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Chapter 5 

Transforms  and Filters 

for Stochastic Processes 

In  this  chapter, we consider the  optimal processing of random signals. We 
start with  transforms  that  have  optimal  approximation  properties, in the 
least-squares sense, for continuous and discrete-time signals, respectively. 
Then we discuss the relationships between discrete transforms,  optimal linear 
estimators,  and  optimal linear filters. 

5.1 The Continuous-Time Karhunen-Lo'eve 
Transform 

Among all linear transforms,  the Karhunen-Lo bve transform (KLT) is the 
one which best approximates a stochastic process in the least squares sense. 
Furthermore,  the KLT is a signal expansion  with  uncorrelated coefficients. 
These  properties  make  it  interesting for many signal processing applications 
such as coding and  pattern recognition. The  transform can  be  formulated for 
continuous-time and discrete-time processes. In  this section, we sketch  the 
continuous-time case [81], [l49 ].The discrete-time case will be discussed in 
the next section in greater  detail. 

Consider  a real-valued continuous-time  random process z ( t ) ,  a < t < b. 
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We may not  assume that every sample  function of the random process lies in 
Lz(a,b)  and  can  be represented  exactly  via a series  expansion.  Therefore, a 
weaker condition is formulated, which states  that we are looking for a series 
expansion that represents the  stochastic process in the mean:’ 

N 

The “unknown”  orthonormal  basis {vi@); i = 1,2, .  . .} has to be derived 
from the properties of the stochastic  process. For this, we require that  the 
coefficients 

b 

2i = (z, Pi) = l Z ( t )  Pi(t) dt (5.2) 

of the series  expansion are uncorrelated.  This  can be expressed as 

= x j  & j .  
! 

The kernel of the integral  representation  in  (5.3) is the autocorrelation 
function 

T,,(t, U )  = E { 4 t )  4.)) * (5.4) 

We see that (5.3) is satisfied if 

Comparing (5.5) with the  orthonormality  relation Si j  = S, cpi(t) c p j ( t )  dt,  we 
realize that 

b 

ll.i.m=limit  in the mean[38]. 
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must  hold in order to satisfy (5.5).  Thus,  the solutions c p j ( t ) ,  j = 1,2 , .  . . 
of the  integral  equation (5.6) form the desired orthonormal basis. These 
functions are also called eigenfunctions of the  integral  operator in (5.6).  The 
values Xj ,  j = 1,2 , .  . . are  the eigenvalues. If the kernel ~,,(t,  U )  is positive 
definite, that is, if S J T , , ( ~ , U ) Z ( ~ ) Z ( U )  d t  du > 0 for all ~ ( t )  E La(a,b),  then 
the eigenfunctions form a complete  orthonormal basis for L ~ ( u ,  b) .  Further 
properties  and  particular solutions of the  integral  equation  are for instance 
discussed in  [149]. 

Signals can  be  approximated by carrying  out  the  summation in (5.1) only 
for i = 1,2 , .  . . , M with finite M .  The mean  approximation  error  produced 
thereby is the  sum of those eigenvalues X j  whose corresponding eigenfunctions 
are not used  for the  representation.  Thus, we obtain  an  approximation with 
minimal  mean  square  error if those eigenfunctions are used  which correspond 
to  the largest eigenvalues. 

In  practice, solving an  integral  equation represents a major  problem. 
Therefore the continuous-time KLT is of minor  interest  with  regard to prac- 
tical applications. However, theoretically, that is,  without solving the  integral 
equation,  this  transform is an enormous help. We can describe stochastic 
processes by means of uncorrelated coefficients,  solve estimation  or recognition 
problems for vectors with  uncorrelated  components and  then  interpret  the 
results for the continuous-time case. 

5.2 The Discrete  Karhunen-Lohe  Transform 

We consider a real-valued zero-mean  random process 

X =  [ ? l ,  X E I R , .  

Xn 

The  restriction to zero-mean processes means  no loss of generality, since any 
process 2: with  mean m, can  be translated  into a zero-mean process X by 

x = z - m 2 .  (5.8) 

With  an  orthonormal basis U = ( ~ 1 , .  . . , U,}, the process can  be  written 
as 

x = u a ,  (5.9) 

where the  representation 
a = [al , .  . . ,a,] T (5.10) 
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is  given  by 
a = u  X. T (5.11) 

As for the continuous-time case, we derive the KLT by demanding uncorre- 
lated coefficients: 

E {aiaj} = X j  S i j ,  i , j  = 1 , .  . . ,n. (5.12) 

The  scalars Xj ,  j = 1 , .  . . , n are unknown real numbers  with X j  2 0. From 
(5.9) and (5.12) we obtain 

E {urx  x T u j }  = X j  S i j ,  i , j  = 1 , .  . . , n. (5.13) 

Wit  h 
R,, = E {.X.'} 

this  can  be  written  as 

(5.14) 

UT R,, uj = X j  Si, , i, j = 1 , .  . . , n. (5.15) 

We observe that because of uTuj = S i j ,  equation (5.15) is satisfied if the 
vectors uj, j = 1, . . . , n are solutions to  the eigenvalue problem 

R,, uj = Xjuj, j = 1 , .  . . , n. (5.16) 

Since R,, is a covariance matrix,  the eigenvalue problem  has the following 
properties: 

1. Only real eigenvalues X i  exist. 

2. A covariance matrix is positive definite or positive semidefinite, that is, 
for all eigenvalues we have Xi  2 0. 

3. Eigenvectors that belong to different eigenvalues are  orthogonal to one 
another. 

4. If multiple eigenvalues occur,  their eigenvectors are linearly independent 
and can  be chosen to be  orthogonal to one another. 

Thus, we see that n orthogonal eigenvectors always  exist. By normalizing 
the eigenvectors, we obtain  the  orthonormal basis of the Karhunen-LoBve 
transform. 

Complex-Valued Processes. For  complex-valued processes X E (En7 

condition (5.12) becomes 
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This yields the eigenvalue problem 

R,, uj = X j u j ,  j = 1 , .  . . ,n 

with the covariance matrix 

R,, = E {zz"} . 

Again, the eigenvalues are real and non-negative. The eigenvectors are  orthog- 
onal to one  another  such  that U = [ul,.  . . ,U,] is unitary. 

From the uncorrelatedness of the complex coefficients we cannot con- 
clude that their real and  imaginary parts  are also uncorrelated; that is, 
E {!J%{ai} 9{aj}}  = 0, i, j = 1, . . . , n is not implied. 

Best Approximation Property of the KLT. We henceforth  assume that 
the eigenvalues are  sorted such that X 1  2 . . . 2 X,. From (5.12) we get for 
the variances of the coefficients: 

E { Jail2} = x i ,  i = 1 ,  ..., R.. (5.17) 

For the mean-square  error of an  approximation 

m 
D = Cai u i ,  m < n, 

i=l 

we obtain 

(5.18) 

(5.19) 

= 5 xi. 
i=m+l 

It becomes obvious that  an  approximation with  those eigenvectors u1, . . . , um, 
which belong to  the largest eigenvectors leads to a minimal  error. 

