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Chapter 2 

Integral 

Signal Represent at ions 

The  integral  transform is one of the most important tools in signal theory. 
The best known example is the Fourier transform,  but  there  are  many 
other  transforms of interest.  In  the following, W will first discuss the basic 
concepts of integral  transforms.  Then we will study  the Fourier, Hartley, and 
Hilbert transforms. Finally, we will focus on real bandpass processes and  their 
representation by means of their  complex envelope. 

2.1 Integral  Transforms 

The basic idea of an integral  representation is to describe a signal ~ ( t )  via its 
density $(S) with respect to  an  arbitrary kernel p(t, S): 

$(S) p(t, S) ds, t E T.  (2.1) 

Analogous to  the reciprocal basis in discrete signal representations (see 
Section 3.3) a reciproal  kernel O(s,t) may be  found  such that  the  density 
P(s) can  be calculated in the form 

* ( S )  = ~ ( t )  e ( s , t )  d t ,  S E S. S, 
22 
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Contrary to discrete representations, we do  not  demand that  the kernels cp(t, S )  

and @(S, t )  be  integrable  with respect to t .  
From (2.2) and (2.1), we obtain 

In  order to  state  the condition for the validity of (2.3) in a relatively 
simple  form the so-called Dirac impulse d(t) is required. By this we mean 
a generalized function with the  property 

cc 
~ ( t )  = d(t - T )  X(.) dT, X E &(R). 

The Dirac  impulse  can  be viewed as the limit of a family of functions g a ( t )  
that  has  the following property for all signals ~ ( t )  continuous at the origin: 

L (2.4) 

An example is the Gaussian function 

Considering the Fourier transform of the Gaussian  function,  that is 
cc 

GCY(u) = l c c g a ( t )  ,-jut dt 

W 2  - -_ - e 201 , 
we find that  it  approximates  the  constant one for a + 0, that is  G,(w) M 

1, W E R. For the Dirac  impulse the correspondence d( t )  t) 1 is introduced 
so that (2.4) can  be  expressed as X(W) = 1 X(W) in the frequency  domain. 

Equations (2.3) and (2.4) show that  the kernel and  the reciprocal kernel 

S, e(s,  T) p(t, S) ds = d ( t  - T ) .  (2.8) 

must satisfy 

By substituting (2.1) into (2.2) we obtain 

2(s) = S, L 2 ( a )  cp(t,a) d a  e ( s , t )  dt 
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which implies that 

r 

I T  
p(t, c) O(s, t )  d t  = S(s - 0). (2.10) 

Equations (2.8) and (2.10) correspond to  the relationship (cpi,8j) = S i j  for 
the discrete case (see Chapter 3). 

Self-Reciprocal Kernels. A special category is that of self-reciprocal 
kernels. They  correspond to orthonormal  bases in the discrete case and satisfy 

p(t, = e*(s, t ) .  (2.11) 

Transforms that contain a self-reciprocal kernel are also called unitary, 
because  they yield 11511 = 1 1 ~ 1 1 .  
The Discrete Representation as a Special Case. The discrete represen- 
tation via series expansion, which  is discussed in detail in the next chapter, 
can  be  regarded as a special case of the  integral  representation.  In  order to 
explain this  relationship, let us consider the discrete set 

pi(t) = p(t, si ) ,  i = 1 , 2 , 3 , .  . . . (2.12) 

For signals ~ ( t )  E span {p(t, si); i = 1 , 2 , .  . .} we may  write 

i i 

Insertion  into (2.2) yields 

*(S) = L Z ( t ) O ( s ,  t )  d t  

(2.13) 

(2.14) 

The comparison  with (2.10) shows that in the case of a discrete representation 
the density ?(S) concentrates  on  the values si: 

*(S) = CQi &(S - Si). 
1. 

(2.15) 
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Parseval’s Relation. Let the signals z ( t )  and y(t) be  square  integrable, 
z, y E L2 (T ) .  For the densities let 

? ( S )  = l z ( t )  O(s, t )  d t ,  

where O(s, t )  is a self-reciprocal kernel satisfying 

S, O(s, t )  @ * ( S ,  7) d s  = @ ( S ,  t )  ( ~ ( 7 ,  S )  d s  S, 
= 6 ( t  - 7). 

