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Abstract

Adaptive Signal Models: Theory, Algorithms, and Audio Applications

by

Michael Mark Goodwin

Doctor of Philosophy in Engineering|Electrical Engineering and Computer

Science

University of California, Berkeley

Professor Edward A. Lee, Chair

Mathematical models of natural signals have long been of interest in the scienti�c

community. A primary example is the Fourier model, which was introduced to explain

the properties of blackbody radiation and has since found countless applications. In this

thesis, a variety of parametric models that are tailored for representing audio signals are

discussed. These modeling approaches provide compact representations that are useful for

signal analysis, compression, enhancement, and modi�cation; compaction is achieved in a

given model by constructing the model in a signal-adaptive fashion.

The opening chapter of this thesis provides a review of background material

related to audio signal modeling as well as an overview of current trends. Basis expansions

and their shortcomings are discussed; these shortcomings motivate the use of overcomplete

expansions, which can achieve improved compaction. Methods based on overcompleteness,

e.g. best bases, adaptive wavelet packets, oversampled �lter banks, and generalized time-

frequency decompositions, have been receiving increased attention in the literature.

The �rst signal representation discussed in detail in this thesis is the sinusoidal

model, which has proven useful for speech coding and music analysis-synthesis. The

model is developed as a parametric extension of the short-time Fourier transform (STFT);

parametrization of the STFT in terms of sinusoidal partials leads to improved compaction

for evolving signals and enables a wide range of meaningful modi�cations. Analysis meth-

ods for the sinusoidal model are explored, and time-domain and frequency-domain syn-

thesis techniques are considered.

In its standard form, the sinusoidal model has some di�culties representing non-

stationary signals. For instance, a pre-echo artifact is introduced in the reconstruction of

signal onsets. Such di�culties can be overcome by carrying out the sinusoidal model in

a multiresolution framework. Two multiresolution approaches based respectively on �lter

banks and adaptive time segmentation are presented. A dynamic program for deriving
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pseudo-optimal signal-adaptive segmentations is discussed; it is shown to substantially

mitigate pre-echo distortion.

In parametric methods such as the sinusoidal model, perfect reconstruction is gen-

erally not achieved in the analysis-synthesis process; there is a nonzero di�erence between

the original and the inexact reconstruction. For high-quality synthesis, it is important to

model this residual and incorporate it in the signal reconstruction to account for salient

features such as breath noise in a ute sound. A method for parameterizing the sinusoidal

model residual based on a perceptually motivated �lter bank is considered; analysis and

synthesis techniques for this residual model are given.

For pseudo-periodic signals, compaction can be achieved by incorporating the

pitch in the signal model. It is shown that both the sinusoidal model and the wavelet

transform can be improved by pitch-synchronous operation when the original signal is

pseudo-periodic. Furthermore, approaches for representing dynamic signals having both

periodic and aperiodic regions are discussed.

Both the sinusoidal model and the various pitch-synchronous methods can be

interpreted as signal-adaptive expansions whose components are time-frequency atoms

constructed according to parameters extracted from the signal by an analysis process. An

alternative approach to deriving a compact parametric atomic decomposition is to choose

the atoms in a signal-adaptive fashion from an overcomplete dictionary of parametric time-

frequency atoms. Such overcomplete expansions can be arrived at using the matching

pursuit algorithm. Typically, the time-frequency dictionaries used in matching pursuit

consist of Gabor atoms based on a symmetric prototype window. Such symmetric atoms,

however, are not well-suited for representing transient behavior, so alternative dictionaries

are considered, namely dictionaries of damped sinusoids as well as dictionaries of general

asymmetric atoms constructed using underlying causal and anticausal damped sinusoids.

It is shown that the matching pursuit computation for either type of atom can be carried

out with low-cost recursive �lter banks.

In the closing chapter, the key points of the thesis are summarized. The conclu-

sion also discusses extensions to audio coding and provides suggestions for further work

related to overcomplete representations.

Professor Edward A. Lee
Dissertation Committee Chair
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Chapter 1

Signal Models and Analysis-Synthesis

The term signal modeling refers to the task of describing a signal with respect

to an underlying structure { a model of the signal's fundamental behavior. Analysis is the

process of �tting such a model to a particular signal, and synthesis is the process by which

a signal is reconstructed using the model and the analysis data. This chapter discusses

the basic theory and applications of signal models, especially those in which a signal is

represented as a weighted sum of simple components; such models are the focus of this

thesis. For the most part, the models to be considered are tailored for application to

audio signals; in anticipation of this, examples related to audio are employed throughout

the introduction to shed light on general modeling issues.

1.1 Analysis-Synthesis Systems

Signal modeling methods can be interpreted in the conceptual framework of

analysis-synthesis. A general analysis-synthesis system for signal modeling is shown in

Figure 1.1. The analysis block derives data pertaining to the signal model; this data is

used by the synthesis block to construct a signal estimate. When the estimate is not

perfect, the di�erence between the original x[n] and the reconstruction x̂[n] is nonzero;

this di�erence signal r[n] = x[n] � x̂[n] is termed the residual. The analysis-synthesis

framework for signal modeling is developed further in the following sections.

1.1.1 Signal Representations

A wide variety of models can be cast into the analysis-synthesis framework of

Figure 1.1. Two speci�c cases that illustrate relevant issues will be considered here: �lter

banks and physical models.



2

Analysis Synthesis
x[n]

Original
signal

x̂[n]
Reconstruction

r[n]

Residual

-

?

- -

���
��

?

Signal model data

*

Figure 1.1: An analysis-synthesis framework for signal modeling. The analysis

block derives the model data for the signal x[n]; the synthesis block constructs a

signal estimate x̂[n] based on the analysis data. If the reconstruction is not perfect,

there is a nonzero residual r[n].

Filter banks

A common approach to signal modeling involves using analysis and synthesis

blocks consisting of �lter banks. In such methods, the signal model consists of the sub-

band signals derived by the analysis bank plus a description of the synthesis �lter bank;

reconstruction is carried out by applying the subband signals to the synthesis �lters and

accumulating their respective outputs. This �lter bank scenario has been extensively

considered in the literature. A few examples of �lter bank techniques are short-time

Fourier transforms [1], discrete wavelet transforms [2], discrete cosine transforms [3],

lapped orthogonal transforms [4], and perceptual coding schemes wherein the �lter bank

is designed to mimic or exploit the properties of the human auditory or visual systems

[5, 6, 7, 8, 9, 10, 11]. Such �lter-based techniques have been widely applied in audio

and image coding [7, 8, 12, 13, 14, 15, 16, 17, 18, 19], and a wide variety of designs and

structures for analysis-synthesis �lter banks have been proposed [2, 20].

Physical models

A signi�cantly di�erent situation arises in the case of physical modeling of musical

instruments [21, 22], which is a generalization of the source-�lter approaches that are

commonly used in speech processing applications [23, 6, 24, 25, 26, 27]. In source-�lter

approaches, the analysis consists of deriving a �lter and choosing an appropriate source

such that when the �lter is driven by the source, the output is a reasonable estimate

of the original signal; in some speech coding algorithms, the source mimics a glottal

excitation while the �lter models the shape of the vocal tract, meaning that the source-
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�lter structure is designed to mirror the actual underlying physical system from which

the speech signal originated. In physical modeling, this idea is extended to the case of

arbitrary instruments, where both linear and nonlinear processing is essential to model

the physical system [21]. Here, the purpose of the analysis is to derive a general physical

description of the instrument in question. That physical description, which constitutes

the signal model data in this case, is used to construct a synthesis system that mimics

the instrument's behavior. In a guitar model, for instance, the model parameters derived

by the analysis include the length, tension, and various wave propagation characteristics

of the strings, the acoustic resonances of the guitar body, and the transfer properties of

the string{body coupling. These physical parameters can be used to build a system that,

when driven by a modeled excitation such as a string pluck, synthesizes a realistic guitar

sound [21, 28, 29, 30].

Mathematical and physical models

In either of the above cases, the signal model and the analysis-synthesis process

are inherently connected: in the �lter bank case, the signal is modeled as an aggregation of

subbands; in a physical model, the signal is interpreted as the output of a complex physical

system. While these representations are signi�cantly di�erent, they share a common

conceptual framework in that the synthesis is driven by data from the analysis, and in

that both the analysis and synthesis are carried out in accordance with an underlying

signal model.

In the literature, physical models and signal models are typically di�erentiated.

The foundation for this distinction is that physical models are concerned with the systems

that are responsible for generating the signal in question, whereas signal models, in the

strictest sense, are purely concerned with a mathematical approximation of the signal irre-

spective of its source { the signal is not estimated via an approximation of the generating

physical system. As suggested in the previous sections, this di�erentiation, however, is

somewhat immaterial; both approaches provide a representation of a signal in terms of

a model and corresponding data. Certainly, physical models rely on mathematical anal-

ysis; furthermore, mathematical models are frequently based on physical considerations.

While the models examined in this thesis are categorically mathematical, in each case the

representation is supported by underlying physical principles, e.g. pitch periodicity.

Additive models

The general topic of this thesis is mathematical signal modeling; as stated above,

the models are improved by physical insights. The designation of a model as mathematical

is rather general, though. More speci�cally, the focus of this thesis is additive signal models
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of the form

x[n] =
IX
i=1

�igi[n]; (1.1)

wherein a signal is represented as a weighted sum of basic components; such models are

referred to as decompositions or expansions. Of particular interest in these types of models

is the capability of successive re�nement. As will be seen, modeling algorithms can be

designed such that the signal approximation is successively improved as the number of

elements in the decomposition is increased; the improvement is measured using a metric

such as mean-squared error. This notion suggests another similarity between mathematical

and physical models; in either case, the signal estimate is improved by making the model

more complex { either by using a more complicated physical model or by using more

terms in the expansion. In this light, the advantage of additive models is that the model

enhancement is carried out by relatively simple mathematics rather than complicated

physical analyses as in the physical modeling case.

Signal models of the form given in Equation (1.1) are traditionally grouped into

two categories: parametric and nonparametric. The fundamental distinction is that in

nonparametric methods, the components gi[n] are a �xed function set, such as a basis;

standard transform coders, for instance, belong to this class. In parametric methods, on

the other hand, the components are derived using parameters extracted from the signal.

These issues will be discussed further throughout this thesis; for instance, it will be shown

in Chapter 6 that the inherent signal-adaptivity of parametric models can be achieved

in models that are nonparametric according to this de�nition. In other words, for some

types of models the distinction is basically moot.

General additive models have been under consideration in the �eld of computer

music since its inception [31, 32, 33, 34, 35]. The basic idea of such additive synthesis

is that a complex sound can be constructed by accumulating a large number of simple

sounds. This notion is essential to the task of modeling musical signals; it is discussed

further in the section on granular synthesis (Section 1.5.4) and is an underlying theme of

this thesis.

1.1.2 Perfect and Near-Perfect Reconstruction

Filter banks satisfying perfect reconstruction constraints have received consider-

able attention in the literature [2, 20]. The term \perfect reconstruction" was coined to

describe analysis-synthesis �lter banks where the reconstruction is an exact duplicate of

the original, with the possible exception of a time delay and a scale factor:

x̂[n] = Ax[n� �]: (1.2)

This notion, however, is by no means limited to the case of �lter bank models; any model

that meets the above requirement can be classi�ed as a perfect reconstruction approach.
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Throughout, A = 1 and � = 0 will often be assumed without loss of generality.

In perfect reconstruction systems, provided that the gain and delay are com-

pensated for, the residual signal indicated in Figure 1.1 is uniformly zero. In practice,

however, perfect reconstruction is not generally achievable; in the �lter bank case, for

instance, subband quantization e�ects and channel noise interfere with the reconstruction

process. Given these inherent di�culties with implementing perfect reconstruction sys-

tems, the design of near-perfect reconstruction systems has been considered for �lter bank

models as well as more general cases. In these approaches, the models are designed such

that the reconstruction error has particular properties; for instance, �lter banks for audio

coding are typically formulated with the intent of using auditory masking principles to

render the reconstruction error imperceptible [7, 9, 6, 10, 11].

As stated, signal models typically cannot achieve perfect reconstruction. This

is particularly true in cases where the representation contains less data than the original

signal, i.e. in cases where compression is achieved. Beyond those cases, some models, re-

gardless of compression considerations, simply do not account for perfect reconstruction.

In audiovisual applications, these situations can be viewed in light of a looser near-perfect

reconstruction criterion, that of perceptual losslessness or transparency, which is achieved

in an analysis-synthesis system if the reconstructed signal is perceptually equivalent to the

original. Note that a perceptually lossless system typically invokes psychophysical phe-

nomena such as masking to e�ect data reduction or compression; its signal representation

may be more e�cient than that of a perfect reconstruction system.

The notion of perceptual losslessness can be readily interpreted in terms of the

analysis-synthesis structure of Figure 1.1. For one, a perfect reconstruction system is

clearly lossless in this sense. In near-perfect models, however, to achieve perceptual loss-

lessness it is necessary that either the analysis-synthesis residual contain only components

that would be perceptually insigni�cant in the synthesis, or that the residual be modeled

separately and reinjected into the reconstruction. The latter case is most general.

As will be demonstrated in Chapter 2, the residual characteristically contains

signal features that are not well-represented by the signal model, or in other words, com-

ponents that the analysis is not designed to identify and that the synthesis is not capable

of constructing. If these components are important (perceptually or otherwise) it is nec-

essary to introduce a distinct model for the residual that can represent such features ap-

propriately. Such signal-plus-residual models have been applied to many signal processing

problems; this is considered further in Chapter 4.

The signal models discussed in this thesis are generally near-perfect reconstruc-

tion approaches tailored for audio applications. For the sake of compression or data re-

duction, perceptually unimportant information is removed from the representation. Thus,

it is necessary to incorporate notions of perceptual relevance in the models. For music,

it is well-known that high-quality synthesis requires accurate reproduction of note onsets
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or attacks [7, 36]. This so-called attack problem will be addressed in each signal model;

it provides a foundation for assessing the suitability of a model for musical signals. For

approximate models of audio signals, the distortion of attacks, often described using the

term pre-echo, leads to a visual cue for evaluating the models; comparative plots of original

and reconstructed attacks are a reliable indicator of the relative auditory percepts.

Issues similar to the attack problem commonly arise in signal processing appli-

cations. In many analysis-synthesis scenarios, it is important to accurately model speci�c

signal features; other features are relatively unimportant and need not be accurately rep-

resented. In other words, the reconstruction error measure depends on the very nature of

the signal and the applications of the representation. One example of this is compression

of ambulatory electrocardiogram (ECG) signals for future o�-line analysis; for this pur-

pose it is only important to preserve a few key features of the heartbeat signal, and thus

high compression rates can be achieved [37].

1.2 Compact Representations

Two very di�erent models were discussed in Section 1.1.1, namely �lter bank

and physical models. These examples suggest the wide range of modeling techniques that

exist; despite this variety, a few general observations can be made. Any given model is only

useful inasmuch as it provides a signal description that is pertinent to the application at

hand; in general, the usefulness of a model is di�cult to assess without a priori knowledge

of the signal. Given an accurate model, a reasonable metric for further evaluation is

the compaction of the representation that the model provides. If a representation is

both accurate and compact, i.e. is not data intensive, then it can be concluded that the

representation captures the primary or meaningful signal behavior; a compact model in

some sense extracts the coherent structure of a signal [38, 39]. This insight suggests that

accurate compact representations are applicable to the tasks of compression, denoising,

analysis, and signal modi�cation; these are discussed in turn.

1.2.1 Compression

It is perhaps obvious that by de�nition a compact representation is useful for

compression. In terms of the additive signal model of Equation (1.1), a compact represen-

tation is one in which only a few of the model components �igi[n] are signi�cant. With

regards to accurate waveform reconstruction, such compaction is achieved when only a few

coe�cients �i have signi�cant values, provided of course that the functions gi[n] all have

the same norm. Then, negligible components can be thresholded, i.e. set to zero, without

substantially degrading the signal reconstruction. In scenarios where perceptual criteria

are relevant in determining the quality of the reconstruction, principles such as auditory
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masking can be invoked to achieve compaction; in some cases, masking phenomena can

be used to justify neglecting components with relatively large coe�cients.

Various algorithms for computing signal expansions have focused on optimizing

compaction metrics such as the entropy or L1 norm of the coe�cients or the rate-distortion

performance of the representation; these approaches allow for an exploration of the tradeo�

between the amount of data in the representation and its accuracy in modeling the signal

[40, 41, 42, 43]. In expansions where the coe�cients are all of similar value, thresholding

is not useful and compaction cannot be readily achieved; this issue will come up again in

Section 1.4 and Chapter 6. Note that for the remainder of this thesis the terms compression

and compaction will for the most part be used interchangeably.

1.2.2 Denoising

It has been argued that compression and denoising are linked [44]. This argument

is based on the observation that white noise is essentially incompressible; for instance, an

orthogonal transform of white noise is again white, i.e. there is no compaction in the

transform data and thus no compression is achievable. In cases where a coherent signal

is degraded by additive white noise, the noise in the signal is not compressible. Then, a

compressed representation does not capture the noise; it extracts the primary structure

of the signal and a reconstruction based on such a compact model is in some sense a

denoised or enhanced version of the original. In cases where the signal is well-modeled as

a white noise process and the degradations are coherent, e.g. digital data with a sinusoidal

jammer, this argument does not readily apply.

In addition to the �lter-based considerations of [44], the connection between com-

pression and denoising has been explored in the Fourier domain [45] and in the wavelet

domain [46]. In these approaches, the statistical assumption is that small expansion coef-

�cients correspond to noise instead of important signal features; as a result, thresholding

the coe�cients results in denoising. There are various results in the literature for thresh-

olding wavelet-based representations [46]; such approaches have been applied with some

success to denoising old sound recordings [47, 48]. Furthermore, motivated by the ob-

servation that quantization is similar to a thresholding operation, there have been recent

considerations of quantization as a denoising approach [49].

It is interesting to note that denoising via thresholding has an early correspon-

dence in time-domain speech processing for dereverberation and removing background

noise [50, 51]. In that method, referred to as center-clipping, a signal is set to zero if it is

below a threshold; if it is above the threshold, the threshold is subtracted. For a threshold

a, the center-clipped signal is

x̂[n] =

(
x[n]� a x[n] > a

0 x[n] < a;
(1.3)
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which corresponds to soft-thresholding the signal in the time domain rather than in a

transform domain as in the methods discussed above.1 This approach was considered

e�ective for removing long-scale reverberation, i.e. echoes that linger after the signal is

no longer present; such reverberation decreases the intelligibility of speech. Furthermore,

center-clipping is useful as a front end for pitch detection of speech and audio signals

[1, 53]. The recent work in transform-domain thresholding can be viewed as an extension

of center-clipping to other representations.

1.2.3 Analysis, Detection, and Estimation

In an accurate compact representation, the primary structures of the signal are

well-modeled. Given the representation, then, it is possible to determine the basic be-

havior of the signal. Certain patterns of behavior, if present in the signal, can be clearly

identi�ed in the representation, and speci�c parameters relating to that behavior can be

extracted from the model. In this light, a compact representation enables signal analysis

and characterization as well as the related tasks of detection, identi�cation, and estima-

tion.

1.2.4 Modi�cation

In audio applications, it is often desirable to carry out modi�cations such as time-

scaling, pitch-shifting, and cross-synthesis. Time-scaling refers to altering the duration

of a sound without changing its pitch; pitch-shifting, inversely, refers to modifying the

perceived pitch of a sound without changing its duration. Finally, cross-synthesis is the

process by which two sounds are merged in a meaningful way; an example of this is

applying a guitar string excitation to a vocal tract �lter, resulting in a \talking" guitar

[54]. These modi�cations cannot be carried out exibly and e�ectively using commercially

available systems such as samplers or frequency-modulation (FM) synthesizers [55]. For

this reason, it is of interest to explore the possibility of carrying out modi�cations based

on additive signal models.

A signal model is only useful with regard to musical modi�cations if it identi�es

musically relevant features of the signal such as pitch and harmonic structure; thus, a

certain amount of analysis is a prerequisite to modi�cation capabilities. Furthermore, data

reduction is of signi�cant interest for e�cient implementations. Such compression can be

achieved via the framework of perceptual losslessness; the signal model can be simpli�ed by

exploiting the principles of auditory perception and masking. This simpli�cation, however,

can only be carried out if the model components can individually be interpreted in terms

1Note that this kind of thresholding nonlinearity does not necessarily yield objectionable perceptual

artifacts in speech signals; a similar nonlinearity has been successfully applied in the recent literature to

improve the performance of stereo echo cancellation without degrading the speech quality [52].
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of perceptually relevant parameters. If the components are perceptually motivated, their

structure can be modi�ed in perceptually predictable and meaningful ways. Thus, a

compact transparent representation in some sense has inherent modi�cation capabilities.

Given this interrelation of data reduction, signal analysis, and perceptual considerations,

it can be concluded from the preceding discussions that the modi�cation capabilities of a

representation hinge on its compactness.

1.3 Parametric Methods

As discussed in Section 1.1, signal models have been traditionally categorized

as parametric or nonparametric. In nonparametric methods, the model is constructed

using a rigid set of functions whereas in parametric methods the components are based

on parameters derived by analyzing the signal. Examples of parametric methods include

source-�lter and physical models [27, 21], linear predictive and prototype waveform speech

coding [23, 56], granular analysis-synthesis of music [33], and the sinusoidal model [57, 36].

The sinusoidal model is discussed at length in Chapter 2; granular synthesis is described

in Section 1.5.4. The other models are discussed to varying extents throughout this text.

The distinction between parametric and nonparametric methods is admittedly

vague. For instance, the indices of the expansion functions in a nonparametric approach

can be thought of as parameters, so the terminology is clearly somewhat inappropriate.

The issue at hand is clari�ed in the next section, in which various nonparametric methods

are reviewed, as well as in Chapter 2 in the treatment of the phase vocoder, where a

nonparametric method is revamped into a parametric method to enable signal modi�ca-

tions and reliable synthesis. The latter discussion indicates that the real issue is one of

signal adaptivity rather than parametrization, i.e. a description of a signal is most useful if

the associated parameters are signal-adaptive. It should be noted that traditional signal-

adaptive parametric representations are not generally capable of perfect reconstruction;

this notion is revisited in Chapter 6, which presents signal-adaptive parametric models

that can achieve perfect reconstruction in some cases. As will be discussed, such methods

illustrate that the distinction between parametric and nonparametric is basically insub-

stantial.

1.4 Nonparametric Methods

In contrast to parametric methods, nonparametric methods for signal expansion

involve expansion functions that are in some sense rigid; they cannot necessarily be repre-

sented by physically meaningful parameters. Arbitrary basis expansions and overcomplete

expansions belong to the class of nonparametric methods. The expansion functions in

these cases are simply sets of vectors that span the signal space; they do not necessar-
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ily have an underlying structure. Note that these nonparametric expansions are tightly

linked to the methods of linear algebra; the following discussion thus relies on matrix

formulations.

1.4.1 Basis Expansions

For a vector space V of dimension N , a basis is a set of N linearly independent

vectors fb1; b2; : : : ; bNg. Linear independence implies that there is no nonzero solution

fng to the equation
NX
n=1

nbn = 0: (1.4)

Then, the matrix

B = [b1 b2 � � � bN ] ; (1.5)

whose columns are the basis vectors fbng, is invertible. Given the linear independence

property, it follows that any vector x 2 V can be expressed as a unique linear combination

of the form

x =
NX
n=1

�nbn: (1.6)

In matrix notation, this can be written as

x = B�; (1.7)

where � = [�1 �2 �3 : : : �N ]T . The coe�cients of the expansion are given by

� = B�1x: (1.8)

Computation of a basis expansion can also be phrased without reference to the matrix

inverse B�1; this approach is provided by the framework of biorthogonal bases, in which

the expansion coe�cients are evaluated by inner products with a second basis. After that

discussion, the speci�c case of orthogonal bases is examined and some familiar examples

from signal processing are considered.

It should be noted that the discussion of basis expansions in this section does not

rely on the norms of the basis vectors, but that no generality would be lost by restrict-

ing the basis vectors to having unit norm. In later considerations, it will indeed prove

important that all the expansion functions have unit norm.

Biorthogonal bases

Two bases fa1; a2; : : : ; aNg and fb1; b2; : : : ; bNg are said to be a pair of biorthog-

onal bases if

AHB = I; (1.9)
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where H denotes the conjugate transpose, I is the N�N identity matrix and the matrices

A and B are given by

A = [a1 a2 � � � aN ] and B = [b1 b2 � � � bN ] : (1.10)

Equation (1.9) can be equivalently expressed in terms of the basis vectors as the require-

ment that

hai; bji = aHi bj = �[i� j]: (1.11)

Such biorthogonal bases are also referred to as dual bases.

Given the relationship in Equation (1.9), it is clear that

AH = B�1: (1.12)

Then, because the left inverse and right inverse of an invertible square matrix are the same

[58], the biorthogonality constraint corresponds to

ABH = I and BAH = I: (1.13)

This yields a pair of simple expressions for expanding a signal x with respect to the

biorthogonal bases:

x = ABHx = BAHx

=
NX
n=1

hbn; xian =
NX
n=1

han; xibn:
(1.14)

This framework of biorthogonality leads to exibility in the design of wavelet �lter banks

[2]. Furthermore, biorthogonality allows for independent evaluation of the expansion co-

e�cients, which leads to fast algorithms for computing signal expansions.

Orthogonal bases

An orthogonal basis is a special case of a biorthogonal basis in which the two

biorthogonal or dual bases are identical; here, the orthogonality constraint is

hbi; bji = �[i� j]; (1.15)

which can be expressed in matrix form as

BHB = I =) BH = B�1: (1.16)

Strictly speaking, such bases are referred to as orthonormal bases [58]; however, since most

applications involve unit-norm basis functions, there has been a growing tendency in the

literature to use the terms orthogonal and orthonormal interchangeably [2].
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For an expansion in an orthogonal basis, the coe�cients for a signal x are given

by

� = BHx =) �n = hbn; xi; (1.17)

so the expansion can be written as

x =
NX
n=1

hbn; xibn: (1.18)

As in the general biorthogonal case, the expansion coe�cients can be independently eval-

uated.

Examples of basis expansions

The following list summarily describes the wide variety of basis expansions that

have been considered in the signal processing literature; supplementary details are supplied

throughout the course of this thesis when needed:

� The discrete Fourier transform (DFT) involves representing a signal in terms of

sinusoids. For a discrete-time signal of length N , the expansion functions are sinu-

soids of length N . Since the expansion functions do not have compact time support,

i.e. none of the basis functions are time-localized, this representation is ine�ective

for modeling events with short duration. Localization can in some sense be achieved

for the case of a purely periodic signal whose length is an integral multiple of the

period M , for which a DFT of size M provides an exact representation.

� The short-time Fourier transform (STFT) is a modi�cation of the DFT that has

improved time resolution; it allows for time-localized representation of transient

events and similarly enables DFT-based modeling of signals that are not periodic.

The STFT is carried out by segmenting the signal into frames and carrying out

a separate DFT for each short-duration frame. The expansion functions in this

case are sinusoids that are time-limited to the signal frame, so the representation of

dynamic signal behavior is more localized than in the general Fourier case. This is

examined in greater detail in Chapter 2 in the treatment of the phase vocoder and

the progression of ideas leading to the sinusoidal model.

� Block transforms. This is a general name for approaches in which a signal is seg-

mented into blocks of length N and each segment is then decomposed in an N -

dimensional basis. To achieve compression, the decompositions are quantized and

thresholded, which leads to discontinuities in the reconstruction, e.g. blockiness in

images and frame-rate distortion artifacts in audio. This issue is somewhat resolved

by lapped orthogonal transforms, in which the support of the basis functions extends
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beyond the block boundaries, which allows for a higher degree of smoothness in

approximate reconstructions [4, 59].

� Critically sampled perfect reconstruction �lter banks compute expansions of signals

with respect to a biorthogonal basis related to the impulse responses of the anal-

ysis and synthesis �lters [2]. This idea is fundamental to recent signal processing

developments such as wavelets and wavelet packets.

� Wavelet packets correspond to arbitrary iterations of two-channel �lter banks [2];

such iterated �lter banks are motivated by the observation that a perfect reconstruc-

tion model can be applied to the subband signals in a critically sampled perfect re-

construction �lter bank without marring the reconstruction. This leads to arbitrary

perfect reconstruction tree-structured �lter banks and multiresolution capabilities as

will be discussed in Section 1.5.1. Such trees can be made adaptive so that the �lter

bank con�guration changes in time to adapt to changes in the input signal [60]; in

such cases, however, the resulting model is no longer simply a basis expansion. This

is discussed further in Section 1.4.2, Chapter 3.

� The discrete wavelet transform is a special case of a wavelet packet where the two

�lters are generally highpass and lowpass and the iteration is carried out successively

on the lowpass branch. This results in an octave-band �lter bank in which the

sampling rate of a subband is proportional to its bandwidth. The resulting signal

model is the wavelet decomposition, which consists of octave-band signal details plus

a lowpass signal estimate given by the lowpass �lter of the �nal iterated �lter bank.

This model generally provides signi�cant compaction for images but not as much for

audio [18, 19, 14, 15, 61]. As will be seen in Chapter 5, in audio applications it is

necessary to incorporate adaptivity in wavelet-based models to achieve transparent

compaction [14].

Shortcomings of basis expansions

Basis expansions have a serious drawback in that a given basis is not well-suited

for decomposing a wide variety of signals. For any particular basis, it is trivial to provide

examples for which the signal expansion is not compact; the uniqueness property of basis

representations implies that a signal with a noncompact expansion can be constructed

by simply linearly combining the N basis vectors with N weights that are of comparable

magnitude.

Consider the well-known cases depicted in Figure 1.2. For the frequency-localized

signal of Figure 1.2(a), the Fourier expansion shown in Figure 1.2(c) is appropriately

sparse and indicates the important signal features; in contrast, an octave-band wavelet

decomposition (Figure 1.2(e)) provides a poor representation because it is fundamentally
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Figure 1.2: Shortcomings of basis expansions. The frequency-localized signal in

(a) has a compact Fourier transform (c) and a noncompact wavelet decomposition

(e); the time-localized signal in (b) has a noncompact Fourier expansion (d) and a

compact wavelet representation (f).

unable to resolve multiple sinusoidal components in a single subband. For the time-

localized signal of Figure 1.2(b), on the other hand, the Fourier representation of Figure

1.2(d) does not readily yield information about the basic signal structure; it cannot provide

a compact model of a time-localized signal since none of the Fourier expansion functions

are themselves time-localized. In this case, the wavelet transform (Figure 1.2(f)) yields a

more e�ective signal model.

The shortcomings of basis expansions result from the attempt to represent ar-

bitrary signals in terms of a very limited set of functions. Better representations can be

derived by using expansion functions that are signal-adaptive; signal adaptivity can be

achieved via parametric approaches such as the sinusoidal model [57, 36, 62], by using

adaptive wavelet packets or best basis methods [40, 41, 60], or by choosing the expansion

functions from an overcomplete set of time-frequency atoms [38]. These are fundamentally

all examples of expansions based on an overcomplete set of vectors; this section focuses on

the latter two, however, since these belong to the class of nonparametric methods. The

term overcomplete means that the set or dictionary spans the signal space but includes

more functions than is necessary to do so. Using a highly overcomplete dictionary of

time-frequency atoms enables compact representation of a wide range of time-frequency
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behaviors; this depends however on choosing atoms from the dictionary that are appro-

priate for decomposing a given signal, i.e. the atoms are chosen in a signal-adaptive way.

Basis expansions do not exhibit such signal adaptivity and as a result do not provide

compact representations for arbitrary signals. According to the discussion in Section 1.2,

this implies that basis expansions are not generally useful for signal analysis, compression,

denoising, or modi�cation. Such issues are revisited in Chapter 6; here, the shortcomings

simply provide a motivation for considering overcomplete expansions.

1.4.2 Overcomplete Expansions

For a vector space V of dimension N , a complete set is a set of M vectors

fd1; d2; : : : ; dMg that contains a basis (M � N). The set is furthermore referred to as

overcomplete or redundant if in addition to a basis it also contains other distinct vectors

(M > N). As will be seen, such redundancy leads to signal adaptivity and compact

representations; algebraically, it implies that there are nonzero solutions fmg to the

equation
MX
m=1

mdm = 0: (1.19)

There are thus an in�nite number of possible expansions of the form

x =
MX
m=1

�mdm: (1.20)

Namely, if f�̂mg is a solution to the above equation and f̂mg is a solution to Equation

(1.19), then f�̂m + ̂mg is also a solution:

x =
MX
m=1

(�̂m + ̂m)dm =
MX
m=1

�̂mdm +
MX
m=1

̂mdm =
MX
m=1

�̂mdm: (1.21)

In matrix notation, with

D = [d1 d2 � � � dM ] ; (1.22)

Equation (1.20) can be written as

x = D�; (1.23)

where � = [�1 �2 �3 : : : �M ]T ; the multiplicity of solutions can be interpreted in terms

of the null space of D, which has nonzero dimension:

x = D(�̂+ ̂) = D�̂ +D̂ = D�̂: (1.24)

Since there are many possible overcomplete expansions, there are likewise a variety of

metrics and methods for computing the expansions. The overcomplete case thus lacks the

structure of the basis case, where the coe�cients of the expansion can be derived using

an inverse matrix computation or, equivalently, correlations with a biorthogonal basis. As

a result, the signal modeling advantages of overcomplete expansions come at the cost of

additional computation.
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Derivation of overcomplete expansions

In the general basis case, the coe�cients of the expansion are given by � = B�1x:

For overcomplete expansions, one solution to Equation (1.20) can be found by using the

singular value decomposition (SVD) of the dictionary matrixD to derive its pseudo-inverse

D+. The coe�cients � = D+x provide a perfect model of the signal, but the model is

however not compact; this is because the pseudo-inverse framework �nds the solution �

with minimum two-norm, which is a poor metric for compaction [58, 42].

Given this information about the SVD, not to mention the computational cost

of the SVD itself, it is necessary to consider other solution methods if a compact represen-

tation is desired. There are two distinct approaches. The �rst class of methods involves

structuring the dictionary so that it contains many bases; for a given signal, the best ba-

sis is chosen from the dictionary. The second class of methods are more general in that

they apply to arbitrary dictionaries with no particular structure; here, the algorithms are

especially designed to derive compact expansions. These are discussed briey below, after

an introduction to general overcomplete sets; all of these issues surrounding overcomplete

expansions are discussed at length in Chapter 6.

Frames

An overcomplete set of vectors fdmg is a frame if there exist two positive con-

stants E > 0 and F <1, referred to as frame bounds, such that

Ekxk2 �
X
m

jhdm; xij2 � Fkxk2 (1.25)

for any vector x. If E = F , the set is referred to as a tight frame and a signal can be

expanded in a form reminiscent of the basis case:

x =
1

E

X
m

hdm; xidm: (1.26)

If the expansion vectors dm have unit norm, E is a measure of the redundancy of the

frame, namely M=N for a frame consisting of M vectors in an N -dimensional space.

The tight frame expansion in Equation (1.26) is equivalent to the expansion given

by the SVD pseudo-inverse; it has the minimum two-norm of all possible expansions and

thus does not achieve compaction. A similar expansion for frames that are not tight can

be formulated in terms of a dual frame; it is also strongly connected to the SVD and does

not lead to a sparse representation [2, 63].

More details on frames can be found in the literature [2, 63, 64]. It should simply

be noted here that frames and oversampled �lter banks are related in the same fashion

as biorthogonal bases and critically sampled perfect reconstruction �lter banks. Also,

if a signal is to be reconstructed in a stable fashion from an expansion, meaning that
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bounded errors in the expansion coe�cients lead to bounded errors in the reconstruction,

it is necessary that the expansion set constitute a frame [2].

In the next two sections, two types of overcomplete expansions are considered.

Fundamentally, these approaches are based on the theory of frames. Instead of using

the terminology of frames, however, the discussions are phrased in terms of overcomplete

dictionaries; it should be noted that these overcomplete dictionaries are indeed frames.

Best basis methods

Best basis and adaptive wavelet packet methods, while not typically formalized

in such a manner, can be interpreted as overcomplete expansions in which the dictionary

contains a set of bases:

D = [B1 B2 B3 : : : ] : (1.27)

For a given signal, the best basis from the dictionary is chosen for the expansion according

to some metric such as the entropy of the coe�cients [40], the mean-squared error of

a thresholded expansion, a denoising measure [65, 66], or rate-distortion considerations

[41, 60]. In each of the cited approaches, the bases in the dictionary correspond to tree-

structured �lter banks; there are thus mathematical relationships between the various

bases and the expansions in those bases. In these cases, choosing the best basis (or

wavelet packet) is equivalent to choosing the best �lter bank structure, possibly time-

varying, for a given signal. More general best basis approaches, where the various bases

are not intrinsically related, have not been widely explored.

Arbitrary dictionaries

As will be seen in the discussion of time-frequency resolution in Section 1.5.2,

best basis methods involving tree-structured �lter banks, i.e. adaptive wavelet packets,

still have certain limitations for signal modeling because of the underlying structure of the

sets of bases. While that structure does provide for e�cient computation, in the task of

signal modeling it becomes necessary to forego those computational advantages in order to

provide for representation of arbitrary signal behavior. This suggestion leads to the more

general approach of considering expansions in terms of arbitrary dictionaries and devising

algorithms that �nd compact solutions. Such algorithms come in two forms: those that

�nd exact solutions that maximize a compaction metric, either formally or heuristically [42,

67, 68], and those that �nd sparse approximate solutions that model the signal within some

error tolerance [38, 39, 69]. These two paradigms have the same fundamental goal, namely

compact modeling, but the frameworks are considerably di�erent; in either case, however,

the expansion functions are chosen in a signal-adaptive fashion and the algorithms for

choosing the functions are decidedly nonlinear. This issue will be revisited in Chapter 6.
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The various algorithms for deriving overcomplete expansions apply to arbitrary

dictionaries. It is advantageous, however, if the dictionary elements can be parameterized

in terms of relevant features such as time location, scale, and frequency modulation.

Such parametric structure is useful for signal coding since the dictionaries and expansion

functions can be represented with simple parameter sets, and for signal analysis in that

the parameters provide an immediate indication of the signal behavior. Such notions

appear throughout the entirety of this thesis. It is especially noteworthy at this point that

using a parametric dictionary provides a connection between overcomplete expansions and

parametric models; this connection will be discussed and exempli�ed in Chapter 6.

1.4.3 Example: Haar Functions

An illustrative comparison between basis expansions and overcomplete expan-

sions is provided by a simple example involving Haar functions; these are the earliest and

simplest examples of wavelet bases [2]. For discrete-time signals with eight time points,

the matrix corresponding to a Haar wavelet basis with two scales is

BHaar =

2
66666666666666664

1p
2

� 1p
2

0 0 0 0 0 0

0 0 1p
2

� 1p
2

0 0 0 0

0 0 0 0 1p
2

� 1p
2

0 0

0 0 0 0 0 0 1p
2

� 1p
2

1
2

1
2 �1

2 �1
2 0 0 0 0

0 0 0 0 1
2

1
2 �1

2 �1
2

1
2

1
2

1
2

1
2 0 0 0 0

0 0 0 0 1
2

1
2

1
2

1
2

3
77777777777777775

T

; (1.28)

where the basis consists of shifts by two and by four of the small scale and large scale

Haar functions, respectively. The matrix is written in this transposed form to illustrate

its relationship to the graphical description of the Haar basis given in Figure 1.3. An

overcomplete Haar dictionary can be constructed by including all of the shifts by one of

both small and large scales; the corresponding dictionary matrix is given in Figure 1.4.

Figure 1.5(a) shows the signal x1[n] = b2, the second column of the Haar basis

matrix. Figure 1.5(b) shows a similar signal, x2[n] = x1[n � 1], a circular time-shift

of x1[n]. As shown in Figure 1.5(c), the decomposition of x1[n] in the Haar basis is

compact { because x1[n] is actually in the basis; Figure 1.5(d), however, indicates that

the Haar basis decomposition of x2[n] is not compact and is indeed a much less sparse

model than the pure time-domain signal representation. Despite the strong relationship

between the two signals, the transform representations are very di�erent. The breakdown

occurs in this particular example because the wavelet transform is not time-invariant;

similar limitations apply to any basis expansion as discussed earlier. Expansions using
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Figure 1.3: The Haar basis with two scales (for C8).

the overcomplete Haar dictionary are shown in Figures 1.5(e) and 1.5(f). Both of these

representations are compact. Noncompact overcomplete expansions derived using the

SVD pseudo-inverse of DHaar are shown in Figures 1.5(g) and 1.5(h). Given the existence

of the compact representations in Figures 1.5(e) and 1.5(f), the dispersion evident in

the SVD signal models motivates the investigation of algorithms other than the SVD for

deriving overcomplete expansions. Algorithms that derive compact expansions based on

overcomplete dictionaries will be addressed in Chapter 6.

1.4.4 Geometric Interpretation of Signal Expansions

The linear algebra formulation developed above can be interpreted geometrically.

Figure 1.6 shows a simple comparison of basis and overcomplete expansions in a two-

dimensional vector space. The diagrams illustrate synthesis of the same signal using

the vectors in an orthogonal basis, a biorthogonal basis, and an overcomplete dictionary,

respectively; issues related to analysis-synthesis and modi�cation are discussed below.

Analysis-synthesis

In each of the decompositions in Figure 1.6, the signal is reconstructed exactly as

the sum of two expansion vectors. For the orthogonal basis, the expansion is unique and the

expansion coe�cients can be derived independently by simply projecting the signal onto
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DHaar =
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Figure 1.4: The dictionary matrix for an overcomplete Haar set.
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Figure 1.5: Comparison of decompositions in the Haar basis of Equation (1.28) and

the Haar dictionary of Equation (1.29). Decompositions of signals (a) and (b) appear

in the column beneath the respective signal. The basis expansion in (c) is compact,

while that in (d) provides a poor model. The overcomplete expansions in (e) and (f)

are compact, but these cannot generally be computed by linear methods such as the

SVD, which for this case yields the noncompact expansions given in (g) and (h).
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Figure 1.6: Geometric interpretation of signal expansions for orthogonal and

biorthogonal bases and an overcomplete dictionary or frame.

the basis vectors. For the biorthogonal basis, the expansion vectors are not orthogonal; the

expansion is still unique and the coe�cients can still be independently evaluated, but the

evaluation of the coe�cients is done by projection onto a dual basis as described in Section

1.4.1. For the overcomplete frame, an in�nite number of representations are possible since

the vectors in the frame are linearly dependent. One way to compute such an overcomplete

expansion is to project the signal onto a dual frame; such methods, however, are related

to the SVD and do not yield compact models [70]. As discussed in Section 1.4.2, there

are a variety of other methods for deriving overcomplete expansions. In this example, it is

clear that a compact model can be achieved by using the frame vector that is most highly

correlated with the signal since the projection of the signal onto this vector captures most

of the signal energy. This greedy approach, known asmatching pursuit, is explored further

in Chapter 6 for higher-dimensional cases.

Modi�cation

Modi�cations based on signal models involve either adjusting the expansion co-

e�cients, the expansion functions, or both. It is desirable in any of these cases that the

outcome of the modi�cation be predictable. In this section, the case of coe�cient modi�-

cation is discussed since the vector interpretation provided above lends immediate insight;

modifying the coe�cients simply amounts to adjusting the lengths of the component vec-

tors in the synthesis. In the orthogonal case, the independence of the components leads to

a certain robustness for modi�cations since each projection can be modi�ed independently;

if the orthogonal axes correspond to perceptual features to be adjusted, these features can

be separately adjusted. In the biorthogonal case, to achieve the equivalent modi�cation

with respect to the orthogonal axes, the coupling between the projections must be taken

into account. The most interesting caveat occurs in the frame case, however; because an

overcomplete set is linearly dependent, some linear combinations of the frame vectors will
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add to zero. This means that some modi�cations of the expansion coe�cients, namely

those that correspond to adding vectors in the null space of the dictionary matrix D, will

have no e�ect on the reconstruction. This may seem to be at odds with the previous

assertion that compact models are useful for modi�cation, but this is not necessarily the

case. If fundamental signal structures are isolated as in compact models, the correspond-

ing coe�cients and functions can be modi�ed jointly to avoid such di�culties. In Chapter

2, such issues arise in the context of establishing constraints on the synthesis components

to avoid distortion in the reconstruction.

1.5 Time-Frequency Decompositions

The domains of time and frequency are fundamental to signal descriptions; rela-

tively recently, scale has been considered as another appropriate domain for signal analysis

[2]. These various arenas, in addition to being mathematically cohesive, are well-rooted

in physical and perceptual foundations; generally speaking, the human perceptual expe-

rience can in some sense be well summarized in terms of when an event occurred (time),

the duration of a given event (scale), and the rate of occurrence of events (frequency).

In this section, the notion of joint time-frequency representation of a signal is

explored; the basic idea is that a model should indicate the local time and frequency

behavior of a signal. Some extent of time localization is necessary for real-world processing

of signals; it is impractical to model a signal de�ned over all time, so some time-localized

or sequential approach to processing is needed. Time localization is also important for

modeling transients in nonstationary signals; in arbitrary signals, various transients may

have highly variable durations, so scale localization is also desirable in signal modeling.

Finally, frequency localization is of interest because of the relationship of frequency to

pitch in audio signals, and because of the importance of frequency in understanding the

behavior of linear systems. Given these motivations, signal models of the form

x[n] �
X
i

�igi[n] (1.29)

are of special interest when the expansion functions gi[n] are localized in time-frequency,

since such expansions indicate the local time-frequency characteristics of a signal. Such

cases, �rst elaborated by Gabor from both theoretical and psychoacoustic standpoints

[71, 72], are referred to as time-frequency atomic decompositions; the localized functions

gi[n] are time-frequency atoms, fundamental particles which comprise natural signals.

Atomic decompositions lead naturally to graphical time-frequency representa-

tions that are useful for signal analysis. Unfortunately, the resolution of any such analysis

is fundamentally limited by physical principles [73, 74, 75]. This is the subject of Section

1.5.1, which discusses resolution tradeo�s between the various representation domains.
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With these tradeo�s in mind, various methods for visualizing time-frequency models are

discussed in Sections 1.5.2 and 1.5.3. Finally, time-frequency atomic decompositions have

been of interest in the �eld of computer music for some time [33, 76, 77, 78]; this is

discussed in Section 1.5.4.

1.5.1 Time-Frequency Atoms, Localization, and Multiresolution

The time-frequency localization of any given atom is constrained by a resolution

limitation equivalent to the Heisenberg uncertainty principle of quantum physics [71, 74].

In short, good frequency localization can only be achieved by analyzing over a long period

of time, so it comes at the expense of poor time resolution; similarly, �ne time resolution

does not allow for accurate frequency resolution. Note that analysis over a long period of

time involves considering large scale signal behavior, and that analysis over short periods

of time involves examining small scale signal behavior; furthermore, it is sensible to ana-

lyze for low frequency components over large scales since such components by de�nition do

not change rapidly in time, and likewise high frequency components should be analyzed

over short scales. The point here is simply that scale is necessarily intertwined in any

notion of time-frequency localization. These tradeo�s between localization in time, fre-

quency, and scale are the motivation of the wavelet transform and multiresolution signal

decompositions [79, 2].

The localization of an atom can be depicted by a tile on the time-frequency plane,

which is simply a rectangular section centered at some (t0; !0) and having some widths

�t and �! that describe where most of the energy of the signal lies [2]:

�2
t =

Z 1

�1
(t� t0)

2 jx(t� t0)j2 dt (1.30)

�2
! =

Z 1

�1
(! � !0)

2 jX(! � !0)j2 d!: (1.31)

The uncertainty principle provides a lower bound on the product of these widths:

�t�! �
r
�

2
: (1.32)

This uncertainty bound implies that there is a lower bound on the area of a time-frequency

tile. It should be noted that non-rectangular tiles can also be formulated [80, 81, 82].

Within the limit of the resolution bound, many tile shapes are possible. These

correspond to atoms ranging from impulses, which are narrow in time and broad in fre-

quency, to sinusoids, which are broad in time and narrow in frequency; intermediate tile

shapes basically correspond to modulated windows, i.e. time-windowed sinusoids. Various

tiles are depicted in Figure 1.7.

It should be noted that tiles with area close to the uncertainty bound are of

primary interest; larger tiles do not provide the desired localized information about the
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Figure 1.7: Tiles depicting the time-frequency localization of various expansion

functions.

signal. With this in mind, one approach to generating a set of expansion functions for

signal modeling is to start with a mother tile of small area and to derive a corresponding

family of tiles, each having the same area, by scaling the time and frequency widths by

inverse factors and allowing for shifts in time. Mathematically, this is given by

ga;b(t) =
1p
a
g

�
t� b

a

�
; (1.33)

where g(t) is the mother function. The continuous-time wavelet transform is based on

families of this nature; restricting the scales and time shifts to powers of two results in the

standard discrete-time wavelet transform. Expansion using such a set with functions with

variable scale leads to a multiresolution signal model, which is physically sensible given

the time-frequency tradeo�s discussed earlier.

Given a signal expansion in terms of a set of tiles, the signal can be readily mod-

i�ed by altering the underlying tiles. Time-shift, modulation, and scaling modi�cations

of tiles are depicted in Figure 1.8. One caveat to note is that synthesis di�culties may

arise if the tiles are modi�ed in such a way that the synthesis algorithm is not capable

of constructing the new tiles, i.e. if the new tiles are not in the signal model dictionary.

This occurs in basis expansions; for instance, in the case of critically sampled �lter banks,

arbitrary modi�cations of the subband signals yield undesirable aliasing artifacts. The en-

hancement of modi�cation capabilities is thus another motivation for using overcomplete

expansions instead of basis expansions.

In this framework of tiles, the interpretation is that each expansion function in

a decomposition analyzes the signal behavior in the time-frequency region indicated by

its tile. Given that an arbitrary signal may have energy anywhere in the time-frequency

plane, the objective of adaptive signal modeling is to decide where to place tiles to capture
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Figure 1.8: Modi�cation of time-frequency tiles: translation, modulation, and

scaling.

the signal energy. Tile-based interpretations of various time-frequency signal models are

discussed in the next section.

1.5.2 Tilings of the Time-Frequency Plane

Signal expansions can be interpreted in terms of time-frequency tiles. For in-

stance, a basis expansion for an N -dimensional signal can be visualized as a set of N

tiles that cover the time-frequency plane without any gaps or overlap. Examples of such

time-frequency tilings are given in Figure 1.9; in visualizing an actual expansion, each

tile is shaded to depict where the signal energy lies, i.e. to indicate the amplitude of the

corresponding expansion function.

As indicated in Figure 1.9, the tilings for Fourier and wavelet transforms have

regular structures; this equates to a certain simplicity in the computation of the corre-

sponding expansion. As discussed in Section 1.4.1, however, these basis expansions have

certain limitations for representing arbitrary signals. For that reason, it is of interest to

consider tilings with more arbitrary structure. This is the idea in best basis and adaptive

wavelet packet methods, where the best tiling for a particular signal is chosen; the best

basis from a dictionary of bases is picked, according to some metric [40, 41, 60, 66, 65].

The time-varying tiling depicted in Figure 1.9 is intended as an example of an

adaptive wavelet packet implemented with a signal-adaptive �lter bank. This approach

is suitable for a wide class of signals and allows for e�cient computation, but the tiling

is still restricted by the dyadic relationships between the scales, modulations, and time-

shifts. The lack of complete generality arises because the tile sets under consideration

cover the plane exactly; this captures all of the signal energy, but not necessarily in a
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Fourier transform, wavelet transform, and wavelet packet.



28

compact way. In the overcomplete case, overlapping tiles are admitted into the signal

decomposition; compact models can then be achieved by choosing a few such general tiles

that cover the regions in the time-frequency plane where the signal has signi�cant energy.

1.5.3 Quadratic Time-Frequency Representations

Quadratic time-frequency representations or bilinear expansions have received

considerable attention in the literature [83]. Fundamentally, such approaches are based

on the Wigner-Ville distribution (WVD):

WVDfxg(!; �) =
Z 1

�1
x

�
� +

t

2

�
x

�
� � t

2

�
e�j!tdt: (1.34)

Such representations provide improved resolution over linear expansions, but at the ex-

pense of the appearance of cross terms for signals with multiple components. For exam-

ple, for a signal that consists of a single linear chirp (sinusoid with linearly increasing

frequency), this behavior is clearly identi�able in the distribution; for a signal consisting

of two crossing chirps, the product in the integral yields cross terms that degrade the

readability of the time-frequency distribution [84, 85]. These cross-terms can be smoothed

out in various ways, but always with the countere�ect of decreasing the resolution of the

signal representation [2, 86, 87].

Cross-terms detract from the usefulness of a quadratic time-frequency represen-

tation. In some sense, the cross-terms result in a noncompact model; they are extraneous

elements in the representation that impede signal analysis. Even in cases where the cross-

terms are smoothed out, the loss of resolution corresponds to a loss of compaction, so this

problem with quadratic time-frequency representations is quite general. One approach

is to improve the resolution of a smoothed representation by a nonlinear post-processing

method referred to as reallocation or reassignment, in which the focus of the distribution

is successively re�ned [85, 88]. Another approach is to derive an atomic decomposition of

the signal, perhaps approximate, and then de�ne a time-frequency representation (TFR)

of the signal as a weighted sum of the time-frequency representations of the atoms [38]:

x[n] �
X
i

�igi[n] (1.35)

TFRfxg(!; �) =
X
i

j�ij2 WVDfgig(!; �): (1.36)

There are no cross-terms in distributions derived in this manner [38, 89]; thus, another

motivation for atomic time-frequency models is that they lead to clear visual descriptions of

signal behavior. Of course, if the atomic decomposition is erroneous, the visual description

will not be particularly useful.
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1.5.4 Granular Synthesis

Granular synthesis is a technique in computer music which involves accumulating

a large number of basic sonic components or grains to create a substantial acoustic event

[33]. This approach is based on a theory of sound and perception that was �rst proposed

by Gabor [72]; he suggested that any sound could be described using a quantum rep-

resentation where each acoustic quantum or grain corresponds to a local time-frequency

component of the sound. Such descriptions are psychoacoustically appropriate given the

time-frequency resolution tradeo�s and limitations observed in the auditory system.

In early e�orts in granular music synthesis, arti�cial sounds were composed by

combining thousands of parameterized grains [33]. Individual grains were generated ac-

cording to synthetic parameters describing both time-domain and frequency-domain char-

acteristics, for example time location, duration, envelope shape, and modulation. This

method was restricted to the synthesis of arti�cial sounds, however, because the repre-

sentation paradigm did not have an accompanying analysis capable of deriving granular

decompositions of existing natural sounds [78].