In  order to show that  the KLT indeed yields the smallest possible error 
among all orthonormal linear transforms, we look at the maximization of 
C z l  E {Jai l }  under  the condition J J u i J J  = 1.  With ai = U ~ Z  this means 
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Figure 5.1. Contour lines of the pdf  of a process z = [zl, zZIT. 

where yi are Lagrange  multipliers.  Setting the gradient to zero yields 

R X X U i  = yiui, (5.21) 

which is nothing  but  the eigenvalue problem (5.16) with yi = Xi. 

Figure 5.1 gives a geometric interpretation of the properties of the KLT. 
We see that u1 points  towards the largest  deviation from the center of gravity 
m. 

Minimal Geometric Mean Property of the KLT. For any positive 
definite matrix X = Xi j ,  i, j = 1, . . . , n the following inequality holds [7]: 

(5.22) 

Equality is given if X is diagonal. Since the KLT leads to a diagonal 
covariance matrix of the representation,  this means that  the KLT leads to 
random variables with a minimal geometric mean of the variances. From this, 
again,  optimal  properties  in signal coding can  be concluded [76]. 

The KLT of White  Noise Processes. For the special case that R,, is 
the covariance matrix of a white noise process with 

R,, = o2 I 

we have 
X 1 = X 2 =  . . .=  X n = 0 2 .  

Thus,  the KLT is not  unique  in  this case. Equation (5.19) shows that a white 
noise process can  be  optimally  approximated  with  any  orthonormal basis. 
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Relationships between Covariance Matrices. In  the following we will 
briefly list some relationships between  covariance matrices. With 

A1 

A = E { a a H } =  [ ... 0 1 ,  (5.23) 

we can write (5.15) as 
A = UHR,,U. 

Observing U H  = U-' , W e  obtain 

(5.24) 

R,, = U A U H .  (5.25) 

Assuming that all eigenvalues are larger than zero, A-1 is  given  by 

Finally, for R;: we obtain 

R;: = UKIUH. (5.27) 

Application Example. In  pattern recognition it is important to classify 
signals by means of a few  concise features.  The signals considered in this 
example are  taken  from inductive loops embedded in the pavement of a 
highway in order to measure the change of inductivity while  vehicles pass over 
them.  The goal  is to discriminate different types of vehicle (car,  truck,  bus, 
etc.).  In  the following, we will consider the two groups car and  truck. After 
appropriate pre-processing (normalization of speed, length,  and  amplitude) we 
obtain  the measured signals shown in Figure 5.2, which are typical examples 
of the two classes. The  stochastic processes considered are z1 (car)  and z2 

(truck).  The realizations are  denoted  as izl, i z ~ ,  i = 1 . . . N .  
In a first step, zero-mean processes are  generated: 

The mean values can  be  estimated by 

(5.28) 

. N  

(5.29) 
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Figure 5.2. Examples of sample functions; (a) typical signal contours; (b) two 
sample functions and their approximations. 

and 
- N  

(5.30) 

Observing the a priori probabilities of the two classes, p1 and p2,  a process 

2 = P l Z l +  P 2 2 2  (5.31) 

can  be defined. The covariance matrix R,, can  be  estimated as 

P1 
N N 

R,, = E { x x ~ }  M - C i x l  ixT + - C ix2  ix;,  P2 

N + 1 ,  a= 1 N + 1 ,  a= 1 
(5.32) 

where i x l  and ix2 are realizations of the zero-mean processes x1 and 2 2 ,  

respectively. 
The first ten eigenvalues computed  from  a training  set  are: 

X1 

968  2551  3139  5036  5262  10230  15790  20559  55460  212923 

X10 X9 X8 X7 X6 X5  X4 X3 X2 

We see that by using  only a few eigenvectors a good  approximation  can 
be expected. To give an example,  Figure 5.2 shows two signals and  their 
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approximations 

109 

(5.33) 

with the basis { u l , u 2 , u 3 , ~ 4 } .  

In general, the  optimality  and usefulness of extracted  features for discrim- 
ination is highly dependent  on the  algorithm  that is  used to carry  out  the 
discrimination. Thus,  the  feature  extraction  method described in this example 
is not  meant to be  optimal for all applications. However, it shows how a high 
proportion of information about a process can  be  stored  within  a few features. 
For more  details  on classification algorithms and  further  transforms for feature 
extraction, see [59, 44, 167, 581. 

5.3 The KLT of Real-Valued AR(1) Processes 

An autoregressiwe process of order p (AR(p) process) is generated by exciting 
a recursive filter of order p with a zero-mean, stationary white noise process. 
The filter has  the system function 

1 H ( z )  = P > P ( P )  # 0. (5.34) 
1 - c p ( i )  z-i 

i=l 

Thus,  an  AR(p) process X(.) is described by the difference equation 

V 

X(.) = W(.) + C p ( i )  X(. - i), (5.35) 
i=l 

where W(.) is white noise. The  AR(1) process with difference equation 

X(.) = W(.) + p X(. - 1) (5.36) 

is often used as  a simple  model. It is also known as a first-order Markow 
process. From (5.36) we obtain by recursion: 

X(.) = c p i  W(. - i). (5.37) 
i=O 

For determining the variance of the process X(.), we use the  properties 

mw = E { w ( n ) }  = 0 + m, = E { z ( n ) }  = 0 (5.38) 
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and 
?-,,(m) = E {w(n)w(n + m)}  = 0 2 s m o ,  (5.39) 

where SmO is the Kronecker  delta.  Supposing IpI < 1, we get 

i=O 

U 2  

1 - p2’ 
- - 

For the  autocorrelation  sequence we obtain 

i=O 

We see that  the autocorrelation  sequence is infinitely long. However, 
henceforth  only the values rzz(-N + l), .... T,,(N - 1) shall be considered. 
Because of the  stationarity of the  input process, the covariance matrix of the 
AR(1) process is a Toeplitz matrix.  It is  given  by 

o2 

1 - p2 
R,, = - (5.42) 

The eigenvectors of R,, form the basis of the KLT. For real signals and 
even N ,  the eigenvalues Xk, Ic = 0,. . . .  N - 1 and  the eigenvectors were 
analytically derived by Ray  and  Driver [123]. The eigenvalues are 

1 

Xk = 
I .... 

1 - 2 p cos(ak) + p2 ’ k = O ,  N-1 ,  (5.43) 
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where a k ,  5 = 0, .  . . , N - 1 denotes the real positive roots of 

tan(Nak) = - 
(1 - p’) sin(ak) 

(5.44) 
cos(ak) - 2p + p COS(Qk). 

The components of the eigenvectors u k ,  k = 0 , .  . . , N - 1 are given  by 

5.4 Whitening Transforms 

In  this section we are concerned with the problem of transforming a colored 
noise process into a white noise process. That is, the coefficients of the 
representation should not only be  uncorrelated (as for the  KLT),  they should 
also have the same variance. Such transforms, known as whitening transforms, 
are mainly applied in signal detection  and pattern recognition, because they 
lead to  a convenient process representation  with  additive  white noise. 