Now the inner products 

(X7 U) = / z ( t )  Y * ( t )  d t  
T 

are  introduced.  Substituting (2.16) into (2.18) yields 

(2,fj) = / / / X(.) O(s,r) y * ( t )  O*(s, t )  d r   d t   d s .  
S T T  

Because of (2.17),  (2.19) becomes 

@,G) = l x ( r )  l y * ( t )  6 ( t  - r )  d t   d r  

= l X(.) y * ( r )   d r .  

From (2.20) and (2.18) we conclude that 

( $ 7  6) = (2, !A * 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

Equation (2.21) is  known as Parseval’s  relation. For y ( t )  = z ( t )  we obtain 

(&,g) = (x7x)  + 11211 = l lx l l  (2.22) 
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2.2 The Fourier Transform 

We assume a real or  complex-valued,  continuous-time signal z ( t )  which  is 
absolutely integrable (z E Ll(IR)). For such signals the Fourier transform 

X ( w )  = L m z ( t )  ,-jut dt 
00 

(2.23) 

exists. Here, W = 2 n  f ,  and f is the frequency in Hertz. 
The Fourier transform X ( w )  of a signal X E Ll(IR) has  the following 

properties: 

1. X E ~ o o ( I R )  with I I X  lloo I 11~111. 

2. X is continuous. 

3. If the derivative z'(t) exists and if it is absolutely integrable,  then 
00 

~ ' ( t )  Cjwt  d t  = j w  X (W) .  (2.24) 

4. For W + m and W + -m we have X ( w )  + 0. 

If X ( w )  is absolutely integrable, z ( t )  can  be  reconstructed  from X ( w )  via 
the inverse Fourier transform 

z(t)  = X ( w )  ejWt dw 
00 

2 n  --oc) 

(2.25) 

for all t where z ( t )  is continuous. 
The kernel used  is 

1 '  
2 n  

cp(t, W )  = -eJWt, T = (-m, m), (2.26) 

and for the reciprocal kernel we have' 

O(W,  t )  = ,-jut, S = (-m, m). (2.27) 

In  the following we will  use the  notation z ( t )  t) X ( w )  in order to indicate 
a Fourier transform  pair. 

We will  now  briefly recall the most important  properties of the Fourier 
transform. Most proofs are easily obtained  from  the definition of the Fourier 
transform itself. More elaborate discussions can  be  found in [114, 221. 

l A  self-reciprocal kernel is  obtained  either  in  the form cp(t,w) = exp(jwt)/& or by 
integrating over frequency f ,  not over W = 2xf: cp(t, f )  = exp(j2xft). 
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Linearity. It directly follows from (2.23) that 

a z ( t )  + P y ( t )  t) a X ( w )  + P Y ( w ) .  (2.28) 

Symmetry. Let z ( t )  t) X ( w )  be a Fourier transform  pair. Then 

X ( t )  t) 27rz(-w). (2.29) 

Scaling. For any  real a,  we have 

Shifting. For any  real t o ,  we have 

z(t  - t o )  t) e-jwto X ( w ) .  

e j w o t z ( t )  t) X ( w  - WO). 

Accordingly, 

(2.30) 

(2.31) 

(2.32) 

Modulation. For any  real WO,  we have 

1 1 
2  2 

coswot z ( t )  t) - X ( w  - WO) + - X ( w  + W O ) .  (2.33) 

Conjugation. The correspondence for conjugate  functions is 

z*(t)  t) X * ( - W ) .  (2.34) 

Thus,  the Fourier transform of real signals z ( t )  = X* ( t )  is symmetric: X *  ( W )  = 
X ( - W ) .  

