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Chapter 1 

Signals and Signal  Spaces 

The goal of this  chapter is to give a brief overview of methods for char- 
acterizing signals and for describing their  properties. We  will start with  a 
discussion of signal spaces such as Hilbert spaces, normed and  metric spaces. 
Then,  the energy density and correlation function of deterministic signals will 
be discussed. The remainder of this  chapter is dedicated to random signals, 
which are encountered in almost all areas of signal processing. Here, basic 
concepts  such as stationarity,  autocorrelation,  and power spectral  density will 
be discussed. 

1 .l Signal Spaces 

1.1.1 Energy and Power Signals 

Let  us consider a  deterministic  continuous-time  signalz(t), which  may be real 
or  complex-valued. If the energy of the signal defined  by 

is finite, we call it  an energy  signal. If the energy is infinite, but  the mean 
power 

1 



2 Chapter 1 .  Signals and Signal Spaces 

is finite, we call z(t)  a power  signal. Most signals encountered  in  technical 
applications belong to these  two classes. 

A second important classification of signals is their  assignment to  the signal 
spaces L,(a, b ) ,  where a and b are  the interval  limits  within which the signal 
is considered. By L,(a, b)  with 1 5 p < m we understand that class of signals 
z for which the integral I” lX(t)lP dt 

to be evaluated  in the Lebesgue  sense  is finite. If the interval  limits a and b 
are expanded to infinity, we also  write Lp(m)  or LP@). According to this 
classification, energy signals defined on the real  axis are elements of the space 
L2 (R). 

1.1.2 Normed  Spaces 

When  considering  normed  signal  spaces, we understand signals as  vectors that 
are elements of a linear  vector  space X .  The norm of a vector X can somehow 
be  understood  as the length of X. The  notation of the norm is 1 1 ~ 1 1 .  

Norms must  satisfy the following three axioms, where a is an  arbitrary 
real  or complex-valued scalar,  and 0 is the null vector: 

Norms for Continuous-Time Signals. The most common norms for 
continuous-time signals are  the L, norms: 

(1.6) 

For p + m, the norm (1.6) becomes llxllL, = ess sup Iz(t)l. 
astsb 

For p = 2 we obtain  the well-known Euclidean norm: 

Thus,  the signal  energy  according to (1.1) can also be expressed in the form 
00 

X E L2(IR). (1.8) 
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Norms for Discrete-Time Signals. The spaces lp(nl,  n2) are  the discrete- 
time equivalent to  the spaces Lp(a ,  b ) .  They  are  normed  as follows: 

(1.9) 

For p + CO, (1.9) becomes l l z l l e o o  = sup;Lnl Ix(n)I. 
For p = 2 we obtain 

Thus,  the energy of a discrete-time  signal z (n) ,  n E Z can  be expressed as: 

n=-cc 

1.1.3 Metric  Spaces 

A function that assigns a real  number to two elements X and y of a  non-empty 
set X is called a  metric  on X if it satisfies the following  axioms: 

(i)  d(x, y) 2 0, d(x, y) = 0 if and only if X = y,  (1.12) 

(ii) d(X,Y) = d(Y,X), (1.13) 
(iii) d(x, z )  I d(x, y) + d(y, z) .  (1.14) 

The  metric  d(x, y) can  be  understood  as the distance between X and y. 

A normed  space is also a metric  space.  Here, the metric  induced by the 
norm is the norm of the difference vector: 

Proof (norm + metric). For d ( z ,  g) = 112 - 2 / 1 1  the validity of (1.12) imme- 
diately follows  from (1.3).  With a = -1, (1.5)  leads to 1 1 2  - 2 / 1 1  = 119 - zlI, 
and (1.13) is also satisfied. For  two vectors z = a - b and y = b - c the 
following  holds according to (1.4): 

Thus, d(a, c)  I d(a, b) + d(b,  c ) ,  which means that also (1.14) is satisfied. 0 
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An example is the Eucladean  metric induced by the Euclidean  norm: 