Let n be a process with covariance matrix 

Rnn = E { n n H }  # a21. (5.46) 

We wish to  find a linear transform T which  yields an equivalent process 

i i = T n  (5.47) 

wit h 
E { i i i i H }  = E {TnnHTH} = TR,,TH = I .  (5.48) 

We already see that  the transform  cannot be unique since  by multiplying an 
already  computed matrix T with an  arbitrary  unitary  matrix, property (5.48) 
is preserved. 

The covariance matrix can  be decomposed as follows (KLT): 

R,, = UAUH = UXEHUH. (5.49) 

For A and X we have 
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Possible transforms  are 
T = zP1UH 

or 

T = U T I U H .  

This  can easily be verified  by substituting (5.50) into (5.48): 

Alternatively, we can  apply  the Cholesky decomposition 

R,, = L L H ,  

where L is a lower triangular  matrix.  The  whitening  transform is 

T = L-l .  

For the covariance matrix we again have 

E {+inH) = T R , , T ~  = L - ~ L L H L H - '  = I .  

In signal analysis,  one often encounters signals of the form 

r = s + n ,  

(5.50) 

(5.51) 

(5.52) 

(5.53) 

(5.54) 

(5.55) 

(5.56) 

where S is a known signal and n is an  additive colored  noise processes. The 
whitening  transforms  transfer (5.56) into  an equivalent model 

F = I + k  (5.57) 

with 

F = T r ,  

I = Ts ,  

ii = Tn, 

(5.58) 

where n is a white noise process of variance IS: = 1. 



5.5.  Linear Estimation 113 

5.5 Linear Estimation 

In  estimation  the goal is to determine a set of parameters  as precisely 
as possible from noisy observations. We  will focus on the case where the 
estimators  are  linear,  that is, the  estimates for the  parameters  are computed 
as linear combinations of the observations. This  problem is  closely related to 
the problem of computing  the coefficients of a series expansion of a signal, as 
described in Chapter 3. 

Linear  methods  do  not require precise knowledge of the noise statistics; 
only  moments up to  the second order  are  taken  into  account.  Therefore  they 
are  optimal only under the  linearity  constraint,  and, in general, non-linear 
estimators  with  better  properties may  be found. However, linear estimators 
constitute  the globally optimal solution as far as Gaussian processes are 
concerned [ 1491. 

5.5.1 Least-Squares Estimation 

We consider the model 

r = S a + n ,  (5.59) 

where r is our observation, a is the  parameter vector in question,  and n is a 
noise process. Matrix S can  be  understood  as a basis matrix  that  relates  the 
parameters to  the clean observation Sa.  

The requirement to have an unbiased  estimate  can  be  written as 

E{u(r) la}  = a, (5.60) 

where a is understood as an  arbitrary non-random  parameter vector. Because 
of the  additive noise, the  estimates u(r) la again  form  a  random process. 

The linear estimation  approach is  given  by 

h(.) = A r .  

If we assume  zero-mean noise n, matrix A must satisfy 

(5.61) 

(5.62) A S = I  
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in  order to ensure  unbiased  estimates.  This is  seen  from 

E{h(r)la} = E{A rla} 

= A E { r l a }  

= A E { S a + n }  

= A S a  

(5.63) 

The generalized  least-squares  estimator is  derived  from the criterion 

! .  = mm, 
CY = &(r) 

(5.64) 

where an  arbitrary weighting matrix G may  be involved in the definition of 
the inner  product that induces the norm in (5.64). Here the observation r is 
considered as a single realization of the stochastic process r .  Making  use of 
the fact that orthogonal  projections yield a  minimal  approximation  error, we 
get 

a(r) = [SHGS]-lSHGr (5.65) 

according to (3.95). Assuming that [SHGS]-l exists, the requirement (5.65) 
to have an unbiased  estimator is satisfied for arbitrary weighting matrices, as 
can easily be verified. 

If we choose G = I ,  we speak of a least-squares  estimator. For  weighting 
matrices G # I ,  we speak of a generalized  least-squares  estimator. However, 
the approach leaves open the question of  how a  suitable G is found. 

5.5.2 The Best Linear Unbiased Estimator (BLUE) 

As will be shown  below,  choosing G = R;:, where 

R,, = E {nnH} (5.66) 

is the correlation matrix of the noise, yields an unbiased estimator  with 
minimal variance. The  estimator, which  is  known as  the best  linear  unbiased 
estimator (BLUE), then is 

A = [SHR;AS]-'SHR;A. (5.67) 

The  estimate is given by 

u(r)  = [ s ~ R ; A s S ] - ~ S ~ R ; A  r .  (5.68) 
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The variances of the individual  estimates  can be found  on the main  diagonal 
of the covariance matrix of the error e = u(r)  - a, given  by 

R,, = [SHRiAS]-'. (5.69) 

Proof of (5.69) and the  optimality of (5.67). First, observe that with 
AS = I we have 

h(r)  --la = A S a + A   n - a  

= A n .  
(5.70) 

Thus, 

R,, = AE { n n H } A H  

= A R , , A ~  
(5.71) 

= [SHR;AS]-'SHR;ARn,R;AS[SHR;AS]-' 
= [SHR;AS]-'. 

In  order to see whether A according to (5.67) is optimal, an estimation 

with 

will be considered. The  ur lbiasedness constraint  requires that 

As==. 

Because of A S = I this means 

D S = O  (null matrix). 

For the covariance matrix of the error E(r) = C(r) - a we obtain 

= AR,,A -H 

= [ A  + D]Rnn[A + DIH 

= ARnnAH + ARnnDH + DRnnAH + DRnnDH. 

(5.72) 

(5.73) 

(5.74) 

(5.75) 

(5.76) 
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With 

(AR,nDH)H = DRn,AH = DRnnR$S[SHRiAS]-' 

= DSISHR;AS]-l v (5.77) 
0 

= o  

(5.76) reduces to 
R22 = ARn,AH + DRnnDH. (5.78) 

We see that Rc2 is the sum of two  non-negative definite expressions so that 
minimal  main  diagonal  elements of Rgc are yielded for D = 0 and  thus for A 
according to (5.67). 0 

In  the case of a white noise process n,  (5.68) reduces to 

S(r) = [ s ~ s ] - ~ s ~ ~ .  (5.79) 

Otherwise the weighting with G = R;; can  be  interpreted  as  an implicit 
whitening of the noise. This  can  be seen  by  using the Cholesky  decomposition 
R,, = LLH and  and by rewriting the model as 

F=Sa+f i ,  (5.80) 

where 
F = L-'r, 3 = L - ~ s ,  f i  = L-ln. (5.81) 

The  transformed process n is a white noise process. The equivalent estimator 
then is 

U(?) = [ S  ~ 1 - l ~  r .  (5.82) 
- H -   - H  I 

5.5.3 Minimum  Mean  Square  Error Estimation 

The  advantage of the linear  estimators considered in the previous section 
is their unbiasedness. If we dispense  with this property,  estimates  with 
smaller  mean  square  error  may be found. We  will start  the discussion on 
the assumptions 

E { r }  = 0, E { a }  = 0. (5.83) 

Again, the linear  estimator is described by a matrix A: 

S(r) = A r .  (5.84) 
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Here, r is somehow dependent  on a,  but  the inner  relationship between r 
and a need not  be known  however. The  matrix A which yields minimal  main 
diagonal  elements of the correlation matrix of the estimation  error e = a - U 

is called the minimum mean  square  error (MMSE) estimator. 
In  order to find the optimal A,  observe that 

R,, = E [ U  - U ]  [U - U ]  { (5.85) 
= E { a a H } - E { U a H } - E { a U H } + E { U U H } .  