Simple analysis techniques for deriving grains from real sounds have been pro-

posed in the literature [76, 77]. The objective of such granulation approaches is to derive a

representation of natural sounds that enables modi�cations such as time-scaling or pitch-

shifting prior to resynthesis. The basic idea in these methods is to extract grains by apply-

ing time-domain windows to the signal. Each windowed portion of the signal is treated as

a grain, and parameterized by its window function and time location. These grains can be

repositioned in time or resampled in various ways to achieve desirable signal modi�cations

[76, 77]. Similar ideas have been explored in the speech processing community [56, 90].

Grains derived by the time-windowing process can be interpreted as signal-

dependent expansion functions. If the grains are chosen judiciously, e.g. to correspond

to pitch periods of a voiced sound, then the representation captures important signal

structures and can as a result be useful for both coding and modi�cation. Because of the

complicated time structure of natural sounds, however, grains derived in this manner are

generally di�cult to represent e�ciently and are thus not particularly applicable to signal

coding. Nevertheless, this method is of interest because of its modi�cation capabilities

and its underlying signal adaptivity.

The time-windowed signal components derived by granulation are disparate from

the fundamental acoustic quanta suggested by Gabor; time-windowing of the signal, while

e�ective for modi�cations, is not an appropriate analysis for Gabor's time-frequency rep-

resentation. With that as motivation, the three distinct signal models in this thesis are

interpreted as granulation approaches: the sinusoidal model, pitch-synchronous expan-

sions, and atomic models based on overcomplete time-frequency dictionaries can all be

viewed in this light. These models provide time-frequency grains for additive synthetic
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reconstruction of natural signals, and these grains can generally be thought of as tiles on

the time-frequency plane.

1.6 Overview

This thesis is concerned with signal models of the form given in Equation (1.1),

namely additive expansions. The models in Chapters 2 through 5 can be classi�ed as

parametric approaches. On the other hand, Chapter 6 discusses a method that would

be traditionally classi�ed as nonparametric but which actually demonstrates that the

distinction between the two types of models is arti�cial. A more detailed outline is given

below, followed by a discussion of the themes of the thesis.

1.6.1 Outline

The contents of this thesis are as follows. First, Chapter 2 discusses the sinu-

soidal model, in which the expansion functions are time-evolving sinusoids. This approach

is presented as an evolution of the nonparametric short-time Fourier transform into the

phase vocoder and �nally the fully parametric sinusoidal model; the chapter includes

detailed treatments of the STFT, analysis for the sinusoidal model, and methods for si-

nusoidal synthesis. Chapter 3 provides an interpretation of the sinusoidal model in terms

of time-frequency atoms, which motivates the consideration of multiresolution extensions

of the model for accurately representing localized signal behavior. Chapter 4 discusses

the sinusoidal analysis-synthesis residual and presents a perceptually motivated model for

the residual signal. Chapter 5 examines pitch-synchronous frameworks for both sinusoidal

models and wavelet transforms; the estimation of the pitch parameter is shown to provide

a useful avenue for improving the signal representation in both cases. In Chapter 6, over-

complete expansions are revisited; signal modeling is interpreted as an inverse problem

and connections between structured overcomplete expansions and parametric methods are

considered. The chapter discusses the matching pursuit algorithm for computing overcom-

plete expansions, and considers overcomplete dictionaries based on damped sinusoids, for

which expansions can be computed using simple recursive �lter banks. Finally, Chapter 7

reviews the results of the thesis and presents various concluding remarks about adaptive

signal models and related algorithms.

1.6.2 Themes

This thesis has a number of underlying and recurring themes. In a sense, this text

is about the relationships between these themes. The basic conceptual framework of this

thesis has been central to several preliminary presentations in the literature [91, 62], but in

this document the various issues are explored in greater detail; furthermore, considerable
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attention is given to review of fundamental background material. The themes of this thesis

are as follows.

Filter banks and multiresolution

Filter bank theory and design appear in several places in this thesis. Primarily,

the thesis deals with the interpretation of �lter banks as analysis-synthesis structures for

signal modeling. The connection between multirate �lter banks and multiresolution signal

modeling is explored.

Signal-adaptive representations

Each of the signal models or representations discussed in this thesis exhibits

signal adaptivity. In the sinusoidal and pitch-synchronous models, the decompositions are

signal-adaptive in that the expansion functions are generated based on data extracted from

the signal. In the overcomplete expansions, the models are adaptive in that the expansion

functions for the signal decomposition are chosen from the dictionary in a signal-dependent

fashion.

Parametric models

The expansion functions in the sinusoidal and pitch-synchronous models are gen-

erated based on parameters derived by the signal analysis. Such parametric expansions, as

discussed in Section 1.2, are useful for characterization, compression, and modi�cation of

signals. Overcomplete expansions can be similarly parametric in nature if the underlying

dictionary has a meaningful parametric structure. In such cases, the traditional distinc-

tion between parametric and nonparametric methods evaporates, and the overcomplete

expansion provides a highly useful signal model.

Nonlinear analysis

In each model, the model estimation is inherently nonlinear. The sinusoidal and

pitch-synchronous models rely on nonlinear parameter estimation and interpolation. The

matching pursuit is inherently nonlinear in the way it selects the expansion functions from

the overcomplete dictionary; it overcomes the inadequacies of linear methods such as the

SVD while providing for successive re�nement and compact sparse approximations. It

has been argued that overcompleteness, when coupled with a nonlinear analysis, yields a

signal-adaptive representation, so these notions are tightly coupled [92, 39].
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Atomic models

Finally, all of the models can be interpreted in terms of localized time-frequency

atoms or grains. The notion of time-frequency decompositions has been discussed at length

in several sections of this introduction, and will continue to play a major role throughout

the remainder of this thesis.
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Chapter 2

Sinusoidal Modeling

The sinusoidal model has been widely applied to speech coding and processing

[57, 93, 94, 95, 96, 97, 98, 99] and audio analysis{modi�cation{synthesis [36, 100, 101,

102, 103, 104, 105]. This chapter discusses the sinusoidal model, including analysis and

synthesis techniques, reconstruction artifacts, and modi�cation capabilities enabled by the

parametric nature of the model. Time-domain and frequency-domain synthesis methods

are examined. A thorough review of the short-time Fourier transform is included as an

introduction to the discussion of the sinusoidal model.

2.1 The Sinusoidal Signal Model

A variety of sinusoidal modeling techniques have been explored in the literature

[106, 96, 95, 98, 57, 36, 102, 101, 97]. These methods share fundamental common points,

but also have substantial but sometimes subtle di�erences. For the sake of simplicity,

this treatment adheres primarily to the approaches presented in the early literature on

sinusoidal modeling [57, 36], and not on the many variations that have since been proposed

[103, 97, 98]; comments on some other techniques such as [101, 107] are indeed included,

but these inclusions are limited to techniques that are directly concerned with the modeling

issues at hand. It should be noted that the issues to be discussed herein apply to sinusoidal

modeling in general; their relevance is not limited by the adherence to the particular

methods of [57, 36]. Also, note that the method of [102] is discussed at length in the

section on frequency-domain synthesis, where various re�nements are proposed.

2.1.1 The Sum-of-Partials Model

In sinusoidal modeling, a discrete-time signal x[n] is modeled as a sum of evolving

sinusoids called partials:

x[n] � x̂[n] =
Q[n]X
q=1

pq[n] =
Q[n]X
q=1

Aq[n] cos�q [n]; (2.1)
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where Q[n] is the number of partials at time n. The q-th partial pq[n] has time-varying

amplitude Aq[n] and total phase �q [n], which describes both its frequency evolution and

phase o�set. The additive components in the model are thus simply parameterized by

amplitude and frequency functions or tracks. These tracks are assumed to vary on a time

scale substantially longer than the sampling period, meaning that the parameter tracks

can be reliably estimated at a subsampled rate. The assumption of slow variation leads

to a compaction in the representation in the same way that downsampling of bandlimited

signals leads to data reduction without loss of information.

The model in Equation (2.1) is reminiscent of the familiar Fourier series; the

notion in Fourier series methods is that a periodic signal can be exactly represented by

a sum of �xed harmonically related sinusoids. Purely periodic signals, however, are a

mathematical abstract. Real-world oscillatory signals such as a musical note tend to

be pseudo-periodic; they exhibit variations from period to period. The sinusoidal model

is thus useful for modeling natural signals since it generalizes the Fourier series in the

sense that the constituent sinusoids are allowed to evolve in time according to the signal

behavior. Of course, the sinusoidal model is not limited to applications involving pseudo-

periodic signals; models tailored speci�cally for pseudo-periodic signals will be discussed

in Chapter 5.

Fundamentally, the sinusoidal model is useful because the parameters capture

musically salient time-frequency characteristics such as spectral shape, harmonic struc-

ture, and loudness. Since it describes the primary musical information about the signal

in a simple, compact form, the parameterization provides not only a reasonable coding

representation but also a framework for carrying out desirable modi�cations such as pitch-

shifting, time-scaling, and a wide variety of spectral transformations such as cross-synthesis

[93, 94, 36, 102, 103, 108].

2.1.2 Deterministic-plus-Stochastic Decomposition

The approximation symbol in Equation (2.1) is included to imply that the sum-

of-partials model does not provide an exact reconstruction of the signal. Since a sum

of slowly-varying sinusoids is ine�ective for modeling either impulsive events or highly

uncorrelated noise, the sinusoidal model is not well-suited for representing broadband

processes. As a result, the sinusoidal analysis-synthesis residual consists of such processes,

which correspond to musically important signal features such as the colored breath noise

in a ute sound or the impulsive mallet strikes of a marimba. Since these features are

important for high-�delity synthesis, an additional component is often included in the

signal model to account for broadband processes:

x[n] = x̂[n] + r[n] = d[n] + s[n]: (2.2)
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The resultant deterministic-plus-stochastic decomposition was introduced in [36, 100] and

has been discussed in several later e�orts [109, 110]. Using this terminology brings up

salient issues about the theoretical distinction between deterministic and stochastic pro-

cesses; to avoid such pitfalls, the following analogy is drawn: the deterministic part of the

decomposition is likened to the sum-of-partials of Equation (2.1) and the stochastic part

is similarly likened to the residual of the sinusoidal analysis-synthesis process, leading to a

reconstruction-plus-residual decomposition. This method can then be considered in light

of the conceptual framework of Chapter 1. The sinusoidal analysis-synthesis is described

in Sections 2.3 to 2.6 from that, the characteristics of the residual are inferred, which leads

to the residual modeling approach of Chapter 4.

2.2 The Phase Vocoder

Sinusoidal modeling can be viewed in a historical context as an evolution of

short-time Fourier transform (STFT) and phase vocoder techniques. These methods and

variations were developed and explored in a number of references [111, 112, 113, 114, 115,

116, 117, 118, 119]. In this treatment, the various ideas are presented in a progression

which leads from the STFT to the phase vocoder; the shortcomings of these approaches

serve to motivate the general sinusoidal model.

2.2.1 The Short-Time Fourier Transform

In this section, the STFT is de�ned and interpreted; it is shown that slightly

revising the traditional de�nition leads to an alternative �lter bank interpretation of the

STFT that is appropriate for signal modeling. Perfect reconstruction constraints for such

STFT �lter banks are derived. In the literature, z-transform and matrix representations

have been shown to be useful in analyzing the properties of such �lter banks [2, 20, 120].

Here, for the sake of brevity, these methods are not explored; the STFT �lter banks are

treated using time-domain considerations.

De�nition of the short-time Fourier transform

The short-time Fourier transform was described conceptually in Sections 1.4.1

and 1.5.1; basically, the goal of the STFT is to derive a time-localized representation of

the frequency-domain behavior of a signal. The STFT is carried out by applying a sliding

time window to the signal; this process isolates time-localized regions of the signal, which

are each then analyzed using a discrete Fourier transform (DFT). Mathematically, this is

given by

X [k; n] =
N�1X
m=0

w[m]x[n+m]e�j!km; (2.3)
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where the DFT is of size K, meaning that !k = 2�k=K, and w[m] is a time-domain

window with zero value outside the interval [0; N� 1]; windows with in�nite time support

have been discussed in the literature, but these will not be considered here [116]. In the

early literature on time-frequency transforms, signal analysis-synthesis based on Gaussian

windows was proposed by Gabor [71, 72]; given this historical foundation, the STFT is

sometimes referred to as a Gabor transform [2].

The transform in Equation (2.3) can be expressed in a subsampled form which

will be useful later:

X(k; i) =
N�1X
m=0

w[m]x[m+ iL]e�j!km; (2.4)

where L is the analysis stride, the time distance between successive applications of the

window to the data. The notation is as follows: brackets around the arguments are used to

indicate a nonsubsampled STFT such as in X [k; n], while parentheses are used to indicate

subsampling as in X(k; i), which is used in lieu of X [k; iL] for the sake of neatness.

Admittedly, the notation X(k; i) is somewhat loose in that it does not incorporate the

hop size, but to account for this di�culty the hop size of any subsampled STFTs under

consideration will be indicated explicitly in the text. The subsampled form of the STFT

is of interest since it allows for a reduction in the computational cost of the signal analysis

and in the amount of data in the representation; it also a�ects the properties of the model

and the reconstruction as will be demonstrated.

The de�nition of the STFT given in Equations (2.3) and (2.4) di�er from that in

traditional references on the STFT [111, 116, 115, 112], where the transform is expressed

as

~X[k; n] =
1X

m=�1
~w[n�m]x[m]e�j!km =

n+N�1X
m=n

~w[n�m]x[m]e�j!km; (2.5)

or in subsampled form as

~X(k; i) =
iL+N�1X
m=iL

~w[iL�m]x[m]e�j!km; (2.6)

where ~w[m] is again a time-localized window. The range of m in the sum, and hence the

support of the window ~w[n], is de�ned here in such a way that the transforms X [k; n]

and ~X[k; n] refer to the same N -point segment of the signal and can thus be compared;

it should be noted that in some treatments the STFT is expressed as in Equation (2.5)

but without time-reversal of the window [20]. It will be shown that this reversal of the

time index a�ects the interpretation of the transform as a �lter bank; more importantly,

however, the interpretation is a�ected by the time reference of the expansion functions.

This latter issue is discussed below.
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The time reference of the STFT

In the formulation of the STFT in Equations (2.5) and (2.6), the expansion func-

tions are sinusoids whose time reference is in some sense absolute; for di�erent windowed

signal segments, the expansion functions have the same time reference, m = 0, the time

origin of the signal x[m]. On the other hand, in Equations (2.3) and (2.4) the time origin of

the expansion functions is instead the starting point of the signal segment in question; the

phases of the expansion coe�cients for a segment refer to the time start of that particular

segment. Note that the STFT can also be formulated such that the phase is referenced to

the center of the time window, which is desirable in some cases [121]; this referencing is

a straightforward extension that will play a role in sinusoidal modeling, but such phase-

centering will not be used in the mathematical development of the STFT because of the

slight complications it introduces.

The two formulations of the STFT have di�erent interpretations with regards to

signal modeling; this di�erence can be seen by relating the two STFT de�nitions [1, 112]:

~X[k; n] =
n+N�1X
m=n

~w[n�m]x[m]e�j!km

=
N�1X
m=0

~w[�m]x[n+m]e�j!k(m+n) (change of index)

= e�j!kn
N�1X
m=0

~w[�m]x[n+m]e�j!km

= e�j!kn
N�1X
m=0

w[m]x[n+m]e�j!km ( ~w[m] = w[�m])
~X[k; n] = e�j!knX [k; n]:

(2.7)

This formulation leads to two simple relationships:

X [k; n] = ~X[k; n]ej!kn (2.8)

jX [k; n]j = j ~X[k; n]j: (2.9)

The �rst expression a�ects the interpretation of the STFT as a �lter bank; the time signal

X [k; n] is a modulated version of the baseband envelope signal ~X[k; n], so the equivalent

�lter banks for the two cases will have di�erent structures. The second expression plays a

role in the interpretation of the STFT as a series of time-localized spectra; the short-time

magnitude spectra are the same in either case. These relations have di�erent consequences

for sinusoidal modeling. First, magnitude considerations have no bearing because of the

equivalence in Equation (2.9). On the other hand, because an estimate of the local phase

of a partial is important for building a localized model of the original signal, Equation

(2.8) indicates that X [k; n] is a more useful representation for sinusoidal modeling than
~X[k; n]. This will become more apparent in Sections 2.3 and 2.4.
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Figure 2.1: Interpretations of the short-time Fourier transform as a series of time-

localized spectra (vertical) and as a bank of bandpass �lters (horizontal).

Interpretations of the STFT

In [111, 1] and other traditional treatments of the STFT, two interpretations

are considered. First, the STFT can be viewed as a series of time-localized spectra;

notationally, this corresponds to interpreting X [k; n] as a function of frequency k for a

�xed n. Given that the derivation of a time-localized spectral representation was indeed

the initial motivation of the STFT, the novelty lies in the second interpretation, where

the STFT is viewed as a bank of bandpass �lters. Here, X [k; n] is thought of as a function

of time n for a �xed frequency k; it is simply the output of the k-th �lter in the STFT

�lter bank. A depiction of these interpretations based on the time-frequency tiling of the

STFT is given in Figure 2.1; indeed, the notion of a tiling uni�es the two perspectives.

The two interpretations are discussed in the following sections; as will be seen,

each interpretation provides a framework for signal reconstruction and each framework

yields a perfect reconstruction constraint. In the traditional formulation of the STFT,

the reconstruction constraints are di�erent for the two interpretations, but can be related

by a duality argument [111]. In the phase-localized formulation of Equations (2.3) and

(2.4), the two frameworks immediately yield the same perfect reconstruction condition;

this is not particularly surprising since the representation of the STFT as a time-frequency

tiling suggests that a distinction between the two interpretations is indeed arti�cial. The

mathematical details related to these issues are developed below; also, the di�erences in

the signal models corresponding to the two STFT formulations are discussed.
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The STFT as a series of time-localized spectra

If the STFT is interpreted as a series of time-localized spectra, the accompanying

reconstruction framework involves taking an inverse DFT (IDFT) of each local spectrum,

and then connecting the resulting signal frames to synthesize the signal. If K � N , the

IDFT simply returns the windowed signal segment:

IDFTfX(k; i)g = w[m]x[m+ iL] for 0 � m � N � 1

= w[n� iL]x[n] for iL � n � iL+N � 1;
(2.10)

where the second step is carried out to simplify the upcoming formulation. Regarding the

size of the DFT, when K > N the DFT is oversampled, which results in a time-limited

interpolation of the spectrum, which is analogous to the bandlimited interpolation that

is characteristic of time-domain oversampling. The condition K � N is imposed at this

point to simplify the formulation; time-domain aliasing is introduced in the undersampled

case K < N , meaning that the formulation must be revised to provide for time-domain

aliasing cancellation [12]. The issue of time-domain aliasing cancellation is discussed in

Section 2.2.2.

If the DFT is large enough that no aliasing occurs, reconstruction can be simply

carried out by an overlap-add (OLA) process, possibly with a synthesis window, which

will be denoted by v[n] [116, 115, 112]:

x̂[n] =
X
i

w[n� iL]v[n� iL]x[n]: (2.11)

Perfect reconstruction is thus achieved if the windows w[n] and v[n] satisfy the constraint

X
i

w[n� iL]v[n� iL] = 1 (2.12)

or some other constant. This constraint is similar to but somewhat more general than the

perfect reconstruction constraints given in [1, 111, 116, 115, 112]. Note that throughout

this section the analysis and synthesis windows will both be assumed to be real-valued.

In cases where v[n] is not explicitly speci�ed, the synthesis window is equivalently

a rectangular window covering the same time span as w[n]. For a rectangular synthesis

window, the constraint in Equation (2.12) becomes

X
i

w[n� iL] = 1: (2.13)

The construction of windows with this property has been explored in the literature; a

variety of perfect reconstruction windows have been proposed, for example rectangular and

triangular windows and the Blackman-Harris family, which includes the familiar Hanning

and Hamming windows [122, 123]. These are also referred to as windows with the overlap-

add property, and will be denoted by wPR[n] in the following derivations. Note that any
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window function satis�es the condition in Equation (2.13) in the nonsubsampled case

L = 1; note also that in the case L = N the only window that has the overlap-add

property is a rectangular window of length N . Functions that satisfy Equation (2.13) are

also of interest for digital communication; the Nyquist criterion for avoiding intersymbol

interference corresponds to a frequency-domain overlap-add property [124].

Windows that satisfy Equation (2.12) can be designed in a number of ways.

The methods to be discussed rely on using familiar windows that satisfy (2.13) to jointly

construct analysis and synthesis windows which satisfy (2.12); various analysis-synthesis

window pairs designed in this way exhibit computational and modeling advantages [116,

115, 112, 102]. In one design approach, complementary powers of a perfect reconstruction

window provide the analysis and synthesis windows:

X
i

wPR[n� iL] = 1 =)
X
i

(wPR[n� iL])c (wPR[n� iL])1�c = 1 (2.14)

=)
8<
:

Analysis window w[n] = (wPR[n])
c

Synthesis window v[n] = (wPR[n])
1�c :

(2.15)

The case c = 1
2 , where the analysis and synthesis windows are equivalent, has been of

some interest because of its symmetry. A second approach is as follows; given a perfect

reconstruction window wPR[n] and an arbitrary window b[n] that is strictly nonzero over

the time support of wPR[n], the overlap-add property can be rephrased as follows:

X
i

wPR[n� iL] = 1 =)
X
i

wPR[n� iL]

�
b[n� iL]

b[n� iL]

�
= 1

=)
X
i

b[n� iL]

�
wPR[n� iL]

b[n� iL]

�
= 1

(2.16)

=)

8>>><
>>>:

Analysis window w[n] = b[n]

Synthesis window v[n] =
wPR[n]

b[n]
:

(2.17)

Noting the form of the synthesis window and the �nal constraint in Equation (2.16), the

restriction that b[n] be strictly nonzero can be relaxed slightly: b[n] can be zero where

wPR[n] is also zero; if the synthesis window v[n] is de�ned to be zero at those points, the

perfect reconstruction condition is met. This latter design method will come into play in

the frequency-domain sinusoidal synthesizer to be discussed in Section 2.5.

The STFT as a heterodyne �lter bank

In [111, 115, 116, 20], where the STFT is de�ned as in Equation (2.5) and the

expansion functions have an absolute time reference, the transform can be interpreted as
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a �lter bank with a heterodyne structure. Starting with Equation (2.5),

~X[k; n] =
n+N�1X
m=n

~w[n�m]x[m]e�j!km; (2.18)

the substitution

xk [m] = x[m]e�j!km (2.19)

yields an expression that is immediately recognizable as a convolution:

~X[k; n] =
n+N�1X
m=n

~w[n�m]xk[m]: (2.20)

The �lter ~w[n] is typically lowpass; it thus extracts the baseband spectrum of xk[m].

According to the modulation relationship de�ned in Equation (2.19), xk[m] is a version

of x[m] that has been modulated down by !k ; thus, the baseband spectrum of xk[m]

corresponds to the spectrum of x[m] in the neighborhood of frequency !k . In this way, the

k-th branch of the STFT �lter bank extracts information about the signal in a frequency

band around !k = 2�k=K.

In the time domain, ~X[k; n] can be interpreted as the amplitude envelope of a

sinusoid with frequency !k . This perspective leads to the framework for signal recon-

struction based on the �lter bank interpretation of the STFT; this framework is known

as the �lter bank summation (FBS) method. The idea is straightforward: the signal can

be reconstructed by modulating each of these envelopes to the appropriate frequency and

summing the resulting signals. This construction is given by

x̂[n] =
X
k

~X[k; n]ej!kn; (2.21)

which can be manipulated to yield perfect reconstruction conditions [1, 111]; this non-

subsampled case is not very general, however, so these constraints will not be derived

here. Rather, Equation (2.21) is given to indicate the similarity of the STFT signal model

and the sinusoidal model. Each of the components in the sum of Equation (2.21) can

be likened to a partial; the STFT ~X[k; n] is then the time-varying amplitude of the k-th

partial. Note that in the phase-localized STFT formulated in Equation (2.3), the corre-

sponding reconstruction formula is

x̂[n] =
X
k

X [k; n]; (2.22)

where the STFT X [k; n] corresponds to a partial at frequency !k rather than its amplitude

envelope.

Figure 2.2 depicts one branch of a heterodyne STFT �lter bank and provides an

equivalent structure based on modulated �lters [20]. Mathematically, the equivalence is
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Figure 2.2: One channel of a heterodyne �lter bank for evaluating the STFT ~X[k; n]

de�ned in Equation (2.5). The two structures are equivalent as indicated in Equation

(2.23). The STFT X[k;n] as de�ned in Equation (2.3) is an intermediate signal in

the second structure.

straightforward:

~X1[k; n] =
X
m

~w[n�m]
�
x[m]e�j!km

�
= e�j!kn

X
m

�
~w[n�m]ej!k(n�m)

�
x[m] = ~X2[k; n]:

(2.23)

Given the relationship in Equation (2.8), namely that X [k; n] = ~X[k; n]ej!kn, it is

clear that X [k; n] is the immediate output of the modulated �lter ~w[n]ej!kn without the

ensuing modulation to baseband. This observation, which is indicated in Figure 2.2, serves

as motivation for interpreting the STFT of Equation (2.3) as a modulated �lter bank.

The STFT as a modulated �lter bank

Modulated �lter banks, in which the �lters are modulated versions of a prototype

lowpass �lter, have been of considerable interest in the recent literature [20, 2, 4]. In part,

this interest has stemmed from the realization that the STFT can be implemented with a

modulated �lter bank structure. Indeed, the STFT of Equation (2.3) corresponds exactly

to a modulated �lter bank of the general form shown in Figure 2.3. This �lter bank

is markedly di�erent from the heterodyne structure in that the subband signals are not

amplitude envelopes but are actual signal components that can be likened to partials,

which will prove conceptually useful in extending the STFT to the general sinusoidal

model.

The modulated �lter bank of Figure 2.3 implements an STFT analysis-synthesis
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Figure 2.3: Interpretation of the short-time Fourier transform as a modulated �lter

bank. The subband signals are labeled to match the formulation in the text.

if the �lters are de�ned as

hk [n] = w[�n]ej!kn (2.24)

gk[n] = v[n]ej!kn: (2.25)

Note the time-reversal of the window w[n] in the de�nition of the analysis �lter hk[n]; the

time-reversal appears here because the window in Equation (2.3) is not thought of in a

time-reversed fashion as in Equation (2.5). Using the notation in Figure 2.3, the subband

signals in the STFT �lter bank are given by

xk[n] =
X
m

hk[m]x[n�m] (2.26)

=
X
m

w[�m]x[n�m]ej!km (2.27)

=
X
m

w[m]x[n+m]e�j!km (2.28)

= X [k; n] (2.29)

yk [i] = xk [iL] (2.30)

= X(k; i) (2.31)

zk[n] = xk [n]
X
i

�[n� iL]; (2.32)

where the last expression simply describes the e�ect of successive downsampling and up-

sampling on the signal xk[n]. Again, note that the subband signals are essentially the



44

partials of the signal model, and are not amplitude envelopes as in the heterodyne struc-

ture of the traditional STFT �lter bank.

In the framework of [111], namely the STFT as given in Equation (2.5), the

overlap-add and �lter bank summation synthesis methods lead to di�erent perfect recon-

struction constraints which can be interpreted as duals. For the phase-localized de�nition

of the STFT, on the other hand, the overlap-add and �lter bank methods lead directly to

the same constraint:

x̂[n] =
K�1X
k=0

x̂k[n] (2.33)

=
X
k

(zk [n] � gk[n]) (2.34)

=
X
k

X
l

gk[l]zk[n� l] (2.35)

=
X
k

X
l

v[l]ej!klxk[n� l]
X
i

�[n� l � iL] (2.36)

=
X
k

X
l

X
i

X
m

v[l]w[m]x[n� l+m]ej!k(l�m)�[n� l � iL]: (2.37)

For !k = 2�k=K, the summation over the frequency index k can be expressed as

K�1X
k=0

ej!k(l�m) = K
X
r

�[l�m+ rK]: (2.38)

If jl �mj < K for all possible combinations of l and m, then the only relevant term in

the right-hand sum is for r = 0, in which case the equation simpli�es to

K�1X
k=0

ej!k(l�m) = K�[l�m]: (2.39)

The restriction on the values of l and m corresponds to the constraint K � N discussed in

the treatment of overlap-add synthesis; namely, time-domain aliasing is introduced if l and

m do not meet this criterion. Further consideration of time-domain aliasing is deferred

until Section 2.2.2.

As in the discussion of OLA synthesis, it is assumed at this point that time-

domain aliasing is not introduced. Then, the FBS reconstruction formula can be rewritten

as

x̂[n] = K
X
l

X
i

v[l]�[n� l� iL]
X
m

w[m]x[n� l+m]�[l�m] (2.40)

= Kx[n]
X
l

X
i

w[l]v[l]�[n� l� iL] (2.41)

= Kx[n]
X
i

w[n� iL]v[n� iL]: (2.42)
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The design constraint for perfect reconstruction, within a gain term, is then exactly the

same as in the overlap-add synthesis approach:X
i

w[n� iL]v[n� iL] = 1: (2.43)

Because of this equivalence, the analysis-synthesis window pairs described earlier can be

used as prototype functions for perfect reconstruction modulated �lter banks.

Note that if L > 1, the synthesis �lter bank interpolates the subband signals. In

the nonsubsampled case L = 1, when no interpolation is needed, perfect reconstruction

can be achieved with any analysis-synthesis window pair for which
P

n w[n]v[n] 6= 0. For

example, the synthesis can be performed with the trivial �lter bank gk[n] = �[n] if the

analysis window satis�es the constraintX
i

w[n� i] = 1; (2.44)

which indeed holds for any window, within a gain term. The generality of this constraint

is an example of the design exibility that results from using oversampled or overcomplete

approaches [70, 64, 125]. Reiterating the modeling implications, the STFT signal model

is

x[n] =
X
k

X [k; n] =
X
k

~X [k; n]ej!kn: (2.45)

In the modulated �lter bank case, the subband signals can be viewed as the partials of

the sinusoidal model; in the heterodyne case, the subband signals are instead lowpass

amplitude envelopes of the partials. Furthermore, the phase of X [k; n] is the phase of the

k-th partial whereas the phase of ~X[k; n] is the phase of the envelope of the k-th partial; the

former phase measurement is needed for the sinusoidal model. In the next section, it will

be shown that rigid association of the subband signals to partials is basically inappropriate

for either case; the modulated STFT analysis �lter bank, however, more readily provides

the information necessary to derive a generalized sinusoidal signal model.

2.2.2 Limitations of the STFT and Parametric Extensions

The interpretation of the STFT as a modulated �lter bank leads to a variety

of modeling implications. These issues in some sense revolve around the nonparametric

representation of the signal in terms of subbands and the use of a rigid �lter bank for

synthesis. This section deals with the limitations of the STFT; the considerations motivate

parametric extensions of the STFT that overcome some of these limitations.

Partial tracking

The most immediate limitation of the short-time Fourier transform results from

its �xed structure. A sinusoid with time-varying frequency will move across bands; this
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Figure 2.4: Reconstructed subband signals in an nonsubsampled STFT �lter bank

model of a chirp signal. The signals x̂k[n] correspond to those labeled in Figure 2.3

for k = f1; 2; 3; 4g. In the simulation, N = 128, K = 128, and L = 1; w[n] and v[n]

are square-root Hanning windows.

evolution leads to delocalization of the representation and a noncompact model. Consider

the example shown in Figure 2.4, in which a sinusoid of linearly increasing frequency,

i.e. a linear chirp, is modeled by a nonsubsampled STFT �lter bank where the analysis

and synthesis �lter prototypes are both square-root Hanning windows (c = 1
2). The

parameters of the STFT are K = 128, L = 1, and N = 64; the chirp frequency starts at

!0 = 2�=K and increases by that amount every 250 samples.

Figure 2.4 shows the real parts of the reconstructed subband signals for bands

k = 1; 2; 3; 4. It is necessary to consider the real parts for the following reason: the subband

signals in the STFT are complex-valued as a result of the complex modulation of the �lters.

For real signals, the STFT yields a conjugate symmetric representation like the underlying

DFT; each of these subband signals has a conjugate version. This observation motivates

cosine-modulated �lter banks where the prototype �lters are modulated with a real cosine

instead of a complex sinusoid. Then, the subband signals are real-valued, which is certainly

desirable in some cases; here, however, it is problematic since the phase provided by the
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complex �lter bank is important for sinusoidal modeling as will be seen. While cosine-

modulated �lter banks have interesting and signi�cant properties [2, 20, 4, 12, 59], they

are an o�shoot of the progression of ideas that leads to the sinusoidal model and will not

be considered in depth here because of this phase problem.

Returning to the example of Figure 2.4, it is clear that the subbands of the

�xed �lter bank do not provide a compact representation of the chirp signal. As the chirp

evolves in time, it moves across the bands of the �lter bank, and as a result the STFT does

not identify this as a single evolving sinusoid but instead as a conglomeration of short-lived

components, i.e. the subband signals shown in Figure 2.4. Whereas this may seem useful in

that it carries out a granulation of the chirp signal (Section 1.5.4), inspection of the signal

components show that the subband grains are not well-localized in time; note that the

transients in the original signal are manifested in all of the subband signals as pre-echoes.

Figure 2.5 shows the model of the same chirp signal using a subsampled STFT �lter bank

with L = 64. This example is perhaps more practical than the nonsubsampled case in that

there is much less data in the representation, but this practicality comes at the cost of more

substantial localization problems in the subbands. Perfect reconstruction can be achieved

in this case; the various artifacts cancel in the synthesis. The signal decomposition,

however, is virtually useless for modi�cations because of these delocalization artifacts;

if the subbands are modi�ed, e.g. quantized, the subband artifacts will not be properly

cancelled and will lead to artifacts in the �nal synthesis.

In pseudo-periodic musical signals, the frequencies of the harmonics vary as the

pitch evolves in time; it is intuitively desirable that the sum-of-partials model in such cases

should be an aggregation of chirps whose frequencies are coupled while changing in time

in a complex way. In this case, unlike the single chirp case, all of the STFT �lter bank

subbands will generally have signi�cant energy throughout the duration of the signal, so

inspection of the subbands will not necessarily indicate that the various partials are moving

across the bands. When all of the subbands have signi�cant energy, it may seem reasonable

to interpret the subbands as the partials of the sinusoidal model as has been discussed;

this perspective, however, is in contention with the physical foundation of the natural

signal. The generating mechanism for a signal whose harmonic structure varies in time

is a system with a physical parameter, such as a string length, that is correspondingly

time-varying, and a meaningful representation should capture this foundation. Rather

than imposing structure on the partials by restricting them to exist within subbands as in

the STFT model, the time-frequency evolution of the partials should instead be tracked.

As will be seen, this tracking e�ort is what makes the sinusoidal model fundamentally

signal-adaptive.

One approach to the problem of partial tracking in an STFT �lter bank is to

make the �lter bank pitch-adaptive so that the subbands do correspond to physically

reasonable partials; in that method, which was considered in a preliminary fashion in
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Figure 2.5: Reconstructed subband signals in a subsampled STFT �lter bank model

of a chirp signal. The signals x̂k[n] correspond to those labeled in Figure 2.3 for

k = f1; 2; 3; 4g. In the simulation, N = 128, K = 128, and L = 64; w[n] and v[n] are

square-root Hanning windows.
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[126], signal adaptivity improves the model. A pitch-adaptive �lter bank, however, does

not account for the more general case of signals composed of nonharmonic partials with

unrelated frequency evolution behavior, for instance a percussive sound such as a cymbal

clash. The intent of modeling arbitrary signals necessitates using a more general model.

Time-domain aliasing cancellation

Time-domain aliasing was mentioned in the discussions of both the overlap-add

and the �lter bank summation synthesis methods; in those treatments, it was assumed

thatK was large enough that time-domain aliasing was not introduced. In this section, the

issue of time-domain aliasing is explored; the treatment leads to general perfect reconstruc-

tion constraints for modulated �lter banks and various implications for signal modeling.

This issue is discussed here more for the sake of completeness than as a prerequisite for

the development of the general sinusoidal model. Essentially, time-domain aliasing cancel-

lation is a �x that allows for perfect reconstruction despite a lack in frequency resolution;

with this in mind, the importance of frequency resolution in sinusoidal modeling implies

that STFT �lter banks that incorporate time-domain aliasing cancellation will not be of

interest in future considerations.

For a signal a[n] of length N on [0; N � 1], application of a size K DFT followed

by a size K IDFT corresponds to

â[n] =
1

K

K�1X
k=0

(
N�1X
m=0

a[m]e�j2�km=K

)
ej2�kn=K (2.46)

=
1

K

N�1X
m=0

a[m]
K�1X
k=0

ej2�k(n�m)=K : (2.47)

Using the simpli�cation for the sum over k given in Equation (2.38) yields

â[n] =
N�1X
m=0

a[m]
1X

r=�1
�[n�m+ rK] (2.48)

=
X
r

a[n+ rK]; (2.49)

where the r values in the sum of the last expression correspond to values of n + rK that

fall within the span of the signal, namely

0 � n + rK � N � 1 for 0 � n � N � 1: (2.50)

This formulation explains the condition on K imposed in the earlier treatments; if K � N ,

time-domain aliasing is not introduced because only the r = 0 term contributes to the

reconstruction. On the other hand, if K < N , the signal is aliased in the time domain.

Fundamentally, this aliasing is a result of insu�cient spectral sampling of the continuous
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function A(ej!), the discrete-time Fourier transform (DTFT) of a[n], and is thus analogous

to the frequency-domain aliasing that occurs when a continuous time-domain signal is

sampled below the Nyquist rate. The DTFT, the DFT, and spectral sampling are discussed

further in Section 2.5.1.

The e�ect of time-domain aliasing on the perfect reconstruction condition can be

readily formalized; the following derivation uses the overlap-add synthesis framework, but

the same condition results in the �lter bank summation approach, within a gain factor of

K. For the signal segment

ai[n] = w[n� iL]x[n]; (2.51)

the reconstructed version of the segment is given by

âi[n] =
X
r

ai[n+ rK] =
X
r

w[n+ rK � iL]x[n+ rK]: (2.52)

The OLA synthesis of the signal, with synthesis window v[n], is given by

x̂[n] =
X
i

v[n� iL]âi[n]: (2.53)

Substituting for âi[n] and changing the order of the sums yields

x̂[n] =
X
r

x[n+ rK]
X
i

v[n� iL]w[n+ rK � iL]: (2.54)

If x̂[n] = x[n] is to hold, every term but r = 0 must be cancelled in the other sum; the

perfect reconstruction constraint is thus

X
i

v[n� iL]w[n+ rK � iL] = �[r]: (2.55)

In the nonsubsampled case with v[n] = �[n], this simpli�es to

w[rK] = �[r]; (2.56)

which is reminiscent of the constraint for designing interpolation �lters [116, 127]. Note

that since the time index is the start of the window in this treatment, the most appropriate

synthesis window is actually given by v[n] = �[n � n0], where n0 corresponds to the

middle of the analysis window. The �nal constraint on the analysis window is then w[n0+

rK] = �[r], which is satis�ed by any function with zeros at n0 + rK for all r 6= 0 and

a nonzero value at n0, which can be scaled to unity for gain compensation. A useful

class of windows that meet this constraint can be constructed by multiplying a perfect

reconstruction window by an appropriate sinc function. As mentioned earlier, perfect

reconstruction windows can be virtually arbitrary in the nonsubsampled case; here, the

formulation is most appealing if the perfect reconstruction windows under consideration
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are those that apply to subsampled cases. This class of aliasing cancellation windows are

given by

w[n] = wPR[n]
sin [�(n� n0)=K]

�(n� n0)
; (2.57)

where the sinc function, as written, will introduce a gain of 1=K. The frequency response

of the resultant window is the spectrum of wPR[n] convolved with an ideal lowpass �lter

with cuto� frequency �=K; this convolution relationship implies that w[n] is a broader

lowpass �lter than wPR[n], which corroborates the previous statement that time-domain

aliasing cancellation and lack of frequency resolution are coupled.

As indicated above, the design of time-domain aliasing cancellation windows in

the subsampled case is more restricted than in the nonsubsampled case; in other words,

there is limited freedom in the design of subsampled STFT �lter banks that employ

time-domain aliasing cancellation. The subsampling limits the design possibilities since it

introduces frequency-domain aliasing, the cancellation of which is an underlying principle

in the equivalent constraints of Equations (2.12) and (2.43), and is indeed part of the

general constraint given above in Equation (2.55). The critically sampled case L = K

is of special interest since the representation and the original signal intrinsically contain

the same amount of data. For critical sampling, however, it can be shown that the only

FIR solutions correspond to windows with N = K nonzero coe�cients [2, 120]. In the

straightforward solution of this form, the N nonzero coe�cients are all in the interval

[0; N � 1]. Intuitively, there are no solutions of this form for N < K since gaps would

result in the window overlap and various regions of the signal would simply be missed

in the analysis-synthesis. On the other hand, the reason that there are no solutions for

N > K is less intuitive; this result is proved in [2, 120]. In the critically sampled case,

then, the STFT in e�ect implements a block transform with block size N ; quantization

then leads to discontinuities at the block boundaries, which results in undesirable frame

rate artifacts in audio and blockiness in images. Furthermore, pre-echo distortion occurs in

the reconstruction where the original signal has transient behavior; pre-echo is a common

problem in near-perfect reconstruction signal models such as �lter banks with subband

quantization [7].

The requirement that N = K = L in the critically sampled case means that

there are no critically sampled perfect reconstruction STFT �lter banks that employ

time-domain aliasing cancellation. However, time-domain aliasing cancellation can be

incorporated in critically sampled cosine-modulated �lter banks; such �lter banks are

commonly used in audio coding [12, 7, 9, 16, 17]. The ability to use time-domain aliasing

cancellation in a cosine-modulated �lter bank is connected to the result that the expansion

functions in a cosine-modulated �lter bank can have good time and frequency localization

[2]. Note that the lapped orthogonal transforms (LOT) mentioned in Section 1.4 belong

to this class of �lters. In the LOT, the representation is critically sampled but all of the
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basis functions are smooth and extend beyond the boundaries of the signal segment or

block; this overlap reduces the artifacts caused by quantization. Quantization e�ects can

also be reduced by oversampling; one advantage of overcomplete representations is that

they exhibit a robustness to quantization noise that is proportional to the redundancy of

the representation [70, 64, 92, 125].

Time-frequency localization

As discussed above, the design of STFT �lter banks is extremely limited in the

critically sampled case. The only real-valued prototype windows that lead to orthogonal

perfect reconstruction �lter banks are rectangular windows [2]. This result is a discrete-

time equivalent of the Balian-Low Theorem, which states that there are no continuous-time

orthogonal short-time Fourier transform bases that are localized in time and frequency,

where the localization is measured in terms of �t and �! from Equations (1.30) and

(1.31); either or both of these uncertainty widths are unbounded for orthonormal STFT

bases. This problem motivates the use of cosine-modulated �lter banks, which can achieve

good time-frequency localization [2].

Further issues regarding time-frequency localization and �lter banks are beyond

the scope of this thesis; this issue will thus not be addressed further, with the exception

of various considerations of signal expansions, which have a fundamental relationship

to �lter banks. The point of this discussion is simply to cite the result that there are

some di�culties with critically sampled STFT �lter banks, and that oversampling is thus

required in order for STFT �lter banks to perform well. The use of oversampling, however,

is contrary to the goal of data reduction. This problem is solved in the sinusoidal model

by applying a parametric representation to the STFT to achieve compaction.

Modi�cations of the STFT

Various signal modi�cations based on the STFT have been discussed in the lit-

erature [1, 111, 114, 115, 112, 117, 128, 129]. In approaches where the modi�cations are

based directly on the function X(k; i), the techniques are inherently restricted to a rigid

framework because the signal is being modeled in terms of subbands which interact in

complicated ways in the reconstruction process. The restrictive framework is exactly this:

a modi�cation is carried out on the subband signals and the e�ect of the modi�cation on

the output signal is then formulated [111, 115]. This approach is much di�erent from the

desired framework of simply carrying out a particular modi�cation on the original signal.

In some approaches, modi�cations are based on the STFT magnitude only; the

magnitude is �rst modi�ed and then a phase that will minimize synthesis discontinuities

is derived [117, 128, 129]. This removal of the phase essentially results in a parametric

representation that is more exible than the complex subband signals. It is important to
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note that this magnitude-only description has the same caveat as other parametric models:

for the case of no modi�cation, the magnitude-only description is not capable of perfect

reconstruction.

In the critically sampled case, there is a one to one correspondence between

signals and short-time Fourier transforms; because it is equivalently a basis expansion,

there is no ambiguity in the relationship between the domains. In the oversampled case,

however, many di�erent STFTs will yield the same signal. This multiplicity is obviated

by considering the simplest case: L = 1 and v[n] = �[n]; the analysis window w[n],

which derives the STFT, is virtually unrestricted. Such an overcomplete representation

has a higher dimension than the signal space, meaning that some modi�cations in that

space may have no e�ect on the signal or may produce an otherwise unexpected result;

in deriving a phase for the STFT magnitude for synthesis in the overcomplete case, there

are thus consistency or validity concerns that arise [130].

The issues of aliasing cancellation and validity, among others, indicate the funda-

mental point: the synthesis model limits the modi�cation capability. Given that the most

e�ective modi�cation methods for the STFT rely on parameterizations of the STFT, there

is in some sense no need to use a rigid �lter-based structure for synthesis. This observation

is the fundamental motivation for the sinusoidal model, which relies on an STFT analysis

�lter bank for parameter estimation, but thereafter utilizes a fully parametric synthesis to

circumvent issues such as frame boundary discontinuities, consistency, and aliasing can-

cellation. The channel vocoder and the phase vocoder are the two fundamental steps in

the progression from the STFT to the sinusoidal model.

The channel vocoder

The term vocoder, a contraction of voice and coder, was coined to describe an early

speech analysis-synthesis algorithm [131]. In particular, the channel vocoder originated as

a voice coder which represented a speech signal based on the characteristics of the STFT

�lter bank channels or subbands. Speci�cally, the speech is �ltered into a large number of

channels using an STFT analysis �lter bank. Each of the subbands is modeled in terms

of its short-time energy; with respect to the k-th channel, this provides an amplitude

envelope Ak[n] which modulates a sinusoidal oscillator at the channel center frequency !k.

The outputs of these oscillators are then accumulated to reconstruct the signal. Note that

the term \vocoder" has at this point become a general designation for a large number of

algorithms which are by no means limited to voice coding applications.

The phase vocoder

The channel vocoder parameterizes the subband signal in terms of its energy or

amplitude only; the phase vocoder is an extension that includes the phase behavior in
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Figure 2.6: Block diagram of the phase vocoder. The amplitude and frequency

(total phase) control functions for the K oscillators are derived from the �lter bank

output signals by the parameter estimation blocks.

the model parameterization as well. There are a number of variations, but in general the

term refers to a structure like the one shown in Figure 2.6, where the subband signals are

parameterized in terms of magnitude envelopes and functions that describe the frequency

and phase evolution; these serve as inputs to a bank of oscillators that reconstruct the

signal from the parametric model [113, 118, 116, 119]. This approach has been widely

applied to modi�cation of speech signals; the success of such approaches substantiates the

previous contention that modi�cations are enabled by the incorporation of a parametric

model and a parametric synthesis. Note that if the analysis �lter bank is subsampled, the

sample-rate oscillator control functions are derived from the subsampled frame-rate STFT

representation.

General sinusoidal models

The phase vocoder as depicted in Figure 2.6 does not solve the partial tracking

problem discussed earlier; while its parametric nature does enable modi�cations, it is still

of limited use for modeling evolving signals. A further generalization leads to the sinusoidal

model. The fundamental observation in the development of the sinusoidal model is that

if the signal consists of one nonstationary sinusoid such as a chirp, then synthesis can be

achieved with one oscillator. There is no need to implement an oscillator for every branch

of the analysis �lter bank. Instead, the outputs of the analysis bank can be examined

across frequency for peaks, which correspond to sinusoids in the signal. These spectral
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Figure 2.7: Block diagram of the general sinusoidal model. The amplitude and

frequency (total phase) control functions are derived from the �lter bank outputs

by tracking spectral peaks in time as they move from band to band for an evolving

signal. The parameter estimation block detects and tracks spectral peaks; unless

Q is externally constrained, the number of peaks detected dictates the number of

oscillators used for synthesis.

peaks can then be tracked from frame to frame as the signal evolves, and only one oscillator

per tracked peak is required for synthesis. This structure is depicted in Figure 2.7.

For the chirp signal used in Figures 2.4 and 2.5, a sinusoidal model with one

oscillator yields the reconstruction shown in Figure 2.8(b). The model data for the recon-

struction in Figure 2.8(b) is extracted from the same STFT produced by the subsampled

analysis �lter bank of the Figure 2.5 example. With respect to data reduction, the one-

partial sinusoidal model in Figure 2.8 is basically characterized by three real numbers

fA; !; �g for each signal frame; for real signals, the STFT �lter bank model consists of

K=2 complex numbers for each frame, so the compression achieved is signi�cant; this is

of course less drastic for complicated signals with many partials. Note that this com-

pression is accompanied by the inability to carry out perfect reconstruction. A primary

reconstruction inaccuracy or artifact in the sinusoidal model is pre-echo, which is evident

in Figure 2.8. This problem is discussed further in Section 2.6; in Chapter 3, methods

for alleviating the pre-echo distortion are developed. Note also that the sinusoidal model

provides a better description of the signal behavior than the �lter bank decomposition;

this example illustrates how a compact parametric model is useful for analysis.

In the general sinusoidal model, there are no strict limitations on N , K, and L

for the analysis �lter bank. Typically, K > N , meaning that oversampling in frequency is
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Figure 2.8: One-component sinusoidal model of the chirp signal from Figure 2.4

using the same analysis �lter bank as in that example.

used, which in some cases yields a more accurate model than critical sampling (K = N)

as will be seen in the next section. Note that an increase in K corresponds to adding

more channels to the �lter bank and decreasing the frequency spacing between channels;

because each �lter is simply a modulated version of the prototype window, however, the

resolution of the individual channel �lters is not a�ected by a change in K. Also, it is

common to use a hop size of L = N=2 to achieve data reduction. Of course, gaps result

in the analysis if L > N as in the �lter bank case, but in the sinusoidal model such gaps

can be �lled in the reconstruction via parameter interpolation.

2.3 Sinusoidal Analysis

The analysis for the sinusoidal model is responsible for deriving a set of time-

varying model parameters, namely the number of partials Q[n], which may be constrained

by rate or synthesis computation limits [132], and the partial amplitudes fAq[n]g and

total phases f�q[n]g. As mentioned, these parameters are assumed to be slowly varying

with respect to the sample rate, so the estimation process can be reliably carried out at

a subsampled rate. In [57, 36], this analysis is done using a short-time Fourier transform

followed by spectral peak picking; this procedure was conceptually motivated in the pre-

ceding discussion of the STFT. The following sections examine this analysis method in

detail; alternative approaches are also discussed.

2.3.1 Spectral Peak Picking

The analysis for the sinusoidal model is similar to many scenarios in which the

sinusoidal content of a signal is of interest. Approaches based on Fourier transforms have

been traditionally applied to these problems. In such methods, the signal is transformed



57

into the Fourier domain and the peaks in the spectral representation are interpreted as

sinusoids. In this section, the use of the discrete Fourier transform in this framework is

considered; various resolution limits are demonstrated. The relationship of the discrete-

frequency DFT to the continuous DTFT underlies some of the issues here; a discussion of

this relationship, however, is deferred to Section 2.5.1.

A single sinusoid

The case of identifying a single time-limited complex sinusoid is of preliminary

importance for these considerations. For the signal

x[n] = �0e
j!0n (2.58)

de�ned on the interval n 2 [0; N � 1], where �0 is a complex number that entails the

magnitude and phase of the sinusoid, a DFT of size N is given by

XN [k] = �0 e
j!0(

N�1

2
) e�j�k(

N�1

N
)

2
4sin

�
N
h
�k
N
� !0

2

i�
sin
�
�k
N
� !0

2

�
3
5 ; (2.59)

where the subscript N denotes the size of the DFT. This treatment will focus on the

estimation of sinusoids based on peaks in the magnitude of the DFT spectrum, so the

ratio of sines in the above expression is of more importance than the preceding linear

phase term. If the frequency of the sinusoid can be expressed as

!0 =
2�k0
N

; (2.60)

namely if it is equal to a bin frequency of the DFT, the numerator in this ratio is zero-

valued for all k, meaning that the DFT itself is zero-valued everywhere except at k = k0,

where the denominator of the ratio is zero. For k = k0, the ratio takes on a value N by

L'Hôpital's rule, so the DFT magnitude is N j�0j; the phase at k = k0 is given simply

by arg�0. Thus, when !0 corresponds to a bin frequency, the sinusoid can be perfectly

identi�ed as a peak in the DFT magnitude spectrum, and its magnitude and phase can be

extracted from the DFT. For sinusoids at other frequencies, however, the N -point DFT

has a less simple structure. In this case, the signal is indeed represented exactly because

the DFT is a basis expansion; however, in terms of spectral peak picking it is erroneous

to interpret the peak in such a DFT as a sinusoid in the signal. These cases are depicted

in Figures 2.9(a) and 2.9(b), respectively.

Oversampling and frequency resolution

For the case of the o�-bin frequency illustrated in Figure 2.9(b), the sinusoid

cannot be immediately identi�ed in the DFT spectrum, and the DFT representation of
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Figure 2.9: Estimation of a single sinusoid with the DFT. In (a), the sinusoid is at

the bin frequency 2�k0=N for N = 16 and k0 = 3, so an N -point DFT identi�es the

sinusoid exactly. In (b), the frequency is 2�(k0 +0:4)=N as indicated by the asterisk

in the plot; the sinusoid is not identi�ed by the DFT, and the DFT representation

of the signal is not compact. In (c), an oversampled DFT of size K = 5N is used;

here the sinusoid from (b) can be identi�ed exactly since !0 = 2�(k0 + 0:4)=N =

2�(5k0+2)=K = 2��0=K. In (d), a Hanning window is applied to the signal before the

oversampled DFT is carried out. In this �gure and in Figure 2.10, �lled circles indicate

when perfect estimation is achieved; in cases where the estimation is imperfect, the

actual signal components are depicted by asterisks.

the signal is not compact. The parameters of the sinusoid can, however, be estimated by

interpolation. Using an oversampled DFT is one such approach. a DFT of size K > N is

given by

XK [k] = �0 e
j!0(

N�1

2
) e�j�k(
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In the oversampled case, a sinusoid of frequency

!0 =
2��0
K

(2.62)

can be identi�ed exactly as a peak in the spectrum as shown in Figure 2.9(c); sinusoids

at other frequencies cannot be immediately estimated from the K-point DFT. Higher

resolution can be achieved, however, by simply choosing a larger K.