Accordingly, the 
stated: 

1/2 

I 4 t )  - Y,,,l2dt] , 2, Y E L z ( a ,  b ) .  (1.16) 

following distance  between discrete-time signals can  be 

Nevertheless, we also find metrics which are not associated with  a  norm. 
An example is the Hamming  distance 

n 

d(X,Y)  = C K X k  + Y k )  mod 21, 
k=l 

which states  the number of positions where two  binary  code words X = 
[Q, 22,. . . ,X,] and y = [ y l ,  y ~ ,  . . . , yn] with xi, yi E (0, l} differ (the space of 
the code words  is not a linear vector space). 

Note. The normed spaces L, and l ,  are so-called Banach  spaces, which 
means that they  are normed linear spaces which are complete  with  regard to 
their  metric d(z ,  y) = 1 1 2  - y 1 1 .  A space is complete if any  Cauchy  sequence of 
the elements of the space converges within the space. That is, if 1 1 2 ,  - z,ll + 
0 as n and m + m, while the limit of X, for n + 00 lies  in the space. 

1.1.4 Inner Product Spaces 

The signal spaces most frequently considered are  the spaces L2(a ,  b )  and 
&(nl, n2); for these spaces inner products  can  be  stated. An inner product 
assigns a complex  number to two signals z ( t )  and y ( t ) ,  or z(n) and y ( n ) ,  
respectively. The  notation is (X, y). An inner product  must satisfy the 
following axioms: 

(i) k , Y >  = ( Y A *  (1.18) 
( 4  (aa:+Py,z) = Q ( X , . Z ) + P ( Y , 4  (1.19) 

(iii) ( 2 , ~ )  2 0, ( 2 , ~ )  = 0 if and only if X = 0.  (1.20) 

Here, a and ,B are  scalars with a,@ E (E, and 0 is the null vector. 
Examples of inner products  are 

(1.21) 
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and 

5 

The inner product (1.22) may also be  written  as 

where the vectors are  understood as column vectors:' 

More general definitions of inner products include weighting functions or 
weighting matrices. An inner product of two continuous-time signals z( t )  and 
y ( t )  including weighting  can  be defined as 

where g ( t )  is a real weighting function with g ( t )  > 0, a 5 t 5 b. 

The general definition of inner products of discrete-time signals is 

where G is a real-valued, Hermitian, positive definite weighting matrix.  This 
means that GH = GT = G, and all eigenvalues Xi  of G must  be larger than 
zero. As can easily be verified, the inner products (1.25) and (1.26) meet 
conditions (1.18) - (1.20). 

The  mathematical rules for inner products basically correspond to those 
for ordinary  products of scalars. However, the order in which the vectors occur 
must  be observed: (1.18) shows that changing the order leads to a  conjugation 
of the  result. 

As equation (1.19) indicates,  a scalar prefactor of the left argument may 
directly precede the inner product: (az, y) = a (2, y). If  we want a prefactor 

lThe superscript T denotes  transposition.  The  elements of a and g may  be  real  or 
complex-valued. A superscript H ,  as  in (1.23), means  transposition  and  complex  conjug& 
tion. A vector aH is also  referred to as  the Herrnitian of a. If a  vector is to be  conjugated 
but  not to be  transposed, we write a* such that aH = [ = * l T .  
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of the  right  argument to precede the inner product,  it must  be  conjugated, 
since (1.18) and (1.19) lead to 

Due to (1.18), an inner product ( 2 , ~ )  is always real: ( 2 , ~ )  = !I&{(%, z)}. 

By defining an inner product we obtain  a norm  and also a  metric.  The 
norm  induced by the inner product is 

We will prove this in the following along  with the Schwarz  inequality, which 
states 

I b , Y >  I I l 1 4  I lY l l .  (1.29) 

Equality in (1.29)  is  given only if X and y are linearly dependent,  that is, if 
one vector is a multiple of the  other. 

