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Chapter 7 

Short-Time 
Fourier Analysis 

A fundamental  problem  in  signal  analysis is to find the spectral  components 
contained  in a measured  signal z( t )  and/or  to provide information about 
the  time  intervals when certain frequencies occur. An example of what we 
are looking for is a sheet of music,  which clearly assigns time to frequency, 
see Figure 7.1. The classical Fourier analysis only partly solves the problem, 
because it does not allow an assignment of spectral  components to time. 
Therefore  one seeks other  transforms which give insight  into  signal  properties 
in a different way. The  short-time  Fourier  transform is such  a  transform. It 
involves both  time  and frequency and allows a  time-frequency  analysis,  or  in 
other words, a signal  representation  in the time-frequency plane. 

7.1 Continuous-Time Signals 

7.1.1 Definition 

The short-time Fouriertransform (STFT) is the classical method of time- 
frequency  analysis. The concept is very simple. We multiply z ( t ) ,  which  is to 
be analyzed,  with an analysis window y* (t - T) and  then  compute  the Fourier 
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I 
Figure 7.1. Time-frequency  representation. 

Figure 7.2. Short-time  Fourier  transform. 

transform of the windowed signal: 

cc 
F~(T, W )  = z ( t )  y*( t  - T) ,-jut d t .  

J -cc 

The analysis window y*(t  - T) suppresses z ( t )  outside a certain region, 
and  the Fourier transform yields a local spectrum.  Figure 7.2 illustrates  the 
application of the window. Typically, one will  choose a real-valued window, 
which may  be  regarded as the impulse  response of a lowpass. Nevertheless, 
the following derivations will be given  for the general complex-valued case. 

If  we choose the Gaussian function to be  the window, we speak of the 
Gabor transform, because  Gabor  introduced the  short-time Fourier transform 
with this  particular window [61]. 

Shift Properties. As we see from the analysis equation (7.1), a time shift 
z ( t )  + z(t  - t o )  leads to a shift of the  short-time Fourier transform by t o .  
Moreover, a modulation z ( t )  + z ( t )  ejwot leads to a shift of the  short-time 
Fourier transform by WO. As we will  see later,  other  transforms, such as the 
discrete wavelet transform,  do  not necessarily have this property. 
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7.1.2 Time-Frequency Resolution 

Applying the shift and  modulation principle of the Fourier transform we find 
the correspondence 

~ ~ ; , ( t )  := ~ ( t  - r )  ejwt 

(7.2) 
r7;Wk) := S__r(t - 7) e - j ( v  - w ) t  dt = r ( v  - W )  e-j(v - 

From  Parseval's  relation  in the form 

J -03 

we conclude 

That is, windowing in the time  domain  with y*( t  - r )  simultaneously  leads 
to windowing in the spectral  domain  with the window r*(v - W ) .  

Let us assume that y*(t - r )  and r*(v - W )  are  concentrated in the time 
and frequency  intervals 

and 
[W + W O  - A, , W + W O  + A,], 

respectively. Then Fz(r, W )  gives information  on  a  signal z ( t )  and  its  spectrum 
X ( w )  in the time-frequency  window 

[7+ t0  -At  , r + t o  +At]  X [W + W O  - A ,  , W + W O  +A,]. (7.7) 

The position of the time-frequency window is determined by the parameters r 
and W .  The form of the time-frequency window  is independent of r and W ,  so 
that we obtain a uniform resolution  in the time-frequency plane, as indicated 
in  Figure 7.3. 
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Figure 7.3. Time-frequency window of the short-time  Fourier  transform. 

Let  us  now  have a closer look at the size and position of the time-frequency 
window.  Basic requirements for y*(t)  to be called a  time window are  y*(t) E 
L2(R)  and  t  y*(t) E L2(R). Correspondingly, we demand that I'*(w) E L2(R) 
and W F* ( W )  E Lz(R) for I '*(w) being a frequency  window. The center t o  and 
the radius A, of the time window y*(t)  are defined analogous to  the mean 
value and  the  standard deviation of a  random variable: 

Accordingly, the center WO and  the  radius A, of the frequency  window 
r * ( w )  are defined as 

(7.10) 

(7.11) 

The  radius A, may  be viewed as half of the bandwidth of the filter y*(-t). 

