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Chapter 4 

Examples of 
Discrete  Transforms 

In  this  chapter we discuss the most important fixed discrete transforms. We 
start with the  z-transform, which  is a  fundamental  tool for describing the 
input/output relationships in linear time-invariant (LTI) systems. Then we 
discuss several variants of Fourier series expansions, namely the discrete-time 
Fourier  transform,  the discrete Fourier  transform  (DFT),  and  the fast Fourier 
transform (FFT).  The remainder of this  chapter is dedicated to other discrete 
transforms  that  are of importance in digital signal processing, such  as  the 
discrete cosine transform,  the discrete sine transform,  the discrete Hartley 
transform,  and  the discrete Hadamard  and  Walsh-Hadamard  transform. 

4.1 The ,+Transform 

The  z-transform of a discrete-time signal z(n) is  defined as 

n=-CQ 

Note that  the  time index n is discrete, whereas z is a  continuous  parameter. 
Moreover, z is complex, even if z(n) is real. Further  note that for z = ejw the 
z-transform (4.1) is equal to  the discrete-time Fourier transform. 

75 
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In general, convergence of the  sum in (4.1) depends  on the sequence z (n)  
and  the value z .  For most  sequences we only  have convergence  in a certain 
region of the  z-plane, called the region of Convergence (ROC). The ROC can 
be  determined by finding the values r for  which 

cc c Iz(n) < m. 
n=-cc 

Proof. With z = r ej4 we have 

I 

n=-cc 

M 

n=-cc 

Thus, IX(z)I is finite if z(n)r-" is absolutely summable. 0 

The inverse z-transform is  given  by 

z(n) = 1 f X(z)z"- 'dz .  
32n c (4.4) 

The  integration  has to be carried out counter-clockwise on a closed contour 
C in the complex  plane, which  encloses the origin and lies in the region of 
convergence of X (2). 

Proof of (4.4). We multiply both sides of (4.1) with zk-' and  integrate 
over a closed contour in a counter-clockwise manner: 
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Invoking the Cauchy  integral  theorem 

finally  yields (4.4). 0 

Reconstruction  formulae simpler than (4.4) can  be  found for rational X ( z ) ,  
that is  for 

X ( z )  = 
bo + b1z-l + bzz-’ . . . 
a0 + a l z - l+  azz-’ . . .‘ 

Methods  based  on the residue theorem,  on  partial fraction expansion,  and  on 
a direct expansion of X ( z )  into  a power series in z-l are known.  For more 
detail, see e.g. [80, 1131. 

The simplest example is the  z-transform of the discrete impulse: 

S(n) = 
1, n=O 
0, otherwise. 

We have 
cc 

S(n) t) c S(n) z-n = 1. 
n=-cc 

For a delayed discrete impulse it follows that 

In  the following, the most important  properties of the  z-transform will be 
briefly recalled. Proofs which  follow directly from the definition equation of 
the  z-transform  are  omitted. 

Linearity 

W(.) = az(n) + p y ( n )  t) V ( z )  = a X ( z )  + PY(z ) .  (4.9) 

Convolution 

W(.) = z(n) * y ( n )  t) V ( z )  = X ( z )  Y(2) .  (4.10) 
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Pro0 f. 
0 0 - 0 0  

k = - m  m=--00 

= X ( z )  Y ( z ) .  

Shifting 
.(n - no) c n o  X ( z ) .  (4.11) 

This  result is obtained by expressing w(n) as W(.) = z(n)*S(n-no) and  using 
the convolution  property  above. 

Scaling/Modulation. For any real or complex a # 0, we have 

an .(n) t) X . (3 
This includes a = eJw such that 

Time Inversion 

Derivatives 

Pro0 f. 

X(-.) t) X (;) . 

00 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

= c nz(n)  2-" 
n=-cc 

3: 
nx(n) .  
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Conjugation. Given the correspondence z(n) t) X ( z ) ,  we have 

.*(n) H X * ( z * ) .  (4.16) 

= ( g .(n) [ P ] *  
n=-cc 

cc 

Paraconjugation. Given the correspondence X(.) t) X ( z ) ,  we have 

X*(+) t) X ( z ) ,  where X ( z )  = [X(z ) ]*  I l a l = l .  (4.17) 

That  is, X ( z )  is derived  from X ( z )  by complex conjugation  on the unit circle. 