Substituting (5.84) into (5.85) yields 

R,, = R,, - AR,, - R,,AH + AR,,AH (5.86) 

with 
R,, = E { a a H } ,  

R,, = R: = E { r a H } ,  

R,, = E { m H } .  

(5.87) 

Assuming the existence of R;:, (5.86) can  be  extended by 

R,, R;: R,, - R,, R;: R,, 

and  be  re-written  as 

R,, = [ A  - R,,RF:] R,, [AH - RF:Ra,] - RTaRF:Ra, + Raa. (5.88) 

Clearly, R,, has positive diagonal  elements. Since  only the first term on the 
right-hand side of (5.88) is dependent  on A,  we have a minimum of the 
diagonal  elements of R,, for 

A = R,, R;:. (5.89) 

The correlation matrix of the estimation  error is then given by 

R e ,  = R a a  - R T a R ; : R a T *  (5.90) 

Orthogonality Principle. In  Chapter 3 we saw that approximations D of 
signals z are  obtained  with  minimal  error if the error D - z is orthogonal to 
D. A similar  relationship holds  between parameter vectors a and  their MMSE 
estimates.  With A according to (5.89) we have 

R,, = A R,,, i.e. E { a r H }  = A E { r r H }  . (5.91) 
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This means that  the following orthogonality relations hold: 

E [S - a] S } = - R&, { H 

= [AR,,  - R,,] A" (5.92) 

= 0. 

With A r  = S the right part of (5.91) can also be  written as 

E { a r H }  = E {Sr"} , (5.93) 

which  yields 
E { [ S  - a] r H }  = 0. (5.94) 

The relationship expressed in (5.94) is referred to as the orthogonality 
principle.  The  orthogonality principle states  that we get an MMSE estimate 
if the  error S(r) - a is uncorrelated to all components of the  input vector r 
used  for computing S(r).  

Singular Correlation Matrix. There  are cases where the correlation 
matrix R,, becomes singular and  the linear estimator  cannot  be  written as 

A = R,, R;:. (5.95) 

A  more general solution, which  involves the replacement of the inverse by the 
pseudoinverse, is 

A = R,, R:,. (5.96) 

In  order to show the  optimality of (5.96),  the  estimator 

A = A + D  (5.97) 

with A according to (5.96) and  an  arbitrary  matrix D is considered. Using 
the  properties of the pseudoinverse, we derive from (5.97) and (5.86): 

R,, = R,, - AR,, - R,,A + AR,,A 
- H   - H  

(5.98) 
= R,, - R,,R:,R,, + D R : , D ~ .  

Since R:, is at least positive semidefinite, we get a  minimum of the diagonal 
elements of R,, for D = 0, and (5.96) constitutes  one of the  optimal solutions. 

Additive Uncorrelated Noise. So far,  nothing  has  been said about possible 
dependencies  between a and  the noise contained in r .  Assuming that 

r = S a + n ,  (5.99) 
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where n is an  additive, uncorrelated noise process, we have 

(5.100) 

and A according to (5.89) becomes 

A = R,,SH  [SR,,SH + R, , ] -1 .  (5.101) 

Alternatively, A can  be  written as 

A = [R;: + SHRLAS]- SHRLA. (5.102) 

This is  verified  by equating (5.101) and (5.102), and by multiplying the 
obtained expression with [R;: +SHR;AS] from the left and with [SR,,SH+ 
R,,] from the  right, respectively: 

1 

[R;: + SHRLAS] R,,SH = SHRLA[SR,,SH +R,, ] .  

The equality of both sides is easily seen. The  matrices  to be inverted in (5.102), 
except R,,, typically have a much smaller dimension than those in (5.101). If 
the noise  is white, R;; can  be  immediately stated,  and (5.102) is advantageous 
in terms of computational cost. 

For R,, we get from  (5.89),  (5.90), (5.100) and (5.102): 

Ree = Raa - ARar 

= R,, - [R;; + S H R ; ; S ] - ~  SHR;;SR,,. 

Multiplying (5.103) with [R;; + SHR;;S] from the left  yields 

(5.103) 

= I ,  

so that  the following expression is finally obtained: 
(5.104) 

Re, = [R,-,' + SHRiAS]-l .  (5.105) 

Equivalent Estimation  Problems. We partition A and a into 

(5.106) 
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such that 
(5.107) 

If we assume that  the processes al ,  a2 and n are  independent of one another, 
the covariance matrix R,, and  its inverse R;: have the form 

and A according to (5.102) can  be  written  as 

where S = [SI,  5'21. Applying the  matrix equation 

€ 3  € - l  + E - 1 3 2 ) - 1 B E - 1  4 - 1 3 2 ) - 1  

2 ) - l  (5.110) 

2) = 3c - &?€-l3 

yields 

with 

Rn1n1 = Rnn + SzRazazSf, (5.113) 

= Rnn + S1Ra1a1Sf. (5.114) 

The inverses R;:nl and R;inz can  be  written as 

= [R;: - RiiS2  (SfRiAS2 + R;:az)- SfRiA] , (5.115) 
1 

R;:nz = [R;: - (SyR;AS1 + R;:al)- 1 SyR;:] .(5.116) 

Equations (5.111) and (5.112) describe  estimations of a1 and a2 in the 

r = S l a l +  nl, (5.117) 
models 
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r = S2a2 +n2 (5.118) 

with 

(5.119) 

Thus, each  parameter to be  estimated  can  be  understood as noise  in the 
estimation of the remaining  parameters. An exception is  given if SFR$S2 = 
0 ,  which means that S1 and S2 are  orthogonal to each  other  with respect to 
the weighting matrix R;:. Then we get 

and 
Re,,, = [SBRLASI + 

and we observe that  the second signal component Sza2 has  no influence on 
the  estimate. 

Nonzero-Mean Processes. One  could  imagine that  the precision of linear 
estimations  with respect to nonzero-mean processes r and a can  be increased 
compared to  the solutions above if an  additional  term  taking  care of the mean 
values of the processes is considered. In  order to describe this more general 
case, let us denote  the mean of the  parameters  as 

= E { a } .  (5.120) 

The  estimate is  now written  as 

iL=Ar+c%+c,  (5.121) 

where c is yet unknown. Using the  shorthand 

b = a - - ,  

b = h - - ,  

M = [c,A] 

(5.121) can  be  rewritten  as: 
b = M x .  

(5.122) 

(5.123) 
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The relationship between b and X is linear as  usual, so that  the optimal M 
can  be given according to (5.89): 

M = R,bR$. (5.124) 

Now let us express R , b  and R;: through correlation  matrices of the processes 
a and T .  From (5.122) and E { b }  = 0 we derive 

with 
R , b  = E { [ U  - s i ]  T " }  

= E { [ a - s i ]  [T -e ]"} ,  
where 

F = E { r } .  