Derivatives. The generalization of (2.24) is 

d" 
dt" 
- z ( t )  t) ( jw)"  X ( w ) .  (2.35) 

Accordingly, 
d" 

dw " (-jt)" z ( t )  t) - X @ ) .  (2.36) 

Convolution. A convolution in the  time domain  results  in a multiplication 
in  the frequency domain. 
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z(t)  y(t) t) - X ( w )  * Y ( w ) .  
1 

27r 

Moments. The  nth moment of z ( t )  given  by 

cc 
tn ~ ( t )  d t ,  n = 0,1,2. 

and  the  nth derivative of X ( w )  at  the origin are  related as 

(2.38) 

(2.39) 

(2.40) 

Parseval’s Relation. According to Parseval’s relation, inner products of 
two signals can  be calculated in the  time as well as  the frequency  domain. For 
signals z(t)  and y ( t )  and  their Fourier transforms X ( w )  and Y ( w ) ,  respectively, 
we have 

cc  cc L ~ ( t )  y*(t) d t  = X ( w )   Y * ( w )   d w .  (2.41) 
27r -W 

This  property is easily obtained  from (2.21) by using the fact that  the scaled 
kernel (27r)-iejwt is self-reciprocal. 

Using the  notation of inner products, Parseval’s relation may also be 
written  as 

1 
(2 ’9)  = # ’ V .  (2.42) 

From (2.41) with z ( t )  = y(t) we see that  the signal energy  can  be 
calculated in the  time  and frequency  domains: 

(2.43) 

This relationship is  known as Parseval’s  theorem. In vector notation  it  can  be 
written  as 

1 
27r 

(2’2) = - ( X ’ X ) .  (2.44) 
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2.3 The Hartley  Transform 

In 1942 Hartley proposed a real-valued transform closely related to  the Fourier 
transform [67]. It maps a real-valued signal into a real-valued frequency 
function using only real  arithmetic.  The kernel of the Hartley  transform is 
the so-called cosine-and-sine (cas)  function, given  by 

cas w t  = cos w t  + sin  wt. (2.45) 

This kernel can  be seen as a real-valued  version of d w t  = cos w t  + j sin wt,  the 
kernel of the Fourier transform. The forward and inverse Hartley  transforms 
are given  by 

XH(W) = l m x ( t )  caswt  dt (2.46) 
m 

and 
x(t) = I] XH(W) caswt dw, 

2lr -m 
(2.47) 

where both  the signal x(t)  and  the transform XH(W) are real-valued. 

In  the  literature, one also finds a more symmetric version based on the self- 
reciprocal kernel (27r-+ cas wt.  However, we use the non-symmetric form in 
order to  simplify the relationship between the Hartley  and Fourier transforms. 

The Relationship between the Hartley and  Fourier  Transforms. Let 
us consider the even and  odd  parts of the Hartley  transform, given  by 

The Fourier transform  may be  written  as 

X(w) = l c c x ( t )  e-jwt dt 
cc 

cc  cc 
x(t) coswt dt - j 

= X & ( W )  - jX&(W) 

- - XH(W) + X f f ( - W )  XH(W) - X f f ( - W )  

2 - j  2 

(2.50) 
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%{X(W)} = X%w) ,  

S {X(W)}  = -X&(w).  
(2.51) 

The  Hartley  transform  can  be  written in terms of the Fourier transform 
as 

X&) = %{X(w)}  - S { X ( w ) } .  (2.52) 

Due to their close relationship the  Hartley  and Fourier transforms  share 
many  properties. However,  some properties  are entirely different. In  the 
following we summarize the most important ones. 

Linearity. It directly follows from the definition of the  Hartley  transform 
that 

az( t )  +PY(t) * a X H ( w )  + P Y H ( W ) .  (2.53) 

Scaling. For any real a, we have 

(2.54) 

Proof. 

Time Inversion. From (2.54) with a = -1 we get 

z(-t) t) Xff(-w).  (2.55) 

Shifting. For any real t o ,  we have 

z(t  - t o )  t) coswto X H ( W )  + sinwto X H ( - W ) .  (2.56) 

Proof. We may  write 
cc  cc L L z(t - t o )  caswt dt = z(J) cas ( W [ [  + to ] )  dJ. 

Expanding  the  integral on the  right-hand side using the  property 

cas (a + p) = [cos a + sinal  cosp +   COS^ - sinal  sinp 

yields (2.56). 0 
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Modulation. For any real WO,  we have 

1 1 
2 2 

coswot z ( t )  t) - X H ( W  - WO) + - + W O ) .  (2.57) 

Proof. Using the  property 

1 1 
cosa  casP = - cas (a  - P )  + 5 cas (a  + P ) ,  

2 
we get 

00 

1, x(t) coswot caswt  dt 

x(t) cas ( [W - welt) dt + z(t)  cas ( [W +wo]t)  dt 

1 1 
2 2 

= - X &  - WO) + - X& + W O ) .  