In  time-frequency  analysis  one  intends to achieve both high time  and 
frequency resolution if possible. In  other words, one  aims at a time-frequency 
window that is as small  as possible. However, the uncertainty principle applies, 
giving a lower bound for the  area of the window.  Choosing a short  time window 
leads to good time  resolution and, inevitably, to poor frequency resolution. 
On the other  hand, a long time window yields poor  time  resolution, but good 
frequency resolution. 
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7.1.3 The Uncertainty Principle 

Let  us consider the  term (AtAw)2, which  is the  square of the  area in the 
time-frequency  plane  being covered  by the window. Without loss of generality 
we may  assume J t  Ir(t)12 dt = 0 and S W  l r (w) I2  dw = 0, because  these 
properties  are easily achieved for any  arbitrary window  by applying a time 
shift and a modulation.  With (7.9) and (7.11) we have 

For the left term in the  numerator of (7.12), we may write 

(7.13) 
J -cc 

with [(t)  = t y ( t ) .  Using the differentiation principle of the Fourier transform, 
the  right  term in the  numerator of (7.12) may be  written  as 

m cc L w2 lP(W)I2 dw = ~mlF{r’(t)} l 2  dw (7.14) 

= %T llY‘ll2 

where y’(t) = $y( t ) .  With (7.13),  (7.14) and 1 1 1 1 1 2  = 27r lly112 we get for 
(7.12) 

1 (AtA,)2 = - ll-Y114 1 1 t 1 1 2  ll-Y‘1I2 (7.15) 

Applying the Schwarz inequality yields 

( A t A J 2  2 &f I (t,-Y’) l 2  

2 &f lR{(t,-Y’)l l 2  (7.16) 

By making  use of the relationship 

1 d  
8 { t y ( t )  y’*(t)} = 5 t Ir(t)12 7 (7.17) 

which can easily be verified, we may  write  the  integral in (7.16) as 

t y ( t )  y’*(t) d t }  = i/_”,t g Ir(t)12 dt.  (7.18) 
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Partial  integration yields 

The  property 
lim t Iy(t)12 = 0, (7.20) 

1tl-w 

which immediately follows from t y ( t )  E La, implies that 

(7.21) 

so that we may  conclude that 

1 
2 4’ (7.22) 

A t A w  2 5’ (7.23) 
that is 

1 

The relation (7.23) is  known as the uncertainty principle. It shows that  the 
size of a time-frequency windows cannot  be  made  arbitrarily  small  and that 
a perfect time-frequency resolution cannot  be achieved. 

In (7.16) we see that equality in (7.23) is only given if t y ( t )  is a multiple 
of y’(t). In  other  words, y(t) must satisfy the differential equation 

t d t )  = c (7.24) 

whose general solution is  given  by 

(7.25) 

Hence, equality in (7.23) is  achieved only if y ( t )  is the Gaussian  function. 
If we relax the conditions on the center of the time-frequency window of 
y ( t ) ,  the general solution with  a  time-frequency window of minimum size  is a 
modulated  and time-shifted Gaussian. 

7.1.4 The Spectrogram 

Since the  short-time Fourier transform is  complex-valued in general, we often 
use the so-called spectrogrum for display purposes  or for further processing 
stages. This is the  squared  magnitude of the  short-time Fourier transform: 
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Figure 7.4. Example of a short-time Fourier  analysis; (a) test signal; (b) ideal 
time-frequency  representation;  (c)  spectrogram. 

Figure 7.4  gives an example of a spectrogram;  the values S, (7, W )  are repre- 
sented by different shades of gray. The  uncertainty of the  STFT in both  time 
and frequency  can  be  seen by comparing the result in Figure 7.4(c) with the 
ideal time-frequency  representation in Figure 7.4(b). 