1 F H  

= [ F  RT,] ' 

R,, writes 

Using (5.110) we obtain 

1 + e" [R,, - ee"] -l  e -e" [R,, - FP"] -l 

- [R,, - ee"1-l e [R,, - FP"] -l 
R;: = 

From (5.122) - (5.129) and 

[R,, - Fe"] = E { [T - e] [T - e]"} 

we finally conclude 

U = E { [a - s i ]  [T - e]"} E { [T - e] [T - e]"}-l [T - e] + a. 

(5.125) 

(5.126) 

(5.127) 

(5.128) 

(5.129) 

(5.130) 

(5.131) 

Equation (5.131) can  be  interpreted  as follows: the nonzero-mean processes 
a and r are first modified so as  to become  zero-mean  processes a - si and 
r - e.  For the zero-mean  processes the estimation  problem  can  be solved as 
usual.  Subsequently the mean value si is added in order to obtain  the final 
estimate U. 

Unbiasedness for Random Parameter Vectors. So far the parameter 
vector to be  estimated was assumed to  be  non-random. If we consider a to 
be a random process, various other weaker definitions of unbiasedness are 
possible. 
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The  straightforward  requirement 

is meaningless,  because  it is satisfied for any A as  far as r and a are zero-mean. 

A useful definition of unbiasedness in the case of random  parameters is to 
consider one of the  parameters contained in a (e.g. a k )  as non-random  and to 
regard all other  parameters a l ,  . . . , ak-1, ak+l etc.  as  random variables: 

In  order to  obtain  an  estimator which  is unbiased in the sense of (5.133), the 
equivalences discussed above  may  be applied. Starting with the model 

r = S a + n  

= s k a k  + n ,  
(5.134) 

in which n contains the  additive noise n and  the signal component  produced 
by all random  parameters a j ,  j # k, we can write the unbiased  estimate as 

6, = h, r H (5.135) 

Then, 
A = [hl, hz , .  . . I H  (5.137) 

is an  estimator which  is unbiased in the sense of (5.133). 

The Relationship between MMSE Estimation and the BLUE. If 
R,, = E {aaH}  is unknown, R;: = 0 is substituted  into (5.102), and we 
obtain  the BLUE (cf. (5.67)): 

A = [ S H R i A S ] - l   S H R P 1  nn (5.138) 

In  the previous discussion it  became  obvious that  it is possible to obtain 
unbiased  estimates of some of the  parameters  and  to  estimate  the  others 
with  minimum  mean  square  error.  This result is of special interest if no 
unbiased  estimator  can  be  stated for all parameters  because of a singular 
matrix SHR;AS.  
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5.6 Linear  Optimal Filters 

5.6.1 Wiener Filters 

We consider the problem  depicted in Figure 5.3. By linear filtering of the noisy 
signal r(n)  = z(n) + w(n)  we wish to make y(n) = r (n)  * h(n) as similar as 
possible to a desired signal d ( n ) .  The quality criterion used  for designing the 
optimal causal linear filter h(n) is 

The solution to this  optimization  problem  can easily be  stated by applying 
the  orthogonality principle. Assuming  a causal FIR filter h(n) of length p ,  we 
have 

P - 1  

y(n) = c h(i) r (n  - i). (5.140) 
i=O 

Thus, according to (5.94), the following orthogonality condition must  be 
satisfied by the  optimal filter: 

For stationary processes r(n)  and d ( n )  this yields the discrete form of the 
so-called Wiener-Hopf equation: 

P - 1  c h(i) r,,(j - i) = TT&), j = 0, 1 , .  . . , p  - 1,  (5.142) 
i = O  

with 

(5.143) 

The  optimal filter is found by solving (5.142). 

An application  example is the  estimation of data d(n) from a noisy 
observation r(n)  = Cec(C) d ( n  - l )  + w(n), where C(.) is a  channel  and 
W(.) is  noise.  By using the  optimal filter h(n) designed  according to (5.142) 
the  data is  recovered with  minimal  mean  square error. 
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\ ,  

1 w(n) 

' I 

Noise 44 

Figure 5.3. Designing  linear optimal  filters. 

Variance. For the variance of the error we have 

w- 1 w- 1 

i=O  i=O 
(5.144) 

with 0: = E { ld(n12}. Substituting  the optimal solution (5.142) into (5.144) 
yields 

P-1 

Matrix  Notation. In  matrix  notation (5.142) is 

and 

wit h 

(5.145) 

(5.146) 

(5.147) 

(5.148) 
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From  (5.146) and (5.145) we obtain  the following alternative expressions 
for the minimal variance: 

= C T ~  - r% h 
(5.150) 

Special Cases. The following three cases, where the desired signal is a 
delayed version of the clean input signal ~ ( n ) ,  are of special interest: 

(i) Filtering: d ( n )  = z(n). 

(ii) Interpolation: d ( n )  = z(n + D), D < 0. 

(iii) Prediction: d ( n )  = z(n + D), D > 0. Here the goal is to predict a future 
value. 

For the  three cases mentioned  above the Wiener-Hopf equation is 

P-1 c h(i) rw(j - i) = rm( j  + D), j = 0, 1,. . . , p  - 1. (5.151) 
i = O  

Uncorrelated Noise. If the noise W(.) is uncorrelated to z(n), we have 

and 
rTd(m) = r,,(m + D), 

and  from (5.151) we derive 

(5.153) 

P-1 

ch(i) [rz2(j-i)+rww(j-i)] =r,,(j+D), j =0 ,1 ,  . . . , p -  l. (5.154) 
i = O  

In  matrix  notation we get 

[R,, + R w w l  h = r z z ( D )  

with 

(5.155) 

hT = [h(O), h(l), . . . , h(p - l)] , (5.156) 
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and 

rxx (0) rzz(-l) . . . rzz(--P + 1) 
r x x  (1) r x x  (0) . . .  r x x  (-P + 2) 

r x x ( P  - 1) T z z ( P  - 1) . . . r z z  (0) 

R x x  = . (5.158) 

For the correlation matrix R,, the corresponding definition holds. 
The minimal variance is 

a:min = 0; - T ~ ( D )  h 
(5.159) 

5.6.2 One-Step Linear Prediction 

One-step linear predictors  are used in many  applications  such as speech 
and  image  coding (DPCM,  ADPCM, LPC, ...), in spectral  estimation,  and 
in feature  extraction for speech recognition. Basically, they  may  be  regarded 
as a special case of Wiener-Hopf filtering. 

Figure 5.4. One-step  linear  prediction. 

We consider the system in Figure 5.4. A comparison  with  Figure 5.3 shows 
that  the  optimal  predictor can  be  obtained  from  the Wiener-Hopf equations 
for the special case D = 1 with d(n)  = z(n + l), while no  additive noise  is 
assumed, w(n)  = 0. Note that  the filter U(.) is related to  the Wiener-Hopf 
filter h(n) as U(.) = -h(n - 1).  With 

P 
q n )  = - C.@) z(n - i), (5.160) 

i= 1 

where p is the  length of the  FIR filter a(n), the  error becomes 

e(.) = X(.) -g(.) 