Proof. 

X ( z )  = [ - p ( i r ) z - ~ ]  * 114=1 

= C.*(ir)zk 
k 

= C .* (-n)z-" 
n 

$ 
X * ( - n ) .  

(4.18) 

For real  signals z(n), it follows that 

.(-n) t) X ( z )  = X(z-1) .  (4.19) 

Multiplication with cos on and sin on. If z(n) t) X ( z ) ,  then 

coswn X(.) t) - [ X ( e j w z )  + x ( e - j W z ) ]  
1 
2 

(4.20) 

and 
sinwn X(.) t) - [X(e jwz )  - x ( e - j W z ) ]  . j (4.21) 

2 



80 Chapter 4. Examples o f  Discrete Transforms 

This follows directly  from (4.13) by expressing  coswn and  sinwn via Euler's 
formulae cos a = +[ej" + e-j"] and sin a = i [e ja  - e-j"]. 

Multiplication in the Time Domain. Let z(n) and y(n) be real-valued 
sequences. Then 

~ ( n )  = ~ ( n )  y(n) t) V ( Z )  = (4.22) 

where C is a closed contour that lies within the region of convergence of both 
X ( z )  and Y ( k ) .  

Proof. We insert (4.4) into 
00 

V ( z )  = c .(n) y(n) . K n .  (4.23) 
n=-m 

This yields 

Using the same  arguments, we may write for complex-valued  sequences 

W(.) = X(.) y*(n) t) V ( 2 )  = - X(v )Y*  
1 f (5) v-' dv. (4.25) 

2Tl c 

4.2 The Discrete-Time Fourier  Transform 

The discrete-time Fourier transform of a sequence X(.) is defined as 
00 

X(ej') = C e-jwn. (4.26) 

Due to  the  2~-periodicity of the complex exponential, X(ej") is periodic: 
X ( e j w )  = X(e j ( ,  + 2.rr)). If X(.) is obtained by regular  sampling of a 

n=-m 
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continuous-time signal zct( t )  such that z (n)  = z,t(nT), where T is the 
sampling  period, W can  be  understood  as  the  normalized  frequency W = 27r f T .  

(4.27) 

Convolution 

(4.28) 

Multiplication in the Time Domain 

z(n)y(n) w - X ( e j w )   * Y ( e j w )  = - X ( e j ( w - V ) ) Y ( e j V ) d v .  (4.29) 
1 

27r  27r S" 
Reconstruction. If the sequence z(n) is absolutely summable (X E 
l 1  (-m, m)), it  can  be  reconstructed  from X ( e j w )  via 

z(n) = - X ( e j w )  ejwn dw. 
27r S" -r 

(4.30) 

The expression (4.30) is nothing  but  the inverse z-transform,  evaluated  on  the 
unit circle. 

Parseval's  Theorem. As in the case of continuous-time signals, the signal 
energy  can  be calculated in the  time  and frequency  domains. If a signal z(n) 
is absolutely and  square  summable (X E l 1  (-m, m) n &(-m,  m)), then 

(4.31) 

Note that  the expression (4.26) may  be  understood as a series expansion 
of the 27r-periodic spectrum X(ej" ) ,  where the values z(n) are  the coefficients 
of the series expansion. 
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4.3 The  Discrete Fourier  Transform (DFT) 

The  transform pair of the discrete Fourier transform (DFT) is  defined as 

N-l 

X ( k )  = c .(n)w;k 

5 
n = O  

1 N-l 
.(n) = c x ( k ) w i n k )  

k=O 

(4.32) 

(4.33) 

Due to  the periodicity of the basis functions,  the  DFT can  be seen as the 
discrete-time Fourier transform of a periodic signal with  period N .  

the above relationships can also be  expressed as 

1 
N 

x = w x  t) x = - W H X .  

We see that W is orthogonal,  but  not  orthonormal. 
The  DFT can  be  normalized as follows: 

(4.35) 

(4.36) 

a = +  x t ) x = 9 a ,  H (4.37) 

where 
1 9 = -WH. a (4.38) 

The columns of 9, 
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then form an  orthonormal basis as  usual. 

We  now briefly recall the most important properties of the  DFT. For an 
elaborate discussion of applications of the  DFT  in digital  signal processing 
the reader is referred to [113]. 

