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Chapter 3 

Discrete 
Signal Representations 

In  this  chapter we discuss the  fundamental  concepts of discrete signal repre- 
sentations. Such representations  are also known as discrete transforms, series 
expansions, or  block transforms.  Examples of widely  used discrete transforms 
are given in the next chapter. Moreover,  optimal discrete representations will 
be discussed in Chapter 5. The  term “discrete” refers to  the fact  that  the 
signals are represented  by discrete values,  whereas the signals themselves 
may  be continuous-time. If the signals that  are  to be  transformed consist 
of a finite set of values, one also speaks of block transforms. Discrete signal 
representations  are of crucial importance in signal processing. They give a 
certain insight into  the  properties of signals, and  they allow easy  handling of 
continuous  and discrete-time signals on  digital signal processors. 

3.1 Introduction 

We consider a real or complex-valued,  continuous or discrete-time signal X, 
assuming that z can  be  represented in the form 

n 

i=l 

47 
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The signal X is an element of the signal space X spanned by {pl,. . . ,p,}. 
The signal space itself is the  set of all vectors which can  be  represented by 
linear combination of { p l , .  . . , p,}. For this,  the  notation 

will be used henceforth. The vectors pi, i = 1,. . . , n may  be linearly depen- 
dent  or linearly independent of each other. If they  are linearly independent, 
we call them a basis for X .  

The coefficients ai, i = 1, . . . , n can  be  arranged  as a vector 

which  is referred to as  the representation of X with respect to  the basis 
{cpl,. . . >P,>. 

One often is interested in finding the best approximation of a given signal 
X by a signal 2 which has  the series expansion 

i=l 

This problem will be discussed in Sections 3.2 and 3.3 in greater  detail. For 
the present we will  confine ourselves to discussing some general concepts of 
decomposing signal spaces. We start by assuming a decomposition of X into 

where 

Signal x1 is an element of the linear subspace' X1 = span { p l , .  . . ,p,} and 
2 2  is an element of the linear subspace X2 = span {pm+l, . . . , p,}. The space 
X is called the sum of the  subspaces X1 and X2. If the decomposition of X E X 

lDefinition of a linear  subspace: let M be a  non-empty  set of elements of the vector 
space X .  Then M is a  linear  subspace of X ,  if M itself is a  linear  space. This means that 
all  linear  combinations of the elements of M must  be  elements of M .  Hence, X itself is a 
linear  subspace. 
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into X I  E X1 and xz E X2 is unique,2 we speak of a direct  decomposition of 
X into  the subspaces X1 and X Z ,  and X is  called the direct sum of X1 and 
X,. The  notation for the direct sum is 

X = X1 ex2. (3.8) 

A direct sum is obtained if the vectors that span X1 are linearly independent 
of the vectors that  span X,. 

If a space X is the direct sum of two  subspaces X1 and X2 and x1 E X1 
and xz E X2 are  orthogonal to one another for all signals X E X ,  that is if 
(x1,xz) = 0 V X E X ,  then X is the orthogonal sum of the subspaces X1 and 
X,. For this we write 

I 
X = X 1  e x2. (3.9) 

3.2 Orthogonal Series Expansions 

3.2.1 Calculation of Coefficients 

We consider a signal X that can  be  represented in the form 
n 

X = C"i ui, 
i= 1 

where the vectors ui satisfy the orthonormality  condition 

(3.10) 

( U i ,  U j )  = sij. (3.11) 

Here, 6ij is the Kronecker  symbol 

- { 1 
for i = j ,  

'' - 0 otherwise. 
(3.12) 

For all signals X in (3.10) we have X E X with X = span (u1 ,  u2,. . . , un}. 
Because of (3.11), u1, u2,. . . , un form an orthonormal  basis for X .  Each vector 
ui, i = 1, . . . , n spans a one-dimensional  subspace,  and X is the  orthogonal 
sum of these subspaces. 

The question of  how the coefficients ai can  be calculated if X and  the 
orthonormal basis (u1 ,  . . . , U,} are given  is easily answered. By taking  the 
inner product of (3.10) with uj, j = 1,. . . ,n and using (3.11) we obtain 

" j  = ( X & ) ,  j = 1,. . . ,n. (3.13) 
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Figure 3.1. Orthogonal  projection. 