P (5.161) 
= z(n) + C a(i)  z(n - i). 

i= 1 
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Minimizing the error  with  respect to  the filter coefficients yields the equations 

P 

-C .(i) rzz(j - i )  = r,,(j), j = 1,2 , .  . .,P, (5.162) 
i=l 

which are known as  the normal equations of linear  prediction. In  matrix 
notation  they  are 

that is 
R z z a  = - rzz(1)  

aT = [.(l), . . . ,.(p)]. 
with 

According to (5.159) we get for the minimal variance: 

(5.164) 

(5.165) 

Autoregressive  Processes and  the Yule-Walker Equations. We con- 
sider an autoregressive process of order p (AR(p) process). As outlined  in 
Section 5.3, such a process is generated by exciting a stable recursive filter with 
a stationary  white noise process W(.). The system  function of the recursive 
system is supposed to be2 

1 
U ( 2 )  = P 7 .(P) # 0. (5.167) 

1 + c .(i) z-i 
i d  

The  input-output relation of the recursive system may be expressed via the 
difference equation 

P 

z(n) = W(.) - c .(i) z(n - i ) .  (5.168) 
i= 1 

21n order to keep  in  line with  the  notation used in  the  literature,  the coefficients p ( i ) ,  i = 
1, .  . . , p  introduced  in (5.34) are replaced by the coefficients -a ( i ) ,  i = 1,. . . , p .  
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For the autocorrelation sequence of the process z(n) we thus derive 

r z z ( m )  = E {z*(n)z(n + m)}  

P 
= rzw(m)  - c .(i) r z z ( m  - i). 

i=l 

The cross correlation sequence rzw(m)  is 

rzw(m) = E {z*(n)w(n + m)}  
cc 

= c U * ( i )  rww(i + m) 

= 0; U * ( - m ) ,  

i=l - 
U26(i+77A) 

(5.169) 

(5.170) 

where u(n) is the impulse response of the recursive filter. Since U(.) is causal 
(u(n) = 0 for n < 0), we derive 

(5.171) 

By  combining (5.169) and (5.171) we finally get 

- c a ( i )  ?-,,(m - i), m > 0, 

r z z ( m )  = P (5.172) 
0; - c a ( i )  r z z (m  - i), m = 0, 

c, (-m), m < 0. 

P 

i= 1 

i= 1 

The  equations (5.172) are known as the Yule-Walker  equations. In  matrix 
form they  are 

Tzz(0) Tzz(- l )  Tzz(-2) * *  Tzz(--P) 

Tzz (1) Tzz (0) Tzz(-1) 

T z z ( P )   T z z ( P  - 1) T z z ( P  - 1) . . . Tzz(0) 

(5.173) 
As can  be inferred from (5.173), we obtain  the coefficients a( i ) ,  i = 1,. . . , p  
by solving (5.163). By observing the power of the prediction  error we can  also 
determine the power of the input process. From (5.166) and (5.172) we have 

(5.174) 
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Thus, all parameters of an autoregressive process can  be exactly determined 
from the  parameters of a one-step linear predictor. 

Prediction Error Filter. The  output signal of the so-called prediction  error 
filter is the signal e(n)  in Figure 5.4 with the coefficients U(.) according to 
(5.163). Introducing  the coefficient a(0)  = 1, e(n )  is  given  by 

P 

e(n)  = C a ( i )  z(n - i), a(0) = 1.  (5.175) 
i=O 

The system function of the prediction error filter is 
P P 

(5.176) 
i=l i=O 

In  the special case that ~ ( n )  is an autoregressive process, the prediction 
error filter A ( z )  is the inverse system to  the recursive filter U ( z )  t) u(n). 
This also means that  the  output signal of the prediction error filter is a 
white noise process. Hence, the prediction error filter performs a whitening 
transform  and  thus  constitutes  an  alternative to  the  methods considered in 
Section 5.4. If X(.) is not  truly autoregressive, the whitening  transform is 
carried  out at least approximately. 

Minimum Phase Property of the Prediction Error Filter. Our 
investigation of autoregressive processes showed that  the prediction error 
filter A(z )  is inverse to  the recursive filter U ( z ) .  Since a  stable filter does  not 
have poles outside  the  unit circle of the  z-plane,  the corresponding prediction 
error filter cannot  have zeros outside  the  unit circle. Even if X(.) is not an 
autoregressive process, we obtain a minimum  phase prediction error filter, 
because the calculation of A ( z )  only  takes  into  account  the  second-order 
statistics, which do  not  contain  any  phase  information, cf. (1.105). 

5.6.3 Filter Design on the Basis of Finite Data 
Ensembles 

In  the previous sections we assumed stationary processes and considered the 
correlation sequences to be  known. In  practice, however, linear predictors  must 
be  designed  on the basis of a finite number of observations. 

In  order to determine  the  predictor filter a(.) from  measured data 
%(l), 2(2), . . . , z ( N ) ,  we  now describe the prediction error 

P 

i= 1 
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via the following matrix  equation: 

e = X a + x ,  (5.177) 

where a contains  the  predictor coefficients, and X and 2 contain the  input 
data.  The  term X a describes the convolution of the  data with the impulse 
response a ( n ) .  

The criterion 
llell = I I X  a + xll L min (5.178) 

leads to  the following normal  equation: 

X H X a = - X H x .  (5.179) 

Here, the  properties of the  predictor  are dependent  on the definition of X 
and X .  In  the following, two relevant methods will be discussed. 

Autocorrelation Method. The autocorrelation  method is based  on the 
following estimation of the  autocorrelation sequence: 

. N - l m l  

+ p  (m) = - c .*(n) .(n + m). 
l 

N 
n=l 

(5.180) 

As can  be seen, +LtC’(m) is a  biased  estimate of the  true  autocorrelation 
sequence r,,(m), which means that E{+$tC’(m)} # rzz (m) .  Thus,  the 
autocorrelation  method yields a biased estimate of the  parameters of an 
autoregressive process. However, the correlation matrix kzc’ built from 
+k?(rn) has a Toeplitz structure, which enables us to efficiently  solve the 
equation 

R,, 22 (5.181) .. (AC)  = - p c ’  (1) 

by means of the Levinson-Durbin  recursion [89, 471 or the Schur  algorithm 
[130]. Textbooks that cover this topic are, for instance, [84,  99, 1171. 