The spectral representation in Figure 2.9(c) is not compact because using an

oversampled DFT corresponds to padding the end of the signal with K � N zeros prior

to taking the K-point DFT. The signal is then equivalent to a sinusoid of length K time-

limited by a window of length N , which means that the spectrum corresponds to the

K-point DFT of a sinusoid of length K circularly convolved with the K-point DFT of
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a rectangular window of length N . The time localization provided by the window thus

induces a corresponding frequency delocalization.

In STFT �lter banks, as mentioned earlier, oversampling in frequency is simply

equivalent to adding more �lters to the �lter bank and decreasing their frequency spacing;

this is readily indicated in the following consideration. For an analysis window w[n] of

length N , the �lters in an N -channel �lter bank are given by

hk2f0;N�1g[n] = w[�n]ej2�kn=N : (2.63)

In terms of the STFT tiling in Figure 2.1, this corresponds to using a critically sampled

DFT for each vertical slice of the tiling. In a K-channel �lter bank with K > N , which

corresponds to using an oversampled DFT, the �lters are modulated versions of the same

prototype window as in the N -channel case, namely

hk2f0;K�1g[n] = w[�n]ej2�kn=K ; (2.64)

but the spacing of the channels is now 2�=K, which is less than the 2�=N spacing in the

previous case.

For a single DFT, i.e. one short-time spectrum in the STFT, oversampling in

frequency corresponds to time-limited interpolation of the spectrum. Other methods of

spectral interpolation can also be used to identify the location of the spectral peak; these

are generally based on application of a particular window to the original data. Then,

the sinusoid can be identi�ed if the shape of the window transform can be detected in

the spectrum; the performance of such methods has been considered in the literature for

the general case of multiple sinusoids in noise [122, 100, 133]. This matching approach

is particularly applicable when a Gaussian window is used since the window transform

is then simply a parabola in the log-magnitude spectrum; by �tting a parabola to the

spectral data, the location of a peak can be estimated. Such interpolation methods can

be coupled with oversampling. An example is given in Figure 2.9(d), in which a Hanning

window is applied to the data prior to zero-padding; note that this windowing broadens

the main lobe of the spectrum but reduces the sidelobes.

Two sinusoids

The case of a single sinusoid is of limited interest for modeling musical signals.

With a view to understanding the issues involved in modeling complicated signals, the

considerations are extended in this section to the case of two sinusoids. It will be indicated

by example that the interference of the two components in the frequency domain leads

to estimation errors; it is shown to be generally erroneous in multi-component signals to

assume that a spectral peak corresponds exactly to a sinusoid in the signal. The reduction

of such errors will be used to motivate certain design constraints.
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The signal in question will simply be a sum of unit-amplitude, zero-phase sinu-

soids de�ned on n 2 [0; N � 1]:

x[n] = ej!0n + ej!1n: (2.65)

When !0 and !1 both correspond to bin frequencies of an N -point DFT, both sinusoids

can be estimated exactly in the DFT spectrum as indicated in Figure 2.10(a). As shown

in Figures 2.10(b) and 2.10(c), the N -point DFT cannot identify the sinusoids if either of

the frequencies is o�-bin; The situation is particularly bleak in Figure 2.10(b), where the

two sinusoids are close in frequency.

In the case of a single sinusoid, oversampling was used to improve the frequency

resolution. For the case of two closely spaced sinusoids, oversampling does not provide a

similar remedy. As depicted in Figure 2.10(c), closely spaced sinusoids in an oversampled

DFT appear as a single lobe; neither component can be accurately resolved, and it is

inappropriate to identify the spectral peak as a single sinusoid in the signal. Figures

2.10(d) and 2.10(e) show that the resolution of the oversampled DFT tends to improve

as the frequency di�erence increases. Note that in all of the simulations, !0 = 2��0=K

and !1 = 2��1=K for some integers �0 and �1. This choice of frequencies provides a best-

case scenario for the application of oversampled DFTs, and yet various errors still occur;

the peaks in the spectrum do not generally correspond to the sinusoids in the signal, so

estimation of the sinusoidal components by peak picking is erroneous.

Resolution of harmonics

As evidenced in Figure 2.10, separation of the spectral lobes improves the ability

to estimate the sinusoidal components. This property can be used to establish a criterion

for choosing the length of the signal frame N in STFT analysis. A reasonable limiting

condition for approximate resolution of two components is that two main lobes appear as

separate structures in the spectrum; this occurs when the component frequencies di�er by

at least half the bandwidth of the main lobe, where the bandwidth is de�ned here as the

distance between the �rst zero crossings on either side of the lobe. Mathematically, this

condition leads to the constraint

j!0 � !1j � 2�

N
; (2.66)

where the oversampling factor does not appear; oversampling helps in identifying o�-bin

frequencies that are widely separated, but does not improve the resolution of closely spaced

components. In short, the constraint simply states that components must be separated

by at least a bin width in an N -point DFT to be resolved; this requirement was already

suggested in Figure 2.10(b), and will play a further role in the next section. Note that the

constraint in Equation (2.66) involves the standard tradeo� between time and frequency
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Figure 2.10: Estimation of two sinusoids with the DFT. In (a), the sinusoids are at

bin frequencies 2�k0=N and 2�k1=N for N = 16, k0 = 3, and k0 = 4; an N -point

DFT identi�es the sinusoids exactly. As in Figure 2.9, �lled circles indicate when

perfect estimation is achieved; in cases with imperfect estimation, the actual signal

components are indicated by asterisks. In (b), !1 is moved o�-bin to 2�(k0 +0:4)=N

as shown by the asterisk; in (c), !1 is moved o�-bin to 2�(k0 + 1:2)=N . In either

case, the sinusoids are not identi�ed by the DFT. In (d), an oversampled DFT of size

K = 5N is used for the sinusoids in (b); these cannot be resolved by oversampling,

however. In (e), oversampling is applied for the case in (c); because these sinusoids

are separated in frequency, oversampling improves the resolution. The plot in (f)

depicts a more extreme case of frequency separation in which the sinusoids can again

be reasonably identi�ed. Note that in (d), (e), and (f), the sinusoids cannot be

resolved even though their frequencies can be expressed as 2��0=K and 2��1=K for

integer �0 and �0; this di�culty results from the interference of the sidelobes in the

combined spectrum, or equivalently because the components are not orthogonal as

will be explained in Section 2.3.2.
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resolution; if N is large, accurate frequency resolution is achieved, but this comes with a

time delocalization penalty resulting from using a large window.

The constraint in Equation (2.66) cannot be applied without some knowledge

of the expected frequencies in the signal. While this is a questionable requirement for

arbitrary signals, it is applicable in the common case of pseudo-periodic signals. The

components in the harmonic spectrum of a pseudo-periodic signal are basically multiples

of the fundamental frequency, so the constraint can be rewritten as

!fundN � 2�: (2.67)

Note that this constraint can be interpreted in terms of the number of periods of the

fundamental frequency,i.e. pitch periods of the signal, that occur in the length-N frame;

for the components to be resolvable, it is required that at least one period be in the

frame. When the N -point window spans exactly one period, an N -point DFT provides

exact resolution of the harmonic components; this observation will play a role in the

pitch-synchronous sinusoidal model discussed in Chapter 5.

The formulation of the constraint in Equation (2.67) implicitly assumes the use

of a rectangular window. For a Hanning window, the main spectral lobe is twice as wide

as that of a rectangular window by construction; as a result, a Hanning window must

span two signal periods to achieve resolution of harmonic components. Since Hanning and

other similarly constructed windows have been commonly used, it has become a heuristic

in STFT analysis to use windows of length two to three times the signal period.

Modeling arbitrary signals

Analysis based on the DFT has been used in numerous sinusoidal modeling ap-

plications [57, 36, 100]. These methods incorporate the constraints discussed above for

resolution of harmonics and have been successfully applied to modeling signals with har-

monic structure. Furthermore, the approaches have also shown reasonable performance

for modeling signals where the sinusoidal components are not resolvable and peak picking

in the DFT spectrum provides an inaccurate estimate of the sinusoidal parameters. This

issue is examined here.

Consider a signal of the form given Equation (2.65) with component frequencies

!0 and !1 closely spaced as in Figures 2.10(b) and 2.10(d). In this case, peak picking in

the oversampled DFT spectrum identi�es a peak between !0 and !1 and interprets this

peak as a sinusoid in the signal. At this point, it is assumed that the DFT is oversampled

such that !0 = 2��0=K and !1 = 2��1=K for integers �0 and �1 = �0 + 2i, where i is

an integer; this condition simply means that there will be an odd number of points in the

oversampled DFT between �0 and �1. Then, the peak location found by peak picking is
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Figure 2.11: Modeling a two-component signal via peak picking in the DFT. In the

two-component signal of length N = 64, the frequencies are at 2��0=K and 2��1=K

for �0 = 15, �1 = 17, and K = 5N . The sinusoids are closely spaced, so a peak

picking process �nds only one sinusoid. The signal is indicated by the solid line in

the plot; the dotted line indicates the sinusoid estimated by peak picking.

simply given by

!p =
!0 + !1

2
(2.68)

=) �p =
�0 + �1

2
: (2.69)

When �0 and �1 are related in such a way, the oversampled DFT has a peak midway

between �0 and �1 which the analysis interprets as a sinusoid in the signal with frequency

!p and with amplitude and phase given respectively by the magnitude of the peak by the

phase of the oversampled DFT at the peak frequency. An example of a two-component

signal and the signal estimate given by peak picking is indicated in Figure 2.11.

In considering the signal estimate for the case of closely spaced sinusoids, it is

useful to rewrite the two-component signal as

x[n] = ej
�
!0+!1

2

�
n
�
ej
�
!0�!1

2

�
n + ej

�
�!0+!1

2

�
n
�
= 2 cos [(!0 � !1)n=2]e

j!pn; (2.70)

which indicates that the signal can be written as a sinusoid at !p with an amplitude

modulation term. In terms of the DFT spectrum, the broad lobe resulting from the

overlap of the narrow lobes of the two components can be interpreted as a narrow lobe

at a midpoint frequency that has been widened by an amplitude modulation process. It

is useful to note the behavior of this modulation for limiting cases: the closer the spacing

in frequency, the less variation in the amplitude, which is sensible since the components

become identical as !0 ! !1; for wider spacing in frequency, the modulation becomes

more and more drastic, but this is accompanied by an improved ability to resolve the

components. The intuition, then, is that when the components cannot be resolved, the

modulation is smooth within the signal frame. This modulation interpretation is not

applied in the DFT-based sinusoidal analysis, which estimates the signal components

in a frame in terms of constant amplitude sinusoids. As will be discussed in Section

2.4.2, however, the synthesis routine constructs an amplitude envelope for the partials
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estimated in the frame-to-frame analysis;t this helps to match the amplitude behavior

of the reconstruction to that of the signal. In other words, smooth modulation of the

amplitude can be tracked by the model.

The example discussed above involves a somewhat ideal case. For one, the for-

mulation is slightly more complicated when the component amplitudes are not equal.

Furthermore, when the assumptions previously made about the component frequencies do

not hold, the peak picking process becomes more di�cult. However, the insights apply

to the case of general signals. For arbitrary signals, then, it is reasonable to interpret

each lobe in the oversampled DFT as a short-time sinusoid. Given this observation, the

partial parameters for a short-time signal frame can be derived by locating major peaks

in the DFT magnitude spectrum. For a given peak, the frequency !q of the corresponding

partial is estimated as the location of a peak and the phase �q is given by the phase of

the spectrum at the peak frequency !q . Note that in the frame-rate sinusoidal model,

the estimated parameters are designated to correspond to the center of the analysis win-

dow, so the phase must be advanced from its time reference at the start of the window

by adding !qN=2. The amplitude Aq of the partial is given by the height of the peak,

scaled by N for the case of a rectangular window. This scaling factor amounts to the

time-domain sum of the window values, so scaling by N=2 is called for in the case of a

Hanning window; note that the peak in Figure 2.9(d) is at half the height of the peak in

Figure 2.9(d). Further scaling by a factor of 1=2 is required if the intent is to estimate

real sinusoids from a complex spectrum. Also, there is a positive frequency and a negative

frequency contribution to the spectrum for this case of real sinusoids, which can result in

some spectral interference that may bias the ensuing peak estimation; this is analogous to

the estimation errors that occur due to sidelobe interference in the two-component case.

While this method is prone to such errors, it is nevertheless useful for signal modeling;

the models depicted in later simulations rely on analysis based on oversampled DFTs.

2.3.2 Linear Algebraic Interpretation

In the previous section, estimation of the parameters of a sinusoidal model using

the DFT was considered. It was shown that this estimation process is erroneous in most

cases, but that the errors can be reduced by imposing certain constraints. Here, the

estimation problem is phrased in a linear algebraic framework that sheds light on the

errors in the DFT approach and suggests an improved analysis.

Relationship of analysis and synthesis models

The objective in sinusoidal analysis is to identify the amplitudes, frequencies,

and phases of a set of sinusoids that accurately represent a given segment of the signal.

This problem can be phrased in terms of �nding a compact model using an overcomplete
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dictionary of sinusoids; the background material for this type of consideration was dis-

cussed in Section 1.3. For an N �K dictionary matrix whose columns are the normalized

sinusoids

dk =
1p
N
ej!kn; (2.71)

where !k = 2�k=K, the synthesis model for a segment of length N can be expressed in

matrix form as

x = D�; (2.72)

where x and � are column vectors. Finding a sparse solution to this inverse problem

corresponds to deriving parameters for the signal model

x[n] =
1p
N

KX
k=1

�ke
j!kn (2.73)

where many of the coe�cients are zero-valued.

In the previous section, analysis for the sinusoidal model using the DFT was

considered. The statement of the problem given here, however, indicates that the DFT

is by no means intrinsic to the model estimation. In general cases, the exact analysis for

an overcomplete model requires computation of a pseudo-inverse of D, which is related to

projecting the signal onto a dual frame. In deriving compact models, a nonlinear analysis

such as a best basis method or matching pursuit is used. Even in the limiting case that D

is a basis matrix and the frequencies are known but not at frequencies 2�k=N , the DFT is

not involved; the model coe�cients are given by correlations with the dual basis. The only

case in which the DFT is entirely appropriate for analysis of multi-component signals is

the orthogonal case where the synthesis components are harmonics at the bin frequencies.

It was shown in the previous section, however, that the errors in the DFT analysis are not

always drastic. This issue is examined in the next section.

Orthogonality of components

As stated above, the DFT is only appropriate for analysis when the synthesis

components are orthogonal. This explains the perfect analyses shown in Figures 2.9(a)

and 2.10(a) for the cases of sinusoids at bin frequencies. The one-component example in

Figure 2.9 is not of particular value here, though; even in the general overcomplete case

described above, analysis of one-component signals can be carried out perfectly without

di�culties. The multi-component case, on the other hand, is problematic and is thus of

interest.

Figure 2.10 and the accompanying discussion of frequency separation led to the

conclusion that components can be reasonable resolved by peak picking in the DFT spec-

trum if the components are spaced by at least a bin. Consider two unit-norm sinusoids at
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di�erent frequencies de�ned as

g0[n] =
1p
N

ej2��0n=K and g1[n] =
1p
N

ej2��1n=K : (2.74)

The magnitude of the correlation of these two functions is given by:

jhg0; g1ij =
1

N

������
sin
�
�N [�0��1]

K

�
sin
�
�[�0��1]

K

�
������ : (2.75)

This function is at a maximum for �0 = �1, when the sinusoids are equivalent; j�0��1j >
K=N , namely separation by more than a bin in an N -point spectrum, corresponds to the

sidelobe region, where the values are signi�cantly less than the maximum. This insight

explains why separation of lobes in the spectrum leads to reasonable analysis results in

the DFT approach; when the lobes are separated, the signal components are not highly

correlated, i.e. are nearly orthogonal. Furthermore, this explains why DFT analysis for

the sinusoidal model works reasonably well in cases where the window length is chosen

according the constraint in Equation (2.67).

Frames of complex sinusoids

In discussion of the sinusoidal model, a localized segment of the signal has often

been referred to as a frame. Treating the sinusoidal analysis in terms of frames of vectors,

then, introduces an unfortunate overlap in terminology. For this discussion, the localized

portion of the signal will be assumed to be a segment of length N , and the term frame

will be reserved to designate an overcomplete family of vectors.

The frame of interest here is the family of vectors

dk =
1p
N
ej2�kn=K n 2 [0; N � 1]: (2.76)

If K = N , this family is an orthogonal basis and signal expansions can be computed

using the DFT. For compact modeling of arbitrary signals, however, the overcomplete

case (K > N) is more useful. Indeed, the oversampled DFT can be interpreted as a signal

expansion based on this family of vectors:

XK [k] =
N�1X
n=0

x[n]e�j2�kn=K (2.77)

=
p
N hdk; xi: (2.78)

The reconstruction can then be expressed as

x[n] =
1

K

K�1X
k=0

XK [k]e
j2�kn=K (2.79)
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=

p
N

K

K�1X
k=0

XK [k]dk (2.80)

=
N

K

K�1X
k=0

hdk; xidk: (2.81)

Recalling the earlier discussion of zero-padding, the oversampled DFT can be interpreted

as an expansion of a time-limited signal on [0; N�1] in terms of sinusoidal expansion func-
tions supported on the longer interval [0; K� 1]; this interpretation provides a framework

for computing a unique expansion in terms of an orthogonal basis. Equation (2.81), on the

other hand, indicates another viewpoint based on the discussion of frames in Section 1.4.2;

noting the similarity of Equation (2.81) to Equation (1.26), it is clear that the oversampled

DFT corresponds to a signal expansion in a tight frame with redundancy K=N .

As discussed in Section 1.4.2, frame expansions of the form given in Equation

(1.26) are not generally compact. For the oversampled DFT case, this noncompactness is

indicated in the previous section in Figures 2.9 and 2.10. These noncompact expansions

do provide perfect reconstruction of the signal, but this is of little use given the amount

of data required. Restating the conclusion of the previous section in this framework, it

is possible in the DFT case to achieve a reasonable signal approximation using a highly

compacted model based on extracting the largest values from the noncompact tight frame

expansion. This assertion is veri�ed in Figure 2.11 for a simple example; the shortcoming

in this example, however, is that there is an exact compact model in the overcomplete

set that the DFT fails to identify. With respect to near-perfect modeling of an arbitrary

signal, the shortcoming is that there are compact models that are more accurate than the

model derived by DFT peak picking. Arriving at such models, however, is a di�cult task

as described in Section 1.4.2. It is an open question as to whether the incorporation of

such approaches in the sinusoidal model will improve the rate-distortion performance with

respect to models based on DFT parameter estimation. Derivation of compact models in

overcomplete sets is discussed more fully in Chapter 6, but primarily for the application of

constructing models based on Gabor atoms. A method for sinusoidal modeling based on

analysis-by-synthesis using an overcomplete set of sinusoids is described in Section 2.3.3.

Synthesis and modi�cations

In an overcomplete signal model, the components are necessarily not all orthogo-

nal. As discussed briey in Section 1.4.4, this results in a di�culty in synthesis of modi�ed

expansions. Some additive modi�cations will correspond to vectors in the null space, and

no modi�cation will be manifested in the reconstruction. Further, given that a component

can be expressed as a sum of other components, some modi�cations correspond to cancel-

lation of a desired component, or, in the worst case, cancellation of the entire signal. It is

thus important to monitor modi�cations carried out in overcomplete expansions so as to
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avoid these pitfalls. A formal consideration of these issues is left as an open issue.

While overcomplete sinusoidal models have been widely used for signal modi�-

cation, the problems discussed above have not been explicitly discussed in the literature.

It will be seen in later sections that the parametric structure of the sinusoidal model al-

lows for resolution of some signal cancellation issues; a speci�c �x discussed in Section

2.5.2 is that phase matching conditions can be imposed on additive components at sim-

ilar frequencies to prevent destructive interference. Furthermore, cancellation issues are

circumvented to a great extent in applications involving sinusoids separated in frequency;

as shown in Equation (2.75), such sinusoids are nearly orthogonal. Synthesis based on

nearly orthogonal components of an overcomplete set is well-conditioned with respect to

modi�cation, so the sinusoidal model performs well in such scenarios.

2.3.3 Other Methods for Sinusoidal Parameter Estimation

A number of alternative methods for estimating the parameters of sinusoidal

models have been considered in the literature. A brief review is given below; the focus is

placed primarily on methods that introduce substantial model adjustments.

Analysis-by-synthesis

In analysis-by-synthesis methods, the analysis is tightly coupled to the synthesis;

the analysis is metered and indeed adapted according to how well the reconstructed signal

matches the original. Often this is a sequential or iterative process. Consider an example

involving spectral peak picking: rather than simultaneously estimating all of the peaks,

only the largest peak is detected at �rst. Then the contribution of a sinusoid at this peak,

i.e. a spectral lobe, is subtracted from the spectrum, and the next peak is detected; this

approach can be used to account for sidelobe interaction. One advantage of this structure

over straightforward estimation is that it allows the analysis to adapt to reconstruction

errors; these can be accounted for in subsequent iterations. On the other hand, this

approach can have di�culties because of its greedy nature.

The matching pursuit algorithm to be discussed in Chapter 6 is an analysis-by-

synthesis approach; this notion will be elaborated upon considerably at that point. Here,

it su�ces to note that analysis-by-synthesis has been applied e�ectively in sinusoidal mod-

eling, especially in the case where the sinusoidal parameters are estimated directly from

the time-domain signal [101]. The particular technique of [101] employs a dictionary of

short-time sinusoids and is indeed an example of a method that bridges the gap between

parametric and nonparametric approaches. At each stage of the analysis-by-synthesis

iteration, the dictionary sinusoid that best resembles the signal is chosen for the decom-

position; its contribution to the signal is then subtracted and the process is repeated on

the residual. Though it uses a dictionary of expansion functions and should thus be cate-
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gorized as a nonparametric method according to the heuristic distinctions of Sections 1.3

and 1.4, the algorithm indeed results in a parametric model since the dictionary sinusoids

can be readily parameterized.

Global optimization

The common methods of sinusoidal analysis yield frame-rate signal model pa-

rameters. Generally the analysis is independent from frame to frame, meaning that the

parameters derived in one frame do not necessarily depend on the parameters of the previ-

ous frame; in some cases the estimation is guided according to pitch estimates and models

of the signal evolution, but such guidance is generally localized among nearby frames. If

the entire signal is considered as a whole in the sinusoidal analysis, a globally optimal

set of model parameters can be derived. Such optimization is a highly complex operation

which requires intensive o�-line computation [107]. This issue is related to the method

to be discussed in Section 3.4, in which a slightly restricted global modeling problem is

phrased in terms of dynamic programming to reduce the computational cost [134].

Statistical estimation

A wide variety of methods for estimating the parameters of sinusoidal and quasi-

sinusoidal models have been presented in the spectral estimation literature. These di�er

in the structure of the models; some of these di�erences include assumptions about har-

monicity and the behavior of the partial amplitudes, the e�ects of underestimating or

overestimating the model order, i.e. the number of sinusoids in the signal, the presence

of noise or other contamination, and the metrics applied to determine the parameters,

e.g. minimum mean-squared error, maximum likelihood, or a heuristic criterion. Key

references for these other methods include [135, 136, 137, 138, 139, 140, 141].

2.4 Time-Domain Synthesis

Synthesis for the sinusoidal model is typically carried out in the time domain by

accumulating the outputs of a bank of sinusoidal oscillators in direct accordance with the

signal model of Equation (2.1). This notion was previously depicted in Figure 2.7; the

simple structure of the synthesis bank is given again in Figure 2.12 to emphasize a few key

points. First, banks of oscillators have been widely explored in the computer music �eld

as an additive synthesis tool [31, 35, 34]. Early considerations, however, were restricted

to synthesis of arti�cial sounds based on simple parameter control functions since corre-

sponding analyses of natural signals were unavailable and since computational capabilities

were limited. The development of analysis algorithms has led to the application of this
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Figure 2.12: Time-domain sinusoidal synthesis using a bank of oscillators. The

amplitude and phase control functions can be derived using an STFT analysis as

depicted in Figure 2.7, or in other ways as described in the text.

approach to modeling and modi�cation of natural signals, and advances in computation

technology have enabled such synthesis routines to be carried out in real time [132, 142].

Figure 2.12 also serves to highlight the actual control functions Aq [n] and �q [n].

The output of the q-th oscillator is Aq[n] cos �q[n]; this is dictated by sample-rate amplitude

and total phase control functions that must be calculated in the synthesis process using

the frame-rate (subsampled) analysis data. This process involves two di�culties: line

tracking and parameter interpolation, both of which arise because of the time evolution

of the signal and the resultant analysis parameter di�erences from frame to frame; for

instance, the estimated frequencies of the partials change in time as the spectral peaks

move. It is of course reasonable that some di�culties should arise, given the intent of

generalizing the Fourier series to have arbitrary sinusoidal components; these di�culties

are discussed in the following two sections.

2.4.1 Line Tracking

The sinusoidal analysis provides a frame-rate representation of the signal in terms

of amplitude, frequency, and phase parameters for a set of detected sinusoids in each frame.

This analysis provides the sinusoidal parameters, but does not indicate which parameter

sets correspond to a given partial. To build a signal model in terms of evolving partials

that persist in time, it is necessary to form connections between the parameter sets in

adjacent frames. The problem of line tracking is to decide how to connect the parameter

sets in adjacent frames to establish continuity for the partials of the signal model. Such

continuity is physically reasonable given the generating mechanism of a signal, e.g. a
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vibrating string.

Line tracking can be carried out in a simple successive manner by associating

the q-th parameter set in frame i, namely fAq;i; !q;i; �q;ig, to the set in frame i + 1 with

frequency closest to !q;i [57]. The tracking starts by making such an association for the pair

of parameter sets with the smallest frequency di�erence across all possible pairs; frequency

di�erence is used as the metric here, but other cost functions, perhaps including amplitude

or a predicted rate of frequency change, are of course plausible. Once the �rst connection

is established, the respective parameter sets are taken out of consideration and the process

is repeated on the remaining data sets. This iteration is continued until all of the sets in

adjacent frames are either coupled or accounted for as births or deaths { partials that are

newly entering or leaving the signal. Generally, there is some threshold set to specify the

maximum frequency di�erence allowed for a partial between frames; rather than coupling

a pair of data sets that have a large frequency di�erence, such instances are treated as a

separate birth and death. This tracking is most e�ective for relatively stationary signal

segments; it has di�culty for signal regions where the spectral content is highly dynamic,

such as note attacks in music. This breakdown is not so much a shortcoming of the line

tracking algorithm as of the signal model itself; a model consisting of smoothly evolving

sinusoids is inappropriate for a transient signal.

For complicated signals with many evolving partials, the problem of line tracking

is obviously di�cult. One important �x, proposed in [36, 100], is the use of backward line

tracking when necessary; this technique can be used to track the partials of a note from

the sustain region back to their origins in the note attack, which helps with the di�culties

previously discussed. Another observation is that line tracking can be aided by considering

harmonicity; if the partials are roughly harmonic, the data sets can be coupled more readily

than in the general case [57, 36]. A number of more complex methods have been explored

in the literature. One noteworthy technique involves using the Viterbi algorithm to �nd

the best set of partial tracks [143, 144]; the cost of a given set of tracks is generally

measured by summing the frame-to-frame absolute frequency di�erences along all of the

tracks in the set. This approach �nds the set of tracks that has the minimum global cost,

i.e. the smoothest frequency transitions for the entire set, which is markedly di�erent

from the greedy successive track selection algorithm discussed above. This method, which

can be cast in the framework of hidden Markov models, has proven useful for sinusoidal

modeling of complex sounds [145]. Furthermore, neural networks have been posed as a

possible solution to the line tracking problem [146]; nonlinear methods have also proven

useful for overcoming some of the di�culties in line tracking [147].

It should be noted that line tracking is sometimes considered part of the analysis

rather than synthesis. Then, the model includes a partial index or tag for each parameter

set in each frame. The advantage of including this extra data in the representation is

that the reconstruction process is simpli�ed such that the synthesis can meet real-time
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computation constraints. The inclusion is thus useful in cases where the analysis can be

performed o�-line; for instance, in audio distribution or in real-time signal modi�cation, it

is necessary to have a low-complexity synthesis, meaning that high-complexity operations

such as line tracking should be lumped with the analysis if possible, even if it does require

the inclusion of extra data in the parameterization.

2.4.2 Parameter Interpolation

After partial continuity is established by line tracking, it is necessary to inter-

polate the frame-rate partial parameters fAq; !q; �qg to determine the sample-rate os-

cillator control functions Aq[n] and �q [n]. Typically, interpolation is done using low-

order polynomial models such as linear amplitude and cubic total phase; the speci�c

approach of [57] is presented here, but other interpolation methods have been considered

[36, 107, 148, 149, 150]. The partial amplitude interpolation in synthesis frame i is a linear

progression from the amplitude in analysis frame i to that in frame i+ 1 and is given by

Âq;i[n] = Aq;i + (Aq;i+1 �Aq;i)
n

S
; (2.82)

where n = 0; 1; : : : ; S � 1 is the time sample index, and S is the length of the synthesis

frame; this frame length is equal to the analysis stride L unless the analysis parameters

are intermediately interpolated or otherwise modi�ed to a di�erent time resolution. Note

that this amplitude envelope plays a role in modeling sinusoids modulated by slowly

varying amplitude envelopes; it was shown in Section 2.3.1 that such partials correspond

to components that are not resolved by the DFT analysis. The phase interpolation is

given by

�̂q;i[n] = �q;i + !q;in + �q;in
2 + �q;in

3; (2.83)

where � and ! enforce phase and frequency matching constraints at the frame boundaries,

and � and � are chosen the make the total phase progression maximally smooth [57]. Such

phase and frequency matching constraints are explored in greater detail in Section 2.5.

Interpolation of the phase parameter is clearly more complex than the amplitude

interpolation. For e�cient synthesis, then, it is of interest to consider more simple models

of the phase. Indeed, the experimental observation that the auditory system is relatively

insensitive to phase motivates the investigation of models based on amplitude envelopes

and low-complexity phase evolution models, thus merging a waveform model with psy-

choperceptual phenomena in an e�ort to create a perceptually lossless model. In some

cases, this so-called magnitude-only reconstruction can be done transparently; however,

transient distortion is increased when the phase is neglected.

In the frequency-domain synthesis algorithm to be discussed in the next section

(Section 2.5), the parameter interpolation is not performed directly on the time-domain

control functions, but is instead implicitly carried out by an overlap-add process which
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results in a pseudo-linear amplitude envelope and a transcendental phase interpolation

function. These particular interpolation methods will be considered in Section 2.5. The

key issue regarding parameter interpolation, however, can be made without reference to

a speci�c interpolation scheme: namely, reconstruction artifacts occur when the behavior

of the signal does not match the interpolation model. This idea is revisited in Section 2.6.

2.5 Frequency-Domain Synthesis

An alternative to time-domain synthesis using a bank of oscillators is frequency-

domain synthesis, in which a representation of the signal is constructed in the frequency

domain and the time-domain reconstruction is generated from that representation by an

inverse FFT (IFFT) and overlap-add (OLA) process. This approach provides various com-

putational advantages over general time-domain synthesis [102, 132]. Frequency-domain

synthesis was described in [57, 150, 151] and more fully presented in [102]. In this section,

the algorithm in [102] is explored in detail.

2.5.1 The Algorithm

The frequency-domain synthesis algorithm is fundamentally based on the rela-

tionship between the DTFT and the DFT and the resulting implications for representing

short-time sinusoids. After a brief review of these issues, which are intrinsically connected

to the matters discussed in Section 2.3.1, the algorithm is described.

The DTFT, the DFT, and spectral sampling

For an N-point discrete-time sequence x[n] de�ned on the interval n 2 [0; N� 1],

the discrete-time Fourier transform is de�ned as

X
�
ej!
�
=

N�1X
n=0

x[n]e�j!n: (2.84)

Note that the DTFT is inherently 2�-periodic; the signal can be reconstructed from any

DTFT segment of length 2�. For the speci�c interval [0; 2�], the equation for signal

synthesis is

x[n] =
1

2�

Z 2�

0
X
�
ej!
�
d!; (2.85)

where the interval simply provides the limits for the integral.

The DTFT is a continuous frequency-domain function that represents a discrete-

time function; for �nite-length signals, there is redundancy in the DTFT representation.

The redundancy can be reduced by sampling the DTFT, which is indeed necessary in
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digital applications. Sampling the DTFT yields a discrete Fourier transform if the samples

are taken at uniformly spaced frequencies:

X [k] = X
�
ej!
����
!= 2�k

K

=
N�1X
n=0

x[n]e�j
2�kn
K : (2.86)

For K = N , the sampled DTFT corresponds to a DFT basis expansion of x[n]. If K < N ,

the spectrum is undersampled and time-domain aliasing results as discussed throughout

Section 2.2.1. On the other hand, the case K > N corresponds to oversampling of the

spectrum; such oversampled DFTs were considered at length in Section 2.3.1 for the

application of sinusoidal analysis. If K � N , the signal can be reconstructed exactly from

the DTFT samples using the synthesis formula

x[n] =
1

K

K�1X
k=0

X [k]ej
2�kn
K : (2.87)

Representations at di�erent spectral sampling rates have a simple relationship if the rates

are related by an integer factor; introducing a subscript to denote the size of the DFT,

XK [k] = X
�
ej!
����
!= 2�k

K

(2.88)

XM [m] = X
�
ej!
����
!= 2�m

M

(2.89)

M = �K =) XM [�k] = X
�
ej!
����
!= 2��k

�K

= XK[k]: (2.90)

This relationship will come into play in the frequency-domain synthesis algorithm to be

discussed.

The underlying reason that reconstruction can be achieved from the samples of

DTFT is that the DTFT is by de�nition a polynomial function of order N � 1 (for a

signal of length N). Then, any N samples specify the DTFT exactly, so the signal can in

theory be reconstructed from any N or more arbitrarily spaced samples. The special case

of uniform spectral sampling has been of greater interest than nonuniform sampling since

it leads to the fast Fourier transform.

Spectral representation of short-time sinusoids

To carry out frequency-domain synthesis, a spectral representation of the partials

must be constructed. This construction is formulated here for the case of a single partial;

the extension to multiple partials is developed in the next section.

A short-time sinusoid with amplitude Aq , frequency !q, and phase �q can be

written as

pq[n] = b[n]Aqe
j(!qn+�q); (2.91)



75

where b[n] is a window function of length N . In the frequency domain, this signal corre-

sponds to

Pq

�
ej!
�
= B

�
ej!
�
�Aqe

j�q�[! � !q ] = Aqe
j�qB

�
ej(!�!q)

�
; (2.92)

where � denotes convolution and B(ej!) is the DTFT of the window b[n]. The upshot

of this derivation is that the spectrum of a short-time sinusoid windowed by b[n] is the

window transform shifted to the frequency of the sinusoid.

For synthesis based on an IDFT of size K, the appropriate amplitudes and phases

for a K-bin spectrum must be determined. This discrete frequency model can be derived

via spectral sampling of the DTFT in Equation (2.92):

Pq [k] = Aqe
j�q B

�
ej(!�!q)

����
!= 2�k

K

; (2.93)

which corresponds to shifting the window transform B
�
ej!
�
to the continuous frequency

!q and then sampling it at the discrete bin frequencies !k = 2�k=K, where K � N is

required to avoid time-domain aliasing.

Using the above formulation, the short-time sinusoid pq[n] can be expressed in

terms of the K-bin IDFT to be used for synthesis:

pq[n] = IDFTK

�
Aqe

j�q B
�
ej(!�!q)

����
!= 2�k

K

�
: (2.94)

This representation is depicted in Figure 2.13 for three distinct cases: (1) an unmodulated

Hanning window b[n], (2) modulation to a bin frequency of the DFT, and (3) modulation

to an o�-bin frequency. Note the location of the sample points with respect to the center

of the main lobe in each of the cases; in the case of o�-bin modulation in (3), the samples

are asymmetric about the center. Also note that in (1) and (2) the only nonzero points

in the DFT occur in the main lobe since the frequency-domain samples are taken at zero

crossings of the DTFT sidelobes. All of the windows in the Blackman-Harris family exhibit

this property by construction [122, 123]; it is not a unique feature of the Hanning window.

In some applications, this zero-crossing property is useful in that a window can be applied

e�ciently in the DFT domain by circular convolution [122].

Spectral motifs

In Equation (2.93) the spectral representation of a short-time sinusoid is com-

puted by evaluating B
�
ej!
�
at the frequencies 2�k=K � !0. This computation is pro-

hibitively expensive with regards to real-time synthesis, however, so it is necessary to pre-

compute and tabulate B
�
ej!
�
[102, 132]. Such tabulation requires approximating B

�
ej!
�

in a discrete form; this approximation, which will be referred to as a spectral motif [102],

is considered here.
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Figure 2.13: A depiction of frequency-domain sampling for spectra of short-time

sinusoids. The continuous spectra are the DTFTs of the modulated window functions

and the circles indicate the spectral samples corresponding to their DFTs. Case (1)

is the unmodulated Hanning window b[n], case (2) involves modulation to the bin

frequency 2�k=K for k = 2 and K = 16, and case (3) involves modulation to the

o�-bin frequency corresponding to k = 2:4. Note that for k = 0 and k = 2, the DFT

of the Hanning window consists of only three nonzero points.
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A sinusoid at any frequency !q can be represented in the form given in Equa-

tion (2.93). Such arbitrary frequency resolution is achieved since B
�
ej!
�
is a continuous

function and spectral samples can be taken at arbitrary frequencies 2�k=K�!q . In a dis-
crete setting, such resolution can be approximated by representing B

�
ej!
�
using a highly

oversampled DFT of size M >> K; in this framework, the spectral motif is

B[m] = B
�
ej!
����
!= 2�m

M

: (2.95)

Using such a motif, a sinusoid of frequency !q = 2�mq=M can be represented exactly in

a K-bin spectrum if M is an integer multiple of K, say M = �K:

Pq[k] = Aqe
j�q B

�
ej(!�

2�mq

M
)

�����
!= 2�k

K

(2.96)

= Aqe
j�qB

�
ej(

2�k
K

� 2�mq

M
)

�
(2.97)

= Aqe
j�qB

�
ej(

2�ak
M

� 2�mq

M
)

�
(2.98)

= Aqe
j�qB[�k �mq]: (2.99)

In this way, a spectral representation of a short-time sinusoid is constructed not by directly

sampling the DTFT but by sampling the motif, which is itself a sampled version of the

DTFT. The frequency resolution is thus limited not by the size of the synthesis IDFT

but by the oversampling of the motif; in some other incarnations of frequency-domain

synthesis, large IDFTs are required to achieve accurate frequency resolution [57, 150, 151].

In this algorithm, arbitrary frequency resolution can be achieved by increasing the factor

�, provided that enough memory is available for storage of the motif. In music synthesis,

however, the resolution limits of the auditory system can be taken into account in choosing

the oversampling [102].

Figure 2.14 gives an example of a spectral motif and depicts the resolution issues

discussed above. Note that if the frequency of a partial cannot be written as 2�mq=M ,

the samples in the shifted motif will not align with the bins of the synthesis IDFT. To

account for this, partial frequencies can be rounded; alternatively, linear or higher-order

interpolation can be applied to the motif if enough computation time is available. These

techniques allow for various tradeo�s between the frequency resolution and the motif

storage requirements. Beyond the issue of frequency resolution, a further approximation

in the motif-based implementation is also indicated in Figure 2.14. Namely, only the main

lobe of B
�
ej!
�
is tabulated; the sidelobes are neglected. The result of this approximation

is that the spectral representation does not correspond exactly to a sinusoid windowed

by b[n]; furthermore, each di�erent modulation of the motif actually corresponds to a

slightly di�erent window. In practice, these errors are negligible if the window is chosen

appropriately [102].
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Figure 2.14: Spectral motifs in the frequency-domain synthesizer. The motif is the

oversampled main lobe of the DTFT of some window b[n], which is precomputed

and stored. To represent a partial, the motif is modulated to the partial frequency

and then sampled at the bin locations of the synthesis IDFT as shown in (b). If

the modulation does not align with the motif samples, the tabulated motif can be

interpolated.

In sinusoidal analysis, the issues discussed above lead to the assumption that each

lobe in the short-time spectrum of the signal corresponds to a partial. Various caveats

involving this assumption were examined in Section 2.3.1; these are not considered further

here. The point in this development is simply that a notion that is dual to the sinusoidal

analysis applies for frequency-domain synthesis: a partial can be synthesized by inverse

transforming an appropriately constructed spectral lobe.

Accumulation of partials

Since the DTFT and the DFT are linear operations, the spectrum of the sum of

partials for the signal model can be constructed by accumulating their individual spectra.

Denoting the DTFT for the i-th synthesis frame as X̂
�
ej!; i

�
, and introducing the sub-

script i to denote the frame to which a partial parameter corresponds, the accumulation

of partials for the i-th frame is given by

X̂
�
ej! ; i

�
=

QX
q=1

Pq;i

�
ej!
�

=
QX
q=1

Aq;ie
j�q;iB

�
ej(!�!q;i)

�
(2.100)

= B
�
ej!
�
�

QX
q=1

Aq;ie
j�q;i�[! � !q;i]; (2.101)

which corresponds in the time domain to

x̂i[n] = b[n]
QX
q=1

Aq;ie
j(!q;in+�q;i); (2.102)
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which is simply a windowed sum of sinusoids. If K > N , the IDFT, implemented as

an IFFT for computational e�ciency, can be used to generate x̂i[n] from the sampled

spectrum

X̂(k; i) = X̂
�
ej! ; i

����
!= 2�k

K

=
QX
q=1

Aq;ie
j�q;i B

�
ej(!�!q;i)

����
!= 2�k

K

: (2.103)

This formulation shows that a K-bin spectrum for synthesis of a signal segment can be

constructed by accumulating sampled versions of a modulated window transform. The

result in synthesis is then the sum of sinusoids given in Equation (2.102). To synthesize a

sum of real sinusoids, the K-bin spectrum can be added to a conjugate-symmetric version

of itself prior to the IDFT; note that the window b[n] is assumed real.

As discussed in the previous section, the window transform is represented using

a spectral motif. These motifs are modulated according to the partial frequencies from

the analysis, and weighted according to the partial amplitudes and phases. The approx-

imations made in the motif representation lead to some errors in the synthesis, though;

namely, the motifs for each partial do not exactly correspond to modulated versions of

b[n], so the synthesized segment is not exactly a windowed sum of sinusoids. This error

can be made negligible, however, by choosing the window appropriately. Noting that the

window b[n] is purely a byproduct of the spectral construction, and that it is not necessar-

ily the window used in the sinusoidal analysis, it is evident that the design of b[n] is not

governed by reconstruction conditions or the like. Rather, b[n] can be chosen such that

its energy is highly concentrated in its main spectral lobe; then, neglecting the sidelobes

does not introduce substantial errors. Other considerations regarding the design of b[n]

will be indicated in the next section.

Overlap-add synthesis and parameter interpolation

Given a series of short-time spectra constructed from sinusoidal analysis data as

described above, a sinusoidal reconstruction can be carried out by inverse transforming

the spectra to create a series of time-domain segments and then connecting these segments

with an overlap-add process. This process has distinct rami�cations regarding the interpo-

lation of the partial parameters. Whereas in time-domain synthesis the frame-rate data is

explicitly interpolated to create sample-rate amplitude and phase tracks, in this approach

the interpolation is carried out implicitly by the overlap-add. For reasons to be discussed,

it is important to note that the overlap-add can be generalized to include a second window

v[n] in addition to b[n]; the resultant window will be denoted by t[n] = b[n]v[n]. Assuming

t[n] is of length N and a stride of L = N=2 is used for the OLA, the synthesis of a single

partial for one overlap region can be expressed as

t[n]A0e
j(!0n+�0) + t[n� L]A1e

j(!1(n�L)+�1); (2.104)
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where the subscripts 0 and 1 are frame indices, and the subscript q has been dropped for

the sake of neatness; the o�set of L in the second term serves to adjust its time reference

to the start of the window t[n�L]. The contributions from the two frames can be coupled

into a single magnitude-phase expression; the amplitude evolution of the magnitude-phase

form is given by

A[n] =
q
A2
0t[n]

2 + A2
1t[n� L]2 + 2A0A1t[n]t[n� L] cos [(!0 � !1)n+ !1L+ �0 � �1]

(2.105)

and the phase is

�[n] = arctan

�
A0t[n] sin(!0n+ �0) + A1t[n � L] sin(!1n� !1L+ �1)

A0t[n] cos(!0n+ �0) + A1t[n � L] cos(!1n� !1L + �1)

�
: (2.106)

The region where these functions apply is n 2 [L;N ], namely the second half of the window

t[n] and the �rst half of t[n� L].

The OLA interpolation functions are clearly more complicated than the low-

order polynomials used in time-domain synthesis. The complications arise because the

amplitude and frequency evolution are not decoupled as in the time-domain case. The

reconstruction in the overlap region is a sum of two sinusoids of di�erent amplitudes

and frequencies; these are di�erent since the sinusoidal parameters change from frame to

frame for evolving signals. In the OLA interpolation, this parameter di�erence results in

amplitude distortion due to the beating of the di�erent frequencies; furthermore, it results

in a transcendental phase function. The parameter interpolation functions in OLA are

dealt with further in Section 2.5.2. Here, the discussion will be limited to choosing the

synthesis window t[n]. This choice will be motivated by adhering to the case of slow signal

evolution, where the parameters do not change drastically from one synthesis frame to the

next; speci�cally, the treatment will adhere to the limiting case in which the frequency

parameter is assumed constant across frames: !0 = !1. This heuristic, coupled with

the phase-matching assumptions to be discussed later, leads to a simpli�cation in the

amplitude interpolation:

A[n] = A0t[n] +A1t[n� L]: (2.107)

If t[n] is chosen to be a triangular window of length N , this overlap-add sum provides linear

amplitude interpolation as shown in Figure 2.15. This feature is desirable since it enables

the frequency-domain synthesizer to perform similarly to the time-domain method while

taking advantage of the computational improvements that result from using the IFFT for

synthesis [102, 132].

For the overall OLA window t[n] to be a triangular window, the hybrid window

v[n] = t[n]=b[n] must be applied to the IDFT output prior to overlap-add. Thus, the quo-

tient v[n] = t[n]=b[n] must be well-behaved in order for the synthesis to be robust. While

v[n] is theoretically a perfect reconstruction window for this OLA process, �nite precision
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Figure 2.15: Overlap-add with a triangular window provides linear amplitude in-

terpolation if the partial frequencies in adjacent frames are equal. Plot (a) shows

a triangular-windowed partial of amplitude 1 in synthesis frame i, plot (b) shows a

partial of amplitude 2 in synthesis frame i+1, and plot (c) shows the linear amplitude

interpolation resulting from overlap-add of the two frames.

e�ects may lead to signi�cant errors in the reconstruction if v[n] has discontinuities due

to zeros in b[n], for instance. Example of such hybrid windows are given in Figure 2.16

for the case of a Hanning window, a Hamming window, and a Blackman-III window [122];

this shows that a Hanning window is actually unsuitable for this application given the

discontinuities at the edges of the hybrid window.

Frequency-domain synthesis and the STFT

It was shown in Section 2.2.1 that the STFT synthesis can be interpreted as

an inverse Fourier transform coupled with overlap-add process. Likewise, the IFFT/OLA

process in the frequency-domain synthesizer can be interpreted as an STFT synthesis �lter

bank. This point of view leads to yet another variation of the block diagrams given in

Figures 2.6 and 2.7. In this interpretation, a parametric model is incorporated across all

of the bands in the analysis bank as in the sinusoidal model of Figure 2.7; this parametric

model includes the sinusoidal analysis and the construction of short-time spectra from

the analysis data. Then, the short-time spectra serve as input to a synthesis �lter bank,

which replaces the oscillator bank used in time-domain sinusoidal synthesis; the �lters in

the bank are given by gk[n] = v[n]ej!kn where v[n] is the hybrid window discussed earlier.

This structural interpretation of the IFFT/OLA synthesizer is depicted in Figure 2.17;

the structure is similar to that used in the STFT modi�cations discussed in Section 2.2.2.
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Figure 2.16: Overlap-add windows in the frequency-domain synthesizer. The plots

in the right column shown t[n]=b[n] when b[n] is a Hanning window, a Hamming

window, and a Blackman-III window, respectively.
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Figure 2.17: Block diagram of frequency-domain synthesis for sinusoidal modeling.

The parametric model includes the sinusoidal analysis and the construction of short-

time spectra from the analysis data. The IFFT/OLA process can be interpreted as

an STFT synthesis �lter bank.



83

2.5.2 Phase Modeling

In the time-domain synthesizer, low-order polynomial models are used to inter-

polate the frame-rate parameters to derive sample-rate amplitude and phase functions;

this interpolation is carried out explicitly for each partial identi�ed by the line tracking

algorithm. In contrast, in the frequency-domain synthesizer the parameter interpolation

is carried out implicitly by the overlap-add process; OLA automatically establishes partial

continuity without reference to any line tracking method. Line tracking is thus only re-

quired for synthesis if a model of continuity is desired for intermediate signal modi�cations

or if the signal is to be reconstructed from the amplitude data only. The latter case is

discussed here.

Magnitude-only reconstruction and amplitude distortion

Compression can be achieved in the sinusoidal model by discarding the phase

data. Such compaction is justi�able in audio applications given the heuristic notion that

the ear is insensitive to phase; high-�delity synthesis can be achieved using only the ampli-

tude and frequency information from the analysis. Such magnitude-only reconstruction,

however, relies on imposing sensible phase models that take the frequency evolution into

account. In the frequency-domain synthesizer, for instance, ignoring phase relationships

in adjacent frames can lead to signi�cant amplitude distortion; consider Equation (2.106)

for the simple case A0 = A1 = 1 with zero phase �0 = �1 = 0:

A[n] =
q
t[n]2 + t[n� L]2 + 2t[n]t[n� L] cos(!1L): (2.108)

The cosine term in this expression can result in highly distorted amplitude envelopes as

shown in Figure 2.18. Note that equal amplitudes leads to a worst case scenario since the

interfering signals can cancel each other exactly at the midway point in the overlap region.

Phase matching

The example in Figure 2.18 shows that neglecting the phase can lead to signi�-

cant distortion in the OLA synthesis; synthesis with zero phase can result in substantial

destructive interference. It is thus necessary to impose a phase model to avoid amplitude

distortion artifacts in the reconstruction. One approach to limiting the destructive inter-

ference is to match the phases of the interfering sinusoids halfway through the overlap

region. This constraint is given by

�1 = �0 + !0

�
3N

4

�
� !1

�
N

4

�
; (2.109)

where N = 2L is the frame size.
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Figure 2.18: Plot (a) shows the ideal amplitude envelope for overlap-add with equal

amplitudes in adjacent frames; the underlying triangular windows are also shown.

Plot (b) shows examples of the amplitude distortion that occurs in the overlap region

due to phase mismatch; this example is speci�cally for the case of frequencies that are

equal in adjacent frames as formulated in Equation (2.105), but the e�ect is general

as discussed in the text. In the plot, the phase mismatch !1L ranges from 0 to �; for

a mismatch of �, the signals cancel exactly at n = 3L=4, halfway through the overlap

region.

If the phase matching speci�ed by Equation (2.109) is used, the amplitude enve-

lope, in the equal-amplitude case, becomes a function of the inter-frame frequency di�er-

ence !0 � !1:

A[n] =

s
t[n]2 + t[n� L]2 + 2t[n]t[n� L] cos

�
(!0 � !1)

�
n� 3N

4

��
: (2.110)

Examples of this amplitude distortion are given in Figure 2.19(a) for j!0 � !1j = ��=N

with � 2 [0; 5] and N = 512; the corresponding overlap-add phase function �[n] is given

for � 2 [0; 1; 5] in Figures 2.19(b,c,d). Note that the amplitude distortion increases as the

frequency di�erence increases and that the phase function is well-behaved, especially for

n = 0, where it is linear as expected, and for n = 1, where the nonlinearity introduced by

the frequency change is not pronounced.

To limit the synthesis amplitude distortion characterized in Equation (2.110) and

Figure 2.19(a), N can be chosen such that frequency di�erences in typical signals do not

lead to signi�cant distortion. If N is chosen such that

max
all frames,

all partials

j!q;i � !q;i+1j � �

N
; (2.111)

the maximum deviation of the envelope from unity will be less than 2% in the worst case

scenario of equal-amplitude partials. Considering this restriction for the case N = 512, a

440Hz partial at a sampling rate of 44:1kHz can double in frequency in about 10 frames,

roughly 60ms, without signi�cant distortion; this rate is suitable for high-quality music

synthesis.
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Figure 2.19: Parameter interpolation in overlap-add with phase matching. The

amplitude distortion in overlap-add is reduced if phase matching is used. If the fre-

quencies in adjacent frames are equal, there is no amplitude distortion and linear

interpolation is achieved. In (a), the amplitude distortion is plotted for inter-frame

frequency di�erences for ��=N , where � 2 [0; 5] and N = 512. The distortion in-

creases as the frequency di�erence increases. In plots (b,c,d), the OLA phase function

is given for various values of � for !0 = 5�=N and �0 = 0; the phase is well-behaved.
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As stated earlier, the OLA process does not require line tracking if the amplitude

and phase data from the analysis are both incorporated in the synthesis. Unlike the time-

domain synthesis, which requires tracks for interpolation, the interpolation in OLA is

carried out without reference to the signal continuity. However, in cases where compression

is achieved by discarding the phase data, it is necessary to use a line tracking algorithm

to relate the partials in adjacent frames so that phase matching can be carried out. As

shown in this section, in synthesis based on magnitude-only representations it is necessary

to incorporate phase modeling to mitigate distortion.

Frequency matching and chirp synthesis

In addition to phase matching, the synthesis frequencies in adjacent frames can be

matched in the overlap region. Such frequency matching can be carried out by synthesizing

chirps in each frame instead of constant-frequency sinusoids; the chirp rates are determined

by a frequency-matching criterion [152, 153]. The caveat in this approach is that the

motif must be adjusted to represent a chirp instead of a partial at a �xed frequency,

which can be done by precomputing a motif for various chirp rates and interpolating in

the precomputed table [152]. Such chirp synthesis, however, has not been shown to be

necessary for synthesis of natural signals, so the added cost of tabulation and interpolation

is not readily justi�ed. Of course, this conclusion depends on the length of the synthesis

windows; if the windows are short enough, the frequency variations from frame to frame

will be accordingly small and will not lead to distortion. In a frequency-domain synthesizer

with windows on the order of 5 ms long, the phase matching described above is su�cient

for removing perceptible amplitude distortion in the reconstruction of natural signals.

