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Chapter 8 

Wavelet  Transform 

The wavelet  transform was introduced at  the beginning of the 1980s by 
Morlet et al., who  used it  to evaluate seismic data [l05 ],[106]. Since then, 
various  types of wavelet transforms  have been developed, and  many  other 
applications ha  vebeen found. The continuous-time wavelet transform,  also 
called the integral  wavelet  transform (IWT), finds most of its applications  in 
data analysis, where it yields an affine invariant time-frequency representation. 
The most  famous version, however, is the discrete wavelet transform(DWT). 
This  transform  has excellent signal  compaction  properties for many classes 
of real-world signals while being  computationally very efficient. Therefore, it 
has  been  applied to almost  all  technical fields including image compression, 
denoising, numerical  integration,  and  pattern  recognition. 

8.1 The Continuous-Time  Wavelt  Transform 

The wavelet transform W,@, a) of a continuous-time  signal x ( t )  is defined as 

Thus,  the wavelet transform is computed  as the inner  product of x ( t )  and 
translated  and scaled versions of a single function $(t) ,  the so-called wavelet. 

If we consider t)(t) to be a bandpass  impulse  response,  then the wavelet 
analysis  can be  understood  as a bandpass  analysis. By varying the scaling 
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parameter a the center frequency and  the  bandwidth of the  bandpass  are 
influenced. The variation of b simply  means  a translation in time, so that for 
a fixed a the  transform (8.1) can  be seen as a  convolution of z ( t )  with the 
time-reversed and scaled wavelet: 

The prefactor lal-1/2 is introduced in order to ensure that all scaled functions 
l ~ l - ~ / ~ $ * ( t / a )  with a E IR have the same energy. 

Since the analysis function $(t)  is scaled and not  modulated like the kernel 
of the  STFT, a wavelet analysis is often called a time-scale  analysis rather  than 
a  time-frequency analysis. However, both  are  naturally  related to each  other 
by the  bandpass  interpretation. Figure 8.1 shows examples of the kernels of 
the  STFT  and  the wavelet transform. As we can see, a variation of the  time 
delay b and/or of the scaling parameter a has  no effect on the form of the 
transform kernel of the wavelet transform. However, the  time  and frequency 
resolution of the wavelet transform  depends  on a. For  high analysis frequencies 
(small a) we have good  time localization but poor  frequency resolution. On 
the  other  hand, for low analysis frequencies, we have  good  frequency but poor 
time resolution. While the  STFT is a constant  bandwidth analysis, the wavelet 
analysis can  be  understood as a  constant-& or octave analysis. 

When  using a transform in order to get better insight into  the  properties 
of a signal, it should  be  ensured that  the signal can  be perfectly reconstructed 
from its  representation.  Otherwise  the  representation  may  be  completely  or 
partly meaningless. For the wavelet transform  the condition that must  be  met 
in order to ensure perfect reconstruction is 

C, = dw < 00, 

where Q(w)  denotes the Fourier transform of the wavelet. This condition is 
known as  the admissibility  condition for the wavelet $(t). The proof of (8.2) 
will be given  in Section 8.3. 

Obviously, in order to satisfy (8.2) the wavelet must satisfy 

Moreover, lQ(w)I must decrease rapidly for IwI + 0 and for IwI + 00. That is, 
$(t)  must  be a bandpass  impulse response. Since a  bandpass  impulse  response 
looks like a small wave, the  transform is named wavelet transform. 
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Figure 8.1. Comparison of the analysis  kernels of the short-time Fourier  transform 
(top, the real part is  shown) and  the wavelet  transform (bottom, real  wavelet)  for 
high and low  analysis  frequencies. 

Calculation of the Wavelet  Transform  from the Spectrum X ( w ) .  
Using the  abbreviation 

the  integral wavelet transform  introduced by equation (8.1) can also be  written 
as 

a) = (X’ ?h,,> (8.5) 
With  the correspondences X ( w )  t) z ( t )  and Q(w)  t) $(t) ,  and  the  time 
and frequency shift properties of the Fourier transform, we obtain 

By making  use of Parseval’s relation we finally get 
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Equation (8.7) states  that  the wavelet transform  can also be calculated 
by means of an inverse Fourier transform  from  the windowed spectrum 
X ( w )  Q*(aw). 

Time-Frequency Resolution. In  order to describe the time-frequency 
resolution of the wavelet transform we consider the time-frequency window 
associated with the wavelet. The center ( t o ,  W O )  and  the  radii A, and A, of 
the window are calculated according to (7.8) and (7.11). This gives 

and 

(8.10) 

(8.11) 

For the center and  the radii of the scaled function @($) lalQ(aw) we 
have {ado,  +WO}  and {a .At ,  +A,}, respectively. This  means that  the wavelet 
transform W,@, a )  provides information  on  a signal ~ ( t )  and  its  spectrum 
X ( w )  in the time-frequency window 

[ b + a . t o - a . A t ,   b + a . t o + a . A t ]  X [ - - - ,  -+-l ,  WO A, WO A, 
a a a a  (8.12) 

The  area 4 A t A ,  is independent of the  parameters a and b; it is determined 
only by the used  wavelet $(t) .  The  time window narrows when a becomes 
small, and  it widens  when a becomes large. On the  other  hand,  the frequency 
window  becomes  wide  when a becomes small, and  it becomes narrow when a 
becomes large. As mentioned  earlier, a short analysis window leads to good 
time resolution on the one hand,  but on the  other to poor  frequency resolution. 
Accordingly, a long analysis window  yields good  frequency resolution but poor 
time resolution. Figure 8.2 illustrates  the different resolutions of the  short-time 
Fourier transform  and  the wavelet transform. 

Affine  Invariance. Equation (8.1) shows that if the signal is scaled ( z ( t )  + 
z ( t / c ) ) ,  the wavelet representation W,(b,a) is scaled as well; except this, 
W,(b, U )  undergoes  no  other modification. For this reason we also speak of an 
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Figure 8.2. Resolution of the short-time Fourier  transform  (left) and the wavelet 
transform  (right). 

afine invariant transform. Furthermore,  the wavelet transform is translation 
invariant, i.e. a shift of the signal ( x ( t )  + x( t  - t o ) )  leads to a shift of 
the wavelet representation Wz(b ,a )  by t o ,  but W z ( b ,  U )  undergoes  no  other 
modification. 

8.2 Wavelets for Time-Scale  Analysis 

In time-scale signal analysis one  aims at inferring certain signal properties 
from the wavelet transform in a convenient way. Analytic wavelets are es- 
pecially suitable for this purpose. Like an analytic  signal, they contain only 
positive frequencies. In  other words, for the Fourier transform of an  analytic 
wavelet $ ~ b , ~ ( t )  the following  holds: 

%,a(W) = 0 for w 0. (8.13) 

Analytic wavelets have a certain  property, which  will be discussed briefly 
below.  For this consider the real signal z ( t )  = cos(w0t). The  spectrum is 

X ( w )  = 7r [S(w - WO) + S(w + WO)]  t) x ( t )  = cos(w0t). (8.14) 

Substituting X ( w )  according to (8.14) into (8.7) yields 

W&U) = 1. 2 I u ~ ; / ~  (S@ - w0)  + S(W + w0) )  Q*(aw) ejwb dw 
-cc 

(8.15) 

= + la[;  [ q * (awo)  ejuob + ~ * ( - a w o )  e-juob I .  
Hence, for an  analytic wavelet: 

1 
2 

w z ( b , a )  = - la[; ~ * ( a w o )  ej'ob. (8.16) 
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Since only the  argument of the complex  exponential in (8.16) depends  on b, 
the frequency of z ( t )  can  be inferred from the phase of W,(b, a ) .  For this, any 
horizontal line in the time-frequency  plane  can  be considered. The  magnitude 
of W,(b,a) is independent of b, so that  the  amplitude of z ( t )  can  be seen 
independent of time.  This  means that  the  magnitude of W, (b ,  a )  directly 
shows the time-frequency  distribution of signal energy. 

The Scalogram. A scalogram is the  squared  magnitude of the wavelet 
transform: 

Scalograms, like spectrograms,  can  be  represented as images in  which intensity 
is expressed by different shades of gray. Figure  8.3 depicts scalograms for 
~ ( t )  = d ( t ) .  We see that here  analytic wavelets should  be chosen  in order to 
visualize the  distribution of the signal energy in relation to time  and  frequency 
(and scaling, respectively). 

The Morlet  Wavelet. The complex wavelet most frequently used in signal 
analysis is the Morlet wavelet, a modulated  Gaussian function: 

(8.18) 

Note that  the Morlet wavelet satisfies the admissibility condition (8.2) only 
approximately. However,  by  choosing proper  parameters WO and /3 in (8.18) 
one  can  make the wavelet at least “practically” admissible. In  order to show 
this, let us consider the Fourier transform of the wavelet, which,  for W = 0, 
does  not vanish exactly: 

By choosing 
WO 2 2.rrP 

(8.19) 

(8.20) 

we get Q(w)  5 2.7 X 10-9 for W 5 0, which  is  sufficient  for most applications 
[132]. Often WO 2 5/3 is taken to be sufficient [65], which leads to Q(w)  5 
10-5, 5 0. 

