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Abstract

Accurate Linear Prediction Coefficient (LPC) estimation is a central requirement in low bit-

rate voice coding. Under harsh acoustic conditions, LPC estimation can become unreliable.

This results in poor quality of encoded speech and introduces annoying artifacts.

The purpose of this thesis is to develop and test a two-branch speech enhancement pre-

processing system. This system consists of two denoising blocks. One block will enhance

the degraded speech for accurate LPC estimation. The second block will increase the

perceptual quality of the speech to be coded. The goals of this research are two-fold—to

design the second block, and to compare the performance of other denoising schemes in

each of the two branches. Test results show that the two-branch system can provide better

perceptual quality of coded speech over conventional one-branch (i.e., one denoising block)

speech enhancement techniques under many noisy environments.
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Sommaire

L’estimation précise des Coefficients de Prediction Linéaire (LPC) est d’une grande im-

portance pour le codage de la voix à faible débit binaire. Sous de mauvaises conditions

acoustiques, l’estimation LPC peut devenir incertaine. En conséquence, des perturbations

sont introduites pour contribuer à une mauvaise quality de la voix.

Le but de cette thèse est de déveloper et tester un système d’enrichissement de la voix

à deux branches. Ce système comprend deux blocs différents pour enlever le bruit sonore.

La premierè branche enrichie la voix degradée pour améliorer l’estimation LPC. La seconde

branche augmente la quality de perception de la voix codée. L’objectif est de déveloper

cette dernière et de la comparer avec d’autres méthodes d’enrichissement dans chacune

des deux branches. Des résultats montrent que le système a deux branches (ayant le bloc

developé dans l’une de ces branches) offre une meilleure performance que certains systèmes

d’enrichissement conventionels, dans une variété d’environments bruyant.
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Chapter 1

Introduction

With the advent of digital cellular telephones, the role of noise suppression in speech coding

has gained importance. Recent advances in speech pre-processing algorithms have proven to

be successful in improving the quality and intelligibility of speech signals even under harsh

acoustic conditions. This importance of speech denoising in not only due to customer

expectation of high speech quality (e.g., when using a wireless phone in the car, while

the engine is running), but also to improve lower data rate transmission (i.e., using less

bandwidth) to accommodate the ever-increasing number of cellular telephone customers.

The use of speech enhancement techniques as a pre-processing stage to speech coders is

being applied to governmental (military) wireless communication systems as well.

An important problem in some digital communication systems is the degraded per-

formance of Linear Prediction (LP) analysis of speech inputs that have been corrupted

by noisy environments. Noise types could be several—ranging from local city din to air-

conditioning noise in an office room to HMMWV1 and CH-472. One of the primary goals of

this thesis is to present a suitable speech enhancement system as a pre-processor for voice

coding.

The purpose of this chapter is to give the reader a cursory preview of both low bit-rate

coders, see Section 1.1, and speech enhancement techniques, see Section 1.2. Later Sec-

tion 1.3, discusses some of the earlier work done in joint systems (low bit-rate coders

appended with noise suppression rules). Section 1.4, mentions the contribution made to

1HMMWV: High Mobility Multi-wheeled Vehicle, more commonly known as the hummer is the modern
equivalent of the jeep.

2CH-47: Chinook-47, army cargo helicopter.
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speech enhancement for low bit-rate voice coding. Section 1.5 gives the organization of the

chapters.

1.1 Low Bit-Rate Speech Coders

Speech coding algorithms come in three flavours: waveform coders, parametric coders and

hybrid coders. The objective behind waveform coders is to yield a reconstructed signal

that is closely matched to the original signal. With increasing bit-rate, the reconstructed

speech converges towards the original signal. Parametric coders (also known as vocoders),

on the other hand, rely on speech-specific analysis-synthesis which is mostly based on

source-system model. A basic vocoder is seen in Fig. 1.1.

Analysis
Filter

LP
Analysis

Synthesis
Filter

SYNTHESIS

Input
Speech

Output
Speech

Spectral
Coefficients

ANALYSIS

Excitation
Signal

Fig. 1.1 Block diagram of a basic vocoder

Articulatory models represent the human speech production mechanism directly, i.e.,

distinct human voice-production organs are modelled explicitly. The excitation signal is

produced by passing the input speech through the Analysis Filter, see Fig. 1.1. This excita-

tion signal can be modelled by either periodic pulses or random white noise for voiced and

unvoiced/fricative3 segments, respectively. The excitation signal is then filtered through the

Synthesis Filter in an attempt to reconstruct speech. Although the reconstructed speech

3Speech consists of pressure waves created by the flow of air through the vocal tract. These sound
pressure waves originate in the lungs as the speaker exhales. The vocal folds in the larynx open and close
quasi-periodically to interrupt this air flow. This results in voiced speech (e.g.,vowels) which is characterized
by its periodic and energetic nature. Consonants are an example of unvoiced speech–aperiodic and weaker.
These sounds have a noisy nature due to turbulence created by the flow of air through a narrow constriction
in the vocal tract, [1].
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sounds synthetic, parametric coders have the advantage of using few bits. Why would it be

beneficial to use a lower number of bits at the cost of quality? The reasons are several—

for storage applications, using few bits means less memory is required; for transmission

applications, a lower bit-rate means less bandwidth is used, thus more users can be accom-

modated within the limit of available frequency. As seen in Fig. 1.2, vocoders offer better

1 2 4 8 16 32 64
Poor

Fair

Good

Excellent

Bit Rate (kbps)

Q
ua

lit
y

Waveform coder

Parametric coder

Fig. 1.2 Subjective performance of waveform and parametric coders. Re-
drawn from [1].

perceptual quality for speech coded at fairly low bit-rates (< 4 kbps).

Traditional pitch-excited LPC vocoders use a fully parametric model to efficiently en-

code the important information in human speech. Some of the vocoders are Linear Pre-

dictive Coding-10 (LPC-10), Mixed Excited Linear Prediction (MELP), Residual Excited

Linear Prediction (RELP) which have been adequately summarized in [2]. These vocoders

tend to produce intelligible speech at low data rates (800–2400 bps), but they often sound

synthetic and generate annoying artifacts such as thumps, buzzes and tonal noises, [3].

These problems exacerbate dramatically in the presence of background noise, [4].

Several researchers, in past and present, have been motivated by the problem of improv-
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ing speech coder performance under harsh acoustic conditions. The following subsection

attempts to highlight some of the current speech enhancement techniques that can be

deployed as a pre-processor stage to speech compression.

1.2 Speech Enhancement Techniques

The task of speech enhancement involves processing speech signals for human listening or

as preparation for further processing prior to listening. Thus the main objective of speech

enhancement is ultimately to improve one or more of perceptual aspects of speech, such

as overall quality and intelligibility, or to reduce the degree of listener fatigue, [5]. This

section will briefly review some techniques.

A comprehensive overview of various noise suppression techniques can be found in [6].

The listed methods include spectral subtraction, Wiener estimation, Maximum-likelihood

estimation, soft-decision method and are adequately summarized in [7]. Most of these

algorithms operate in the frequency-domain. A basic problem representation is presented

in Fig. 1.3. Clean speech that gets corrupted with background noise is sent through a

speech enhancement block (one of those listed above). The purpose of such a block is to

estimate the magnitude of speech from the noisy observation.

Speech
Enhancement

Clean
Speech

Background
Noise

Corrupted
Speech

Estimate of
Clean Speech

Fig. 1.3 Block diagram of basic speech enhancement.

The differences in the noise suppression algorithms crop up in the cost-function used

to compute the soft-decision gain. For instance, in the spectral subtraction algorithm, the

Short-Time Spectral Amplitude (STSA) is estimated as the square root of the Maximum-

Likelihood (ML) estimator of each signal spectral component variance. In systems ex-

ploiting Wiener filtering, the STSA estimator is obtained as the modulus of the optimal

Minimum Mean-Squared Error (MMSE) amplitude estimator of each signal spectral com-

ponent. A common feature of these techniques is that the noise reduction process brings
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about very unnatural artifacts called “musical noise”. In 1984, Ephraim and Malah derived

an MMSE-STSA estimator that assisted in the reduction of the annoying musical noise.

The gain computed in their algorithm is based on the probability of speech absence and

is computed for each frequency bin. Later in 1985, they published a paper, [8], where the

MMSE of the Log-Spectra Amplitude (MMSE-LSA) is used in enhancing noisy speech. In

either case, the enhanced speech sounds very similar, with the exception that the first esti-

mator results in less uniform residual noise, [8]. Another noise suppression rule, of interest

is part of the Enhanced Variable Rate Coder (EVRC) [9]. This noise suppression rule tends

to leave some residual noise, in the enhanced speech, that aids in masking the annoying

signal distortions.

Most of these schemes have been designed to increase the quality, insofar as intelligibility

and naturalness of corrupted speech are concerned. It is worthwhile to see research done in

joint systems (speech enhancement and low-bit rate coders)—and this is the primary focus

of the next subsection.

1.3 Previous Related Work

As mentioned earlier, drastic degradation of LPC parameter estimation, in the presence of

acoustic noise, is of major concern. Adding one of the above techniques, as a pre-processing

stage to parametric coders, may not suffice for correct LPC parameter estimation. Some

of the early work done in this area is seen in [10, 11, 12, 13, 14].

In 1999, Martin and Cox, [15], proposed a modification to Ephraim and Malah’s MMSE-

LSA algorithm, [8]. They observed that while spectral valleys in between formant frequen-

cies are relatively unimportant for speech perception, they are important for LPC estima-

tion, [15]. Their modification to MMSE-LSA was aimed at removing more noise from the

spectral valleys, thereby improving LPC estimation. However, removing more noise from

the valleys has the disadvantage of leaving less residual noise that generally aids in mask-

ing the low level distortions. Therefore it seems germane to have one denoising algorithm

that will consider accurate LP estimation, while another algorithm that will improve the

perceptual quality of the degraded speech. This gives rise to a two-branch pre-processing

system. In fact, in 1999 Accardi and Cox published a paper, [16], where they consider such

a system.
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1.4 Thesis Contribution

This thesis attacks the problem of enhancing corrupted speech prior to coding. The goals

of the thesis are two-fold:

1. It is desired to tailor the MMSE-LSA algorithm for improved perception of corrupted

speech. The new algorithm is derived on the basis of the heuristic approach taken

by Martin and Cox in [15]. The underlying cost-function for the new algorithm is

subjective quality. This newly derived algorithm is referred to as the MMSE-LSA

with Adaptive Limiting Scheme for Perception (ALSP). Details of the derivation are

seen in Chapter 3.

2. Several denoising algorithms are tested in each of the two-branches. The performance

of the system is evaluated based on subjective and objective measures. These results

show the effectiveness of using a two-branch speech enhancement scheme as a pre-

processor for low bit-rate speech coding. Some results are also conducted for several

noisy environments (such as Hoth4, office babble, car noise and music) under varying

acoustic conditions (i.e., different SNR values ).

1.5 Thesis Synopsis

Chapter 2 starts by elaborating basic assumptions and ‘tools’ necessary for noise suppres-

sion algorithms. It then looks at the noise suppression block defined by EVRC. This chapter

further details the STSA algorithms (MMSE-STSA and MMSE-LSA) defined by Ephraim

and Malah. Some distortion measures (both objective and subjective) that are generally

used to qualify the efficiency of noise suppression rules are also studied in this chapter. Some

such measures are minimum Euclidean distance between Line Spectral Frequencies (LSFs),

percentage correct pitch prediction, SNR and the ITU-T recommendation, P.862—PESQ.

Chapter 3, studies the low-bit rate speech coder—MELP. This chapter also discusses

the two-branch systems that aim at improving speech quality of encoded speech in the

presence of background noise. In this chapter, a new adaptive scheme is developed that is

aimed at maximizing the Mean Opinion Score (MOS) of coded speech.

4Hoth noise is that which simulates the acoustic background noise at an average telephone subscriber
location, [17].
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The purpose of Chapter 4 is to present the test procedure adopted to evaluate the

performance of the speech enhancement algorithms that are used as pre-processors to the

MELP speech coder. Subjective results based on the A–B Comparison test are used to draw

conclusions on the efficiency of the proposed algorithm. These results are further tested

for other noisy environments by using some of the objective measures listed in Chapter 2.