In Section 2.3.1, the issue of orthogonality of the synthesis components was dis-

cussed. Orthogonality was argued to be desirable to avoid destructive interaction in the

superposition of components in the signal model; this issue was considered using a geo-

metric framework. Phase modeling can be interpreted in a similar light; considering the

windowed partials in adjacent frames as vectors, the phase matching process aligns these

vectors in the signal space such that they add constructively instead of destructively.

2.6 Reconstruction Artifacts

As discussed in Section 1.5.1, the analysis-synthesis procedure for any signal

model has fundamental resolution limits. In the case of the sinusoidal model, the resolution

is basically limited by the choice of the frame size and the analysis stride. For long

frames, the time resolution is inadequate for capturing signal dynamics such as attack

transients; for short frames, on the other hand, the frequency resolution is degraded

such that identi�cation of sinusoidal components in the spectrum becomes di�cult. The
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sinusoidal model is thus governed by the same fundamental resolution limits as any time-

frequency representation.

In compact models, limitations in time-frequency resolution tend to result in

artifacts in the reconstruction. As a result, the analysis-synthesis process yields a nonzero

residual. The components of the residual include errors made by the analysis or the

synthesis as well as artifacts resulting from basic shortcomings in the model. In the

sinusoidal model, for instance, such errors occur if the original signal does not behave in

the manner speci�ed by the parameter interpolation used in the synthesis. In addition to

the noiselike components discussed in Section 2.1.2, then, the residual in the sinusoidal

model contains such model artifacts.

In Section 1.1.2, the perceptual importance of preserving note attacks in music

synthesis was discussed. With this in mind, the sinusoidal model artifact that will be

focussed on here is pre-echo distortion of signal onsets. This issue was introduced in the

example of Figure 2.8; additional examples involving simple synthetic signals are given in

Figure 2.20.

The pre-echo depicted in Figures 2.8 and 2.20 is generated by the following mech-

anism. Before the signal onset, there is an analysis frame in which the signal is not present

and no sinusoids are found. For the frame in which the signal onset occurs, various spec-

tral peaks are identi�ed and modeled as sinusoids. The line tracking algorithm interprets

these partials as births and forms a track connecting them to zero-amplitude partials in

the previous frame, where no spectral peaks were detected. In the reconstruction, then,

each of the partials in the onset is synthesized with a linear amplitude envelope as spec-

i�ed by the parameter interpolation model. The result is that the onset is spread into

the preceding frame. In general, the birth of a partial in any given frame is delocalized in

this manner; in an attack, however, the e�ect is dramatic because all of the partials are

treated in this way simultaneously.

The linear amplitude envelope for a partial onset is clearly visible in the single

sinusoid example of Figure 2.20(a,b,c). This example shows not only the delocalization

of the attack, but also the introduction of a signi�cant artifact in the residual. Figure

2.20(d,e,f) shows the pre-echo in the sinusoidal model of a harmonic series with three terms;

this illustration is given as a precursor to a more complex example involving a natural

signal, namely the attack of a saxophone note given in Figure 2.21. The delocalization of

the attack degrades the realism of the synthesis, and furthermore introduces an artifact

in the residual. These issues will be discussed in detail in the following two chapters;

Chapter 3 presents multiresolution extensions of the sinusoidal model intended to improve

the localization of transients, and Chapter 4 discusses modeling of the residual. It should

be noted here that the frame-rate parameters derived by the sinusoidal analysis can be

interpolated to a di�erent rate to achieve data reduction or to match the rate required

by the synthesis engine; this process, however, results in additional artifacts due to the
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Figure 2.20: Pre-echo in the sinusoidal model for two synthetic signals: (a) a simple

sinusoid, and (b) a harmonic series. Plots (c) and (d) depict the delocalized recon-

structions, and plots (e) and (f) show the respective residuals. Note the pre-echoes

and the artifacts near the onset times. frame size of 1024

implicit smoothing of the interpolation.

One approach for preventing reconstruction artifacts is the method described in

[101], which accounts for the attack problem by separately modeling the overall amplitude

envelope of the signal. The amplitude envelope is imposed on the sinusoidal reconstruction

to improve the time localization. This representation, however, is nonuniform in that

it relies on independent parametric representations of the envelope and the sinusoidal

components. Chapter 3 discusses methods that improve the localization without altering

the uniformity of the representation.

2.7 Signal Modi�cation

Modi�cations based on the short-time Fourier transformwere discussed in Section

2.2; the di�culty of modi�cations in such a nonparametric representation was one of

the motivations for revamping the STFT into the parametric sinusoidal model. Here,

modi�cations based on the sinusoidal model are dealt with more explicitly. Speci�cally,

time-scaling, pitch-shifting, and cross-synthesis are considered. The treatment here is quite

general; formalized details about modi�cations in a speci�c version of the sinusoidal model

can be found in the literature [93, 101, 154, 94]. Note that the point of this section is not

to introduce novel signal modi�cations, but rather to emphasize that such modi�cations

can be easily realized using the sinusoidal model because of its parametric nature.



89

Saxophone
onset

Synthesis
with

pre-echo

Residual

Time (samples)

0 500 1000 1500 2000 2500 3000 3500
−1

0

1
(a)

0 500 1000 1500 2000 2500 3000 3500
−1

0

1
(b)

0 500 1000 1500 2000 2500 3000 3500
−1

0

1
(c)

Figure 2.21: Pre-echo in the sinusoidal model for a saxophone note: (a) the original,

(b) the reconstruction, and (c) the residual.

2.7.1 Denoising and Enhancement

The application of denoising deserves mention here inasmuch as the denoising

process can be viewed as a signal modi�cation. As discussed, the sinusoidal model is

ine�ective for representing broadband processes. This shortcoming motivates the inclusion

of the stochastic component proposed in [36] to account for musically relevant stochastic

features such as breath noise in a ute or bow noise in a violin; these must be incorporated

if realistic synthesis is desired. This approach assumes that the original signal is a clean

recording of a natural instrument. In cases where the original is a noisy version, the

residual in the sinusoidal model basically contains both the noise and the desired stochastic

signal features; unless these two noise processes can be somehow separated, this type of

residual is not useful for enhancing the signal realism. In these cases, it is generally more

desirable to simply not incorporate the residual in the synthesis; in this way, the signal

can be denoised via sinusoidal modeling. In addition to denoising, the sinusoidal model

has been used for speech enhancement and dynamic range compression. These topics are

discussed in the literature [155, 99]

2.7.2 Time-Scaling and Pitch-Shifting

In Section 1.5.1, it is proposed that signal modi�cations can be carried out by

modifying the components of a model of the signal. The sinusoidal model is particularly

amenable to this approach because the modi�cations of interest are easy to carry out on

sinusoids. For instance, it is simple to increase or decrease the duration of a sinusoid, so if

a signal is modeled as a sum of sinusoids, it becomes simple to carry out time-scaling on
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the entire signal. One caveat to note is that in some time-scaling scenarios it is important

to preserve the rate of variation in the amplitude envelope of the signal, i.e. the signal

dynamics, but this can be readily achieved. This issue is related to the time-scaling of

nonstationary signals, in which some signal regions should be time-scaled and some should

be left unchanged; for example, for a musical note, which can be most simply modeled as

an attack followed by a sustain, time-scale modi�cations are most perceptually convincing

if the time-scaling is carried out only for the sustain region and not for the attack.

Time-scale modi�cations can also be carried out using approaches traditionally

referred to as nonparametric [90]. These involve either STFT magnitude modi�cation

followed by phase estimation as discussed earlier, or analyzing the signal for regions,

e.g. pitch periods, which can be spliced out of the signal for time-scale compression or

repeated for time-scale expansion. Computational cost and quality comparisons between

such approaches and modi�cations using the sinusoidal model have not been formally

presented, but this is an area of growing interest in the literature and in the electronic

music industry [156].

The sinusoidal model allows a much wider range of modi�cations than standard

music synthesizers such as samplers, where the signal is constructed from stored sound

segments and modi�cations are limited by the sample-based representation. For instance,

time-scaling in samplers is carried out by upsampling and interpolating the stored signal

segments prior to synthesis, but this process is accompanied by a pitch shift. The sinusoidal

model can readily achieve time-scaling without pitch-shifting, or the dual modi�cation of

pitch-shifting without time-scaling. With regards to pitch modi�cation, a simple form

can be carried out by scaling the frequency parameters prior to synthesis, but in voice

applications this approach results in unnatural reconstructed speech. Natural pitch trans-

position can be achieved by interpreting the sinusoidal parameter as a source-�lter model

and carrying out formant-corrected pitch-shifting, which is discussed below.

Formant-corrected pitch-shifting

The sinusoidal model parameterization includes a description of the spectral en-

velope of the signal. This spectral envelope can be interpreted as as a time-varying �lter

in a source-�lter model in which the source is a sum of unweighted sinusoids. In voice

applications, the �lter corresponds to the vocal tract and the source represents the glottal

excitation. This analogy allows the incorporation of an important physical underpinning,

namely that a pitch shift in speech is produced primarily by a change in the rate of

glottal vibration and not by some change in the vocal tract shape or its resonances. To

achieve natural pitch-shifting of speech or the singing voice using the sinusoidal model,

then, the spectral envelope must be preserved in the modi�cation stage so as to preserve

the formant structure of the vocal tract. The pitch-scaling is carried out by scaling the



91

frequency parameters of the excitation sinusoids and then deriving new amplitudes for

these pitch-scaled sinusoids by interpolating from the spectral envelope. This approach

allows for realistic pitch transposition.

Spectral manipulations

In addition to formant-corrected pitch-shifting, the source-�lter interpretation

of the sinusoidal model is useful for a variety of spectral manipulations. In general, any

sort of time-varying �ltering can be carried out by appropriately modifying the spectral

envelopes in the parametric sinusoidal model domain. For instance, the formants in the

spectral envelope can be adjusted to yield gender modi�cations; by moving the formants

down in frequency, a female voice can be transformed into a male voice, and vice versa

[157]. Also, the amplitude ratios of odd and even harmonics in a pitched signal can be

adjusted. These modi�cations are related to methods known as cross-synthesis, which is

considered further in the following section.

2.7.3 Cross-Synthesis and Timbre Space

Time-scaling and pitch-shifting modi�cations are operations carried out a single

original signal; the term cross-synthesis refers to methods in which a new signal is created

via the interactions of two or more original signals. A common example of cross-synthesis

is based on source-�lter models of two signals; as exempli�ed in the previous section, useful

mixture signals can be derived by using the source from one model and the �lter from

the other, for instance exciting the vocal tract �lter estimated from a male voice by the

glottal source estimated from a female voice. Such cross-synthesis has been experimented

with in music recording and performance; one of the early examples of cross-synthesis in

popular music, mentioned in Chapter 1, is the cross-synthesized guitar in [54], in which

the signal from an electric guitar pickup is used as an excitation for a vocal tract �lter,

resulting in a guitar sound with a speech-like formant structure, the percept of which is a

\talking" guitar.

Parametric representations enable a wide class of cross-synthesis modi�cations.

This notion is especially true in the sinusoidal model since the parameters directly indicate

musically important signal qualities such as the pitch as well as the shape and evolution of

the spectral envelope. One immediate example of a modi�cation is interpolation between

the sinusoidal parameters of two sounds; this yields a hybrid signal perceived as a coherent

merger of the two original sounds, and not simply a cross-fade or averaging. This type

of modi�cation has recently received considerable attention for the application of image

morphing, which is carried out by parameterizing the salient features of an original image

and a target image (such as edges or prominent regions) and creating a map between

these parametric features that can be traversed to synthesize a morphed image [158].
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Such morphing has also been used in the audio domain to carry out modi�cations based

on the parametric representation provided by the spectrogram, i.e. the squared magnitude

of the STFT [129].

In the �elds of psychoacoustics and computer music, it has been of interest to

categorize instrumental sounds according to their location in a perceptual space. For

instance, the clarinet and the bassoon would be fairly close together in this space, while the

piano or guitar would not be nearby. Such categorization is referred to asmultidimensional

scaling [35, 34, 108]. It has been observed that timbre, which corresponds loosely to

the evolution and shape of the spectral envelope, is an important feature in subjective

evaluations of the similarity of sounds; if two sounds have the same timbre, they are

generally judged to be similar [108]. Because the parameters of the sinusoidal model

capture the behavior of the spectral envelope, i.e. the timbre of the sound, the sinusoidal

representations of various sounds can be used to situate the sounds in a timbre space,

which can then be explored in musically meaningful ways by interpolating between the

parameter sets. This interpretation of a parametric timbre space as a musical control

structure has been the focus of recent work in computer music [108].

2.8 Conclusion

In this chapter, the nonparametric short-time Fourier transform was discussed

extensively. It was shown that the STFT can be interpreted as a modulated �lter bank

in which the subband signals can be likened to the partials in a sinusoidal signal model.

It was further shown that more compact models can be achieved by parameterizing these

subband signals to account for signal evolution. This idea is fundamental to the sinusoidal

model, which can be viewed as a parametric extension of the STFT; incorporating such

parameterization leads to signal adaptivity and compact models. Various analysis issues

for the sinusoidal model were considered, and both time-domain and frequency-domain

synthesis methods were discussed. Since the sinusoidal model is parametric, any of these

analysis-synthesis methods inherently introduce some reconstruction artifacts, but these

come with the bene�ts of compaction and modi�cation capabilities. Minimization of such

artifacts by multiresolution methods is discussed in Chapter 3, and modeling of the residual

is examined in Chapter 4.
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Chapter 3

Multiresolution Sinusoidal Modeling

As indicated in the previous chapter, the standard sinusoidal model has di�-

culty modeling broadband processes { both noiselike components and time-localized tran-

sient events such as attacks. Thus, such broadband processes appear in the residual of the

sinusoidal analysis-synthesis. A perceptual model for noiselike components will be pre-

sented in Chapter 4; that representation, however, is inadequate for time-localized events

such as attack artifacts, so it is necessary to consider ways to prevent these events from

appearing in the residual. In this chapter, the sinusoidal model is reinterpreted in terms

of expansion functions; the structure of these expansion functions both indicates why the

model breaks down for time-localized events and suggests methods to improve the model

by casting it in a multiresolution framework. Two approaches are considered: applying the

sinusoidal model to �lter bank subbands, and using signal-adaptive analysis and synthesis

frame sizes. These speci�c methods are discussed after a consideration of multiresolution

as exempli�ed by the discrete wavelet transform.

3.1 Atomic Interpretation of the Sinusoidal Model

The partials in the sinusoidal model can be interpreted as expansion functions

that comprise an additive decomposition of the signal; this perspective provides a concep-

tual framework for several considerations of sinusoidal modeling that have been presented

in the literature [97, 159, 160]. With this notion as a starting point, the sinusoidal model

is here interpreted as a time-frequency atomic decomposition. This interpretation sheds

some light on the fundamental modeling issues, and indicates a connection between sinu-

soidal modeling and granular analysis-synthesis.

As discussed in the previous chapter, in the time-domain synthesis approach

the partials are generated at the synthesis stage by interpolating the frame-rate analysis

parameters using low-order polynomials. Figure 3.1 depicts a typical partial Aq[t] cos�q[t]

synthesized using linear amplitude interpolation and cubic total phase as formulated in
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Figure 3.1: A typical partial in the sinusoidal model (a) with a linear amplitude

envelope (b) and cubic total phase (c).

[57]. In the next section, this example is used to indicate the aforementioned granular

interpretation of the sinusoidal model.

The atomic interpretation of the sinusoidal model stems from considering the

frame-to-frame nature of the approach. The model given in Equation (2.1), namely

x[n] � x̂[n] =
Q[n]X
q=1

pq[n] =
Q[n]X
q=1

Aq[n] cos�q [n]; (3.1)

can be recast into an expression that incorporates the synthesis frames, which are indexed

by the subscript j:

x[n] � x̂[n] =
Q[n]X
q=1

pq[n] =
X
j

Q[n]X
q=1

pq;j [n] =
X
j

Q[n]X
q=1

Aq;j [n] cos�q;j [n]; (3.2)

where pq;j [n] denotes the time-limited portion of the q-th partial that corresponds to the

j-th synthesis frame. The time-domain sinusoidal synthesis can thereby be viewed as a

concatenation of non-overlapping synthesis frames, each of which is a sum of localized

partials. Each of the components pq;j [n] in Equation (3.2) is time-localized to a synthesis

frame and frequency-localized according to the function �q;j [n]. Thus, a sinusoidal model

of a signal can be interpreted as an atomic decomposition given by

x[n] �
X
q;j

pq;j [n]; where pq;j [n] = Aq;j [n] cos�q;j [n] (3.3)

as indicated in Equation (3.2). For the speci�c interpolation models discussed in Section

2.4.2, the sinusoidal model derives a signal expansion in terms of atoms with linear am-

plitude and cubic phase. An example of this atomic decomposition is depicted in Figure
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Figure 3.2: The partial depicted in Figure 3.1 can be decomposed into these linear

amplitude, cubic phase time-frequency atoms. This decomposition suggests an inter-

pretation of the sinusoidal model as a method of granular analysis-synthesis in which

the grains are connected in an evolutionary fashion.

3.2; the atoms correspond to the partial of Figure 3.1. Note that the atoms are generated

using parameters extracted from the signal and are thus signal-adaptive. In this sense,

the sinusoidal model can be interpreted as a method of granular analysis-synthesis; by

its parametric nature, it overcomes the limitations of the STFT or phase vocoder with

respect to granulation.

In this atomic interpretation of the sinusoidal model, it should be noted that the

atoms are connected from frame to frame in accordance with a notion of signal continu-

ity or evolution. This connectivity results in partials that persist meaningfully in time.

The atoms are not disparate events in time-frequency but rather interlocking pieces of a

cohesive whole.

3.1.1 Multiresolution Approaches

The atomic interpretation of the sinusoidal model indicates why the model has

di�culties representing transient events such as note attacks. Each atom in the decom-

position spans an entire synthesis frame; the time support or span is the same for every

atom. The result of this �xed resolution is that events that occur on short time scales

are not well-modeled; this problem is analogous to the di�culty that a Fourier transform

has in modeling impulsive signals. In addition to the limitations that result from the

�xed time support of the atoms, however, the sinusoidal model also has time-localization

limitations because of the frame-to-frame interpolation of the partial parameters as dis-

cussed in Section 2.6. The sinusoidal model thus delocalizes transient events in two ways:

a transient is spread across a synthesis frame because of the �xed time resolution of the

model expansion functions; furthermore, a transient bleeds into neighboring frames due

to the interpolation process.

The time-localization shortcomings of the sinusoidal model can be remedied by

applying a multiresolution framework to the model. Fundamentally, such approaches are

motivated by the atomic interpretation of the model: atoms with constant time support
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are inadequate for representing rapidly varying signals, so it is necessary to admit atoms

with a variety of supports into the decomposition. To this point it has been implied that

shorter atoms are of interest, but it should be noted that in some cases it is also useful to

lengthen the time support of the atoms. In regions where a signal is well-modeled by a

sum of sinusoids, lengthening the frames improves the frequency resolution of the analysis

and can thus improve the model; furthermore, long frames are useful for coding e�ciency.

Incorporating a diverse set of time supports allows for exible tradeo�s between time and

frequency resolution.

As in other sections of this thesis, the focus in this chapter will be on time reso-

lution and pre-echo distortion. Pre-echo results from both of the localization limitations:

within a frame and across frames. The �rst issue is addressed by using short atoms di-

rectly at an attack, and the latter by incorporating shorter atoms in the neighborhood to

limit the spreading.

There are two distinct approaches by which expansion functions with a variety of

time supports can be admitted into the decomposition. In methods based on �lter banks,

subband �ltering is followed by sinusoidal modeling of the channel signals with long frames

for low-frequency bands and short frames for high-frequency bands. In time-segmentation

methods, the frame size is varied dynamically based on the signal characteristics; short

frames are used near transients and long frames are used for regions with stationary

behavior. These methods are discussed in Sections 3.3 and 3.4, respectively.

The multiresolution sinusoidal models to be considered incorporate the time-

frequency localization advantages of wavelet-based approaches while preserving the ex-

ibility provided by the parametric nature of the sinusoidal model. Since multiresolution

and wavelets are intrinsically related, these topics are examined in the next section as a

prerequisite to further discussion of multiresolution methods in sinusoidal modeling.

3.2 Multiresolution Signal Decompositions

The basic concept of multiresolution was discussed in Section 1.5.1. Here, the

issue is developed further; this development is based on the discrete wavelet transform,

which is inherently connected to the notion of multiresolution [2, 79].

3.2.1 Wavelets and Filter Banks

Wavelets and multiresolution are intrinsically related. For this chapter, wavelets

serve as a framework for considering multiresolution as well as the relationship between

atomic and �lter bank models; an understanding of the wavelet transform will also be

useful for future considerations, particularly those of Chapter 5. The focus here will be on

the discrete wavelet transform (DWT) and not the related continuous wavelet transform
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Figure 3.3: Critically sampled perfect reconstruction two-channel �lter banks having

this structure can be used to derive the discrete wavelet transform. In the literature,

such a structure is often depicted with the simple line drawing shown. In many

applications of such structures, h0[n] and h1[n] are respectively a lowpass and a

highpass �lter; likewise for g0[n] and g1[n].

(CWT); for a treatment of the CWT, the reader is referred to [2]. This treatment is not

intended as an exhaustive review of wavelet theory but rather as a discussion of wavelets

with a view to understanding multiresolution and related signal modeling issues. The

treatment is restricted primarily to conceptual matters here; various mathematical details

are provided in Appendix A.

Two-channel critically sampled perfect reconstruction �lter banks

The discrete wavelet transform can be derived in terms of critically sampled

two-channel perfect reconstruction �lter banks such as the one shown in Figure 3.3. The

condition for perfect reconstruction can be readily derived in terms of the z-transforms of

the signals and �lters; details of the derivation are given in Appendix A. The resulting

constraints on the �lters can be summarized as:

Gi(z)Hj(z) + Gi(�z)Hj(�z) = 2�[i� j]: (3.4)

In the next section, this condition leads to an interpretation of the �lter bank in terms of

a biorthogonal basis.

Perfect reconstruction and biorthogonality

By manipulating the perfect reconstruction condition in (3.4), it can be shown

that a perfect reconstruction �lter bank derives a signal expansion in a biorthogonal basis;

the basis is related to the impulse responses of the �lter bank. This relationship is of
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particular interest in that it establishes a connection between the �lter bank model and

the atomic model that underlie the discrete wavelet transform.

A full mathematical treatment of this issue is given in Appendix A; the result is

simply that the perfect reconstruction condition given in Equation (3.4) can be expressed

in the time domain as

hgi[k]; hj[2n� k]i = �[n]�[i� j]; (3.5)

or equivalently as

hhi[k]; gj[2n� k]i = �[n]�[i� j]: (3.6)

The above expressions show that the impulse responses of the �lters, with one of the

impulse responses time-reversed as indicated, constitute a pair of biorthogonal bases for

discrete-time signals (with �nite energy), namely the space l2(z); the time shift of 2n

in the time-reversed impulse response arises because of the subsampling of the channel

signals. Note that real �lters have been implicitly assumed; for complex �lters, the �rst

terms in the inner product expressions would be conjugated. Also note that the analysis

and synthesis �lter banks are mathematically interchangeable; this symmetry is analogous

to the equivalence of left and right matrix inverses discussed in Section 1.4.1.

The result given above indicates that perfect reconstruction and biorthogonality

are equivalent conditions. In the next section, this insight is used to relate �lter banks

and signal expansions.

Interpretation as a signal expansion in a biorthogonal basis

Since the impulse responses of a perfect reconstruction �lter bank are related

to an underlying biorthogonal basis, it is reasonable to consider the time-domain signal

expansion carried out by the two-channel �lter bank. Using the notation given in Figure

3.3, the output of the �lter bank can be expressed as follows; more details of the derivation

are given in Appendix A:

x̂[n] = x̂0[n] + x̂1[n] (3.7)

=
X
k

y0[k]g0[n� 2k] +
X
k

y1[k]g1[n� 2k] (3.8)

=
X
k

hx[m]; h0[2k �m]i g0[n� 2k] +
X
k

hx[m]; h1[2k�m]i g1[n� 2k] (3.9)

=
2X
i=1

X
k

hx[m]; hi[2k�m]igi[n� 2k]: (3.10)

Introducing the notation

gi;k[n] = gi[n� 2k] and �i;k = hx[m]; hi[2k �m]i; (3.11)
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the signal reconstruction can be clearly expressed as an atomic model:

x̂[n] =
X

i2f1;2g;k
�i;kgi;k[n]: (3.12)

The coe�cients in the atomic decomposition are derived by the analysis �lter bank, and

the expansion functions are time-shifts of the impulse responses of the synthesis �lter bank.

As noted earlier, the �lter banks are interchangeable; the signal could also be written as

an atomic decomposition based on the impulse responses hi[n]. In any case, the atoms in

the signal model correspond to the synthesis �lter bank.

It has thus been shown that �lter banks compute signal expansions. Indeed,

any critically sampled perfect reconstruction �lter bank implements a signal expansion

in a biorthogonal basis, and any �lter bank that implements a biorthogonal expansion

provides perfect reconstruction; biorthogonality and perfect reconstruction are equivalent

conditions [2]. At this point, however, the notion of multiresolution has not yet entered the

considerations; the atoms in the decomposition of Equation (3.12) do not have multireso-

lution properties. In the next section, it is shown that multiresolution can be introduced

by iterating two-channel �lter banks. Such iteration is fundamental to implementations

of wavelet packets and the discrete wavelet transform.

Tree-structured �lter banks and wavelet packets

A wide class of signal transforms, known as wavelet packets, are based on the

observation that a perfect reconstruction �lter bank with a tree structure can be derived

by iterating two-channel �lter banks in the subbands. Examples of such tree-structured

�lter banks are depicted in Figure 3.4. For this treatment, it is important to note that the

�lters H0(z) and H1(z) are generally a lowpass and a highpass, respectively, and likewise

for G0(z) and G1(z); this lowpass-highpass �ltering in the constituent two-channel �lter

banks leads to spectral decompositions such as those depicted in Figure 3.4 for the given

tree-structured �lter banks. Frequency-domain interpretations of aliasing cancellation and

signal reconstruction based on this lowpass-highpass structure are given in [2, 20].

Arbitrary tree-structured �lter banks that achieve perfect reconstruction can be

constructed by iterating two-channel perfect reconstruction �lter banks; indeed, the �lter

trees can be made to adapt to model nonstationary input signals while still satisfying

the reconstruction constraint [60]. In this treatment, the primary issue of interest is the

manner in which iteration of two-channel subsampled �lter banks leads to multiresolution.

The basic principle is that a two-channel �lter bank splits its input spectrum into two

bands and the ensuing downsampling spreads each band such that the subband signals

are again full band (considered at the subsampled rate); this successive halving leads

to the spectral decompositions given in Figure 3.4 for the speci�c �lter banks shown.

The spectral decompositions indicate multiresolution in frequency, which is inherently
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Figure 3.4: Tree-structured �lter banks that satisfy the perfect reconstruction con-

dition can be constructed by iterating two-channel perfect reconstruction �lter banks.

Such iteration is fundamental to the discrete wavelet transform as well as arbi-

trary wavelet packet �lter banks. These iterated �lter banks provide multiresolution

analysis-synthesis as suggested by the indicated spectral decompositions. Note that

the discrete wavelet transform derives an octave-band decomposition of the signal.
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coupled to multiresolution in time by the principle that to increase frequency resolution,

it is necessary to decrease time resolution. The connection is immediate: the narrowest

spectral bands correspond to the deepest levels of iteration; each iteration involves a

convolution, which spreads out the time resolution of the overall branch, so the subbands

that are most localized in frequency are least localized in time.

The brief description of multiresolution in tree-structured �lter banks suggests

why such methods might prove useful for processing arbitrary signals, especially if the �lter

bank is made adaptive; application examples include compression [41, 60] and spectral

estimation [161]. Rather than focusing on such arbitrary tree-structured �lter banks here,

however, additional developments of the multiresolution concept will be formulated for

the speci�c case of the discrete wavelet transform. As noted in Figure 3.4, the discrete

wavelet transform corresponds to successive iterations on the lowpass branch.

The discrete wavelet transform

The discrete wavelet transform is perhaps the most common example of a tree-

structured �lter bank. It has been widely explored in the literature [2, 20]. Here, the

discussion is limited to general signal modeling issues.

The discrete wavelet transform is constructed by successive iterations on the

lowpass branch. Given that H0(z) and H1(z) are respectively a lowpass and a highpass

�lter, the �ltering operations can be readily interpreted. The �rst stage splits the signal

into a highpass and lowpass band, each of which is spread to full band by the subsequent

downsampling. Given this spreading that accompanies downsampling, the second stage

can be viewed as simply splitting the lowpass portion of the original signal into halves.

Each stage of the discrete wavelet transform thus splits the lowpass spectrum from the

previous stage; this results in an octave-band decomposition of the signal, which is depicted

in an ideal sense in 3.4.

As noted in the previous section, the deepest levels of iteration correspond to

narrow frequency bands that necessarily lack time resolution. This tradeo� is very nat-

ural for octave-band decompositions. Low frequency signal components change slowly in

time, so time resolution is not important. On the other hand, high frequency compo-

nents are characterized by rapid time variations; to track such variations from period to

period, for instance, time localization is important. This is exactly the time-frequency

tradeo� provided by the discrete wavelet transform. Since the auditory system exhibits

such frequency-dependent resolution, the wavelet approach has been considered for the

application of auditory modeling [162, 163, 164].

The time-frequency localization in a given subband depends on its depth in the

�lter bank tree. A mathematical treatment of this is most easily carried out for a spe-

ci�c example. Consider a wavelet �lter bank tree of depth three. By interchanging �lters
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Figure 3.5: A tree-structured wavelet �lter bank with three stages of iteration can

be manipulated into this equivalent form.

and downsamplers in the analysis bank and interchanging �lters and upsamplers in the

synthesis bank, a depth-three discrete wavelet transform �lter bank based on the �lters

G0(z); G1(z); H0(z), and H1(z) can be recast into the form shown in Figure 3.5; here,

the deepest branches of the wavelet tree are now the �lters with the most multiplicative

components and the highest downsampling factors. The frequency-domain multiplication

serves to narrow the frequency response and improve the frequency localization; the cor-

responding time-domain convolution serves to broaden the impulse response and decrease

the time resolution. This spreading is shown in Figure 3.6 for a type of Daubechies wavelet

that will be used for all of the wavelet-based simulations in this thesis; the functions shown

are the impulse responses of the synthesis �lters in Figure 3.5. Note that the subband sig-

nals in the wavelet �lter bank are at di�erent sampling rates; appropriately, the narrowest

bands have the lowest sampling rate. Furthermore, it is important to keep in mind that

the synthesis �lter bank is required for aliasing cancellation.

Atoms and �lters

Earlier, the atomic model of the subband signals in a two-channel �lter bank was

derived. A similar model can be arrived at for the discrete wavelet transform [2]. The

transform can thus be interpreted as a �lter bank or as an atomic decomposition; there is

a similar duality here as in the interpretations of the STFT discussed in Section 2.2.1, and

the interpretations are connected by way of the tiling diagram. The two interpretations

are further linked by a notion of evolution in that a subband signal is derived as an

accumulation of atoms corresponding to the impulse responses of the synthesis �lter in

that band. The evolution, however, is not signal-adaptive as in the sinusoidal model.
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Figure 3.6: Impulse responses of a wavelet synthesis �lter bank for a type of

Daubechies wavelet. The expansion functions in the corresponding wavelet decom-

position are these impulse responses and their shifts by 2, 4, 8, and 8 as indicated by

the downsampling and upsampling factors in the �lter bank of Figure 3.5.

3.2.2 Pyramids

Multiresolution decompositions can be derived using pyramid structures such as

the one in Figure 3.7. These were originally introduced for multiresolution image process-

ing [165]; the relationship to wavelets was realized shortly thereafter. The decomposition

is again based on the idea of successive re�nement; the signal is modeled as a sum of a

coarse version (the top of the pyramid) plus detail signals.

There are several interesting things to note about the pyramid approach. Most

importantly, perfect reconstruction is immediate; there are no elaborate constraints. This

ease of perfect reconstruction is related to the fact that the pyramid decomposition is not

critically sampled. Note that the coarse signal estimate derived at the highest level of the

pyramid is analogous to the output of the lowest branch of a wavelet �lter bank tree, but

that the detail signals in the pyramid scheme are at higher rates than the corresponding

detail signals in a wavelet �lter bank; the output signal at the lowest level of the pyramid

is itself full rate. For the pyramid in Figure 3.7, the representation is oversampled by a

factor of 1 + 1
2 +

1
4 = 7

4 ; for continued iterations, the oversampling factor asymptotically

approaches two. Along with simplifying perfect reconstruction, this oversampling results

in added robustness to quantization noise [2]. Note also that the synthesis �lters are

included in the analysis; the result is an analysis-by-synthesis process that can be made to

resolve some of the di�culties in wavelet �lter banks. For instance, a pyramid-structured

�lter bank can be de�ned such that the subband signals are free of aliasing [166, 167].
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Figure 3.7: A pyramid structure for multiresolution �ltering. This diagram depicts

the analysis �lter bank of the pyramid approach, which actually incorporates the syn-

thesis process to ensure perfect reconstruction; synthesis is carried out by a structure

similar to the right side of the analysis pyramid.

In the depiction of Figure 3.7, the signal decomposition is based on successive

applications of the same �lter pair fH0(z); G0(z)g. This is just one speci�c example of a
pyramid approach, however. The pyramid structure can be generalized by applying arbi-

trary signal models on the levels of the pyramid rather than �ltering and downsampling;

for instance, in image coding it is common to apply nonlinear interpolation and decimation

operators in such pyramid �lters [2].

3.3 Filter Bank Methods

Filter bank methods for multiresolution sinusoidal modeling involve modeling the

subband signals; a basic block diagram for this subband approach is given in Figure 3.8.

The signal is split into bands of varying width, and each subband signal is the modeled with

a separate sinusoidal model with resolution commensurate to the bandwidth { for narrow

bands, long windows are used, and for wide bands, short windows are used. The �lter

bank in Figure 3.8 is shown as a generalized block since it may take the form of a discrete

wavelet transform, an adaptive wavelet packet, a pyramid structure, or a nonsubsampled

�lter bank. These are discussed in turn in the following sections. Noting the similarity of

this structure to that of Figure 2.6, these methods based on �lter banks can be interpreted

in some sense as multiresolution phase vocoders.

Note that the methods to be discussed generally involve octave-band �ltering,

which is perceptually reasonable since the auditory system exhibits roughly constant-Q

resolution [162]. Such octave-band �ltering is useful with regards to the pre-echo problem.

As shown in Section 2.6, the pre-echo depends on the window length; by using smaller

windows for higher frequencies, the pre-echo becomes proportional to frequency in these

�lter bank methods. This proportionality is psychoacoustically viable in that perception
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Figure 3.8: General structure of subband sinusoidal modeling. Alternatively, the

sinusoidal model can be designed to yield signals that are intended as inputs to a

synthesis �lter bank, but this method has di�culties with aliasing cancellation.

of pre-echo is seemingly dependent on frequency; for a given partial, the percept depends

not on the absolute length of the pre-echo but rather on how many periods of the partial

occur in the pre-echo [168]. With that principle in mind, it is clear that pre-echo distortion

can be alleviated by using long frames for low-frequency partials and short frames for high-

frequency partials.

3.3.1 Multirate Schemes: Wavelets and Pyramids

Multirate systems are e�ective for dividing signals into subbands with low com-

plexity and, in the critically sampled case, without increasing the amount of data in the

representation. However, the analysis �ltering process generally introduces aliasing, so

the synthesis must incorporate aliasing cancellation to achieve a reasonable signal recon-

struction. This aliasing leads to di�culties in the wavelet case that can be resolved by

using a pyramid structure [168]; in Section 3.3.2, such issues are circumvented by using a

nonsubsampled �lter bank.

Wavelets

Sinusoidal modeling based on wavelet �lter banks can be carried out in several

ways. One approach is to model the downsampled subband signals, carry out a sinusoidal

reconstruction of each subband at the downsampled rate, and use a wavelet synthesis �lter

bank to construct the full-rate signal. The same frame length is used in each subband.

Then, because the lowpass band has the lowest sample rate, the lowpass frames have the

longest e�ective time support; similarly, the frames in the highpass band have the shortest
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time support. This modeling method thus results in a parametric signal representation

with the multiresolution properties of the discrete wavelet transform. As noted in [169],

however, this method has di�culties because the sinusoidal model does not provide perfect

reconstruction; aliasing cancellation is not guaranteed in the synthesis �lter bank because

the subbands are modi�ed in the modeling process. This di�culty can be circumvented

by reconstructing the output from the subband models without using the synthesis �lter

bank; the full rate reconstruction is derived directly from the models of the downsampled

subbands [169]. In this method, it is necessary to explicitly account for aliasing in the

sinusoidal parameter estimation; aliasing cancellation is incorporated into the estimation

of the subband spectral peaks, but this typically accounts for only the aliasing between

adjacent bands [170]. This method has reportedly proven useful for speech coding and

time-scaling [169, 170]. An earlier hybrid algorithm involving wavelet-like �ltering and

sinusoidal subband modeling was reported in [171] for the application of source separation;

here, the �lter bank is oversampled in order to reduce the aliasing limitations.

Wavelet packets

In the approaches discussed above, the subbands of a wavelet �lter bank are

represented with the sinusoidal model to allow for modi�cations and processing. Such

techniques can be conceptually generalized to the case of adaptive wavelet packets, where

the tree-structured �lter bank is varied in time according to the signal behavior; heuris-

tically, the adaptation can be interpreted as follows: during transient behavior, the �lter

bank is characterized by short impulse responses to track the time-domain changes, and

during stationary behavior the impulse responses are lengthened to improve the frequency

resolution. Such wavelet packet vocoders have not been formally considered in the litera-

ture.

Pyramid structures

Octave-band �ltering without subband aliasing can be carried out using a pyra-

mid structure [166]. As in the pyramid structure of Figure 3.7, the subband representation

is oversampled by a factor of two (asymptotically); here, the overcomplete representation

provides an improvement over the critically sampled case in that the subbands are free

of aliasing. This �lter bank has recently been proposed as a front end for multiresolution

sinusoidal modeling. The resulting algorithm has been shown to be e�ective for modeling

a wide range of audio signals [168].

3.3.2 Nonsubsampled Filter Banks

In multirate �lter banks, perfect reconstruction is achieved through the process

of aliasing cancellation. In other words, there is inherently some degree of aliasing in
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the subband signals that is cancelled by the synthesis �lter bank. This cancellation is a

very exacting process; if an approximate representation such as the sinusoidal model is

applied in the subbands prior to synthesis, aliasing cancellation in the reconstruction is

not guaranteed.

The methods discussed above use various approaches to overcome aliasing prob-

lems. These issues never arise, however, if a nonsubsampled �lter bank is used to split the

input signals into the requisite bands. Such �lter banks satisfy the perfect reconstruction

constraint X
q

xq[n] = x[n]; (3.13)

meaning that there is no aliasing or distortion introduced in the subband signals. The

design of nonsubsampled �lter banks that meet this constraint is very straightforward; the

design process is discussed explicitly in Section 4.3.1. A decomposition in terms of alias-

free subbands that meet the condition given in Equation (3.13) can indeed be arrived at

using a nonsubsampled wavelet �lter bank; the design method in Section 4.3.1, however,

allows for more exible spectral decompositions than the octave-band model derived by a

wavelet �lter bank.

In the multirate �lter banks previously discussed, the subbands have di�erent

sampling rates. Then, a window of some �xed length can be applied in the subbands;

with respect to the original sampling rate, the window in the lowpass band has the longest

time support and the window in the highpass band has the shortest time support. The

multiresolution in that case is provided by the multiplicity of sample rates. In the case

of a nonsubsampled �lter bank, multiresolution is achieved by using windows of di�erent

lengths in the subbands. This approach is depicted in a heuristic sense in Figure 3.9 for

the case of a nonsubsampled octave-band �lter bank.

Nonsubsampled �lter banks are subject to much looser design constraints than

multirate �lter banks; this advantage arises because no aliasing cancellation is required.

However, nonsubsampled �lter banks have a seeming disadvantage with respect to multi-

rate structures in that more computation is required to perform the �ltering. Furthermore,

in the nonsubsampled �lter banks designed according to the method of Section 4.3.1, all

of the �lters in the �lter bank are required to be of the same length; this supports the

contention that multirate structures are more appropriate for multiresolution analysis.

However, this is a somewhat inappropriate conclusion for the application at hand; as long

as the �lter bank impulse responses are of shorter duration than the sinusoidal analysis

windows, the time resolution is limited by the subband sinusoidal models and not by the

�lter bank. Again, note that in the multirate structures the same window and stride can

be used in each of the subbands; the multiresolution in those cases results from the fact

that the subbands have di�erent sampling rates. In nonsubsampled �lter banks, multires-

olution is achieved by choosing di�erent window sizes and strides in the various subbands.
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Figure 3.9: Multiresolution sinusoidal modeling with a nonsubsampled �lter bank.

The �lter bank in this simple depiction provides an octave-band decomposition; the

sinusoidal models have frame sizes scaled by powers of two according to the width of

the respective subband. As described in the text, it is straightforward to design �lter

banks that derive other decompositions but it is not feasible to optimize the �lter

bank and the sinusoidal models for modeling arbitrary signals.
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Figure 3.10: Multirate sinusoidal modeling using a nonsubsampled �lter bank. The

original signal in (a) is the onset of a saxophone note. Plot (b) is a sinusoidal recon-

struction using a �xed frame size of 1024; plot (c) is the residual for that case. The

plot in (d) shows a reconstruction based on sinusoidal modeling of the subbands of

a nonsubsampled 7-band octave �lter bank. Ranging from the lowest to the highest

band, the subband sinusoidal models use synthesis frame sizes of 1024, 768, 512, 512,

256, 256, and 256. Plot (e) shows the residual for the �lter bank case.
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For a multiresolution sinusoidal model based on a �lter bank, optimal design is

prohibited by the large number of design parameters. The performance is inuenced in

complicated ways by the choices of �lter band edges and frequency response properties

as well as the parameters of the subband sinusoidal models (the number of partials, the

window sizes, and the analysis strides). While heuristic designs can lead to modeling

improvements as shown in Figure 3.10, a given design is not necessarily ideal for arbitrary

signals. In a sense, if the �lters and subband models are �xed, the problem is again a lack

of signal adaptivity; the approach is rigid and can thus break down for some signals. In

the next section, a signal-adaptive multiresolution framework based on time segmentation

is considered.

3.4 Adaptive Time Segmentation

This section considers algorithms for deriving signal models based on adaptive

time segmentation. The idea is to allow segments of variable size in a model so that

appropriate time-frequency localization tradeo�s can be applied in various regions of the

signal. Such a signal-adaptive segmentation can be arrived at by an exhaustive global

search, by a dynamic program, or by a heuristic approach. These three methods are

discussed in this section; the focus is placed on dynamic programs for segmentation, which

can arrive at optimal models with substantially less computation than a global search.

3.4.1 Dynamic Segmentation

Given an entire signal and arbitrary allowances for intensive o�-line computation,

an optimal segmentation with respect to some modeling metric can be derived by a globally

exhaustive search. If the metric is additive and independent across segments, however, the

computational cost can be substantially reduced using a dynamic program. This approach

has been applied to wavelet packet and LPC models [41, 60, 134]; after a brief review of

dynamic programming and the relevant literature, dynamic segmentation for sinusoidal

modeling is considered.

Dynamic programming

Dynamic programming was �rst introduced for solving minimum path-length

problems [172]. The notion is that the computational cost of some classes of problems

can be reduced by solving the problems in sequential stages; redundant computation is

avoided by phrasing a global decision in terms of successive local decisions. This type

of approach has found widespread use for sequence detection in digital communication,

where it is referred to as the Viterbi algorithm [124]. Similar ideas play a role in hidden

Markov modeling, which is central to many speech recognition systems [173, 174].
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The dynamic programming method can be outlined as follows [175]:

� Consider the choice of a solution as a sequence of decisions.

� Incorporate a metric for the decisions such that the metric for the overall solution

is the sum of the metrics for the individual sequential decisions.

� Assuming that a subset of the necessary decisions has been made, determine which

decisions must be considered next and evaluate the metric for those decisions.

� Starting at the point where no decisions have been made, carry out a recursion to

determine the set of decisions that are optimal according to the additive metric.

This description is rather general since the dynamic programming approach is itself quite

general. The issues at hand are further clari�ed in the following discussion of the appli-

cation of dynamic programming to signal segmentation and modeling; also, the computa-

tional e�ciency a�orded by dynamic programming will be quanti�ed.

Notation and problem statement

A mathematical treatment of the segmentation problem requires the introduction

of some new notation; this is given here along with various assumptions about the signal

and the computation requirements for modeling. First, there is some smallest segment

size � for the signal segmentation. Segments of length � will be referred to as cells, and it

will be assumed that the signal is N cells long, i.e. the signal is of length N�. For general

signal modeling, it is of interest to have a very exible set of segment lengths to choose

from; the set, which will be denoted by �, is thus assumed to consist of consecutive integer

multiples of the cell size:

� = f�; 2�; 3�; : : : ; L�g: (3.14)

A particular element from such a set of segment lengths will be denoted by �.

Two speci�c cases will be considered in the treatment of computational cost. The

�rst case is L = N , which implies that the implementation has no memory restrictions; for

a signal of arbitrary length, the algorithm is capable of computing a model on a segment

covering the span of the entire signal. The second case is L < N (and sometimes L << N),

which corresponds to the case of an implementation with �nite memory. This restriction

on L is somewhat analogous to the truncation depth commonly used to reduce the delay

in Viterbi sequence detection [124].

Using a diverse set of segment lengths allows for exibility in signal modeling.

Additional signal adaptivity can be achieved by allowing for a choice of model for each

segment. One example of such a model choice is the �lter order in an LPC application

[134]. In the sinusoidal modeling case to be discussed, there is not a multiplicity of



112

candidate models for each segment. For this reason, model multiplicity is not considered

here. This omission is further justi�ed in that if the evaluations of each model on a given

segment require the same amount of computation, allowing for a choice of model does not

a�ect the computation comparisons to be given.

The problem of signal modeling with adaptive segmentation is simply that of

choosing an appropriate set of disjoint segments that cover the signal. The segmentation

is chosen so as to optimize some metric; for proper operation of the dynamic program, it

is required that the metric be independent and additive on disjoint segments. Then, the

total metric for a segmentation � composed of segments �i can be expressed as a sum of

the metrics on the constituent segments:

D(�) =
X
i

D(�i); (3.15)

where i is a segment index and where the constituent disjoint segments of the segmentation

� satisfy

N =
X
i

�i (3.16)

for a signal of length N�. Mean-squared error and rate-distortion metrics can be applied

in this framework [41, 60, 134].

Computational cost of global search

The globally optimum segmentation is simply the segmentation which minimizes

the metric D(�). Obviously, this minimization can be arrived at by a globally exhaustive

search in which the metric is computed for every possible segmentation in turn. The brief

consideration here indicates that this exhaustive approach is computationally prohibitive

for long signals; this di�culty motivates formulating the metric computation as a dynamic

program.

In a globally exhaustive search, a model must be evaluated on each segment in

each possible segmentation. Assuming that the cost of model evaluation is independent

and additive on disjoint segments, a simple estimate of the computational cost of a global

search can be arrived at by counting the total number of segments in all of the possible

segmentations. This measure assumes that the cost of model evaluation on a segment is

independent of the segment length. This assumption is admittedly somewhat unrealistic;

for example, an FFT of a segment of length � requires on the order of � log� multiplies.

The computational cost for other types of models are generally dependent on the segment

length as well, so this enumeration of segments is by no means a formal cost measure but

rather a basic feasibility indicator.

Given the discussion above, it is simply of interest to count the total number of

segments in all of the possible segmentations. For the case L = N , this enumeration can
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be derived by simple combinatorics. Noting that there are N � 1 cell boundaries in the

interior of the signal and that each of these can be independently chosen as a segment

boundary in the signal segmentation, there are 2N�1 possible segmentations; furthermore,

the average number of segments in a segmentation is (N + 1)=2. The total number of

segments in all of the possible segmentations is given by

C = [number of segmentations] [number of segments per segmentation]; (3.17)

so the cost of global search for the case L = N is

CL=N = 2N�2(N + 1); (3.18)

which is governed by an exponential dependence on the signal length:

CL=N / 2N : (3.19)

In the truncated case L < N , the segment count does not have a simple formulation as in

the unrestricted case. It can be shown, however, that the total number of segments is still

governed by an exponential dependence on the signal length.1 In either of these cases, the

exponential dependence on the signal length prohibits model evaluation via exhaustive

computation.

The next section describes a dynamic program that can derive the same optimal

segmentation as an exhaustive search, but with a cost that is governed by a quadratic

dependence on the signal length for the case L = N and a linear dependence for L << N .

As will be seen, this cost reduction is achieved by removing redundant computation; the

simple insight in dynamic programming is that though some segment � is a component of

many distinct segmentations, it is not necessary to calculate D(�) for each such occurrence.

A dynamic program provides a computational framework in which D(�) is only evaluated

once and hence the cost of evaluating a model on � is incurred only once.

Reduction of computational cost via dynamic programming

The �rst step in a dynamic approach to signal segmentation is to consider the

time span of the signal as a concatenation of cells. The boundaries between cells will

be referred to as markers; because of the integer-multiple construction of the allowable

segment lengths, the boundaries in any valid segmentation will align with some of these

markers, so they can e�ectively be used as indices. In the dynamic program, each marker

is treated as a possible segment boundary for the signal segmentation.

1In the case L < N , the number of possible segmentations is given by the N -th term of an L-th
order Fibonacci series; this N -th term has an exponential dependence on N . Following the framework of

Equation (3.17), the total number of segments in all of the possible segmentations is then given roughly

by the product of this exponential term and the signal length.
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Without loss of generality, the algorithm will be explained in terms of the exam-

ples shown in Figures 3.11 and 3.12, which correspond to the cases L = N and L < N , re-

spectively. In the �gures, Dab represents the distortion metric associated with the segment

of length (b� a)� between markers a and b. Further notation required for the explanation

is as follows. At any marker a, the dynamic algorithm has determined the segmentation

that leads to the minimum distortion up to that marker. This partial segmentation will be

denoted by �a and the corresponding distortion will be denoted by D(�a); this distortion is

the minimum modeling metric achievable for segmenting the signal up to the a-th marker.

The term �a will be used to denote the length of the last segment in the segmentation �a

that achieves the minimum metric D(�a); the algorithm keeps track of this value at each

marker so that the optimal segmentation can be recovered by backtracking after the end

of the signal is reached.

Using the notation established above, the steps of the algorithm in the case

L = N are as follows; this corresponds to the illustration in Figure 3.11:

� Evaluate D01, the modeling metric for the cell between markers 0 and 1, and store

the result as D(�1).

� Evaluate D12 and D02.

� Find D(�2) = minfD02; D(�1) +D12g. This minimum indicates the best segmenta-

tion �2 between markers 0 and 2.

� Store D(�2) and �2, the length of the last segment in �2.

� Evaluate D23, D13, and D03.

� Find D(�3) = minfD03; D13 + D(�1); D23 + D(�2)g. This minimum indicates the

best segmentation �3 between markers 0 and 3.

� Store D(�3) and �3.

� Evaluate D34, D24, D14, and D04.

� Find D(�4) = minfD04; D14+D(�1); D24+D(�2); D34+D(�3)g.

� Store D(�4) and �4.

� Continue in this manner until the end of the signal is reached; note that each succes-

sive marker introduces a larger number of new candidate segments for consideration.

The minimum D(�N) calculated at the last marker is the globally optimal metric;

as mentioned earlier, the optimal segmentation �N can be found by backtracking

through the recorded segment lengths.
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The last item in the above description suggests a noteworthy point. To determine the

segmentation that yields the minimum metric, it is necessary to store the appropriate

segment length at each marker. The minimum metric itself, however, can be computed

without storing path information.

The computational cost of the algorithm described above, namely an enumeration

of the number of segments on which models are evaluated, can be easily determined by

considering Figure 3.11. The number of candidate segments that must be evaluated at

each marker is equal to the value of the marker index, so the cost is simply

�CL=N = 1 + 2+ 3 + : : :+N (3.20)

=
1

2
(N2 +N); (3.21)

where the bar is included in the notation �C to specify that the cost corresponds to a

dynamic algorithm. Noting the dominant term in the above expression, the cost of a

dynamic segmentation algorithm with L = N can be summarized as:

�CL=N / N2: (3.22)

This quadratic dependence on the signal length is a considerable improvement over the

exponential dependence of an exhaustive global search.

For the case L < N , depicted in Figure 3.12, the steps in the algorithm are the

same as above, with the exception of the later stages where the bounded segment length

comes into e�ect:

� Evaluate D01 and store the result as D(�1).

� Evaluate D12 and D02.

� Find D(�2) = minfD02; D(�1) +D12g.

� Store D(�2) and �2.

� Evaluate D23, D13, and D03.

� Find D(�3) = minfD03; D13+D(�1); D23+D(�2)g.

� Store D(�3) and �3.

� Evaluate D34, D24, and D14.

� Find D(�4) = minfD14 +D(�1); D24+D(�2); D34+D(�3)g.

� Store D(�4) and �4.
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Figure 3.11: A depiction of a dynamic algorithm for signal segmentation for the

case L = N , where the segment lengths are not restricted. As derived in the text,

the computational cost of the algorithm grows quadratically with the length of the

signal in this case.
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� Continue in this manner until the end of the signal is reached; note that after marker

L, each additional marker introduces a �xed number of candidate segments, namely

L. The minimum D(�N) calculated at the last marker is the globally optimal metric

for this case; the optimal segmentation �N can be found by backtracking through

the recorded segment lengths.

The computational cost of the truncated approach can be readily derived by considering

Figure 3.12, which indicates that the algorithm has a repetitive structure after the startup.

The number of segments on which models are evaluated is given by

�CL<N = 1+ 2 + : : :+ L� 1| {z }
startup

+ (N � L+ 1)L (3.23)

= NL � 1

2
(L2 � L): (3.24)

The cost of a dynamic segmentation algorithm with L < N can thus be summarized as

�CL<N / N; (3.25)

where the omission of the terms involving L is particularly valid for cases where L <<

N , i.e. processing of arbitrarily long signals. For instance, in high-quality modeling of

music it is necessary to have L << N due to computational and memory limitations.