3.2.2 Orthogonal Projection 

In (3.10) we assumed that X can  be  represented by means of n coefficients 
a1 , al,  . . . , a,. Possibly, n is infinitely large, so that for practical applications 
we are  interested in finding the best approximation 

m 

(3.14) 
i= 1 

in the sense of 
1 1  

d ( z , f )  = 1 1 %  - 211 = (z - f,z - f)z = min. (3.15) 

The solution to this problem is3 = (z, ui),  which means that 
m 

(3.16) 
i d  

This result has  a  simple  geometrical interpretation in terms of an orthogonal 
projection. Each basis vector ui spans  a  subspace that is orthogonal to  the 
subspaces  spanned by uj,  j # i, which means that  the signal space X is 
decomposed as follows: 

I 
X = M m $ M k  (3.17) 

with 
z = f + + ,  x E X ,   X E M m ,   + E M : .  (3.18) 

The subspace M A  is orthogonal to Mm, and + = z - f is orthogonal to f 
(notation: +l&). Because of +l63 we call D the  orthogonal projection of z 
onto M,. Figure 3.1 gives an  illustration. 

As can easily be verified, we have the following relationship between the 
norms of X, X and + 

1 1 4 1 2  = llf112 + ll+112. (3.19) 

3The proof is given in  Section 3.3.2 for general,  non-orthogonal  bases. 
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3.2.3 The Gram-Schmidt Orthonormalization 
Procedure 

Given a basis {vi; i = 1,. . . , n}, we can  construct  an  orthonormal basis 
{ui; i = 1, . . . , n} for the space  span {vi; i = 1, . . . , n}  by using the following 
scheme: 

(3.20) 

This  method is  known as the Gram-Schmidt  procedure. It is easily seen that 
the result is not unique. A re-ordering of the vectors pi before the application 
of the Gram-Schmidt  procedure  results in a different basis. 

3.2.4 Parseval’s Relation 

Parseval’s  relation states  that  the inner product of two vectors equals the 
inner product of their  representations  with respect to an  orthonormal basis. 
Given 

n 
X = x a i  ui 

i= 1 

(3.21) 

and 

(3.22) 

we have 
(3.23) 
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(3.24) 

This is  verified  by substituting (3.21) into (3.23) and by making use of the 
fact that  the basis is orthogonal: 

(3.25) 

For z = y we get from (3.23) 

l lzl l = l l a l l  . (3.26) 

It is important to notice that  the inner product of the  representations is 
defined as (a, P )  = p H a ,  whereas the inner product of the signals may  have 
a different definition. The inner product of the signals may  even  involve a 
weighting matrix  or weighting  function. 

3.2.5 Complete Orthonormal Sets 

It can  be shown that  the space Lz(a,  b )  is complete. Thus, any signal 
z(t)  E Lz(a,b) can  be  approximated  with  arbitrary accuracy by means of 
an  orthogonal  projection 

n 

$(t> = c (2, V i )  cpi(t), (3.27) 
i= 1 

where n is  chosen  sufficiently large and  the basis vectors cpi(t) are  taken  from 
a complete  orthonormal  set. 

According to (3.19) and (3.23) we have for the  approximation  error: 
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From (3.28) we conclude 
n 

(3.29) 
i= 1 

(3.29) is called the Bessel  inequality. It ensures that  the squared  sum of the 
coefficients (X, vi) exists. 

An orthonormal  set is said to  be complete if no  additional non-zero 
orthogonal  vector  exists which can  be  added to  the  set. 

When an orthonormal  set is complete, the approximation  error  tends 
towards zero with n + CO. The Bessel inequality (3.29) then becomes the 
completeness  relation 

cc c I ( X , ( P i )  l2 = 1lXIl2 v E Lz(a,b) .  (3.30) 
,=l 

Here,  Parseval's  relation states 

(3.31) 

(3.32) 

3.2.6 Examples of Complete Orthonormal Sets 

Fourier  Series. One of the best-known discrete  transforms is the Fourier 
series  expansion. The basis functions are  the complex exponentials 

(3.33) 

which  form a  complete  orthonormal set.  The interval considered  is T = [-l, l]. 
The weighting function is g ( t )  = 1. Note that any  finite  interval  can  be  mapped 
onto the interval T = [-l,  +l] . 
Legendre Polynomials. The Legendre  polynomials Pn(t), n = 0 , 1 , .  . . are 
defined as 

Pn(t) = -- l P ( t 2  - 1)n 
2"n! dtn 

and  can  alternatively  be  computed  according to  the recursion formula 

1 
n 

Pn(t) = -[(2n - 1)t Pn-l(t) - (n - 1) Pn-z(t)]. 