Derivatives. For the  nth derivative of a signal x(t)  the correspondence is 

~ z ( t )  t) W" [cos ( y )  X H ( W )  - sin ( y )  X H ( - W ) ] .  (2.58) 
d" 
dtn 

Proof. Let y ( t )  = g x ( t ) .  The Fourier transform is Y ( w )  = ( jw)"  x ( w ) .  
By writing jn as jn = cos( y) + j sin( ?), we get 

Y ( w )  = W" [cos (y) + j sin ( y ) ]  ~ ( w )  

= W" [cos (y) % { X ( w ) }  - sin (y) S { X ( W ) } ]  

+ j  wn [cos (y) S { X ( W ) }  + sin (y) % { x ( w ) } ]  

For the  Hartley  transform,  this means 

yH(w)  = wn [cos(?) x&((w) -sin(?) x ; ( w )  

+ cos (y) x ; ( w )  + sin (y) x&(w,]. 
Rearranging  this expression, based  on (2.48) and (2.49), yields (2.58). 0 
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Convolution. We consider a convolution in time of two signals z ( t )  and 
y(t). The  Hartley  transforms  are XH(W) and  YH(w), respectively. The corre- 
spondence is 

The expression becomes less complex for signals with  certain  symmetries. 
For example, if z(t)  has  even  symmetry, then z ( t )  * y(t) t) XH(W) YH(w). 
If z(t)  is odd,  then z(t)  * y(t) XH(W) YH(-w). 

Pro0 f .  

cc 
[z(t) * y ( t ) ]  caswt dt = z (r )  y(t - r )  d r  caswt dt 1 

cc 
= I c c z ( r )  [ - r )  caswt dt d r  

- z (r )  [ c o s w ~ Y ~ ( w )  + sinwTYH(-w) ] dr.  

cc 1 
cc 

- L 
To derive the  last line, we made use of the shift theorem. Using (2.48) and 
(2.49) we finally get (2.59). 0 

Multiplication. The correspondence for a multiplication in time is 

Proof. In  the Fourier domain, we have 
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For the Hartley  transform this means 

X g w )  * Y i ( w )  - X & ( w )  * Y i ( w )  + X;;(w)  * Y i ( w )  + X g w )  * Y i ( w ) .  

Writing this expression in terms of X H ( W )  and YH(w) yields (2.60). 0 

Parseval's Relation. For signals x ( t )  and y(t) and  their Hartley  transforms 
X H ( W )  and YH(w),  respectively, we have 

cc  cc L x ( t )  y(t) dt = ' 1  X H ( W )  YH(w) dw. (2.61) 

Similarly, the signal energy can be calculated in the  time  and in the frequency 
domains: 

27r -cc 

E, = I c c x z ( t )  d t  
cc 

(2.62) 

These  properties are easily obtained from the  results in Section 2.1 by using 
the  fact  that  the kernel (27r-5 cas wt  is  self-reciprocal. 

Energy Density and Phase. In  practice,  one of the reasons to  compute the 
Fourier transform of a signal x ( t )  is to  derive the energy density S,",(w) = 
IX(w)I2 and  the phase LX(w) .  In  terms of the Hartley  transform the energy 
density becomes 

S,",(4 = I W w I l Z  + I ~ { X ( w ) ) l Z  

- - X $ @ )  + X&+) 
2 

The phase  can  be written  as 

(2.63) 

(2.64) 



34 Chapter 2. Integral  Signal  Representations 

2.4 The Hilbert Transform 

2.4.1 Definition 

Choosing the kernel 

p(t - S) = ~ 7r(t - S )  ’ 
-1 

(2.65) 

we obtain  the Hilbert transform. For the reciprocal kernel O(s - t )  we use the 
notation i ( s  - t )  throughout  the following discussion. It is 

1 
h(s  - t )  = ~ = p(t - S ) .  (2.66) 

7r(s - t )  

With i(s) denoting the Hilbert transform of z ( t )  we obtain  the following 
transform pair: 

x ( t )  

