in channel equalization due to noise and possible non-invertibility 
of the channel. In some problems, such as speech recognition or restoration 
of distorted audio signals, we are mainly interested in restoring the 
magnitude spectrum of the signal, and phase restoration is not a primary 
objective. In other applications, such as digital telecommunication the 
restoration of both the amplitude and the timing of the transmitted symbols 
are of interest, and hence we need to equalise for both the magnitude and the 
phase distortions.  
  In Section 15.1, we considered the least square error Wiener 
equalizer. The Wiener equalizer can only be used if we have access to the 
channel input or the cross-correlation of the channel input and output 
signals.  
 For cases where a training signal cannot be employed to identify the 
channel response, the channel input is recovered through a blind 
equalization method. Blind equalization is feasible only if some statistics of 
the channel input signal are available. In Section 15.2, we considered blind 
equalization using the power spectrum of the input signal. This method was 
introduced by Stockham for restoration of the magnitude spectrum of 
distorted acoustic recordings. In Section 15.3, we considered a blind 
deconvolution method based on the factorisation of a linear predictive 
model of the convolved signals.  
 Bayesian inference provides a framework for inclusion of the statistics 
of the channel input and perhaps also those of the channel environment. In 
Section 15.4, we considered Bayesian equalization methods, and studied the 
case where the channel input is modelled by a set of hidden Markov models. 
Section 15.5 introduced channel equalization methods for removal of 
intersymbol interference in digital telecommunication systems, and finally 
in Section 15.6, we considered the use of higher-order spectra for 
equalization of non-minimum-phase channels.  
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