In Chapter 5, a brief summary of the thesis, along with potential future work is pre-

sented.
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Chapter 2

Speech Enhancement

The previous chapter introduced the subject of this thesis—the problem of additive back-

ground noise in low-bit rate speech coding. The focus of this chapter is on the importance

of Short-Time Spectral Amplitude (STSA) estimate of speech. Section 2.6, summarizes

some of the distortion measures that are used to qualify these noise suppression rules.

2.1 Speech Enhancement Basics

The basic structure of STSA speech enhancement system is given in Fig. 2.1. This figure

highlights three stages that are necessary in such systems:

1. A spectral analysis/synthesis system, Section 2.1.4.

2. Noise estimation algorithm, Section 2.1.5 and Section 2.1.6.

3. A spectral gain computation algorithm, Section 2.2, Section 2.3,and Section 2.4.

Let x[n] and d[n] denote the speech and the noise processes, respectively. The observed

noisy signal, y[n], is given as:

y[n] = x[n] + d[n] 0 ≤ n ≤ N − 1. (2.1)

The objective of a speech enhancement block is to estimate x[n]. This is generally

accomplished on a frame-by-frame basis by applying a unique gain to each of the frames

of y[n]. These gains are computed (in either frequency or time domain) by minimizing or
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DFT

Signal
Segmentation

Noise PSD
Estimation

Gain
Computation

IDFT

Overlap-AddG
ai

n

][][][ ndnxny +=

  ⋅

kk DX +

DX +

kX̂

Fig. 2.1 Speech enhancement system description.

maximizing a cost function. For instance, Signal-to-Noise Ratio (SNR) is one such cost

function. Defining a gain that maximizes the SNR of the output enhanced signal is one

suitable criterion.

Let Xk , Ak exp(jαk), Yk , Rk exp(jϑk) and Dk denote the kth spectral component

of the original clean signal x[n], the noise, d[n] and the noisy observation y[n], respectively,

in the analysis frame interval [0, N − 1]. Ak, Rk and Dk denote the spectral magnitude

of the clean signal, noisy signal and the noise only observations, respectively. αk and ϑk,

respectively, denote the phase of the clean and the noisy signal. Recall that Yk (and likewise

Xk and Dk) are given by:

Yk =
N−1∑
n=0

y[n] exp

(
− j

2π

N
kn

)
k = 0, 1, 2, . . . N − 1 (2.2)

With these definitions, the problem reduces to estimating the modulus of Xk from the

corrupted signal {y[n], 0 ≤ n ≤ N −1}. In earlier works, it has been noted that the speech

phase, α, shows up as a nuisance parameter (i.e., it provides no useful information) in noise

suppression and as such is ignored in the estimation problem. Hence, once the modulus of

speech is estimated it can be combined with the complex phase of the noisy speech.

In all speech enhancement algorithms assumptions are made to ease the computational

and analytical complexity involved in the derivation of the gain block. Some such assump-

tions are discussed in the following subsection.
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2.1.1 Assumptions on Speech and Noise Parameters

In order to derive an estimator for Ak, the a priori probability distribution of the speech and

noise Fourier expansion coefficients should be known. Generally, the speech and possibly

the noise are neither stationary nor ergodic1 processes, thereby excluding the convenient

possibility of obtaining the statistics of Fourier coefficients by examining the long-term

behaviour of each process. This problem can be resolved by assuming an appropriate

statistical model.

Gaussian Statistical Model

It is sometimes assumed that the complex Fourier expansion coefficients are statistically

independent Gaussian random variables. The mean of each coefficient is assumed to be

zero, while the variance is assumed time-varying, due to speech non-stationarity. A well

known fact about independent Gaussian random variables is that they are uncorrelated as

well [19]. This eases the mathematical formulation of the problem of removing background

noise from corrupted speech.

2.1.2 Appropriate Analysis Frame Length

Long analysis frames are good, as they provide better statistical averages. However, due to

time-varying characteristics of speech, a shorter window is sometimes desired. A convenient

way to tackle this trade-off is to consider the durations of typical phonemes2 in speech. A

typical vowel (voiced phoneme) ranges between 50–400 ms, while a plosive may last for

about 10 ms. Changes in the shape of the speech signal, whether gradual or abrupt, result

from movements of the vocal tract articulators, which rarely stay fixed in position for

more than 40 ms at a time, [20]. Thus in most works, the analysis frame length, T , is

usually chosen in the 16–40 ms range (or about 128–320 samples, for speech sampled at

8 kHz). Note that even if a smaller frame length were considered appropriate (to increase

temporal resolution at the cost of spectral resolution), statistical independence would still

be assumed.

1For definition of either stationarity or ergodicity refer to [18].
2A phoneme is the smallest phonetic unit in a language that is capable of conveying a distinction in

meaning, as the m of ‘mat’ and the b of ‘bat’.
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2.1.3 Input Conditioning: High Pass Filter

Initial pre-processing is needed to condition the input signal against excessive low frequency

and other background disturbances that might degrade the quality of a speech codec. Low

frequency disturbances include hum at 60 Hz and its harmonics at 120, 180 and 240 Hz.

Therefore it is desired to pre-process input narrowband speech3 (sampling frequency of

8 kHz) with a high-pass filter4 that will eliminate low frequency noise. In the case of STSA

algorithms mentioned in this thesis, speech is first filtered with the high-pass filter prior to

parameter extraction and further processing.

2.1.4 Analysis Window Type

Some of the commonly used windows in speech processing are symmetric (e.g., Hamming

and Hanning windows) or asymmetric (such as the hybrid Hamming-Cosine window). The

goal of asymmetric windows is to reduce the algorithmic delay in speech coders. In this

thesis, symmetric windows are used.

Ideally, the window spectrum should have a narrow main-lobe and small side-lobes.

However, there is an inherent trade-off between the width of the main-lobe and the side-lobe

attenuation. A wide main-lobe will average adjacent frequency components and large side-

lobes will introduce contamination (or spectral leakage) from other frequency regions, [22].

Fig. 2.2 shows the spectrum of three windows. It is seen that the main lobe for rectangular

window is narrower than that of the hanning window, while its sidelobes are higher.

The third window type, is the smoothed Trapezoidal window. This is used in the EVRC

3Narrowband speech may not sound as clear as wideband speech (sampling frequency of 16 kHz, but
is intelligible enough to provide toll-quality. Toll-quality is voice quality equal to that of the long-distance
public switched network, which charged a toll for each minute of use. Thus, in this thesis, input speech is
sampled at 8,000 Hz.

4The Enhanced Variable Rate Coder (EVRC) deploys a sixth order Butterworth filter having a 3 dB
cutoff frequency of 120 Hz and providing −36 dB/octave gain below 120 Hz is deployed, [21]. The filter
coefficients are seen in [9]. It is implemented as three cascaded biquadratic sections and contributes virtually
no passband delay.
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noise suppression rule, Section 2.2, and is mathematically expressed as:

w(n) =



sin2(π(n + 0.5)/2D), 0 ≤ n < D,

1, D ≤ n < L,

sin2(π(n− L + D + 0.5)/2D), L ≤ n < D + L,

0, D + L ≤ n < M,

(2.3)

where n is the sample index, L is the frame length and D is the overlap length.

In this thesis the analysis window of choice is the smoothed Trapezoidal window. Based

on the argument presented in Section 2.1.2, an appropriate window length is chosen. A

window of the specified length multiplied with the speech signal produces a frame of speech

of that length. Speech frames are frequency-transformed for analysis and denoised using a

noise suppression rule. Signal reconstruction is performed by the traditional overlap-add

method without further windowing.

2.1.5 Noise Power Spectrum Estimation

The basic concern of this subsection is that of estimating the Power Spectral Density (PSD)

of noise from the observation of noisy signal over a finite time interval. Frames of “pure”
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noise are identified using a Voice Activity Detector, Section 2.1.6. If d(n) is a stationary

random process, its autocorrelation function is:

γdd(m) = E{d∗(n)d(n + m)}, (2.4)

where E{·}, denotes the statistical average. Then, via the Wiener-Khintchine theorem, [19],

the PSD for a wide-sense stationary process is given as the Fourier transform of the au-

tocorrelation function. Since γdd(m) is usually unknown, its Fourier transform cannot be

computed. However, from a single realization of the random process, the time-average

autocorrelation function, γ̂dd, can be computed:

γ̂dd(m) =
1

N

N−m−1∑
n=0

d∗(n)d(n + m) m = 0, 1, . . . , N − 1, (2.5)

where N is the observation time.

The corresponding PSD is given as the Fourier transform:

Pdd(f) =
N−1∑

m=−(N−1)̂

γdd(m)e−j2πfm. (2.6)

Substituting Eq. (2.5) into Eq. (2.6) gives an estimate for Pdd(f) in terms of the Fourier

transform, D(f), of the sample sequence d(n):

Pdd(f) =
1

N

∣∣∣∣∣
N−1∑
n=0

d(n)e−j2πfn

∣∣∣∣∣
2

=
1

N
|D(f)|2. (2.7)

This well known form of PSD is called the periodogram. However, as pointed in [22], this

method suffers from bias—producing an inconsistent estimate of true PSD. Other classical

non-parametric methods, which make no assumptions about data sequence are generally

deployed. One such method is the Welch periodogram.

In Welch’s method, two modifications, over the existent periodogram, are apparent.

Firstly, the data is split into K overlapping segments. For each segment the periodogram

is computed and is averaged over the number of segments to obtain the final PSD estimate.

This reduces the variance of the estimate by a factor of K. Secondly, the segments are

windowed prior to computing the autocorrelation function. The effect of this operation is
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to reduce the frequency resolution by a factor of K, and hence a further reduction in noise

estimate variance. In this thesis, the Welch method (with the Trapezoidal window) is used

to obtain an estimate of noise PSD.

2.1.6 Voice Activity Detector

Voice Activity Detector (or VAD) returns a ‘1’ in the presence of speech and ‘0’ in absence

thereof. Conceptually, such a binary decision is based on some measured or extracted

feature of speech compared against some pre-defined (or adaptively changing) thresholds

(generally extracted from noise only frames). A VAD must be robust as its accuracy is

critical in noise suppression algorithms. Misclassifying speech as noise will erroneously

remove speech or result in a poor estimate of noise.

Some of the early VAD algorithms relied on short-time energy, zero crossing rate, and

LPC coefficients. Recent work employs Cepstral features, formant shape and a least-square

periodicity procedure, [23]. In this thesis, the VAD used in EVRC is considered and a brief

outline of it is presented in the sequel.

The VAD used in the EVRC is energy-based, and is an inherent part of the coder’s

noise suppression block. The input frame is split into two bands and the energy in the

bands is compared against two thresholds. Speech is detected if the energy in each band is

greater than the corresponding lowest threshold. Other VAD algorithms employ a similar

strategy, but the novel part of the EVRC VAD is its dynamic threshold update capability.

In order to be able to respond to changes in the background noise level (e.g., if a wireless

phone is being used in a car, and the user lowers the window), there is a provision for a

forced update of the band noise (and also the corresponding threshold) if more than 35

blocks of noise have elapsed since the last update, [9].

2.1.7 Intuitive Approach to Noise Suppression

A typical speech file contains several pause (between words) and/or silence (speaker stops

talking) segments. In speech enhancement, the noise variance is updated during such

pauses or silence. A VAD is used to discriminate between speech and silence/pause a VAD

is employed. For denoising speech files corrupted with additive white Gaussian noise, one

straightforward idea would be to subtract off the estimated noise variance, (D̂k), from the

power spectrum of the observed noisy signal, (Yk), to obtain an estimate of the modulus of
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speech power spectrum (X̂k). Mathematically this is represented as:

|X̂k|2 = |Yk|2 − |D̂k|2. (2.8)

However, there are limitations to this subtraction rule, see Section 2.5, and as such the

basic problem has been tackled by deriving several fundamentally and theoretically justified

noise suppression rules.

2.2 Enhanced Variable Rate Coder Noise Suppression

EVRC is a standard coder for use with the IS-95x Rate 1 air interface (CDMA), [9, 21].