Example. The example  considered below  is supposed to give a visual 
impression of a wavelet analysis and  illustrates  the difference from a short-time 
Fourier analysis. The chosen test signal is a discrete-time signal; it contains 
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Imaginary component 

(b) 

Figure 8.3. Scalogram of a delta impulse ( W s ( b , a )  = l$(b/a)I2); (a) real wavelet; 
(b) analytic  wavelet. 

t -  

two periodic parts  and two impulses.' An almost  analytic,  sampled  Morlet 
wavelet  is used. The signal is depicted in Figure 8.4(a). Figures 8.4(b)  and 
8.4(c) show two  corresponding  spectrograms  (short-time Fourier transforms) 
with  Gaussian analysis windows. We see that for a very short analysis window 
the discrimination of the two periodic components is impossible  whereas the 
impulses are  quite visible. A long window facilitates  good discrimination of 
the periodic component, but  the localization of the impulses is poor.  This is 
not the case in the wavelet analysis represented in Figure 8.4(d).  Both  the 
periodic components and  the impulses are clearly visible. Another  property 
of the wavelet analysis, which  is  well illustrated in Figure 8.4(d), is that  it 
clearly indicates non-stationarities of the signal. 

'In Section 8.8 the question of how the wavelet transform of a discrete-time signal can 
be calculated will be examined in more detail. 
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Figure 8.4. Examples of short-time Fourier and wavelet  analyses; (a) test signal; 
(b) spectrogram  (short  window);  (c)  spectrogram  (long  window); (d) scalogram. 

8.3 Integral  and  Semi-Discrete  Reconstruction 

In  this section, two variants of continuous wavelet transforms will be consid- 
ered;  they only  differ  in the way reconstruction is handled. Specifically, we 
will  look at integral  reconstruction  from  the  entire  time-frequency  plane  and 
at a semi-discrete reconstruction. 

8.3.1 Integral  Reconstruction 

As will be  shown, the inner product of two signals ~ ( t )  and y(t) is related to 
the inner product of their wavelet transforms as 
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with C, as  in (8.2). 

Given the inner  product (8.21), we obtain a synthesis  equation by  choosing 

y t ( t ' )  = d(t '  - t ) ,  (8.22) 

because then  the following relationship holds: 

m 

(X7Yt) = f ( t ' )  d(t '  - t )  dt' = z ( t ) .  (8.23) 
J -m 

Substituting (8.22) into (8.21) gives 

From this we obtain the reconstruction  formula 

z ( t )  = ' S c Q  /m W z ( b 7 a )  lal-; .JI (T) t - b da db (8.24) c, -cQ  -cQ 

Proof of (8.2) and (8.21). With 

P,(W)  = X(W)  !P*(wa) 

equation (8.7) can  be  written  as 

W z ( b ,   a )  = la13 - P,(w) ejwbdw. 
27r -m 

Using the correspondence P, ( W )  t) p,(b) we obtain 

Similarly, for the wavelet transform of y ( t )  we get 

&,(W) = Y ( w )  Q * ( w ~ )  ~ a ( b ) ,  

(8.25) 

(8.26) 

(8.27) 

(8.28) 

(8.29) 
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Substituting (8.27) and (8.28) into  the  right  term of (8.21) and  rewriting the 
obtained expression by applying  Parseval's  relation yields 

(8.30) 

By substituting W = vu we can show that  the inner  integral  in the  last line of 
(8.30) is a constant, which only depends  on $(t):  

da = [l dw. (8.31) 
IWI  

Hence (8.30) is 

This completes the proof of (8.2) and (8.21). 0 

8.3.2 Semi-Discrete Dyadic Wavelets 

We speak of semi-discrete dyadic wavelets if every signal z ( t )  E Lz(IR,) can 
be reconstructed from semi-discrete values W, ( b ,  am) ,  where am, m E Z are 
dyadically arranged: 

a,  = 2,. (8.33) 

That is,  the wavelet transform is calculated solely along the lines W,(b, 2,): 

cc 
W,(t1 ,2~)  = 2 - t  z ( t )  $*(2-,(t - b ) )  d t .  (8.34) 
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The center frequencies of the scaled wavelets are 

with WO according to (8.9). The radii of the frequency windows are 

A, 
- = 2-m A,, m E Z. 
a m  

(8.35) 

(8.36) 

In  order to ensure that neighboring  frequency windows 

and 

do  adjoin, we assume 

WO = 3 Au. (8.37) 

This condition can easily be satisfied, because by modulating  a given  wavelet 
&(t) the center frequency  can  be varied  freely.  From (8.33),  (8.35) and (8.37) 
we get for the center frequencies of the scaled wavelets: 

wm = 3 * 2-m A,, m E Z. (8.38) 

Synthesis. Consider the signal analysis and synthesis shown  in Figure 8.5. 
Mathematically, we have the following synthesis approach  using a dual (also 
dyadic) wavelet 4 ( t )  : 

cc cc 
~ ( t )  = c 2-4m W3C(b ,2m)  4(2-"(t - b ) )  db. (8.39) 

m=-m 

In  order to express the required dual wavelet 4(t) by t)(t), (8.39) is rearranged 
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as 

~ ( t )  = E 2-im/-00 W,(b ,  2m)4(2-m(t - b ) )  db 
m=--00 -cc 

= E 2-:m (W“ ( . , 2 rn ) ,4* (2F( t  - . ))) 
m=--00 

For the sum  in the  last row  of (8.40) 

c q*(2mw)  6(2mw) = 1 (8.41) 
m=-cc 

m=-cc 

If two positive  constants A and B with 0 < A 5 B < cc exist  such that 
cc 

A 5 c 1Q(2mw)12 5 B (8.43) 
m=-cc 

we achieve stability.  Therefore, (8.43) is referred to  as a stability  condition. 
A wavelet +(t) which satisfies (8.43) is called a dyadic wavelet. Note that 
because of (8.42), for the  dual dyadic wavelet, we have: 

1 
B -  

cc 1 

m=-cc 

(8.44) 

Thus, for * ( W )  according to (8.42) we have stability, provided that (8.43) is 
satisfied.  Note that  the dual wavelet is not necessarily unique [25]. One may 
find other  duals that also satisfy the  stability condition. 



222 Chapter 8. Wavelet Transform 

2- T**(-t/z") 
Wx(t,2") 

2 - 3 % ~ ( t / ~ )  I 
Figure 8.5. Octave-band  analysis and synthesis  filter  bank. 

Finally it will be  shown that if condition (8.43) holds the admissibility 
condition (8.2) is also satisfied. Dividing (8.43) by W and  integrating  the 
obtained expression over the interval (1,2) yields: 

Wit  h 

we obtain  the following result for the center term in (8.45): 

Thus 

Dividing (8.43)  by -W and  integrating over (-1, -2) gives 

A In2 5 Lcc dw 5 B ln2. 
W 

(8.46) 

(8.47) 

(8.48) 

(8.49) 

Thus  the admissibility condition (8.2) is satisfied in any case, and reconstruc- 
tion according to (8.24) is also possible. 
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8.4 Wavelet Series 

8.4.1 Dyadic Sampling 

In  this section, we consider the reconstruction from discrete values of the 
wavelet transform. The following dyadically arranged sampling  points are 
used: 

a, = 2,, b,, = a, n T = 2,nT, (8.50) 

This yields the values W ,  (b,,, a,) = W, (2,nT, 2,). Figure 8.6 shows the 
sampling  grid. 

Using the abbreviation 

(8.51) 

- - 2 - f  . $(2Trnt - nT),  

we may  write the wavelet analysis as 

The values {W, (2,nT, 2,), m, n E Z} form the representation of z ( t )  with 
respect to  the wavelet $(t)  and  the chosen grid. 

Of course, we cannot  assume that any  set lClmn(t), m, n E Z allows 
reconstruction of all signals z ( t )  E L2(R). For this a dual set t+&,,(t), m, n E Z 
must  exist,  and  both  sets  must  span L2(R). The  dual  set need not necessarily 
be  built from wavelets.  However, we are only interested  in the case where 
qmn(t) is derived as 

t+&,,(t) = 2 - 7  *t+&(2-Y - nT),  m, n E Z (8.53) 

from a dual wavelet t+&(t). If both  sets $mn(t)  and Gmn(t) with m, n E Z span 
the space L2(R), any z ( t )  E L2(R) may  be written  as 

Alternatively, we may  write z ( t )  as 

(8.54) 

(8.55) 
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WO ......."- m = O  
a ... ... ......................................................................................................... m =  1 

m = 2  . . . . . . . . . . . .  . . .  

b -  

Figure 8.6. Dyadic  sampling of t he  wavelet  transform. 