(3.34) 

(3.35) 
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The first four functions are 

A set pn(t), n = 0 ,1 ,2 , .  . . which  is orthonormal  on  the interval [-l, l] 
with  weighting function g ( t )  = 1 is obtained by 

(3.36) 

Chebyshev Polynomials. The Chebyshev  polynomials are defined as 

Tn(t) = cos(n arccos t ), n 2 0, -1 5 t 5 1, (3.37) 

and  can  be  computed  according to  the recursion 

Tn(t) = 2t Tn-l(t) - Tn-2(t). (3.38) 

The first four polynomials are 

To(t) = 1 7  

Tl(t) = t ,  
T2(t) = 2t2 - 1, 

T3(t) = 4t3 - 3t. 

Using the normalization 

~ o ( t )  for n = o 

m ~ , ( t )  for n > o 
Vn( t )  = (3.39) 

we get a set which  is orthonormal  on  the interval [-l7 +l] with  weighting 
function g ( t )  = (1 - 

Laguerre Polynomials. The Laguerre polynomials 

dn 
dt 

~ , ( t )  = et-(tne-t), n = 0 ,1 ,2 , .  . . (3.40) 
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can  be calculated by means of the recursion 

L,(t) = (2n - 1 - t )  L,_l(t) - (n - 1)2 Ln-2(t).  (3.41) 

The normalization 

1 
n! 

(Pn(t) = -L,(t) n = 0 , 1 , 2 , .  . . (3.42) 

yields a  set which  is orthonormal  on  the interval [0, m] with  weighting function 
g ( t )  = e c t .  The first four basis vectors are 

An alternative is to generate  the set 

,-tP 
$n(t)  = T L " ( t ) ,  71. = 0 , 1 , 2 , .  . . , (3.43) 

which  is orthonormal  with weight one  on the interval [0, m]. As  will be shown 
below, the polynomials $"(t), n = 0 , 1 , 2 , .  . . can  be  generated by a  network. 
For this, let 

e-Pt 
fn(t) = $"(2Pt) = - + W ) .  (3.44) 

The Laplace  transform is  given  by 

(3.45) 

Thus, a function fn(t) is obtained  from  a  network  with  the  transfer 
function F,(s), which  is excited by an impulse. The network  can  be realized 
as a  cascade of a first-order lowpass and n first-order allpass filters. 

Hermite Polynomials. The Hermite  polynomials are defined as 

A recursive computation is possible in the form 

Hk(t)  = 2t Hk-l(t)  - 2(k - 1) Hk-z(t). 

(3.46) 

(3.47) 
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With  the weighting function g ( t )  = ePt2  the polynomials 

q 5 k ( t )  = (2k I c !  &)p &(t),  k = 0 , 1 , 2 , .  . . (3.48) 

form an orthonormal basis for L2 (R). Correspondingly, the  Hermite  functions 

c p k ( t )  = (2' /c! Hb(t), k = 0 , 1 , 2 , .  . . , (3.49) 

form an orthonormal basis with weight one. The functions (Pk(t) are also ob- 
tained by applying  the Gram-Schmidt  procedure to  the basis {tb eCt2I2; k = 
0,1,. . .} [57]. 

Walsh Functions. Walsh functions  take  on  the values 1 and -1. Orthogo- 
nality is achieved by appropriate zero crossings. The first two functions are 
given  by 

cpo(t) = ( 1  for O 5 t 5 I ,  

(3.50) 

Further functions can  be  computed by means of the recursion 

f o r O < t < ;  
- 1) for i < t 5 1 

(2b)  f o r 0 5 t < i  
(2 t  - 1) for i < t 5 1 

m = 1,2,  ..., 
Ic = 1 , .  . . ,2-1 

cpm+l(t) = 

(3.51) 
Figure 3.2 shows the first six Walsh functions; they  are  named  according to 
their number of zero crossings. 

3.3 General  Series Expansions 

If possible, one would  choose an  orthonormal basis for signal represen- 
tation. However, in practice,  a given basis is often not  orthonormal. For 
example, in data transmission  a transmitted signal may have the form 
z(t)  = Cm d(m) s( t  - mT), where d(m)  is the  data  and  s(t) is an impulse 
response that satisfies s(t)s(t - mT)dt = S,O. If  we  now assume that  z(t) is 
transmitted  through a non-ideal channel  with  impulse  response h(t),  then we 
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have  a signal r ( t )  = C,  d ( m ) g ( t  - mT) with g ( t )  = s ( t )  *h@) on the receiver 
side. This new basis { g ( t  - mT); m E Z} is no longer orthogonal, so that  the 
question arises of  how to recover the  data if r ( t )  and g ( t )  are given. 