Shifting. A circular  time shift by p yields 

xp(n)  = ~ ( ( n  + p)  mod N) 

t 
N-l 

X,(m) = c x ( (n  + p)  mod N)WGm 
n=O 

N-l 

(4.39) 

i=O 

= W,""X(m). 

Accordingly, 

N-l 

Wp X(.) t) c x ( ~ ) W $ ~ + ~ )  = X ( ( m  + Ic) mod N).  (4.40) 
n=O 

Multiplication  and  Circular  Convolution. For the inverse discrete 
Fourier transform  (IDFT) of 

we have 

(4.41) 

That  is, a  multiplication in the frequency domain  means a circular convolution 
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in the  time domain. Accordingly, 

N-l  

~ ( n )  m(n) t) c X l ( n )   X z ( ( m  - n)  modN). (4.42) 
n = O  

Complex Conjugation. Conjugation in the  time or frequency  domains 
yields 

2*(n) X * ( N  - n) (4.43) 

2* ( N  - n) X *  (n). (4.44) 
and 

Relationship between the DFT and the KLT. The  DFT is related to 
the KLT due to  the fact that  it diagonalizes  any  circulant  matrix 

(4.45) 

In  order to show the diagonalization effect of the  DFT, we consider a  linear 
time-invariant  system  (FIR  filter)  with  impulse  response h(n),  0 5 n 5 N - 1 
which is excited by the periodic  signal WN"/fl. The  output signal y(n) is 
given  by 

(4.46) 
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Comparing (4.47) with (4.45) and (4.37) yields the relationship 

H ( k ) p ,  = H p , ,  k=O, 1,. . . ,N- l .  (4.48) 

Thus,  the eigenvalues Xk = H ( k )  of H are derived  from the  DFT of the first 
column of H .  The vectors p,, k = 0,1, . . . , N - 1 are  the eigenvectors of H .  
We have 

aHHa = diag{H(O), H(1), . . . , H ( N  - l)}. (4.49) 

4.4 The Fast Fourier Transform 

For a complex-valued input  signal ~ ( n )  of length N the implementation of 
the  DFT  matrix W requires N 2  complex multiplications. The idea  behind 
the fast Fourier transform (FFT) is to factorize W into a product of sparse 
matrices that altogether  require  a lower implementation cost than  the direct 
DFT.  Thus,  the FFT is a  fast  implementation of the  DFT  rather  than a 
different transform  with different properties. 

Several concepts for the factorization of W have  been proposed  in the 
literature. We  will  mainly focus on the case where the  DFT  length is a power 
of two. In  particular, we will discuss the radix-2 FFTs,  the radix-4 FFT, and 
the split-radix FFT. Section 4.4.5 gives a brief overview of FFT algorithms 
for cases where N is not  a power of two. 

We  will only discuss the forward DFT. For the inverse DFT a similar 
algorithm  can  be  found. 

4.4.1 Radix-2  Decimation-in-Time FFT 

Let  us  consider an N-point DFT where N is a power of two, i.e. N = 2K for 
some K E N. The first step towards a fast  implementation is to decompose 
the time  signal X(.) into  its even and  odd numbered  components 
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The  DFT  can  be  written  as 
N - l  

n=O 

%-l 8-1 
= c ZL(n)W?k + c .(.)W, (2n+l )k  

n=O n=O 

%-l  +l 

= c ~ ( n ) W $ ,  + W; ~ u ( ~ ) W $ ~ ,  k = 0,1, ..., N - 1. 
n=O n=O 

(4.51) 
In the last  step  the properties W z k  = W,!$2 and W, (2n+l)k = W; 
were used. The  next  step is to write (4.51) for k = 0,1, . . . , $ - 1 as 

X ( S )  = U ( S )  + WiV(Ic), 5 = O,l , .  . ., - 1 
2 

(4.52) 

with 
-- T 1  N 

2 
V ( k )  = c u(n)W$,, 5 = 0,1, .  . ., - - 1 

V ( k )  = co(n)W;72,  5 = 0,1, .  . ., - - 1. 

n=O 
(4.53) 

-- T 1  N 
2 

n=O 

Due to  the periodicity of the  DFT  the values X ( L )  for Ic  = $, .. . , N - 1 are 
given  by 

N  N  N 
2 2 2 

X ( k )  = U(Ic - -) + W& V(Ic - -), Ic = -, . . . , N - 1. (4.54) 

Thus, we have  decomposed an  N-point  DFT  into two $-point DFTs  and 
some extra  operations for combining the two DFT  outputs. 