For a given  wavelet $(t) ,  the possibility of perfect reconstruction is depen- 
dent  on  the sampling interval T .  If T is  chosen  very small (oversampling), the 
values W, (2"nT, 2"), m, n E Z are highly redundant,  and reconstruction is 
very  easy. Then  the functions lClrnn(t), m,n E Z are linearly dependent,  and 
an infinite number of dual  sets qrnn(t) exists. The question of whether  a  dual 
set Gmn(t) exists at all can  be  answered by  checking two  frame  bounds' A 
and B.  It can  be shown that  the existence of a  dual set and  the completeness 
are  guaranteed if the  stability condition 

M M  

(8.56) 

with the  frame bounds 0 < A I B < CO is satisfied [35]. In the case of a 
tight  frame, A = B, perfect reconstruction  with Gmn(t) = lClrnn(t) is possible. 
This is also true if the samples W ,  (2"nT, 2") contain redundancy, that is, if 
the functions qmn(t), m, n E Z are linearly dependent.  The  tighter  the frame 
bounds are,  the smaller is the  reconstruction  error if the  reconstruction is 
carried  out according to 

If T is  chosen just large enough that  the samples W ,  (2"nT, 2"), m, n E Z 
contain  no  redundancy at all (critical  sampling),  the functions $mn(t), m, n E 
Z are linearly independent. If (8.56) is also satisfied with 0 < A 5 B < CO, 
the functions tjrnn(t), m, n E Z form a basis for L2 (R). Then  the following 
relation, which  is  known as  the biorthogonality  condition, holds: 

(8.58) 

Wavelets that satisfy (8.58) are called biorthogonal  wavelets. As a special 
case, we have the orthonormal  wavelets. They  are self-reciprocal and satisfy 

2The problem of calculating the frame  bounds will be  discussed at  the end of this section 
in detail. 
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the  orthonormality condition 

( $ m n , $ l k )  = &m1 b n k ,  m,n, 1, IC E Z. (8.59) 

Thus, in the  orthonormal case, the functions q!Imn(t), m, n E Z can  be used 
for both analysis and synthesis. Orthonormal  bases  always have the same 
frame  bounds (tight  frame), because, in that case, (8.56) is a special form of 
Parseval’s relation. 

8.4.2 Better Frequency Resolution - Decomposition of 
Octaves 

An octave-band analysis is often insufficient. Rather, we would prefer to 
decompose  every  octave  into M subbands in order to improve the frequency 
resolution by the  factor M .  

We here consider the case where the same  sampling rate is  used  for all M 
subbands of an octave. This  corresponds to a nesting of M dyadic wavelet 
analyses with the scaled wavelets 

q!I@)(t) = 2A q!I(2Xt), k = 0,1, .  . . , M  - 1. (8.60) 

Figure 8.7 shows the sampling grid of an analysis with three voices per octave. 
Sampling the wavelet transform  can  be  further generalized by choosing the 
sampling grid 

am = a p ,  b,, = am n T ,  m,n E Z (8.61) 

with an  arbitrary a0 > 1. This  corresponds to M nested wavelet analyses with 
the wavelets 

$ ( h ) ( t )  = a,$ $(a,$t)7 IC = 0 ~ 1 , .  . . , M  - 1. (8.62) 

For this general case we will list the formulae for the  frame bounds A and B 
in (8.56) as derived by Daubechies [35]. The conditions for the validity of the 
formulae are:3 

- 

cc 

(8.63) 

(8.64) 

and 

3By “ess inf” and “ess sup” we mean the essential  infimum and  supremum. 



226 Chapter 8. Wavelet  Transform 
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b -  

Figure 8.7. Sampling of the wavelet  transform  with  three  voices  per  octave. 

with 

If (8.63) ~ (8.65) are satisfied for all wavelets  defined  in (8.62), the frame 
bounds A and B can  be  estimated  on  the basis of the  quantities 

Provided the sampling interval T is  chosen such that 

we finally have the following estimates for A and B: 

(8.67) 

(8.68) 

(8.69) 

(8.70) 

(8.71) 

(8.72) 
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8.5 The Discrete Wavelet  Transform (DWT) 

In  this section the idea of multiresolution  analysis and  the efficient realization 
of the discrete wavelet transform  based  on  multirate filter banks will be 
addressed. This  framework  has  mainly  been developed  by Meyer,  Mallat  and 
Daubechies for the  orthonormal case [104, 91,  90, 341. Since biorthogonal 
wavelets formally fit into  the same  framework [153, 361, the derivations will 
be given  for the more general biorthogonal case. 

8.5.1 Multiresolution Analysis 

In  the following we assume that  the  sets 

?)mn(t) = 2-f ?)(2-79 - n), 

?jmn(t) = 2-f ? j ( 2 - T  - n), 
m,n E Z (8.73) 

are bases for &(R) satisfying the biorthogonality condition (8.58). Note that 
T = 1 is  chosen  in order to simplify notation. We will mainly consider the 
representation (8.55) and  write  it as 

with 
d,(n) = ~ , f ( 2 " n , 2 " )  = (2, q,,) , m,n E Z. (8.75) 

Since a basis consists of linearly independent  functions, L 2 ( R )  may be 
understood as the direct sum of subspaces 

L2(R) = . . . @ W-1 €B WO @ W1 €B.. . (8.76) 

W, = span {?)(2-"t - n), n E Z} , m E Z. (8.77) 

Each  subspace W, covers a  certain  frequency  band. For the  subband signals 
we obtain from (8.74): 

with 

n=-m 

Every signal z ( t )  E L2(R) can  be  represented as 
00 

(8.78) 

(8.79) 
,=-cc 
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Now  we define the subspaces V,, m E Z as  the direct sum of Vm+l and 
Wm+1: 

V, = Vm+l CE Wrn+l. (8.80) 

Here we may  assume that  the subspaces V, contain lowpass signals and  that 
the  bandwidth of the signals contained in V, reduces  with increasing m. 

From (8.77), (8.76), and (8.80) we derive the following properties: 

(i) We have a nested  sequence of subspaces 

. . . c V,+l c v, c v,-l c . . . (8.81) 

(ii) Scaling of z(t)  by the  factor two ( x ( t )  + x(2 t ) )  makes the scaled signal 
z(2t) an element of the next  larger  subspace  and vice versa: 

(iii) If we form a sequence of functions x,(t) by projection of x ( t )  E L2(R) 
onto  the subspaces V,, this sequence converges towards x ( t ) :  

,+-m 
lim x,(t) = x( t ) ,  z ( t )  E L 2 ( R ) ,  z,(t) E V,. (8.83) 

Thus,  any signal may  be  approximated  with  arbitrary precision. 

Because of the scaling property (8.82) we may assume that  the subspaces 
V, are  spanned by scaled and time-shifted versions of a single function $(t): 

V, = span {+(2-,t - n) ,  n E Z} . (8.84) 

Thus,  the  subband signals z,(t) E V, are expressed as 

00 

zrn(t) = c c,(n) $mn(t)  (8.85) 
n=-m 

with 
$mn(t) = 2-%#j(2-,t - n). (8.86) 

The function +(t) is called a scaling  function. 

Orthonormal Wavelets. If the functions ~,n( t )  = 2-?~(2-"t-n),  m, n E 
Z form an  orthonormal basis for L z ( R ) ,  then L 2 ( R )  is decomposed  into an 
orthogonal  sum of subspaces: 

L 2 ( R )  = . . .$ W-1 $ WO €B W1 €B . . . 1 1 1 1  
(8.87) 
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In  this case (8.80) becomes an  orthogonal  decomposition: 

(8.88) 

If we assume 1 1 q 5 1 1  = 1, then  the functions 

$mn(t) = 2-?4(2-,t - n), m,n E Z, (8.89) 

form  orthonormal  bases for the spaces V,, m E Z. 

Signal Decomposition. From (8.80) we derive 

x, (t) = 2,+1 (t) + Y,+1 (t). (8.90) 

If we assume that one of the signals x,(t), for example zo(t), is known, this 
signal can  be successively decomposed  according to (8.90): 

The signals y1 ( t ) ,  yz(t), . . . contain the high-frequency  components of zo(t), 
z1 ( t ) ,  etc., so that  the decomposition is a successive  lowpass filtering accom- 
panied by separating  bandpass signals. Since the successive  lowpass filtering 
results in an increasing loss of detail  information,  and since these  details  are 
contained in y1 ( t ) ,  y2 ( t ) ,  . . . we also speak of a multiresolution analysis (MRA). 

Assuming a known sequence {co(n)} ,  the sequences {cm(.)} and {d,(n)} 
for m > 0 may also be derived directly according to  the scheme 

In  the next section we will discuss this very  efficient method in greater  detail. 

Example: Haar Wavelets. The Haar function is the simplest example 
of an  orthonormal wavelet: 

1 for 0 5 t < 0.5 

0 otherwise. 
-1 for 0.5 5 t < 1 
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~ , W ) ;  >t , '"I , +W-1) ; >t 
. . . . . . . . . .   . . .   . . .   . . .  . 

Figure 8.8. Haar  wavelet and scaling  function. 

The corresponding scaling function is 

1, for 0 5 t < 1 
0, otherwise. 

The functions +(t - n), n E Z span the subspace WO, and  the functions 
+( i t  - n), n E Z span WI. Furthermore, the functions $(t - n), n E Z span 
V0 and  the functions +( ft - n), n E Z span VI. The  orthogonality  among the 
basis functions + ( 2 - T  - n), m, n E Z and  the  orthogonality of the functions 
tj(2-Y - n), m,n E Z and  +(2-jt - n), j 2 m is obvious, see Figure 8.8. 

Example: Shannon Wavelets. The  Shannon wavelets are impulse re- 
sponses of ideal  bandpass filters: 

sin ;t 3n 
2 +(t) = 7 cos -t. 