Proof (inner product + nom).  From (1.20) it follows immediately that 
(1.3)  is satisfied. For the norm of az ,  we conclude  from (1.18) and (1.19) 

llazll = ( a z , a z y  = [ la12 (2,z) ]1/2 = la1 (2,2)1/2 = la1 l l z l l .  

Thus, (1.5)  is also proved. 

Now the expression 1 1 2  + will be considered. We have 

Assuming the Schwarz inequality is correct, we conclude 

1 1 2  + Y1I2 I 1 1 4 1 2  + 2 l l 4 l  I lYll + 11YIl2 = ( 1 1 4  + llYl l)2* 

This shows that also (1.4) holds. 0 

Proof of the  Schwarz  inequality. The validity of the equality sign in the 
Schwarz inequality (1.29)  for linearly dependent vectors can easily be proved 
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by substituting z = a y  or y = az,  a E C, into (1.29) and  rearranging  the 
expression obtained, observing  (1.28). For example, for X = a y  we have 

In  order to prove the Schwarz inequality for linearly independent vectors, 
some vector z = z + a y  will be considered. On the basis of (1.18) - (1.20) we 
have 

0 I ( G . 4  

= (z + a y ,  X + a y )  

= ( z , z + a y ) + ( a y , z + a y )  

= ( ~ , ~ ) + a * ( ~ , Y ) + a ( Y , ~ ) + a a * ( Y , Y ) .  

(1.30) 

This also holds for the special a (assumption: y # 0) 

and we get 

The second and  the  fourth  term cancel, 

(1.32) 

Comparing (1.32) with (1.28) and (1.29) confirms the Schwarz inequality. 0 

Equation (1.28) shows that  the inner products given in (1.21) and (1.22) 
lead to  the norms (1.7) and  (1.10). 

Finally, let us remark that a linear space  with an inner product which  is 
complete with respect to  the induced  metric is called a Hilbert  space. 
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1.2 Energy  Density  and  Correlation 

1.2.1 Continuous-Time Signals 

Let  us reconsider (1.1): 

E, = S__lz(t)l2 dt .  
00 

According to Parseval’s theorem, we may also write 

E, = - 

(1.33) 

(1.34) 

where X(W) is the Fourier transform of ~ ( t ) . ~  The  quantity Iz(t)I2 in (1.33) 
represents the  distribution of signal energy  with respect to time t ;  accordingly, 
IX(w)I2 in (1.34) can  be viewed as  the  distribution of energy  with respect to 
frequency W. Therefore IX(w)I2 is called the energy  density  spectrum of z ( t ) .  
We use the following notation 

= IX(w)I2. (1.35) 

The energy density spectrum S,“,(w) can also be  regarded as  the Fourier 
transform of the so-called autocorrelation function 

cc 
r,”,(r) = z* ( t )  z(t + r )  dt = X*(-r) * X(.). (1.36) 

J -cc 

We have cc 
S,”,(W) = l c c r f z ( ~ )  e-jwT dr .  (1.37) 

The correspondence is denoted as S,”,(w) t) r,”,(r). 
The  autocorrelation function is a measure  indicating  the similarity between 

an energy signal z(t)  and  its time-shifted variant zr ( t )  = z ( t  + r) .  This  can 
be seen from 

d ( 2 , 2 A 2  = 1 1 2  - 4 2 

= (2,4 - (2,G) - ( G ,  2) + ( G ,  2,) 
= 2 1 1 2 1 1 2  - 2 % { ( G ,  2)) 

= 2 1 1 2 1 1 2  - 2 %{?fx(r)}.  

(1.38) 

With increasing correlation the  distance decreases. 

21n this  section, we freely use the  properties of the Fourier transform. For  more  detail 
on the Fourier  transform and Parseval’s theorem, see Section 2.2. 
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Similarly, the cross  correlation function 

cc 
r,",(r) = [ y(t + r )  z*(t)  d t  

J -00 

and  the corresponding cross  energy density spectrum 

F c c  

S,",(W) = r,E,(r) C j W T  d r ,  I-, 

(1.39) 

(1.40) 

(1.41) 

are  introduced, where .Fy(.) may  be viewed as a measure of the similarity 
between the two signals z ( t )  and y T ( t )  = y(t + 7). 