Here, the  integration  has to 
value: 

cc 

= 1 ?(S)- ds 
7r -cc t - s  

-1 

$ (2.67) 
03 

dt. 

be carried out according to  the Cauchy principal 

The Fourier transforms of p(t) and i ( t )  are: 

@ ( W )  = j sgn(w)  with @ ( O )  = 0, (2.69) 

B(w) = - j  sgn(w)  with B(0) = 0. (2.70) 

In  the  spectral domain we then have: 

X ( W )  = @ ( W )  X ( w )  = j sgn(w) X ( w )  (2.71) 

X ( w )  = B(w) X ( W )  = - j  sgn(w) ~ ( w ) .  (2.72) 

We observe that  the  spectrum of the Hilbert transform $(S) equals the 
spectrum of z( t ) ,  except for the prefactor - j  sgn(w).  Furthermore, we see 
that, because of @ ( O )  = k(0) = 0, the  transform pair (2.67) is  valid  only 
for signals z(t)  with zero mean value. The Hilbert transform of a signal with 
non-zero  mean has zero mean. 
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2.4.2 Some Properties of the Hilbert  Transform 

1. Since the kernel of the Hilbert transform is self-reciprocal we have 

2. A real-valued signal z ( t )  is orthogonal to  its Hilbert transform 2( t ) :  

(X,&) = 0. (2.74) 

We prove this by making use of Parseval’s relation: 

27r(z,2) = ( X ’ X )  

cc 
- 
- L X ( w )  [ - j  sgn(w)]* X * ( w )  dw (2.75) 

CQ 

= j I X ( W ) ~ ~  sgn(w) dw 
J -cc 

= 0. 

3. From (2.67) and (2.70) we conclude that applying the Hilbert transform 
twice leads to a sign change of the signal, provided that  the signal has 
zero mean value. 

2.5 Representation of Bandpass Signals 

A bandpass signal is understood as a signal whose spectrum  concentrates in 
a region f [ w o  - B,  WO + B] where WO 2 B > 0. See Figure 2.1 for an example 
of a bandpass  spectrum. 

’ IxBP(W>l 

* 
- 0 0  0 0  0 

Figure 2.1. Example of a bandpass spectrum. 
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2.5.1 Analytic Signal  and  Complex  Envelope 

The Hilbert transform allows  us to transfer a real bandpass  signal xBP(t)  into 
a complex  lowpass  signal zLP(t). For that  purpose, we first form the so-called 
analytic  signal xkP ( t ) ,  first introduced in [61]: 

xzp(t) = XBP(t) + j ZBP(t). (2.76) 

Here, 2BP(t) is the Hilbert transform of xBP(t). 
The Fourier transform of the  analytic signal is 

2 XBp(w) for W > 0, 

x ~ ~ ( w )  = xBP(w) + j JiBP(w) = x B P ( w )  for W = 0, (2.77) 

for W < 0. l 0  

This means that  the  analytic signal has  spectral  components for positive 
frequencies only. 

In a second step,  the complex-valued  analytic signal can  be shifted into 
the  baseband: 

ZLP(t) = xc,+,(t) e-jwot. (2.78) 

Here, the frequency WO is assumed to be  the center frequency of the  bandpass 
spectrum,  as shown in Figure 2.1. Figure 2.2 illustrates  the  procedure of 
obtaining  the complex envelope. We observe that it is not  necessary to realize 
an ideal Hilbert transform  with  system function B ( w )  = - j  sgn(w) in order 
to carry  out  this  transform. 

The signal xLP(t) is called the complex  envelope of the  bandpass signal 
xBp(t). The reason for this naming  convention is outlined below. 

In  order to recover a real bandpass signal zBP(t) from its complex  envelope 
xLp ( t ) ,  we make use of the  fact  that 

for 

(2.80) 
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\ ' /  I WO W 

I 0 0  W 

Figure 2.2. Producing the complex  envelope of a  real  bandpass  signal. 