In the frequency domain this is 

W J )  = { 1 for n 5 IwI 5 2n, 
0 otherwise. 

(8.91) 

(8.92) 

The scaling function that belongs to  the Shannon wavelet  is the impulse 
response of the ideal lowpass: 

3: 
@ ( W )  = { 1 for 0 5 IwI 5 n, 

0 otherwise. 

(8.93) 

(8.94) 

(8.95) 
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I 
l I 1 -  

-2n 2n 

1 

W 

-n n 

Figure 8.9. Subspaces of Shannon wavelets. 

The coefficients cm(n) ,  m,n E Z in (8.85) can  be  understood  as the sample 
values of the ideally lowpass-filtered signal.  Figure 8.9 illustrates the decom- 
position of the signal  space. 

The  Shannon wavelets  form an orthonormal basis for Lz(lR,). The  ortho- 
gonality between different scales is easily seen,  because the  spectra  do  not 
overlap. For the inner  product of translated versions of +(t) at  the same scale, 
we get 

00 

+(t - m)+*(t - n) = - @(w)@*(w)e-J'(m-n)wdw 
2.rr S" -" 

(8.96) 

by  using Parseval's  relation. The  orthogonality of translated wavelets at  the 
same scale is  shown  using a  similar  derivation. 

A drawback of the Shannon wavelets  is their  infinite support  and  the 
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poor time resolution due to  the slow  decay. On the  other  hand,  the frequency 
resolution is perfect. For the  Haar wavelets, we observed the  opposite behavior. 
They  had perfect time,  but  unsatisfactory  frequency resolution. 

8.5.2 Wavelet Analysis by Multirate Filtering 

Because of V0 = V1 @ W1 the functions $on@) = $(t - n) E VO, n E Z can 
be  written  as linear combinations of the basis functions for the spaces V1 and 
W1. With  the coefficients h o ( 2 l -  n) and hl(2l - n), l, n E Z the  approach is 

4on(t)  = C ho(2 l  - n) $lt(t) + h1 ( 2 ~  - n) $lt(t). (8.97) 
e 

Equation (8.97) is  known as  the decomposition  relation, for  which the following 
notation is  used as well: 

&i 4 ( 2 t  - n) = C h o ( 2 L  - n) $(t - l) + h1(2c - n) $(t - l). (8.98) 
e 

We  now consider a known sequence { co (n ) } ,  and we substitute (8.97) into 
(8.85) for m = 0. We get 

We see that  the sequences {crn+l( l )}  and {d,+l(l)} occur  with half the 
sampling rate of {crn(.)}. Altogether,  the  decomposition (8.100) is equivalent 
to a two-channel filter bank analysis with the analysis filters h0 (n) and h1 (n). 
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U 

Figure 8.10. Analysis  filter  bank for computing the DWT. 

If we assume that q,(t)  is a sufficiently good  approximation of ~ ( t ) ,  and 
if  we know the coefficients co(n),  we are  able  to  compute  the coefficients 
cm+1(n), &+l (n), m > 0, and  thus  the values of the wavelet transform 
using the discrete-time filter bank  depicted in Figure 8.10. This is the most 
efficient  way of computing the DWT of a signal. 

8.5.3 Wavelet Synthesis by Multirate  Filtering 

Let  us consider two sequences gO(n) and  g1(n), which  allow  us to express the 
functions $lo(t) = 2-1/2$(t/2) E V1 and  $lo(t) = 2-1/2$(t/2) E W1 as 
linear combinations of $on( t )  = $(t - n) E VO, n E Z in the form 

or equivalently as 

(8.102) 

Equations (8.101) and  (8.102), respectively, are referred to  as  the two-scale 
relation. For time-shifted functions the two-scale relation is 

(8.103) 
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From (8.103), (8.78), (8.85) and (8.90) we derive 

The sequences gO(n) and  g1(n) may be  understood  as  the  impulse  responses 
of discrete-time filters, and (8.105) describes a discrete-time two-channel 
synthesis filter bank.  The filter bank is  shown  in Figure 8.11. 

8.5.4 The  Relationship  between  Filters  and Wavelets 

Let  us consider the decomposition relation (8.97), that is 
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Taking the inner product of (8.106) with &(t) and qle(t) yields 

Substituting (8.101) into (8.108) yields 

(8.108) 

(8.109) 

(8.110) 

(8.111) 

(8.112) 
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The conditions (8.112) are  nothing  but  the PR conditions for critically 
subsampled  two-channel filter banks,  formulated in the  time  domain, cf. 
Section 6.2. By z-transform of (8.112) we obtain 

2 = Go(z) Ho(z)  + Go(-z) Ho(-z) ,  

2 = Gl(z) HI(z) + GI(-z) HI(-z), 
0 = Go(z) Hl(z) + Go(-z) Hl(-z), 

0 = Gl(z) Ho(z )  + G1(-z) Ho(-z ) .  

(8.113) 

Orthonormal  Wavelets. If the  sets $mn(t) and ~ m n ( t ) ,  m, n E Z according 
to (8.51) and (8.89) are  orthonormal  bases for V, and W,, m E Z, (8.109) 
becomes 

h o w  - n) = @On, 41,), 
h1W - n) = @On, $1,). 

Substituting  the two-scale relation (8.103) into (8.114) yields 

(8.114) 

Observing (+On, + O k )  = dnk, we derive 

ho(n) = g;(%) Ho(z)  = G o ( z ) ,  

h1(n) = g;(%) t) Hl(2) = Gl(2). 
(8.116) 

Thus  equations (8.112) and (8.113) become 

n 

0 = Cg1(n)  go*(. - 21) 
n 

and 
2 = Go(.) G o ( z )  +Go(-.) Go( -z ) ,  

2 = G l ( z )   G ~ ( z )  + G~(-z)  GI(-z),  

0 = Go(z) G ~ ( z )  + Go(-z) GI(-z), 

0 = Gl(z) G o ( z )  + GI(-z) Go(-z). 

(8.117) 

(8.118) 
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These are  nothing  but  the  requirements for paraunitary two-channel filter 
banks,  as derived in Chapter 6. 

8.6 Wavelets  from Filter Banks 

8.6.1 General Procedure 

In  the previous sections we assumed that  the wavelets and scaling functions 
are given. Due to  the properties of the wavelet transform we were able to show 
the existence of sequences h0 (n) ,  h1 (n) ,  go (n) ,  and g1 (n),  which  allow  us to 
realize the  transform via a  multirate filter bank.  When  constructing wavelets 
and scaling functions one often adopts  the reverse strategy.  One chooses the 
coefficients of a PR two-channel filter bank in such a way that  the wavelets 
and scaling functions associated with  these filters have the desired properties. 

Scaling Function. The  starting point for constructing scaling functions is 
the first part of the two-scale relation (8.102): 

+(t) = c go(n) d5 - n). (8.119) 
n 

In  the following the Fourier transform of equation (8.119) is required, which, 
using 

+(2 t -n )  t) - @(-) e 2 , 1 W -jwn. 

2 2  
(8.120) 

is 

n 

equation (8.121) is 
1 ‘ W  W 

@ ( W )  = - Go(e3T)  Jz 

(8.121) 

(8.122) 

(8.123) 

Since the scaling function +(t) is supposed to be a lowpass impulse response, 
we may  introduce  the  normalization 

If we  now apply (8.119) and (8.123) K times, we obtain 

(8.124) 

(8.125) 
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Now  we let K + 00. If the  product in (8.125) converges  for K + CO to a 
continuous  function, it converges to 

c m *  

@ ( W )  = - Go(ejw/2k) ,  
l 

k=l Jz 
(8.126) 

because we have specified @(O)  = 1. Thus (8.119) allows  us to determine the 
scaling function recursively. When starting with 

1 for 0 5 t < 1, 
0 otherwise, (8.127) 

we obtain  the piecewise constant functions xi(t) by means of the recursion 

%+l ( t )  = -Jz c g o ( n )  xi (2t - n), (8.128) 
n 

which approaches the scaling function for i + CO. 
Figure 8.12 illustrates  the recursive calculation of the scaling function $(t). 

However, the convergence of the  product does  not  guarantee that  the  obtained 
scaling function is smooth.  Figures 8.13 and 8.14 show examples leading to 
smooth  and  fractal scaling functions, respectively. 

Wavelet. If the scaling function $(t) is known, $(t)  can  be calculated by 
using the second part of the two-scale relation (8.102): 

,$(t) = &1(n) Jz $(2t - n). (8.129) 
n 

It is obvious that a smooth $(t) results in a  smooth ,$(t), regardless of the 
coefficients g1(n ) ,  so that all concerns  regarding  smoothness are  related to  the 
lowpass go (n) . 
Summary of Construction Formulae. According to (8.126), the synthesis 
scaling function is related to  the synthesis lowpass as 

O 0 1  
@ ( W )  = n - Go(ejw/2k)  

k=l Jz 
For the synthesis wavelet we get from (8.129) and (8.130) 

!@(W) = - G1(ejwI2) - Go(e 
1 l W ) .  
Jz k=2  Jz 

(8.130) 

(8.131) 
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1 
Figure 8.12. Recursive  calculation of the scaling  function q5(t); the first  two  steps 
of the recursion  are  shown  (coefficients: {gO(n)} = ${a, 1, f}). 