1.2.2 Discrete-Time Signals 

All  previous considerations are applicable to discrete-time signals z (n)  as well. 
The signals z(n) may be real or complex-valued.  As in the continuous-time 
case, we start  the discussion with the energy of the signal: 

00 

(1.42) 

According to Parseval's  relation for the discrete-time Fourier transform, we 
may  alternatively  compute E, from X(ejw):3 

(1.43) 

The  term IX(ejW)12 in (1.43) is called the energy density spectrum of the 
discrete-time signal. We use the notation 

S,E,(ejw) = IX(ejW)12. (1.44) 

The energy  density  spectrum S,",(ej") is the discrete-time Fourier transform 
of the autocorrelation  sequence 

00 

?-:,(m) = c z*(n) z(n + m). (1.45) 

3See Section 4.2 for  more detail on the discrete-time Fourier transform. 
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We have 
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M c 
5 

m=-cc 
(1.46) 

r,E,(m) = G I T S F z ( e j w )  1 "  ejwm dw. 

Note that  the energy density may also be viewed as  the  product X ( z ) X ( z ) ,  
evaluated  on the  unit circle ( z  = e j w ) ,  where X ( z )  is the  z-transform of z(n).  

The definition of the cross  correlation  sequence is 

cc 

r,E,(m) = c y(n+m) z*(n). (1.47) 
n=-cc 

For the corresponding cross  energy  density  spectrum the following holds: 

cc 

m=-m 

that is 

(1.48) 

(1.49) 

1.3 Random  Signals 

Random signals are encountered in all areas of signal processing. For example, 
they  appear  as  disturbances in the transmission of signals. Even the  trans- 
mitted  and consequently also the received signals in telecommunications are 
of random  nature, because only random signals carry information. In  pattern 
recognition, the  patterns  that  are  to be distinguished are modeled as  random 
processes. In speech, audio,  and  image coding, the signals to be  compressed 
are modeled as such. 

First of all,  one distinguishes between random  variables and random 
processes. A random variable is obtained by assigning a real or  complex 
number to each  feature mi from a feature set M .  The  features (or events) 
occur  randomly.  Note that  the  features themselves  may also be  non-numeric. 

If one assigns a function iz(t)  to each  feature mi, then  the  totality of all 
possible functions is called a stochastic  process. The  features occur  randomly 
whereas the assignment mi + i z ( t )  is deterministic. A function i z ( t )  is  called 
the realization of the  stochastic process z ( t ) .  See Figure 1.1 for an  illustration. 
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t "  
3 \ 1 

(b) 

Figure 1.1. Random  variables (a) and random  processes (b). 

1.3.1 Properties of Random  Variables 

The  properties of a real  random  variable X are thoroughly  characterized by 
its cumulative  distribution function F,(a) and also by its probability  density 
function (pdf) p,(.). The  distribution  states the probability P with which 
the value of the random  variable X is smaller than or equal to a given  value 
a: 

F,(a) = P ( x  a).  (1.50) 

Here, the axioms of probability hold, which state  that 

lim F,(a) = 0, lim F,(a) = 1, F,(al) 5 F,(a2) for a1 5 a2. 
a+--00 a+w 

(1.51) 
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Given the distribution, we obtain  the pdf  by differentiation: 

(1.52) 

Since the distribution is a non-decreasing function, we have 

Joint Probability Density. The  joint probability  density p,,,,, ([l, &) of 
two  random  variables 21 and 22 is given  by 

PZ1,22(tl,t22) =pz,(t1) PZZ1X1(t221t1), (1.54) 

where pz,lzl (52 I&) is a  conditional  probability  density  (density of 2 2  provided 
x1 has  taken  on the value 51). If the variables 2 1  and 22 are  statistically 
independent of one another, (1.54) reduces to 