Figure 4.1 illustrates the implementation of an  N-point  DFT via  two $- 
point DFTs. It is easily verified that  the decomposition of the  DFT results  in 
a reduction of the number of multiplications: the two DFTs require 2(N/2 )2  
multiplications, and  the prefactors W& require  another N multiplications. 
Thus,  the overall complexity is $ + N ,  instead of N 2  for the direct DFT. 
The prefactors W&, which are used for the combination of the two DFTs,  are 
called twaddle factors. 

Since N is considered to  be a power of two, the same decomposition 
principle can  be used for the smaller DFTs  and  the complexity can  be  further 
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reduced. To be explicit, we decompose the sequences u(n) and w(n) into  their 
even and  odd  numbered parts: 

a(n) = u(2n) = x(4n) 

b(n )  = u(2n+ 1) = x(4n + 2) 

C(.) = w(2n) = 2(4n + 1) 
(4.55) 

d(n) = v(2n+ 1) = 2(4n + 3 ) .  

Observing that = W&k we get for the $-point DFTs U ( k )  and V(L)  

{ 

I 
A(k)  + W&k B ( k ) ,  k = O , l ,  . . . ,--  1 

N 
4 

4 2 

U ( L )  = 
N 1  

C(L) + W;k D@), k = O , l ,  . . . , - -  N 1  

C ( k - $ + W & 9 ( k - - ) ,  k = -  ,.", - - l .  

(4.56) 
A ( L - T ) + W j $ ' " B ( k - N )  4 7  L = -  , . . . ,--  

and 

V ( k )  = 4 
N N N N 

4 4 2 

(4.57) 

The decomposition  procedure  can  be  continued  until  two-point DFTs  are 
reached. 

It  turns  out  that all stages of the  FFT  are composed of so-called butterfly 
graphs as shown in Figure 4.2. The two structures in Figure 4.2 are equivalent, 
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(4 01) 

Figure 4.2. Equivalent  butterfly  graphs. 

but  the one in Figure 4.2(b) saves us one  complex multiplication. The complete 
flow graph for an 8-point FFT based  on the  butterfly in Figure  4.2(b) is 
depicted in Figure 4.3. As we see, the  output values appear in their  natural 
order,  but  the  input values appear in permuted  order.  This is the case for 
all N .  The  order of the  input values  is  known as the bit reversed  order. This 
order  can  be derived from the  natural one as follows. First, one represents the 
numbers 0 ,1 , .  . . , N - 1 in binary  form.  Then  the  order of bits is reversed and 
the decimal equivalent is taken. For example, n = 3 is represented by [011] 
when an 8-point FFT is considered. This yields [l101 in reversed order,  and 
the decimal equivalent is 6. Thus, 4 6 )  has to be  connected to  input node 3. 

Since the  butterfly  operations within  each stage of the  FFT  are indepen- 
dent of one another,  the  computation of the  FFT can  be carried out in place. 
This means that  the pair of output values of a butterfly is written over the 
input. After this  has been  done for all butterflies of a given processing stage, 
one  can  proceed to  the next  stage.  Thus,  only  a  memory of size N + 1 is 
required for computing  an  N-point  FFT. 

The  computational  complexity of the  FFT is as follows. Each stage 
of the FFT requires N/2 complex multiplications and N additions.  The 
number of stages is  log, N .  This yields a total number of i N  log, N complex 
multiplications and N log, N additions. However, since the 2-point DFTs do 
not require multiplications, and since the 4-point DFTs involve multiplications 
with 1, -l,j, and - j  only, the  actual number of full complex multiplications 
is  even  lower than  iNlog, N .  