Another form of representing zBP(t) is obtained by describing the complex 
envelope with  polar  coordinates: 

(2.81) 

wit h 

IZLP ( t )  I = . \ / 2 1 2 ( t )  + 212 ( t ) ,  v(t) 
u(t)  

tane(t) = -. (2.82) 

From (2.79) we then conclude for the bandpass signal: 

ZBP(t)  = IZLP(t)l cos(uot + e(t)). (2.83) 

We see that IxLP(t)l  can  be  interpreted  as the envelope of the  bandpass signal 
(see Figure 2.3). Accordingly, zLP(t) is called the complex envelope, and  the 
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Figure 2.3. Bandpass signal and envelope. 

analytic signal is called the pre-envelope. The real part u(t)  is referred to as 
the in-phase  component, and  the imaginary part w ( t )  is  called the quadrature 
component. 

Equation (2.83) shows that bandpass signals can in general be  regarded 
as  amplitude  and  phase  modulated signals. For O ( t )  = 80 we have  a  pure 
amplitude  modulation. 

It should  be  mentioned that  the  spectrum of a  complex  envelope is always 
limited to -WO at the lower bound: 

XLP(w) 0 for W < -WO. (2.84) 

This  property  immediately  results  from  the  fact that  an  analytic signal 
contains  only positive frequencies. 

Application in  Communications. In  communications we often start with 
a lowpass  complex  envelope zLP(t) and wish to  transmit  it  as a real bandpass 
signal zBP(t). Here, the real bandpass signal zBP(t) is produced  from zLp ( t )  
according to (2.79). In  the receiver, zLp ( t )  is finally reconstructed as described 
above. However, one important requirement  must  be met, which  will be 
discussed below. 

The real bandpass signal 

zBp(t) = u(t)  coswot (2.85) 

is considered. Here, u(t)  is a given real lowpass signal. In  order to reconstruct 
u(t)  from zBP(t), we have to add  the imaginary signal ju(t)sinwot  to  the 
bandpass signal: 

z ( p ) ( t )  := u(t) [coswot + j sin wot] = u(t)  ejwot. (2.86) 

Through subsequent  modulation we recover the original lowpass signal: 

u(t)  = .(P) ( t )  e-jwot. (2.87) 
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- W 0  I WO W 

Figure 2.4. Complex  envelope for the case that condition (2.88) is  violated. 

The problem, however, is to generate u(t)  sinwot from u(t)  coswot in the 
receiver. We  now assume that u(t)  ejwOt is analytic, which means that 

U ( w )  0 for w < - W O .  (2.88) 

As can easily be verified, under  condition (2.88) the Hilbert  transform of the 
bandpass  signal is  given  by 

2( t )  = u(t)  sinwot. (2.89) 

Thus, under  condition (2.88) the required  signal z(p)(t)  equals the analytic 
signal ziP(t), and  the complex  envelope zLp ( t )  is identical to  the given u(t) .  
The complex  envelope describes the bandpass  signal unambiguously, that is, 
zBP(t) can always be reconstructed from zLP(t); the reverse, however, is only 
possible if condition (2.88) is met.  This is illustrated  in  Figure 2.4. 

Bandpass Filtering and Generating the Complex Envelope. In  prac- 
tice,  generating  a complex  envelope usually involves the  task of filtering the 
real  bandpass  signal zBP(t) out of a more  broadband  signal z ( t ) .  This  means 
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that zBP(t) = z( t ) *g( t )  has to be  computed, where g ( t )  is the impulse  response 
of a real bandpass. 

The  analytic  bandpass g+@) associated with g ( t )  has  the system function 

G+(w) = G ( w )  [l + j B(w)]. (2.90) 

Using the  analytic  bandpass,  the  analytic signal can  be calculated as 

(2.91) 

For the complex envelope, we have 

If we finally describe the  analytic  bandpass by means of the complex 
envelope of the real bandpass 

(2.93) 

this leads to 
XL, ( W )  = X (W + W O )  GLP ( W ) .  (2.94) 

We find that XLP(w) is also obtained by modulating  the real bandpass signal 
with e-jwot and by  lowpass filtering the resulting signal. See Figure 2.5 for 
an  illustration. 

The equivalent lowpass GLP(w) usually has a complex  impulse response. 
Only if the  symmetry condition GLP(u) = GE,(-w) is satisfied, the result is 
a real lowpass, and  the realization effort  is reduced.  This  requirement  means 
that IG(w)I must  have even symmetry  around WO and  the phase  response 
of G ( w )  must  be  anti-symmetric. In  this case we also speak of a symmetric 
bandpass. 