P m , m  ([l, t2) = p,, (t1) p,, (&). (1.55) 

The pdf of a complex random  variable is defined as  the  joint density of its 
real and  imaginary  part: 

Moments. The  properties of a  random  variable  are  often  described by its 
moments 

m?) = E {Ixl"} . (1.57) 

Herein, E {-} denotes the expected value (statistical  average). An expected 
value E {g(z)}, where g(x)  is an  arbitrary function of the random variable x, 
can  be  calculated from the density as 

E {dxt.)} = Icc g(<) PX(5) d t .  (1.58) 

m z  = E { x }  = l c c t  P z ( 5 )  d t .  (1.59) 

-CQ 

For g(x) = x we obtain  the mean value (first moment): 
CQ 

For g(%) = we obtain  the average power  (second moment): 
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The variance (second  central  moment) is calculated with g(x) = Ix - mx12 as 
cc 

d = E { Ix - mXl2} = 15 - m,I2 P,(<) d5. (1.61) 
-cc 

The following holds: 
2 2  U, = S, - m,. 2 (1.62) 

Characteristic Function. The  characteristic function of a  random variable 

(1.63) 

which means that,  apart from the sign of the  argument, it is the Fourier 
transform of the pdf. According to  the moment  theorem of the Fourier 
transform (see Section 2.2), the moments of the  random variable can also 
be  computed  from the  characteristic function as 

(1.64) 

1.3.2 Random Processes 

The  starting point for the following considerations is a stochastic process x ( t ) ,  
from which the  random variables xtl , x t z ,  . . . , xi, with xtk = x(tk) are  taken at 
times tl < t z  < . . . < t,, n E Z. The  properties of these  random variables are 
characterized by their  joint pdf pz t1 ,Z t2  ,..., z tn  (a1, a ~ ,  . . . ,an). Then  a second 
set of random variables is taken  from  the process x ( t ) ,  applying  a  time shift T: 
xtl+T, xtz+T,. . . , ~ t , + ~  with xtk+r  = x(tk + T). If the  joint densities of both 
sets  are equal for all time shifts T and all n, that is, if  we have 

then we speak of a strictly stationary process, otherwise we call the process 
non-stationary. 

Autocorrelation and  Autocovariance  Functions of Non-Stationary 
Processes. The  autocorrelation function of a general random process is 
defined as a  second-order  moment: 

(1.66) 
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where z1 = z(t1) and 2 2  = x*(tz). 
Basically, the  autocorrelation function indicates how similar the process is 

at times tl and t2, since for the expected  Euclidean  distance we have 

The autocovariance function of a random process is  defined as 

(1.67) 

where mtk denotes the expected value at time tk; i.e. 

m t k  = E { Z ( t k ) }  ‘ (1.68) 

Wide-Sense Stationary Processes. There  are processes whose mean value 
is constant  and whose autocorrelation function is a function of tl - t2. Such 
processes are referred to as “wide-sense stationary”, even if they  are non- 
stationary according to  the above definition. 

Cyclo-Stationary Process. If a process is non-stationary  according to  the 
definition stated above, but if the  properties  repeat periodically, then we speak 
of a cyclo-stationary  process. 

Autocorrelation and  Autocovariance  Functions of Wide-Sense Sta- 
tionary Processes. In  the following we assume wide-sense stationarity, so 
that  the first and second  moments are independent of the respective time. 
Because of the  stationarity we must  assume that  the process realizations 
are  not absolutely integrable,  and that their Fourier transforms  do  not  exist. 
Since in the field of telecommunications  one also encounters  complex-valued 
processes when describing real bandpass processes in the complex  baseband, 
we shall  continue by looking at complex-valued processes. For  wide-sense 
stationary processes the autocorrelation function (acf)  depends only on the 
time shift between the respective times;  it is  given  by 

T,,(T) = E { z * ( t )   z ( t  + T)} . (1.69) 

For 2 1  = z ( t  + T) and 2 2  = z* ( t ) ,  the expected value E { e }  can  be  written as 

Tzz(.) = E { X 1  z2} = (1.70) 



1.3. Random Signals 15 

The maximum of the  autocorrelation function is located at r = 0, where its 
value equals the mean  square value: 

Furthermore we have r,,(-r) = riz  (7). 