4.4.2 Radix-2  Decimation-in-Frequency FFT 

A  second  variant of the radix-2 FFT is the decimation-in-frequency algorithm. 
In  order to derive this  algorithm, we split the  input sequence  into the first 
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-1 -1  -1 

Figure 4.3. Flow graph for an 8-point  decimation-in-time FFT. 

and second  halves and write the  DFT  as 
N - l  

n=O 

N / 2 - l  

(4.58) 
n=O 

N f 2 - 1  

= c [U(.) + (-l)”(.)] W$) 
n=O 

where 
U(.) = X(.) N , n = 0 , 1 )  . . . )  - - l .  (4.59) 

2 v(.) = z(n + N / 2 )  

In (4.58) we have  used the fact that W:’2 = -1. For the even and  odd 
numbered DFT points we get 

N - l  

X ( 2 k )  = c [U(.) + v(.)] WZh (4.60) 
n=O 

and 
N - l  

X (2k  + 1) = c [U(.) - v(.)] W; WZk .  (4.61) 
n=O 

Because of W F k  = W$2, the even numbered DFT points X ( 2 k )  turn  out 
to be the  DFT of the half-length sequence U(.) + W(.). The  odd numbered 
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40) 

4 1 )  

42) 

d 3 )  

44) 

45) 

46) 

47)  
-1 -1 -1 

Figure 4.4. Flow graph  for an 8-point  decimation-in-frequency FFT. 

DFT points  X(2k + 1) are  the  DFT of [u(n) - w(n)] W;. Thus,  as  with  the 
decimation-in-time  algorithm, the  N-point  DFT is  decomposed into two N/2- 
point  DFTs. Using the principle repeatedly  results in an FFT algorithm where 
the  input values appear  in  their  natural  order,  but where the  output values 
appear  in  bit reversed order.  The complexity  is the same as for the decimation- 
in-time FFT. Figure 4.4  shows the complete flow graph of the decimation-in- 
frequency FFT for the case N = 8. The comparison of Figures  4.3 and 4.4 
shows that  the two  graphs  can  be viewed as  transposed versions of one another. 

4.4.3 Radix-4 FFT 

The radix-4 decimation-in-frequency FFT is derived  by writing the  DFT as 

N-l 

X ( k )  = c .(n)w;k 
n=O 
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Splitting X(k) into four subsequences X(4k + m) yields 

z (n  + .e-)WG" w$4. 
N 
4 1 (4.63) 

Thus, we have  replaced the  computation of an  N-point  DFT by four N/4- 
point DFTs. One of these four DFTs requires no multiplication at all,  and  the 
others require one  complex multiplication per  point.  Compared to  the radix- 
2 FFT  this means  3 X (N/4)  instead of N/2 multiplications for the twiddle 
factors. However, the radix-4 algorithm requires only N/4-point  DFTs,  and 
it requires only  half as many stages as a radix-2 one. Therefore, the overall 
number of multiplications is  lower  for the radix-4 case. 

4.4.4 Split-Radix FFT 

The  split-radix FFT [46], which  is a  mixture of the radix-2 and radix-4 
algorithm, requires the lowest number of operations of all currently known 
FFT algorithms.  It is also easily programmed  on  a  computer. The radix-2 
approach is  used to compute  the even numbered frequencies, and  the radix- 
4  approach is  used to compute  two  length-(N/4)  subsequences of the  odd 
numbered frequencies. For this, X(k) is split into  the following three  subsets: 

N/2-1 n 7  

X(2k) = c [X(.) + z ( n  + ;)l W$, 
n=O 

(4.64) 

N/4-1 

X(4k + 1) = c [ [X(.) - z(n + -)] N 
2 

n=O 

N/4-1 

X(4k + 3) = c [ [X(.) - z(n + -)] N 
2 

n=O 

N  N 
4 

+j[z(n  + -) - z(n + 34)1] W$'W$,. (4.66) 

The  terms [X(.) - z ( n  + $)] and [z(n + :) - z ( n  + y)] in (4.65) and (4.66) 
are  the  natural  pairs to  the  terms in (4.64).  Thus,  a  split-radix  butterfly 
can  be  drawn as shown in Figure 4.5. As with the previous  approaches,  the 
decomposition principle can  be used repeatedly. It  turns  out  that  the  split- 
radix  approach requires less multiplications than  a  pure radix-2 or radix- 
4 FFT, because fewer  full complex multiplications occur. The  split-radix 
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0 use for X(4k+l) 

0 use for X(4k+3) 

Figure 4.5. Butterfly  for a split-radix FFT. 

concept  can  be generalized to other radices [152], and special forms are 
available for real and real-symmetric data [45, 1381. 