The noise suppression algorithm is an independent module and can thus can be tested

separately or as part of other systems. Fig. 2.3 shows an overview of the noise suppression

module.

Frequency
Domain
Analysis

Time Domain
Conversion

Channel SNR
Modifier

Background
Noise Estimator

Channel Gain
Estimator

Noise Update
Decision

Channel SNR
Estimator

Channel Energy
Estimator

Voice Metric
Calculation

Spectral
Deviation
Estimator

update_flag

Fig. 2.3 EVRC Noise Suppression Block, redrawn from [21].

The noise suppression filter is implemented block-by-block in the frequency domain

using the overlap-add method. The filters are run and updated once each 10 ms (or 80

samples for speech sampled at 8 kHz). A 104 sample vector is formed using 80 new samples

of the speech sequence and 24 samples from the end of the last 80 sample block. This vector

is pre-emphasized (using the high-pass filter described in footnote 4) and weighted using

the smoothed Trapezoidal window, appended with 24 zeros and transformed using a 128-
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point FFT. This produces the frequency transformed signal for the nth analysis frame or

block, [21].

Essentially, the noise suppression algorithm sums the output of a bank of adaptive

filters that span the frequency content into sixteen bands. The width of the bands increases

logarithmically. This mimics the frequency resolution of the human ear. The energy present

in each of the sixteen bands is estimated by computing the mean magnitude for all frequency

bins within that band, Eb(n, i) (where i is one of the sixteen bands, b). The Signal-to-Noise

Ratio (SNR) for each band is computed as the ratio of the band energy estimate (Eb(n, i))

to the noise energy estimate in that band (EN(n, i)).

The sixteen band gains are computed based on the total noise energy estimate, γN(n):

γN(n) = −10 log10

( 15∑
i=0

EN(n, i)

)
, (2.9)

where i is one of sixteen bands in the nth analysis frame. Each of the sixteen band SNR

values are quantized and constrained to lie within 6 and 89 dB and are denoted by σ
′′
Q.

With the use of Eq. (2.9), individual band gains (γ(b)), in dB, are computed to be:

γdB(b) = µg(σ
′′

Q(c)− 6) + γN , (2.10)

where µg = 0.39 is the gain slope. These band gains are constrained to lie in the range

−13 to 0 dB, [21]. Eq. (2.10) is converted to sixteen linear band gains:

γ(b) = min(1, 10γdB(b)/20). (2.11)

These gains are applied to the noisy frequency bands, to which they belong. The result

is a ‘denoised’ frame, that is inverse frequency transformed, combined with the phase of

the noisy signal and overlap-added to construct the enhanced speech.

2.3 MMSE of Short-Time Spectral Amplitude

The previous section described the noise suppression algorithm used in the EVRC standard.

The purpose of this section is to study the Short-Time Spectral Amplitude (STSA) estima-

tor. The goal of the STSA algorithm is to estimate the modulus of each complex Fourier
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expansion coefficient of the speech signal in a given analysis frame of noisy speech. Fig. 2.4,

shows an overview of the basic steps for enhancement schemes employing STSA estima-

tor methodology. The first two steps, indicated in Section 2.1, are common to all STSA

algorithms.

In this section a brief derivation of the MMSE-STSA estimator, proposed by Ephraim

and Malah, [24], is outlined. As the name suggests, it estimates Âk by minimizing the

mean-squared error with Ak. There are two parts to the algorithm:

• Deriving the MMSE STSA estimator, based on modelling speech and noise spectral

components as statistically independent Gaussian random variables, Fig. 2.4.

• Computing a multiplicative modifier under uncertainty of signal presence in noisy

environment, Fig. 2.6.

2.3.1 Derivation of the MMSE-STSA Estimator

From estimation theory, [25], it is quoted that:

The minimum mean-square error estimate is always the mean of the a posteriori

density (the conditional mean).

Hence, Âk is the conditional mean of Ak given Yk is observed. More conveniently this

is expressed as:

Âk = E{Ak|Yk}

=

∫ ∞

0

∫ 2π

0

akp(Yk|ak, αk)p(ak, αk)dαkdak∫ ∞

0

∫ 2π

0

p(Yk|ak, αk)p(ak, αk)dαkdak

,
(2.12)

where E{·} is the expectation operator and p(·) is the Probability Density Function (PDF).

Since the observed data is assumed to be Gaussian distributed, Eq. (2.12) and can be

expanded in terms of p(Yk|ak, αk) and p(ak, αk):

p(Yk|ak, αk) =
1

πλd(k)
exp

{
− 1

λd(k)
|Yk − ake

jαk |2
}

, (2.13)
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Fig. 2.4 Algorithm for MMSE-STSA.
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p(ak, αk) =
ak

πλx(k)
exp

{
− a2

k

λx(k)

}
, (2.14)

where λx(k) , E{|Xk|2}, and λd(k) , E{|Dk|2}, are defined as variances of the kth spectral

component of the speech and noise, respectively. Simple substitution of Eq. (2.13) and

Eq. (2.14) in Eq. (2.12) gives the desired gain function for the MMSE-STSA estimator, [24]:

GMMSE(νk) = Γ(1.5)

√
νk

γk

exp

(
− νk

2

)
·
[
(1 + νk)I0

(
νk

2

)
+ νkI1

(
νk

2

)]
, (2.15)

where Γ(·) is the Gamma function (with Γ(1.5) =
√

π/2) and I0(·) and I1(·) are the zeroth

and first order modified Bessel functions, respectively, defined as:

In(z) ,
1

2π

∫ 2π

0

cos(βn)exp(zcosβ) dβ. (2.16)

In Eq. (2.15), νk is defined as:

νk ,
ξk

1 + ξk

γk. (2.17)

The gain function, (Eq. (2.15)), is thus, solely parameterized by ξk and γk. These are

interpreted as a priori SNR and a posteriori SNR values, respectively:

ξk ,
λx(k)

λd(k)
. (2.18)

γk ,
R2

k

λd(k)
. (2.19)

Essentially, a priori SNR is the Signal-to-Noise Ratio of the kth spectral component of

the “clean” speech signal, x[n], while a posteriori SNR is the kth spectral component of

the corrupted signal, y[n]. Computation of γk is straightforward—ratio of the variance of

the noisy speech signal to the estimated noise variance. However, computation of a priori

SNR is more involved, especially since the knowledge of “clean” signal is seldom available

in real systems. “Decision-Directed” estimation and Maximum Likelihood estimation are

two approaches taken to compute a priori SNR, [24]. Owing to certain shortcomings of the

latter approach, decision-directed has been exploited in this thesis and is addressed next.
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“Decision-Directed” Estimation Approach to compute a priori SNR

From Eq. (2.1) and the Fourier expansion definitions, it is seen that the expected value of

the variance of noisy data can be expressed as:

E{R2
k} = E{A2

k}+ 2E{Ak}E{Dk}+ E{D2
k}. (2.20)

Since, the clean speech is assumed uncorrelated to noise, Section 2.1.1, the cross-term

is set to zero. This simplifies the analysis and results in the instantaneous SNR:

ξk(n) = E{γk(n)− 1}. (2.21)

for the nth analysis frame.

Ephraim and Malah exploit this equivalency of relation between Eq. (2.18) and Eq. (2.21)

to propose an estimate for the a priori SNR, ξ̂k:

ξ̂k = α
Â2

k(n− 1)

λd(k − n− 1)
+ (1− α)P{γk(n)− 1}, 0 ≤ α ≤ 1, (2.22)

where Âk(n − 1) is the amplitude estimator of the kth signal spectral component in the

(n − 1)th analysis frame (and hence the feedback in Fig. 2.4 from the multiplier to the

a priori SNR Computation block) and α is a weighting constant that is deduced from

experimental data. The “best” value for α is found to be 0.9, [24]. P{·}, is an operator

defined by:

P{x} =

x, x ≤ 0,

0, otherwise,
(2.23)

where the positive operator, P{·}, is defined to ensure that the a posteriori SNR is less

than or equal to one, Eq. (2.22).

Parametric Gain Curves defining MMSE-STSA

From Eq. (2.15) it is seen that the gain depends on ξk and γk. Several parametric gain

curves are seen in Fig. 2.5, where gain is plotted against instantaneous SNR. The gain

curves show an increase in gain as γk decreases, while maintaining ξk constant. This is

explained next in the light of the MMSE-STSA estimator compromising between what it
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knows a priori and what it learns from the noisy data.
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Fig. 2.5 Parametric gain curves describing MMSE-STSA gain function
GMMSE(ξk, γk) defined by Eq. (2.15) for various values of ξk (in dB).

For fixed values of λd(k) and λx(k), ξk is also fixed, Eq. (2.18). The fixed value of λx(k)

determines the most probable realization of Âk, which is considered by the estimator (since

λx(k) parameterizes the PDF of ak, Eq. (2.14)). From Eq. (2.19), it is seen that γk is

proportional to R̂k. Thus, for fixed ξk and decreasing γk, the estimator should compromise

between the most probable realization of Ak and decreasing values of Rk, and this is done

by increasing GMMSE (since Âk , GMMSE ·Rk).

The derivation assumes that signal is present in noisy observation. In reality, there is

absolutely no assurance of signal presence in the observed noisy data. Consider the case

when the speech energy is less than that of noise. In this case it would be desirable to have

a decreasing gain (to attenuate more noise as speech is weakly present) for decreasing γk

when ξk is high (i.e., when λd(k) is larger than λx(k)). The concern of Section 2.3.2, is to
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address this issue and describe the Multiplicative Modifier algorithm suggested in [24, 26].

2.3.2 Multiplicative Modifier based on Uncertainty of Speech Presence

Signal absence in noisy observations {y[n], 0 ≤ n ≤ N} is frequent, as speech signals

generally contain large portions of silence, [24]. Nevertheless, it does not mean that speech

is never present in noisy sections. Two statistical models exist for speech absence in noisy

observations. The first model assumes that speech is either present or absent, with pre-

defined probabilities. This is a legitimate model under the reasoning that signal absence

or presence should be the same over the finite analysis interval. The second model is based

on statistically independent random appearance of signal in noisy spectral components.

The MMSE estimator which accounts for uncertainty of speech presence in noisy ob-

servation was first developed by Middleton and Esposito, [27] and is based on the second

model mentioned above. This model will be used in this thesis.

In Fig. 2.6, steps involved in the derivation of the multiplicative modifier are seen.

The spectral components of a speech frame and a posteriori SNR are computed earlier as

in Fig. 2.4. Derivation of the “likelihood ratio computation” and “a priori probability of

speech absence” blocks is addressed below.

Since speech in noisy observation is either present or absent, a two-state model based

on binary hypothesis testing, [25], has been used by McAulay and Malpass, [7], to derive

the “likelihood ratio”. The hypotheses under test are:

• Null Hypothesis, Hk
0 : speech absent : |Rk| = |Dk|.

• Alternate Hypothesis, Hk
1 : speech present : |Rk| = |Ak + Dk|.

In view of these hypotheses, Eq. (2.12), can be re-written more explicitly as:

Âk = E{Ak|Yk, H
k
1 }P (Hk

1 |Yk) + E{Ak|Yk, H
k
0 }P (Hk

0 |Yk), (2.24)

where P (Hk
i |Yk), (for i = 0, 1), is the probability that the speech in state Hk

i , for the kth

spectral component, given that the measured envelope is Yk. Obviously, E{Ak|Yk, H
k
0 }

is zero as it represents the average value of Ak in Yk when speech is absent (the null

hypothesis). Hence, Eq. (2.24), can be simplified to:

Âk = E{Ak|Yk, H
k
1 }P (Hk

1 |Yk). (2.25)
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Fig. 2.6 Algorithm for uncertainty of speech presence.

Note that E{Ak|Yk, H
k
1 } replaces E{Ak|Yk}, identically, in Eq. (2.12) with an added

assertion of the alternate hypothesis. Hence, P (Hk
1 |Yk) defines the multiplicative modifier

on the optimal estimator under the signal presence hypothesis.