The analysis scaling function $(t) and  the wavelet G(t) are related to  the 
time-reversed and complex conjugated analysis filters h:(-n) and h; (-n) in 
the same way as $(t) and ~ ( t )  are related to  go(.) and g1(n). Thus,  they may 
be given in  the frequency domain as 

(8.132) 

and 
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0 2 4 

0 

0 2 4 

0 E 0 2 t -  4 

1 I 
0 lb 0 2 4 

t -  

Figure 8.13. Recursive  calculation of the scaling  function 4(t)  (coefficients 
{go(n)}  = ${l 3 3 l}). 

2 t  M 
-2 O P L E I  0 2 4 0 2 

t -  
4 

Non-Linear Phase  Property of Orthonormal Wavelets. In  Chapter 6 
we have  shown that  paraunitary two-channel filter banks have non-linear 
phase  filters  in general. This  property is transferred  directly to  the scaling 
functions and wavelets constructed  with  these  filters.  Thus,  orthonormal 
wavelets  have non-linear phase in general.  Exceptions are  the  Haar  and 
Shannon wavelets. 
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8.6.2 Requirements to be Met  by the Coefficients 

We have  already shown that  to construct  biorthogonal  and  orthonormal 
scaling functions and wavelets the coefficients of PR two-channel filter banks 
are required. But, in order to satisfy (8.124), the coefficients must  be scaled 
appropriately.  The correct scaling for the lowpass can  be  found by integrating 
(8.119): 

00 

$(t) dt = L c g o ( n ) / O O  $(2t - n) d(2t).  (8.134) 
f i n  -00 

This yields c go(n) = h. (8.135) 
n 

By integrating  equation (8.129) we obtain 

and  with (8.124) and J$( t )  dt = 0 we conclude 

(8.137) 
n 

This  means that  the highpass filters in the two-channel filter bank  must  have 
zero mean in order to allow the  construction of wavelets. 

8.6.3 Partition of Unity 

In  order to enforce a lowpass characteristic of Go(z), it is  useful to require 

Go(-l) = 0 t) C ( - l ) n g o ( n )  = 0. (8.138) 
n 

As will be shown  in the following, (8.135),  (8.135), and (8.138) result in 

@(27rk) = { l  :;:. (8.139) 

In  the  time  domain,  this  property of the scaling function, which  is  known as 
the  partition of unity, is written 

M c $(t - n) = 1. (8.140) 
n=-m 
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= { f ( ~ k )  k even, 
k odd. 

For Ic = 0 ,1 ,2 ,3 ,4 ,  . . . we obtain 

k = 0 :  @ ( O )  = @ ( O )  = 1, 

k =  1 :  @(27r) = O . @ ( 7 r )  = o ,  
k =  2 :  @(47r) = 1  .@(27r) = o ,  
k = 3 :  @ ( 6 ~ )  = 0 . @ ( 3 ~ )  = 0, 

k = 4 :  @(87~) = 1 .@(4~) = 0, 

(8.141) 

(8.142) 

We may  proceed in a similar way  for the negative indices, and  it  turns  out 
that (8.139) holds. 0 

8.6.4 The Norm of Constructed Scaling  Functions  and 
Wavelets 

When the coefficients gO(n) belong to a  paraunitary filter bank, (8.124) 
directly leads to 

11411 = 1.  (8.143) 
We realize this by forming the inner product of (8.140) with &,(t) and by 
making  use of orthogonality: 

( 4 0 0 : 4 0 0 )  
@(0)=1 

Forming the inner product ($oo, $oo) by using (8.101) yields 

(8.144) 
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which  shows that 

1 1 + , 1 1  = 1 (8.146) 

for the norm of the wavelet $(t). Assuming Q(0) = a leads to 1 1 q 5 1 1  = 1 1 + 1 1  = a. 

In  the biorthogonal case the relationship between the norm of the coeffi- 
cients and  the norm of the scaling function is  much more complicated. 

8.6.5 Moments 

Multiresolution signal decompositions are often carried out  in order to  com- 
press signals, so that  the compaction  properties of such decompositions are 
of crucial importance. Most signals to  be compressed are of a lowpass nature 
and  can be well approximated locally  by  low-order polynomials. Therefore, it 
is  useful to  seek  wavelets with good approximation  properties for  low-order 
polynomials. As  we shall see, the approximation  properties of a multiresolution 
decomposition are intimately  related to  the number of vanishing wavelet 
moments. 

The  kth moment of a wavelet $(t)  is  given  by 

(8.147) 

Using the property (2.40) of the Fourier transform, the moments  can also be 
expressed as 

(8.148) 

Thus, if Q(w) has NQ zeros at W = 0, the wavelet has Nq, vanishing moments, 
that is 

00 

tk  $(t) dt = 0 for k = 0, 1 , .  . . , Nq, - 1. (8.149) 

Clearly, the inner product of an analysis wavelet q(t)  having NG vanishing 
moments  with a signal 

Nq -1 

x(t) = c a k  tk 
k=O 

is zero, and, consequently, all wavelet  coefficients are zero. Thus, polynomial 
signals of order Nq - 1 are solely represented by the lowpass component, that 
is, by the coefficients of the scaling function. 
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The number of vanishing moments is easily controlled when constructing 
wavelets from  filter  banks. In  order to see this, let us recall equation (8.133): 

NG is given  by the number of zeros of Hl(ej")  at W = 0, or, equivalently, 
by the number of zeros of H l ( z )  at z = 1. Note that according to (6.22), 
H1 (z )  is a modulated version of the synthesis lowpass Go(z),  so that we may 
alternatively  say that Nq is given  by the number of zeros of Go(z) at z = -1. 
Similarly, the number of vanishing moments of the synthesis wavelet  is equal 
to  the number of zeros of the analysis lowpass at z = -1. 

The discrete-time  filters  also have  vanishing moments and corresponding 
approximation  properties for discrete-time polynomial signals. For the  kth 
derivative of 

(e j " )  = C h1 (n) e-jwn (8.151) 
n 

we get 

(8.152) 

From this expression we see that if H l ( z )  has Nq zeros at z = 1, then hl(n) 
has NG vanishing moments in the discrete-time sense: 

E n e  hl(n) = o for IC = 0 , 1 , .  . . , N @  - 1.  (8.153) 

This means that sampled polynomial signals of order Nq - 1 are solely 
represented by the lowpass component. 

n 

8.6.6 Regularity 

In  Figures 8.13 and 8.14 we saw that different filters may  have  completely 
different convergence properties. Typically, one prefers smooth  functions r$(t), 
which should possibly have several continuous  derivatives. Daubechies  derived 
a test  that  can check the regularity and  thus  the convergence of the product 
in (8.125) [34]. Assuming that Go(.) has N zeros at z = -1, Go(.) can  be 
written  as 

1 + 2-1 N 

GO(.) = fi (7) S(z) .  (8.154) 

Note that N 2 1 because of (8.137). Further  note that S(l) = 1 because 
of (8.135). Pointwise  convergence of the functions zi(t) defined in (8.128) 
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towards  a  continuous function zoo@) = $(t) is guaranteed if 

sup IS(ej')l < (8.155) 

Clearly, if Go(z) has  no zero at z = -1, then (8.155) cannot  be satisfied 
because S(l) = 1. 

05w527r  

If N is larger than  the minimum  number that is required to satisfy (8.155), 
then  the function $(t) will also have continuous derivatives. Precisely, $(t) is 
m-times  continuously differentiable if 

(8.156) 

Regularity is  only associated with the lowpass filters gO(n) and ho(n), 
respectively. Given a continuous function $(t) ,  the function I+!I(t) according to 
(8.129) will be  continuous for any  sequence g I ( n ) .  

HSlder Regularity. Rioul  introduced  the  concept of Holder regularity, 
which can  be  expressed as follows: if a scaling function is m-times  continuously 
differentiable and  its  mth derivative is  Holder continuous of order a,  
then  its  regularity is T = m + a [125]. The Holder exponent a is the maximum 
a for  which 

I~'" '( t)  - + .)I c 171a vt,. (8.157) 

8.6.7 Wavelets with  Finite  Support 

If go(.) and g 1 ( n )  are FIR filters, then  the resulting scaling functions and 
wavelets  have finite support [34]. The proof  is straightforward.  One merely 
has to consider the  iteration (8.128) with the L coefficients go(O), . . . , g o ( L -  1) 
while assuming that x i ( t )  is restricted to  the interval [0, L - l]: 

L-l  

%+l ( t )  = Jz c g o ( n )  Xi(2t - n). (8.158) 
n=O 

Then, all recursively constructed functions are  restricted to 0 5 2t -n 5 L -  1. 
Since the convergence  is unique, xm(t)  = $(t) is restricted to [0, L - l] for 
any arbitrary zo(t). 