Furthermore, it is sensible to restrict the segment lengths given that music is nonstationary

in a global sense; it is unreasonable to assume that a one-segment model could describe an

entire signal, so the candidate segment lengths can be justi�ably bounded by some �nite

duration for which there is a possibility of local stationarity. In such cases, the cost grows

linearly with the length of the signal, which is an improvement over both the global case

of Equation (3.19) as well as the dynamic approach with unrestricted segment lengths

described in Equation (3.22).

Applications of dynamic segmentation are discussed in the following; adaptive

wavelet packets, linear predictive coding, and sinusoidal modeling can all be carried out

in this framework. One caveat to note, however, is that in some of these methods it is

necessary to use overlapping segments to ensure signal continuity at the synthesis frame

boundaries. In such cases, the algorithm is not guaranteed to �nd the globally optimal

segmentation; in practice, however, the e�ect is negligible, so the dynamic segmentations

can be justi�ably referred to as optimal [41]. A further issue to note is that the dynamic

segmentation method, as described, considers the entire signal before a �nal decision is

made regarding the segmentation; in this form, it is only suitable for o�-line computation.

In applications such as voice coding for telephony, it is of more interest to process the

signal in blocks that can be transmitted sequentially. Dynamic segmentation can be

applied in such scenarios by monitoring the candidate segmentation. The segmentations

in signal regions that are distant in time are generally independent; without signi�cantly
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Figure 3.12: A depiction of a dynamic algorithm for signal segmentation for the

case L < N , where the segment lengths are restricted. Note the regularity of the

recursion after the startup; the cost of this algorithm grows linearly with the length

of the signal.
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sacri�cing the optimality, then, the algorithm can be periodically terminated to derive

blocks for coding [134].

Adaptive wavelet packets

Early applications of dynamic programming to signal modeling involved models

based on wavelet packets. In [41], the best wavelet packet in a rate-distortion sense is

chosen for the model for each segment; in [60], dynamic segmentation is added to allow

for localization of transients. A similar technique was considered in [176].

Arbitrary models

In addition to the wavelet packet algorithms described, dynamic segmentation

and model selection has been applied to image compression [177] and linear predictive

coding [134]. As long as the optimality metric is independent and additive across disjoint

frames, the dynamic program can be used to e�ciently �nd the optimal segmentation

and model selections. In cases where discontinuities across frame boundaries may be

objectionable, the candidate models tend to have dependencies on adjacent frames; for

instance, in the image processing application, where discontinuities result in blockiness,

the candidate models are lapped orthogonal transforms which reduce the blocking artifacts

incurred in the quantization [59, 177]. Because of the overlap, as mentioned before, the

dynamic algorithm is not guaranteed to �nd the globally optimal model, but in practice

the e�ect of the dependency is negligible. In the sinusoidal model application, as discussed

below, the dynamic algorithm is again possibly suboptimal but this suboptimality turns

out to be largely irrelevant.

Sinusoidal modeling

As seen in Section 2.6, a sinusoidal model with a �xed frame size results in delo-

calization of time-domain transients if the frames are too long. This delocalization can be

interpreted in terms of the synthesis: the signal is reconstructed in each synthesis frame as

a sum of linear-amplitude, cubic-phase sinusoids, each of which has the same time support,

namely the synthesis frame size; this �xed time support results in a smearing of signal

features across the frame. In addition to this delocalization within each frame, features

are spread across neighboring frames by the line tracking and parameter interpolation

operations. One consequence of this is the pre-echo distortion discussed in Section 2.6;

the example from Figure 2.21 is repeated here in Figure 3.14 for the sake of comparison

with the improved models to be considered.

Time-domain delocalization, e.g. pre-echo distortion, results from the use of

frames that are too long. If the frames are too short, a similar delocalization occurs

in the frequency domain; frequency resolution is limited for short frames. For modeling
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arbitrary signals, then, it is of interest to trade o� time and frequency resolution by select-

ing appropriate frame sizes, i.e. by deriving a dynamic segmentation of the signal based

on an accuracy metric. Thus, in this application the metric D(�) is chosen to be the

mean-squared error of the reconstruction over the segment �; rate considerations can be

easily incorporated by scaling the metric so as to favor longer frames, but this will not be

dealt with here. In the implementation, the same number of partials is used in models of

short frames and long frames to simplify the line tracking; because of this constant model

order, using long frames improves the coding e�ciency. In the simulations, the reduction

of pre-echo is used as a visual indication of the modeling improvement. It will be clear

that the algorithm chooses short frames to localize attacks, but it should also be noted

that the method tends to choose longer frames when the signal exhibits stationary behav-

ior, i.e. periodicity, since frequency resolution is increased in longer frames; this improved

frequency resolution leads to more accurate modeling in periodic regions.

It was mentioned earlier that the dynamic algorithm is not guaranteed to �nd

the optimal segmentation if the models in adjacent frames are dependent, but that such

dependence is indeed required in some cases to prevent discontinuities in the synthesis.

This scenario applies in the case of sinusoidal modeling. In the static case, the synthesis

frames are demarcated by the centers of the analysis frames. There is thus an intrinsic

overlap in the modeling process as depicted in Figure 3.13. This same overlap appears

in the case of dynamic segmentation; as a result, the segmentation is not guaranteed to

be optimal. The deviation from optimality, however, is basically negligible; the algorithm

still carries out the intended task of �nding appropriate tradeo�s in time and frequency

resolution for modeling arbitrary signals. Figure 3.13 also indicates a noteworthy im-

plementation issue, namely that a given segmentation requires a speci�c set of analysis

windows to cover the signal. Each candidate segmentation thus has its own set of sinu-

soidal analysis results. These various analyses can be managed e�ciently in the dynamic

algorithm. Finally, it should be noted that the analysis windows, as depicted in Figure

3.13, need not satisfy the overlap-add condition. This design exibility results from the

incorporation of a parametric representation and applies to the general �xed-resolution

sinusoidal model as well.

Fundamentally, the advantage of dynamic segmentation in the sinusoidal model is

that the time support of the constituent linear-amplitude cubic-phase sinusoidal functions

is adapted such that localized signal features are accurately represented. An example

of the pre-echo reduction in such a multiresolution model is given in Figure 3.14. The

dynamic algorithm chooses short frames near the attack to reduce delocalization, and

long frames where the signal does not exhibit transient behavior.
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Figure 3.13: Analysis and synthesis frames in �xed-resolution and multiresolution

sinusoidal models. This plot is included to indicate the overlap of the analysis frames.

In the dynamic segmentation algorithm, this overlap undermines the required inde-

pendence of the segment metrics; as a result, the synthesis segmentation derived by

a dynamic program is not guaranteed to be globally optimal. This suboptimality is

generally inconsequential, however.

3.4.2 Heuristic Segmentation

It is common in the development of signal processing algorithms to �rst investi-

gate optimal or nearly optimal algorithms and then compare the results with lower cost

methods based on less stringent metrics. In the framework of signal segmentation, this is

tantamount to considering simple forward segmentation based on the immediate model-

ing error rather than focusing on global optimality. While the global segmentation is an

analysis-by-synthesis approach that involves the entire signal, the forward segmentation

is an analysis-by-synthesis that simply chooses among the candidate segments at each

marker.

A simple algorithm for forward segmentation

In the sinusoidal model, a heuristic segmentation approach can achieve similar

results as the dynamic algorithm for the example of Figure 3.14. The simple algorithm is

as follows, where the signal segmentation is again described in terms of markers:

� At marker a, evaluate the weighted metric
Dab

b� a
for b 2 fa+1; a+2; a+3; : : : ; a+Lg,

where the set corresponds to the candidate segment lengths.

� Find the marker b̂ which minimizes the weighted metric and advance to that marker.

� Set a new starting point at a = b̂ and repeat the preceding steps.

Note that in this algorithm the segmentation decisions are made based on local minimiza-

tion of the distortion metric; since local minima are pursued greedily, global optimality

of the metric is not guaranteed. Of course, many variations of forward segmentation can
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Figure 3.14: Comparison of residuals for a �xed-frame sinusoidal model and an

adaptive multiresolution model based on dynamic segmentation. The original signal

(a) is a saxophone note. Plot (b) is a reconstruction based on a �xed frame size of

1024 and (c) is the residual for that case; the dotted lines indicate the synthesis frame

boundaries. Plot (d) is a reconstruction using dynamic segmentation with frame sizes

512, 1024, 1536, and 2048; the segmentation arrived at by the dynamic algorithm is

indicated by the dotted lines in the plot of the residual (e). In the dynamic model,

the attack is well-localized and does not contribute extensively to the residual (e).
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be formulated; for instance, by incorporating some dependence on neighboring results, a

more global solution can be targeted. Such variations will not be considered, however;

the intent is merely to draw a comparison between dynamic and heuristic segmentation

methods.

Figure 3.15 shows an application of forward segmentation to a saxophone attack;

for this example, the forward method achieves a similar model as the dynamic algorithm,

but such comparable performance is not guaranteed for all signals. As will be shown in

the next section, the forward segmentation requires less computation than the dynamic

approach. In real-time (or limited-time) applications, then, the reduced cost of a forward

segmentation method may merit this accompanying decrease in modeling accuracy. On the

other hand, in o�-line applications such as compression of images or audio for databases,

it is more appropriate to use an optimal dynamic algorithm.

Cost of forward segmentation

In the heuristic segmentation algorithm described above, the number of markers

visited depends on the signal; if a long frame is chosen, the algorithm advances to the end

of the frame and skips over the markers in between. Thus, the computation required in

the algorithm is signal-dependent. To quantify the computational cost, then, the worst

case scenario is considered; the case in which every marker is visited provides an upper

bound for the cost. For L = N , the number of segments considered at successive markers

decreases as the algorithm advances toward the end of the signal; for the worst case, the

cost is given by

~CL=N = N + (N � 1) + (N � 2) + : : :+ 2 + 1 (3.26)

=
1

2
(N2 +N) (3.27)

=) ~CL=N / N2; (3.28)

where the tilde is included in the notation ~C to specify that the cost corresponds to a

forward algorithm. For the case L < N , the worst case cost is given by

~CL<N = L+ L+ : : :+ L+ L� 1 + L� 2 + : : :+ 2+ 1| {z }
end of signal

(3.29)

= NL� 1

2
(L2 � L) (3.30)

=) ~CL<N / N: (3.31)

The costs here are identical to those evaluated for the dynamic algorithm; compare Equa-

tions (3.27) and (3.30) with Equations (3.21) and (3.24). In either case, the total number

of segments considered in the worst case forward segmentation is the same as the number
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Figure 3.15: Comparison of residuals for a �xed-frame sinusoidal model and an

adaptive multiresolution model based on forward segmentation. The original signal

(a) is a saxophone note. Plot (b) is a reconstruction based on a �xed frame size of

1024 and (c) is the residual for that case; the dotted lines indicate the synthesis frame

boundaries. Plot (d) is a reconstruction using forward segmentation with frame sizes

512, 1024, 1536, and 2048; the segmentation arrived at is indicated by the dotted

lines in the plot of the residual (e). In the forward adaptive model, the attack is

well-localized and does not contribute extensively to the residual.
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Figure 3.16: Multiresolution frequency-domain synthesis with dynamic segmenta-

tion involves symmetric motif windows and asymmetric interpolation and overlap-add

windows.

considered in the dynamic algorithm. For the truncated case, a more optimistic formula-

tion of the computation required in the forward approach can be arrived at by an averaging

argument. Assuming that the segment lengths are all equally reasonable for modeling, and

that the expected length of any given segment chosen by the algorithm is thus (L+ 1)=2,

the forward algorithm is expected to visit only 2N=(L+ 1) markers. The cost estimate is

then

~CL<N =
2NL

L+ 1
(3.32)

=) ~CL<N / N; (3.33)

which has the same dependence on the signal length as the upper bound in Equation

(3.31); noting the dependence on L indicated in the formulation, however, it is clear that

the average cost is roughly a factor of L=2 less than the worst case upper bound.

3.4.3 Overlap-Add Synthesis with Time-Varying Windows

The preceding discussion of dynamic segmentation in the sinusoidal model has

focused on time-domain synthesis. For the sake of completeness, it is noted here that

dynamic segmentation can also be applied in the frequency-domain synthesis approach

discussed in Section 2.5. The fundamentals of such an approach are discussed below, and

connections to current techniques in audio coding are described.

In the synthesizer described in Section 2.5, the signal is modeled in the frequency

domain as a series of short-time spectra, from which the signal is reconstructed using an

IFFT and overlap-add. Each of these short-time spectra is a sum of spectral motifs

corresponding to short-time partials. The motif is basically the transform of some window

function b[n], so the IFFT results in a sum of sinusoids windowed by b[n]. The overlap-

add is then carried out with the hybrid window t[n]=b[n] where t[n] is a triangular window
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which satis�es the overlap-add property. As described in Sections 2.5.1 and 2.5.2, this

triangular OLA carries out reasonable interpolation of the sinusoidal parameters if phase

matching is employed.

In a multiresolution implementation, it is necessary to incorporate motifs of

various time resolution; for longer segment sizes, the short-time spectrum has more bins

and the IFFT is larger. Recalling the discussion of Section 2.5, it is computationally

important to use a symmetric motif window b[n] and likewise a symmetric spectral motif.

Adhering to this symmetry in a multiresolution setting results in asymmetric overlap-add

windows; indeed, the interesting adjustment of the algorithm involves the overlap-add

window and the e�ective interpolating window t[n]. Because of the variable segment sizes,

to do the appropriate OLA interpolation it is necessary to use asymmetric triangular

functions at transitions between di�erent segment sizes. This approach is best described

pictorially; Figure 3.16 shows a signal segmentation and the corresponding motif and

interpolation windows. Note that the asymmetric transition windows are conceptually

similar to the start and stop windows used in modern audio coding standards [7, 8]; in

those methods, however, such asymmetric windows are used in conjunction with a �lter

bank analysis-synthesis and not with a parametric approach as in this consideration.

3.5 Conclusion

In modeling nonstationary signals, it is generally useful to carry out analysis-

synthesis in a multiresolution framework; appropriate time-frequency resolution tradeo�s

can be adaptively incorporated to achieve accurate compact models. In this chapter, the

notion of multiresolution was introduced in terms of the discrete wavelet transform and

further explored in the context of the sinusoidal model. Two methods of multiresolu-

tion sinusoidal modeling were discussed, namely �lter bank techniques and adaptive time

segmentation. A dynamic programming for signal segmentation was developed; related

computation issues were considered at length. Various simulations in the chapter showed

that multiresolution modeling improves the localization of transients in the sinusoidal

reconstruction; this improvement was indicated by a mitigation of pre-echo distortion.
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Chapter 4

Residual Modeling

The sinusoidal model, while providing a useful parametric representation for

signal coding and modi�cation, does not provide either perfect or perceptually lossless

reconstruction for most natural signals. Thus, it is necessary to separately model the

analysis-synthesis residual if high-quality synthesis is desired; this requirement was the

motivation for the deterministic-plus-stochastic decomposition proposed in [36, 100]. This

chapter discusses a parametric approach for perceptually modeling the noiselike residual

for both time-domain and frequency-domain synthesis. Earlier versions of this work have

been presented in the literature [110, 178].

4.1 Mixed Models

Mixed models have been applied in many signal processing algorithms. For

instance, in linear predictive coding (LPC) of speech, the speech signal is typically classi�ed

as voiced or unvoiced to determine the synthesis model; in the voiced case, the synthesis

�lter is driven by a periodic impulse train whereas in the unvoiced case, the �lter is

driven by white noise. The model thus adapts to a nonstationary signal by choosing the

appropriate excitation. In some variations of the algorithm, a mixed excitation is used

to account for concurrent voiced and unvoiced signal behavior; using a mixture enables

modeling of a wider variety of signals than with a switched excitation [25, 179]. The

voiced-unvoiced model, especially in the case of a mixed excitation, is similar to the

deterministic-plus-stochastic sinusoidal model decomposition proposed in [36, 100] and

explored further in [97, 110, 178, 109, 180]. The components in these latter models are

concurrent in time; the models are thus capable of representing a wide variety of signals.

In Section 2.1.2, where the deterministic-plus-stochastic decomposition was �rst

described, it was noted that in the framework of analysis-synthesis it is natural to rephrase

the decomposition in terms of a signal reconstruction and a residual. The reconstruction is

based on the signal model, in this case the sinusoidal model; the residual is the di�erence
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Figure 4.1: Analysis-synthesis and residual modeling.

between the original and the reconstruction. When the analysis-synthesis model does not

capture all of the perceptually important features of a signal, it is necessary to separately

model the residual and incorporate it into the reconstruction to achieve perceptual lossless-

ness; this scenario, which applies in the case of sinusoidal modeling, is depicted in Figure

4.1. Such modeling of residuals is used in many audio applications as well as in other

signal processing algorithms, for instance motion-compensated video coding [181]. These

approaches are e�ective because the residuals tend to be \noiselike" { in some cases such

as LPC, the signal model is indeed designed with the very intent of leaving a white noise

residual. In modeling such noiselike residuals, it is important to account for perceptual

phenomena. As discussed in Section 1.2.2, white noise processes are basically incompress-

ible if perfect reconstruction is desired. On the other hand, compact models of noiselike

residuals can readily achieve perceptual losslessness by incorporating simple principles of

perception. Furthermore, it should be noted that the condition of transparency can be

relaxed somewhat for the residual synthesis given the perceptual masking principles that

come into e�ect when the modeled residual is recombined with the primary signal. The

fundamental goal is for the recombination to be perceptually equivalent to the original

signal, and not for the synthesized residual to be a transparent version of the original

residual.

In music applications, the sinusoidal model captures the basic musical signal

features such as the pitch and the spectral structure. The residual contains features that

are not well-represented by the slowly-evolving sinusoids of the sum-of-partials model; as

discussed in Sections 2.1.2 and 2.6, these correspond to musically important processes

such as the breath noise of a ute or saxophone or the attacks of a piano or marimba.

Multiresolution sinusoidal approaches were proposed in Chapter 3 to model the attacks,

so the residual model of this chapter is designed to handle the remaining features, namely
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broadband stochastic processes such as breath noise. It is necessary to incorporate these

processes into the reconstruction to achieve realistic or natural-sounding synthesis.

In [36, 100], the residual is modeled using a piecewise-linear spectral estimate;

a random phase is applied to this spectrum, and an inverse discrete Fourier transform

(IDFT) followed by overlap-add (OLA) is used for synthesis. In the approach to be

discussed in this chapter, the model is similarly spectral in nature, but is more directly

based on perceptual considerations. The residual is analyzed by a �lter bank motivated

by auditory perception of broadband noise; a parameterization provided by the short-

time energy of the �lter bank subbands yields a perceptually accurate reconstruction of

the noiselike residual. Furthermore, the model parameters allow for modi�cations of the

residual; this capability is useful in that if the sinusoidal signal components are modi�ed,

the residual should undergo a corresponding transformation prior to synthesis [142].

In [109, 180] the models are more elaborate than the one presented in this chapter

in that they have speci�c extensions to model attack artifacts present in the residual, which

were discussed in Section 2.6. The approach taken here is to use multiresolution sinusoidal

modeling to minimize such artifacts so that they do not appear in the residual and thus

do not have to be accounted for in the residual model. A similar approach is taken in the

algorithm in [101], which estimates the time-domain envelope of the signal and applies

it to the sinusoidal model to enhance the modeling of transients. This method involves

incorporating another set of parameters to describe the time-domain envelope, however,

so the multiresolution model has an advantage in that its representation is more uniform.

Figure 4.2 gives a comparison of the residuals for a basic sinusoidal model and

multiresolution model based on dynamic time segmentation; more comparisons of this

nature were given in Chapter 3. Clearly, the attack artifacts are not as pronounced in

the residuals of the multiresolution model. Because of its improved ability to represent

the signal transients, the residual energy in the dynamic model is lower; as discussed in

Section 3.4, the multiresolution model is adapted to minimize this energy given various

constraints such as the number of sinusoids in the model; the notion of minimizing the

residual energy is also incorporated in the analysis-by-synthesis algorithm discussed in

[101] and in global parameter optimization methods [107]. Also, in the methods to be

discussed in later chapters, minimization of the residual energy is again the criterion by

which the signal model is adapted.

4.2 Model of Noise Perception

Noting the example of Figure 4.2 and the results given in Chapter 3, it is assumed

hereafter that attack transients have been well-modeled in a multiresolution framework.

The residual thus consists of broadband noise processes. A perceptually viable model

for the residual should therefore rely on a model of how the auditory system perceives
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Figure 4.2: Comparison of residuals for �xed and multiresolution sinusoidal models.

The original signal (a) is a saxophone note. Plot (b) is a reconstruction based on a

�xed frame size of 1024 and (c) is the residual for that case. Plot (d) is a reconstruction

using dynamic segmentation with frame sizes 512 and 1024; in this case, the attack

is well-modeled and does not appear as extensively in the residual (e).
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broadband noise. This section discusses a simple �lter bank model of the auditory system

that leads to a perceptually lossless representation of the residual.

4.2.1 Auditory Models

Auditory models commonly include a set of overlapping bandpass �lters whose

bandwidths increase roughly in proportion to their center frequencies. Such �lter bank

models, which were �rst introduced in conjunction with the classical theory of resonance

[182], are well justi�ed by experimental work ranging from early masking tests for tele-

phony applications [183, 184] to recent investigations in perceptual audio coding, where

auditory models are incorporated to achieve transparent compression [8, 7, 9, 10, 11]

These auditory �lter banks can be characterized in terms of the classical critical band-

widths, which were derived in experiments on noise masking and perception of complex

sounds; these are generally considered to be the bandwidths of the auditory �lters at

certain center frequencies [185]. Early estimates of the critical bandwidth as a function

of center frequency indicate a roughly constant value below 500 Hz and a linear increase

for higher frequencies, resulting in the common interpretation of the auditory system as

a constant-Q �lter bank. More recent experiments suggest that the low-frequency critical

bandwidths are quadratically related to the center frequency [186]. Expressions for the

equivalent rectangular bandwidths of the auditory �lters di�er somewhat from the band-

width formulations in classical critical band theory; the di�erence is depicted in Figure

4.3. Of course, these results are based on aggregate measurements over large groups of

subjects, so the exact relation does not necessarily apply to any given individual. Fur-

thermore, for this application of residual modeling it is unnecessary to incorporate formal

exactitudes about the auditory �lter responses because the perception of broadband noise

is an inherently coarse phenomenon. The purpose of the previous discussion, then, is only

to support the notion of �lter bank auditory models and to establish the terminology; for

the remainder, an equivalent rectangular band will be referred to as an ERB.

4.2.2 Filter Bank Formulation

A simple model of noise perception can be arrived at by dividing the spectrum

into a set of bands based on the ERB formulation. Given this division into bands, the basic

model is that in perceiving a broadband noise, the auditory system is primarily sensitive

to the total short-time energy in each of the bands, and not to the speci�c distribution

of energy within any single band. In other words, the ear is insensitive to speci�c local

time or frequency behavior of broadband noise. Analysis of a broadband noise s[n], which

corresponds to r[n] in the residual modeling framework of Figure 4.1, is then carried out by

�rst applying s[n] to an ERB �lter bank fh1[n]; h2[n]; : : : ; hR[n]g to derive the ERB signals

fs1[n]; s2[n]; : : : ; sR[n]g as shown in Figure 4.4. These signals are then parameterized on a
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Figure 4.3: Bandwidth vs. center frequency for critical bands (dashed) and equiva-

lent rectangular bands or ERBs (solid).

frame-rate basis in terms of their energies; for the i-th frame, the energy of the r-th ERB

signal is given by

Er(i) =
N�1X
n=0

sr[n+ iL]2; (4.1)

where N is the frame size and L is the analysis stride. Synthesis according to this model

is achieved by �ltering white noise  [n] through the ERB �lter bank with a time-varying

gain cr(i) on each channel; this structure is shown in �gure 4.5.

The time-varying gains in the synthesis �lter bank shape the short-time spectrum

of the �lter bank output ŝ[n] so that it matches the short-time spectrum of s[n] in the

sense that their ERB energies are equivalent. The appropriate gain can be derived using

a simple constraint on the expected value of the synthesis energy:

EfÊr(i)g = Er(i): (4.2)

Note that this �lter bank model relies on the aggregation of �lters only inasmuch as they

span the signal spectrum; the interaction between �lters is not important. The model

is simply that the subband ERB signal sr[n] is perceptually equivalent to the subband

reconstruction ŝr[n] if their short-time energies meet the above constraint; then, if the

�lter bank is designed such that s[n] =
P

r sr[n], perceptual losslessness holds for the

entire �lter bank model.

The appropriate gains can be derived by expanding the constraint of Equation

(4.2). The expected value of the synthesis energy of the r-th band in the i-th frame is

given by

EfÊr(i)g = E

(
N�1X
n=0

(cr(i)~sr[n+ iL])2
)
; (4.3)

where

~sr[n] = hr[n] �  [n] (4.4)
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Figure 4.4: Analysis �lter bank for perceptually modeling broadband noise. The

residual is parameterized in terms of the short-time energies Er(i) in a set of equiva-

lent rectangular bands (ERBs).

is the output of the r-th synthesis �lter before the gain cr(i) is applied. Substituting this

convolution into Equation (4.3) yields the following expression; the index iL is dropped

without loss of generality:

EfÊr(i)g = cr(i)
2
N�1X
n=0

E

8<
:
 X

m

hr [m] [n�m]

!2
9=
; (4.5)

= cr(i)
2
N�1X
n=0

X
m

X
l

hr[m]hr[l]Ef [n�m] [n� l]g : (4.6)

Denoting the variance of the white noise  [n] as �2, the expected value in the sum can be

replaced by �2�[m� l]. Summing over l, the expression simpli�es to:

EfÊr(i)g = cr(i)
2N�2

X
m

hr[m]
2: (4.7)

Note that the �lters have been assumed real so that the subband signals are real and

thus immediately perceptually meaningful. Incorporating the constraint of Equation (4.2)

provides a formula for the gain in terms of the ERB energy parameter:

cr(i) =

s
Er(i)

N�2
P

m hr[m]
2
: (4.8)

Equation (4.8) can be interpreted in two ways. First, the appropriate gain cr(i)

can be derived in the frequency domain as a ratio between the ERB energy in band r
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measured by the analysis and the energy at the output of the r-th synthesis �lter:

Er(i) = cr(i)
2

 
1

K

K�1X
k=0

jHr[k]j2E
n
j	[k]j2

o!
(4.9)

= cr(i)
2

 
1

K

K�1X
k=0

jHr[k]j2E
(
N�1X
n=0

N�1X
m=0

 [n] [m]ej2�k(n�m)=K

)!
(4.10)

= cr(i)
2�2

 
1

K

K�1X
k=0

jHr[k]j2
N�1X
n=0

N�1X
m=0

�[n�m]ej2�k(n�m)=K

!
(4.11)

= cr(i)
2�2N

1

K

K�1X
k=0

jHr[k]j2 (4.12)

= cr(i)
2�2N

X
m

hr[m]
2; (4.13)

which can be manipulated to give Equation (4.8). The second interpretation is based on

equalizing the short-time variances of the subband signal sr [n] and its estimate ŝr [n]. A

slightly biased estimate of the variance of sr[n] in the i-th frame is given by [187]:

var(sr;i[n]) =
1

N

N�1X
n=0

sr[n + iL]2 =
Er(i)

N
: (4.14)

The variance of ŝr[n] in the i-th frame can be derived by considering the e�ect of a linear

�lter on the autocorrelation of a stochastic process:

E fŝr[n]ŝr[n+ t]g = E

(X
m

cr(i)hr[m] [n�m]
X
l

cr(i)hr[l] [n+ t � l]

)
(4.15)
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= cr(i)
2
X
m

X
l

hr [m]hr[l]Ef [n�m] [n+ t� l]g (4.16)

= �2cr(i)
2
X
m

X
l

hr[m]hr[l]�[l�m� t] (4.17)

= �2cr(i)
2
X
m

hr[m]hr[m+ t]: (4.18)

Evaluating at t = 0 yields the variance as

var(ŝr;i[n]) = �2cr(i)
2
X
m

hr[m]
2: (4.19)

Combining the expressions in (4.14) and (4.19) again yields the gain formula of Equation

(4.8). This second perspective shows that this formulation does not involve strict process

matching in the autocorrelation sense; rather, a loose matching is achieved in the sense

that the local autocorrelations of the processes sr[n] and ŝr[n] are equalized in the �rst

order. In this light, the �lter bank analysis-synthesis can be interpreted as a �rst-order

subband linear predictive coding system. Higher order LPC methods, while designed to

model locally stationary random processes, are not particularly useful for this modeling

scenario since the parameterization is not tightly coupled to perceptual factors [100].

The formulation above can be rephrased in terms of the power spectral densities

of the original and reconstructed processes. This provides a more intuitive explanation of

the �lter bank residual model than the variance matching framework, and relates the two

interpretations given in the preceding paragraph. Using the Parseval relation

X
m

hr [m]
2 =

1

2�

Z 2�

0

���Hr

�
ej!
����2 d!; (4.20)

the subband gain from Equation (4.8) can be rewritten as

cr(i)
2 =

2�

�2

�
Er(i)

N

�
1R 2�

0 jHr (ej!)j2 d!
: (4.21)

The term Er(i)=N is a variance estimate as established in Equation (4.14); then, since the

variance of a random process is the average value of its power spectral density (PSD), the

gain can be further rewritten as

cr(i)
2 =

1

�2

R 2�
0 Sr;i

�
ej!
�
d!R 2�

0 jHr (ej!)j2 d!
; (4.22)

where Sr;i
�
ej!
�
is the PSD of the r-th subband signal in the analysis �lter bank in the

i-th frame. The numerator in the above expression can be written in terms of the PSD of

the original signal s[n]:

cr(i)
2 =

1

�2

R 2�
0 Si

�
ej!
� ��Hr

�
ej!
���2 d!R 2�

0 jHr (ej!)j2 d!
: (4.23)
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This expression indicates that the gain for the r-th band is based on the average value of

the input PSD over the r-th band; the �2 is necessary to normalize the variance of the

white noise source  [n] in the synthesis �lter bank. Using the above equation, the PSD of

the original and reconstructed signals can be related; note that the PSD of the synthesized

process ŝr [n] in the i-th frame is given simply by

Ŝr;i

�
ej!
�
= �2cr(i)

2
���Hr

�
ej!
����2 : (4.24)

Substituting for cr(i) yields

Ŝr;i

�
ej!
�

=

��Hr

�
ej!
���2 R 2�

0 Sr;i
�
ej!
�
d!R 2�

0 jHr (ej!)j2 d!
(4.25)

=

��Hr

�
ej!
���2 R 2�

0 Si
�
ej!
� ��Hr

�
ej!
���2 d!R 2�

0 jHr (ej!)j2 d!
: (4.26)

This derivation shows that the ERB parameterization leads to a reconstruction whose

subband power spectra correspond to averages of the input power spectra over the various

bands of the �lter bank. The formal relationship between the PSD of the full recon-

structed signal and the original signal is more complicated, however, since cross terms are

introduced in the output PSD because the subband signals are not independent. The con-

straints required to achieve such independence substantially restrict the �lter bank design

and are thus not incorporated; also, since the perceptual model is based on subbands,

considerations regarding the PSD of the fully reconstructed output are not called for.

The result of Equation (4.8) clearly holds for the case L = N , where the gain is

simply updated for each new synthesis frame. Abrupt gain changes at frame boundaries

may cause discontinuities in the output; an alternative approach is to use L = N=2 and

carry out an overlap-add process to construct the output. Then, the above gain calculation

can also be applied, provided that the window overlap-adds to one for a stride of N=2 and

that the energy in a given band does not change drastically from frame to frame.

This �lter bank approach constitutes an e�ective framework for modeling the

noiselike residual of the sinusoidal model in that it provides a small set of parameters that

describe the general time-frequency behavior of the stochastic component. For example,

the model is e�ective at the sample rate fs = 44:1kHz for R = 12 bands with a frame

size of N = 256 and a stride of L = 128; in this case, the residual signal is essentially

downsampled by a factor of 10 into a transparent parametric representation. The original

and the synthesized signals have the same general time-frequency behavior, and because

the ear is mostly insensitive to the �ne details of a noiselike signal, this analysis-synthesis

of the stochastic component is basically perceptually lossless. Greater compaction can be

readily achieved by using larger frames and longer strides; the case above was cited in

particular since it �ts directly into the speci�c structure of the IFFT synthesizer discussed
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in Section 2.5. Also, to control the amount of model data, the number of bands can

be increased or decreased simply by scaling the bandwidth of each ERB by a common

factor. Finally, note that the length of the analysis frames and strides can be time-varied

to estimate the residual parameters for a dynamically segmented sinusoidal model, i.e. a

multiresolution model. Another way to generate model parameters at arbitrary times is

to interpolate between data points taken at regularly spaced times; such interpolation

assumes a certain smoothness in the evolution of the data.

4.2.3 Requirements for Residual Coding

The �lter bank model of the sinusoidal analysis-synthesis residual meets three

basic requirements for residual coding that have been established in the preceding dis-

cussions, namely compaction, perceptual relevance, and transparency. Compaction is

especially desirable since the residual is secondary in importance to the primary recon-

struction; perceptual relevance allows meaningful modi�cations to be carried out. Per-

ceptual losslessness is of course useful for any audio signal model; in residual modeling,

there is some leeway due to masking e�ects that occur upon combination with the primary

reconstruction.

In addition to the criteria discussed above, another useful feature of a residual

model is the ability to economically recombine the residual parameters with the parameters

of the primary signal model prior to reconstruction. In the IFFT sinusoidal synthesizer,

some computation is saved by using the ERB model to derive a spectral representation

of the residual that can be combined with the sinusoidal spectrum before the IFFT.

This FFT-based implementation is discussed further in the next section; a time-domain

implementation of the �lter bank model is also presented.

4.3 Residual Analysis-Synthesis

The �lter bank model of broadband noise perception can be implemented in

the time domain as formulated in the previous section. For frequency-domain sinusoidal

synthesis, the model can be rephrased in terms of the FFT to allow a merged synthesis of

the partials and the residual component. Details of both approaches are given below.

4.3.1 Filter Bank Implementation

The �lter bank for the residual model is subject to looser design constraints than

critically sampled �lter banks. In this section, these constraints are discussed and a simple

design approach is given; these formulations were originally presented in [178].
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Perfect reconstruction constraints

Perfect reconstruction �lter banks were discussed at length in Section 2.2.1; recall

that in the subsampled case, time-domain and/or frequency-domain aliasing introduced

by the analysis is cancelled in the synthesis �ltering process. Then, the requirement of a

distortionless input-output transfer function along with this aliasing cancellation provides

a set of design constraints for the �lter bank. Due to the various advantages of subband

processing, such �lter bank approaches have been widely dealt with in the literature, but

primarily for the case of uniform or octave-band �lter banks [2, 20]. Some results on

nonuniform critically sampled and oversampled perfect reconstruction �lter banks have

also been presented [188, 189, 190, 191, 192].

The design of a nonuniform �lter bank for the noise perception model proposed

in Section 4.2 di�ers from the perfect reconstruction problem discussed above. Summariz-

ing the model, the ERB analysis �lter bank provides a set of subband signals from which

short-time gains are derived; in the synthesis, these gains are applied to the subbands

of an ERB �lter bank driven by white noise. In short, this scenario does not involve a

typical critically sampled analysis-synthesis �lter bank. In this framework, then, the �lter

bank design is subject to di�erent constraints than those of a critically sampled system.

A sensible perfect reconstruction constraint for the ERB �lter bank is that the sum of

the subband signals should equal the original signal; then, no distortion is introduced in

deriving the subband ERB signals. For an R-band �lter bank, this constraint corresponds

simply to:

RX
r=1

sr[n] = s[n] ()
RX
r=1

hr[n] = �[n]: (4.27)

Scaling and delay are of course allowed since such e�ects can be readily compensated for

in this application. Given the subband perfect reconstruction constraint, the only other

issue is that arbitrary passband edges should be allowed for the �lters at the design stage;

such design exibility enables a wider range of experiments, for instance with variable

band allocation, than in a rigid approach. The �lter bank design is discussed below.

Filter bank design

Given a set of arbitrary frequency band edges spanning from 0 to the Nyquist

frequency fs=2, where the set will be denoted by

fedges = ff0 f1 : : : fr : : : fR�1 fRg (4.28)

with f0 = 0 and fR = fs=2, which corresponds in radian frequency to

!edges = f�0 �1 : : : �r : : : �R�1 �Rg =
2�

fs
fedges (4.29)
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with �0 = 0 and �R = �, consider ideal bandpass �lters of the form

br[n] =
�r

�
cos(!rn)

�
sin(�rn=2)

�rn=2

�
; (4.30)

where

�r = �r � �r�1 (4.31)

is the bandwidth of the r-th �lter and

!r =
�r +�r�1

2
(4.32)

is the center frequency of the positive frequency passband of the r-th �lter; because

the �lters are real, each has a negative frequency passband as well. Since the R bands

are nonoverlapping and span the entire spectrum by de�nition, the frequency responses

Br(e
j!) of the corresponding R ideal bandpass �lters simply add up to one:

RX
r=1

Br

�
ej!
�
= 1 ()

RX
r=1

br[n] = �[n]; (4.33)

which shows that this ideal �lter bank satis�es the subband perfect reconstruction con-

straint of Equation (4.27).

The ideal �lter bank fBr

�
ej!
�g consists of two-sided IIR �lters that are not

realizable. However, a realizable FIR �lter bank that satis�es the subband perfect re-

construction constraint can be derived from the ideal �lter bank by using the window

method of FIR �lter design; this method suggests that a realizable FIR approximation of

an ideal �lter can be obtained by time-windowing the ideal �lter's impulse response [193].

The frequency response of the approximate �lter is given by a convolution of the ideal

�lter response and the transform of the window, which results in a smearing of the ideal

response:

happrox[n] = f [n] hideal[n] () Happrox

�
ej!
�

= F
�
ej!
�
�Hideal

�
ej!
�
: (4.34)

This window-based approximation process is depicted in Figure 4.6; the approximate �lter

has transition regions in the frequency domain where the ideal �lter has sharp cuto�s; also,

ripples appear in the frequency response of the approximate �lter.

In designing single �lters, the window method leads to approximate realizations.

In the �lter bank case, however, it is possible to satisfy the subband perfect reconstruction

condition exactly with realizable �lters based on the window method. Introducing the

window f [n] on both sides of the right-hand expression in Equation (4.33) yields

f [n]
RX
r=1

br[n] = �[n]f [n] (4.35)
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Figure 4.6: Window method for �lter design. Time-domain multiplication corre-

sponds to frequency-domain convolution, so windowing the sinc function as in (a)

corresponds to the convolution shown in (b); the resulting FIR �lter shown in (c)

has the nonideal frequency response shown in (d), where the ideal �lter (dashed) is

included for comparison.
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=)
RX
r=1

f [n]br[n] =
RX
r=1

hr[n] = �[n]f [0]; (4.36)

where hr[n] = f [n]br[n]. This veri�es that the window-based �lter bank also satisfy the

constraint, provided that f [0] is nonzero. In the frequency domain, application of the

window corresponds to a convolution:

F
�
ej!
�
�

RX
r=1

Br

�
ej!
�
= F

�
ej!
�
� 1 (4.37)

=)
RX
r=1

Hr

�
ej!
�

=
1

2�

Z 2�

0
F
�
ej!
�
d! = f [0]; (4.38)

where Hr(e
j!) = F (ej!) � Br(ej!). The convolution of F (ej!) with the unity response

of the ideal �lter bank sum is simply equivalent to a full-band integration; the result of

the integration is the constant f [0]. The nonideal �lters Hr(e
j!) thus also satisfy the

perfect reconstruction constraint of Equation (4.27); in the frequency-domain sum, the

transition regions and ripples of a given �lter are counteracted by contributions from the

other �lters. It should be noted here that this method does not readily apply to the design

of subsampled perfect reconstruction �lter banks.

The derivation in Equations (4.35) through (4.38) shows that the only restriction

on the window f [n] is that it be nonzero at n = 0; it can thus be used to vary the response

of the �lters without a�ecting the perfect reconstruction property. One useful choice for

f [n] is the raised cosine pulse, common in digital communication applications [124], which

enables the �lter responses to be controlled by way of the excess bandwidth parameter �.

The raised cosine is de�ned as

f [n] =

8>>>>><
>>>>>:

cos
�
�1�1n

2

�
1�

�
�1�1n

�

�2 �M � n �M

0 otherwise

(4.39)

such that the length of �lters designed with this window is 2M + 1. Also, since the same

window is applied to all the �lters, the excess bandwidth parameter for the r-th �lter is

given by �r�r = �1�1. In choosing the excess bandwidth, there is thus only one degree

of freedom, which implies that the overlap between adjacent �lters will behave similarly

across the entire spectrum. Filter bank responses based on this design are shown in Figure

4.7 for varying M and �1, the excess bandwidth of the �rst �lter.

The �gure indicates the exibility of the design: the band edges are arbitrary, the

�lter length is arbitrary but the same for each band, and the �lter ripple and transition

behavior are readily controllable. Beyond the standard time-frequency resolution tradeo�s

in �lter design, the exibility of the �lter response is limited only in that the formulation



142

M
a
g
n
it
u
d
e
(d
B
)

Radian frequency

0 0.5 1 1.5 2 2.5 3
−40

−20

0

0 0.5 1 1.5 2 2.5 3
−40

−20

0

0 0.5 1 1.5 2 2.5 3
−40

−20

0

(a)

(b)

(c)

Figure 4.7: Frequency responses for a 6-band �lter bank with (a) M = 20 and

�1 = 0:5, (b) M = 40 and �1 = 0:5, and (c) M = 40 and �1 = 0:95.

requires that the same window function f [n] be used for each �lter in the �lter bank.

The choice of window essentially limits the frequency resolution of the narrowest band in

the �lter bank. For wide bands, the sinc impulse response is characteristically narrow,

meaning that a long, smooth window will not a�ect the response drastically; for narrow

bands, on the other hand, the time-domain sinc response is spread out. To maintain the

frequency resolution of the narrowest band, then, it is necessary that the window be chosen

long enough to cover the majority of the energy of the corresponding sinc function.

This design approach has proven useful for the ERB-based stochastic signal

model; the ease and exibility of the design allow for a wide variety of experiments in-

volving reallocating the frequency bands and trading o� the time-frequency resolution of

the ERB parameterization.

4.3.2 FFT-Based Implementation

For the frequency-domain synthesizer discussed in Section 2.5, it is computation-

ally advantageous to derive a representation of the residual that can be combined with

the spectrum of the partials before the inverse Fourier transform is carried out. It is thus

useful to devise an FFT-based algorithm for modeling the residual; analysis, synthesis,

and normalization issues are discussed below. These results were presented in [110].
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Residual analysis

Analysis for the ERB residual model can be carried out using the FFT. As in the

sinusoidal analysis, this uses a sliding window w[n�iL] of lengthN to extract frames of the

residual s[n] at times spaced by the analysis hop size L. The frame signal w[n� iL]s[n] is
then transformed into the spectrum S(k; i) by a DFT of size K, where K � N . Note that

the values of N , K, and L need not correspond to those used in the sinusoidal analysis.

After the DFT, the spectrum is simply divided into bands according to the ERB

model; without degradation of the model, the bandwidths of the ERBs can be scaled

by a common factor to cover the spectrum with fewer bands and thereby achieve data

reduction. After the band allocation is established, the energy in each of the bands is

computed from the DFT magnitudes; the negative frequency components are not included

since the spectrum is conjugate symmetric:

~Er(i) =
1

K

X
k2�r

jS(k; i)j2; (4.40)

where �r denotes the bins that fall in the r-th ERB; this shorthand will be used throughout

the chapter. In this FFT-based analysis, these energies serve as the residual parameters for

the i-th frame; changes in the characteristics of the residual are reected in frame-to-frame

variations of the ERB energies. Note that the energies ~Er(i) are not entirely the same as

the Er(i) formulated in the �lter bank analysis. However, both energy measures Er(i) and
~Er(i) are conceptually suitable for the psychoacoustic model, namely that the perceptual

qualities of broadband noise are determined by the total energy in each band, and not by

the speci�c distribution of energy within the bands. The distinction between Er(i) and
~Er(i) is discussed further later. Also note that the phase of the DFT X [k] is irrelevant

to the ERB energy calculation, which is justi�ed since the auditory system is primarily

sensitive to the magnitude of the short-time spectrum. This insensitivity to phase is

especially applicable to the case of broadband noise, where the phase is itself a noiselike

process; in such cases, the percept is basically independent of the phase distribution.

Residual synthesis

The modeled residual can be synthesized with the IFFT as follows. First, the

ERB energies are converted into a piecewise constant spectrum wherein the magnitude

of each constant piece is determined by the corresponding ERB analysis parameter; these

magnitudes correspond to the gains of the time-domain �lter bank model. An example

of this is given in Figure 4.8, which shows the magnitude spectrum of an analysis frame

and the corresponding piecewise constant spectral estimate for synthesis based on twelve

ERBs. Synthesis using piecewise linear spectral estimates, sloped within each ERB to

�t the analysis spectrum, gives a reconstruction of the same perceptual quality as the
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Figure 4.8: Piecewise constant ERB estimate (solid) of the residual magnitude

spectrum (dotted) for a frame of a breathy saxophone note.

piecewise constant approach, which veri�es the assumption that the ear is insensitive to

the speci�c spectral distribution within each ERB.

For the sake of input-output equalization, it is important to preserve the ERB

energies in the analysis-synthesis pathway; this is demonstrated by the following equations,

where S(k; i) denotes the analysis DFT for the i-th frame, Ŝ(�; i) denotes the piecewise

constant spectral estimate derived in the synthesis, �r is the number of bins in the r-th

ERB at the synthesis stage, andM is the size of the synthesis IFFT. Note that the analysis

transform and the synthesis transform do not have to be the same size. Accordingly, the

bins �0r in the r-th synthesis band are not necessarily the same as the bins �r in the r-th

analysis band; also, distinct bin indices k and � are used in the following formula:

~Er(i) =
1

M

X
�2�0r

jŜ(�; i)j2 =
1

K

X
k2�r

jS(k; i)j2: (4.41)

Every bin in a given synthesis band takes on the same value, so for any � 2 �0r, the above
equation can be rewritten as:

~Er(i) =
�r

M
jŜ(�; i)j2 =) jŜ(�; i)j =

s
M

�r
~Er(i): (4.42)

Energy preservation will be considered further in the upcoming section on normalization;

speci�cally, normalization issues relating to the overlap-add synthesis process are dealt

with there.
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After the magnitude spectrum is constructed, a uniform random phase is applied

on a bin-by-bin basis. Frame-to-frame phase correlations can be introduced to control the

texture of the synthesized residual; for instance, varying the smoothness of the residual

may be musically desirable. After the phase is incorporated, the spectrum of the residual

model and the partial spectrum are summed (in rectangular coordinates) and transformed

into a time-domain signal by the IFFT and OLA. This approach has proven perceptually

viable for broadband residuals such as saxophone and ute breath noise.

Comparison of FFT and �lter bank analysis-synthesis methods

While apparently founded on the same basic psychoacoustic principle, the FFT-

based model of the residual discussed in this section and the �lter bank formulation of

Section 4.2.2 provide di�erent ERB energies for the model. Perceptually, the two methods

yield similar results; given the allegation that the residual model is indeed di�erent, it is of

interest to compare the approaches mathematically so as to reveal the underlying issues.

The di�erence between the two methods can be understood in the framework

of the STFT. Some restrictions must be imposed to compare the methods; these will be

introduced as the framework is developed. In the FFT method, the analysis with the

sliding window w[n] can be immediately interpreted as a modulated STFT �lter bank

of the form shown in Figure 2.3, with analysis �lters given by w[�n]ej!kn. Note that

the di�erence between the ERB parameters depends on the analysis, so the synthesis

�lter bank will not enter the discussion here. From Section 2.2.1, the STFT of s[n] with

subsampling by L is given by

S(k; i) =
N�1X
n=0

w[n]s[n+ iL]e�j!kn; (4.43)

and the ERB parameters in the FFT method, as described earlier, are given by

~Er(i) =
1

K

X
k2�r

jS(k; i)j2 : (4.44)

Then, summing the band energies across the spectrum yields the signal energy of Parseval's

theorem:

RX
r=1

~Er(i) =
1

K

RX
r=1

X
k2�r

jS(k; i)j2 =
1

K

K�1X
k=0

jS(k; i)j2 =
N�1X
n=0

jw[n]s[n+ iL]j2 : (4.45)

As will be seen, a similar summation does not generally apply in the �lter bank case;

the sum of the subband energies in a �lter bank is not proportional to the energy of the

original signal unless the �lter bank corresponds to a tight frame [2].

In considering the �lter bank approach, various restrictions must be imposed to

allow for a meaningful comparison with the FFT method. First, the �lters are restricted



146

to be of the form

hr[n] = f [n]br[n]e
j!rn; (4.46)

where f [n] is a window function, br[n] is an ideal �lter, and !r = 2�kr=K, a bin frequency

of a K-point FFT. Unlike earlier, these �lters are de�ned to be complex; this allows for

straightforward comparisons to the complex STFT �lter bank. For real �lters, a scale

factor of two is simply necessary in some of the calculations to account for the negative

frequency components.

With the above restriction on !r in mind, br[n] is constrained to be of the form

br[n] =
�rX

k=��r
b[n]ej2�kn=K ; (4.47)

where

b[n] =
sin(�n=K)

�n
; (4.48)

which corresponds in the frequency domain to an ideal �lter of bandwidth 2�=K, which is

the width of one bin in a K-point FFT. The sum of modulated sinc functions in Equation

(4.47) is then just an ideal �lter of bandwidth 2�(2�r+1)=K. The last required restriction

is that the window function w[n] and the �lter bank �lters should be related by

w[n] = f [�n]b[�n]: (4.49)

In other words, the FFT analysis window w[n] is a windowed and time-reversed version

of the impulse response of a narrowband sinc function. Given these restrictions, it is clear

that any �lter in the nonuniform �lter bank corresponds to a sum of adjacent STFT �lters:

hr[n] = f [n]br[n]e
j!rn (4.50)

= f [n]ej!rn
�rX

k=��r
b[n]ej2�k=K (4.51)

=
kr+�rX

k=kr��r
f [n]b[n]ej2�k=K (4.52)

=
kr+�rX

k=kr��r
w[�n]ej2�k=K : (4.53)

In this framework, the r-th subband signal of the ERB �lter bank corresponds simply to

sr[n] =
X
k2�r

S[k; n]; (4.54)

where the STFT S[k; n] is not subsampled. The ERB energies in the �lter bank approach

are thus given by

Er(i) =
iL+N�1X
n=iL

������
X
k2�r

S[k; n]

������
2

: (4.55)
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In this case, the sum across bands does not yield the same result as the FFT method. This

disparity occurs because of the nonlinearity of the magnitude function; the magnitude is

taken at di�erent points in the two methods. In the FFT method, the magnitude is taken

before the subband signals are summed; in the �lter bank method, the magnitude is taken

after the subbands are added together.

The FFT and �lter bank methods are mathematically distinct as derived above.

However, they exhibit some type of equivalence in that the perceptual merits of the mod-

els are similar. This equivalence, despite the formal di�erence, indicates that a certain

crudeness or inexactness can be incorporated into residual models without causing adverse

e�ects; this is especially true if the inexactness is well-intentioned based on heuristics or

simple psychoacoustics.

An aside on Parseval's theorem

The �lter bank residual model relies on the equivalence of time-domain and

transform-domain signal energies; this equivalence is referred to as Parseval's theorem or

relation. Parseval's theorem holds for any orthogonal basis, and a similar expression can

be derived for the case of tight frames [2]. In this section, issues related to frequency-

domain signal energies are considered. It should be noted that the issues to be discussed

are not intrinsically coupled to the application of residual modeling, but indeed apply to

arbitrary signals.

The frequency-domain representations of interest here are the discrete-time Fourier

transform and the discrete Fourier transform. Considering Parseval's relation for these

two cases leads to an interesting result. For an arbitrary discrete-time signal x[n] of length

N , the signal energy can be expressed in terms of the DTFT or the DFT, which is simply

the uniformly sampled DTFT as discussed in Section 2.5.1:

N�1X
n=0

jx[n]j2 =
1

2�

Z �

��

���X �ej!����2 d! DTFT (4.56)

=
1

K

K�1X
k=0

jX [k]j2 DFT with K � N (4.57)

=
1

K

K�1X
k=0

���X �
ej2�k=K

����2 : (4.58)

The right-hand expressions in Equations (4.56) and (4.58) can be equated and manipulated

into the form Z �

��

���X �
ej!
����2 d! =

K�1X
k=0

���X �
ej2�k=K

����2�2�
K

�
: (4.59)
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Figure 4.9: Examples of exact stepwise integration for two spectra. As shown in

Equation (4.59), Parseval's theorem indicates that the stepwise approximation of the

DTFT squared-magnitude based on the DFT is exact if the DFT is large enough that

no time-domain aliasing is introduced.

The left side is simply the integral of the magnitude-squared of the DTFT. The right side

can be interpreted as a piecewise approximation of the continuous integral; the width of a

piece is 2�=K and the height of the piece spanning from frequency 2�k=K to 2�(k+1)=K is

jX [k]j2, the squared magnitude of the DTFT sample at 2�k=K. This stepwise integration

is illustrated in Figure 4.9. For the squared magnitude of the DTFT, there is no error in

approximating the integral in this fashion as long as the DFT is large enough, i.e. there

are enough samples of the DTFT. Essentially, this condition holds because the signal is

time-limited; the notion is analogous to the familiar result that a bandlimited signal can

be perfectly reconstructed from an appropriate set of samples [194]. This issue is mostly

an aside from the discussion of residual modeling, so it will not be considered further.

Normalization

To achieve perceptual losslessness in a deterministic-plus-stochastic or reconstruction-

plus-residual model, it is necessary that the relative perceptual strengths of the two com-

ponents be preserved by the system. The STFT peak picking described in Chapter 2

provides the proper amplitudes for equalized sinusoidal synthesis. In the residual model,

the loudness equalization is based on preserving the short-time energy of the signal (in

a stochastic sense); such energy preservation was the basis for deriving the short-time

gains for the synthesis �lter bank discussed in Section 4.2.2. In the frequency-domain
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synthesizer, the various operations mandate careful considerations of their e�ects on the

short-time signal energy. Relative equalization of the subband energies is straightforward

as derived earlier; the various windowing and overlap-add operations, however, introduce

gain changes that must be compensated for.