3.3.1 Calculating the Representation 

In  the following, signals 2 E X with X = span {pl , .  . . ,p,} will be consid- 
ered. We assume that  the n vectors {pl , .  . . , p,} are linearly independent so 
that all X E X can  be  represented  uniquely as 

(3.52) 
i= 1 

As will be  shown, the  representation 
T a = [al , .  . . ,a,] (3.53) 

with respect to a given basis {pl,. . . , p,} can  be  computed by solving a 
linear set of equations  and also via the so-called reciprocal basis. The set of 
equations is obtained by multiplying  (inner product)  both sides of (3.52) with 
pj, j = 1,. . . ,n: 

n 

( " , ' p j ) = ~ a i ( c p i , c p j ) ,  j = L . . . , n .  (3.54) 
i=l 

In  matrix  notation  this is 
+ a = p  (3.55) 
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Figure 3.3. Reciprocal  basis (The basis  is 'p1= [0, 1IT, ' pz=  [2, 1IT; the correspond- 
ing  reciprocal  basis  is &= [-0.5, l] , &= [0.5, OIT). T 

9 is  known as  the Grammian  matrix.  Due to (vi,  vk) = (vk, vi)* it  has 
the  property 9 = aH. 

The disadvantage of the  method considered  above is that for calculating 
the  representation (y. of a new X we first have to calculate P before (3.55) can 
be solved. Much more  interesting is the  computation of the  representation 
a by means of the reciprocal  basis {ei; i = 1 ,2 ,3 . .  .n} ,  which satisfies the 
condition 

(cpi,ej) = sij , i , j  = 1 , .  . . ,n, (3.57) 

which  is  known as  the biorthogonality  condition; Figure 3.3 illustrates (3.57) 
in the two-dimensional plane. 

Multiplying both sides of (3.52) with O j ,  j = 1 , .  . . ,n leads to 

n 

(x,ej) = Cai (vi,ej) = ai, j = 1 , .  . . ,n,  (3.58) 
i=l - 

6ij 

which means that, when using the reciprocal basis, we directly obtain  the 
representation by forming inner products 
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A vector X can  be  represented as 

and also as 

(3.60) 

(3.61) 

Parseval’s relation holds only  for orthonormal bases. However, also for 
general bases  a relationship between the inner product of signals and  their 
representations  can  be established. For this, one of the signals is represented 
by means of the basis {vl,. . . , (P,} and a second signal by means of the 
corresponding reciprocal basis {&, . . . , On}.  For the inner product of two 
signals 

n 

X = c (X, (Pi )  Oi (3.62) 
i= 1 

and 

we get 

(X7Y) = 

(3.63) 

(3.64) 

In  the  last  step,  the  property (pi, O k )  = Sik was used. 

Calculation of the Reciprocal Basis. Since pk, k = 1, .  . . ,n as well as 
8j ,  j = 1,. . . ,n are bases for X ,  the vectors 8 j ,  j = 1,. . . , n can  be  written 
as linear combinations of (P~,  k = 1,. . . , n with the yet unknown coefficients 
yjk: 

n 

ej  = E r j k  pk, j = l , . . . , n .  (3.65) 
k=l 
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Multiplying this  equation  with p i ,  i = 1 , .  . . ,n and using (3.57) leads to 

i , j  = 1 , .  . . ,n. (3.66) 

Wit  h 

(3.67) 

and 

T 9 =  

equation (3.66) can  be  written as 

rGT = I ,  

(3.68) 

(3.69) 

so that 
r = ( 9 ~ ) ~ ~ .  (3.70) 

The reciprocal basis is obtained  from (3.65),  (3.67) and (3.70). 

3.3.2 Orthogonal Projection 

We consider the  approximation of X E X by X E Mm, where Mm C X .  For 
the signal spaces let X = span {vl , .  . . ,vn} and Mm = span {vl , .  . . , v,} 
with m < n. 

As we will see, the  best  approximation in the sense of 

is obtained for 

(3.71) 

(3.72) 
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where {ei; i = 1 , .  . . ,m}  is the reciprocal basis to {vi; i = 1 , .  . . ,m} .  Note 
that  the reciprocal basis satisfies 

Mm = span {vl, . . . , v,} = span {el, . . . ,e,} . (3.73) 

Requiring  only (pi, ej )  = & j ,  i, j = 0,1 ,  . . . , m is not sufficient  for 8j to form 
the reciprocal basis. 