Realization of Bandpass Filters by Means of Equivalent  Lowpass 
Filters. We consider a signal y(t) = z ( t )  * g @ ) ,  where z ( t ) ,  y(t), and g ( t )  are 



2.5. Representation of Bandpass Signals 41 

Lowpass 

Figure 2.5. Generating the complex  envelope of a  real  bandpass  signal. 

real-valued. The signal z ( t )  is  now described by means of its complex  envelope 
with respect to  an  arbitrary positive center frequency W O :  

z ( t )  = ?J3{ZLP(t) e jwo t } .  

For the  spectrum we have 
1 1 
2 2 

X ( W )  = - X,, (W - WO) + - X;, (-W - WO). 

Correspondingly, the system  function of the filter can be  written  as 

1 1 
2 2 

G(w) = - G,, (W - W O )  + - G:, (-W - W O ) .  

For the  spectrum of the  output signal we have 

Y ( w )  = X ( W )  G ( w )  

= : XL, (W - W O )  G,, (W - W O )  

+$ X;,(-W - W O )  G:,(-w - W O )  

+ : XL, (W - W O )  G:, (-W - W O )  

+: X;,(-W-WO) G L P ( w - w o ) .  

(2.95) 

(2.96) 

(2.97) 

(2.98) 

The  last two terms vanish since G,, ( W )  = 0 for W < -WO and X,, ( W )  = 0 for 
W < -WO: 

Y ( w )  = a xw(~ - W O )  - W O )  

+a X;, (-W - W O )  G:, ( --W - W O )  (2.99) 

= ; Y,,(W - W O )  + ; Y,*,(-W - W O ) .  
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Altogether this yields 
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This means that a real convolution in the  bandpass domain  can  be  replaced 
by a complex  convolution in the lowpass domain: 

1 
Y ( t )  = z(t)  * g ( t )  + YLP ( t )  = 5 ZLP ( t )  * QLP (t) .  (2.101) 

Note that  the prefactor 1 /2  must  be  taken into  account.  This prefactor did not 
appear in the combination of bandpass filtering and  generating  the  complex 
envelope discussed above. As before, a real filter gLP(t) is obtained if G(w) is 
symmetric  with respect to  WO. 

Inner Products. We consider the inner product of two analytic signals 

z+(t) = ~ ( t )  + j 2( t )  and  y+(t) = y(t) + j c ( t ) ,  

where z(t)  and y(t) are real-valued. We have 

(X+, Y+> = (X, Y) + (%C) + j ( 2 ,  Y) + j ( X , C )  . (2.102) 

Observing (2.73), we get for the real part 

%{(X+, Y + > l  = 2 (2, Y) * (2.103) 

If we describe ~ ( t )  and y(t) by means of their  complex  envelope  with respect 
to  the same center frequency, we get 

(2.104) 

For the  implementation of correlation operations  this  means  that correlations 
of deterministic  bandpass signals can  be  computed in the  bandpass domain 
as well as in the equivalent lowpass domain. 

Group  and Phase Delay. The  group  and phase  delay of a system C(w) 
are defined as 

and 

where 
C ( W )  = I C ( W ) I  &+). 

(2.105) 

(2.106) 

(2.107) 
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In  order to explain this, let us assume that C(W) is a  narrowband  bandpass 
with B << WO. The system function of the associated analytic  bandpass may 
be  written as 

Because of B << W O ,  CLp ( W )  may be  approximated as 

(2.109) 
For the complex  envelope CLP(w) = C,,(W + W O )  it follows that 

CLP(w) M IC(w0)l e - j W O T p ( W o )  e-jwTg(wO), W 5 B/2, (2.110) 

with T~ and T~ according to (2.105) and (2.106). If  we  now look at  the  input- 
output relation (2.100) we get 

1 
2 

yLP ( W )  M - ~ ~ ( w o )  I e-jwoTp(wo) e--jwTg(wo) XLP@). (2.111) 

Hence, in the  time domain 

which means that  the  narrowband system C(W) provides a phase shift by 
T ~ ( W O )  and a time delay by T~ (WO) .  