The FFT-based residual analysis-synthesis is depicted in Figure 4.10. With the

exception of the transparency requirement, the ERB energy parameters in this model im-

mediately meet the criteria discussed in Section 4.2.3; namely, the ERB energies comprise

a small set of perceptually meaningful parameters that can be readily combined with the

partials before the IFFT. To meet the �nal requirement of perceptual losslessness, signal

scaling must be explicitly accounted for; due to the multiple windowing steps and the

possibility of di�erent analysis and synthesis frame sizes and sampling rates, the synthe-

sized residual may not have the same loudness as the original residual. In the following

derivations, the subscripts a and s refer to the analysis and synthesis stages, respectively.

The proper scaling of the residual can be derived by considering the energy in

the continuous-time signal. For an input segment of length �a corresponding to N samples

at the rate fa = 1=Ta, the energy in the continuous-time signal is

E0
a =

Z �0+�a

�0

s(t)2dt �
N�1X
n=0

s[�0 + nTa]
2Ta; (4.60)

where the� refers to the approximation of the integral by the sum of the areas of rectangles

of width Ta and height s[�0 + nTa]2. In discrete time, the energy of this analysis frame of

length N is

Ea =
N�1X
n=0

s[n]2 =
E0
a

Ta
: (4.61)

The expected value of this energy, which will indeed be used as a measure of energy in

the following, is simply given by

EfEag =
N�1X
n=0

Efs[n]2g = NEfs[n]2g: (4.62)

This frame energy is now traced through the system; note that, as before, a frame index

is dropped without loss of generality.

First, the output w[n]s[n] of the analysis window has energy

Ew =
N�1X
n=0

w[n]2s[n]2: (4.63)

Similarly to the derivation for the time-domain �lter bank, the expected value of the

energy is now used as a metric; replacing s[n]2 by its expected value in Equations (4.61)

and (4.63) gives

Ew = Efs[n]2g
N�1X
n=0

w[n]2 =
EfEag
N

N�1X
n=0

w[n]2; (4.64)
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Figure 4.10: Block diagram of the FFT-based residual analysis-synthesis. The �rst

three blocks constitute the analysis.

which indicates how the windowing process a�ects the signal energy. By Parseval's the-

orem, the K-point analysis FFT preserves this energy measure, as does the ERB energy

estimation, by construction; theM -point IFFT likewise preserves the energy as long as the

spectrum is constructed according to (4.42). Using a similar argument as for the analysis

window, the e�ect of OLA with the length-M window v[n] can be shown to be

Es =
2Ew

M

M�1X
i=0

v[n] (v[n] + v1[n] + v2[n]) ; (4.65)

where v1[n] and v2[n] correspond to the second half of the window from the previous frame

and the �rst half of the window from the subsequent frame, respectively:

v1[n] =

8><
>:
v

�
n+

M

2

�
0 � n <

M

2

0
M

2
� n < M

(4.66)

v2[n] =

8><
>:

0 0 � n <
M

2

v

�
n� M

2

�
M

2
� n < M:

(4.67)

Note that a 50% overlap factor has been assumed in the derivation. As a check on

the accuracy of this formulation, for a window v[n] that overlap-adds to one, the post-

windowing and OLA do not a�ect the energy. In this FFT-based synthesis system, the

ERB spectrum is added to the partial spectrum before the IFFT; the e�ective OLA window

v[n] for the residual is then a triangular window divided by the motif window. This hybrid

window, discussed in Section 2.5, does not overlap-add to one; for this reason, the OLA

scale factor must be included.

The energy Es given by Equation (4.65) is the discrete-time energy for a synthesis
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frame of length M . The energy of the continuous time output signal ŝ(t) is

E0
s =

Z �0+�s

�0

ŝ(t)2dt (4.68)

�
M�1X
n=0

ŝ[�0 + nTs]
2Ts = EsTs; (4.69)

where Ts is the synthesis sampling period and �s is the duration of the M -sample output

frame: �s = MTs. However, since the input energy corresponds to an input segment of

duration �a, what is required is an equalization of the energy for an output segment of

that same duration �a. Let O denote the number of output samples (at rate 1=Ts) in a

segment of duration �a; the energy in this segment is

E00
s =

O�1X
n=0

ŝ[n]2Ts =
O

M
E0
s: (4.70)

Noting that
O

M
=

�a

�s
=) O

M

Ts

Ta
=

N

M
(4.71)

the entire transformation of the continuous time energies can be expressed as

E00
s = GsGaE

0
a; (4.72)

where

Ga =
N�1X
n=0

w[n]2 (4.73)

is the energy scaling incurred in the analysis, and

Gs =
2

M2

M�1X
m=0

v[m] (v[m] + v1[m] + v2[m]) (4.74)

is the e�ect of synthesis. In the analysis, then, the signal should be multiplied by the scale

factor 1=
p
Ga before the ERB energies are calculated; at the synthesis stage, the output

should be multiplied by 1=
p
Gs to equalize the energies. Listening tests have veri�ed

that the signal energy of Parseval's theorem is an accurate measure of the loudness of

broadband noise, and that the outlined approach provides input-output equalization in

the ERB analysis-synthesis.

4.4 Conclusion

In modeling complicated signals, it is often necessary to introduce a mixture of

representations. This chapter described the speci�c framework of residual modeling, in

which the signal is �rst reconstructed based on a primary model, and the di�erence between
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the original and the reconstruction is then modeled independently. For the multiresolution

sinusoidal model, this residual is a colored noise process that can be parameterized in a

perceptually accurate fashion in terms of the subband energies of the auditory �lters;

in audio applications, this process includes features that are perceptually important for

realism, e.g. breath noise in a ute. This chapter discussed basic �lter bank models of

the auditory system as well as a simple approach for designing corresponding �lter banks.

Two implementations of the resulting residual model were developed and compared. It

was shown that the parameterizations in the two implementations are somewhat di�erent

but further argued that the di�erence is practically moot; this contention is based on

the experimental observation that crude heuristic models of noiselike signals can achieve

transparency. It should be noted that the residual model discussed in this chapter is not

signal-adaptive; rather, it is intended for use in conjunction with signal-adaptive sinusoidal

models. Of course, the model could be made signal-adaptive by using a �lter bank with

adaptive band allocation, for instance, but such adaptation has not proven necessary for

modeling typical residuals.
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Chapter 5

Pitch-Synchronous Methods

In the general sinusoidal model, the frequencies of the partials are estimated

without regard for the possibility of harmonic structure; at least, it is not necessary to

make any assumptions about the presence of such behavior. In cases where harmonic

structure is prevalent, i.e. in periodic and pseudo-periodic signals, this can be exploited

to improve the signal model with respect to data reduction in that only the fundamental

frequency need be recorded. In this chapter, a pitch-synchronous signal representation

proposed in [195] is considered; similar representations have been applied in prototype

waveform speech coders [56]. This pitch-dependent framework leads to simple sinusoidal

models in which line tracking and peak detection are unnecessary because of the harmonic

structure; furthermore, the representation leads to wavelet-based models that are more

appropriate for pseudo-periodic signals than the lowpass-plus-details model of the stan-

dard discrete wavelet transform. By separately estimating the pitch or periodicity of a

signal, improvements in both wavelet and sinusoidal models can be achieved. It should

be noted that these approaches rely on robust pitch detection and thus apply only to

signals whose periodic structure can be reliably estimated; in audio applications, then,

appropriate signals consist of a single voice or a single instrument.

5.1 Pitch Estimation

Pitch estimation or pitch detection refers to the problem of �nding the basic repet-

itive time-domain structure within a signal. This issue has been explored most extensively

in the speech and audio processing communities [1, 53, 196, 197, 198]; the terminology

is thus taken from these �elds, but the methods apply to any pseudo-periodic signals.

Pitch detection is reviewed in the section below; the section thereafter proposes a simple

algorithm for re�ning pitch estimates for the purpose of carrying out pitch-synchronous

signal segmentation.
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5.1.1 Review of Pitch Detection Algorithms

Algorithms for pitch detection can be loosely grouped into time-domain and

frequency-domain methods. In frequency-domain approaches, a short-time spectrum of

the signal is analyzed for harmonic behavior, i.e. peaks in the spectrum at frequencies

with a common factor; this factor corresponds to the fundamental frequency of the signal.

In time-domain techniques, cross-correlations of nearby signal segments are computed at

various lags; the lags that yield peaks in the cross-correlation correspond to the period of

the signal. Both types of methods are fundamentally susceptible to errors: for instance,

in the time domain, a two-period signal segment can be mistaken as a pitch period;

in the frequency domain, dominance of either the odd or even harmonics, or a missing

fundamental, can result in signi�cant estimation errors. Various �xes have been proposed

to account for these problems; for instance, based on the a priori knowledge that a typical

musical signal does not have impulsive pitch discontinuities, a median �lter can be applied

to the pitch estimates to remove outliers and provide a more robust estimate [1, 53, 197].

For a more detailed discussion of pitch detection algorithms, the reader is referred

to [1, 53, 196]. For the purposes of this chapter, it is assumed that a reliable pitch detec-

tion algorithm is available, and that the algorithm is capable of acknowledging, perhaps

according to some heuristic threshold, when no pitch can be reasonably assessed to the

signal. Using this assessment, the algorithm can segment the signal into regions classi�ed

as pitched or unpitched.

5.1.2 Phase-Locked Pitch Detection

A standard pitch detector provides an estimate of the local pitch of a signal, which

is essentially a rough parametric description of the local behavior. A rough estimate of the

local behavior is not entirely adequate, however, for the applications to be discussed here;

as will be seen, it is important that the pitch estimates correspond to precise structures

in the signal. To achieve this correspondence, pitch estimates from a standard algorithm

can be \phase-locked" to the signal as proposed below. First, it is assumed that a robust

pitch detector such as the one described in [197] is used to generate a moving estimate of

the pitch period; the output of the pitch detector is speci�cally assumed to consist of pitch

periods and their corresponding time indices. This pitch period function will be denoted

by P (t); since detectors generally estimate the pitch at some �xed interval T , the function

P (t) can be equivalently represented as P (iT ) = P (t)jt=iT . It is further assumed for the

sake of notation that the pitch detection algorithm assigns a value of zero to P (t) when

no reasonable pitch can be assessed to the signal. Note that the onset of a signal cannot

typically be assigned a pitch, so P (t) = 0, or likewise P (iT ) = 0, will generally be the case

in the onset regions; after the onset, if the signal becomes pseudo-periodic a pitch can be

estimated. A similar observation holds for transitions, for instance note-to-note changes
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in music; a pitch cannot be assigned to the interstitial regions. Given these assumptions

and observations, the phase-locking algorithm is straightforward; it is explained here as

well as in the owchart of Figure 5.1:

� For the �rst pitch detected after a region where P (iT ) = 0, �nd the corresponding

time point in the signal (ta) and search for the �rst subsequent positive-slope zero

crossing in the signal. Denote this by t0. Since time is discretized and the zero

crossing may not fall on a sample point, t0 is chosen to correspond to the �rst

positive signal value after the zero crossing.

� The time t0 lies between two times ta and tb for which pitches have been estimated

by the initial pitch detection algorithm; thus, an appropriate estimate of the pitch

period at time t0 can be found by interpolating:

P (t0) =
P (ta)[tb � t0] + P (tb)[t0 � ta]

tb � ta
: (5.1)

P (t0) is the estimated length of the signal period starting at t0.

� Find the positive-slope zero crossing closest to (not necessarily after) the time t0 +

P (t0). Denote this time by t1. Again, the time is rounded to correspond to the

positive value after the zero crossing.

� Interpolate to estimate P (t1), and then �nd t2, which is the time of the closest

positive-slope zero crossing to t1 + P (t1).

� Repeat the above step for t2, and so on, until a region where P (iT ) = 0 is entered,

at which point the algorithm should be restarted entirely.

� At stages in the interpolation when P (ta) 6= 0 and P (tb) = 0, the interpolated pitch

is assigned a zero value to prevent incongruous pitch estimates.

� The time points ft1; t2; : : :g indicate pitch period boundaries that can be used to

construct a track of phase-locked period estimates P̂ (tj) = tj+1 � tj . The starting

times of the pitch periods follow positive-slope zero crossings by construction, so the

�rst sample in any pitch period is positive and the last sample is negative.

This phase-locking algorithm yields a set of re�ned pitch period estimates that correspond

to pseudo-periodic structures that are synchronized to positive-slope zero crossings of the

signal; as will be seen, synchronization at zero crossings, while seemingly arbitrary, is of

importance for deriving a useful pitch-synchronous signal representation. Furthermore, it

has also been reported that zero crossings are of physical signi�cance in speech signals in

that they are linked to instances when the glottis is closed [198].
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Figure 5.1: Flow chart for phase-locked pitch detection. The abbreviation PSZC

refers to a positive-slope zero crossing in the signal. It is assumed that initial pitch

period estimates, denoted by P (iT ), are derived by a standard pitch detection algo-

rithm such as the one described in [197]. The itemized description in the text gives

additional details related to the operations carried out by the various blocks.

Some wavelet-based algorithms for pitch estimation based on zero crossings have

been discussed in the literature [199, 198]; the corrective phase-locking described above is

adhered to in this treatment, however, since it is simple and allows for a quick synchro-

nization of pitch period estimates to zero crossings in the signal.

5.2 Pitch-Synchronous Signal Representation

Using the time points from the simple phase-locked pitch detector presented

above, the signal can be divided into pseudo-periodic segments, i.e. pitch periods that

are synchronized to positive-slope zero crossings. This segmentation leads to a pitch-

synchronous representation similar to the one proposed in [195]; this representation will

prove useful for signal modeling.

5.2.1 Segmentation

In Section 4.1, mixed models of signals were discussed; this motivated consider-

ing the sinusoidal model in terms of a deterministic-plus-stochastic decomposition where

the stochastic component accounted for signal features not well-represented by the sinu-

soidal model. The overall model mixture then consisted of slowly-varying sinusoids and



157

broadband noise.

A representation similar to the deterministic-plus-stochastic decomposition of

Chapter 2 has been widely applied in linear predictive coding (LPC) of speech, where the

speech is coded using a time-varying source-�lter model [1, 23]. The �lter is adapted in

time to match the speech spectrum, while the source is chosen based on a classi�cation of

the local speech signal as voiced or unvoiced. The characterization voiced refers to sounds,

such as vowels, that exhibit a strong periodicity; the corresponding source for the LPC

model is a periodic impulse train. The alternative classi�cation unvoiced designates sounds

such as sibilants and fricatives which do not exhibit periodic behavior and are heuristically

more noiselike; the source for unvoiced sounds is typically white noise. Synthesis in the

LPC framework is carried out by applying the appropriate source to the time-varying �lter;

when the input is a periodic impulse train, the output has the pseudo-periodic structure

characteristic of voiced sounds, whereas when the input is white noise, the output is simply

colored noise and does not exhibit periodicities.

In LPC, the voiced/unvoiced classi�cation parameter indicates a segmentation

of the signal into regions where di�erent models are appropriate. A similar segmentation

can be applied to arbitrary audio signals; because the terms \voiced" and \unvoiced"

are inappropriate designations for musical signals, the terms \pitched" and \unpitched"

will be used to classify the signal behavior. The phase-locked pitch detection algorithm

described in the previous section is appropriate for deriving such a pitched/unpitched

signal segmentation; regions where a pitch can be estimated are designated as pitched and

regions where P (t) = 0 are classi�ed as unpitched. This segmentation is markedly di�erent

from the deterministic-plus-stochastic decomposition described in the treatment of the

sinusoidal model; as discussed in Section 4.1, in the sinusoidal model and in some LPC

variations, the model mixtures are concurrent in time. For pitch-synchronous processing,

however, it is necessary to neglect such concurrency and rigidly segment the signal into

pitched and unpitched regions. As will be seen, this introduces some di�culties in the

modeling of unpitched transient regions; a resolution of these di�culties is arrived at in

Section 5.4.3.

In segmenting a dynamic signal such as a musical phrase, the transitions between

regions of di�erent pitch are classi�ed as unpitched as described above. Pitch-synchronous

processing algorithms are adjusted at these transitions to account for the pitch variations.

In addition to variations across transitions, each local pitch region exhibits variations,

for instance those that accompany vibrato; such variations are natural in musical signals

and occur even when a vibrato is not immediately perceptible. For the algorithms to

be discussed, it is necessary to segment the signal into pitch periods within each local

pitch region. Because of signal characteristics such as vibrato, however, these pitch period

segments do not each have the same duration. As will be seen, it is necessary to remove

these local pitch variations prior to processing; the variations can be reinjected in the
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synthesis if necessary for realism. Removal of local pitch variations is described in the

next section.

5.2.2 Resampling

In general digital audio applications, it is often desirable to change the sampling

rate; this can be done straightforwardly by converting the signal to continuous time and

then sampling at the desired rate, but that approach is both ine�cient and not robust

to noise degradations. It is thus of interest to e�ect a change in sampling rate in the

digital domain. This process is referred to as sample rate conversion or resampling. For

the applications in this chapter, resampling will be used to remove local pitch variations

prior to carrying out pitch-synchronous processing; as stated above, the pitch variations

can be reintroduced at the synthesis stage if perceptually necessary.

One method of resampling uses the familiar upsampling and downsampling op-

erations. Changing the sampling rate of a sequence x[n] from fs to P
Qfs is carried out

by upsampling by P and then downsampling by Q, with some appropriate intermediate

�ltering to prevent aliasing [193]. The resulting sequence is P
Q
times as long as x[n]. A

detailed consideration of this type of approach can be found in [200].

In the pitch-synchronous methods of this chapter, resampling is carried out for

each pitch period of the signal so as to remove slight pitch variations; this enables construc-

tion of the pitch-synchronous signal representation discussed in the next section, which

will prove useful for signal coding and modi�cation. The idea is simply to take the local

pitch period segments and resample each one to some period P . In the following discus-

sion, then, P will serve to denote the target period; Qi will denote the original period of

the i-th pitch period segment, which will be referred to as xi[n]. Finally, R denotes the

number of pitch period segments in the local pitch region.

Resampling using the �lter-based approach described above tends to introduce

edge e�ects. This is problematic for the application of pitch period resampling since it

tends to result in discontinuities at period boundaries in the signal reconstructions in

the various pitch-synchronous models to be presented. An alternative method based on

the discrete Fourier transform is more appropriate for this resampling application since it

introduces fewer artifacts at signal boundaries.

Resampling using the DFT is carried out as follows [201]. For a pitch period

xi[n] of length Qi, a DFT of size Qi is computed, unless of course Qi is equal to the

target period P . The spectrum is then truncated or extended to size P as described in

the following list, and an IDFT of size P scaled by P
Qi

yields the output sequence x0i[n] of

length P . The resized spectrum is derived di�erently depending on the relative values of

P and Qi:

� P = Qi. No resampling is necessary. Since this is computationally advantageous,
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the target period P for a local pitch region is chosen as the mode of the original

periods fQi; i 2 [1; R]g so that this case occurs frequently.

� P < Qi. The resampled output is to be shorter than the input, so the modi�ed

spectrum should have fewer bins than the original. This is carried out by discarding

the P � Qi highest frequency bins, which is equivalent to eliminating the highest

frequency harmonics from the signal.

� P > Qi. The resampled output is to be longer than the input, so the modi�ed

spectrum should have more bins than the original. This is done by introducing

P�Qi high-frequency harmonics having either zero amplitude or nonzero amplitudes

derived by extrapolating the original spectrum.

Note that the Nyquist frequency bin, if present (when P or Qi is odd), is always zeroed

out. Also note that since the sampling rate is necessarily large in high-quality audio appli-

cations, the periods P and Qi are both typically fairly large. Since local pitch variations

are typically small with respect to the average local pitch, the spectral adjustments de-

scribed above are relatively minor. The DFT computation, however, may be intensive,

especially if P or Qi is prime. The cost is not prohibitive, however, since the algorithms

to be discussed are intended primarily for o�-line use. Further treatment of resampling is

not merited here; for the remainder of the chapter, it is assumed that the pitch variations

can be reliably removed.

5.2.3 The Pitch-Synchronous Representation Matrix

Once the pitch variations in the R pitch period segments have been removed via

resampling, the signal can be reorganized into an R� P matrix

X =

2
666666664

x01[n]

x02[n]

x03[n]
...

x0R[n]

3
777777775
; (5.2)

where x0i[n] is a version of the pitch period xi[n] that has been resampled to length P . The

matrix will be referred to as the pitch-synchronous representation (PSR) of the signal. As

described in the next section, this representation is useful for carrying out modi�cations;

furthermore, structuring the signal in this fashion leads to the pitch-synchronous sinusoidal

models and wavelet transforms discussed later.

There are several noteworthy issues regarding the PSR. For one, the matrix need

not be constructed via resampling. Alternatively, the period lengths can be equalized by

zero-padding all of the period signals to the maximum period length [195] or by viewing
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each period as an impulse response and carrying out an extension procedure such as in

pitch-synchronous overlap-add methods [90]. These approaches, however, do not yield

the same smoothness as resampling; they do not necessarily preserve the zero-crossing

synchronization and discontinuities may result in the reconstruction.

A second issue concerns the unpitched regions. Each pitched region in a signal has

a preceding unpitched region; this structure allows the approach to be readily generalized

from the single note scenario to the case of musical phrases. Given this argument, the

considerations herein are primarily limited to signals consisting of a single note. In the

single-note case, the preceding attack is then the unpitched region in question. To allow for

uniform processing of the signal, the attack is split into segments of length P and included

in the PSR; the beginning of a signal is zero-padded so that the length of the onset is

a multiple of P . In later sections, perfect reconstruction of the attacks is considered in

the frameworks of both pitch-synchronous Fourier and wavelet models. In either of the

transforms, the signal is reconstructed after processing by concatenating the rows of the

synthesis PSR, possibly resampled to the original pitch periods using pitch side information

if necessary for realism.

An example of a PSR matrix is given in Figure 5.2 for a portion of a bassoon note.

This bassoon signal and variations of a similar synthetic signal will be used throughout this

chapter to illustrate the issues at hand. Note that the PSR is immediately meaningful for

signals consisting either of single notes or several simultaneous notes that are harmonically

related. For musical phrases or voice, it is necessary to generate a di�erent PSR for each

pitch region in the signal; the various PSR matrices have di�erent dimensions depending

on the local pitch and duration of that pitch. This chapter focuses on the single-pitch case

without loss of generality; extensions of the algorithms are straightforward.

5.2.4 Granulation and Modi�cation

The pitch-synchronous representation is a granulation of the signal that can

be readily used to facilitate several types of modi�cation: time-scaling, pitch-shifting,

and pitch-synchronous �ltering. First, time-scaling can be carried out by deleting or

repeating pitch period grains for time-scale compression or expansion, respectively; this

can be done either in a structured fashion or pseudo-randomly. In speech processing and

granular synthesis applications, similar techniques are referred to as deletion and repetition

[202, 203]. Note that the time-scaling by deletion/repetition is accomplished without pitch-

shifting, and that it is inherently made possible by the zero-crossing synchronization of

the PSR; without this imposed smoothness of the model, discontinuities would result in

the modi�ed signal.

Pitch-shifting based on the PSR is done simply by resampling the pitch periods;

such pitch-shifting is not formant-corrected, however, but formant correction, which was
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Figure 5.2: A portion of a bassoon note and its pitch-synchronous representation.

discussed in Section 2.7.2, can be included by incorporating a model of the spectral en-

velope in the DFT-based resampling scheme described earlier. Also, this pitch-shifting

changes the duration of the signal, so an accompanying deletion or repetition of the re-

sampled pitch periods is required to preserve the original time scale. Finally, given a pitch

period segmentation of the signal, the signal can be viewed as the output of a time-varying

source-�lter model where the source is a pitch periodic impulse train and the time-varying

�lter determines the shape of the pitch period grains. In this light, a second time-varying

pitch-synchronous �lter can be applied to the signal by convolution with the individual

pitch periods; the signal is then reconstructed by overlap-add of the new period segments.

This notion leads to some time-varying modi�cations as well as pitch-based cross-synthesis

of multiple signals.

As described in Section 2.7, signals with pitched behavior are well-suited for

modi�cation. The ease of modi�cation based on the pitch-synchronous representation is

thus not particularly surprising. As a �nal note, it should be clear that the PSR is not

immediately useful for signal coding but that it does expose redundancies in the signal

that can be exploited by further processing to achieve a compact representation. Two

such processing techniques are described in the following sections.
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5.3 Pitch-Synchronous Sinusoidal Models

The peak picking, line tracking, and phase interpolation problems in sinusoidal

modeling can be resolved by applying Fourier methods to a resampled pitch-synchronous

signal representation. These simpli�cations are a direct result of the prior e�ort put into

pitch detection and signal segmentation. The pitch-synchronous representation is itself a

signal-adaptive parametric model of the signal; by constructing the PSR, the signal is cast

into a form which enables a Fourier expansion to be used in an e�ective manner.

Of course, it is commonplace to apply Fourier series to periodic signals; it indeed

provides a compact representation for purely periodic signals. Here, the Fourier series

approach is applied to pseudo-periodic signals on a period-by-period basis.

5.3.1 Fourier Series Representations

A detailed review of Fourier series methods is given in Appendix B; various con-

nections between the DFT and expansions in terms of real sines and cosines are indicated

there. The result that is of primary interest here is that a real signal of length P can be

expressed as

x[n] =
X [0]

P
+

2

P

X
k

jX [k]j cos(!kn+ �k) ; (5.3)

where !k = 2�k=P , jX [k]j and �k are respectively the magnitude and phase of the k-th

bin of a size P DFT of x[n], and k ranges over the half spectrum [0; P=2]. Note that

this magnitude-phase form resembles the sinusoidal model of Chapter 2. The next section

considers applying the representation of Equation (5.3) to the rows of a PSR, i.e. the

pitch periods of a signal. This approach results in a pitch-synchronous sinusoidal model

in which some of the di�culties of the general sinusoidal model are circumvented. The

various simpli�cations arise because of the e�ort given to the process of pitch detection

and signal segmentation.

5.3.2 Pitch-Synchronous Fourier Transforms

Applying the Fourier series to the pitch-synchronous representation of a signal

is equivalent to carrying out pitch-synchronous sinusoidal modeling. In this case, as ex-

plained below, the peak picking and line tracking problems are eliminated by the pitch

synchrony.

Peak picking

The DFT of a pitch period samples the DTFT at the frequencies of the pitch

harmonics, namely the frequencies !k = 2�k=P for a pitch period of length P . These

frequencies correspond to the relevant partials for the sinusoidal model. With regards to
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the discussion of Section 2.3.1, taking the DFT of a pitch period in the PSR is analogous

to using a rectangular window that spans exactly one pitch period, which provides exact

resolution of the harmonic components without spectral oversampling. In short, spectral

peaks do not need to be sought out as in the general sinusoidal model; here, each of the

spectral samples in the DFT corresponds directly to a partial of the signal model. Partials

with small amplitude can be neglected in order to reduce the complexity of the model and

the computation required for synthesis, but this may lead to discontinuities as discussed

later.

Line tracking

In the pitch-synchronous sinusoidal model, the simpli�cation of peak picking

in the Fourier spectrum is accompanied by a simpli�cation of the line tracking process.

Indeed, no line tracking is necessary. A harmonic structure is imposed on the signal

by the model, so the partial tracks are well-behaved by construction. Of course, it is

necessary that the original signal exhibit pseudo-periodic behavior for this approach to be

at all e�ective; given this foundation, the imposition of harmonic structure is by no means

restrictive. Note that this insight applies to the case of a single note with an onset. To

generate tracks that persist across multiple notes, it is necessary to either impose births

and deaths in the transition regions or to carry out line tracking of the harmonics across

the transitions.

5.3.3 Pitch-Synchronous Synthesis

Since it is a basis expansion, the Fourier series representation can achieve perfect

reconstruction. Synthesis using basis vectors, however, is not particularly exible. A

generalized synthesis can be formalized by expressing a pitch period xi[n] in the magnitude-

phase form of Equation (5.3) and then phrasing the synthesis as a sum-of-partials model.

This framework is considered in the following sections.

Synthesis using a bank of oscillators

For a pitch period xi[n] of length P , the perfect reconstruction magnitude-phase

expression is given by

xi[n] =
2

P

X
k

jXi[k]j cos (!kn+ �k;i) (5.4)

for n 2 [0; P � 1] and !k = 2�k=P . The signal can be constructed by concatenating the

pitch period frames:

x[n] =
X
i

xi[n] =
2

P

X
i

X
k

jXi[k]j cos (!kn + �k;i) ; (5.5)
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where i is a frame index; xi[n] is the i-th frame, and Xi[k] is the DFT of xi[n]. The

segment xi[n] is supported on the interval n 2 [iP; iP +P � 1]; Xi[k] likewise corresponds

to that time interval. More formally, this Fourier amplitude could be expressed as

Xi[k] (u[n� iP ]� u[n� (i+ 1)P ]) ; (5.6)

where u[n] is the unit step function; the simpler notation is adhered to in this treatment.

While the same frequencies appear in the model of Equation (5.5) in every frame,

there are not necessarily actual partials that persist smoothly in time. Consider the

contribution of the components at a single frequency !k :

pk[n] =
2

P

X
i

jXi[k]j cos (!kn+ �k;i) : (5.7)

The phase terms are not necessarily the same in each frame, so for this single-frequency

component the concatenation may have discontinuities at the frame boundaries. These

discontinuities are eliminated in the full synthesis; their appearance in the constituent

signals, however, indicates that if components are omitted to achieve compaction, frame-

rate discontinuities will appear in the output. Because of these discontinuities, the Fourier

model in Equation (5.5) cannot be simply interpreted as a sum of partials.

The di�culty with phase discontinuities at the frame boundaries can be cir-

cumvented by rephrasing the reconstruction as a sinusoidal synthesis using a bank of

oscillators. Rather than relying on the standard Fourier basis functions, sinusoidal ex-

pansion functions that interpolate the amplitude and phase are generated such that the

reconstruction indeed consists of evolving partials and not discrete Fourier atoms with the

aforementioned boundary mismatches caused by phase misalignment. This revision of the

approach provides an example of how a parametric model can improve compaction: in

the approximate reconstructions of compressed models, discontinuities occur at the frame

boundaries in the basis case but not in the sinusoidal synthesis; the sinusoidal model is free

from boundary discontinuities by construction. Note however that this sinusoidal model,

while it is perceptually accurate, does not carry out perfect reconstruction.

Zero-phase sinusoidal modeling

In the standard sinusoidal model, the phase interpolation process at the synthesis

stage is a high-complexity operation. Phase interpolation is thus one of the major obstacles

in achieving real-time synthesis [132]. This di�culty is circumvented here by imposing a

harmonic structure via the processes of pitch detection, segmentation, and resampling.

In the pitch-synchronous sinusoidal model introduced above, the phase of the

harmonics is preserved; phase interpolation from frame to frame is thus required, but

this is problematic in several respects. First, it is computationally expensive. Second,
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the interpolation does not take into account a fundamental property of the representa-

tion, namely that the same frequencies are present in every frame; indeed, by �tting a

cubic polynomial to the frequency and phase parameters in adjacent frames, the e�ective

frequency will be time-varying, which is not desired in this pitch-synchronous algorithm.

By construction, a Fourier sinusoid in a frame moves through an integral number

of periods, meaning that its start and end phases are the same (one sample o�, that

is). Thus, for the corresponding sinusoid in the next frame to evolve continuously across

the frame boundary, its starting phase should be one sample ahead of the end phase in

the previous frame, or in other words it should be equal to the start phase from the

previous frame. If this continuity is imposed, there is no phase interpolation required in

the synthesis; a harmonic partial has the same phase in every frame.

This method is referred to here as zero-phase sinusoidal modeling since the start

phases in the �rst frame can all be set to zero; then, the start phase for every partial in

every frame is zero. In some cases, it may be useful to preserve the phase in the �rst frame

to ensure perfect reconstruction there; this technique can be used to reconstruct attacks

without the delocalization incurred in the general sinusoidal model. This initial phase is

then �xed as the start phase for all frames, so the signal reconstruction can be phrased as

x̂[n] =
X
i

xi[n] =
2

P

X
i

X
k

jXi[k]j cos (!kn + �k;0) (5.8)

=
2

P

X
k

cos (!kn+ �k;0)
X
i

jXi[k]j (5.9)

=
X
k

cos (!kn+ �k;0)
X
i

Ak;i[n]; (5.10)

where the Ak;i[n] are stepwise amplitude parameters that correspond directly to the

Fourier coe�cients:

Ak;i[n] =
2

P
jXi[k]j (5.11)

for n 2 [iP; iP + P � 1]. Interpolation can be included to smooth the stepwise amplitude

envelopes of the partials in the reconstruction. Then, the signal model is:

x̂[n] =
X
i

X
k

Ak;i[n] cos (!kn + �k;0) =
X
k

cos (!kn+ �k;0)
X
i

Ak;i[n]; (5.12)

which is simply a sum of partials with constant frequencies !k, each modulated by a linear

amplitude envelope given by

Ak;i[n] =
2

P

�
nXi[k] + (P � n)Xi�1[k]

P

�
: (5.13)

In the �rst frame, where i = 0, the amplitude envelope is de�ned as a constant

Ak;0[n] =
2

P
X0[k] n 2 [0; P � 1] (5.14)
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so that perfect reconstruction is carried out there. More generally, this perfect reconstruc-

tion can be carried out over an arbitrary number of frames at the onset to represent the

transient accurately. Recalling from the discussion of Section 5.2.3 that the prototypical

signal consists of an unpitched region followed by a pitched region, the approach is to

model the entire unpitched region perfectly in the above fashion; once the pitched region

is entered, the phase is �xed and the harmonic sum-of-partials model of Equation (5.12)

is used.

Many variations of pitch-synchronous Fourier series modeling can be formulated.

For instance, the amplitude interpolation can be carried out between the centers of adja-

cent pitch period frames rather than between the frame boundaries; this is similar to the

way the synthesis frames in the sinusoidal model are de�ned between the centers of the

analysis frames. Such variations will not be considered here; some related e�orts involv-

ing zero-phase modeling, or magnitude-only reconstruction, have been discussed in the

literature [149, 204]. The intent here is primarily to motivate the usefulness of parametric

analysis and adaptivity for signal modeling; estimating the pitch parameter leads to simple

sinusoidal models, and incorporating perfect reconstruction allows for accurate representa-

tion of transients. Note that in either zero-phase or �xed-phase modeling, the elimination

of the phase information results in immediate data reduction, and that this compression

is transparent since it relies on the well-known principle that the ear is insensitive to the

relative phases of component signals.

5.3.4 Coding and Modi�cation

There is a substantial amount of redundancy from one pitch period to the next;

adjacent periods of a signal have a similar structure. This self-similarity is clearly de-

picted in the pitch-synchronous representation shown in Figure 5.2 and is of course the

fundamental motivation for pitch-synchronous processing. Since adjacent periods are re-

dundant or similar, the expansion coe�cients of adjacent periods exhibit a corresponding

similarity. Because of this frame-to-frame dependence, the expansion coe�cients can be

subsampled and/or coded di�erentially. Furthermore, multiresolution modeling can be

carried out by subsampling the tracks of the low frequency harmonics more than those of

the high frequency ones; such subsampling reduces both the model data and the amount

of computation required for synthesis. Indeed, the tracks can be approximated in a very

rough sense; variations between pitch periods, which may be important for realism, can

be reincorporated in the synthesis based on simple stochastic models.

The signal modi�cations discussed in Section 2.7 can all be carried out in the

pitch-synchronous sinusoidal model. It is interesting to note that some modi�cations such

as time-scaling and pitch-shifting can either be implemented based on the sinusoidal pa-

rameterization or via the granular model of the PSR matrix. Note that modi�cations
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which involve resampling are accelerated in the pitch-synchronous sinusoidal model be-

cause the Fourier series representation can directly be used for resampling as described in

Section 5.2.2.

5.4 Pitch-Synchronous Wavelet Transforms

This section considers applying the wavelet transform in a pitch-synchronous

fashion as originally proposed in [205, 195]. The pitch-synchronous wavelet transform

(PSWT) is developed as an extension of the wavelet transform that is suitable for pseudo-

periodic signals; the underlying signal models are discussed for both cases. After the

algorithm is introduced, implementation frameworks and applications are considered.

5.4.1 Spectral Interpretations

The wavelet transform and the pitch-synchronous wavelet transform can be un-

derstood most simply in terms of their frequency-domain operation. The spectral decom-

positions of each transform are described below.

The discrete wavelet transform

As discussed in Section 3.2.1, the signal model underlying the discrete wavelet

transform (DWT) can be interpreted in two complementary ways. At the atomic level,

the signal is represented as the sum of atoms of various scales; the scale is long in time

at low frequencies and short for high frequencies. Each of these atoms corresponds to a

tile in the time-frequency tiling given in Figure 1.9(b) in Section 1.5.2. This atomic or

tile-based perspective corresponds to interpreting the discrete wavelet transform as a basis

expansion; each atom or tile is a basis function.

Alternatively to the atomic interpretation, the wavelet transform can be thought

of as an octave-band �lter bank. As reviewed in Section 3.2.1, the discrete wavelet trans-

form can be implemented with a critically sampled perfect reconstruction �lter bank with

a general octave-band structure; the coe�cients of the atomic signal expansion in a wavelet

basis can be computed with such a �lter bank. This �lter bank equivalence is clearly evi-

dent in the tiling diagram of Figure 1.9(b); considered across frequency, the structure of

the tiles indicates an octave-band demarcation of the time-frequency plane. These bands

in the tiling correspond to the subbands of the wavelet �lter bank; in frequency, then,

a wavelet �lter bank splits a signal into octave bands, plus a �nal lowpass band. In a

tree-structured iterated �lter bank implementation, this �nal lowpass band corresponds

to the lowpass branch of the �nal iterated stage; this branch is of particular interest for

signal coding since it is highly downsampled.



168

The �lter bank interpretation shows that the discrete wavelet transform provides

a signal model in terms of octave bands plus a �nal lowpass band. The lowpass band is

a coarse estimate of the signal. The octave bands provide details that can be added to

successively re�ne the signal; perfect reconstruction is achieved if all of the subbands are

included. This lowpass-plus-details model is appropriate for signals which are primarily

lowpass; the wavelet transform has thus been applied successfully in image compression

[18, 19]. However, for signals with wideband spectral content, such as high-quality audio,

a lowpass estimate is a poor approximation. For any pseudo-periodic signals with high-

frequency harmonic content, a lowpass estimate does not incorporate the high-frequency

harmonics. Indeed, for general wavelet �lter banks based on lowpass-highpass �ltering at

each iteration, representing a signal in terms of the �nal lowpass band simply amounts to

lowpass �ltering the signal and using a lower sampling frequency, so it is not surprising that

this compaction approach does not typically provide high-quality audio. Wavelet-based

modeling of a bassoon signal is considered in Figure 5.3 for the case of Daubechies wavelets

of length eight; these wavelets will be used for all of the simulations in this chapter. Given

the modeling inadequacy indicated in Figure 5.3, it is of interest to adjust the wavelet

transform so that the signal estimate includes the higher harmonics. This adjustment is

arrived at via the following consideration of upsampled wavelets.

Upsampled wavelets

As motivated in the previous section, it is of interest to modify the wavelet

transform in such a way that the coarse estimate of a pseudo-periodic signal includes

the signal harmonics. Conceptually, the �rst step in achieving this spectral revision is to

consider the e�ect of upsampling the impulse responses of the iterated �lters in a wavelet

analysis-synthesis �lter bank. The spectral motivation is described after the following

mathematical treatment.

As derived in Appendix A, a wavelet �lter bank can be constructed by iterating

critically sampled two-channel �lter banks that satisfy the perfect reconstruction condition

G0(z)H0(z) + G1(z)H1(z) = 2 (5.15)

G0(z)H0(�z) + G1(z)H1(�z) = 0; (5.16)

where the Hi(z) are the analysis �lters and the Gi(z) are the synthesis �lters. Note that

the condition still holds if the transformation z ! zM is carried out:

G0(z
M)H0(z

M) + G1(z
M)H1(z

M ) = 2 (5.17)

G0(z
M )H0(�zM ) + G1(z

M)H1(�zM ) = 0: (5.18)

As will be shown below, this transformed expression is not the same perfect reconstruc-

tion condition that arises if the constituent �lters are upsampled; a comparison of the
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Figure 5.3: The discrete wavelet transform provides an octave-band decomposition

of a signal. Compaction is achieved by representing the signal in terms of the highly

downsampled lowpass band; the estimate can be successively re�ned by incorporating

the octave-band details. For a wideband pitched audio signal such as the bassoon note

shown, the higher harmonics extend throughout the wavelet subbands as indicated in

the plot of the spectrum. The lowpass estimate x̂dwt[n] does not capture the signal

behavior accurately. The residual rdwt[n] is the sum of the octave-band details.
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two expressions will lead to a simple su�cient condition for perfect reconstruction in an

upsampled wavelet �lter bank.

Given perfect reconstruction �lters fG0(z); G1(z); H0(z); H1(z)g, the question at
hand is whether the upsampled �lters

A0(z) = G0(z
M ) B0(z) = H0(z

M)

A1(z) = G1(z
M ) B1(z) = H1(z

M)
(5.19)

also provide perfect reconstruction in a two-channel �lter bank. The constraint on the

new �lters is then

A0(z)B0(z) + A1(z)B1(z) = 2 (5.20)

A0(z)B0(�z) + A1(z)B1(�z) = 0; (5.21)

which can be readily expressed in terms of the original �lters as

G0(z
M)H0(z

M) + G1(z
M )H1(z

M) = 2 (5.22)

G0(z
M)H0((�1)MzM ) + G1(z

M)H1((�1)MzM) = 0: (5.23)

Comparing this to the expressions in Equations (5.17) and (5.18) indicates immediately

that perfect reconstruction holds when M is odd. An odd upsampling factor is thus

su�cient but not necessary for perfect reconstruction, meaning that for some �lters, an

even M will work, and for others not. The di�culty with an even M can be readily

exempli�ed for the case of the one-scale Haar basis depicted in Figure 5.4(a). Upsampling

the underlying Haar wavelet �lters by a factor of two yields the expansion functions shown

in Figure 5.4(b), which clearly do not span the signal space and are thus not a basis. As

a result, perfect reconstruction cannot be achieved with �lters based on Haar wavelets

upsampled by even factors.

By upsampling the wavelet �lters, the spectral decomposition derived by the

�lter bank can be adjusted. The frequency-domain e�ect of upsampling is a compression

of the spectrum by the upsampling factor, which admits spectral images into the range

[0; 2�]. The subband of a branch in the upsampled �lter bank then includes both the

original band and these images. This spectral decomposition is depicted in Figure 5.5 for

the case of a depth-three wavelet �lter bank and upsampling by factors of three and nine.

Whereas in the original wavelet transform the signal estimate is a lowpass version, in the

upsampled transform the estimate consists of disparate frequency bands as indicated by

the shading. The insight here is that upsampling of the �lters can be used to redistribute

the subbands across the spectrum so as to change the frequency-domain regions that the

�lter bank focuses on. As will be seen, such redistribution can be particularly e�ective for

spectra with strong harmonic behavior, i.e. pseudo-periodic signals.
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(a) The one-scale Haar basis (b) The Haar basis upsampled by two

Figure 5.4: The one-scale Haar basis shown in (a) is upsampled by two to derive

the functions shown in (b), which clearly do not span the signal space.

Several issues about the upsampled wavelet transform deserve mention. For one,

a model in terms of the lowpass wavelet subband and a model in terms of the upsam-

pled lowpass band have the same amount of data. The upsampled case, however, di�ers

from the standard case in that there is no meaningful tiling that can be associated with

it because of the e�ect of the upsampling on the time-localization of the atoms in the

decomposition. In a sense, the localizations in time and frequency are both banded, but

this does not easily lend itself to a tile-based depiction. For this reason, the upsampled

wavelet transform and likewise the pitch-synchronous wavelet transform to be discussed

cannot be readily interpreted as an atomic decomposition. The granularity of the PSWT

arises from the pitch period segmentation and not from the �ltering process.

Pitch-period upsampling

For signals with wideband harmonic structure, the lowpass estimate of the wavelet

signal model does not accurately represent the signal. In the previous section, it was shown

that upsampling the wavelet �lters adjusts the spectral decomposition derived by the �lter

bank. If the wavelets in the �lter bank are upsampled by the pitch period, the result is

that the lowpass band is reallocated in the spectrum to the regions around the harmonics.

The upsampled �lter has a passband at each harmonic frequency; the disparate bands are

indeed coupled. The subband signal of the harmonic band provides a pseudo-periodic es-

timate of the signal rather than a lowpass estimate. This leads to the periodic-plus-details
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Figure 5.5: The spectral decompositions of a wavelet transform of depth three and

the corresponding upsampled wavelet transform for an upsampling factor of three are

given in the �rst two diagrams. The shaded regions correspond to the lowest branches

of the transform �lter bank trees, which generally provide the signal estimates. A

higher degree of upsampling (9) yields the decomposition in the third plot. Such a

decomposition is useful if the signal has harmonics that fall within the harmonically-

spaced shaded bands; such structure can be imposed by using the pitch period as the

upsampling factor. Note that only the positive-frequency half-band is shown in the

plots.
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Figure 5.6: The pitch-synchronous wavelet transform provides a decomposition of

the signal localized around the harmonic frequencies. Compaction is achieved by

representing the signal in terms of the narrow bands around the harmonics, which are

coupled into one subband in the PSWT; the estimate can be re�ned by incorporating

the inter-harmonic details. The inter-harmonic bands are not shown in the spectral

plot for the sake of neatness. For a wideband pitched audio signal such as the bassoon

note shown, the harmonic estimate x̂pswt[n] captures the signal behavior much more

accurately than the lowpass estimate of the wavelet transform, namely the signal

x̂dwt[n] plotted in Figure 5.3. The residual rpswt[n] is the sum of the inter-harmonic

details, and is clearly of lower energy than the wavelet residual rdwt[n] in Figure 5.3.

signal model of the pitch-synchronous wavelet transform. A depiction of the spectral de-

composition of the PSWT is shown in Figure 5.5; the harmonic band indicated by the

shaded regions provides the pseudo-periodic signal estimate, and the inter-harmonic bands

derive the detail signals. The estimate is a version of the signal in which local period-to-

period variations have been removed; these variations are represented by the detail signals,

and can be incorporated in the synthesis if needed for perceptual realism.

An example of the PSWT signal model is given in 5.6. It should be noted that

the same amount of data is involved in the PSWT signal model of Figure 5.6 and the

DWT signal model of Figure 5.3. The harmonic band of the PSWT simply captures the

signal behavior more accurately than the lowpass band of the DWT. Implementation of the

PSWT is discussed in the next section; because of the problem associated with upsampling

by even factors, other methods of generating the harmonic spectral decomposition are

considered.
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5.4.2 Implementation Frameworks

The pitch-synchronous wavelet transform can be implemented in a number of

ways. These are described below; the actual expansion functions in the various approaches

are rigorously formalized in [205, 195].

Comb wavelets

Based on the discussion on the spectral e�ect of upsampling a wavelet �lter

bank, a direct implementation of a pitch-synchronous wavelet transform simply involves

upsampling by the pitch period P . The corresponding spectral decomposition has bands

centered at the harmonic frequencies, and the signal is modeled in a periodic-plus-details

fashion as desired. An important caveat to note, however, is that these comb wavelets, as

derived in the treatment of upsampled wavelets and illustrated for the simple Haar case, do

not guarantee perfect reconstruction if P is even. Because of this limitation, it is necessary

to consider other structures that arrive at the same general spectral decomposition.

The multiplexed wavelet transform

The problem with the spanning space in the case of comb wavelets can be over-

come by using the multiplexed wavelet transform depicted in Figure 5.7. Here, the signal

is demultiplexed into P subsignals, each of which is processed by a wavelet transform;

these P subsignals correspond to the columns of the PSR matrix. The lowpass estimate

in the wavelet transform of a subsignal is then simply a lowpass version of the correspond-

ing PSR column. A pseudo-periodic signal estimate can be arrived at by reconstructing a

PSR matrix using only the lowpass signals and then concatenating the rows of the matrix.

The net e�ect is that of pitch-synchronous �ltering: period-to-period changes are �ltered

out. Perfect reconstruction can be achieved by incorporating all of the subband signals of

each wavelet transform.

Interpretation as a polyphase structure

Polyphase methods have been of some interest in the literature, primarily as a

tool for analyzing �lter banks [2]. Here, it is noted that the multiplexed wavelet transform

described above can be interpreted as a polyphase transform; a block diagram is given

in Figure 5.8. The term polyphase simply means that a signal is treated in terms of

progressively delayed and subsampled components, i.e. the phases of the signal. In the

pitch-synchronous case, the signal is modeled as having P phases corresponding to the P

pitch-synchronous subsignals.

In Figure 5.8, the subsignals are processed with a general transform T . For the

pitch-synchronous wavelet transform, this should obviously be a wavelet transform. If
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only the lowpass bands of the wavelet transforms are retained, the signal reconstruction is

a pseudo-periodic estimate of the original signal. Indeed, such an estimate can be arrived

at by applying any type of lowpass �lters in the subbands; this structure is by no means

restricted to wavelet transforms. For nonstationary or arbitrary signals it may even be of

interest to consider more general transforms, and perhaps joint adaptive optimization of

P and the channel transforms.

Two-dimensional wavelet transforms

The pitch-synchronous wavelet transform takes advantage of the similarity be-

tween adjacent pitch periods by carrying out a wavelet transform on the columns of the

PSR matrix. Typical signals, however, also exhibit some redundancy from sample to sam-

ple; this redundancy is not exploited in the PSWT, but is central to the DWT. To account

for both types of redundancy, the PSR can be processed by a two-dimensional wavelet

transform; for separable two-dimensional wavelets, this amounts to coupling the PSWT

and the DWT. A similar approach has been applied successfully to ECG data compres-

sion [37]. It is an open question, however, if this method can be used for high-quality

compression of speech or audio.

5.4.3 Coding and Modi�cation

In this section, applications of the pitch-synchronous wavelet transform for signal

coding and modi�cation are considered. In the pitch-synchronous sinusoidal model, mod-

i�cations were enabled both by the granularity of the representation and its parametric

nature; here, the modi�cations based on granulation are still applicable. However, the

pitch-synchronous wavelet transform does not readily support additional modi�cations;

for instance, modi�cation of the spectral components leads to discontinuities in the recon-

struction as will be shown below. After a discussion of modi�cations, coding issues are

explored. The model provides an accurate and compact signal estimate for pitched signals;

furthermore, transients can also be accurately modeled since the transform is capable of

perfect reconstruction.

Spectral shaping

In audio processing and especially computer music, novel modi�cations are of

great interest. An immediate modi�cation suggested by the spectral decomposition of the

pitch-synchronous wavelet transform is that of spectral shaping. If gains are applied to

the subbands, the spectrum can seemingly be reshaped in various ways to achieve such

modi�cations. However, this approach has a subtle di�culty similar to the problem in the

discrete wavelet transform wherein the reconstruction and aliasing cancellation constraints
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Figure 5.9: The pitch-synchronous wavelet transform provides a signal decompo-

sition in terms of a pseudo-periodic estimate and detail signals. The model shown

here results from a three-stage transform; the residual is the sum of the details. The

discontinuity occurs because the estimate is subsequently greater than and less than

the original signal in adjacent periods.

are violated if the subbands are modi�ed. The problem can be easily understood by con-

sidering the signal model and the averaging process. The pseudo-periodic original signal

may exhibit amplitude variations from period to period. The estimate signal is derived

by averaging these varying pitch period signals; by the nature of averaging, sometimes

the estimate will be greater than the original and sometimes less. Such a transition is

shown in Figure 5.9. The model residual, which is the sum of the detail signals, exhibits

discontinuities at these transition points. These discontinuities cancel in a perfect signal

reconstruction; if the subbands are modi�ed, however, the discontinuities may appear in

the synthesis. This lack of robustness limits the usefulness of spectral manipulations in

the PSWT signal model. Given the reconstruction di�culties, other modi�cations are

basically restricted to those that result from the granularity of the pitch-synchronous

representation; these were discussed in Section 5.2.4

Signal estimation

In the discrete wavelet transform, the lowpass branch provides a coarse estimate

of the signal; discarding the other subbands yields a compact model since the lowpass

branch is highly downsampled. This type of modeling has proven quite useful for image

coding [18, 19]. For audio, however, a lowpass estimate neglects high frequency content

and thus tends to yield a low-quality reconstruction. Building from this observation, the

pitch-synchronous wavelet transform estimates the signal in terms of its spectral content

around its harmonic frequencies. For a pitched signal, these are the most active regions in

the spectrum and thus the PSWT estimate captures more of a pitched signal's behavior
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than the DWT. Figures 5.3 and 5.6 can be compared to indicate the relative performance

of the DWT and the PSWT for modeling or estimation of pitched signals.

Coding gain

A full treatment of the multiplexed wavelet transform for signal coding is given

in [195, 206]. The fundamental reason for the coding gain is that the periodic-plus-

details signal model is much more appropriate for signals with pseudo-periodic behavior

than standard lowpass-plus-details models. For the same amount of model data, the

PSWT model is more accurate than the DWT model. In rate-distortion terminology,

the PSWT model has less distortion than the DWT model at low rates; at high rates,

where more subbands are included to re�ne the models, the distortion performance is more

competitive. One caveat in this comparison is that if the original signal varies in pitch

in a perceptually meaningful way, it is necessary to store the pitch period values as side

information so that the output pitch periods can be resampled at the synthesis stage; in

cases where the pitch variations are important and must be reintroduced, some overhead

is required. Such coding issues are not considered in further depth. The next two sections

deal with relevant modeling issues that arise in the pitch-synchronous wavelet transform;

where appropriate, comments on signal coding are given.

Stochastic models of the detail signals

Signal estimates based on the pitch-synchronous wavelet transform are shown in

Figures 5.6 and 5.9. These estimates are smooth functions that capture the key musical

features of the original signals such as the pitch and the harmonic structure. The PSWT

estimate is thus analogous to the deterministic component of the sinusoidal model; in both

cases, the decompositions directly involve the spectral peaks. Similarly, the detail signals

have a correspondence to the stochastic component of the sinusoidal model. Given this

observation, it is reasonable to consider modeling the detail signals as a noiselike residual.

Such approaches are discussed in [195]. This analogy between the sinusoidal model and the

PSWT, of course, is limited to pseudo-periodic signals; for signals consisting of evolving

harmonics plus noise, the deterministic-plus-stochastic (i.e. reconstruction-plus-residual)

models are similar.

Pre-echo in the reconstruction

Like the other signal models presented in this thesis, models based on the wavelet

transform can exhibit pre-echo distortion. Of course, this pre-echo is not introduced if

perfect reconstruction is carried out; the problem arises when the signal is modeled in

terms of the lowpass subband, which cannot accurately represent transient events. This

distortion is considered here for the case of the discrete wavelet transform �rst. Then,
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Figure 5.10: Pre-echo is introduced in the discrete wavelet transform when a tran-

sient signal (a) is estimated in terms of the lowpass subband (b). The pre-echo is

signi�cantly increased in the pitch-synchronous wavelet transform model (c) since the

discrete wavelet transform pre-echo occurs in each of the subsignals; noting the struc-

ture of Figure 5.8, the pre-echo in each subsignal is upsampled by the pitch period in

the reconstruction, which accounts for the spreading.

by considering the pre-echo in the DWT models of the pitch-synchronous subsignals,

it is shown that the pre-echo problem is more severe in the pitch-synchronous wavelet

transform.