A second example that shows the  application in speech analysis is pictured 
in Figure 7.5. The regular vertical striations of varying density are  due to  the 
pitch in speech  production.  Each  striation  corresponds to a single pitch period. 
A high pitch is indicated by narrow  spacing of the  striations.  Resonances in 
the vocal tract in voiced speech show up  as  darker regions in the  striations. 
The resonance frequencies are known as the  formant frequencies. We see three 
of them in the voiced section in Figure 7.5. Fricative or  unvoiced sounds are 
shown as  broadband noise. 

7.1.5 Reconstruction 

A reconstruction of z(t)  from FJ(T, W )  is possible in the form 

(7.28) 
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Figure 7.5. Spectrogram of a speech  signal; (a) signal; (b) spectrogram. 

We can verify this by substituting (7.1) into (7.27) and by rewriting the 
expression obtained: 

z ( t )  = L / / / z ( t ’ )  y*(t’ - r )  e-iwt‘ dt’ g ( t  - r )  ejwt d r  dw 
27r 

= /x( t ‘ ) /y*( t ‘  - T) g( t  - T) ejw(t-t’) dw d r  dt‘ 
27r 

= /z ( t ’ ) /y*( t ’  - r )  g( t  - r )  6 ( t  - t ’) dr   d t ’ .  

For  (7.29) to be  satisfied, 
00 

6 ( t  - t’) = y*(t’ - T) g ( t  - T) 6 ( t  - t ’ )  d r  L 
must  hold, which  is true if (7.28) is satisfied. 

(7.29) 

(7.30) 

The  restriction (7.28)  is not very tight, so that  an infinite number of 
windows g ( t )  can  be  found which satisfy (7.28). The disadvantage of (7.27) is 
of course that  the complete  short-time  spectrum  must  be known and must be 
involved in the reconstruction. 
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7.1.6 Reconstruction  via Series Expansion 

Since the  transform (7.1) represents a  one-dimensional signal in the two- 
dimensional plane, the signal representation is redundant. For reconstruction 
purposes this  redundancy  can  be exploited by using  only  certain regions or 
points of the time-frequency plane. Reconstruction  from discrete samples in 
the time-frequency  plane is of special practical  interest. For this we usually 
choose a grid consisting of equidistant  samples  as shown  in Figure 7.6. 

....................... f ...................... 
W . . . . . . . . . . . . . . . . . . . . . .  3 O/ i  ....................... .................... * M  

T t -  

Figure 7.6. Sampling the short-time Fourier  transform. 

Reconstruction is  given by 

0 0 0 0  

The sample values F. (mT,  I ~ u A ) ,  m, Ic E Z of the  short-time Fourier 
transform  are  nothing  but  the coefficients of a series expansion of x ( t ) .  In 
(7.31) we observe that  the set of functions used  for signal reconstruction is 
built from time-shifted and  modulated versions of the same  prototype g@). 
Thus, each of the synthesis functions covers a  distinct  area of the time- 
frequency  plane of fixed  size and  shape.  This  type of series expansion was 
introduced by Gabor [61] and is also called a Gabor expansion. 

Perfect reconstruction  according to (7.31) is possible if the condition 

2T 
- c g( t  - mT) y*( t  - mT - e - )  = de0 V t (7.32) 
wA m=-m 

00 2T 
UA 

is satisfied [72], where de0 is the Kronecker delta. For a given  window y ( t ) ,  
(7.32) represents  a linear set of equations for determining g ( t ) .  However, 
here, as with  Shannon’s  sampling  theorem, a minimal  sampling rate must 
be  guaranteed, since (7.32) can  be satisfied only  for [35, 721 
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Unfortunately, for critical sampling, that is  for T W A  = 27r, and  equal analysis 
and synthesis windows, it is impossible to have both  a good  time  and  a 
good  frequency resolution. If y ( t )  = g ( t )  is a window that allows perfect 
reconstruction  with  critical  sampling,  then  either A, or A, is infinite. This 
relationship is  known as  the Balian-Low theorem  [36]. It shows that  it is 
impossible to construct  an  orthonormal  short-time Fourier basis where the 
window  is differentiable and  has  compact  support. 