Exploiting Bayes’ rule, [25], one obtains:

P (Hk
1 |Yk) =

Λ(k)

1 + Λ(k)
= GMM(k), (2.26)

where

Λ(k) , µk
p(Yk|Hk

1 )

p(Yk|Hk
0 )

µk ,
P (Hk

1 )

P (Hk
0 )

=
1− qk

qk

. (2.27)

Λ(k) is the likelihood ratio while qk denotes the a priori probability of speech absence in

the kth bin.
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Apart from knowledge of ξk and γk, to compute GMM, reliable estimation of prior qk

(for all frequency bins in a given noisy frame) is essential. Malah, Cox and Accardi in 1999,

proposed another set of binary hypotheses, [26], for the estimating qk:

• Null Hypothesis, H0: speech present in the kth bin: ηk ≥ ηmin.

• Alternate Hypothesis, HA: speech absent in the kth bin: ηk ≤ ηmin.

where ηk , (1 − qk)ξk, is the new a priori SNR, as it only makes sense to give it a value

when speech is present, with probability (1− qk), in the spectral analysis frame. It is also

observed that the PDF of γk is parameterized by ηk. This means, that knowledge of γk is

sufficient for estimating the priors qk, [26].

The Neyman-Pearson decision rule [28] can be exploited to establish the uniformly most

powerful test5 for the problem at hand:

γk

H0

≶
HA

γth, (2.28)

where γth is a threshold to satisfy a desired significance level.

Based on Eq. (2.28), a binary decision is issued to Ik (Ik = 1 if H0 is rejected and Ik =

0 if accepted) and used on speech only frames (detected using a VAD) to compute qk for

all k frequency bins in that frame:

qk = αqqk−1 + (1− αq)Ik, (2.29)

where γth = 0.8 and αq = 0.98 have been used based on heuristic results [26].

Fig. 2.7 shows plots of the effect of the multiplicative modifier on MMSE-STSA esti-

mator. Two inferences can be drawn:

1. The decrease in gain as γk decreases, for high ηk, is in contrast to the increase in gain

(Fig. 2.5). This is explained in the realm of the estimator favouring HA.

2. The gain decreases as qk (probability of signal absence) increases. This is intuitive,

5If θ is a random variable with unknown density, a Bayes test is not meaningful, [25]. Let χ be the
parameter space for H0 and HA. Then, it is shown that the Neyman-Pearson tests are the Uniformly Most
Powerful (UMP) tests, as the likelihood ratio test for every θ ∈ χ can be completely defined (including the
threshold) without knowledge of θ.
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since the estimator tends to attenuate more noise if the probability of speech absence

is high at low values of instantaneous SNR.

Thus, the effect of adding the multiplicative modifier to MMSE-STSA estimator is to

enhance speech with prior knowledge of speech presence or absence in each spectral bin.

Ephraim and Malah claim that using the MMSE estimator, which takes into account

the uncertainty of signal presence, results in a whitened noise, [24]. However, as will be

seen in Section 2.4, modifications to MMSE-STSA estimator lead to a further reduction of

this residual noise—making it sound more uniform in silence/pause segments of speech.

2.4 MMSE Log-Spectral Amplitude Estimator

A year after they proposed the MMSE-STSA cost function, Eq. (2.12), Ephraim and Malah

looked at MMSE of the log spectra in enhancing noisy speech, [8]. The wide-spread use of

log-spectra in distortion measures, [29], is the leading motivation to examine the effect of
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amplitude estimator constrained at minimizing the mean-squared error of the log-spectra.

This section will briefly summarize the derivation of the Minimum Mean Square Error Log-

Spectral Amplitude (MMSE-LSA) estimator. As much as possible, the same notation, as

used in Section 2.3, is used to formulate the MMSE-LSA estimation problem.

2.4.1 Derivation of the MMSE-LSA Estimator

With definitions given in Eq. (2.1) and their respective Fourier transforms, the driving

constraint on finding the optimal realization, Âk, of the logarithmic Ak, is expressed as:

Âk = E{(log Ak − log Âk)
2|Yk}. (2.30)

Hence, the estimator is easily shown to be:

Âk = exp{E[ln Ak|Yk}, 0 ≤ n ≤ N − 1]. (2.31)

and it is independent of the basis chosen for the log.

The evaluation of Eq. (2.31), can be simplified with the moment generating function,

[19]. For notational convenience, let Zk , ln Ak. Then the moment generating function

ΦZk|Yk
(µk) of Zk given Yk can be expressed as:

ΦZk|Yk
(µk) = E{exp(jµkZk)|Yk}

= E{Ajµ
k |Yk}.

(2.32)

The first derivative of ΦZk|Yk
(µk), evaluated at µ = 0 generates the first moment of

Zk given Yk, [19]. As seen earlier in Section 2.3.1, the right hand side of Eq. (2.12) now

defines ΦZk|Yk
(µk). Assuming the same Gaussian model, as used previously, with the same

definitions for a priori and a posteriori SNR, it is not too difficult to establish a gain

function that satisfies Eq. (2.30)6:

GLSA(ξk, γk) =
ξk

1 + ξk

exp

{
1

2

∫ ∞

vk

e−t

t
dt

}
, (2.33)

where vk and ξk have been previously defined in Section 2.3.1. Note that GLSA is the gain

6For detailed derivations refer to [8]
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function and is multiplied with the observed noisy data to obtain an estimate of Ak.

Ephraim and Malah did some subjective comparisons between MMSE-STSA and MMSE-

LSA to show that the enhanced speech (using the latter estimator) suffers from much less

residual noise, while there is no perceptible difference in the enhanced quality of speech

itself. Further, the residual noise sounds more uniform (i.e., more white). In order to

explain this phenomenon, it is worthwhile to look at the parametric gain curves of the

present estimator compared to those of MMSE-STSA estimator. The general trend of the

curves was explained in Section 2.3.1 and is applicable here as well. In Fig. 2.8 it is also

seen that MMSE-LSA offers more attenuation (or lower gain values) for the corresponding

instantaneous SNR than its counterpart, MMSE-STSA. This is readily seen by analyzing

Jensen’s inequality:

Âk = exp{E[ln Ak|Yk]} ≤ exp{ln E[Ak|Yk]} = E[Ak|Yk]. (2.34)

From the inequality it is seen that the log estimate of Âk is always less than or equal to the

true estimate. Since, the MMSE-LSA works in the log domain to estimate the magnitude

of Ak (as opposed to MMSE-STSA algorithm), it is easily seen why the MMSE-LSA gain

plots are lower than those of the MMSE-STSA in Fig. 2.8.

The lower value of gain curves further aid in minimizing the effects of residual noise

especially at low instantaneous SNR values.

If necessary, this estimator can be further modified by adding the multiplicative modifier—

based on uncertainty of speech presence, Section 2.3.2. The enhanced speech, obtained

thus, contains much less residual noise, while no difference in the enhanced speech itself is

noticed.

Having studied the relevant STSA noise suppression rules, it is worth looking at limita-

tions of these algorithms. Some such limitations are introduction of annoying artifacts and

underlying speech distortion. Methods undertaken to reduce these effects are also seen in

the following section.

2.5 Limitations of Noise Suppression Algorithms

If an accurate estimate of the noise variance were available, it would seem natural to remove

noise completely from noise only or signal+noise frames to attain the enhanced “noise-free”
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Fig. 2.8 Parametric gain curves describing GMMSE(ξk, γk) defined
by Eq. (2.15) (solid) and GLSA defined by Eq. (2.33) (dashed) for various
values of ξk (in dB).

signal. However, there are severe underlying limitations to the amount of noise that can

be removed. The aim of most enhancing algorithms is to remove most of the noise leaving

comfortable residual noise with minimal speech distortion. Removing more noise than is

necessary can produce choppy and distorted outputs. However, removing less noise can

have the counter effect of suppressing weak energy phonemes. Thus, there is an inherent

trade-off that must be considered in most noise removal algorithms.

This section briefly looks at some of the limitations of noise suppression algorithms.

Since, the noise variance is obtained as an estimate, clean speech cannot be exactly recov-

ered. As noted earlier, proper estimation of noise variance is heavily dependent on accurate

VAD decisions. If a frame is mistaken to be noise only, it will lead to signal cancellation.

If a frame is mistaken to be high in speech energy (thus misclassifying it as clean speech

segment), on the other hand, it might lead to incomplete speech enhancement. These
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distortions and artifacts (residual noise) can exacerbate auditory impression rather than

enhancing it. Such distortions are especially critical when the input SNR is low. Some of

the reported artifacts are:

• Musical noise,

• Timbre7 changes and loss of signal components,

• Phase distortions and temporal smearing.

The following subsections are geared at describing these artifacts, and possible ways to

reduce them.

2.5.1 Musical Noise

The most common introduced artifact is Musical Noise—short spurious bursts of isolated

frequency components that appear randomly across enhanced speech’s spectrum. They

originate from the magnitude of short-time observed spectrum, |Yk|, which shows strong

fluctuations in low SNR areas—a well known feature of the periodogram. After passing such

a frame through a spectral attenuator, the part of the spectrum that originally contained

noise now contains succession of randomly spaced peaks corresponding to the maxima of

|Yk|. Between these peaks, the short-time spectrum values are strongly attenuated since

they are close to or below the estimated noise variance. As a result the residual noise now

contains low-energy spurious bursts of frequency components that appear randomly across

the short-time frames, Fig. 2.98. The presence of pure tones in residual noise gives rise to

a “musical” perception.

Reduction of Musical Noise

Reduction of this type of artifact has been proposed by use of a spectral floor, which aids by

masking the randomly scattered sinusoidal peaks. The spectral floor is a positive threshold

value for the magnitude estimate. Therefore, the spectral floor can be considered as an

overestimate of the spectral component variance. Although widely used, this method does

7The combination of qualities of a sound that distinguishes it from other sounds of the same pitch and
volume.

8The plot seen in Fig. 2.9, was generated by sending noise only signal through the power subtraction
noise suppression rule.
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Fig. 2.9 Musical Noise for 20 Frames.

not eliminate musical noise completely. The effect is to reduce its annoying effects to the

listener.

Reduction of Musical Noise in EMSR

The Ephraim and Malah MMSE-STSA and MMSE-LSA Noise Suppression Rule (collec-

tively called EMSR) have been reported to attenuate the musical noise phenomenon consid-

erably without introducing audible distortions. This feature explains, why it is an excellent

choice for restoration of musical recordings and other corrupted speech. Olivier Cappé at-

tempts to explain how MMSE-STSA counters the musical noise effect, [30]. There are two

features in EMSR that assist in the suppression of musical noise:

A. Smoothing effect on a priori SNR using the Decision-Directed method.

Consider Fig. 2.10, which is used to illustrate two properties of the a priori SNR, ξk:

– When γk hovers close to 0 dB (i.e., noise only frame), ξk emerges as a highly

smoothed version (due to the smoothing behaviour of the decision-directed

method, Eq. (2.22), used to compute ξk) of γk. In other words, the variance

of ξk is much smaller than the variance of γk for noise-only frames. This is seen

on the left side (frames 0–80) of Fig. 2.10.
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– When γk is above 0 dB (i.e., a noise+signal frame), ξk tends to follow γk with a

delay of one frame. Frames 80–130 in Fig. 2.10 are indicative of such a trend.
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R

 (
dB

)

Fig. 2.10 SNR in successive short-time frames. Dotted: a posteriori SNR,
γk; Solid: a priori SNR, ξk. For the first 80 frames the analyzed signal is pure
noise. For the next 50 frames an analyzed signal of 20 dB SNR emerges.

Recall that GMMSE is largely a function of ξk, hence the attenuation function does not

exhibit large variations over successive short-time frames (due to the reduced variance

of ξk during noise-only frames). As a consequence, the musical noise (sinusoidal com-

ponents appearing and disappearing rapidly over successive frames) is considerably

reduced. In the EMSR approach, another effect aids in reducing this artifact. In

frequency bands containing noise only, it is seen that the average value of ξk is about

−15 dB (or 0.2 in linear scale), while γk is rather high. In that case, the improbable

high values of γk are assigned increased attenuation (seen more explicitly in Fig. 2.5,

where signal with large values of γk are attenuated more). This over-attenuation is

all the more important as ξk is small. Thus, values of the spectrum higher than the

average noise-level are “pulled down”. This feature is particularly important where

the background noise is highly non-stationary. The use of EMSR avoids musical noise

whenever noise exceeds its average statistics.