As discussed in Section 3.2.1, the lowpass subband in the discrete wavelet trans-

form is characterized by good frequency resolution and poor time resolution. The result

is that transients are delocalized in signal estimates based on the lowpass subband. Con-

sider the signal onset in Figure 5.10(a) and its lowpass wavelet model shown in Figure

5.10(b). Pre-echo is introduced in the lowpass model of the onset. Note that some of this

pre-echo actually results from precision e�ects in the wavelet �lter speci�cation, but that

the majority of it is caused by the poor time localization of the low-frequency subband.

In the pitch-synchronous wavelet transform, each of the subsignals is modeled in

terms of the lowpass band of a discrete wavelet transform, which means that each of these

downsampled signals is susceptible to the pre-echo of the DWT estimation process. The

subsignal pre-echo occurs in the time domain at a subsampled rate, speci�cally a factor

P less than the original signal as indicated in the block diagram of Figure 5.8. At the

synthesis side, the subsignals are upsampled by the pitch period P and as a result the

pre-echo is spread out by a factor of P . This drastic increase in the pre-echo is illustrated

in Figure 5.10(c). Another example of PSWT signal estimation and pre-echo is given

in Figure 5.11; in this case, the DWT clearly provides a poor model when compared to

that given by a PSWT involving the same amount of model data, i.e. the same depth of

�ltering. This example is discussed further in the next section.
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Figure 5.11: Pre-echo in models of a synthetic signal (a) with higher harmonics.

Though the two models involve the same amount of data, the lowpass DWT model

in (b) is clearly a much less accurate signal estimate than the PSWT model in (c). In

the PSWT, however, the pre-echo is spread out by a factor equal to the pitch period.

By incorporating the detail signals in the onset region, the pre-echo can be reduced;

perfect reconstruction of the transient is achieved by adding all of the details in the

vicinity of the onset.
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Perfect reconstruction of transients

In the previous section, it was shown that pre-echo occurs in compact PSWT

models of transient signals. Indeed, pre-echo is a basic problem in compact models; here,

the problem can be readily solved since the PSWT is capable of perfect reconstruction.

The idea is to only use the compact model where appropriate and to carry out perfect

reconstruction where the compact model is inaccurate, namely near the transients. Near

transients, there is signi�cant energy in the detail signals of the PSWT; if this condition

occurs then the subbands should be included in the model. In terms of the PSR matrix,

this corresponds to representing the �rst few rows of the matrix exactly. Once the peri-

odicity of the signal is established, most of the energy falls in the harmonic bands and the

inter-harmonic bands can be discarded without degrading the estimate. Thus, compaction

is achieved in the pitched regions but not in the unpitched regions. An example of this

signal-adaptive representation is given in Figure 5.11, which shows the pre-echo reduction

that results from incorporating one detail signal into the reconstruction. With the excep-

tion of �lter precision e�ects, perfect reconstruction is achieved if all of the detail signals

are included; inclusion of all the details is generally desired so as to avoid introducing the

aforementioned discontinuities into the reconstruction.

In coding applications, the additional cost of allowing for perfect reconstruction

of transients is not signi�cant; in a musical note, for instance, the attack is typically much

shorter than the pseudo-periodic sustain region, so perfect reconstruction is required only

over a small percentage of the signal. Furthermore, since the attack region is perceptu-

ally important, perfect reconstruction of the attack is worthwhile from the standpoint of

psychoacoustics; transparent modeling of attacks is necessary for high-quality audio syn-

thesis. In application to musical phrases, then, perfect reconstruction is carried out in the

unpitched regions while harmonic PSWT modeling is carried out for the pitched regions.

This process preserves note transitions. In a sense, it also introduces a concurrency in

the unpitched regions similar to that of the deterministic-plus-stochastic model. When

the signal exhibits transient behavior, a full model with concurrent harmonics and inter-

harmonic details is used, whereas in stable pitched regions, the harmonic model alone is

used.

This approach of signal-adaptive modeling and reconstruction in the PSWT can

be interpreted as a �lter bank where only subbands with signi�cant energy are included

in the synthesis. Similar ideas have been employed in compression algorithms based on

more standard �lter bank structures such as the discrete wavelet transform and uniform

�lter banks [2, 20].
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5.5 Applications

Of course, pitch-synchronous methods such as the ones discussed in this chapter

have immediate applications in audio processing. These have been considered throughout

the chapter; a few further issues are treated in Section 5.5.1. Pitch-synchronous methods

can also be applied to any signals with pseudo-periodic behavior, e.g. heartbeat signals.

The advantages of any such methods result from the e�ort applied to estimation of the

pitch parameter and the accompanying ability to exploit redundancies in the signal.

5.5.1 Audio Signals

Application of pitch-synchronous Fourier and wavelet approaches to single-voice

audio has been discussed throughout this chapter. These models provide compact repre-

sentations that enable a wide range of modi�cations. In polyphonic audio, pitch-based

methods are not as immediately applicable since a repetitive time-domain structure may

not exist in the signal. In those cases it would be necessary to �rst carry out source sep-

aration to derive single voice components with well-de�ned pitches; source separation is

a di�cult problem that has been addressed in both the signal processing community and

in the psychoacoustics literature in considerations of auditory scene analysis [147, 207].

Given these di�culties, the PSWT is in essence primarily useful for the single voice case,

which is relevant to speech coding and music synthesis; for instance, data compression can

be achieved in samplers by using the signal estimate provided by the PSWT.

5.5.2 Electrocardiogram Signals

Electrocardiogram (ECG) signals, i.e. heartbeat signals, exhibit pseudo-periodic

behavior. Nearby pulses are very similar in shape, but of course various evolutionary

changes in the behavior are medically signi�cant. It is important, then, to monitor the

heartbeat signal and record it for future analysis, especially in ambulatory scenarios where

a diagnostic expert may not be present. For such applications, as in all data storage scenar-

ios, it is both economically and pragmatically important to store the data in a compressed

format while preserving its salient features. Various methods of ambulatory ECG signal

compression have been presented in the literature; these rely on either the redundancy

between neighboring samplings of the signal or the redundancy between adjacent peri-

ods [208, 209]. Recently, a method exploiting both forms of redundancy was proposed

[37]; here, the signal is segmented into pulses and arranged into a structure resembling

a PSR matrix. Then, this structure is interpreted as an image and compressed using a

two-dimensional discrete cosine transform (DCT); the compression is structured such that

important features of the pulse shape are represented accurately. The pitch-synchronous

approaches discussed in this chapter, especially the extension to two-dimensional wavelets,
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provide a similar approach; important features such as attack transients can be preserved

in the representation. Both this DCT-based ECG compression algorithm and the PSWT

itself are reminiscent of several other e�orts involving multidimensional processing of one-

dimensional signals, for instance image processing of audio [128, 210].

5.6 Conclusion

For pseudo-periodic signals, the redundancies between adjacent periods can be

exploited to achieve compact signal models. This notion was the basic theme of this chap-

ter, which opened with a discussion of estimation of signal periodicity and construction

of a pitch-synchronous representation. This representation, which is itself useful for sig-

nal modi�cation because of its granularity, primarily served to establish a framework for

pitch-synchronous processing. Speci�cally, it was shown that using a pitch-synchronous

representation in conjunction with sinusoidal modeling leads to a simpler analysis-synthesis

and more compact models than in the general case. Furthermore, it was shown that the

wavelet transform, which is intrinsically unsuitable for wideband harmonic signals, can

be cast into a pitch-synchronous framework to yield e�ective models of pseudo-periodic

signals. In either case, the model improvement is a result of the signal adaptivity brought

about by extraction of the pitch parameter.
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Chapter 6

Matching Pursuit and Atomic Models

In atomic models, a signal is represented in terms of localized time-frequency

components. Chapter 3 discussed an interpretation of the sinusoidal model as an atomic

decomposition in which the atoms are derived by extracting parameters from the signal;

this perspective clari�ed the resolution tradeo�s in the model and motivated multiresolu-

tion extensions. In this chapter, signal-adaptive parametric models based on overcomplete

dictionaries of time-frequency atoms are considered. Such overcomplete expansions can

be derived using the matching pursuit algorithm [38]. The resulting representations are

signal-adaptive in that the atoms for the model are chosen to match the signal behavior;

furthermore, the models are parametric in that the atoms can be described in terms of sim-

ple parameters. The pursuit algorithm is reviewed in detail and variations are described;

primarily, the method is formalized for the case of dictionaries of damped sinusoids, for

which the computation can be carried out with simple recursive �lter banks. Atoms based

on damped sinusoids are shown to be more e�ective than symmetric Gabor atoms for

representing transient signal behavior such as attacks in music.

6.1 Atomic Decompositions

Time-frequency atomic signal representations have been of growing interest since

their introduction by Gabor several decades ago [71, 72]. The fundamental notions of

atomic modeling are that a signal can be decomposed into elementary functions that

are localized in time-frequency and that such decompositions are useful for applications

such as signal analysis and coding. This section provides an overview of the computation

and properties of atomic models. The overview is based on an interpretation of atomic

modeling as a linear algebraic inverse problem, which is discussed below.
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6.1.1 Signal Modeling as an Inverse Problem

As discussed in Chapter 1, a signal model of the form

x[n] =
MX
m=1

�mdm[n] (6.1)

can be expressed in matrix notation as

x = D � with D = [d1 d2 � � �dm � � �dM ] ; (6.2)

where the signal x is a column vector (N�1), � is a column vector of expansion coe�cients
(M � 1), and D is an N �M matrix whose columns are the expansion functions dm[n].

Derivation of the model coe�cients thus corresponds to an inverse problem.

When the functions fdm[n]g constitute a basis, such as in Fourier and wavelet

decompositions, the matrix D in Equation (6.2) is square (N = M) and invertible and

the expansion coe�cients � for a signal x are uniquely given by

� = D�1x: (6.3)

In the framework of biorthogonal bases, there is a dual basis ~D such that

D�1 = ~DH and � = ~DHx: (6.4)

For orthogonal bases, ~D = D. Considering one component in Equation (6.4), it is clear

that the coe�cients in a basis expansion can each be derived independently using the

formula

�m = ~dHm x = h ~dm; xi: (6.5)

While this ease of computation is an attractive feature, basis expansions are not generally

useful for modeling arbitrary signals given the drawbacks demonstrated in Section 1.4.1;

namely, basis expansions do not provide compact models of arbitrary signals. This short-

coming results from the attempt to model arbitrary signals in terms of a limited and �xed

set of functions.

To overcome the di�culties of basis expansions, signals can instead be modeled

using an overcomplete set of atoms that exhibits a wide range of time-frequency behaviors

[38, 68, 42, 43, 211]. Such overcomplete expansions allow for compact representation

of arbitrary signals for the sake of compression or analysis [38, 92]. With respect to

the interpretation of signal modeling as an inverse problem, when the functions fdm[n]g
constitute an overcomplete or redundant set (M > N), the dictionary matrix D is of

rank N and the linear system in Equation (6.2) is underdetermined. The null space of D

then has nonzero dimension and there are an in�nite number of expansions of the form

of Equation (6.1). Various methods of deriving overcomplete expansions are discussed

in the next section; speci�cally, it is established that sparse approximate solutions of an

inverse problem correspond to compact signal models, and that computation of such sparse

models calls for a nonlinear approach.
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6.1.2 Computation of Overcomplete Expansions

As described in Section 1.4.2, there are a variety of frameworks for deriving

overcomplete signal expansions; these di�er in the structure of the dictionary and the

manner in which dictionary atoms are selected for the expansion. Examples include best

basis methods and adaptive wavelet packets, where the overcomplete dictionary consists

of a collection of bases; a basis for a signal expansion is chosen from the set of bases

according to a metric such as entropy or rate-distortion [40, 41, 60]. In this chapter, signal

decomposition using more general overcomplete sets is considered. Such approaches can

be roughly grouped into two categories: parallel methods such as the method of frames

[63, 70], basis pursuit [42, 43], and FOCUSS [68, 67], in which computation of the various

expansion components is coupled; and, sequential methods such as matching pursuit and

its variations [38, 68, 211, 212, 213, 214], in which models are computed one component

at a time. All of these methods can be interpreted as approaches to solving inverse

problems. For compact signal modeling, sparse approximate solutions are of interest;

the matching pursuit algorithm of [38] is particularly useful since it is amenable to task

of modeling arbitrary signals using parameterized time-frequency atoms in a successive

re�nement framework. After a brief review of the singular value decomposition and the

pseudo-inverse, nonlinear approaches such as matching pursuit are motivated.

The SVD and the pseudo-inverse

One solution to arbitrary inverse problems can be arrived at using the singular

value decomposition of the dictionary matrix, from which the pseudo-inverse D+ can

be derived [58]. The coe�cient vector �� = D+x has the minimum two-norm of all

solutions [58]. This minimization of the two-norm is inappropriate for deriving signal

models, however, in that it tends to spread energy throughout all of the elements of ��.

Such spreading undermines the goal of compaction.

An example of the dispersion of the SVD approach was given earlier in Figure

1.5. Figure 6.1 shows an alternative example in which the signal in question is constructed

as the sum of two functions from an overcomplete set, meaning that there is an expansion

in that overcomplete set with only two nonzero coe�cients. This exact sparse expansion

is shown in the plot by the asterisks; the dispersed expansion computed using the SVD

pseudo-inverse is indicated by the circles. The representations can be immediately com-

pared with respect to two applications: �rst, the sparse model is clearly more appropriate

for compression; second, it provides a more useful analysis of the signal in that it identi-

�es fundamental signal structures. This simulation thus provides an example of an issue

discussed in Chapter 1, namely that compression and analysis are linked.
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Figure 6.1: Overcomplete expansions and compaction. An exact sparse expansion

of a signal in an overcomplete set (�) and the dispersed expansion given by the SVD

pseudo-inverse (o).

Sparse approximate solutions and compact models

Given the desire to derive compact representations for signal analysis, coding,

denoising, and modeling in general, the SVD is not a particularly useful tool. An SVD-

based expansion is by nature not sparse, and thresholding small expansion coe�cients to

improve the sparsity is not a useful approach [215, 69]. A more appropriate paradigm

for deriving an overcomplete expansion is to apply an algorithm speci�cally designed to

arrive at sparse solutions. Because of the complexity of the search, however, it is not

computationally feasible to derive an optimal sparse expansion that perfectly models a

signal. It is likewise not feasible to compute approximate sparse expansions that minimize

the error for a given sparsity; this is an NP-hard problem [39]. For this reason, it is

necessary to narrow the considerations to methods that either derive sparse approximate

solutions according to suboptimal criteria or derive exact solutions that are not optimally

sparse. The matching pursuit algorithm introduced in [38] is an example of the former

category; it is the method of choice here since it provides a framework for deriving sparse

approximate models with successive re�nements and since it can be implemented with low

cost as will be seen. Methods of the latter type tend to be computationally costly and to

lack an e�ective successive re�nement framework [42, 67].

6.1.3 Signal-Adaptive Parametric Models

The set of expansion coe�cients and functions in Equation (6.1) provides a model

of the signal. If the model is compact or sparse, the decomposition indicates fundamental

signal features and is useful for analysis and coding. Such compact models necessarily

involve expansion functions that are highly correlated with the signal; this property is an

indication of signal adaptivity.

As discussed throughout this thesis, e�ective signal models can be achieved by

using signal-adaptive expansion functions, e.g. the multiresolution sinusoidal partials of
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Chapter 3 or the pitch-synchronous grains of Chapter 5. In those approaches, model

parameters are extracted from the signal by the analysis process and the synthesis expan-

sion functions are constructed using these parameters; in such methods, the parameter

extraction leads to the signal adaptivity of the representation. In atomic models based on

matching pursuit with an overcomplete dictionary, signal adaptivity is instead achieved by

choosing expansion functions from the dictionary that match the time-frequency behavior

of the signal. Using a highly overcomplete set of time-frequency atoms enables compact

representation of a wide range of time-frequency behaviors. Furthermore, when the dictio-

nary has a parametric structure, i.e. when the atoms in the dictionary can be indexed by

meaningful parameters, the resultant model is both signal-adaptive and parametric. While

this framework is fundamentally di�erent from that of traditional parametric models, the

signal models in the two cases have similar properties.

6.2 Matching Pursuit

Matching pursuit is a greedy iterative algorithm for deriving signal decomposi-

tions in terms of expansion functions chosen from a dictionary [38]. To achieve compact

representation of arbitrary signals, it is necessary that the dictionary elements or atoms

exhibit a wide range of time-frequency behaviors and that the appropriate atoms from the

dictionary be chosen to decompose a particular signal. When a well-designed overcom-

plete dictionary is used in matching pursuit, the nonlinear nature of the algorithm leads

to compact signal-adaptive models [38, 211, 92].

A dictionary can be likened to the matrix D in Equation (6.2) by considering

the atoms to be the matrix columns; then, matching pursuit can be interpreted as an

approach for computing sparse approximate solutions to inverse problems [69, 215]. For

an overcomplete dictionary, the linear system is underdetermined and an in�nite number

of solutions exist. As discussed in Section 6.1.2, sparse approximate solutions are useful

for signal analysis, compression, and enhancement. Since such solutions are not provided

by traditional linear methods such as the SVD, a nonlinear approximation paradigm such

as matching pursuit is called for [38, 215, 69, 92].

6.2.1 One-Dimensional Pursuit

The greedy iteration in the matching pursuit algorithm is carried out as follows.

First, the atom that best approximates the signal is chosen, where the two-norm is used

as the approximation metric because of its mathematical convenience. The contribution

of this atom is then subtracted from the signal and the process is iterated on the residual.

Denoting the dictionary by D since it corresponds to the matrix D in Equation (6.2), the

task at the i-th stage of the algorithm is to �nd the atom dm(i)[n] 2 D that minimizes the
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two-norm of the residual signal

ri+1[n] = ri[n]� �idm(i)[n]; (6.6)

where �i is a weight that describes the contribution of the atom to the signal, i.e. the

expansion coe�cient, and m(i) is the dictionary index of the atom chosen at the i-th stage;

the iteration begins with r1[n] = x[n]. To simplify the notation, the atom chosen at the

i-th stage is hereafter referred to as gi[n], where

gi[n] = dm(i)[n] (6.7)

from Equation (6.6). The subscript i refers to the iteration when gi[n] was chosen, while

m(i) is the actual dictionary index of gi[n].

Treating the signals as column vectors, the optimal atom to choose at the i-th

stage can be expressed as

gi = arg min
gi2D

jjri+1jj2 = arg min
gi2D

jjri � �igijj2: (6.8)

The orthogonality principle gives the value of �i:

hri+1; gii = hri � �igi; gii = (ri � �igi)
Hgi = 0 (6.9)

=) �i =
hgi; rii
hgi; gii =

hgi; rii
jjgijj2 = hgi; rii; (6.10)

where the last step follows from restricting the atoms to be unit-norm. The norm of ri+1[n]

can then be expressed as

jjri+1jj2 = jjrijj2 � jhgi; riij2
jjgijj2 = jjrijj2 � j�ij2; (6.11)

which is minimized by maximizing the metric

	 = j�ij2 = jhgi; riij2; (6.12)

which is equivalent to choosing the atom whose inner product with the signal has the

largest magnitude; Equation (6.8) can thus be rewritten as

gi = argmax
gi2D

	 = argmax
gi2D

jhgi; riij: (6.13)

An example of this optimization is illustrated in Figure 6.2. Note that Equation (6.11)

shows that the norm of the residual decreases as the algorithm progresses provided that

an exact model has not been reached and that the dictionary is complete; for an under-

complete dictionary, the residual may belong to a subspace that is orthogonal to all of the

dictionary vectors, in which case the model cannot be further improved by pursuit.
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Figure 6.2: Matching pursuit and the orthogonality principle. The two-norm or

Euclidean length of ri+1 is minimized by choosing gi to maximize the metric jhgi; riij

and �i such that hri+1; gii = 0.

In deriving a signal decomposition, the matching pursuit is iterated until the

residual energy is below some threshold or until some other halting criterion is met. After

I iterations, the pursuit provides the sparse approximate model

x[n] �
IX
i=1

�igi[n] =
IX
i=1

�idm(i)[n]: (6.14)

As indicated in Equation (6.11), the mean-squared error of the model decreases as the

number of iterations increases [38]. This convergence implies that I iterations will yield

a reasonable I-term model; this model, however, is in general not optimal in the mean-

squared sense because of the term-by-term greediness of the algorithm. Computing the

optimal I-term estimate using an overcomplete dictionary requires �nding the minimum

projection error over all I-dimensional dictionary subspaces, which is an NP-hard problem

as mentioned earlier; this complexity result is established in [39] by relating the optimal

approximation problem to the exact cover by 3-sets problem, which is known to be NP-

complete.

To enable representation of a wide range of signal features, a large dictionary of

time-frequency atoms is used in the matching pursuit algorithm. The computation of the

correlations hg; rii for all g 2 D is thus costly. As noted in [38], this computation can be

substantially reduced using an update formula based on Equation (6.6); the correlations

at stage i+ 1 are given by

hg; ri+1i = hg; rii � �ihg; gii; (6.15)

where the only new computation required for the correlation update is the dictionary

cross-correlation term hg; gii, which can be precomputed and stored if enough memory is

available. This is discussed further in Section 6.4.3.

It should be noted that matching pursuit is similar to some forms of vector

quantization [216] and is related to the projection pursuit method investigated earlier
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in the �eld of statistics for the task of �nding compact models for data sets [217, 218].

Furthermore, such greedy approximation methods have been considered in linear algebra

applications for some time [69, 219].

6.2.2 Subspace Pursuit

Though searching for the optimal high-dimensional subspace is not reasonable, it

is worthwhile to consider the related problem of �nding an optimal low-dimension subspace

at each iteration of the pursuit, especially if the subspaces under consideration exhibit a

simplifying structure. In this variation of the algorithm, the i-th iteration consists of

searching for an N �R matrix G, whose R columns are dictionary atoms, that minimizes

the two-norm of the residual ri+1 = ri � G�, where � is an R � 1 vector of weights.

This R-dimensional formulation is similar to the one-dimensional case; the orthogonality

constraint hri � G�;Gi = 0 leads to a solution for the weights:

� =
�
GHG

��1
GHri: (6.16)

The energy of the residual is then given by

hri+1; ri+1i = hri; rii � rHi G
�
GHG

��1
GHri; (6.17)

which is minimized by choosing G so as to maximize the second term. This approach is

expensive unless G consists of orthogonal vectors or has some other special structure.

6.2.3 Conjugate Subspaces

One useful subspace to consider in subspace pursuit is the two-dimensional sub-

space spanned by an atom and its complex conjugate. Here, the two columns of G are

simply an atom g and its conjugate g�. Assuming that the signal ri is real and that g has

nonzero real and imaginary parts so that G has full column rank and GHG is invertible,

the results given in the previous section can be signi�cantly simpli�ed. Letting � = hg; g�i
and � = hg; rii, the metric to maximize through the choice of g is

	 =
1

1� j�j2
�
2j�j2 � �(��)2 � ���2

�
(6.18)

and the optimal weights are

� =

"
�(1)

�(2)

#
=

1

1� j�j2
"
� � ���

�� � ���

#
: (6.19)

Note that the above metric can also be written as

	 = ���(1) + ��(1)� (6.20)
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and that �(1) = �(2)�, meaning that the algorithm simply searches for the atom gi that

minimizes the two-norm of the residual

ri+1[n] = ri[n]� �i(1)gi[n]� �i(1)
�g�i [n] (6.21)

= ri[n]� 2<f�i(1)gi[n]g; (6.22)

which is real-valued; the orthogonal projection of a real signal onto the subspace spanned

by a conjugate pair is again real.

The decompositions that result from considering conjugate subspaces are of the

form

x � 2
IX
i=1

<f�i(1)gi[n]g : (6.23)

This approach provides real decompositions of real signals using an underlying complex

dictionary. The same notion is discussed briey in [38] based on a di�erent computational

framework.

For dictionaries consisting of both complex and purely real (or imaginary) atoms,

the real atoms must be considered independently of the various conjugate subspaces since

the above formulation breaks down when g and g� are linearly dependent; in that case,

j�j = 1 and the matrix G is singular. It is thus necessary to compare metrics of the

form given in Equations (6.18) and (6.20) for conjugate subspaces with metrics of the

form jhg; riij2 from Equation (6.12) for real atoms. These metrics quantify the amount of

energy removed from the residual in either case, and thus provide for a fair choice between

conjugate subspaces and real atoms in the pursuit decomposition.

6.2.4 Orthogonal Matching Pursuit

As depicted in Figure 6.2, the matching pursuit algorithm relies on the orthogo-

nality principle. At stage i, the residual ri is projected onto the atom gi such that the new

residual ri+1 is orthogonal to gi. If the dictionary is highly overcomplete and its elements

populate the signal space densely, the �rst few atoms chosen for a decomposition tend to

be orthogonal to each other, meaning that successive projection operations extract inde-

pendent signal components. Later iterations, however, do not exhibit this tendency; the

selected atoms are no longer orthogonal to previously chosen atoms and the projection

actually reintroduces components extracted by the early atoms. This problem of readmis-

sion is addressed in orthogonal matching pursuit and its variations; the fundamental idea

is to explicitly orthogonalize the functions chosen for the expansion.

Backward orthogonal matching pursuit

Orthogonal matching pursuit is a basic variation of the matching pursuit algo-

rithm [212]. In this method, the i-th stage is initiated by selecting an atom gi according
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to the correlation metric as in the standard pursuit; then, rather than orthogonalizing the

residual ri+1 with respect to the single atom gi, the residual is orthogonalized with respect

to the subspace spanned by the atoms chosen for the expansion up to and including the

i-th stage, i.e. the atoms g1; g2; : : : ; gi. To achieve this orthogonalization, however, it is

necessary to modify all of the expansion coe�cients at each stage. This issue is clari�ed

by interpreting orthogonal matching pursuit as a subspace pursuit in which the space is

iteratively grown. In terms of the discussion of subspace pursuit in Section 6.2.2, the

subspace matrix is

Gi = [g1 g2 � � � gi] (6.24)

and the orthogonalization criterion is

hri+1; Gii = hx�Gi�i; Gii = 0: (6.25)

This constraint can be used to derive the appropriate vector of coe�cients �i for the

subspace projection, namely

�i =
�
GH
i Gi

��1
GH
i x; (6.26)

which di�ers from Equation (6.16) in that the coe�cients are derived as a function of the

original signal x and not as a function of the residual ri. The correlation metric for atom

selection, however, is based on the residual signal as in one-dimensional pursuit. Note that

the inverse
�
GH
i Gi

��1
can be computed recursively using the matrix inversion lemma and

the inverse
�
GH
i�1Gi�1

��1
computed at the previous stage [212].

At any given stage of an orthogonal pursuit, derivation of the new set of expansion

coe�cients can be interpreted as a Gram-Schmidt orthogonalization carried out on the

new atom chosen for the expansion. This interpretation can be established in an inductive

manner by �rst assuming that the atoms at stage i � 1 have been orthogonalized by a

Gram-Schmidt process; in other words, assume that the matrix Gi�1 has been converted

into a matrix �Gi�1 with the same column space but with orthogonal columns. In this

framework, the signal approximation at stage i� 1 can be expressed as

x � �Gi�1�i�1; (6.27)

where

�i�1 = �GH
i�1x (6.28)

since the columns of �Gi�1 are orthogonal; note that �Gi�1 is anN�i�1matrix. At stage i, a
new unit-norm atom gi is chosen for the expansion according to the magnitude correlation

metric of Equation (6.12); then, the approximation error is minimized by projecting the

signal onto the subspace spanned by the columns of the new matrix

Gi = [ �Gi�1 gi]: (6.29)
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Using the solution for the coe�cients given in Equation (6.26), the i-term signal decom-

position can be written as

Gi�i =
�
�Gi�1 gi

�
�i =

�
�Gi�1 gi

� �
GH
i Gi

��1
GH
i x (6.30)

=
�
�Gi�1 gi

� 24 Ii�1 �GH
i�1gi

gHi
�Gi�1 1

3
5
�1 2
4 �i�1

gHi x

3
5 (6.31)

=
�
�Gi�1 gi

� 24 Ii�1 + ��H

1��H�
��

1��H�

��H
1��H�

1
1��H�

3
5
2
4 �i�1

gHi x

3
5 ; (6.32)

where � = �GH
i�1gi and In denotes an identity matrix of size n�n. The decomposition can

then be simpli�ed to

Gi�i = �Gi�1�i�1 +
( �Gi�1 �G

H
i�1 � IN)gig

H
i (

�Gi�1 �G
H
i�1 � IN)x

1� gHi
�Gi�1 �G

H
i�1gi

(6.33)

= �Gi�1�i�1 + �gi �gi
Hx =

iX
j=1

h �gj; xi �gj ; (6.34)

where

�gi =
( �Gi�1 �G

H
i�1 � IN )giq

1� gHi
�Gi�1 �G

H
i�1gi

: (6.35)

The vector �gi has unit norm and is orthogonal to the columns of the matrix �Gi�1. This or-

thogonality, combined with the initial orthogonality of the columns of �Gi�1, indicates that

the �nal expression in Equation (6.34) is a basis expansion in an i-dimensional subspace

of the signal space. It is not a basis expansion of the original signal; it is an approximation

of the signal in the subspace spanned by g1; g2; : : : ; gi, for which an orthogonal basis has

been derived by the Gram-Schmidt method. For i = N , this subspace is equivalent to the

signal space and a perfect representation is achieved.

The Gram-Schmidt orthogonalization discussed above need not be explicit in an

implementation of orthogonal matching pursuit. As mentioned earlier, the pursuit can

be carried out with reference to the original dictionary atoms by updating the inverse

using the matrix inversion lemma; this approach preserves the parametric nature of the

expansion, which would be compromised if the atoms were explicitly modi�ed via the

Gram-Schmidt process. Furthermore, note that this algorithm corrects for readmitted

components in the orthogonalization step. Since this corrective orthogonalization is carried

out after the atom selection, the algorithm can be referred to as a backward method; this

designation serves to di�erentiate it from the forward approach discussed in the next

section.

A number of variations of orthogonal matching pursuit can be envisioned. For

instance, the orthogonalization need not be carried out every iteration. In the limit, an
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expansion given by a one-dimensional pursuit can be orthogonalized after its last iteration

by projecting the original signal onto the subspace spanned by the iteratively chosen

expansion functions. This projection operation minimizes the error of the residual for

approximating the signal using those particular expansion functions; this approximation

is however not necessarily a globally optimal sparse model.

In the literature, speech coding using orthogonal matching pursuit has been dis-

cussed [220]. Furthermore, a number of re�nements of the algorithm have been proposed

and explored [68, 214]. Such re�nements basically involve di�erent ways in which orthog-

onality is imposed or exploited; for instance, orthogonal components can be evaluated

simultaneously as in basis expansions [214]. The following section discusses a method

which employs the Gram-Schmidt procedure in a di�erent way than the backward pursuit

described above.

Forward orthogonal matching pursuit

In orthogonal matching pursuit as proposed in [212], which corresponds to the

backward pursuit described above, the atom gi is chosen irrespective of the subspace

spanned by the �rst i�1 atoms, i.e. the column space of Gi�1, and then orthogonalization

is carried out. Given a decomposition with i� 1 atoms, however, the approximation error

of the succeeding i-term model can be decreased if the choice of atom is conditioned

on Gi�1. As will be seen, this conditioning leads to a forward orthogonalization of the

dictionary; in other words, the dictionary is orthogonalized prior to atom selection.

Using a similar induction framework as above, where �Gi�1 is assumed to have

orthogonal columns, the i-term expansion can be expressed as in Equation (6.33); the

di�erence in the forward algorithm is that the atom gi has not yet been selected. Rather

than choosing the atom to maximize the magnitude of the correlation hg; rii as above, in
this approach the atom is chosen to maximize the metric

 = xHGi

�
GH
i Gi

��1
GH
i x; (6.36)

which corresponds to the second term in Equation (6.17) from the general development

of subspace pursuit. For this speci�c case, where the subspace is again iteratively grown,

the metric can be expressed as

 = xH
"
�Gi�1 �G

H
i�1 +

( �Gi�1 �G
H
i�1 � IN)gig

H
i ( �Gi�1 �G

H
i�1 � IN)

1� gHi
�Gi�1 �G

H
i�1gi

#
x (6.37)

= xH
h
�Gi�1 �G

H
i�1 + �gi�g

H
i

i
x; (6.38)

where �gi is as given in Equation (6.35). In the earlier formulation, gi was chosen and �gi was

derived from that choice so as to be orthogonal to the columns of �Gi�1. In this case, on the

other hand, all possible �gi are considered for the expansion, and the one which maximizes
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the metric 	 is chosen. Given some �Gi�1, the i-term approximation error resulting from

this choice of �gi will always be less than or equal to the error of the i-term approximation

arrived at in the backward orthogonal matching pursuit.

Note that all of the atoms �gi are orthogonal to �Gi�1 by construction. This

observation suggests an interpretation of this variation of orthogonal matching pursuit.

Speci�cally, this approach is equivalent to carrying out a Gram-Schmidt orthogonalization

on the dictionary at each stage. Once an atom is chosen from the dictionary for the

expansion, the dictionary is orthogonalized with respect to that atom; in the next stage,

correlations with the orthogonalized dictionary, namely h�g; xi, are computed to �nd the

atom that maximizes the metric 	. This orthogonalization process completely prevents

readmission, but at the cost of added computation to maintain the changing dictionary.

Greedy algorithms and computation{rate{distortion

In matching pursuit and its orthogonal variations, each iteration attempts to

improve the signal approximation as much as possible by minimizing some error metric.

In orthogonal pursuits, the metric depends on previous iterations; in any case, however,

the approximation is made without regard to future iterations. Matching pursuit is thus

categorized as a greedy algorithm. It is well known that such greedy algorithms, when

applied to overcomplete dictionaries, do not lead to optimal approximations, i.e. optimal

compact models; however, greedy approaches are justi�ed given the complexity of optimal

approximation [39, 69]. Furthermore, it should be noted as in Section 6.1.2 that the use of

a greedy algorithm inherently leads to successive re�nement, which is a desirable property

in signal models.

For the application of compact signal modeling, it is of interest to compare the

approximation errors of matching pursuit and the backward and forward orthogonal pur-

suits. This comparison, however, can only be made in a de�nitive sense for the case where

each algorithm is initiated at stage i with the same �rst i � 1 atoms; then, the energy

removed from the residual in the forward case is always greater than or equal to that in the

backward approach, which is in turn greater than or equal to that in the standard pursuit.

Conditioned on the �rst i � 1 terms, the forward approach provides the optimal i-term

approximation. For the case of arbitrary i-term decompositions, however, no absolute

comparison can be made between the algorithms. While error bounds can be established

for the various greedy approximations, the relative performance for a given signal cannot

be guaranteed a priori since the algorithms use di�erent strategies for selecting atoms

[221, 222, 223]. Useful predictive comparisons of the algorithms can be carried out using

ensemble results based on random dictionaries [68].

In the preceding paragraph, as in most discussions of signal modeling, compar-

isons between models are phrased in terms of the amount of information required to
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describe a certain model, i.e. the compaction, and the approximation error of the model.

This rate-distortion tradeo� is the typical metric by which models are compared. In

implementations, however, it is also important to account for the resources required for

model computation. In general, a model can achieve a better rate-distortion characteristic

through increased computation. For example, recall from the earlier discussion that an

approximation provided by a standard pursuit can be improved after the last stage by

backward orthogonalization of the full expansion; this process results in a lower distortion

at a �xed rate at the expense of the computation of the subspace projection. Given the

preceding observation about the impact of computation and this supporting example, it

is reasonable to assert that computation considerations are important in model compar-

isons. Examples of computation-distortion tradeo�s are given for the case of orthogonal

matching pursuit in [212]; a preliminary treatment of general computation-rate-distortion

theory is given in [224].

6.3 Time-Frequency Dictionaries

Matching pursuit yields a sparse approximate signal decomposition based on a

dictionary of expansion functions. In a compact model, the atoms in the expansion neces-

sarily correspond to basic signal features. This is especially useful for analysis and coding

if the atoms can be described by meaningful parameters such as time location, frequency

modulation, and scale; then, the basic signal features can be identi�ed and parameter-

ized. In this light, parametric overcomplete dictionaries consisting of atoms that exhibit

a wide range of localized time and frequency behaviors are of great interest; matching

pursuit then provides a compact, adaptive, and parametric time-frequency representation

of a signal [38]. Such localized time-frequency atoms were introduced by Gabor from a

theoretical standpoint and according to psychoacoustic motivations [71, 72].

6.3.1 Gabor Atoms

The literature on matching pursuit has focused on applications involving dictio-

naries of Gabor atoms since these are appropriate expansion functions for general time-

frequency signal models [38]. 1 In continuous time, such atoms are derived from a single

unit-norm window function g(t) by scaling, modulation, and translation:

gfs;!;�g(t) =
1p
s
g

�
n� �

s

�
ej!(n��): (6.39)

This de�nition can be extended to discrete time by a sampling argument as in [38]; funda-

mentally, the extension simply indicates that Gabor atoms can be represented in discrete

1Atoms corresponding to wavelet and cosine packets have also been considered [42, 212].
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Figure 6.3: Symmetric Gabor atoms. Such time-frequency dictionary elements are

derived from a symmetric window by scaling, modulation, and translation operations

as described in Equation (6.39).

time as

gfs;!;�g[n] = fs[n� �0]e
j!(n��); (6.40)

where fs[n] is a unit-norm window function supported on a scale s. Examples are depicted

in Figure 6.3.

Note that Gabor atoms are scaled to have unit-norm and that each is indexed in

the dictionary by a parameter set fs; !; �g. This parametric structure allows for a simple
description of a speci�c dictionary, which is useful for compression. When the atomic

parameters are not tightly restricted, Gabor dictionaries are highly overcomplete and can

include both Fourier and wavelet-like bases. One issue to note is that the modulation

of an atom can be de�ned independently of the time shift, or dereferenced, as it will be

referred to hereafter:

~gfs;!;�g[n] =
1p
s
g

�
n� �

s

�
ej!n = ej!�gfs;!;�g[n]: (6.41)

This simple phase relationship will have an impact in later considerations; note that this

distinction between models of time is analogous to the issue discussed in Section 2.2.1 in

the context of the STFT time reference.

In applications of Gabor functions, g[n] is typically an even-symmetric window.

The associated dictionaries thus consist of atoms that exhibit symmetric time-domain be-

havior. This is problematic for modeling asymmetric features such as transients, which

occur frequently in natural signals such as music. Figure 6.4(a) shows a typical transient

from linear system theory, the damped sinusoid; the �rst stage of a matching pursuit

based on symmetric Gabor functions chooses the atom shown in Figure 6.4(b). This atom

matches the frequency behavior of the signal, but its time-domain symmetry results in

a pre-echo as indicated. The atomic model has energy before the onset of the original

signal; as a result, the residual has both a pre-echo and a discontinuity at the onset time

as shown in Figure 6.4(c). In later stages, then, the matching pursuit must incorporate

small-scale atoms into the decomposition to remove the pre-echo and to model the discon-

tinuity. One approach to this problem is the high-resolution matching pursuit algorithm
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Figure 6.4: A pre-echo is introduced in atomics models of transient signals if the

atoms are symmetric. The plots show (a) a damped sinusoidal signal, (b) the �rst

atom chosen from a symmetric Gabor dictionary by matching pursuit, and (c) the

residual. Note the pre-echo in the atomic model and the artifact in the residual at

the onset time.

proposed in [213, 225], where symmetric atoms are generally still used but the selection

metric is modi�ed so that atoms that introduce drastic artifacts are not chosen for the

decomposition. Fundamentally, however, symmetric functions are simply not well-suited

for modeling asymmetric events. With that in mind, an alternative approach to modeling

signals with transient behavior is to use a dictionary of asymmetric atoms, e.g. damped

sinusoids. Such atoms are physically sensible given the common occurrence of damped

oscillations in natural signals.

6.3.2 Damped Sinusoids

The common occurrence of damped oscillations in natural signals justi�es con-

sidering damped sinusoids as building blocks in signal decompositions. The application at

hand is further motivated in that damped sinusoids are better suited than symmetric Ga-

bor atoms for modeling transients. Like the atoms in a general Gabor dictionary, damped

sinusoidal atoms can be indexed by characteristic parameters, namely the damping factor

a, modulation frequency !, and start time � :

gfa;!;�g[n] = Sa a
(n��)ej!(n��)u[n� � ]; (6.42)

or, if the modulation is dereferenced,

~gfa;!;�g[n] = Sa a
(n��)ej!nu[n� � ]; (6.43)

where the factor Sa is included for unit-norm scaling. Examples are depicted in Figure 6.5.

It should be noted that these atoms can be interpreted as Gabor functions derived from
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Figure 6.5: Damped sinusoids: Gabor atoms based on a one-sided exponential

window.

a one-sided exponential window; they are just di�erentiated from typical Gabor atoms

by their asymmetry. Also, the atomic structure is more readily indicated by a damping

factor than a scale parameter, so the dictionary index set fa; !; �g is used instead of the

general Gabor set fs; !; �g.
For the sake of realizability, a damped sinusoidal atom is truncated when its

amplitude falls below a threshold T ; the corresponding length is L = dlogT= log ae, and
the appropriate scaling factor is then Sa =

q
(1� a2)=(1� a2L). Note that this trunca-

tion results in sensible localization properties; heavily damped atoms are short-lived, and

lightly damped atoms persist in time. Also note that the atoms are one-sided; an atom

corresponds to the impulse response of a �lter with a single complex pole; this is a suitable

property given the intent of representing transient signals, assuming that the source of the

signal can be well-modeled by simple linear systems.

Several approaches in the literature have dealt with time-frequency atoms having

exponential behavior. In [226], damped sinusoids are used to provide a time-frequency

representation in which transients are identi�able. In the application outlined in [226],

some prior knowledge of the damping factor is assumed, which is reasonable for detection

applications but inappropriate for deriving decompositions of arbitrary signals; extensions

of the algorithm, however, may prove useful for signal modeling. In [227], wavelets based

on recursive �lter banks are derived; these provide orthogonal expansions with respect to

basis functions having in�nite time support. This treatment focuses on the more general

scenario of overcomplete expansions; unlike in the basis case, the constituent atoms have

a exible parametric structure.

6.3.3 Composite Atoms

The simple example of Figure 6.4 shows that symmetric atoms are inappropriate

for modeling some signals. While the Figure 6.4 example is motivated by physical con-

siderations, i.e. simple linear models of physical systems, it certainly does not encompass

the wide range of complicated behaviors observed in natural signals. It is of course triv-
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ial to construct examples for which asymmetric atoms would prove similarly ine�ective.

Thus, given the task of modeling arbitrary signals (that might have been generated by

complicated nonlinear systems), it can be argued that a wide range of both symmetric

and asymmetric atoms should be present in the dictionary. Such composite dictionaries

are considered here.

One approach to generating a composite dictionary is to simply merge a dictio-

nary of symmetric atoms with a dictionary of damped sinusoids. The pursuit described

in Section 6.2 can be carried out using such a dictionary. One caveat to note is that the

atomic index set requires an additional parameter to specify which type of atom the set

refers to. Furthermore, the nonuniformity of the dictionary introduces some di�culties in

the computation and storage of the dictionary cross-correlations needed for the correlation

update of Equation (6.15). Such computation issues will be discussed in Section 6.4.3; it is

indicated there that the uniformity of the dictionary is coupled to the cost of the pursuit.

It is shown in Section 6.4.1 that correlations with damped sinusoidal atoms can

be computed with low cost without using the update formula of Equation (6.15). The

approach applies both to causal and anticausal damped sinusoids, which motivates con-

sidering two-sided atoms constructed by coupling causal and anticausal components. This

construction can be used to generate symmetric and asymmetric atoms; furthermore, these

atoms can be smoothed by simple convolution operations. Such atoms take the form

gfa;b;J;!;�g[n] = ffa;b;Jg[n� � ]ej!(n��); (6.44)

or, if the modulation is dereferenced,

~gfa;b;J;!;�g[n] = ffa;b;Jg[n� � ]ej!n; (6.45)

where the amplitude envelope is a unit-norm function constructed using a causal and an

anticausal exponential according to the formula

ffa;b;Jg[n] = Sfa;b;Jg
�
anu[n] + b�nu[�n]� �[n]

� � hJ [n]; (6.46)

where �[n] is subtracted because the causal and anticausal components, as written, overlap

at n = 0. The function hJ [n] is a smoothing window of length J ; later considerations will

be limited to the case of a rectangular window. A variety of composite atoms are depicted

in Figure 6.6.

The unit-norm scaling factor Sfa;b;Jg for a composite atom is given by

Sfa;b;Jg =
1p

�(a; b; J)
; (6.47)

where �(a; b; J) denotes the squared-norm of the atom prior to scaling:

�(a; b; J) =
X
n

���anu[n] + b�nu[�n]� �[n]
� � hJ [n]��2 ; (6.48)
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Figure 6.6: Composite atoms: Symmetric and asymmetric atoms constructed by

coupling causal and anticausal damped sinusoids and using low-order smoothing.

which can be simpli�ed to

�(a; b; J) =
J�1X
l=0

J�1X
k=0

ajl�kj

1� a2
+

bjl�kj

1� b2
+

ajl�kjb� abjl�kj

a� b
; (6.49)

which does not take truncation of the atoms into account. This approximation does not

introduce signi�cant errors if a small truncation threshold is used; furthermore, it should

be noted that if some error is introduced, the iterative analysis-by-synthesis structure of

matching pursuit corrects the error at a later stage. For the case of symmetric atoms

(a = b), the squared-norm can be written in closed form as

�(a; a; J) =

h
J(1� a4) + 2aJ(1� a2)(1 + aJ)� 4a(a2 + a+ 1)(1� aJ )

i
(1 + a)(1� a)3

; (6.50)

where a rectangular smoothing window has been assumed in the derivation. This scale

factor a�ects the computational cost of the algorithm, but primarily with respect to pre-

computation. This issue will be examined in Sections 6.4.2 and 6.4.3.

The composite atoms described above can be written in terms of unit-norm

constituent atoms:

~gfa;b;J;!;�g[n] = Sfa;b;Jg

0
@~g+fa;!;�g[n]

Sa
+
~g�fb;!;�g[n]

Sb
� �[n]

1
A � hJ [n] (6.51)

=
J�1X
�=0

~g+fa;!;�+�g[n]

Sa
+
~g�fb;!;�+�g[n]

Sb
� �[n+�]; (6.52)

where ~g+fa;!;�g[n] is a causal atom and ~g�fb;!;�g[n] is an anticausal atom de�ned as

~g�fb;!;�g[n] = Sb b
�(n��)ej!nu[�(n� �)]: (6.53)

Note that atoms with dereferenced modulation are used in the construction of Equation

(6.52) so that the modulations add coherently in the sum over the time lags �; in the
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other case, the constituent atoms must be summed with phase shifts ej!� to achieve

coherent modulation of the composite atom. As will be seen in Section 6.4.2, this atomic

construction leads to a simple relationship between the correlations of the signal with the

composite atom and with the underlying damped sinusoids, especially in the dereferenced

case. Also, Equation (6.52) indicates the interplay of the various scale factors. Both of

these issues will prove important for the computation considerations of Section 6.4.3.

The special case of symmetric atoms (a = b), one example of which is shown in

Figure 6.6, suggests the use of this approach to construct atoms similar to symmetric Ga-

bor atoms based on common windows. Given a unit-norm window function w[n], the issue

is to choose a damping factor a and a smoothing order J such that the resultant ffa;a;Jg[n]

accurately mimics w[n]. Using the two-norm as an accuracy metric, the objective is to

minimize the error

�(a; J) = jjffa;a;Jg[n]� w[n]jj2 (6.54)

by optimizing a and J . Since ffa;a;Jg[n] and w[n] are both unit-norm, this expression can

be simpli�ed to:

�(a; J) = 2

 
1�

X
n

ffa;a;Jg[n]w[n]

!
: (6.55)

Not surprisingly, the overall objective of the optimization is thus to maximize the corre-

lation of ffa;a;Jg[n] and w[n],

�̂(a; J) =
X
n

ffa;a;Jg[n]w[n]: (6.56)

In an implementation, this would not be an on-line operation but rather a precomputation

indicating values of a and J to be used in the parameter set of the composite dictionary.

Interestingly, this precomputation itself resembles a matching pursuit. Note that the

values of a and J for the ffa;a;Jg[n] in the composite dictionary are based on the scales of

symmetric behavior to be included in the dictionary. Presumably, closed form solutions

for a and J can be found for some particular windows; such solutions are of course limited

by the requirement that J be an integer. The intent of this treatment, however, is not to

investigate the computational issue of window matching per se, but instead to provide an

existence proof that symmetric atoms constructed from one-sided exponentials by simple

operations can reasonably mimic Gabor atoms based on standard symmetric windows.

Figure 6.7 shows an example of a composite atom that roughly matches a Hanning window

and a Gaussian window.

The upshot of the preceding discussion is that a composite dictionary containing

a wide range of symmetric and asymmetric atoms can be constructed from uniform dictio-

naries of causal and anticausal damped sinusoids. Atoms resembling common symmetric

Gabor atoms can readily be generated, meaning that this approach can be tailored to

include standard symmetric atoms as a dictionary subset; there is no generality lost by
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Figure 6.7: Symmetric composite atoms: An example of a smoothed composite atom

(solid) that roughly matches a Hanning window (dashed) and a Gaussian window

(dotted).

constructing atoms in this fashion. As will be shown in Section 6.4.1, the pursuit com-

putation for dictionaries of damped sinusoids are of low cost; this leads to the methods

of Section 6.4.2, namely low-cost algorithms for matching pursuit based on a composite

dictionary. Such dictionaries will be discussed throughout the remainder of this chapter.

6.3.4 Signal Modeling

In atomic modeling by matching pursuit, the characteristics of the signal esti-

mate fundamentally depend on the structure of the time-frequency dictionary used in the

pursuit. Consider the model given in Figure 6.8, which is derived by matching pursuit

with a dictionary of symmetric Gabor atoms. In the early stages of the pursuit, the al-

gorithm arrives at smooth estimates of the global signal behavior because the large-scale

dictionary elements to choose from are themselves smooth functions. At later stages, the

algorithm chooses atoms of smaller scale to re�ne the estimate; for instance, small-scale

atoms are incorporated to remove pre-echo artifacts.

In the example of Figure 6.9, the model is derived by matching pursuit with

a dictionary of damped sinusoids. Here, the early estimates have sharp edges since the

dictionary elements are one-sided functions. In later stages, edges that require smoothing

are re�ned by inclusion of overlapping atoms in the model; also, as in the symmetric atom

case, atoms of small scale are chosen in late stages to counteract any inaccuracies brought

about by the early atoms.

In the examples of Figures 6.8 and 6.9, the dictionaries are designed for a fair

comparison. Speci�cally, the dictionary atoms have comparable scales, and the dictionaries

are structured such that the mean-squared errors of the respective atomic models have

similar convergence properties. A comparison of the convergence behaviors is given in

Figure 6.10(a); the plot in Figure 6.10(b) shows the energy of the pre-echo in the symmetric

Gabor model and indicates that the pursuit devotes atoms at later stages to remove the

pre-echo artifact. The model based on damped sinusoids does not introduce a pre-echo.
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Figure 6.8: Signal modeling with symmetric Gabor atoms. The original signal in

(a), which is the onset of a gong strike, is modeled by matching pursuit with a dic-

tionary of symmetric Gabor atoms derived from a Hanning prototype. Approximate

reconstructions at various pursuit stages are given: (b) 5 atoms, (c) 10 atoms, (d) 20

atoms, and (e) 40 atoms.
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Figure 6.9: Signal modeling with damped sinusoidal atoms. The signal in (a), which

is the onset of a gong strike, is modeled by matching pursuit with a dictionary of

damped sinusoids. Approximate reconstructions at various pursuit stages are given:

(b) 5 atoms, (c) 10 atoms, (d) 20 atoms, and (e) 40 atoms.
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Figure 6.10: Mean-squared convergence of atomic models. Plot (a) shows the mean-

squared error of the atomic models depicted in Figures 6.8 and 6.9. The dictionaries

of symmetric Gabor atoms (solid) and damped sinusoids (circles) are designed to

have similar mean-squared convergence for the signal in question. Plot (b) shows

the mean-squared energy in the pre-echo of the symmetric Gabor model; the pursuit

devotes atoms at later stages to reduce the pre-echo energy. The damped sinusoidal

decomposition does not introduce pre-echo.

Modeling with a composite dictionary is depicted in Figure 6.11. The dictionary

used here contains the same causal damped sinusoids as in the example of Figure 6.9,

plus an equal number of anticausal damped sinusoids and a few smoothing orders. As will

be seen in Sections 6.4 and 6.4.3, deriving the correlations with the underlying damped

sinusoids is the major factor in the computational cost of pursuit with composite atoms.

Compared to the pursuit based on damped sinusoids discussed earlier, then, the composite

atom model shown here requires roughly twice the computation; as shown in Figure 6.12,

however, this additional computation leads to a lower mean-squared error for the model.

Noting further that the parameter set for composite atoms is larger than that for simple

damped sinusoids or Gabor atoms, it is clear that fully comparing this composite model

to the earlier models requires computation{rate{distortion considerations such as those

described briey in Section 6.2.4.

6.4 Computation Using Recursive Filter Banks

For arbitrary dictionaries, the cost of the matching pursuit iteration can be re-

duced using the correlation update relationship in Equation (6.15). For dictionaries con-

sisting of damped sinusoids or composite atoms constructed as described in Section 6.3.3,

the correlation computation for the pursuit can be carried out with simple recursive �lter

banks. This framework is developed in the following two sections; in Section 6.4.3, the
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Figure 6.11: Signal modeling with composite atoms. The signal in (a), which is the

onset of a gong strike, is modeled by matching pursuit with a dictionary of composite

atoms. Approximate reconstructions at various pursuit stages are given: (b) 5 atoms,

(c) 10 atoms, (d) 20 atoms, and (e) 40 atoms. The composite dictionary contains

the same causal damped sinusoids as those used in the example of Figure 6.9, plus

an equal number of anticausal damped sinusoids and a small number of smoothing

orders.
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Figure 6.12: The mean-squared error of an atomic model using composite atoms

(solid) and the mean-squared error of a model based on only the underlying causal

damped sinusoids (circles). This plot corresponds to the composite atomic models

given in Figure 6.11 and the damped sinusoidal decompositions of Figure 6.9.

computation requirements of the �lter bank approach and the correlation update method

are compared.