4.4.5 Further FFT Algorithms 

There  are a number of algorithms available for the case where the  DFT  length 
is not necessarily a power of two. The best known one is the Cooley-Tukey F F T  
[31],  which requires that  the  DFT-length is a composite  number N = P&, 
where P and  Q  are integers. The  DFT can then  be  written as 

P-1 Q-l 

X ( k P +  m) = c c z(iQ + j )  W, (iQ+j)(kP+m) 

(4.67) 

j=O i=O 

for k = 0, 1,. . . , P - 1 and m = 0, 1 , .  . . , Q - 1.  The inner sum in the second 
line of (4.67) turns  out  to  be a P-point  DFT,  and  the  outer  sum is a Q-point 
DFT.  Thus,  the  N-point  DFT is decomposed  into P Q-point and  Q  P-point 
DFTs, plus the twiddle  factors in the middle of the second  line  in (4.67). As 
can easily be verified, the complexity is  lower than for the direct N-point 
DFT. If P and/or  Q  are composite themselves, the  approach can  be iterated, 
and  the complexity  can  be further reduced. Note that  the radix-2 approach 
occurs as a special case where P = 2 and  Q = N/2. 

If the  DFT-length can  be factored into N = P Q  where P and  Q  are 
relatively prime  (have  no common divisor other  than 1) a powerful algorithm 
known as  the Good-Thomas F F T  can  be used. The basic idea dates back 
to papers by Good [64] and  Thomas [143]. The  algorithm  has been  further 
developed in [88, 164, 20,  1421. The efficiency of the Good-Thomas FFT 
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results from the fact that for relatively  prime P and Q the twiddle  factors 
(they  are always present in the Cooley-Tukey FFT) can  be avoided. The  input 
data  can  be  arranged  in a two-dimensional array,  and the transform  can  be 
implemented as a true two-dimensional transform.  The mapping is based  on 
the Chinese remainder  theorem [g]. 

FFTs where N is a prime  number  can be realized via  circular convolution 
[120, 101. In  order to give an idea of  how this is done, we  follow the approach 
in [l01 and write the  DFT as 

N-l  N-l 

X ( k )  = c x(n)W;k = W;; c [x(n)W&] W,, -(k-n)' (4.68) 
n=O  n=O 

The  sum on the right side can  be identified as a  circular convolution of the 
sequences x(n)Wp$, and W;;', that is 

X ( n )  = W;; [ x(n)W& * W'$]. (4.69) 

Efficiency is achieved  by implementing the circular convolution via fast 
convolution based  on the FFT, see e.g. [117]. 

Powerful FFT algorithms are most  often  associated  with  signal  lengths 
that  are powers of two.  However, prime  factor  algorithms such as  the Wino- 
grad FFT [l641 are often  competitive, if not  superior, to  the power-of-two 
approaches. Thus, when  designing an  algorithm where the  DFT is involved, 
one should not  be  bound to certain block lengths,  because for almost  any 
length  an  appropriate FFT algorithm  can  be  found. 

4.5 Discrete Cosine Transforms 

We distinguish the following four  types of discrete  cosine  transforms (DCTs) 
[122]: 

DCT-I: 

c:(")=&% cos($) ,   k ,n=0,1,  ..., N .  (4.70) 

DCT-11: 

c:'(.) = &yk COS ( ) , k , n  =0,1 ,  ..., N -  1. (4.71) 
k ( n  + +)T 
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DCT-111: 

cL"(n) = 6 yn cos ( ( I c  '2)"") , 5, n = 0 ,1 , .  . . , N - 1. (4.72) 

DCT-IV: 

cLV(n) = p - N cos ( (5+t ,c .+i)") ,  N k , n = 0 , 1 ,  ..., N - l .  (4.73) 

The  constants yj in (4.70) - (4.72) are given  by 

for j = 0 or j = N ,  
Tj = 

1 otherwise. 
(4.74) 

The coefficients ck(n) are  the elements of the orthonormal basis vectors 

ck(n) = [ck(o) ,ck( l ) ,  . . . l T .  

In  order to point out clearly how (4.70) - (4.73) are  to  be  understood, let us 
consider the forward and inverse DCT-11: 

N-l 

and 
N-l 

Especially the DCT-I1 is of major  importance  in  signal coding because it 
is close to  the KLT for first-order  autoregressive processes with  a  correlation 
coefficient that is close to one.' To illustrate  this, we consider the inverse of 
the correlation matrix of an AR(1)  process, which is given  by 

lSee  Section 5.3 for the definition of an AR process. 
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(4.77) 

with P = p/( l  + p’)). The basis vectors of the DCT-I1 are  the eigenvectors of 
tridiagonal  symmetric  matrices of the form 

-( l-  a) -a 

Q =  -a .. 