7.2 Discrete-Time Signals 

The  short-time Fourier transform of a discrete-time signal x(n) is obtained 
by replacing the  integration in (7.1) by a summation.  It is then given  by 
[4,  119, 321 

Fz(m,ejw) = C x ( n )  r*(n - m ~ )  e-jwn. (7.34) 

Here we assume that  the sampling rate of the signal is higher (by the  factor 
N E W) than  the  rate used  for calculating the  spectrum.  The analysis and 
synthesis windows are  denoted as y* and g, as in Section 7.1; in the following 
they  are meant to be discrete-time. Frequency W is normalized to  the sampling 
frequency. 

n 

In (7.34) we must  observe that  the  short-time  spectrum is a function of the 
discrete parameter m and  the continuous  parameter W .  However, in practice 
one would consider only the discrete frequencies 

wk = 2nIc/M, k = 0, .  . . , M  - 1.  (7.35) 

Then  the discrete values of the  short-time  spectrum can  be given  by 

X ( m ,  Ic) = c X(.) y*(n - mN) W E ,  (7.36) 
n 

where 
X ( m ,  k )  = F:(,, 2 Q )  

and 
W M = e  - j 2 ~ / M  

(7.37) 

(7.38) 

Synthesis. As in (7.31), signal reconstruction from discrete values of the 
spectrum  can  be carried out in the form 

cc M-l 

g(.) = c c X ( m ,  Ic) g(. - mN) WGkn. (7.39) 
m=-m k=O 
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The  reconstruction is especially easy for the case N = 1 (no  subsampling), 
because then all PR conditions are satisfied for g(n) = dnO t) G(eJw)  = 1 
and  any  arbitrary  length-M analysis window ~ ( n )  with $0) = l / M  [4, 1191. 
The analysis and synthesis equations (7.36) and (7.39) then become 

X ( m ,  k )  = c X(.) r*(n - m) WE (7.40) 
n 

and 
M - l  

q n )  = c X ( n , k )  W&? (7.41) 
k=O 

This  reconstruction  method is  known as spectral summation. The validity of 
?(n) = z(n) provided y(0) = 1/M can easily be verified  by combining  these 
expressions. 

Regarding the design of windows  allowing perfect reconstruction in the 
subsampled case, the reader is referred to Chapter 6. As we  will see  below, 
the  STFT may  be  understood  as a DFT filter bank. 

Realizations using Filter Banks. The  short-time Fourier transform, which 
has  been defined as  the Fourier transform of a windowed signal, can  be realized 
with filter banks  as well. The analysis equation (7.36) can  be  interpreted  as 
filtering the  modulated signals z(n)W& with  a filter 

h(n) = r*(-n). (7.42) 

The synthesis equation (7.39) can  be seen as filtering the  short-time  spectrum 
with  subsequent  modulation.  Figure 7.7 shows the realization of the  short- 
time Fourier transform by means of a filter bank.  The windows g(n)  and r(n) 
typically have a lowpass characteristic. 

Alternatively, signal analysis and synthesis can  be carried out by means 
of equivalent bandpass filters. By rewriting (7.36) as 

we see that  the analysis can also be realized by filtering the sequence X(.) 
with the  bandpass filters 

hk(lZ) = y*(-n) WGk", k = 0, .  . . , M  - 1 (7.44) 

and by subsequent  modulation. 
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Figure 7.7. Lowpass  realization of the short-time Fourier transform. 