6.4.1 Pursuit of Damped Sinusoidal Atoms

For dictionaries of complex damped sinusoids, the atomic structure can be ex-

ploited to simplify the correlation computation irrespective of the update formula in Equa-

tion (6.15). It is shown here that the computation over the time and frequency parameters

can be carried out with simple recursive �lter banks and FFTs.

Correlation with complex damped sinusoids

In matching pursuit using a dictionary of complex damped sinusoids, correlations

must be computed for every combination of damping factor, modulation frequency, and

time shift. The correlation of a signal x[n] with a causal atom g+fa;!;�g[n] is given by

�+(a; !; �) = Sa

�+L�1X
n=�

x[n] a(n��)e�j!(n��); (6.57)

where the atoms are truncated to a length L that is a function of the damping factor a as

described in Section 6.3.2. In the following, correlations with unnormalized atoms will be

used to simplify the notation:

�+(a; !; �) =
�+L�1X
n=�

x[n] a(n��)e�j!(n��) (6.58)

=
�+(a; !; �)

Sa
: (6.59)

Furthermore, formulating the algorithm in terms of unnormalized atoms will serve to

reduce the cost of the algorithm developed in Section 6.4.2 for pursuing composite atoms.
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The structure of the correlations in Equations (6.57) and (6.58) allows for a

substantial reduction of the computation requirements with respect to the time shift and

modulation parameters. These are discussed in turn below. Note that the correlation

uses the atoms de�ned in Equation (6.42), in which the modulation is phase-referenced to

� ; alternate results related to the atoms with dereferenced modulation given in Equation

(6.43) will be reviewed later.

Time-domain simpli�cation

The exponential structure of the atoms can be used to reduce the cost of the

correlation computation over the time index; correlations at neighboring times are related

by a simple recursion:

�+(a; !; � � 1) = ae�j!�+(a; !; �) + x[� � 1] � aLe�j!Lx[� + L� 1]: (6.60)

This is just a one-pole �lter with a correction to account for truncation. If truncation

e�ects are ignored, which is reasonable for small truncation thresholds, the formula be-

comes

�+(a; !; � � 1) = ae�j!�+(a; !; �) + x[� � 1]: (6.61)

Note that this equation is operated in reversed time to make the recursion stable for causal

damped sinusoids; the similar forward recursion is unstable for a < 1. For anticausal

atoms, the correlations are given by the recursion

��(b; !; � + 1) = bej!��(b; !; �) + x[� + 1] � bLej!Lx[� � L+ 1]; (6.62)

or, if truncation is neglected,

��(b; !; � + 1) = bej!��(b; !; �) + x[� + 1]: (6.63)

These recursions are operated in forward time for the sake of stability.

The equivalence of Equations (6.61) and (6.63) to �ltering operations suggests

interpreting the correlation computation over all possible parameters fai; !i; �ig as an

application of the signal to a dense grid of one-pole �lters in the z-plane, which are the

matched �lters for the dictionary atoms. The �lter outputs are the correlations needed

for the matching pursuit; the maximally correlated atom is directly indicated by the

maximum magnitude output of the �lter bank. Of course, pursuit based on arbitrary

atoms can be interpreted in terms of matched �lters. In the general case, however, this

interpretation is not particularly useful; here, it provides a framework for reducing the

required computation. It should be noted that the dictionary atoms themselves correspond

to the impulse responses of a grid of one-pole �lters; as in the wavelet �lter bank case, then,

the atomic synthesis can be interpreted as an application of the expansion coe�cients to a
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Figure 6.13: Filter bank interpretation and dictionary structures. The atoms in

a dictionary of damped sinusoids correspond to the impulse responses of a bank of

one-pole �lters; for decaying causal atoms, the poles are inside the unit circle. These

dictionaries can be structured in various ways as depicted above. The correlations

in the pursuit are computed by the corresponding matched �lters, which are time-

reversed and thus have poles outside the unit circle.

synthesis �lter bank. A depiction of the z-plane interpretation of several damped sinusoidal

dictionaries is given in Figure 6.13; the dictionaries are structured for various tradeo�s in

time-frequency resolution.

A recursion similar to Equation (6.60) can be written for the general case of

correlations separated by an arbitrary lag �:

�+(a; !; � ��) = a�e�j!��+(a; !; �) (6.64)

+
��1X
n=0

x[n+ � ��] an e�j!n � aLe�j!L
��1X
n=0

x[n+ � ��+ L] an e�j!n:

For w = 2�k=K, the last two terms can be computed using the DFT:

�+(a; 2�k=K; � ��) = a�e�j!��+(a; !; �) (6.65)

+ DFTK fx[n+ � ��]ang jk � aLe�j!L DFTK fx[n+ � ��+ L]ang jk;

where n 2 [0;�� 1] in the latter terms, which could be combined into a single DFT. If

truncation e�ects are ignored, the second DFT term is neglected and the relationship is

again more straightforward. Similar simpli�cations have been reported in the literature

for short-time Fourier transforms using one-sided exponential windows [228] as well as

more general cases [229].

Frequency-domain simpli�cation

A simpli�cation of the correlation computations across the frequency parameter

can be achieved if the z-plane �lter bank, or equivalently the matching pursuit dictionary,

is structured such that the modulation frequencies are equi-spaced for each damping factor.
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If the �lters (atoms) are equi-spaced angularly on circles in the z-plane, the discrete Fourier

transform can be used for the computation over !. For ! = 2�k=K, the correlation is

given by

�+(a; 2�k=K; �) =
L�1X
n=0

x[n+ � ]ane�j2�kn=K (6.66)

= DFTK fx[n+ � ] angjk ; (6.67)

where n 2 [0; L� 1] and K � L. Thus, FFT algorithms can be used to compute correla-

tions over the frequency index. Note that such an FFT-based simpli�cation can be applied

to any dictionary of harmonically modulated atoms.

At a �xed scale, correlations must be computed at every time-frequency pair

in the index set. There are two ways to cover this time-frequency index plane; these

correspond to the dual interpretations of the STFT depicted in Figure 2.1. The �rst

approach is to carry out a running DFT with an exponential window; windowing and

the DFT require L and K logK multiplies per time point, respectively, so this method

requires roughly N(L + K logK) real multiplies for a signal of length N . The second

approach is to use a DFT to initialize the K matched �lters across frequency and then

compute the outputs of the �lters to evaluate the correlations across time; indeed, the

signal can be zero-padded such that the �lters are initialized with zero values and no

DFT is required. Recalling the recursion of Equation (6.60), this latter method requires

one complex multiply and one real-complex multiply per �lter for each time point, so it

requires 6KN real multiplies, 2KN of which account for truncation e�ects and are not

imperative. For large values of K, this is signi�cantly less than the multiply count for the

running DFT approach, so the matched �lter approach is the method of choice.

Results for dereferenced modulation

The results given in the previous sections hold for an atom whose modulation

is referenced to the time origin of the atom as in Equations (6.39), (6.42), and (6.44).

This local time reference has been adhered to since it allows for an immediate �lter bank

interpretation of the matching pursuit analysis; also, synthesis based on such atoms can be

directly carried out using recursive �lters. For the construction and pursuit of composite

atoms, however, the dereferenced atoms de�ned in Equations (6.41), (6.43), and (6.45) are

of importance. The correlation formulae for dereferenced damped sinusoids can be derived

by combining the relation in Equation (6.41) with the expression in Equation (6.58) to

arrive at:

~�+(a; !; �) = e�j!��+(a; !; �); (6.68)

so Equations (6.61) and (6.63) can be reformulated as

~�+(a; !; � � 1) = a~�+(a; !; �)+ e�j!(��1)x[� � 1] (6.69)
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~��(b; !; � + 1) = b~�+(b; !; �)+ e�j!(�+1)x[� + 1]: (6.70)

When the modulation depends on the atomic time origin, the pursuit can be interpreted

in terms of a modulated �lter bank; for dereferenced modulation, however, the equivalent

�lter bank has a heterodyne structure. This distinction was discussed at length with

respect to the STFT in Section 2.2.1. As will be seen in Section 6.4.2, dereferencing

the modulation simpli�es the relationship between the signal correlations with composite

atoms and the correlations with underlying damped sinusoids; for this reason, future

considerations will be focus primarily on the case of dereferenced modulation.

Real decompositions of real signals

If dictionaries of complex atoms are used in matching pursuit, the correlations

and hence the expansion coe�cients for signal decompositions will generally be complex; a

given coe�cient thus provides both a magnitude and a phase for the atom in the expansion.

For real signals, decomposition in terms of complex atoms can be misleading. For instance,

for a signal that consists of one real damped sinusoid, the pursuit does not simply �nd the

constituent conjugate pair of atoms as might be expected; this occurs because an atom

and its conjugate are not orthogonal. For real signals, then, it is preferable to consider

expansions in terms of real atoms:

�g+fa;!;�;�g = �Sfa;!;�ga
(n��) cos [!(n� �) + �]u[n� � ]; (6.71)

or, in the case of dereferenced modulation,

~�g
+
fa;!;�;�g = ~�Sfa;!;�;�ga

(n��) cos [!n+ �]u[n� � ]: (6.72)

The two cases di�er by a phase o�set which a�ects the unit-norm scaling as well as the

modulation.

In the case of a complex dictionary, the atoms are indexed by the three param-

eters fa; !; �g and the phase of an atom in the expansion is given by its correlation. In

contrast, a real dictionary requires the phase parameter as an additional index because

of the explicit presence of the phase in the argument of the cosine in the atom de�nition.

The phase is not supplied by the correlation computation as in the complex case; like

the other parameters, it must be discretized and incorporated as a dictionary parameter

in the pursuit, which results in a larger dictionary and thus a more complicated search.

Furthermore, the correlation computations are more di�cult than in the complex case

because the recursion formulae derived earlier do not apply for these real atoms. These

problems can be circumvented by using a complex dictionary and considering conjugate

subspaces according to the formulation of Section 6.2.3.

Conjugate subspace pursuit can be used to search for conjugate pairs of complex

damped sinusoids; the derivation leading to Equation (6.21) veri�es that this approach will



215

arrive at a decomposition in terms of real damped sinusoids if the original signal is real.

The advantage of this method is indicated by Equations (6.19) and (6.20), which show that

the expansion coe�cients and the maximization metric in the conjugate pursuit are both

functions of the correlation of the residual with the underlying complex atoms; this means

that the computational simpli�cations for a dictionary of complex damped sinusoids can

be readily applied to calculation of a real expansion. The real decomposition found by

this approach, expressed in the general case in Equation (6.23), can be written explicitly

as

x[n] � 2
IX
i=1

SaiAia
(n��i)
i cos [!in + �i] ; (6.73)

where Aie
j�i = �i(1) and the modulation is dereferenced. As in the complex case, the

phases of the atoms in this real decomposition are provided directly by the computation of

the expansion coe�cients; the phase is not required as a dictionary index, i.e. an explicit

search over a phase index is not required in the pursuit. By considering signal expansions

in terms of conjugate pairs, the advantages of the complex dictionary are fully maintained;

furthermore, note that the dictionary for the conjugate search is e�ectively half the size

of the full complex dictionary since atoms are considered in conjugate pairs.

It is important to note that Equation (6.73) neglects the inclusion of unmodulated

exponentials in the signal expansion. Such atoms are indeed present in the complex

dictionary, and all of the recursion speedups apply trivially; furthermore, the correlation

of an unmodulated atom with a real signal is always real, so there are no phase issues to

be concerned with. An important caveat, however, is that the conjugate pursuit algorithm

breaks down if the atom is purely real; the pursuit requires that the atom and its conjugate

be linearly independent, meaning that the atom must have nonzero real and imaginary

parts. Thus, a �x is required if real unmodulated exponentials are to be admitted in the

signal model. The i-th stage of the �xed algorithm is as follows: �rst, the correlations � =

hg; rii for the entire dictionary of complex atoms are computed using the simpli�cations

described. Then, energy minimization metrics for both types of atoms are computed and

stored: for real atoms, the metric is j�j2 as indicated in Equation (6.12); for conjugate

subspaces, the metric is ���(1) + ��(1)� as given in Equation (6.20), where �(1) is as

de�ned in Equation (6.19) and � = hg; g�i can be expressed as

�(a; !) = S2
a

 
1� a2Le�j2!L

1� a2e�j2!

!
: (6.74)

These metrics quantify the amount of energy removed from the residual in the two cases;

maximization over these metrics indicates which real component should be added to the

signal expansion at the i-th stage to minimize the energy of the new residual ri+1[n].

As a �nal comment on real decompositions, it is interesting to note that the de-

scription of a signal in terms of conjugate pairs does not require more data than a model
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using complex atoms. Either case simply requires the indices fa; !; �g and the complex

number �(1) for each atom in the decomposition. There is of course additional compu-

tation in both the analysis and the synthesis in the case of conjugate pairs. As discussed

above, this improves the ability to model real signals; in a sense, this improvement arises

because the added computation enables the model data to encompass twice as many atoms

in the conjugate pair case as in the complex case.

6.4.2 Pursuit of Composite Atoms

Using matching pursuit to derive a signal model based on composite atoms re-

quires computation of the correlations of the signal with these atoms. Recalling the form

of the composite atoms given in Equations (6.51) and (6.52), these correlations have,

by construction, a simple relationship to the correlations with the underlying one-sided

atoms:

~�(a; b; J; !; �) = Sfa;b;Jg
J�1X
�=0

�
~�+(a; !; � +�)

Sa
+

~��(b; !; � + �)

Sb
� x[� +�]

�
(6.75)

= Sfa;b;Jg
J�1X
�=0

[~�+(a; !; � + �) + ~��(b; !; � +�) � x[� +�]] : (6.76)

The correlation with any hybrid atom can thus be computed based on the correlations

derived by the recursive �lter banks discussed earlier; this computation is most straightfor-

ward if dereferenced modulation is used in the constituent atoms and if these underlying

atoms are unnormalized. Essentially, any atom constructed according to Equation (6.52),

which includes simple damped sinusoids, can be added to the modeling dictionary at the

cost of one multiply per atom to account for scaling. Computation is discussed further in

Section 6.4.3.

For composite atoms, real decompositions of real signals take the form

x[n] � 2
IX
i=1

Aiffai;bi;Jig[n� �i] cos (!in+ �i) ; (6.77)

where ffai;bi;Jig is as de�ned in Equation (6.46) and Aie
j�i = �i(1) from Equation (6.19).

6.4.3 Computation Considerations

This section compares the computational cost of two matching pursuit imple-

mentations: pursuit based on correlation updates [38] and pursuit based on recursive

�lter banks. In this comparison, the cost is measured in terms of memory requirements

and multiplicative operations. Simple search operations, table lookups, and conditionals

are neglected in the cost measure. Furthermore, computation before the �rst iteration of
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either algorithm is allowed without a direct penalty; precomputation is considered only

with respect to the amount of memory required to store precomputed data. Startup cost

for the �rst iteration is considered separately; in cases where only a few atoms are to

be derived, the startup arithmetic in the update algorithm may constitute an appreciable

percentage of the overall computation. The results of these considerations are summarized

in Table 6.1.

Notation

In the following comparisons, the signal is assumed to be real and of length N . A

composite dictionary based on damped sinusoids will be considered. The index set for this

dictionary will consist of A di�erent causal damping factors, B anticausal damping factors,

H smoothing orders, K modulations, and N time shifts, meaning that the dictionary has

M = ABHKN atoms; using S to denote the number of scales present, namely S = ABH ,

the size of the dictionary can be expressed asM = SKN . The average scale or atom length

will be denoted by L; note that for atoms having average time support L, the correlation

hg; xi requires L real-complex multiplies on average. The following considerations of the

two matching pursuit algorithms focus on pursuit of complex atoms since the evaluation

of a real model based on a complex pursuit has equal cost in both implementations; note

also that deriving the correlation magnitudes requires the same amount of computation

in both approaches. The relevant point of comparison is the computation required to

calculate hg; rii for all of the complex atoms g 2 D at some stage i of the algorithm. The

treatment in this section depends on the damped sinusoidal structure, but this is not a

limiting restriction since composite atoms with a wide range of time-frequency behaviors

can be constructed based on damped sinusoids.

Precomputation in the update algorithm

To derive the correlations hg; ri+1i at stage i + 1 of the pursuit, the update

approach uses the equation

hg; ri+1i = hg; rii � �ihg; gii; (6.78)

which relates the correlations at stage i + 1 to those computed at stage i. The update

method thus relies on precomputation and storage of the dictionary cross-correlations

hg; gii to reduce the computational cost of the pursuit. If this storage is done without

taking the sparsity or redundancy of the data into account, M2 cross-correlations must

be stored.

A simple example shows that the brute force approach to cross-correlation storage

is prohibitive. Consider analysis of a 10ms frame of high-quality audio consisting of

roughly N = 400 samples. In a rather small dictionary with K = 32, A = 10, B = 1,
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and H = 1, there are roughly M = 105 atoms. Storage of the complex cross-correlations

then requires 2M2 = 2� 1010 memory locations. This is altogether unreasonable, so it is

necessary to investigate the possibility of memory-computation tradeo�s; such tradeo�s

occur commonly in algorithm design.

The memory requirement can be relaxed by considering the sparsity and redun-

dancy of the dictionary cross-correlation data. First, many of the atom pairs have no time

overlap and thus zero correlation; these cases can be handled with conditionals. For atoms

that do overlap, the correlation storage can be reduced using the following formulation.

Introducing the simplifying notation

g(s0; !0; �0) = gfa0;b0;J0;!0;�0g[n] = ffs0g[n� �0]e
j!0n (6.79)

g(s1; !1; �1) = gfa1;b1;J1;!1;�1g[n] = ffs1g[n� �1]e
j!1n; (6.80)

where s0 and s1 serve as shorthand for the e�ective scales of the atoms and f [n] is a unit-

norm envelope constructed as in Equation (6.46), the cross-correlation of two composite

atoms can be expressed as

hg(s0; !0; �0); g(s1; !1; �1)i =
X
n

ffs0g[n� �0]ffs1g[n� �1]e
j(!0�!1)n (6.81)

fletting m = n� �0g =
X
m

ffs0g[m]ffs1g[m� (�1 � �0)]e
j(!1�!0)(m+�0) (6.82)

= ej(!1�!0)�0 hg(s0; 0; 0); g(s1; !1 � !0; �1 � �0)i; (6.83)

which shows that the cross-correlation, with the exception of a phase shift, does not depend

on the absolute time locations of the atoms but rather on their relative locations. Also, the

correlation is only a function of the frequency di�erence; moreover, it only depends on the

absolute di�erence since negative values of !1 � !0 can be accounted for by conjugation:

hg(s0; 0; 0); g(s1; !1 � !0; �1 � �0)i = hg(s0; 0; 0); g(s1; !0 � !1; �1 � �0)i� : (6.84)

Beyond these simpli�cations, there is also redundancy in the cross-correlations for scale

pairs:

hg(s1; !1; �1); g(s0; !0; �0)i = hg(s0; !0; �0); g(s1; !1; �1)i� (6.85)

= ej(!0�!1)�0 hg(s0; 0; 0); g(s1; !1 � !0; �1 � �0)i�: (6.86)

This relationship can be exploited to reduce the memory requirements by roughly a factor

of two.

The formulations given above drastically reduce the amount of memory required

to store the dictionary cross-correlations. With regards to the modulation frequencies,

there are K distinct possibilities for j!1 � !0j. With regards to the time shifts, the

S di�erent scales in the dictionary can be considered in pairs using L to approximate
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the number of lags that lead to overlap and nonzero correlation; there are roughly S2L

di�erent con�gurations. In total, then, 2S2KL memory locations are required to store

the distinct cross-correlation values; taking the scale-pair redundancy into account, this

count is reduced to S2KL. For the simple audio example discussed above, this amounts

to roughly 6 � 104 locations for L = 20. Noting the phase shift in Equation (6.83),

this reduction in the memory requirements introduces a complex multiply, or three real

multiplies, for each correlation update.2

Precomputation in the �lter bank algorithm

In the �lter bank approach, the pursuit computation is based on correlations

with unnormalized atoms as formalized in Equation (6.76), which holds for the general

case of a composite dictionary as well as for the limiting case of a dictionary of damped

sinusoids, where J = 1 and b = 0. This correlation computation requires scaling by

Sfa;b;Jg. To reduce the amount of computation per iteration, these scaling factors can be

precomputed and stored. The cost of this precomputation is not of particular interest

here; the important issue is the amount of memory required to store the precomputed

values. In the general case where the values of the damping factors a and b do not exhibit

any particular symmetry, storing the scaling factors requires S = ABH memory locations.

The �rst iteration of the update algorithm

In the �rst stage of the update algorithm, all of the correlations with the dic-

tionary atoms must be computed. This exhaustive computation requires ML = SKL

real-complex multiplies, or 2ML real multiplies. Of course, this computation can be car-

ried out with recursive �lter banks at a lower cost, but such a merged approach will

not be treated here. In any event, these complex correlations must be stored, which re-

quires 2M memory locations. The total memory needed in the update algorithm is then

S2KL+ 2M . Note that the signal is needed in the �rst stage of the algorithm but is not

required thereafter.

Later iterations of the update algorithm

Once the dictionary cross-correlations have been precomputed and the correla-

tions for the �rst stage of the pursuit have been calculated and stored, the cost of the

update algorithm depends only on the update formula. Each stage of the algorithm in-

volves M complex-complex multiplies (3M real) to multiply the M cross-correlations by

�i, plus another M complex-complex multiplies to carry out the phase shift given in

2The complex multiply (a+ bj)(c+ dj) = ac� bd+ j(ad+ bc) can be carried out using three multiplies

by computing c(a+ b); b(c+d), and d(a� b). Then, ac� bd is given by the di�erence of the �rst two terms;

ad+ bc is the sum of the second and the third terms.
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Equation (6.83), for a total of 6M real multiplies per iteration. Note that in the update

algorithm it is not necessary to keep the signal in memory after the �rst iteration or to

ever actually compute the residual signal.

Iterations in the �lter bank approach

In matching pursuit based on recursive �lter banks, the scaling factors Sfa;b;Jg
are precomputed and available via lookup. In addition to the scaling factors, the residual

signal must be stored in this implementation; this requires N memory locations. The

�nal memory requirement is that in order to evaluate correlations with composite atoms,

correlations with the constituent unnormalized damped sinusoids must be stored. For a

smoothing order of J , this requires correlations with J causal and J anticausal damped

sinusoids. Storing these underlying correlations in a local manner thus requires 2(A +

B)KJ locations; global storage requires 2(A + B)KN locations. Note that the memory

cost is scaled by a factor of two since the correlations are complex numbers. The worst

case memory requirement in the �lter bank case is then S +N + 2(A+ B)KN .

With regards to computation, the algorithm uses (A + B)K recursive �lters to

derive the correlations. In the dereferenced case given in Equations (6.69) and (6.69), each

recursion requires four real-real multiplies for each of the N time points if atom truncation

is neglected; the count increases to six if truncation is included. As indicated in Equa-

tion (6.76), correlations with composite atoms are computed by adding the correlations

with constituent unnormalized damped sinusoids and then scaling with the appropriate

factor; this construction process introduces S = ABH real-complex multiplies, or 2S real

multiplies. Thus, 6(A+B)KN +ABH real multiplies are needed to compute the pursuit

correlations. Once an atom is chosen based on these correlations, the residual must be

updated; this requires roughly 5L multiplies to generate the unit-norm atomic envelope,

modulate it to the proper frequency, and weight it with its expansion coe�cient prior to

subtraction from the signal. The total computational cost per iteration for the �lter bank

algorithm is thus 5L+ 6(A+B)KN + 2S.

6.5 Conclusions

Atomic models provide descriptions of signals in terms of localized time-frequency

events. Derivation of optimal models based on overcomplete sets of atoms is computa-

tionally prohibitive, but e�ective models can be arrived at by greedy algorithms such as

matching pursuit and its variations. In this chapter, matching pursuit was developed as an

approach for deriving compact signal-adaptive parametric models based on dictionaries of

time-frequency atoms. Time-frequency dictionaries consisting of symmetric Gabor atoms,

damped sinusoids, and composite atoms constructed from underlying damped sinusoids
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MEMORY COMPUTATION
(real numbers) (real multiplies)

Method Precomp. Algorithm
First

iteration
Later

iterations

Update S2KL
2M

= 2ABHKN
2ML

= 2ABHKNL
6M

= 6ABHKN

Filter bank S N + 2(A+ B)KN 5L+ 2ABH + 6(A+B)KN

Table 6.1: Tabulation of computation considerations: memory and computation

requirements for matching pursuit using the update algorithm and the recursive �lter

bank method. N is the length of the signal; the dictionary index set contains A

causal damping factors, B causal damping factors, H smoothing orders, S = ABH

scales, K modulations, and N time shifts, meaning that the dictionary contains

M = SKN = ABHKN distinct atoms. L is the average time support of a dictionary

atom.

were considered and compared. It was shown that the matching pursuit computation for

both damped sinusoidal atoms and composite atoms can be carried out e�ciently using

simple recursive �lter banks.



222



223

Chapter 7

Conclusions

This thesis explores a variety of signal models, namely the sinusoidal model,

multiresolution extensions of the sinusoidal model, residual models, pitch-synchronous

wavelet and Fourier representations, and atomic decompositions. The key issues dealt

with in this text are summarized in the following section; thereafter, directions for further

research are discussed.

7.1 Signal-Adaptive Parametric Representations

In modeling a signal, it is of primary importance that the model be adapted to

the signal in question. Otherwise, the model will not necessarily provide a meaningful or

useful representation of the signal. The models considered in this thesis are examples of

such signal-adaptive models. In each case, the model is constructed in a signal-adaptive

fashion; this leads to compact models which are useful for analysis, compression, denoising,

and modi�cation. Some of these capabilities are enhanced by the parametric nature of the

models. If a signal is represented in terms of perceptually salient parameters, meaningful

modi�cations can be made by simple adjustment of the parameters; furthermore, percep-

tual principles can be readily applied to achieve data reduction. The following sections

provide a review of the main issues discussed in each chapter.

7.1.1 The STFT and Sinusoidal Modeling

In Chapter 2, the sinusoidal model is developed as a parametric extension of

the short-time Fourier transform. The �lter bank interpretation of the STFT is reviewed

and extended, and various perfect reconstruction criteria are developed. In Section 2.2.2,

however, it is shown by a simple example that such a rigid �lter bank does not provide

a compact representation of an evolving signal. This motivates representing the subband

signals in terms of a parametric model based on estimating and tracking evolving sinu-

soidal partials. Analysis methods for estimating the partial parameters are considered;
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the treatment includes a linear algebraic interpretation of spectral peak picking. Also,

time-domain and frequency-domain synthesis techniques are discussed.

7.1.2 Multiresolution Sinusoidal Modeling

If operated with a �xed frame size, the sinusoidal model has di�culties represent-

ing nonstationary signals. Accurate reconstruction of dynamic behavior can be achieved

by carrying out the sinusoidal model in a multiresolution framework. In Chapter 3, two

multiresolution extensions based respectively on �lter banks and adaptive time segmen-

tation are discussed; the focus is placed primarily on the latter method, which is shown

to substantially mitigate pre-echo distortion. A dynamic program for deriving pseudo-

optimal segmentations is developed; furthermore, globally exhaustive and simple heuristic

algorithms are both considered, and the various approaches are compared with respect to

computational cost.

7.1.3 Residual Modeling

In parametric methods such as the sinusoidal model, the analysis-synthesis pro-

cess generally does not lead to a perfect reconstruction of the original signal; there is a

nonzero di�erence between the original and the inexact reconstruction. For high-quality

synthesis, it is important to model this residual and incorporate it in the signal recon-

struction; this accounts for salient features such as breath noise in a ute sound. In

Chapter 4, residual modeling for sinusoidal analysis-synthesis is discussed. For multires-

olution sinusoidal models, the residual can be perceptually well-modeled as white noise

shaped by a �lter bank with time-varying channel gains whose subbands are spaced in

frequency according to psychoacoustic considerations. The channel gains are determined

by analyzing the residual; these gains serve as an e�cient parametric representation of the

residual. Strictly speaking, this residual analysis-synthesis is not signal-adaptive; however,

it is necessary to consider such methods for use with near-perfect reconstruction models

such as those described in this text. When used in conjunction with the sinusoidal model,

this approach leads to high-�delity reconstruction of natural sounds.

7.1.4 Pitch-Synchronous Representations

For pseudo-periodic signals, compaction can be achieved by incorporating the

pitch in the signal model. In Chapter 5, pitch-synchronous modeling and processing is

discussed. It is shown that both the sinusoidal model and the wavelet transform can

be improved by pitch-synchronous operation when the original signal is pseudo-periodic.

In either approach, periodic signal regions can be e�ciently represented while aperiodic

regions, e.g. note onsets, can be modeled using the perfect reconstruction capability of
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the underlying transform, namely the discrete wavelet transform in the pitch-synchronous

wavelet case and the Fourier transform in the pitch-synchronous sinusoidal model.

7.1.5 Atomic Decompositions

In Chapter 3, the sinusoidal model is interpreted as a decomposition in terms of

time-frequency atoms constructed according to parameters extracted from the signal; this

interpretation motivates the various multiresolution extensions of the model. In Chap-

ter 5, pitch-synchronous transforms are similarly interpreted as granulation methods; in

those approaches, a pseudo-periodic signal is decomposed into pitch period grains ac-

cording to estimates of the signal periodicity, and these grains are further modeled using

Fourier or wavelet techniques. The atomic models discussed in Chapter 6 di�er from these

representations in that the atoms for the model are not derived from signal parameters;

rather, parametric atoms that match the signal behavior are chosen from an overcomplete

dictionary.

Atomic models based on overcomplete dictionaries of time-frequency atoms can

be computed using the matching pursuit algorithm. Typically, such dictionaries consist of

Gabor atoms based on a symmetric prototype window; such atoms have di�culties repre-

senting transient behavior, however. With the goal of overcoming this problem, alternative

dictionaries are considered, namely dictionaries of damped sinusoids as well as dictionar-

ies of general asymmetric atoms constructed based on underlying causal and anticausal

damped sinusoids. It is shown in Section 6.4 that the matching pursuit computation for

either type of atom can be carried out with low-cost recursive �lter banks.

7.2 Research Directions

The work discussed in this thesis has a number of natural extensions. This section

describes extensions in audio coding and provides suggestions for further work involving

overcomplete expansions.

7.2.1 Audio Coding

The current standard methods in audio coding, namely MPEG and related coding

schemes, use cosine-modulated �lter banks; perceptual criterion are applied to the subband

signals to achieve data reduction [12, 7, 9, 8]. Some signal adaptivity is achieved by

adjusting the �lter lengths according to the signal behavior; in terms of the prototype

window for the �lter bank, a short window is used in the vicinity of transients and a long

window is used for stationary regions. It is an open question whether the rate-distortion

performance of this industry standard can be rivaled by parametric methods such as the

sinusoidal model or overcomplete atomic models.
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Sinusoidal modeling

In the sinusoidal model, which has received recent attention for the application of

audio coding, quantization is a primary open issue [230, 231]. For instance, it is of interest

to incorporate perceptual resolution limits in the amplitude and frequency quantization

schemes. Another important psychoacoustic consideration is the formal characterization

of distortion artifacts such as pre-echo; such characterizations are required if the method

is to be compared to standard techniques.

For audio coding with the sinusoidal model, a number of data reduction tech-

niques and modeling improvements are of possible interest. First, predictive models of the

partial tracks in time and frequency may be useful for data reduction; linear prediction

of the spectral envelope has been applied with some success to speech coding based on

the sinusoidal model [232]. Such prediction may also prove useful for assisting with the

estimation of sinusoidal parameters in upcoming signal frames. In this light, the sinu-

soidal model holds some promise for the application of audio transmission on packet-lossy

networks; signal segments corresponding to lost packets can be reconstructed by using

models of track evolution to interpolate the parameters from adjacent received packets.

Since compaction leads to coding gain, audio coding using the sinusoidal model

would bene�t from the ability to derive the most compact sinusoidal representation of

a signal. Given that the expansion functions in an oversampled DFT correspond to a

tight frame, methods of obtaining optimal or pseudo-optimal sparse frame expansions

provide a means for obtaining such optimally compact sinusoidal models. In this sense,

some improvements in sinusoidal modeling techniques may actually arise from the theory

of overcomplete expansions. Note that a procedure similar to matching pursuit is used

in [154] to estimate sinusoidal components; as discussed in Chapter 6, however, such

pursuit does not yield an optimal compact representation, so some improvement can be

achieved. In addition to improvements in compaction due to frame-theoretic approaches,

further investigations along such lines may indicate successive re�nement frameworks for

the sinusoidal model that o�er advantages over current techniques.

For audio coding based on the sinusoidal model, multiresolution methods are of

signi�cant interest for a number of reasons beyond their improved signal representation

capabilities. For one, dynamic segmentation allows for optimization of the model in a

rate-distortion sense, which is of course useful for coding applications; furthermore, psy-

choacoustic criterion such as the perceptual entropy used in MPEG can be incorporated

in the dynamic program to determine the optimal segmentation. Multirate �lter bank

methods coupled with sinusoidal modeling are also of interest for audio coding since they

allow for modeling and synthesis at subsampled rates; such e�cient synthesis is of great

importance given the applications of audio recording and broadcasting, both of which

demand real-time signal reconstruction.
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The possible advances suggested above can be viewed as steps in the development

of a fully optimal sinusoidal model. In addition to an appropriate multiresolution scheme

such as dynamic segmentation, achieving a fully optimal model indeed requires global

consideration of the parameter estimation technique (e.g. spectral peak picking), the line

tracking method, and the parameter interpolation functions used for reconstruction. These

various components of sinusoidal analysis-synthesis are intrinsically interdependent; it is

an open question as to how these dependencies can be accounted for in model optimization.

Finally, it should be noted that it is of interest in the multimedia community

to carry out signal modi�cations in the compressed domain. Some modi�cations based

on MPEG audio compression have been developed, but these are somewhat restricted in

comparison to the rich class of modi�cations enabled by a sinusoidal signal model [231].

Atomic models

Whereas there are clear indications that the sinusoidal model may be useful as an

audio coding scheme, it has not yet been shown that atomic models based on overcomplete

dictionaries are similarly promising. One fundamental advance required for application of

atomic modeling to audio coding is the ability to carry out matching pursuit e�ectively in

a frame-by-frame manner so that signals of arbitrary length can be processed. Matching

pursuit using �xed frames has been described in the literature [220], but such an approach

is unable to identify or model atomic components that overlap frame boundaries.

There are several additional noteworthy points regarding atomic models and

audio coding. First, an atomic signal model would allow complex time-frequency masking

principles to be incorporated in the coding scheme. Also, given an atomic model, it can

be expected that some coding gain can be achieved based on the occurrence of redundant

structures in the atomic index sets; entropy coding of the indices may prove useful. Finally,

further capabilities for identifying basic signal behavior are of interest; for instance, pursuit

of atoms with harmonic structure may prove useful for audio signal modeling.

Beyond audio coding, another conceivable application of atomic modeling is to

represent the residual of some independent analysis-synthesis process such as the sinusoidal

model. An analogy is the compression technique described in [181], where matching

pursuit is used to derive a model of the residual in a motion-compensated video coder.

In that approach, many simpli�cations arise due to the structure of the residual and the

characteristics of visual perception; these enable real-time analysis. It is an open question

whether similar improvements can be developed for audio residuals.

Finally, it should be noted that matching pursuit has received some attention

in the image coding literature [233, 234]. With regards to this application, it may be of

interest to use asymmetric atoms to improve modeling of edges in images, which is of

course analogous to modeling onsets in audio signals.
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7.2.2 Overcomplete Atomic Expansions

In addition to further work in audio coding, the developments in this thesis

suggest extensions involving overcomplete signal expansions in terms of time-frequency

atoms. Such issues are described in the following.

Evolutionary models

The sinusoidal model can be interpreted as an atomic decomposition wherein

the atoms are related in an evolutionary fashion. This evolution model leads to synthesis

robustness, modi�cation capabilities, and data reduction. It would be useful to establish

a similar evolution framework for atomic models based on overcomplete dictionaries.

Dictionary design and optimization

In matching pursuit and similar methods, the performance of the algorithm de-

pends on the contents of the dictionary; such algorithms perform well if the dictionary

contains atoms that match the signal behavior. Of course, this condition is more likely

to hold for larger dictionaries, but increased dictionary size entails increased computation

in the algorithm. One approach to handling this tradeo� is to generate a signal-adaptive

dictionary which can be expected to perform well for a speci�c signal; this is only of inter-

est, however, if such a dictionary can be arrived at by a simple heuristic analysis rather

than a high-cost optimization.

Dictionary design issues in matching pursuit relate to codebook design issues

for vector quantization. The primary di�erence is that vector quantization codebooks

do not typically have the parametric structure of time-frequency dictionaries. Methods

for codebook optimization are still of interest for matching pursuit, however, since the

codebook adaptation can be restricted to adhere to a parametric atomic structure. This

connection is briey explored in [39]; given the extent of work that has been devoted to

vector quantization techniques, further investigations of applications to time-frequency

atomic models are clearly merited [216].

Variations of matching pursuit

Several variations of matching pursuit are described in Chapter 6; it is argued

that comparison of such approaches calls for computation{rate{distortion considerations.

Preliminary formalizations of such tradeo�s have appeared in the literature, but there

are many open questions [224]. With computation concerns in mind, it is of interest

to consider simpli�cations of matching pursuit. For instance, in [38], pursuit based on

small subdictionaries is discussed; if the subdictionaries are well-chosen, this helps to

reduce the computational requirements without substantially a�ecting the convergence of
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the atomic model. One possible way to generate useful subdictionaries is to employ a

pyramid multiresolution scheme in which large scale atoms are evaluated with respect to

subsampled versions of the signal; in this prospective scenario, the computation is reduced

since some of the correlations are carried out in a subsampled domain.

Re�nement and modi�cation

In Chapter 1, the application of reassignment methods to time-frequency dis-

tributions is briey discussed. Such techniques start with a standard distribution and

apply various re�nements in order to achieve compaction in the time-frequency plane;

this improves the readability of the distribution since the nonlinear re�nements lead to

enhancement of the peaks in the representation and attenuation of the cross terms [85].

In cases where the resources are available to derive a dispersed but exact overcomplete

expansion using the SVD pseudo-inverse (or some other method), some form of adaptive

re�nement may prove useful for improving the compaction without sacri�cing the accuracy

of the expansion. One example of such an approach is as follows. Since the dictionary

is overcomplete, some components in the expansion can be represented in terms of the

other components. Then, such representation vectors can be added to the expansion while

zeroing the corresponding components; in this way, the same signal reconstruction can be

arrived at from a more compact model. The caveat here is that optimal compaction is

still not feasible given the general complexity results presented in [39]; however, improved

models may be achieved in some cases using such a method.

In addition to re�nement of overcomplete expansions to improve compaction,

other modi�cations are also of interest. In such e�orts, the null space of the dictionary

matrix provides a signi�cant caveat; in short, some modi�cations may indeed map to this

null space, meaning that a seemingly elaborate modi�cation of the atomic components

may indeed have no e�ect on the signal reconstruction. The open question in this area is

that of establishing constraints on modi�cations to ensure robustness, i.e. predictability.
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AppendixA

Two-Channel Filter Banks

The discrete wavelet transform is fundamentally connected to two-channel perfect

reconstruction �lter banks. These connections are explored in Chapter 3. Here, the

relevant mathematical details involving two-channel perfect reconstruction �lter banks

are given.

Two-channel critically sampled perfect reconstruction �lter banks

The discrete wavelet transform can be derived in terms of critically sampled

two-channel perfect reconstruction �lter banks such as the one shown in Figure 3.3. The

analysis of the system is carried out here in the frequency domain; the time-domain

interpretation will be discussed in the next section. In terms of the z-transforms of the

signals and �lters, the output of the �lter bank is:

X̂(z) =
1

2
[H0(z)G0(z) +H1(z)G1(z)]X(z) (A.1)

+
1

2
[H0(�z)G0(z) +H1(�z)G1(z)]X(�z) (A.2)

= T (z)X(z) + A(z)X(�z); (A.3)

where T (z) is the direct transfer function of the �lter bank and A(z) characterizes the

aliasing { the appearance of the modulated version X(�z) in the output. The perfect

reconstruction conditions are then clearly

T (z) = 1 (A.4)

A(z) = 0; (A.5)

or, in terms of the �lters,

G0(z)H0(z) + G1(z)H1(z) = 2 (A.6)

G0(z)H0(�z) + G1(z)H1(�z) = 0; (A.7)
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which can be rewritten in matrix form as"
G0(z) G1(z)

G0(�z) G1(�z)

#"
H0(z) H0(�z)
H1(z) H1(�z)

#
=

"
2 0

0 2

#
: (A.8)

This condition can be expressed in a shorthand form as

GT
m(z)Hm(z) = 2I (A.9)

in terms of the modulation matrices Gm(z) and Hm(z) and the identity matrix I; such

modulation matrices are useful in multirate �lter bank theory [2]. The design of a

perfect reconstruction �lter bank then amounts to the derivation of four polynomials

G0(z); G1(z); H0(z), and H1(z) that satisfy the condition above; this issue is considered

in detail in [2].

Equations (A.6) and (A.7) can be manipulated to yield a general expression

relating the constituent �lters; this will be especially useful for interpreting the analysis-

synthesis �lter bank in terms of a time-domain signal expansion. The �rst step in the

derivation, which basically mirrors the treatment given in [2], is to rewrite Equation (A.7)

as

G0(z) =
�G1(z)H1(�z)

H0(�z) : (A.10)

Substituting this expression into Equation (A.6) and solving for G1(z) yields

G1(z) =
�2H0(�z)

H0(z)H1(�z) � H0(�z)H1(z)
=

�2H0(�z)
detHm(z)

: (A.11)

Similarly,

G0(z) =
2H1(�z)
detHm(z)

: (A.12)

Then, it is simple to establish the relationships

G0(z)H0(z) =
2H0(z)H1(�z)
detHm(z)

and G1(z)H1(z) =
�2H0(�z)H1(z)

detHm(z)
: (A.13)

Noting that detHm(z) = � detHm(�z),

G1(z)H1(z) =
2H0(�z)H1(z)

detHm(�z) = G0(�z)H0(�z): (A.14)

Equation (A.6) can then be transformed into

G0(z)H0(z) + G0(�z)H0(�z) = 2 (A.15)

or

G1(z)H1(z) + G1(�z)H1(�z) = 2: (A.16)
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Equation (A.7) can also be readily manipulated using the result of Equation (A.14). Mul-

tiplying by H0(z) yields:

G0(z)H0(z)H0(�z) + G1(z)H1(�z)H0(z) = 0 (A.17)

G1(�z)H1(�z)H0(�z) + G1(z)H1(�z)H0(z) = 0 (A.18)

=) G1(z)H0(z) + G1(�z)H0(�z) = 0; (A.19)

where the last expression must hold at least where H1(z) is nonzero; indeed, no generality

is actually lost here since the two-channel �lter bank cannot achieve perfect reconstruction

if H0(z) and H1(z) have any common zeros [2]. Similarly,

G0(z)H1(z) + G0(�z)H1(�z) = 0: (A.20)

The various z-transform relationships derived here for the critically sampled two-channel

perfect reconstruction �lter bank can be summarized in one equation:

Gi(z)Hj(z) + Gi(�z)Hj(�z) = 2�[i� j]: (A.21)

In the next section, this leads to an interpretation of the �lter bank in terms of a biorthog-

onal basis.

Perfect reconstruction and biorthogonality

By manipulating the perfect reconstruction condition in (A.21), it can be shown

that a perfect reconstruction �lter bank derives a signal expansion in a biorthogonal basis;

the basis is related to the impulse responses of the �lter bank. This relationship is of

interest in that it establishes a connection between the �lter bank model and the atomic

model that underlie the discrete wavelet transform.

The time-domain relationship corresponding to Equation (A.21) can be derived

using two properties of the z-transform: convolution and modulation. If

g[n]
z() G(z) and h[n]

z() H(z); (A.22)

the properties are as follows:

Convolution
X
k

g[k]h[n� k]
z() G(z)H(z)

Modulation (�1)ng[n] z() G(�z):
(A.23)

Using these properties to express Equation (A.21) in the time domain yields:

X
k

gi[k]hj [m� k] + (�1)m
X
k

gi[k]hj [m� k] = 2�[m]�[i� j] (A.24)

X
k

gi[k]hj [m� k] [1 + (�1)m] = 2�[m]�[i� j]: (A.25)
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For odd m, the last expression simpli�es trivially to 0 = 0. For even m, replaced here by

2n, X
k

gi[k]hj [2n� k] = �[n]�[i� j]: (A.26)

Equivalently, the relationship can be derived as

X
k

hi[k]gj [2n� k] = �[n]�[i� j] (A.27)

by interchanging the �lters in the convolution expression. In inner product notation,

Equations (A.26) and (A.27) can be written as

hgi[k]; hj[2n� k]i = �[n]�[i� j] (A.28)

hhi[k]; gj[2n� k]i = �[n]�[i� j]; (A.29)

respectively. The above expressions show that the impulse responses of the �lters and their

shifts by two, with one of the impulse responses time-reversed as indicated, constitute a

biorthogonal basis for discrete-time signals (with �nite energy), namely the space l2(z).

Note that real �lters have been implicitly assumed; for complex �lters, the �rst terms

in the inner product expressions would be conjugated. Also note that the analysis and

synthesis �lter banks are mathematically interchangeable; this symmetry is analogous to

the equivalence of left and right matrix inverses discussed in Section 1.4.1.

The preceding derivation indicates that perfect reconstruction and biorthogonal-

ity are equivalent conditions; in the next section, this insight is used to relate �lter banks

and signal expansions.

Interpretation as a signal expansion in a biorthogonal basis

Given that the impulse responses in a two-channel perfect reconstruction �lter

bank are related to an underlying biorthogonal basis, it is reasonable to consider the time-

domain signal expansion carried out by such a �lter bank. Using the notation of Figure

3.3, the channel signals are given by convolution followed by downsampling:

y0[n] =
X
m

x[m]h0[2n�m] = hx[m]; h0[2n�m]i (A.30)

y1[n] =
X
m

x[m]h1[2n�m] = hx[m]; h1[2n�m]i : (A.31)

Upsampling followed by convolution gives the outputs of the synthesis �lters, which can

be thought of as full-rate subband signals:

x̂0[n] =
X

m even
y0[m=2]g0[n�m] =

X
k

y0[k]g0[n� 2k] = hy0[k]; g0[n� 2k]i(A.32)

x̂1[n] =
X
k

y1[k]g1[n� 2k] = hy1[k]; g1[n� 2k]i : (A.33)
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The reconstructed output is thus given by

x̂[n] = x̂0[n] + x̂1[n] (A.34)

=
X
k

y0[k]g0[n� 2k] +
X
k

y1[k]g1[n� 2k] (A.35)

=
X
k

hx[m]; h0[2k �m]i g0[n� 2k] +
X
k

hx[m]; h1[2k�m]ig1[n� 2k] (A.36)

=
2X
i=1

X
k

hx[m]; hi[2k �m]igi[n� 2k]: (A.37)

Introducing the notation

gi;k[n] = gi[n� 2k] and �i;k = hx[m]; hi[2k�m]i; (A.38)

the signal reconstruction can be clearly expressed as an atomic model:

x̂[n] =
X
i;k

�i;kgi;k[n]: (A.39)

The coe�cients in the atomic decomposition are derived by the analysis �lter bank, and

the expansion functions are time-shifts of the impulse responses of the synthesis �lter bank.

As noted earlier, the �lter banks are interchangeable; the signal could also be written as

an atomic decomposition based on the impulse responses hi[n]. In any case, the atoms in

the signal model correspond to the synthesis �lter bank.

In this appendix, it has been shown that a critically sampled two-channel perfect

reconstruction �lter bank computes a signal expansion in a biorthogonal basis. Multires-

olution decompositions such as the discrete wavelet transform and wavelet packets can

be developed by iterating these two-channel structures. Here, it should simply be noted

that the development in Equations (A.34) through (A.37) indicates the aforementioned

connection between the interpretations of the wavelet transform as a �lter bank model and

as an atomic model; a subband signal is derived as an accumulation of weighted atoms

corresponding to the impulse responses of the synthesis �lter for that band. Such issues

are discussed at greater length in Section 3.2.1.
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AppendixB

Fourier Series Representations

In Chapter 5, the Fourier series is applied to a pitch-synchronous signal repre-

sentation to arrive at a pitch-synchronous sinusoidal model. The details of Fourier series

methods are reviewed here.

Complex Fourier series and the discrete Fourier transform

The Fourier basis for CN is the set of harmonically related complex sinusoids:�
ej!kn; !k =

2�k

N
for k = 0; 1; 2; : : : ; N � 1

�
: (B.1)

The complex Fourier series expansion for a signal x[n] 2 CN is then

x[n] =
N�1X
k=0

cke
j2�kn=N ; (B.2)

where the coe�cients ck are given by the formulation:

N�1X
n=0

x[n]e�j2�ln=N =
N�1X
n=0

N�1X
k=0

cke
j2�(k�l)n=N =

N�1X
k=0

ckN�(k� l) = Ncl (B.3)

=) ck =
1

N

N�1X
n=0

x[n]e�j2�kn=N : (B.4)

This expression for ck is closely related to the discrete Fourier transform (DFT), which is

given by the analysis and synthesis equations

X [k] =
N�1X
n=0

x[n]e�j2�kn=N Analysis (B.5)

x[n] =
1

N

N�1X
k=0

X [k]ej2�kn=N Synthesis; (B.6)

where the analysis equation derives the DFT expansion coe�cients or spectrum and the

synthesis equation reconstructs the signal from those coe�cients. Given the existence of
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fast algorithms for computing the DFT (i.e. the FFT), it is useful to note the simple

relationship of the Fourier series coe�cients and the DFT expansion:

ck =
X [k]

N
: (B.7)

Real expansions of real signals

The Fourier expansion coe�cients and the DFT spectrum are complex-valued

even for real signals. For real signals, a real-valued expansion of the form

x[n] =
N�1X
k=0

ak cos!kn + bk sin!kn (B.8)

can be derived using Euler's equation:

ej� = cos� + j sin �: (B.9)

For real x[n],

x[n] = <fx[n]g =
x[n] + x[n]�

2
: (B.10)

Rewriting this using the complex Fourier expansion gives:

x[n] =
1

2

N�1X
k=0

cke
j!kn + c�ke

�j!kn (B.11)

=
1

2

N�1X
k=0

ck (cos!kn + j sin!kn) + c�k (cos!kn � j sin !kn) (B.12)

=
N�1X
k=0

�
ck + c�k

2

�
cos!kn + j

�
ck � c�k

2

�
sin!kn: (B.13)

The expansion coe�cients in the Fourier cosine and sine series are thus given by:

ak =
ck + c�k

2
= <fckg =

<fX [k]g
N

bk = j

�
ck � c�k

2

�
= �=fckg = �=fX [k]g

N
:

(B.14)

Furthermore, the spectrum of a real signal is conjugate-symmetric:

X [k] = X [N � k]�; (B.15)

which can be expressed in terms of the real and imaginary parts as

<fX [k]g = <fX [N � k]g =) ak = aN�k

=fX [k]g = �=fX [N � k]g =) bk = �bN�k:
(B.16)
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This underlying symmetry can be used to halve the number of coe�cients needed to

represent x[n]. For odd N , the simpli�cation is:

x[n] =
N�1X
k=0

ak cos!kn + bk sin !kn (B.17)

=
a0 +

N�1

2X
k=1

�
ak cos

�
2�kn

N

�
+ aN�k cos

�
2�(N � k)n

N

�

+ bk sin

�
2�kn

N

�
+ bN�k sin

�
2�(N � k)n

N

�� (B.18)

= a0 +

N�1

2X
k=1

(ak + aN�k) cos
�
2�kn

N

�
+ (bk � bN�k) sin

�
2�kn

N

�
(B.19)

= a0 + 2

N�1

2X
k=1

ak cos

�
2�kn

N

�
+ bk sin

�
2�kn

N

�
: (B.20)

For even N , the result is:

x[n] = a0 + aN=2 cos�n + 2

N
2
�1X

k=1

ak cos

�
2�kn

N

�
+ bk sin

�
2�kn

N

�
: (B.21)

Note that in either case the a0 term corresponds to the average value of the signal. Also,

in the case of even N , the aN=2 term corresponds to the Nyquist frequency, at which the

spectrum should have zero amplitude; for the remainder, it is assumed that aN=2 = 0 for

the sake of generalization.

Magnitude-phase representations

The complex spectrum is often expressed in terms of its magnitude and phase:

X [k] = <fX [k]g + j=fX [k]g = jX [k]jej�k; (B.22)

where

jX [k]j =
q
<fX [k]g2 + =fX [k]g2 and �k = arctan

�=fX [k]g
<fX [k]g

�
: (B.23)

The magnitude-phase representation is often of interest in audio applications because the

ear is relatively insensitive to phase. With this as motivation, the sine-cosine expansion

of real signals discussed above can be rewritten in magnitude-phase form based on the

following derivation:

a cos� + b sin� = a

 
ej� + e�j�

2

!
+ b

 
ej� � e�j�

2j

!
(B.24)

= ej�
�
a� jb

2

�
+ e�j�

�
a+ jb

2

�
(B.25)
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=
1

2
ej�

p
a2 + b2e�j arctan

b
a +

1

2
e�j�

p
a2 + b2ej arctan

b
a (B.26)

=
p
a2 + b2 cos

�
� � arctan

b

a

�
: (B.27)

Substituting !kn for �, where !k = 2�k=N , and incorporating a summation over k yields

another form for the sums in Equations (B.20) and (B.21):

x[n] = a0 + 2
X
k

q
a2k + b2k cos

�
!kn� arctan

bk

ak

�
(B.28)

=
X [0]

N
+

2

N

X
k

jX [k]j cos(!kn+ �k) ; (B.29)

where jX [k]j and �k are as de�ned in Equation (B.23) and k ranges over the half spectrum.
As a check, note that:

X [k] = N(ak � jbk) = N

�<fX [k]g
N

� j
�=fX [k]g

N

�
= <fX [k]g+ j=fX [k]g (B.30)

�k = � arctan
bk

ak
= arctan

=fX [k]g
<fX [k]g: (B.31)

This magnitude-phase form is suggestive of the sinusoidal model of Chapter 2. The connec-

tion is discussed in Section 5.3, where it is shown that some of the di�culties in sinusoidal

modeling can be overcome by applying the Fourier series in a pitch-synchronous manner.
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