First we consider the expression (2 ,  e j )  with 2 according to (3.72). Because 
of (v,, ej )  = Si j  we obtain 

(X, ei)  v i  , ej = (X, e j )  , j = 1 , .  . . ,m. (3.74) ) i= 1 

Hence, 
(z -2 ,0 j )=0 ,  j = 1 ,  ..., m. (3.75) 

Equation (3.75) shows that 
r ) = x - x  (3.76) 

is orthogonal to all 8 j ,  j = 1 , .  . . , m. From (3.73) and (3.75) we conclude that 
r )  is orthogonal to all vectors in M,: 

q 1% for all 5 E Mm. (3.77) 

This also means that X is decomposed  into an  orthogonal sum 

X = Mm @ M:. 
I 

(3.78) 

For the vectors we have 

x = 2 + q ,  2 E M m ,  q E M A ,  X E X .  (3.79) 

The  approximation 2 according to (3.72) is the orthogonal  projection of X E X 
onto M,. 

In  order to show that 2 according to (3.72) is the best approximation to 
X, we consider the  distance between X and  an  arbitrary vector 5 E Mm and 
perform some algebraic manipulations: 

d 2 ( X , 0 )  = 112 - all2 
= l l (z - 2) - (a - 2)112 
= ((X - 2 )  - (a - g), (z - 2) - (a - 2 ) )  

= ( x - 2 , x - 2 )  - ( x - 2 , 5 - 2 )  - (9-2,x-2) + (a-2,a-k). 
(3.80) 
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Because of (5 - 2 )  E M ,  and (3.75), the second and  third  terms in (3.80) 
are zero, such that 

The minimum is achieved for 5 = P ,  so that (3.72) clearly yields the best 
approximation. 

A relationship between the norms of X,& and v is obtained  from 

Because of (3.79) the second and  the  third  term in the  last row are zero, and 

1 1 4 1 2  = 1 1 4 2  + llv1I2 (3.83) 

remains. 

3.3.3 Orthogonal Projection of n-Tuples 

The solutions to  the projection  problem  considered so far hold  for all vectors, 
including n-tuples, of course. However,  for n-tuples  the projection can con- 
cisely be  described  with  matrices, and we have a large number of methods at 
hand for solving the problem. 

In  the following, we consider the projection of X = [XI,. . . ,X,] E C, T 

onto  subspaces M ,  = span {b l ,  . . . , b,}, where m < n and bi E C,. With 

B = [bl ,  . . . , b,] n X m matrix (3.84) 

and 
a = [ul, . . . , u,lT m X 1 vector (3.85) 

the  approximation is  given  by 

x = B a .  (3.86) 

Furthermore,  the  orthogonal projection can  be described by a Hermitian 
matrix P as 

X = P x .  (3.87) 
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Inner  Product without Weighting. To compute  the reciprocal basis 0 = 
[e,, . . . ,e,] the relationships (3.70),  (3.56) and (3.65) are used, which can  be 
written  as 

rT = +-l, 

a = BHB, (3.88) 

o = BrT. 
For the reciprocal basis we then get 

o = B [BHBI-'. (3.89) 

Observing that  the inverse of a Hermitian matrix is Hermitian itself, the 
representation is calculated according to (3.59) as 

a = OH% = [ B H B ] - l B H z .  (3.90) 

With (3.86) the  orthogonal projection is 

2 = BIBHB]- lBHz.  (3.91) 

If B contains  an  orthonormal basis, we have B H B  = I, and  the projection 
problem is simplified. 

Note that  the  representation according to (3.90) is the solution of the 
equation 

[B%] a = B 2 ,  
H (3.92) 

which  is  known as the normal equation. 

Inner  Product with Weighting. For an inner product  with a weighting 
matrix G ,  equations (3.70),  (3.56) and (3.65) give 

rT = @ - l ,  

+ = B ~ G B ,  

0 = B P .  

Thus, we obtain 

0 = B [BHGB]- l ,  

a = OHGx = [BHGB]-lBHGx, 

63 = BIBHGB]-lBHGx. 