B. Residual Noise Level.

Despite the smoothing performed by the decision-directed method, there are some
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irregularities that might generate low-level perceptible musical noise. One straight-

forward way is to assure that the a priori SNR is above a certain threshold, ξmin.

Usually ξmin is chosen to be larger than the average a priori SNR in the short-time

noise only frame. As seen in Fig. 2.10, the average value of ξk is around −15 dB in

noise only frames. Thus, to eliminate low-level musical noise it is recommended to

set a lower limit of at least −15 dB on ξk (i.e. ξmin is set to −15 dB or higher), [30].

2.5.2 Timbre Change and Loss of Signal Components

It may happen that the level of spectral component of noise is lower than the noise variance

estimate. In such cases, some portion of the signal at that frequency will be cancelled. This

is particularly hazardous for low-energy voiced speech or even fricatives. Perceptually this

will result in a change in timbre of the desired signal. One intuitive way to overcome

this potential problem would be to underestimate noise level. Obviously, this will lead to

incomplete cancellation of noise. Therefore, a trade-off on the spectral floor threshold value

is required such that sufficient degree of noise is cancelled (without introducing artifacts)

and at the same time assuring that potential loss of timbre effects are reduced.

2.5.3 Phase Distortions and Temporal Smearing

As has been noted earlier, phase information in speech appears as a nuisance parameter

and is, thus, often ignored during derivation of speech enhancement algorithms. Usually,

an estimate of the magnitude of speech is made and is given the phase of the noisy signal.

This will lead to some error in the processed signal and can cause two audible artifacts:

roughness and temporal smearing, [31]. Roughness is usually heard during sustained sounds

such as vowels (e.g. vowels). Temporal Smearing, on the other hand, identifies itself as pre-

and post-echoes during transition from voiced-unvoiced (or vice-versa) segments. In 1985,

Vary derived a direct relation between maximum phase error and noise-to-signal ratio for

Gaussian noise. The relation is summarized below, [32]:

E
[
∆Φmax

]
= sin−1

(√
π

2
· N(f)

S(f)

)
. (2.35)

This equation is seen plotted in Fig. 2.11. One point of interest, on the curve, is when

E[∆Φmax] takes on the value of π/4 (with a corresponding SNR of 2.49 dB).
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Fig. 2.11 Expected maximum phase error vs. input Signal-to-Noise-Ratio.

It has been shown that while the ear is relatively insensitive to phase, the threshold at

which a random phase error becomes audible is about π/4, [32]. For larger phase errors,

speech takes on rough quality. This is to say that as long as the input SNR of corrupted

speech is more than 2.49 dB, it can be denoised without phase error becoming audible.

The effects of phase error of less than π/4 can be heard as temporal smearing—the

result of time aliasing. Recall that in most algorithms, the magnitude-estimate of speech is

combined with the phase of the noisy observation, ϑk. In order to avoid artifacts resulting

from phase errors, it would be required to estimate phase (apart from estimating the mag-

nitude from the noisy observation). Since, this phase information is not readily available,

temporal smearing results and shows up as pre- or post-echoes in reconstructed signal.

Subjective tests show that the effects of temporal smearing are detected by a certain group

of trained listeners only, [31]. Therefore, its elimination is considered beyond the scope of

this thesis.

2.6 Distortion Measures

A good distortion measure is one that would strongly correlate with the subjective quality

of the enhanced speech i.e., small and large distortion should correspond to a good and bad

subjective quality. However, this is not always true. For instance, it is sometimes more

pleasing to leave residual noise in valleys of formant structures and this will be at the cost of
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reduced SNR gain. Nevertheless, these measures are used extensively in speech processing

for a variety of purposes, [33]. In speech enhancement systems, they are primarily used to

define the constraint for derivation of gain curves and evaluating the performance of the

system. These distortion measures can be classified into two main categories: subjective

distortion measures and objective distortion measures.

Subjective Distortion Measures

Subjective measures rely heavily on the opinion of a group of listeners to judge the quality

or intelligibility of processed speech. These measures are often time consuming and costly

as they require proper training of listeners. In addition to this, a constant listening envi-

ronment (e.g., playback volume), identically tuned output device (e.g., headphones and/or

speakers) are necessary. Nevertheless, subjective test results present the most accurate

system performance, insofar as intelligibility and speech quality are concerned, as they are

determined perceptually by the human auditory system. These tests can be structured

under two types of evaluation procedures: speech intelligibility testing and speech quality

evaluation.

• Speech Intelligibility Testing

– Diagnostic Rhyme Test (DRT)

– Modified Rhyme Test (MRT)

– Diagnostic Medial Consonant Test (DMCT)

– Diagnostic Alliteration Test (DALT)

• Speech Quality Evaluation

– AB Test

– Diagnostic Acceptability Measure (DAM)

– Mean Opinion Score (MOS)

– Degradation Mean Opinion Score (DMOS)

– Comparison Mean Opinion Score (CMOS)
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While the DRT is the most commonly used intelligibility test (as it computes the per-

centage of words or phonemes that are heard correctly), MOS and DAM are widely used

for speech quality evaluation and strive to rate the naturalness of processed speech, [34].

2.6.1 Mean Opinion Score

MOS is a test for measuring the acceptability or quality of speech over a communication

system. Such a score requires the listener to judge the overall quality of a communication

system or link on a five category scale for purposes of telephone communication, Table 2.1.

Table 2.1 Verbal categories and the five point scale for MOS.

Rating Speech Quality Level of Distortion

5 Excellent Imperceptible
4 Good Just perceptible, but not annoying
3 Fair Perceptible and slightly annoying
2 Poor Annoying, but not objectionable
1 Bad Very annoying and objectionable

The MOS ratings are reliable as they are based on human responses and perception. A

large number of listeners is required, so that a reasonable assessment can be made about

system performance. This can be time consuming and expensive. Hence, various objective

measures have been developed that are aimed at returning the same result as would have

been returned by exhaustive subjective testing. These objective measures simulate listen-

ers’ perception and the testing environment through complex non-linear functions. Some

such objective measures that have been standardized by International Telecommunications

Union (ITU-T) are Perceptual Speech Quality Measure (PSQM)9, Perceptual Audio Qual-

ity Measure (PAQM), Perceptual Analysis Measurement (PAMS), Perceptual Evaluation of

Audio Quality (PEAQ)10 and Perceptual Evaluation of Speech Quality (PESQ). Following

a competition (hosted by ITU-T study group 12), PAMS and PSQM attained the highest

performance. These have been combined to produce PESQ and has replaced P.861 in early

2001 with P.862, [35]. PESQ has been shown to provide a score that is strongly correlated

9PSQM was adopted in 1996 as ITU-T recommendation P.861.
10PEAQ became ITU-R recommendation BS.1387 in 1999.
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to the subjective ratings obtained by MOS11.

2.6.2 Perceptual Evaluation of Speech Quality

The purpose of this subsection is to present a brief overview of PESQ and its scope and

applications.

Overview of the PESQ algorithm

A high-level structure of the model is seen in Fig. 2.12.
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Fig. 2.12 Structure of perceptual evaluation of speech quality (PESQ)
model. Redrawn from [35].

Firstly, the reference signal and degraded signal are level aligned such that they have

identical playback levels. The signals are then filtered (using standard FFT) with an input

filter that mimics bandpass telephone filters (about 330–3300 Hz). This is followed with

time-alignment and equalization. The auditory filters deployed by PSQM are then used

to process the ensuing signals. The auditory transformation also involves equalization for

linear filtering in the system and for gain variation. Two distortion parameters are extracted

for the disturbance, which is the difference between the transforms of the two signals. They

are then aggregated in frequency and time domain, and mapped to a prediction of subjective

11For 22 known ITU benchmark experiments the average correlation was 0.935. For an agreed set of
eight experiments used in the final validation—experiments that were unknown during the development of
PESQ—the average correlation was also 0.935, [36].
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MOS, [36, 35]. Note that the range of MOS mapping is from −0.5 to 4.5, in contrast to

the range listed in Table 2.1.

Scope and Application

A range of applications and test conditions have been identified for which PESQ has been

validated, [36]. Some of these include waveform codecs (e.g., G.711, G.726, G.727), CELP

and hybrid codecs (e.g., G.728, G.729, G.723.1), mobile codecs (e.g., GSM FR, EFR, AMR,

EVRC) and for various other network applications. Although PESQ has not yet been

validated for effects and artifacts generating from noise reduction algorithms, it has been

used in this thesis to assess the quality of noisy degraded (and enhanced speech) coded signal

against clean unprocessed signal. Certain other applications of the PESQ measure that have

not been fully characterized yet include music quality, wideband telephony, listener echo,

very low bit-rate vocoders below 4 kbps (e.g., MELP) and acoustic and head-and-torso

simulator measurements.

Objective Distortion Measures

Contrary to subjective measures, this class of distortion measures is computed from the

time or frequency characteristic of a speech signal. Objective tests are less expensive to

administer, give more consistent results and are not subject to human failings of adminis-

trator or subject. If an objective measure could be found which was highly correlated with

human preference, its utility would be undeniable. The fundamental problem in research

into objective quality measures requires a strong understanding of the complexities of the

speech perception process. A useful distortion measure would be required to possess a

little degree of the following properties: 1) be subjectively meaningful—a small or large

distortion corresponds to good or bad subjective quality, respectively; 2) be tractable or

amenable to mathematical analysis; 3) be computationally efficient, [29]. An extensive

performance analysis of a multitude of objective distortion measures is given in [34].

The most common distortion measure is the conventional squared error, error power

or error energy. However, for low-bit rate speech coders, such a distortion measure may

not be subjectively meaningful. In particular, a large distortion in a squared error sense

does not necessarily imply poor quality. For instance, a fricative (e.g., “shh”) is essentially

a broadband noise process and any representative waveform will sound the same. To
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overcome this problem, there are other distortion measures that are geared towards low-

bit rate coders—Euclidean distance between LSF parameters, percent correct pitch and

bandpass voicing estimation being some. These measures have been used in this thesis to

measure performance of speech enhancement as pre-processors for vocoders, and as such

are briefly discussed in the following few sections.

2.6.3 Signal-to-Noise Ratio

As the name invariably implies, SNR is the ratio of the signal energy to the noise energy:

SNR = 10 log10

∞∑
n=−∞

s [n]2

∞∑
n=−∞

(
s [n]− ŝ [n]

)2 dB, (2.36)

where s [n] is the original/enhanced signal and ŝ [n] is the ‘noisy’ signal. However mathe-

matically simple, the SNR measure carries with it the drawback of being a poor estimator

of subjective quality. The SNR of a speech signal is primarily governed by the high en-

ergy segments, e.g., voiced speech. However, noise has a greater perceptual effect in the

weaker energy segments, [22]. A high SNR value, is thus, not necessarily indicative of good

perceptual quality of the speech.

2.6.4 Segmental Signal-to-Noise Ratio

The SNRseg in dB is the average SNR (also in dB) computed over short frames of the speech

signal. The SNRseg over M frames of length N is computed as:

SNRseg =
1

M

M−1∑
i=0

10 log10


iN+N−1∑

n=iN

s2 [n]

iN+N−1∑
n=iN

(s [n]− ŝ [n])2

 dB, (2.37)

where the SNRseg is determined for ŝ [n] over the interval n = 0, . . . , NM − 1. Typically,

the frame length is 15–25 ms (or N between 120–200 for speech sampled at 8 kHz). This

distortion measure weights soft and loud segments of speech equally and thus circumvents
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the problem by modelling perception better.

If a frame were weak in speech energy, the corresponding SNR can take on large negative

values; having an unwarranted effect on the overall estimate. By either removing weak

speech energy frames or introducing an SNR threshold (usually 0 dB), the effects of negative

SNR can be reduced. Similarly, a high SNRseg can be a result of frames that are high-

energy voiced segments. It has been noted in, [22] that human auditory perception cannot

distinguish among frames with an SNR greater than 35 dB, and hence this value can be

used as a threshold to prevent positive bias in segmental SNR.