The  fact  that  the  support is  known can  be exploited to calculate the values 
of $(t) at  the times t,, = n2rn.  This,  again, is based  on the two-scale relation 
(8.119): 

$(t) = h c g o ( l )  $(2t - .e). (8.159) 
e 
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Let us assume that  the initial values $(n) are known.  By writing (8.159) as 

4 ( $ )  = -Jz Cgo( t )  $@ - 4, 

$($l = -Jz Cgo( t )  $(g -l), (8.160) 
e 

e 

we realize that we obtain  the  intermediate values at each iteration  step. 
However, so far we only  know the values $(O) = 0 and $(L)  = 0. The  initial 
values required  can  be  determined by exploiting the fact that  the initial values 
remain  unchanged  during the iteration  (8.160).  With 

m = [$P) , .  . . , $ (L  - l)]' (8.161) 

we get 
m = M . m  (8.162) 

according to (8.160), where the L - 1 X L - 1 matrix M is  given  by 

[M]ij := -Jz go(2i - j ) .  (8.163) 

Recalling (8.140) it becomes  obvious that we obtain  the  initial values by 
determining the right eigenvector m of M which  belongs to  the eigenvalue 1. 

Note. We conclude  from (8.135) and (8.138) that  the sum of the even 
coefficients equals the sum of the odd coefficients: 

(8.164) 

Since the columns of M contain  either all even coefficients go(2n)  or all 
odd coefficients go(2n + l), the sum of all elements of the columns of M 
is one. Thus, conditions (8.135) and (8.138) guarantee the existence of a left 
eigenvector [l, 1, . . . , l] with eigenvalue one. 



8.7. Wavelet  Families 247 

and we see that  the eigenvalue 1 exists. The eigenvalue problem we have to 
solve  is  given  by 

8.7 Wavelet  Families 

[ E ]  (8.167) 

Various wavelet families are defined in the  literature. We will only consider 
a few of those  constructed  from filter banks. For further design methods  the 
reader is referred to [36,  1541. 

8.7.1 Design of Biorthogonal  Linear-Phase  Wavelets 

In  this section, we consider the design of linear-phase biorthogonal wavelets 
according to Cohen,  Daubechies  and  Feauveau [28]. We start  the discussion 
with the first equation in (8.113), which  is the PR condition for two-channel 
filter banks  without delay. We consider an overall delay of 7, that is 

Ho(z) Go(z) + Ho(-z) Go(-z) = 2 2 7 .  (8.168) 

On the  unit circle, this means 

H0 W )  Go (e  j'" + Ho(ej( '"  + "1) Go(ej( '"  + "1) = 2 e-j"J7. (8.169) 

In  order to yield linear-phase wavelets, both filter Ho(z) and Go(.) have to be 
linear-phase. Furthermore,  the filters need to satisfy the regularity condition 
as outlined in Section 8.6.6 in order to allow the  construction of continuous 
scaling functions and wavelets. 

When expressing the linear-phase property, two types of symmetry  have 
to be considered, depending  on  whether the filter length is  even or  odd. We 
will outline  these  properties for the filter Ho(z) and  start with  odd-length 
filters. The second filter Go ( z ) ,  which completes a perfect reconstruction  pair, 
has  the same type of symmetry. 

Odd-Length Filters. Odd-length linear-phase filters satisfy 

Ho(e j " )  = e-jwrh H;(COSW), (8.170) 

where the delay ~h is an  integer. Assuming that HA(cosw) has zeros at 
W = X ,  we may write 

H ; ( e j u )  = Jz (cos El2' ~ ( c o s w ) .  
2 

(8.171) 
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It is easily shown that G o ( e J W )  has  the same type of factorization, so that 

Go(ej"')  = e-jWTg h (cos E)" Q(cosw), (8.172) 
2 

where T = ~h + T ~ .  

Even-Length Filters. Symmetric  even-length filters can  be  expressed as 

H o ( e j " )  = e--ju(Th + cos - H; (cos W) ,  (8.173) 
W 

2 

and according to  the above considerations, we may write 

H o ( e j w )  = e-jw(Th + 3) (cos :)2~+1 p cos W 
2 ( 1, (8.174) 

where it is again  assumed that Ho(ejw) has l! zeros at W = 7r. Go(ej") then 
has a factorization of the form 

G o ( e j w )  = h e-j"(Tg + f )  (cos -)2L+1 Q(cosw). (8.175) 
w -  
2 

Filter Construction. Substituting  the  factorizations for Ho(ejw) and 
G o ( e j w )  into (8.169) yields 

(cos - ) 2 k   cos W) + (sin - ) 2 k  M ( -  cosw) = 1 (8.176) 
W  W 

2 2 

with 
M(COS W) = P(COS W) &(COS W)  (8.177) 

and lc = l! + 2 if the filter length is odd  and lc = + l+ 1 if it is even. This 
expression will  now be  reformulated by rewriting M(cosw)  as  a polynomial 
in (1 - cosw)/2 = sin2w/2, so that  M(cosw) := F(sin2w/2). We get 

(cos - ) 2 k  F(sin2 w/2) + (sin - ) 2 k   cos^ w/2) = 1, (8.178) 
W W 

2 2 

or equivalently, 
(1 - X)k F(X)  + Xk F(1 - X) = 1 (8.179) 

with X = sin2w/2. Hence, 

F(X) = (1 - X ) - k  - Xk (1 - X ) - k  F(1 - X). (8.180) 

Using Bezout's  theorem,  one  can show that  this condition is satisfied by a 
unique  polynomial F ( z )  with a degree of at most lc - 1 [28]. Based  on this 
property,  the polynomial F ( z )  of maximum  degree lc - 1 can  be  found by 
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expanding  the  right-hand side of (8.180) into  a  Taylor series where only the 
first k terms  are needed.  This gives 

(8.181) 

The general solution of higher  degree  can  be  written as 

k-l k + n - l  
(8.182) 

n=O 

where R(z)  is an  odd  polynomial.  Based  on this expression, filters can  be 
found by factorizing a given F(sin2w/2)  into  P(cosw)  and  Q(cosw). Given 
P(cosw)  and  Q(cosw) one easily finds Ho(ej") and Go(ej") from (8.170) - 
(8.175). 

Spline Wavelets. Spline wavelets based  on  odd-length filters are  constructed 
by  choosing R(z)  0 and 

(8.183) 

The corresponding analysis filter is 

Even-length filters are given  by 

and 

(8.185) 
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The scaling function 4(t)  constructed  from Go(z) according to (8.183) is a 
B-spline centered  around T ~ ,  and  the one  constructed  from Go(z) according 
to (8.185)  is a B-spline centered around T~ + i. 

Filters with Almost Equal  Length. In  the spline case, the  length of & ( z )  
is typically much higher than  the  length of Go(z).  In  order to design filters 
with  almost  equal  length,  one  groups the zeros of F ( z )  into real zeros and 
pairs of conjugate  complex zeros and rewrites F ( z )  as 

I J 

&'(X) = A ~ ( z  - xi) n ( z z  - 2?Ji{~j} z + Izjl). (8.187) 
i= 1 j=1 

Any regrouping into two polynomials yields a PR filter pair.  This allows  us to 
choose filters with  equal or almost  equal  length. For example, the 9-7 filters 
have  been  found this way [28]; they  are known  for their excellent coding 
performance in wavelet-based  image  compression [155, 1341. 

Examples. Table  8.1 shows  some examples of odd-length filters. While the 
coefficients of the spline filters (5-3 and 9-3) are dyadic  fractions,  those of 
the 9-7 filters constructed  from (8.187) are not even rational.  This  means 
an  implementation  advantage for the spline filters in real-time applications. 
However, the 9-7 filters have superior coding  performance. For illustration, 
Figures 8.15 and 8.16 show the analysis and synthesis scaling functions and 
wavelets generated  from  the 9-3 and 9-7 filters in Table 8.1. 

Table 8.1. 
Linear-phase  odd-length  biorthogonal wavelet filters. 

5-3  9-7  9-3 1 
n 4.go 

6 

8 

- 
4 .  h0 

-1 
2 
6 
2 

-1 

- 16 . go 
1 
2 
1 

16 ' h0 

3 
-6 

-16 
38 
90 
38 

-16 
-6 
3 

go 
-0.06453888265083 
-0.04068941758680 
0.41809227351029 
0.78848561689252 
0.41809227351029 

-0.04068941758680 
-0.06453888265083 

ho 
0.03782845543778 

-0.11062440401143 
0.37740285554759 
0.85269867833384 
0.37740285554759 

-0.02384946495431 

-0.11062440401143 
-0.02384946495431 
0.03782845543778 
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Figure 8.15. Scaling  functions and wavelets constructed  from the 9-3 filters. 
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Figure 8.16. Scaling  functions and wavelets constructed  from the 9-7 filters. 
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8.7.2 The Orthonormal Daubechies Wavelets 

Daubechies  designed a family of orthonormal wavelets with a maximal  number 
of vanishing  moments for a given support [34]. In  order to control the 
regularity, the following factorization of H0 (ejw) is considered: 

(8.188) 

Because of orthonormality,  the PR condition to be  met by the  prototype filter 

with 
~ ( c o s w )  = IP(ejw)12. 

Inserting (8.190) into (8.189) yields 

(8.191) 

(cos2 -)k ~ ( c o s w )  + (sin2 - ) k  ~ ( - c o s w )  = 1.  (8.192) 
W  W 

2 2 

Using the  same  arguments as in the  last section, (8.192) can also be  written 
as 

(cos2 E)' F(sin2 w/2) + (sin2 -1'  cos^ w/2) = 1, (8.193) 
W 

2 2 
or equivalently as 

(1 - X)k F(X)  + Xk F(1 - X) = 1 (8.194) 

with X = sin2 w/2. This is essentially the same condition that occurred in the 
biorthogonal case, but we  now have to satisfy F(sin2 w/2) 2 0 V W, because 
F(sin2 w / 2 )  = IP(eju)12. 