(3.93) 

(3.94) 

(3.95) 

(3.96) 
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Alternatively, G can  be  split  into a product G = H H H ,  and  the problem 

can  be  transformed  via 
z = Ha: 

V = H B  

into  the equivalent problem 

(3.97) 

(3.98) 

(3.99) 

The indices of the norms in (3.97) and (3.99) stand for the weighting matrices 
involved. Thus,  the projection  problem  with weighting can  be  transformed 
into one  without weighting. Splitting G into G = H H H  can for instance  be 
achieved  by applying the Cholesky  decomposition G = LLH or by a singular 
value decomposition. Both  methods  can  be  applied  in  all cases since G must 
be Hermitian and positive definite in  order to be  a valid weighting matrix. 

Note. The  computation of the reciprocal basis involves the inversion of the 
Grammian  matrix. If the Grammian  matrix is poorly  conditioned,  numerical 
problems  may  occur.  Robust  methods of handling such cases are  the  QR 
decomposition and  the Moore-Penrose  pseudoinverse,  which  will be discussed 
in the next  section. 

3.4 Mathematical Tools 

3.4.1 The QR Decomposition 

The  methods for solving the projection  problem considered so far  require 
an inversion of the Grammian  matrix.  The inversion does not pose a major 
problem so long as  the vectors that span the subspace in question are 
linearly  independent. However, because of finite-precision arithmetic, a poorly 
conditioned  Grammian matrix may lead to considerable  errors, even if the 
vectors are linearly  independent. 

A numerically robust  solution of 

= min ! 

a = a  
(3.100) 
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is obtained by carrying  out  a QR decomposition of B: 

B = Q R .  

Here, Q is a unitary  matrix,  and R has  the following form: 

(3.101) 

(3.102) 

The QR decomposition can, for instance,  be  computed by using House- 
holder  reflections or Givens  rotations; see Sections 3.4.4 and 3.4.5. 

In  the following we will  show  how (3.100) can  be solved via &R decompo- 
sition. Substituting (3.101) in (3.100) yields 

(3.103) 

For (3.103) we can also write 

IIQHQRa - QHzll = IIRa - QHzll = min, (3.104) 
l 

la = a  

because a multiplication with a unitary  matrix does  not  change the norm of 
a vector. Using the  abbreviation y = Q H x ,  we get 

llRa - YII = 

With 

. .  
rmm 

Y1 

Ym 

Ym+l 

Yn 

(3.105) 

, f = [ yj;] 
(3.106) 

(3.107) 
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The  norm reaches its minimum if a = a is the solution of 

X a=.%. (3.108) 

Note that X is an  upper  triangular  matrix, so that a is easily computed by 
using  Gaussian elimination. For the norm of the  error we have: 

3.4.2 The Moore-Penrose Pseudoinverse 

We consider the criterion 

(3.109) 

(3.110) 

The solutions (3.90) and (3.91), 

a = [BHBI-l BHX, (3.111) 

5 = B [ B H B ] - l   B H x ,  (3.112) 

can  only  be applied if [BHB] exists, that is, if the columns of B are linearly 
independent. However, an  orthogonal projection can also be carried out if 
B contains linearly dependent vectors. A general solution to  the projection 
problem is obtained by introducing a matrix B+ via the following four 
equations 

B+B = (B+B)H (3.113) 

BB+ = ( B B + ) ~  

BB'B = B 

B+BB+ = B+. 

(3.114) 

(3.115) 

(3.116) 

There is only  one B+ that satisfies (3.113) - (3.116). This  matrix is  called the 
Moore-Penrose  pseudoinverse [3]. The expressions B+B and BB+ describe 
orthogonal  projections, since under conditions (3.113) - (3.116) we have 

[X - BB+xIH  BB+x = 0,  
(3.117) 

[a - B+Ba]HB+Ba = 0. 
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Assuming that B is an n X m matrix which either  has  rank k = m or 
k = n, we have 

B+ = [BHB]- l   BH,  5 = m ,  

B+ = B H   [ B B H ] - l ,  5 = n, (3.118) 

B+ can for instance  be  computed via the singular  value  decomposition 

B = U X V H .  (3.119) 

U and V are  unitary. For m < n, X has  the following form: 

(3.120) 

The non-zero values C T ~  are called the singular values of B .  They satisfy 
C T ~  > 0. With 

the pseudoinverse B+ is  given  by 

B+ = VX+UH.  (3.122) 

It can easily be shown that  the requirements (3.113) - (3.116) with B+ 
according to (3.122) are satisfied, so that (3.111) and (3.112) can  be  replaced 
by 

a = B+x, (3.123) 

2 = BB+X. (3.124) 

Note that (3.123) is not necessarily the only solution to  the problem 
(3.110). We will return to this topic in the next section. 