The  autocorrelation  method  can also be viewed as the solution to  the 
problem (5.178) with 

X =  7 X =  

z(N) . .. ~ ( N - p + l )  
z(N - 1) . . .  z(N-p) 

.(p) ... .(l) 

(5.182) 
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and 
?Lf)(l) = X H x .  (5.185) 

Covariance Method. The cowariance method takes  into  account  the pre- 
diction errors in steady  state only  and yields an unbiased  estimate of the 
autocorrelation  matrix.  In  this case X and X are defined as 

x ( N -  1) .. . x ( N - p )  

X =  [ :: :  ;i; ] 
X@) 

and 

(5.186) 

(5.187) 

The  equation to be solved  is 

(C") h R,, a = -+L;")(I), (5.188) 

where 

r x x  +")(l) = X H z .  (5.190) 

Note that kg") is not a Toeplitz matrix, so that solving (5.188) is  much more 
complex than solving (5.181) via the Levinson-Durbin recursion. However, the 
covariance  method  has the  advantage of being unbiased; we have 

E { RE"'} = Rxx.  (5.191) 
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5.7 Estimation of Autocorrelation Sequences 
and  Power Spectral Densities 

5.7.1 Estimation of Autocorrelation Sequences 

In  the following, we will discuss methods for estimating  the  autocorrelation 
sequence of random processes from given sample values z(n), n = 0, .  . . , N - 1. 
We start  the discussion with the  estimate 

N-In- l  

?!,(m) = - c x* (n)  z(n + m), 
l " 

N 
n=O 

(5.192) 

which  is the same as  the  estimate ? i ic ) (m) ,  used  in the  autocorrelation 
method  explained in the  last section. As can easily be verified, the  estimate 
?:,(m) is biased  with  mean 

E {?!,(m)} = e r,,(m). 
N (5.193) 

However,  since 
lim E {?!,(m)} = r,,(m), (5.194) 

the  estimate is asymptotically unbiased. The  triangular window v that 
occurs in (5.193) is  known as  the Bartlett window. 

N+CC 

The variance of the  estimate can  be  approximated as [77] 

l o o  
v 4 e x  (m11 c lr,,(n)12 + rZx(n - m) rzz(n +m) .  (5.195) 

n=-cc 

Thus, as N + m, the variance tends  to zero: 

(5.196) 

Such an  estimate is said to be consistent. However, although consistency is 
given, we cannot  expect  good  estimates for large m as long as N is finite, 
because the bias increases as Iml + N .  

Unbiased Estimate. An unbiased estimate of the  autocorrelation  sequence 
is  given  by 

N-In- l  

(5.197) 
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The variance of the  estimate can  be  approximated as [77] 

N cc 

var[+:, (m)] M c l~,,(n)1~ + rZ,(n - m) r,,(n +m) .  (5.199) 
(N - lmD2 

As N + CO, this gives 

N+cc 
lim var[?&(m)] + 0, (5.200) 

which means that ?,",(m) is a consistent estimate. However, problems arise 
for large m as long as N is finite, because the variance increases for Iml + N. 

5.7.2 Non-Parametric Estimation of Power  Spectral 
Densities 

In  many real-world problems  one is interested in knowledge about  the power 
spectral density of the  data  to be processed. Typically, only a finite set of 
observations X(.) with n = 0 , 1 , .  . . , N-l is available. Since the power spectral 
density is the Fourier transform of the  autocorrelation sequence, and since 
we have  methods for the  estimation of the  autocorrelation sequence, it is a 
logical consequence to look at the Fourier transforms of these  estimates. We 
start with ?:,(m). The Fourier transform of +!,(m) will be  denoted as 

We know that ?!,(m) is a biased  estimate of the  true  autocorrelation sequence 
rzz(m), so that we can  conclude that  the  spectrum P,,(eJ") is a biased 
estimate of the  true power spectral density S,,(eJW). In  order to be explicit, 
let us recall that 

with wB(m) being the  Bartlett window; i.e. 

(5.203) 
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In the spectral  domain, we have 

where W B ( e j w )  is the Fourier transform of w~(m) given by 

(5.204) 

(5.205) 

Thus, E {P,,(ej")} is a smoothed version of the  true power spectral  density 
S,,(ej"), where smoothing is carried out with the Fourier transform of the 
Bartlett window. 

A second  way of computing P,,(eJ") is to compute the Fourier transform 
of X(.) first and  to derive P,,(ej") from X(ej").  By inserting (5.192) into 
(5.201) and  rearranging the expression obtained, we get 

(5.206) 

In the form (5.206) P,,(eJ") is  known as  the periodogram. 

Another way  of deriving an  estimate of the power spectral  density is to 
consider the Fourier transform of the estimate ?:,(m). We use the notation 
Q,,(eJW) for this  type of estimate: 

N-l 

Qzz(e jw)  = c ?:,(m) e-jwm. (5.207) 
m=-(N-l) 
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The expected value is 
N - l  

E {Q,,(ej")} = c ,!{+&(m)} e-jwm 
m=-(N-l)  

N-l  

m=-(N-l)  
M 

m=-m 

where wR(m)  is the  rectangular window 

wR(m)  = { 1, for Iml 5 N - 1 
0, otherwise, 

and WR(e j " )  is its Fourier transform: 

(5.208) 

(5.209) 

(5.210) 

This means that although +&(m) is an unbiased estimate of T,, (m),  the 
quantity Qzz(e jw)  is a biased estimate of S,,(ej"). The reason for this is the 
fact that only a finite number of taps of the  autocorrelation  sequence is  used in 
the  computation of Qss(e jw) .  The mean E { Q s s ( e j w ) }  is a smoothed version 
of S,,(eJW), where  smoothing is carried out with the Fourier transform of the 
rectangular window. 

As N + co both  estimates ?:,(m) and ?&(m) become unbiased. The 
same  holds for P,,(ejw)  and Q,,(ej"), so that  both  estimates of the power 
spectral density are  asymptotically unbiased. The behavior of the variance of 
the  estimates is different. While the  estimates of the  autocorrelation  sequences 
are  consistent,  those of the power spectral density are  not. For example, for 
a Gaussian process X(.) with power spectral density SZz(eJW),  the variance 
of the periodogram becomes 

which  yields 
lim  var [ P,, (ej") 1 = S,", (ej"). (5.212) 

Thus,  the periodogram  does  not give a consistent estimate of S,,(ej"). The 
proof of (5.211)  is straightforward  and is omitted here. 

N+CC 
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Use of the DFT or FFT for  Computing the Periodogram. Since 
the periodogram is computed from the Fourier transform of the finite data 
sequence, it  can  be efficiently evaluated at a discrete  set of frequencies by 
using the  FFT. Given a length-N sequence ~ ( n ) ,  we may  consider a length-N 
DFT, resulting in 

1 N - l  
Pzz(eJWk)  = 12 x(n)  e-jZr'lN I) (5.213) 

with w k  = 27rk/N. In  many  applications, the obtained  number of samples 
of Pzz (e jw)  may be insufficient in order to draw a clear picture of the peri- 
odogram. Moreover, the  DFT length may be inconvenient for computation, 
because  no powerful FFT algorithm is at hand for the given length.  These 
problems  can  be solved  by extending the sequence ~ ( n )  with zeros to  an 
arbitrary  length N' 2 N .  This  procedure is known as zero padding. We obtain 

(5.214) 

with w k  = 27rk/N'. The evaluation of (5.214) is typically  carried out via the 
FFT. 