Daubechies  proposed to choose 

where R(z) is an  odd polynomial  such that F ( x )  2 0 for X E [0, l]. The 
family of Daubechies wavelets  is derived for R(x)  0 by spectral  factorization 
of F ( z )  into F ( z )  = P(x)P(x- ' ) .  For this,  the zeros of F ( x )  have to be 
computed  and  grouped  into zeros inside and outside the  unit circle. P(.) then 
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contains  all zeros inside the unit circle. This  factorization  results  in  minimum 
phase scaling functions. For filters & ( z )  with at least eight coefficients, 
more  symmetric  factorizations  are  also possible. The  magnitude frequency 
responses, however, are  the same as for the minimum phase case. 

Figure  8.17 shows  some  Daubechies wavelets, the corresponding scaling 
functions and  the frequency  responses of the filters. We observe that  the 
scaling functions and wavelets  become smoother  with  increasing filter length. 
For comparison, some  Daubechies  wavelets with  maximal  symmetry, known as 
symmlets, and  the corresponding scaling functions are depicted in Figure 8.18. 
The frequency  responses are  the same  as in Figure 8.17. Recall that with  a 
few exceptions (Haar  and  Shannon wavelets), perfect symmetry is impossible. 

8.7.3 Coiflets 

The  orthonormal Daubechies  wavelets  have a  maximum  number of vanishing 
wavelet moments for a given support. Vanishing moments of the scaling 
function have not been considered. The idea  behind the Coiflet wavelets is 
to  trade off some of the vanishing  wavelet moments to  the scaling function. 
This  can  be expressed as 

00 1, for Ic = 0 
0, forIc=1,2 ,..., l - 1  (8.196) 

and 
00 L tk  $(t) dt = 0 for Ic = 0,1, .  . . , l  - 1.  (8.197) 

Note that  the  0th moments of a scaling function is still fixed to one. Further 
note that  the same  parameter l, called the order of the coiflet, is  used for the 
wavelet and  the scaling function. 

The frequency domain  formulations of (8.196) and (8.197) are 

1, for Ic = 0 
0, forIc=1,2 ,..., l - 1  (8.198) 

and 

= O  for I c = O , l ,  ..., l - 1 .  (8.199) 

Condition  (8.198)  means for the filter Ho(ejw) that 
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Figure 8.18. Frequency  responses of the maximally  symmetric  Daubechies  filters 
and the corresponding  scaling  functions  and  wavelets (the indices  indicate  filter 
length; the frequency  responses are equal to those  in  Figure 8.17). 
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for some U(ej").  From (8.199) it follows that HO(ej") can 
the form (8.188) 

255 

also be  written  in 

For  even e, solutions to  this problem  can  be  formulated  as 

(8.201) 

[361 

f(ej"), (8.202) 

where f ( e j " )  has to  be found such that (8.189) is satisfied.  This  results in e/2 
quadratic  equations for C/2 unknowns [36]. 

8.8 The Wavelet  Transform  of Discrete-Time 
Signals 

In the previous sections we assumed  continuous-time signals and wavelets 
throughout.  It could be shown that sample values of the wavelet transform 
can  be  computed by means of a PR filter bank, provided the coefficients c ~ ( n )  
for representing an approximation xo(t) = C, co(n)$(t  - n) are known.  For 
the sequences dm(n) ,  m > 0, successively computed from co(n), we had 

drn(n) = W ,  (2"n, 2") = (X,$",) 

CQ (8.203) 
- - 2 - t  x ( t )  +*(2-"t - n) d t ,  L 

that is, the values dm(n)  were sample values of the wavelet transform of 
a  continuous-time  signal. A considerable  problem is the generation of the 
discrete-time  signal cg (n )  because  in  digital  signal processing the signals to 
be processed are usually obtained by filtering  continuous-time signals with  a 
standard anti-aliasing filter and sampling.  Only if the impulse response h(t)  of 
the prefilter is  chosen such that xo(t) = x( t )*h(t)  E VO, we obtain a "genuine" 
wavelet analysis. 

If  we wish to apply the theory  outlined  above to "ordinary"  discrete-time 
signals x(n) ,  it is helpful to discretize the integral  in (8.203): 

w,(2"n, 2") = 2 - t  c Z(k) ?)*(2-"/c - n). (8.204) 
k 
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Here, the values $ ~ ( 2 - ~ 5  - n),  m > 0, 5, n E Z are  to be  regarded  as  samples 
of a given  wavelet +(t) where the sampling  interval is T = 1. 

Translation  Invariance. We are mainly interested  in dyadically arranged 
values according to (8.204). In  this form the wavelet analysis is not  translation 
invariant  because a delayed input signal z (n  - l) leads to 

wz(2"(n - 2 - y ,  2m) = 2-? Ck z ( k  - l) 7)*(2-rnlc - n)  

= 2 - 7  Xi+) 7)*(2-Y - [n - 2-Tl) .  
(8.205) 

Only if l is a multiple of 2rn, we obtain shifted versions of the same wavelet 
coefficients. However, for many  applications  such as  pattern recognition or 
motion  estimation  in the wavelet domain it is desirable to achieve translation 
invariance. This problem  can be solved  by computing  all values 

w2(n,2rn) = 2 - t  C+) 7)*(2-rn(lc - n)) .  (8.206) 
k 

In  general, this is computationally very  expensive, but when  using the B trous 
algorithm  outlined  in the next  section, the computation is as efficient as  with 
the  DWT. 

8.8.1 The A Trous Algorithm 

A direct  evaluation of (8.204) and (8.206) is  very costly if the values of the 
wavelet transform  must  be  determined for several octaves  because the number 
of filter coefficients roughly doubles  from octave to octave.  Here, the so-called 
ci trous  algorithm allows efficient evaluation  with  respect to computing effort. 
This  algorithm  has been proposed by  Holschneider et  al. [73] and Dutilleux 
[48]. The relationship between the B trous  and  the Mallat  algorithm was 
derived  by Shensa [132]. 

We start with  dyadic  sampling  according to (8.204). The impulse response 
of the filter H l ( z )  is chosen to  be 

h1(n) = 2- i  7)*(-n/2). (8.207) 

With  this filter the  output values of the first stage of the filter bank  in 
Figure 8.19 are equal to those  according to (8.204), we have 

wz(2n,2) = @,(2n,2). 

The basic  idea of the B trous  algorithm is to evaluate  equation (8.204) 
not  exactly, but approximately. For this, we use an interpolation filter as 
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- 

Figure 8.19. Analysis  filter  bank. 

B2 (4 

Figure 8.20. Equivalent  arrangements. 

the analysis lowpass H 0 ( ~ ) . 4  This may for instance  be  a  Lagrange  halfband 
filter, but  in principle any  interpolation filter will do.  In  order to explain this 
approach  in more detail  let us take a look at  the flow graphs shown in Fig- 
ure 8.20, which both have the transfer  function + H1(z2)  [Ho(z)  + Ho(-z)] .  
The  transfer function & ( z )  is 

Bz(z)  = Ho(z)  H1(z2).   (8.208) 

If Ho(z) is an  interpolation  filter, (8.208) can  be  interpreted  as follows: first 
we insert zeros into the impulse  response h1 (n). By  convolving the upsampled 
impulse  response h i ( 2 n )  = hl(n),  h i ( 2 n  + 1) = 0 with the interpolation 
filter the values h i ( 2 n )  remain  unchanged, while the values h i ( 2 n  + 1) 
are  interpolated.  Thus, the even numbered values of the impulse  response 
b2(n) t) B~(z) are equal to  the even numbered  samples of 2-l$* (-n/4). 
The  interpolated  intermediate values are approximately the sample values of 
2- l$*( -n /4)  at  the odd  positions. Thus, we have 

b2(n) M 2-1 $*(-n/4). (8.209) 

Iteration of this  approach yields 

4The  term “A trous” means  “with gaps”, which refers to  the fact that an  interpolation 
lowpass filter is used. 
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For the impulse  responses b,(n) t) &(z)  we get 

The values ul,(2mn,2m) computed  with the filter bank in Figure 8.19 are 
given  by 

G, (2%, 2m)  m W, (2%, 2m). (8.212) 

Thus,  the scheme in Figure 8.19  yields an  approximate wavelet analysis. 

Oversampled  Wavelet Series. Although the coefficients of critically sam- 
pled representations  contain all information  on the analyzed signal, they suffer 
from the drawback that  the analysis is not translation  invariant.  The aim is 
now to compute an approximation of 

Wz(n,2m) = 2 - t  C z ( k )  @*(2-m(Ic - n) )  (8.213) 
k 

by means of the filters bm(n) t) B,(z) according to (8.210): 

&(n, 2m) = 2 - t  C z(k) b,(n - Ic) (8.214) 
k 

While the direct evaluation of these  formulae  means high computational  cost, 
the values 271,(n, 2m) may  be efficiently computed by  use of the filter bank 
in Figure 8.21. The filters H O ( . Z ~ ~ )  and H ~ ( . z ~ ~ ) ,  m > 1, can  be realized in 
polyphase structure.  The number of operations that have to be carried out 
is very  small so that such an evaluation is suitable for real-time applications 
also. 