68 Chapter 3. Discrete Signal Representations 

By taking  the  products B H B  and BBH we obtain  equations for calculat- 
ing the singular value decomposition. With B according to (3.119) we have 

BHB = V ~ ~ U H U ~ V H  = v [xHx] V H ,  

B B ~  =uxvHvxHuH = U xx uH. 
(3.125) 

[ "1 
That is, the  squares of the singular values of B are  the eigenvalues of 
B H B  and at the  same  time of BB". Matrix V contains  the  orthonormal 
eigenvectors of B H B .  Correspondingly, U contains  the eigenvectors of B B H .  
Further  methods of calculating the pseudoinverse are discussed in [3]. 

Note. The pseudoinverse  may  be  written as 

B+ = [BHB]+  B". (3.126) 

This  property  can  be applied to continuous  functions, and with rT = ++ 
instead of rT = +-l we can  compute  a set of functions e,@), which  is dual 
to a given set cpi(t); see (3.65) - (3.70). 

3.4.3 The Nullspace 

Let  us consider the problem 
B a = X ,  (3.127) 

where X = B B+x is the  orthogonal projection of an  arbitrary X onto  the 
column  subspace of B .  It is easily observed that  the solution to (3.127) also is 
the solution to (3.110). Depending  on B we either  have  a  unique solution a,  
or we have an infinite number of solutions. Finding all solutions is intimately 
related to finding the nullspace of matrix B .  

The nullspace of a matrix B consists of all vectors a such that B a = 0.  
It is denoted by N ( B ) .  In  order to describe N ( B ) ,  let us assume that B 
is an n X m matrix  that  has  rank T .  If T = m then N ( B )  is only the null 
vector, and a = B+$ = B+x is the unique solution to (3.127) and  thus also 
to (3.110). If T < m then N ( B )  is of dimension m - T ,  which means that 
N ( B )  is spanned by m - T linearly independent vectors. These vectors can  be 
chosen to form an  orthonormal basis for the nullspace. If we define a  matrix 
N of size m X (m - T )  whose column  subspace is the nullspace of B then 

B N = O .  (3.128) 

The  set of all solutions to (3.127) is then given  by 

a = h +  N p ,  where zi = B+X = B+x. (3.129) 
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In (3.129) p is an  arbitrary vector of length m - T .  In some applications  it is 
useful to exploit the free design parameters  in p in order to find a solution 
a that optimizes an additional  criterion. However, in most cases one will  use 
the solution 2i given  by the pseudoinverse, because this is the solution  with 
minimum  Euclidean  norm.  In  order to see this, let us determine the squared 
norm of a: 

2 
l la l lez = aHa 

= [B+x + NpIH [B+x + Np] 

= x ~ ( B + ) ~ B + z  + P ~ N ~ B + Z  + z ~ ( B + ) ~ N P  + P ~ N ~ N P .  
(3.130) 

The second and  third  terms vanish,  because BN = 0 implies that NHB+ = 
0. Thus, we get the vector a of shortest  length for p = 0, that is for a = 6. 

The  matrix N that contains the basis for the nullspace is easily found 
from the singular value  decomposition 

B = U X V H .  (3.131) 

Let B have rank T and let the T nonzero  singular values be  the elements 
[X]1,1,. . . , [X]T,T of matrix X. Then  an  orthonormal  matrix N is  given  by the 
last m - T columns of V. 

3.4.4 The Householder Transform 

Householder  transforms allow a simple and numerically robust way  of per- 
forming QR decompositions, and  thus of solving normal  equations.  The QR 
decomposition  is carried out  step by step by reflecting vectors at hyperplanes. 

In  order to explain the basic  idea of the Householder transforms we 
consider two  vectors X, W E (En, and we look at  the projection of X onto 
a one-dimensional subspace W = span {W}: 

P,x=w - wHx. 
WHW 

Here, (En is decomposed into  the  orthogonal  sum 

The Householder transform is given  by 

(3.132) 

(3.133) 

(3.134) H,x = X  - 2 P,x. 
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- =I W 
-Pwx 

Figure 3.4. Householder  reflection. 

W pw X 

It is also known as Householder  reflection, because  it is the reflection of X at 
the  hyperplane W I ,  as depicted in Figure 3.4. 

With P ,  according to (3.132) we get 

2 
W H W  

H , = I - -  W wH (3.135) 

for the Householder  matrix H,.  