Bartlett  Method. Various methods have  been proposed for achieving  con- 
sistent  estimates of the power spectral density. The Bartlett method does this 
by  decomposing the sequence X(.) into  disjoint  segments of smaller  length 
and  taking the ensemble average of the spectrum  estimates derived  from the 
smaller segments. With 

~ ( ~ ) ( n )  = z(n + iM), i = 0,1, .  . . , K  - 1, n = 0 , 1 , .  . . , M  - 1,  (5.215) 

we get the K periodograms 

( e j w )  = - M C X ( i )  (n) e-jwn 1::: , i = 0,1, .  . . , K  - 1.  (5.216) 

The  Bartlett  estimate  then is 

(5.217) 
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with W B ~  (eJw)  being the Fourier transform of the  length-M  Bartlett window. 
Assuming a Gaussian process z(n), the variance becomes 

var[P,,(e B j w  11 = - v a r [ ~ , , ( e j ~ ) ]  1 = sin (W M )  
K K 

(5.219) 
Thus,  as N ,  M ,  K + 00, the variance tends  to zero and  the  estimate is 
consistent. For finite N ,  the decomposition of X(.) into K sets  results in 
a reduced variance, but  the bias increases accordingly and  the  spectrum 
resolution decreases. 

Blackman-Tukey Method. Blackman  and Tukey proposed windowing the 
estimated  autocorrelation  sequence prior the Fourier transform [8]. The  ar- 
gument is that windowing  allows us to reduce the influence of the unreliable 
estimates of the  autocorrelation sequence for large m. Denoting the window 
and  its Fourier transform as w(m) and W ( e j w ) ,  respectively, the  estimate can 
be  written  as 

N-l 

P,, BT (e j w  - - C w(m) ?;,(m) e--jwm. (5.220) 
m=-(N-l) 

In  the frequency  domain, this means that 

(5.221) 

The window W(.) should  be chosen such that 

W ( e j w )  > o V W (5.222) 

in order to ensure that PLT(ejw) is positive for all frequencies. 
The expected value of PLT(ejw) is most easily expressed in the form 

N-l 

E {P,, BT (e  j w  ,> = C w ( m )   w B ( m )  r,,(m) e-jwm. (5.223) 
m=-(N-l) 

Provided that w ( m )  is  wide with respect to rzz(m) and narrow  with respect 
to W B ( ~ ) ,  the expected value can  be  approximated  as 

E { p , T ( e j w ) }  = w(0) S,,(ejw). (5.224) 

Thus, in order to achieve an asymptotically  unbiased estimate,  the window 
should satisfy 

w(0)  = 1. (5.225) 
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For a  symmetric window w(m) = W(-m) the variance  can be estimated  as [8] 

This  approximation is based on the assumption that W(ej") is  wide with 
respect to W ~ ( e j " )  and  narrow  with  respect to  the variations of S,,(ej"). 

Welch Method. In the Welch method [l621 the  data is divided  into overlap- 
ping blocks 

z(~)(,) = ~ ( n  + i D ) ,  i = 0 , 1 , .  . . , K  - 1, n = 0 , 1 , .  . . , M  - 1  (5.227) 

with D 5 M .  For D = M we approach the decomposition in the  Bartlett 
method. For D < M we have  more  segments than in the  Bartlett  method. 

Each block  is  windowed prior to computation of the periodogram,  resulting 
in K spectral  estimates 

The factor a is chosen as 

1 M - 1  a = - c w2(m) = - - 1" S&,(ejw) dw, (5.229) 
M 

m = O  M 21r -T 

which means that  the analysis is carried  out  with  a window of normalized 
energy. Taking the average yields the final estimate 

(5.230) 

The expected value becomes 

with 
- M - l   M - l  

In the  spectral domain,  this  can be rewritten as 
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(5.234) 

With increasing N and M ,  SEW(ej(" - ")) becomes narrow  with respect to 
S z Z ( d v )  and  the expected value tends  to 

This shows that  the Welch method is asymptotically unbiased. 
For a Gaussian process, the variance of the  estimate is 

(5.236) 
If no overlap is considered (D = M ) ,  the expression reduces to 

var[P,,(e W j w  ) I  = -var[v$(ejw)1 1 M - ~ : ~ ( e j ~ ) .  1 
K K (5.237) 

For k + 00 the variance approaches zero, which  shows that  the Welch method 
is consistent. 

Various windows with different properties  are known  for the  purpose of 
spectral  estimation.  In  the following, a brief  overview  is given. 

Hanning Window. 

0 .5 -0 .5~0s  , n = 0 , 1 ,  ..., N - l  
w(n) = 0 (5.238) 

otherwise. 

Hamming Window. 

w(n) = 
0.54 - 0.46  cos , n = 0,1, .  . . , N - 1 0 (5.239) 

otherwise. 

Blackman Window. 

w(n) = 
+0.08 cos , n = (),l,.. . , N  - 1 

otherwise. 
(5.240) 
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14 
Time Index 

Figure 5.5. Window  functions. 

Figure 5.5 shows the windows, and Figure 5.6  shows their magnitude 
frequency responses. The  spectrum of the  Bartlett window  is positive for all 
frequencies, which also means that  the bias due to  the  Bartlett window  is 
strictly positive. The  spectra of the Hanning  and  Hamming window have 
relatively large negative side lobes, so that  the estimated power spectral 
density may have a negative bias in the vicinity of large peaks in S,, (ej'"). 
The Blackman window  is a compromise between the  Bartlett  and  the Han- 
ning/Hamming  approaches. 

5.7.3 Parametric Methods in Spectral Estimation 

Parametric methods in spectral estimation have been the subject of intensive 
research,  and  many different methods have been proposed. We will consider 
the simplest case only,  which  is related to  the Yule-Walker equations. A 
comprehensive treatment of this subject would go far beyond the scope of 
this section. 

Recall that in Section 5.6.2 we showed that  the coefficients of a linear one- 
step predictor are identical to  the  parameters describing an autoregressive 
process. Hence the power spectral density may be estimated  as 

(5.241) 

I 
The coefficients b(n) in  (5.241) are  the predictor coefficients determined from 
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I . . . . . . . . .  I 

Normalized  Frequency 
-0.5 0 0.5 

Hamming 
I ' " ' ' ' ' ' ~ I  

Hanning 
I " " " " ' l  

I . . . . . . . . .  l 

Normalized  Frequency 
-0.5 0 0.5 

Blackman 
I " " " " ~  

I . . . . . . . . .  I 
-0.5 0 

Normalized  Frequency 
0.5 

I . . . . . . . . .  
-0.5 0 

Normalized  Frequency 
0.5 

Figure 5.6. Magnitude  frequency  responses of common  window  functions. 

the observed data,  and 13; is the power of the white  input process estimated 
according to (5.174): 

8; = fZZ (0) + (1) h. (5.242) 

If we apply  the  autocorrelation  method to  the estimation of the  predictor 
coefficients G(.), the  estimated  autocorrelation  matrix  has a Toeplitz struc- 
ture,  and  the prediction filter is always  minimum phase, just as when using 
the  true correlation matrix R%%. For the covariance method  this is not the 
case. 

Finally, it  shall  be remarked that besides a forward prediction a  backward 
prediction may also be carried out. By combining both predictors one  can 
obtain  an improved  estimation of the power spectral density compared to 
(5.241). An example is the Burg method [19]. 