In many cases the frequency resolution of a  pure  octave-band analysis is 
not sufficient.  An improved resolution can  be  obtained by implementing M 
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octave filter banks in parallel where each  bank covers  only an  Mth  part of the 
octaves. This  concept  has  been discussed in Section 8.4.2  for the continuous- 
time case. The  application to a discrete-time analysis based  on the B trous 
algorithm is straightforward. 

8.8.2 The  Relationship  between  the  Mallat  and A Trous 
Algorithms 

The discussion above  has shown that  the only  formal difference between the 
filters used  in the Mallat and B trous algorithms lies  in the  fact  that in 
the Mallat  algorithm  the  impulse  response of the filter H l ( z )  does not, in 
general, consist of sample values of the continuous-time wavelet. However, 
both concepts  can easily be reconciled. For this, let us consider a PR two- 
channel filter bank, where Ho(z)  is an  interpolation filter and  where H1 ( z )  
satisfies Hl(1) = 0. Based  on the filter bank we can  construct  the associated 
continuous-time scaling functions and wavelets. Since Ho(z)  is supposed to 
be  an  interpolation  filter, we have the following correspondence  between the 
impulse  response of the highpass  filter, hl(n),  and  the sample values of the 
wavelet $(t) ,  which  is iteratively  determined  from ho(n) and  hl(n): 

h1(n) = 2-i $*(-n/2). (8.215) 

For the filters B,(z) defined in (8.210) we have 

bm(n) = 2-? +*(-2-"n), 
m 

(8.216) 

and we derive 
211, (2%,  2m) = W, (2%, P ) .  (8.217) 

This  means that  the B trous  algorithm  computes  the wavelet transform exactly 
if Ho(z)  and Hl(z) belong to a PR two-channel filter bank while Ho(z)  is an 
interpolation filter. Then, all computed wavelet  coefficients W, (2%, 2m), m > 
0, can  be  interpreted as sample values of a  continuous wavelet transform pro- 
vided the  demand for regularity is met: wz(2%, 2m) = W ,  (2%, 2m), m > 0. 

In  order to determine filters that yield perfect wavelet analyses of discrete- 
time signals with 211,(2mlc, 2m) = wz(2%, 2m) we may  proceed as follows: we 
take  an  interpolation filter Ho(z)  and  compute a filter Go(z) such that 
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Note that (8.218) is just  an  underdetermined linear set of equations. From 
Ho(z) and Go(z) we can then calculate the filters H l ( z )  and G1 ( z )  according 
to equation (6.22) and can  construct  the wavelet via iteration.  The solution to 
(8.218) is not unique, so that one  can choose a wavelet  which has  the desired 
properties. 

Example. For the analysis lowpass we use a binary filter with 31 
coefficients as given in (8.181). The  length of the analysis highpass is restricted 
to 63 coefficients. The overall delay of the analysis-synthesis system is  chosen 
such that a linear-phase highpass is yielded. Figures  8.22(a) and  8.22(b) 
show the respective scaling function,  the wavelet, and  the sample values 
4(-n/2) = ho(n) and +(-n/2) = hl(n).  The frequency  responses of Ho(z) 
and H l ( z )  are  pictured in Figure 8.22(c). 

8.8.3 The Discrete-Time Morlet  Wavelet 

The Morlet wavelet  was introduced in Section 8.2. In  order to realize a wavelet 
analysis of discrete-time signals, the wavelet  is sampled in such  a way that 

hl(n) = b l ( n )  = e jwon ,-P2n2/2, (8.219) 

where b l ( n )  is  defined as in (8.210). In  order to obtain  a  “practically” 
admissible and  analytic wavelet we choose 

243 WO 7r/2. (8.220) 

In  the discrete-time case a further problem arises due to  the periodicity of 
the  spectra.  In  order to ensure that we achieve an  analytic wavelet we have 
to demand that 

!@(eJW) = O  for 7r < W 5 27r 

In  order to guarantee  this, at least approximately, the  parameters WO and p 
are chosen such that 

w o < n - 1 / 2 / 3  (8.221) 

is also satisfied [132]. 
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Figure 8.22. Example; (a) scaling  function 4(t)  and the sample  values 4(-nT/2) = 
ho(n); (b) wavelet +(t) and the sample  values +(-nT/2) = hl(n); (c)  frequency 
responses  of the analysis  filters. 
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8.9 DWT-Based  Image  Compression 

Image compression based  on the DWT is essentially equivalent to compression 
based  on  octave-band filter banks  as  outlined in Section 6.8. The  strategy is 
as follows: the image is first decomposed into a  set of subband signals by  using 
a  separable5 2-D filter bank.  Then,  the  subband samples are quantized and 
further  compressed. The filters, however, satisfy  certain  conditions  such as 
regularity and vanishing moments. 

To  give an example of the discrete wavelet transform of a 2-D signal, 

5Non-separable 2-D wavelets and filter banks  are  not  considered  throughout  this  book. 
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Figure 8.23. Separable 2-D discrete wavelet transform; (a) original; (b) DWT. 

Figure 8.23(a) shows an original image and Figure  8.23(b) shows its 2-D 
wavelet transform.  The squares in Figure  8.23(b)  indicate  spatial regions that 
belong to  the same region in Figure 8.23(a).  The arrows  indicate parent-child 
relationships. An important observation  can  be  made  from  Figure 8.23(b), 
which  is true for most natural images: if there is little low-frequency informa- 
tion in a spatial region, then  it is  likely that  there is also little high-frequency 
information in that region. Thus, if a parent pixel  is small, then  it is  likely that 
the belonging children are also small. This relationship can  be exploited in 
order to encode the  subband pixels in an efficient  way. The coding  technique 
is  known as embedded  zerotree wavelet coding [131, 1281. 

We will not  study  the embedded zerotree coding  here in great  detail,  but 
we will  give a rough idea of  how such a coder works.  Most importantly,  the 
quantization of the wavelet  coefficients  is carried out successively, using  a 
bitplane technique. One starts with  a coarse quantization  and refines it in 
every  subsequent step. Whenever  a tree of zeros (pixels quantized to zero 
with respect to a given threshold) is identified, it will be coded as  a so-called 
zerotree by using a single codeword. Starting with coarse quantization ensures 
that a high  number of zerotrees can  be identified at the beginning of the encod- 
ing process. During the refinement process, when the  quantization  step size  is 
successively reduced, the number of zerotrees successively decreases. Overall 
one  gets  an embedded bitstream where the most important information  (in 
terms of signal energy) is coded  first.  The  refinement process can  be  continued 
until  one reaches a desired precision. One of the most  interesting  features of 
this coding  technique is that  the  bitstream can  be truncated at any position, 
resulting in an almost  optimal  rate-distortion  behavior for any  bit  rate. 
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8.10 Wavelet-Based Denoising 

The  aim of denoising is to remove the noise w(n)  from a  signal 

y(n) = z(n) + w(n) .  (8.222) 

For example, w ( n )  may be a Gaussian  white noise process, which  is statisti- 
cally independent of z(n).  One  tries to remove the noise by applying a non- 
linear  operation to  the wavelet representation of y(n). The same  problem  has 
been addressed in Chapter 7.3 in the context of the  STFT, where it was  solved 
via  spectral  subtraction.  In  fact, wavelet-based  denoising  is  closely related to 
spectral  subtraction.  The  main difference between both approaches lies in the 
fact that  the wavelets  used for denoising are real-valued while the  STFT is 
complex. 

(4 (b) 

Figure 8.24. Thresholding  techniques; (a) hard; (b) soft  thresholding. 

The denoising procedure is as follows. First,  the signal y(n) is decomposed 
using an octave-band filter bank,  thus  performing a discrete wavelet transform. 
Then,  the wavelet coefficients are  manipulated in order to remove the noise 
component. Two approaches known as hard and soft thresholding have  been 
proposed for this purpose [43, 421. They use the following non-linearities: 

y(n), Y(n) > -E 

y(n),  y(n) < --E (hard) (8.223) 

07 Iy(n)l I -E 

Y(n) - -E, Y(n) > -E 

+-E, y(n) --E (soft) 

Iy(n)l I -E 

Figure 8.24 illustrates  both  techniques. 

(8.224) 
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Basically, the idea of thresholding is that ~ ( n )  can  be  represented via a few 
wavelet  coefficients,  while the noise has wideband  characteristics  and  spreads 
out  on all coefficients.  For example, this holds true if x (n )  is a lowpass signal, 
while w(n)  is white noise. The  thresholding  procedure  then  sets  the small 
wavelet  coefficients representing w(n)  to zero, while the large coefficients due 
to z(n) are only slightly affected. Thus, provided the threshold E is  chosen 
appropriately,  the signal @(n) reconstructed  from  the  manipulated wavelet 
coefficients  will contain much  less  noise than y(n) does. In  practice,  the 
problem is to choose E ,  because the  amount of noise  is usually not known 
a priori. If E is too small, the noise  will not  be efficiently removed. If it is too 
large,  the signal will be  distorted. 