When subtracting  the mean 

prior computing the  autocorrelation  function, we get the autocovariance 
function 

c,,(r) = E {[x*( t )  - 4 1  [x(t  + .) - m,]) 
(1.73) 

Power  Spectral  Density. The power  spectral density, or power density 
spectrum, describes the  distribution of power with respect to frequency. It 
is  defined as the Fourier transform of the  autocorrelation function: 

CQ 

S,,(w) = ~ m r , , ( r )  e-jwT d r  (1.74) 

$ 
(1.75) 

This definition is based  on the Wiener-Khintchine theorem, which states  that 
the physically meaningful power spectral density given  by 

with 
X T ( W )  t) z ( t )  rect(-), 

t 
T 

and 
rect(t) = 1, for It1 0.5 

0, otherwise 

is identical to  the power spectral density given in (1.74). 
Taking (1.75) for T = 0, we obtain 

S; = rZZ(0)  = L J SZZ(w) dw. 
27r -CQ 

(1.76) 

(1.77) 
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Cross Correlation and  Cross  Power Spectral Density. The cross 
correlation between two wide-sense stationary  random processes z ( t )  and y ( t )  
is defined as 

Txy (7) = E {X* ( t )  Y (t + 7) } . (1.78) 

The Fourier  transform of rXy(7) is the cross  power  spectral  density, denoted 
as Szy ( W ) .  Thus, we have the correspondence 

(1.79) 

Discrete-Time Signals. The following definitions for discrete-time signals 
basically correspond to those for continuous-time  signals; the correlation and 
covariance functions, however,  become correlation and covariance  sequences. 
For the autocorrelation  sequence we have 

rxx(m)  = E {x*(n) x ( n  + m ) } .  (1.80) 

The autocovariance  sequence is defined as 

(1.82) 

The discrete-time Fourier transform of the autocorrelation sequence is the 
power  spectral  density (Wiener-Khintchine theorem). We have 

M 

m=-cc 

(1.83) 

(1.84) 
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The definition of the cross  correlation  sequence is 

m=--00 

A cross  covariance  sequence can  be defined as 

Correlation Matrices. Auto  and cross  correlation  matrices are frequently 
required. We use the following definitions 

R,, = E { x x H } ,  

R z y  = E { Y X H } ,  
(1.89) 

where 
X = [z(n),  z(n + l), . . . , z(n + NZ - 1 ) I T ,  

Y = [ y ( n ) , y ( n  + l), . . . ,Y(n + Ny - IllT. 
(1.90) 

The  terms x x H  and gxH are dyadic  products. 
For the sake of completeness  it shall be  noted that  the  autocorrelation 

matrix R,, of a  stationary process z(n) has  the following Toeplitz  structure: 

. (1.91) 
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Here, the  property 
r,, (-4 = c, (4 7 (1.92) 

which  is concluded  from (1.80)  by taking  stationarity  into consideration, has 
been used. 

If two processes x(n) and y(n) are pairwise stationary, we have 

.zy(-i) = . f ,( i) ,  (1.93) 

and  the cross correlation matrix R,, = E { y X"} has  the following structure: 

Auto  and cross-covuriunce  matrices can  be defined in an analog way  by 
replacing the  entries rzy(m) through czy(m). 

Ergodic Processes. Usually, the  autocorrelation function is calculated 
according to (1.70) by taking  the ensemble average. An exception to this 
rule is the ergodic  process, where the ensemble  average  can  be replaced by a 
temporal average. For the  autocorrelation function of an ergodic continuous- 
time process we have 

(1.95) 

where iz(t) is an  arbitrary realization of the  stochastic process. Accordingly, 
we get 

(1.96) 

for discrete-time signals. 