However, SNR measures are meaningful only for coding schemes where the “noise” is

deemed additive. Thus, these measures are useful with subband and transform coders but

not for vocoders which introduces speech correlated noise components, [34, 37]. In addition,

it must be noted that these vocoders focus only on the magnitude of the speech spectrum,

as the human auditory system is relatively insensitive to phase distortion. Therefore, the

“processed” speech might sound mechanical yet still be intelligible. For the latter type of

speech coders, objective measures based on spectral and LPC parameters are useful. These

are briefly summarized below.

2.6.5 Weighted Euclidean LSF Distance Measure

The accuracy of LP filter coefficients is fundamental to the design of an accurate parametric

coder. Since, in most works, LSFs12 are used to represent these coefficients, it would be

useful to have a metric that computes the distance of enhanced spectra from clean spectra

in the LSF sense. One such metric is the Euclidean distance, which computes the L2 norm

between the test and the reference vector, [1]:

∆2
LSF =

1

10M

M∑
m=1

p∑
i=1

[
ci

(
fi,m − f̂i,m

)]2
, (2.38)

where fi,m and f̂i,m are the ith LSFs of the mth index of the test and reference vector

respectively, ci are the weights assigned to the ith LSF coefficient, M is the total number

of speech signal frames and p is the order of the LP filter. For a 10th order LP filter, the

12LP coefficients are either quantized or interpolated prior to transmission. However, small changes in
coefficients might result in large changes in the power spectrum and possibly yield an unstable LP filter.
A number of one-to-one mappings have been developed. One of the most commonly used representations
is the Line Spectral Frequencies (LSFs).
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fixed weights ci are given by:

ci =


1.0, for 1 ≤ i ≤ 8,

0.64, for i = 9,

0.16, for i = 10.

(2.39)

The human ear is more sensitive to differences in the lower frequency range than the

higher frequency range. Therefore, the lower frequency bins are emphasized more by as-

signing them larger weight.

Clearly, lower values of ∆2
LSF are indicative of enhanced spectra being closer to clean

spectra. In Section 3.2.1, another STSA algorithm is discussed, that minimizes the Eu-

clidean distance between the LSF parameters.

2.6.6 Percentage Correct Pitch Estimation

Pitch is computed once per frame and is used to determine the spacing between the har-

monic structure of speech spectrum. In an attempt to give an objective metric to pitch

representations, Guilmin et al. in 1999, deemed a pitch detection to be correct when its

value does not differ of more than 5% from the exact value and the result is averaged

only on frames where speech is present. Obviously, the goal of a good pre-processor is to

have a large percentage of correct pitch estimation after it has been applied to acoustically

impaired speech signal, [38].

2.6.7 Percentage Correct Bandpass Voicing Estimation

In the MELP speech coder the analysis frequency band is split into five subbands. Each

subband is assigned a bandpass voicing strength based on the normalized autocorrelation

value (see Section 3.1.1 for details of computation). These strengths are quantized to

either a 1 or 0, depending on pre-defined thresholds. Thus, each band has five quantized

bandpass values. In order to evaluate a percentage for correct bandpass voicing strengths,

the quantized values for the original clean and degraded/enhanced signal are computed.

The value of the voicing strength, per band, is considered correct if there is no bit inversion.

The result is averaged only on frames where speech is present, [38]. Once again, larger values

are indicative of better efficiency of speech enhancement techniques.
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2.7 Summary

This chapter focussed on derivation and study of speech enhancement techniques deployed

in the frequency domain. The EVRC noise suppression block, MMSE-STSA and MMSE-

LSA were studied in some detail. Some of the limitations (such as musical noise and timbre

changes) of noise suppression schemes was also looked at. This chapter also described some

of the objective and subjective distortion measures relevant for low-bit rate speech coders.

Such distortion measures are either used as cost functions for derivation of suppression

rules, or are used to evaluate their performance under acoustic conditions.
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Chapter 3

Application: Pre-Processor for

Vocoders

In Chapter 2, two STSA (MMSE-STSA and MMSE-LSA) noise suppression algorithms

were described. Such systems are particularly useful in the arena of low-bit rate digi-

tal communications. Since the first US and NATO1 standard LPC-10 speech coder, low

bit-rate speech coding has greatly improved at the 2.4 kbps data rate. New vocoders

provide increased intelligibility and quality but, nevertheless are sensitive to background

additive noise. One of the primary concerns of this chapter is one such vocoder—Mixed

Excited Linear Prediction (MELP) speech coder. The parameters required by the MELP

encoder/decoder are presented in Section 3.1.1/Section 3.1.2. In Section 3.1.3 it will be

seen how the coding parameters are disturbed in noisy environment and how it might affect

reconstruction of speech at the decoder. Some specialized pre-processors that aim towards

reducing background noise while assuring good parameter extraction are the motive of Sec-

tion 3.2. Later Section 3.2.1 looks at another noise suppressor that aims at tracking LP

parameters better, while Section 3.2.3 describes the algorithm developed in this thesis

with the objective of improving the perceptual quality of degraded speech. Furthermore, a

comparison of the various noise suppression rules will be studied in Section 3.2.4.

1NATO: North Atlantic Treaty Organization.
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3.1 The Mixed Excitation Linear Prediction Coder

Legacy tactical secure voice communications use either the 2.4 kbps Linear Predictive

Coding (LPC-10) algorithm or the 16 kbps Continuously Variable Slope Delta Modula-

tion (CVSD) algorithm for speech compression. About two or three decades ago these

algorithms were considered the state of the art in narrow band speech coding.

In March of 1996, the U.S. government DoD2 Digital Voice Processing Consortium

(DDVPC) announced selection of the 2.4 kbps MELP voice coding algorithm as the next

standard for narrow band secure voice coding products and applications. Kohler has

presented valuable comparisons (e.g. MOS, DMOS, DRT and DAM scores) of MELP

against the 4.8 kbps federal standard (FS1016) Code Excited Linear Prediction (CELP),

the 16 kbps CVSD and the venerable federal standard 2.4 kbps LPC-10, [39]. In that paper,

Kohler publishes tests on quality, intelligibility, recognizability and communicability. The

target device for the new federal coder is an 80 MHz processor coupled with four megabits

of memory, of which the MELP coder demands only 51% and 77%, respectively. In this

section, details of MELP are described succinctly.

Any parametric coder depends on the accuracy of LPC analysis filter and residual

signal. As was seen in Chapter 1, the LP coefficients model the human vocal tract, while

the residual signal models the excitation signal—periodic pulses for voiced and random

white noise for unvoiced speech segments. MELP, much like any other traditional LPC

vocoder, relies on accurate LP parameter estimation to compress speech. The following

five features assist MELP in achieving supremacy over its predecessors, Fig. 3.1:

1. Mixed Excitation: This is implemented using a multi-band mixing model that uses

an adaptive filtering structure to simulate frequency-dependent voicing strengths.

The primary effect is to reduce the “buzz” that is associated with LPC vocoders,

especially in broadband noise.

2. Aperiodic Pulses: These are mostly used during transitions from voiced/unvoiced

(or vice-versa) regions in speech segments. This allows the decoder to reproduce

erratic glottal pulses without introducing tonal sounds. In the case of voiced segments,

the MELP coder can synthesize using either periodic or aperiodic pulses.

2DoD: Department of Defence.
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Fig. 3.1 MELP decoder block diagram. Redrawn from [40].

3. Adaptive Spectral Enhancement: This is based on the poles of the LP synthesis

filter and is exploited to enhance the formant structure of the synthetic speech so as

to match it to the bandpass waveforms.

4. Pulse Dispersion: This is implemented using a fixed filter based on spectrally-

flattened triangle pulses. The filter assists in reducing some of the harsh qualities of

the synthetic speech by spreading the excitation energy within a pitch period.

5. Fourier Magnitude Modelling: The first 10 Fourier coefficients are extracted

from the peaks of the Fourier transform of the prediction residual signal. Since the

human ear is most sensitive at lower frequencies, the first ten coefficients assist in

increasing quality of synthetic speech—especially for male speakers in the presence

of background noise, [40].
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3.1.1 Speech Coding Parameters—The Encoder

The input signal is high-pass filtered using a 4th order Chebychev type II filter, having a

cutoff frequency of 60 Hz and a stopband rejection of 30 dB. The output of this filter will be

referred to as input speech signal throughout the following description. The MELP coder

takes the input signal and segments it into frames of 180 samples using a Hanning window.

For each signal frame the vocoder extracts 10 LP coefficients, 2 gain factors, 1 pitch value,

5 bandpass voicing strength values, 10 Fourier magnitudes and an aperiodic flag, Fig. 3.2.

LPC (200)

Gain 1 (320)

50 180 180

Gain 2 (320)

Pitch (320)

Fig. 3.2 Utilization of data in the input buffer of the MELP coder. Numbers
indicate frame sizes.

The following few sections briefly describe how MELP extracts these parameters and

use them to reconstruct speech.

LP Coefficients

A 10th order linear prediction analysis is performed on the input speech signal using a 200

sample Hamming window. The traditional autocorrelation analysis is implemented using

Levinson-Durbin recursion, [22]. In addition, a bandwidth expansion factor of 0.994 is ap-

plied to each prediction coefficient ai, i = 1, 2, 3, . . . , 10, where each coefficient is multiplied

by 0.994i. Conversion of these LPC parameters to LSF is not very straightforward, however,

Kabal and Ramachandaran proposed an efficient way using Chebychev polynomials, [41].

These LSF parameters are sorted in ascending order with a minimum separation of 50 Hz.

The linear prediction residual signal is computed by filtering the input speech signal with

the prediction filter coefficients.
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Pitch Values

There are several steps before a final value is assigned to pitch. First the coder finds the

integer value of the pitch, followed by a fractional pitch refinement. The integer pitch is

calculated using the input speech signal. The signal is processed using a 1 kHz, 6th order

Butterworth lowpass filter. The integer pitch value, P1, is computed as the maximum of

the signal autocorrelation and can take on values of lag ranging from 40–160 ms, [40].

A refined pitch measurement is made on the 0–500 Hz passband (see below for details on

this passband). Two pitch candidates are considered for this refinement and selected from

the current and previous frames. For each candidate an integer pitch search is made over

lags from five samples shorter to five samples longer than the candidate. A fractional refine-

ment is computed using an interpolation formula (presented in [40]) around the optimum

integer pitch lag. This produces two fractional pitch candidates and their corresponding

normalized autocorrelation values. The maximum of the two autocorrelations is selected as

the fractional pitch, P2. For computation of the final pitch, P3, an integer pitch search is

performed over lags of 5 samples shorter to 5 samples longer than P2, rounded to the closest

integer. This measurement is done on lowpass filtered residual signal. Before assigning P3

the final pitch value, fractional refinement and pitch doubling checks are made.

Bandpass Voicing Strength Values

Five bandpass voicing strengths, Vb(i), i = 1, 2, . . . , 5, are determined based on five 6th order

Butterworth filters with passbands of 0–500, 500–1000, 1000–2000, 2000–3000 and 3000–

4000 Hz, respectively. The normalized autocorrelation value that results from P2 is saved

as the lowest bandpass voicing strength, Vb(1). For each remaining band, the bandpass

voicing strength is the larger of the autocorrelation value, computed at P2, as determined

by the fractional pitch procedure and the time envelope for the corresponding bandpass

signal.

The peakiness of the residual signal is computed as the ratio of the L2 norm to the L1

norm of the residual signal. If the peakiness exceeds 1.34, Vb(1) is set to 1. However, if it

exceeds 1.6, Vb(i), i = 1, 2, 3 are set to 1.
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Gain Factors

The input signal gain is measured twice per frame using a pitch adaptive window length.

Two window lengths are determined based on values of Vb(1), [40]. The gain in each window

correspond to G1 and G2 and are computed as the Root Mean Square (RMS) value of the

signal in the corresponding window.

Fourier Magnitude Calculation

This analysis measures the Fourier magnitudes of the first 10 pitch harmonics of the pre-

diction residual generated by the quantized prediction coefficients. The coder performs

a 512-point FFT on a frame of Hamming windowed vector of 200 samples. Finally, the

complex FFT is transformed to magnitudes and the harmonics are found with a spectral

peak-picking algorithm. These magnitudes are normalized to have an RMS value of 1.0.