2.5.2 Stationary  Bandpass Processes 

In  communications we must  assume that noise interferes with  bandpass signals 
that  are  to be transmitted. Therefore the question arises of which statistical 
properties  the complex  envelope of a stationary  bandpass process has. We 
assume a real-valued, zero mean, wide-sense stationary  bandpass process z ( t ) .  
The  autocorrelation function of the process is  given  by 

T,, (T) = T,, (-T) = E { ~ ( t )   ~ ( t  + T)} . (2.113) 

Now  we consider the transformed process 2 ( t ) .  For the power spectral 
density of the transformed process, ,522 ( W ) ,  we conclude  from (1.105): 

1 for W # O  o for W=O 



44 Chapter 2. Integral  Signal  Representations 

where i ( t )  t) I?(w). Thus,  the process 2( t )  has the same power spectral 
density, and consequently the same  autocorrelation  function,  as the process 
z(t):  

Tjrjr (T) = Tzz (7). (2.115) 

For the cross power spectral  densities Szj: ( W )  and 272% ( W )  we get according 
to (1.102): 

SZ&) = fi(4 & % ( W ) ,  

S j r Z ( W )  = f i * ( W )   & % ( W ) .  

(2.116) 

Hence, for the cross correlation  functions: 

T Z & ( T )  = + Z Z ( T ) ,  

&(T) = Tz?(-T)  = t z z ( - T )  = -tzz(.). 
(2.117) 

Now  we form the analytic process z+(t): 

X+@) = z ( t )  + j q t ) .  (2.118) 

For the autocorrelation  function we have 

T,+,+ (T) = E {[z( t )  + j 2( t ) ]*  [z(t + T) + j q t  + T ) ] }  

= Tzz (T) + j Tzjr (.l - j T B ,  + rjrjr (.l (2.119) 

= 2 Tzz(.) + 2 j  P,,(.). 

This  means that  the autocorrelation  function of the analytic process  is an 
analytic  signal itself. The power spectral  density is 

{ ; SZZ((w) for W > 0, 

for W < 0. 
S,+,+(W) = (2.120) 

Finally, we consider the complex  process zLP(t) derived  from the analytic 
process 

zLp ( t )  = z+(t) e-jwot 

= u(t)  + j  w ( t ) .  
(2.121) 

For the real part u(t)  we have 

u(t)  = %{[z(t) + j $(t)]  e-jwot} 

= z(t)  coswot+P(t)  sin& (2.122) 

= + [z+(t) e-jwot + [X+ (t) ]* ejwot], 
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(2.123) 

In (2.123) two complex exponential  functions  dependent  on t are included 
whose prefactors  reduce to zero: 

E{[Z+(t)]* [z+(t+T)]*}* = E{z+( t )  z+(t+.r)) 

= E { ( z ( t )  + j q t ) )  (z(t  + T) + j 2(t + T))} 

(2.125) 

= T,, (T) cos WOT + F,, (T) sin WOT 

In a similar way  we obtain 

for the autocorrelation  function of the imaginary part of the complex envelope. 
The cross correlation  function between the real and  the imaginary part is  given 
by 

Tuv (.l = --Tvu(.) 
(2.127) 

From (2.125) - (2.127) we conclude that  the autocorrelation  function of 
the complex  envelope equals the modulated  autocorrelation  function of the 
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analytic signal: 

Correspondingly, we get for the power spectral density: 

4 &,(W + W O )  for W + WO > 0, 
for W + WO < 0. 

(2.129) 

We notice that  the complex  envelope is a wide-sense stationary process 
with specific properties: 

0 The  autocorrelation function of the real part equals that of the imagi- 
nary  part. 

e The cross correlation function between the real and imaginary part is 
antisymmetric  with respect to r. In  particular, we have 

Tuv(O) = rvu(0) = 0. 

In  the special case of a symmetric  bandpass process, we have 

(W> = SzLPzLP ( - W ) *  (2.130) 

Hence, we see that  the autocorrelation function of xLP(t) is real-valued. It 
also means that  the cross correlation between the real and  imaginary part 
vanishes: 

TU,(T) = 0, v r. (2.131) 