Rewriting (7.39) as 

cc M - I  
--k(n-mN) (7.45) 

m=-cc k=O 

shows that synthesis can  be  achieved  with  modulated filters as well. To 
accomplish this, first the  short-time  spectrum is modulated,  then filtering 
with the  bandpass filters 

gk(n) = g(n )  wi-kn, L = 0, .  . . , M  - 1, (7.46) 

takes place; see Figure 7.8. 
We realize that  the  short-time Fourier transform  belongs to  the class 

of modulated filter banks.  On  the  other  hand, it  has  been  introduced as a 
transform, which illustrates  the close relationship between filter banks  and 
short-time  transforms. 

The most efficient realization of the  STFT is  achieved  when implementing 
it  as a DFT polyphase filter bank  as outlined in Chapter 6. 

7.3 Spectral  Subtraction based on the STFT 

In  many  real-word  situations  one  encounters signals distorted by additive 
noise. Several methods  are available for reducing the effect of noise in a  more  or 
less optimal way.  For example, in Chapter 5.5 optimal linear filters that yield 
a  maximum signal-to-noise ratio were presented. However, linear methods  are 
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Figure 7.8. Bandpass  realization of the short-time Fourier transform. 

not necessarily the  optimal ones, especially if a subjective signal quality  with 
respect to human  perception is of importance.  Spectral  subtraction is a non- 
linear method for  noise reduction, which  is  very  well suited for the  restoration 
of speech signals. 

We start with the model 

where we assume that  the additive noise process n(t) is statistically  indepen- 
dent of the signal ~ ( t ) .  Assuming that  the Fourier transform of y ( t )  exists, we 
have 

Y ( w )  = X ( w )  + N ( w )  (7.48) 

in the frequency  domain.  Due to statistical independence  between signal and 
noise, the energy density may  be  written as 

(7.49) 

If we  now assume that E { IN(w)12} is known, the least squares  estimate for 
IX(w)I2 can  be  obtained  as 

l X ( 4 1 2  = IY(w)I2 - E{ IN(w)12)  * (7.50) 

In  spectral  subtraction,  one  only  tries to restore  the  magnitude of the 
spectrum, while the  phase is not  attached.  Thus,  the denoised signal is  given 
in the frequency  domain as 

X ( w )  = IR(w)I L Y ( w ) .  (7.51) 
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Keeping the noisy phase is motivated by the fact that  the phase is of minor 
importance for speech quality. 

So far,  the  time dependence of the  statistical  properties of the signal 
and  the noise process has  not  been considered. Speech signals are highly 
nonstationary,  but  within intervals of about 20 msec, the signal properties 
do  not  change significantly, and  the  assumption of stationarity is  valid on  a 
short-time basis. Therefore, one replaces the above spectra by the  short-time 
spectra computed by the  STFT. Assuming  a discrete implementation,  this 
yields 

Y(m,  k )  = X ( m ,  k )  + N ( m ,  k ) ,  (7.52) 

where m is the  time  and k is the frequency index. Y(m,k) is the  STFT of 
Y (m). 

Instead of subtracting  an average noise spectrum E { IN(w)I2} ,  one  tries 
to keep track of the  actual (time-varying) noise process. This  can for instance 
be  done by estimating  the noise spectrum in the pauses of a  speech signal. 
Equations (7.50) and (7.51) are  then replaced by 

lX(m7k)12 = IY(m,k)12 - p v ( G k ) l 2  (7.53) 

and 
X(m,  k )  = IX(m, k)l L Y(m,  k ) ,  (7.54) 

h 

where IN(m, k)I2 is the  estimated noise spectrum. 
Since it  cannot  be assured that  the  short-time  spectra satisfy IY (m, k )  l 2  - 

IN(m, k)I2 > 0, V m , k ,  one  has to introduce  further modifications such as 
clipping. Several methods for solving this problem  and for  keeping track of 
the time-varying noise have  been  proposed. For more detail,  the reader is 
referred to [12, 50, 51, 60, 491. Finally, note that a closely related technique, 
known as wavelet-based denoising, will be  studied in Section 8.10. 

h 