If fewer than 10 harmonics are found using the peak-picking algorithm, the remaining are

forced to unity.

Aperiodic Flag

The aperiodic flag is set to 1 if Vb(1) < 0.5 and to 0 otherwise. When set, it tells the decoder

that the pulse component of the excitation should be aperiodic, rather than periodic.

Transmission Format

Prior to transmission these parameters are quantized using Multi-Stage Vector Quantiza-

tion (MSVQ). The transmission rate is 2400 bps ± 0.01%. Since all frames contain 54 bits,

the frame length is 22.5 ms ± 0.01%, Table 3.1. For speech sampled at 8 kHz, this would

imply a frame length of 180 samples, Fig. 3.2.

To improve the performance of MELP coder, unused parameters during unvoiced mode

are used for Forward Error Correction (FEC), [40].

3.1.2 The Decoder

The received bits are first unpacked and assembled into parameter codewords. Pitch is

decoded first, as it (augmented with aperiodic flag information) dictates reception of either

voiced or unvoiced speech segment at the receiver, Fig. 3.1. For a voiced segment, the
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Table 3.1 Bit allocation in a MELP frame for voiced and unvoiced speech
segment.

Parameters Voiced Unvoiced

LSF’s 25 25
Fourier magnitudes 8 -
Gain (2 per frame) 8 8

Pitch, overall voicing 7 7
Bandpass voicing 4 -

Aperiodic flag 1 -
Error protection - 13

Synchronization bit 1 1

Total bits / 22.5 ms Frame 54 54

ten Fourier magnitudes (Table 3.1) are inverse transformed to obtain the pulse excitation

followed by multiplication with the square root of the associated pitch. For an unvoiced

segment, on the other hand, a uniform number generator is used to obtain the noise ex-

citation pattern. The pulse and noise excitation signals are then filtered and summed to

obtain the mixed excitation signal. It is this very part of the vocoder that is unique to

MELP. Such a mixing of pulse and noise assists in countering the effects of tonal thumps

and buzz in reconstructed speech. Prior to synthesizing speech, the mixed excitation sig-

nal is spectrally enhanced. The filter coefficients of this enhancement stage are generated

by bandwidth expansion of LP filter transfer function. Synthesized speech is obtained by

filtering the spectrally enhanced excitation signal with the LP synthesis filter (whose coef-

ficients are generated from the transmitted LSFs), gain modification and filtering with a

pulse dispersion filter, [40].

3.1.3 Speech Coding Parameters in Noisy Environment

It is important to note that the residual signal is used for the computation of all the key

parameters (apart from LPC parameters) involved in the MELP coder. Hence, its accuracy

is crucial to the coder’s optimal performance insofar intelligible speech reconstruction is

concerned. Further, as noted above, the residual signal is computed as the output of the

LP analysis filter. This in turn requires an accurate estimation of these parameters. How

these parameters degrade under background noise are of concern in this subsection.
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After applying one of two Ephraim and Malah Suppression Rules (EMSRs) as front-

end processors to parametric speech coders, it is noticed that most degradations and loss of

intelligibility are due to errors in the spectral parameters. In 1999, Martin and Cox tackled

the problem of speech enhancement for vocoders. More specifically they noted that while

spectral valleys in between formant frequencies are not important for speech perception

(thus filling them with noise will improve auditory impression), they are important for

LPC estimation, [15]. A low noise attenuation does not remove a sufficient amount of noise

from the disturbed signal and a high noise attenuation will also distort speech components.

Thus, it is not quite obvious how aggressive the noise suppression rule should be to trade-off

between perception and estimation.

As an example, consider Fig. 3.3-A which shows the magnitude squared DFT coefficients

(dotted), the LPC spectrum for a given frame of noisy speech data (corrupted with additive

white noise, such that the overall SNR is 6 dB3) and the LPC spectrum of the same clean

speech frame (solid) for reference. In Fig. 3.3-B, the same graphs are seen with minimum

gain set to −10 dB, while Fig. 3.3-C depicts graphs when the minimum gain is limited

to −20 dB4. Comparing Fig. 3.3-B and Fig. 3.3-C shows that the latter tracks the clean

speech more closely. In particular, note that the first formant (the peak) matches the clean

signal formant better than in case B.

Therefore, it can be concluded that a high maximum noise reduction is beneficial for

enhancement of low SNR speech when it is input to parametric speech coders. However,

for high SNR speech it might lead to undesirable speech distortions and, especially during

speech pause, it might result in musical noise. It is therefore of prime interest to optimize

the maximum attenuation (or minimum gain value) as a function of input speech SNR such

that the LPC coefficients track the original LPC structure better.

3.2 Specialized Pre-Processors

In Section 3.1.1, it is noted that different speech parameters are obtained from different

properties of speech. Therefore, it seems natural to have different speech enhancement

pre-processors to accurately extract these different parameters, Fig. 3.4. In 1999, Accardi

3To compute the amount of noise to be added to obtain a particular SNR (in dB) refer to Section 4.1.2.
4The corrupted speech was enhanced using the MMSE-LSA, seen earlier in Section 2.4, due to its close

relation to Itakura-Saito distortion measure, [34]. The gain is restrained to either −10 dB or −20 dB.
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Fig. 3.4 Specialized pre-processor for speech coders. In the original proposal
Accardi refers to Type L as Type 1 and Type R as Type 2.

and Cox proposed using one enhancement scheme for computation of LP parameters (Type

L)5 and another scheme for computation of residual signal (Type R), [16], for their target

low-bit rate IS-641 speech coder6. For Type L enhancement, Accardi proposes, what he

calls a magnitude-squared core estimator: E{|Xk|2Xk} in terms of a priori SNR defined

by Ephraim and Malah in Section 2.3.1:

E{|Xk|2|Yk} =

(
Sxx[k]

Sxx[k] + Sdd[k]

)2

|Yk|2 +
Sdd[k]Sxx[d]

Sxx[k] + Sdd[k]
,

=

(
ηk

1 + ηk

)2

|Yk|2 +

(
ηk

1 + ηk

)
Sdd[k],

(3.1)

where Xk and Yk are the spectral components of the clean and the noisy speech. Sxx and

Sdd are the power spectral densities of the clean speech and noise only signal, respectively,

and ηk is interpreted as the a priori SNR.

For Type R enhancement scheme he proposes a gain function GSS using a Signal Sub-

5Although, in the original proposal Accardi refers to Type L as Type 1 and Type R as Type 2. However
in Chapter 4, the nomenclature of Type L and Type R will be used.

6The IS-641 speech coder is the Enhanced Full Rate (EFR) speech codec that has been standardized
in 1996 for the North American TDMA digital cellular systems (IS-136). The codec is based on ACELP
algorithm and has a gross bit-rate of 13.0 kbps (7.4 kbps for source coding and 5.6 kbps for channel coding).
The resulting speech quality is close to that of the wireline telephony as compared with G.726 32 kbps
ADPCM speech codec, and is robust to errors arising from typical cellular operating conditions such as
transmission errors, environmental noises and tandeming of speech codecs, [42].
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space Approach proposed by Ephraim and Van Trees, [43]:

GSS =

√
exp

(
− ν

σ2
d

λx[k]

)
, (3.2)

where ν is a constant that determines the level of aggression of the enhancement, σd is the

noise variance and λx is the kth eigenvalue of the clean speech. GSS is multiplied with the

Fourier magnitude of the corrupted speech, combined with the phase of noisy speech and

inverse FFT transformed and overlap-added with previous enhanced frames.

However, Accardi proposed Eq. (3.2) in terms of the a priori SNR, ξk, the probability

of signal absence, qk, and the multiplicative modifier, GMM, (these were discussed earlier

in Section 2.3.2):

GSS = GMM · exp

(
− νk

ξk

)∣∣∣∣
ξk=

ηk
1− qk

. (3.3)

In [44], Accardi compares the formant structure of a certain speech segment in an

attempt to show how well his Type L enhancement scheme tracks the formant structure of

the original clean speech in the same frame. However, as will be seen in Section 3.2.1, there

is a more reliable strategy for tracking the formant structure. As for Type R enhancement,

Accardi argues the validity of Eq. (3.3) by performing some informal listening tests and

establishing that pitch prediction errors are not terribly annoying in the decoded speech—

manifesting themselves as subtle clicks in the worst case. In Section 3.2.3, a new model is

derived with the motivation of maximizing MOS so as to perceptually enhance the lower

branch in Fig. 3.4.

3.2.1 Adaptive Limiting Scheme for LP Estimation

This scheme strives to improve the LP parameter estimation and, thereby, to increase

the robustness and intelligibility of coded speech. The motivation behind their work was

presented in Section 3.1.3.

As seen in Section 2.5.1, it is advised to limit ξk between 0.1 and 0.2 to avoid low-level

structured musical noise. This means that less attenuation is assigned to low SNR frames

and hence, the spectral valleys are less attenuated. As a result the overall spectral shape of

speech sound is affected and an accurate estimation of spectral parameters is disturbed. On

the other hand, not limiting ξk will yield considerable amounts of annoying musical noise.
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In 1999, Martin and Cox attack this problem by presenting an Adaptive Limiting Scheme

for LP Estimation (referred to as MMSE-LSA with ALSE in this thesis) to compute a lower

bound on the a priori SNR, [15]. Whenever a speech pause is detected (using a VAD) ξk is

set to a constant minimum value of 0.12. If an active speech segment is detected the limit

changes adaptively (as it is a function of SNR):

ξmin1 =

ξminP , for pause segments,

ξminP · exp(−5) · (0.5 + SNR)0.65, for active speech segments,
(3.4)

where ξminP = 0.12 (in their proposal) and SNR is the Signal-to-Noise Ratio of the analysis

frame. This preliminary limit is smoothed by a first order recursive system to provide

smooth transition between active and pause frames:

ξmin(m) = 0.9ξmin(m− 1) + 0.1ξmin1(m), (3.5)

where m is the index of the analysis frame. This resulting ξmin is then used as lower limit

for ξk.

3.2.2 Formulation of Adaptive Limiting Scheme—A Heuristic Approach

The proposal on the adaptive lower limit for ξk, made by Martin and Cox in [15], is not

very intuitive. In 2000, Martin et al. outlined the methodology that was carried out to

optimize the lower limit on ξk, [45]. The purpose of this sub-section is to highlight the

heuristic approach that they deployed.

1. Sixty seconds of male and female speech files were corrupted with computer generated

white noise at various SNRs: 0, 6, 12, 18, 24 dB.

2. These files were processed separately with MMSE-LSA estimator for twelve fixed

lower limits on ξk: −3, −8, −11, −17, −20, −23, −26, −29, −32, −35, −38, −40 dB.

3. The enhanced files were passed through the Adaptive Multi-Rate (AMR) speech coder

(operating at 4.75 and 12.2 kbps modes) and LSF parameters for each frame were

recorded (five per frame). These parameters were used in conjunction with the corre-

sponding five LSF parameters of the clean spectra to compute ∆2
LSF using Eq. (2.38).
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4. For each speech file with the specified input SNR, the ∆2
LSF was plotted against the

pre-defined lower limits on ξk. A cubic spline was used to interpolate the measured

points. The minimum point on this curve was recorded, Fig. 3.5(a).

5. After computing the optimum for all other SNR values the resulting minima is plotted

against input SNR, Fig. 3.5(b).
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Fig. 3.5 Heuristic approach to defining Eq. (3.6).

Consider Fig. 3.5(a), which exemplifies the procedure. A sixty second female speech file

is corrupted with computer generated white noise such that the input SNR is 0 dB. This

noisy speech is enhanced using the MMSE-LSA noise suppression rule twelve times. Each

time the lower limit for ξk is chosen to be one of the twelve values listed in point 2 above.

Each of the resulting twelve ‘denoised’ speech files is coded using the AMR speech coder.
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The minimum Euclidean distance (∆2
LSF ) is computed for each of the twelve coded files.