From (3.135) the following property of Householder  matrices  can  be 
concluded: 

H ~ H ,  = H , H ,  

= [ I  - & W W H ]  [ I  - & W W H ]  
(3.136) 

= I .  

Hence H ,  is unitary  and  Hermitian.  Furthermore we have 

det{H,} = -1.  (3.137) 

In  order to make  practical use of the Householder  transform, we consider 
a vector X and  try  to find that vector W for  which only the  ith component of 
H,x is non-zero. We use the following approach: 

w = x + a e i ,  (3.138) 

where 



3.4. Mathematical Tools 

e: = [o, . . . , 0 ,  1,O,. . . ,0] . 
f ith element 

71 

(3.139) 

For H,x we get 

- - z - 2 - W  W H O  

(3.140) 
= x - 2% [x + a  ei] 

= ( 1 - 2 G )   x - 2 a  w H x  ei. 

In  order to achieve that only the  ith component of H,x is non-zero, the 
expression in  parentheses in (3.140) must vanish: 

WHX 1 1 x 1 1 2  + a*xi 
1-2-  = l - 2  = 0, (3.141) 

llxll + axg + a*xi + la12 WHW 

where xi is the  ith component of x. As can easily be verified, (3.141) is satisfied 
for 

(3.142) 

In  order to avoid W M 0 in the case of X M Dei for some E R we choose the 
positive sign in (3.142) and  obtain 

xi 
W = X + - llxll ei. (3.143) 

1 %  I 
By substituting  this solution  into (3.140) we finally get 

(3.144) 

Applying the Householder transform to  the QR Decomposition. We 
consider the problem 

l l ~ v  - bll L min (3.145) 

with 

A =  E ( I F m ,  n > m (3.146) 
an, i l l  . . . 

anm 
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and  try  to tackle the problem by applying the &R decomposition. First, we 
choose z1 to be the first  column of A 

Multiplying A with the Householder matrix 

where w1 is chosen as 

yields a matrix where only r11 is non-zero  in the first column: 

(3.147) 

(3.148) 

(3.149) 

Then, we choose 

H 2  = I - 2 7  w2wf 
W2 W2 

and  obtain 
rii r12 r13 . . . rlrn 
0 V22 

H 2 H l A =  [ 0 
r& * * *  

0 an3 (3) . . . anm (‘3) 

After  maximally m steps we get 

H r n - * * H 2 H l A = R ,  (3.151) 

where only the upper  right-hand  triangular  matrix of R is non-zero. This 
means that we have  carried out  the &R decomposition. 

Note. If one of the values a::) becomes zero, wi is chosen as wi = zi+llzill ei. 
If IJzilJ = 0, the columns  must  be  exchanged. 
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3.4.5 Givens Rotations 

Besides  Householder reflections, rotations  constitute a further possibility of 
performing QR decompositions. We first consider the  rotation of a real-valued 
vector X by an angle $ through  multiplication of X with an  orthonormal 
rotation  matrix G .  For 

and 

we get 
2’ = G X  = r cos(a - $) 

r sin(a - $) 1 ’ 

(3.152) 

(3.153) 

(3.154) 

We observe that for $ = Q! a  vector X’ is obtained whose  second component 
is zero. This special rotation  matrix is 

G = [  -S c “1 c (3.155) 

with 
c = COS(Q!) = X1 

@Tg 

Jm* 
(3.156) 

S = sin(a) = X2 

For the  rotated vector we have 

x ‘ = G x =  [ : l = [  JW 1 .  (3.157) 

As can easily be verified, for complex-valued vectors we can  apply the 
rotation  matrix 

G = [ : *  :] 

in  order to obtain X’ = [r,0lT. Note that G according to (3. 
G ~ G  = I .  

We  now consider a vector 

X = [XI, . . . , xi-1, xi, Xi+l, . . . , xj-1, xj, Xj+l, . . . , X,] T 

(3.158) 

(3.159) 

58) is unitary, 

(3.160) 
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and want to achieve a vector 

2' = [XI,. . . , X i - l ,  T ,  X i + l , .  . . , Xj-l,O, Xj+l,. . . ,X,] T (3.161) 

with 
r = Jm (3.162) 

by carrying  out a rotation.  The  rotation is applied to  the elements xi and xj 
only. We have 

with 

G =  
4 i  

+.i 

(3.163) 

(3.164) 

A QR decomposition of a  matrix can  be carried out by repeated application 
of the  rotations described above. 