Continuous-Time White Noise Process. A wide-sense stationary 
continuous-time noise process x ( t )  is said to be  white if its power spectral 
density is a constant: 

S z z ( W )  = CJ . 2 (1.97) 
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The  autocorrelation function of the process is a  Dirac  impulse  with weight 
2 : 

rzz(7) = uz d(7) .  (1.98) 

Since the power of such a process is infinite it is not realizable. However, 
the white noise process is a convenient model process which  is often used  for 
describing properties of real-world systems. 

Continuous-Time Gaussian White Noise Process. We consider a real- 
valued wide-sense stationary  stochastic process ~ ( t )  and  try  to represent it 
on the interval [-a, a] via a series expansion4  with an  arbitrary real-valued 
orthonormal basis cpi(t) for L2 (-a, a). The basis satisfies 

If the coefficients of the series expansion given  by 

ai = 1; cpi(t) X ( t )  dt  

are Gaussian  random variables with 

E { a ? }  = cT2 vi 
we call x ( t )  a  Gaussian  white noise process. 

Bandlimited White Noise Process. A bandlimited  white noise process is 
a  white noise process whose  power spectral density is constant  within  a  certain 
frequency  band and zero outside this  band. See Figure 1.2 for an  illustration. 

t 
-%lax umax 0 

Figure 1.2. Bandlimited white noise process. 

Discrete-Time White Noise Process. A discrete-time white noise process 
has  the power spectral density 

SZZ(&) = cTz (1.99) 

4Series  expansions are discussed  in  detail  in  Chapter 3. 
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and  the  autocorrelation sequence 

T Z d r n )  = fJ dmo. 2 (1.100) 

1.3.3 Transmission of Stochastic Processes through 
Linear Systems 

Continuous-Time Processes. We assume  a linear time-invariant system 
with the impulse  response h(t), which  is excited by a stationary process ~ ( t ) .  
The cross correlation function between the  input process ~ ( t )  and  the  output 
process y ( t )  is  given  by 

cm 
- 

- L E { ~ * ( t )  x (~+T--X)}  h(X)dX (1.101) 

= T Z Z ( T )  * h(.). 

The cross power spectral density is obtained by taking  the Fourier trans- 
form of (1.101): 

SZY(W) = SZZ(W)  H ( w ) .  (1.102) 

Calculating the  autocorrelation function of the  output signal is done as 
follows: 

= / / E { x * ( ~ - Q ! )  z ( t + ~ - P ) }  h*(a)h(P)dadP 

= /rZZ(. - X) /h*(a)h(a + X) dadX 

(1.103) 
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Thus, we obtain  the following relationship: 

Taking the Fourier transform of (1.104), we obtain  the power spectral 
density of the  output signal: 

Sy,(w) = Szz(w) IH(w) I2 .  (1.105) 

We observe that  the phase of H ( w )  has no influence on Syy(w). Consequently, 
only the  magnitude frequency response of H ( w )  can  be  determined from 
S Z Z  ( W )  and S y y ( 4 .  

Discrete-Time Processes. The  results for continuous-time signals and 
systems  can be directly applied to  the discrete-time case, where a system 
with impulse response h(n) is excited by a process z (n) ,  yielding the  output 
process y(n).  The cross correlation sequence between input  and  output is 

% y ( m )  = r z z ( m )  * h(m). 

The cross  power spectral density becomes 

(1.106) 

Szy(ejw) = Szz(ej")  H(ej"). (1.107) 

For the autocorrelation sequence and  the power spectral density at  the  output 
we get 

(1.108) 

s,,(ej") = szz(eju) IH(eju)l" (1.109) 

As before, the phase of H(ej'")  has  no influence on S,,(ej"). 

Here we cease  discussion of the transmission of stochastic processes 
through linear systems, but we will return  to  this topic in Section 5 of 
Chapter 2, where we will study  the representation of stationary bandpass 
processes  by means of their complex  envelope. 