- 

-a 1 -a 

1 -a 
- -a (1-a)- 

(4.78) 

We see that Q approaches R;: for p + 1. Since the eigenvectors of R,, 
are equal to those of R;: the DCT-I1  approaches the KLT for p + 1.  This 
means that  the DCT-I1  has good decorrelation  properties when the process 
which  is to  be transformed  has high correlation ( p  + 1). This is the case for 
most images,  which explains why most  image coding standards (e.g. JPEG, 
MPEG [79, 157, 108, 561) are based  on the DCT-11. Compared to  the KLT, 
the DCT-I1  has the advantage that fast  implementations  based  on the FFT 
algorithm exist [122]. 

Application in Image Coding. In  most standards for transform coding of 
images, the two-dimensional cosine transform is used [79,157,108,56]. Figure 
4.6  gives an example. First,  the two-dimensional signal is  decomposed into 
non-overlapping blocks. Each of these blocks is then  transformed  separately. 
This  operation  can  be  written  as YNXN = UT X N ~ N  U ,  where X N ~ N  is 
such a signal block and U is the DCT-I1  transform  matrix whose  columns 
contain the basis vectors of the DCT-11. Instead of the original X ,  the 
representation Y is quantized and coded. From the quantized  representation 
Y ’  = Q(Y) an approximation of the original is finally reconstructed.  In 
Figure 4.6 we see that most of the energy of the transformed  signal is 
concentrated in the  top left sub-image. Such a concentration of signal  energy 
in  a few coefficients is the key to efficient  compression. If we were to simply 
transmit  the  top left sub-image and neglect the others, we already could 
achieve drastic compression, while the reconstructed  signal would still be 
relatively close to  the original. 
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I 

Figure 4.6. Transform  coding of images; (a) original,  divided  into N X N blocks; 
(b) transformed  image  after  rearranging the pixels. 

4.6 Discrete  Sine  Transforms 

The discrete  sine  transforms (DSTs) are classified as follows  [122]: 
DST-I: 

s : ( n ) = g  sin($), k , n = 1 , 2  ,..., N - l .  (4.79) 

DST-11: 

N 
, k , n  = 0,1, ..., N-l .  (4.80) 

DST-111: 

N 
, k , n = 0 , 1 ,  ..., N - l .  

(4.81) 
DST-IV: 

siv(.) = J" - N sin * ( ( k + f ) ( n + i ) a ) ,  N k , n = 0 , 1 ,  ..., N - l .  (4.82) 

The  constants ^/j in (4.79) - (4.81) are 

for j = o or j = N ,  
^/j = 

1 otherwise. 
(4.83) 
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To be explicit, the forward and  the inverse DST-I1 are given  by 
N-l 

x;'(~c) = C z(n) sf'cn) 
n=O 

(4.84) 
N-l 

= y k + l g  C x(n) sin ( ( k  + 1) N (n  + ;IT) , 
n=O 

and 
N-l 

z(n) = C x;'(~c) sf'cn) 
k=O 

(4.85) 

- - g y x ; ~ ( l c )  yk+1 sin ( ( k  + 1) N (n  + t,.) 
k=O 

The DST-I1 is related to  the KLT by the fact that  the KLT for an  AR(1) 
process with correlation coefficient y + -1 approaches the DST-11. Thus,  the 
DST-I1  has  good  compaction  properties for processes with negative correlation 
of adjacent  samples. 

4.7 The Discrete  Hartley  Transform 

The  Hartley  transform  as discussed in Section 2.3 received little  attention  until 
its discrete version, the discrete  Hartley transform (DHT), was introduced in 
the early 1980s  by Wang [158, 159, 1601 and Bracewell [13, 14, 151.  Like 
other discrete transforms  such  as  the  DFT  or  the  DCT,  the  DHT  can  be 
implemented efficiently through a factorization of the  transform  matrix.  This 
results in fast  algorithms that  are closely related to  the  FFT, and in fact,  the 
fast Hartley transform (FHT) can  be  computed via the  FFT,  and vice versa, 
the  FFT can  be  implemented via the  FHT [161, 14, 1391.  For example, in 
[l391 a split-radix  approach for the  FHT  has been  proposed. 

The forward  and inverse discrete Hartley  transform pair is  given by 

N-l 

X H ( I C )  = C z(n) cas - 
27rnlc 

N 
n=O 

(4.86) 

1 N-l 
z(n) = C x H ( L )  cas - 

21rnlc 
N 7  

k=O 
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where cas 4 = cos 4 + sin 4. The signal z ( t )  is considered to be real-valued, so 
that also the  transform is real-valued. As with the  DFT,  the sequence X H ( S )  
is periodic with  period N .  

Note that  apart from the prefactor 1/N the DHT is self-inverse, which 
means that  the  same  computer  program or hardware  can  be used  for the 
forward and inverse transform.  This is not the case for the  DFT, where a 
real-valued signal is transformed  into  a  complex  spectrum. 

We may interpret  the basis sequences cas (27rnklN) as sample values of the 
basis functions cas wkt with wk = 27rk/N. The basis function with the highest 
frequency then occurs for k = N/2.  The  kth  and  the ( N  - k)th frequency are 
the same. 

The relationships between the  DHT  and  the  DFT  are easily derived. Using 
the  fact  that 

ej4 = - 1 - j  
+ ’ cas 4 + - cas ( -4 )  (4.87) 
2  2 

and  the periodicity in N ,  we get 

L (4.88) 

where X ( k )  denotes the  DFT.  The  DHT can  be  expressed in terms of the 
DFT  as 

X H ( 5 )  = ?J?{X(k)) - S ( X ( 5 ) ) .  (4.89) 

The  properties of the  DHT can easily be derived from the definition 
(4.86). Like in the continuous-time case, most of them  are very similar to  the 
properties of the Fourier transform. We  will briefly discuss the most important 
ones. The proofs are essentially the same as for the continuous-time case and 
are  omitted here. 

Time Inversion. From (4.86) we see that 

z (N  - n) t) X H ( N  - n). (4.90) 

Shifting. A circular time shift by p yields 

z( (n + p)  mod N )  
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Circular  Convolution. The correspondence for a circular convolution of 
two time  sequences ~ ( n )  and y(n) is 

(4.92) 

Multiplication. The correspondence for products z(n)y(n) is 

where the convolutions have to be carried out in a circular manner. For 
example an expression ZH ( k )  = XH (L) * YH ( - k )  means 

Remarks. The question of whether the  DFT or the DHT  should  be used 
in an application very  much depends  on the  application itself. As mentioned 
earlier, fast algorithms exist for both  transforms,  and  one  fast  transform  can 
be used  in order to implement the  other  transform in an efficient  way.  For 
both  the  FFT  and  the  FHT  the complexity is Nlog, N .  An advantage of 
the DHT is the  fact  that  the  DHT is self-inverse, so that only  one software 
routine  or  hardware device is  needed  for the forward  and inverse FHT. For 
the forward  and inverse FFT of a real signal, two  different routines or devices 
are required. The DHT is  somehow conceptually simpler than  the  DFT if the 
input signal is real,  but all operations  can  be carried out with the  FFT and 
the  FHT with the same complexity. 
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4.8 The Hadamard  and Walsh-Hadamard 
Transforms 

The basis vectors of the discrete  Hadamard and  the discrete  Walsh-Hadamard 
transforms consist of the values fa; just like the Walsh functions discussed 
in Section 3.2.6. Both  transforms  are  unitary. Basically they differ only in the 
order of the basis vectors. 

We have 
y = H x ,  

X = H y ,  
(4.95) 

where X denotes the signal, y the  representation,  and H the  transform  matrix 
of the  Hadamard  transform. H is symmetric  and self-inverse: 

HT = H = H-l. (4.96) 

The  transform  matrix of the  2x2-Hadamard  transform is  given  by 

(4.97) 

From this, all transform  matrices H(n) of size2 n = 2k,  k E IN can  be calcu- 
lated recursively [133]: 

(4.98) 

The Walsh-Hadamard  transform is obtained by taking  the  Hadamard 
transform  and  rearranging  the basis vectors according to  the number of zero 
crossings [66].  Somehow, this yields an order of the basis vectors with respect 
to their  spectral  properties. 

2There exist Hadamard  matrices whose  dimension is not a power of two. 