These values of ∆2
LSF are plotted against the twelve lower limits on ξk. The plot for this

example of 0 dB female speech is seen in Fig. 3.5(a). Similarly, other ∆2
LSF vs. the lower

limits on ξk graphs are plotted (not shown here) for speech corrupted at the other four SNR

values (see point 1, in the above description of the heuristic approach). The lower limit on

ξk for which the minimum occurs, is plotted against the input SNR in Fig. 3.5(b). In this

example the minimum value of ∆2
LSF is 3.1x10−3 at ξmin ≈ 15 dB. This point is recorded

and plotted in Fig. 3.5(b).

Likewise, the procedure is executed with male speech to obtain the dashed curve

in Fig. 3.5(b). The solid curve in the figure represents the line of best fit between male and

female heuristic data, and is mathematically expressed in Eq. (3.6).

3.2.3 Proposed Adaptive Limiting Scheme for Perception

Owing to the strategy employed by Martin and Cox, it is worthwhile to derive another

lower bound on the a priori SNR such that MOS is maximized. As seen earlier, the

lower branch in Fig. 3.4 serves to model the excitation signal, also known as the excitation

signal. Since the Mean Opinion Score (MOS) gives the listeners’ opinion on reconstructed

speech, it seems legitimate to maximize such a score. It is a well known fact that MOS

ratings are very time consuming to obtain as they require a large number of listeners

and exhaustive data collection, Section 2.6.1. As noted earlier, several perceptual quality

evaluation standards have been released by ITU-T, of which PESQ is the latest released

(February 2001) perceptual measure.

In this thesis, work was carried out to maximize MOS. For the method proposed in

this thesis, steps 1–5 (from Section 3.2.2, but with 12 s of speech files) were followed with

MOS (taken as output of the PESQ), instead of ∆2
LSF , as the cost function. Even though

PESQ has not been validated for noise reduction systems yet, it seems the most reasonable

solution to obtaining MOS ratings for the purposes of deriving an adaptive lower bound on

ξk. For step 3, two speech coders were used instead of the AMR speech coder: the 8 kbps

G.7297 and the MELP speech coder. As noted earlier in Section 2.6.1, PESQ has not been

7The ITU-T recommendation describes the 8 kbps toll quality speech coder that is based on Conjugate
Structure Algebraic Code LP (CS-ACELP) algorithm. The coder operates on 10 ms of speech frames.
For every frame, the speech signal is analyzed to extract the parameters of the CELP model (LP filter
coefficients, adaptive and fixed codebook indices and gains). The bits are encoded and transmitted. At
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validated for low bit-rate speech coders (such as those with bit rate < 4 kbps). The results

obtained with G.729 are very close in comparison to those obtained with MELP as the

underlying test coder—Fig. 3.6 compared to Fig. 3.7.
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Fig. 3.6 Heuristic approach to defining ALSP for G.729 speech coder.

The line of best fit (solid line) for the two test cases is:

ξmin = 0.0013(SNR)3 − 0.1(SNR)2 + 2.5(SNR)− 32, (3.6a)

ξmin = 0.0013(SNR)3 − 0.1(SNR)2 + 2.5(SNR)− 38, (3.6b)

where ξmin will be called the Adaptive Limiting Scheme for Perception (also referred to

as MMSE-LSA with ALSP) in this thesis. Eq. (3.6a) corresponds to G.729 speech coder

while Eq. (3.6b) when MELP coder is used instead. Note, that the only difference between

the two equations is an offset of 6 dB. Thus, even though PESQ has not been validated

for low bit-rate coders, results generated in conjunction with the 8 kbps G.729 seem to

correlate well with the MELP coder. In this thesis, Eq. (3.6b) is applied to all the frames

irrespective of them being a combination of speech and noise or noise only, prior to encoding

with the MELP vocoder.

the decoder end, speech is reconstructed by filtering the excitation signal with the synthesis filter. After
computing the reconstructed speech, it is further enhanced with a post-filter. In addition to the 10 ms
frame delay, there is an additional 5 ms delay due to lookahead, [46].
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Fig. 3.7 Heuristic approach to defining ALSP for MELP speech coder.

A detailed analysis of the results obtained in the heuristic approach taken to find

Eq. (3.6b), can be seen in Fig. 3.8. In Fig. 3.8-A five plots of MOS (female speech corrupted

with computer generated white noise at five levels input SNR) are seen plotted against the

twelve different values of the lower limit on ξk. The lower limits on ξk corresponding to the

maxima are plotted against the corresponding levels of input SNR in Fig. 3.8-B. Similarly,

male speech is used to obtain the dashed curve. The line of best fit defines the equation of

the lower limit to be used on ξk, and is seen in Eq. (3.6b).

Thus, there are two new lower bounds on ξmin: one that assures more accurate LSF

estimation (using MMSE-LSA with ALSE) and the other that maximizes the MOS rat-

ings (using MMSE-LSA with ALSP). Using these as Type L and Type R enhancement

schemes in Fig. 3.4, respectively, will serve to reconstruct speech that is encoded at low-

bit rates. Chapter 4, presents results using a subjective measure (A–B Comparison Test,

see Section 4.3.1) and some objective measures discussed in Section 2.6.

The aim of the following section is to compare the various noise suppression rules

discussed so far.
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Fig. 3.8 Heuristic approach to defining MMSE-LSA with ALSP.

3.2.4 Comparison between the noise suppression rules

In order to understand the different noise suppression rules, discussed earlier, it would be

informative to consider Fig. 3.9. This graph is indicative of the amount of attenuation

applied to short-time noisy speech frames for a given input SNR (or, a priori SNR, ξk).

As noted earlier, EVRC noise suppressor sets up a floor at around −13 dB for noise only

frames, Section 2.2. It is this very factor that assists it in reducing the annoying effects

of musical noise and leaving a “natural sounding” background noise during speech/pause

transitions. But, EVRC noise suppressor may not be optimal in the sense of parameter

estimation. In fact, consider an input SNR of about 0 dB. At that input, MMSE algorithms

offer an additional 3.5 dB attenuation over EVRC noise suppression rule. From a formant
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Table 3.2 Levels of attenuation offered by various noise suppression rules
vs. SNR of −20 dB.

Noise suppression rules Gain in dB

EVRC −13.00
MMSE-STSA −16.22
MMSE-LSA −16.94

MMSE-LSA with ALSE −14.79
MMSE-LSA with ALSP −16.94
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Fig. 3.9 Gain curves for various noise suppression rules vs. input SNR.

structure viewpoint, it means that MMSE algorithms tend to remove more noise from the

valleys in between the formants. As was seen earlier in Fig. 3.3, removing more noise from

the valleys helps in restoring the bandwidth of the formants (allowing a better estimation of

LPC parameters). Hence, EVRC noise suppression block tends to perform poorly for LPC

parameter estimation, as it leaves more noise in the spectral valleys. On the other hand,

both MMSE-STSA and MMSE-LSA attenuate noise rather significantly. From Fig. 3.9 it is
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Fig. 3.10 Effect of different noise suppression rules on parameter extraction.
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seen that the MMSE-LSA attenuates noise by an additional amount of 2 dB over MMSE-

STSA noise suppression rule. This phenomenon can be explained by exploiting Jensen’s

inequality (seen in Section 2.4.1), which states that the log estimate is always smaller or

equal to the actual estimate. MMSE it is seen that the log of the magnitude estimate is

always smaller than or equal to the actual magnitude estimate.

Although MMSE-LSA offers more attenuation of noise under harsh acoustic conditions

it is not necessarily optimal for LPC estimation. Fig. 3.9 also shows the gain curve for

MMSE-LSA with ALSE. Note, that on the bottom right of the figure there is an expanded

section of this graph that shows the different levels of attenuation applied to input frames.

This is in contrast to the EVRC noise suppression where the applied gain is constant for

frames with input SNR less than 3 dB. Hence, the name adaptive for the rule proposed by

Martin and Cox, [15]. Similarly, the gain curve associated with MMSE-LSA with ALSP

is seen as dash-triangle curve and has a ‘sigmoid’ shape. Thus, the noise suppression rule

developed in this thesis attempts to take advantage of the high maximum attenuation

offered by MMSE-LSA, and at the same time minimizes signal distortion by setting a

threshold (at around −26 dB) for input speech SNR less than −35 dB.

How these noise suppression rules affect the various parameter estimation (such as pitch

and bandpass voicing strength) for MELP speech coder is of interest. Some of the relevant

distortion measures were discussed in Chapter 2.

Fig. 3.10, indicates three graphs that show the effect of additive noise on speech param-

eters used by the MELP encoder. From Fig. 3.10(a) it is apparent that ALSE Eq. (3.6) is

the best choice for Type L enhancement. However, Fig. 3.10(b) shows that MMSE-LSA

with ALSP is about 4% superior over other STSA algorithms and about 30% over EVRC

noise suppression algorithm when used to extract pitch value from speech with input SNR

of 0 dB. Fig. 3.10(c) presents percentage of accurate bandpass voicing strength extraction

from corrupted speech. It is noticed that, although, EVRC noise suppression rule compares

to other algorithms at speech SNR higher than 10 dB, it fails to achieve high accuracy for

signals under harsh acoustic conditions. Thus, in the light of pitch prediction results it

seems germane to use MMSE-LSA with ALSP as Type R enhancement scheme for low-bit

rate speech coders.
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3.3 Summary

This chapter looked at the new Federal standard on voice coding—MELP and the various

parameters it extracts from speech to encode it. The harsh effects of background noise

on parameter estimation and specialized pre-processors to circumvent these issues were

discussed. Further, some results were presented that show use of one speech enhancement

technique being more appropriate for parameter extraction, while another technique may

be better suited for improved speech quality. The next chapter focuses on the validity

of such a dichotomy between estimation and perception to produce a more robust speech

enhancement block for low-bit rate speech coders.
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Chapter 4

System Evaluation

This chapter presents evaluations of the performance of several speech denoising algorithms

discussed earlier in this thesis. As noted in Chapter 3, different speech enhancement al-

gorithms are tailored to extract different speech parameters. For instance, MMSE-LSA

with ALSE is used as a noise suppression algorithm that will assist in better LP parame-

ter estimation, while MMSE-LSA with ALSP was geared at maximizing the MOS rating.

Therefore, a two-branch scheme is suggested that will serve to dichotomize LP parameter

estimation and speech perception. It is speculated that such a scheme will improve the

overall perceptual quality of encoded speech in the presence of background noise. To verify

this speculation, some of the tests listed in Chapter 2 are conducted. The preparation of

the test data is discussed in detail in Section 4.1. In Section 4.2, details of the experiments

carried out in the laboratory are mentioned.

In this thesis, several combinations are tested subjectively using the A–B comparison

test, see Section 4.3. Based on the results from these subjective tests (i.e., listeners’ opin-

ion), it is relatively easy to select the preferred speech enhancement combination. Later

in Section 4.4 the preferred system is tested under several acoustic conditions in the pres-

ence of various noisy environments.
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4.1 Preparing Test Data

The test data was prepared using the procedure described in Supplement 23 to ITU-T P-

series Recommendations1, [47]. In fact, the methodology described in the recommendation

was used to test the speech quality of the G.729 speech coder. Hence, it seems appropriate

to follow the instructions in the recommendation to prepare test data for this study.

4.1.1 Speech Material

The speech material consists of simple and meaningful sentences (referred to as utterances).

These utterances are chosen from lists of phonetically balanced2 utterances and are easy to

understand. In 1969, the IEEE committee issued a six year study on phonetically balanced

short utterances, which later became available as the Harvard list, [48]. The Harvard list

consists of 720 utterances that have been grouped into 72 phonetically balanced lists of 10

utterances each. These utterances were recorded under controlled conditions at a sampling

frequency of 48 kHz (for testing, these were downsampled to 8 kHz and filtered with a

lowpass filter designated as the modified Intermediate Reference System (mIRS)3. A 16-bit

(i.e., dynamic range of [−32768, +32767]) A/D converter is used for encoding.

According to ITU-T Series P recommendations, [47], the speech files should be made

into sets of two or three in such a way that there is no obvious connection of meaning

between the utterances in a set. Thus, a speech test file is generated with an initial silence

(prologue to the sentences) of 0.3 s followed by two same gender utterances, separated with

a silence (or pause) of 0.5 s, and terminated (epilogue to the sentences) with a silence of

0.2 s, [47]. For details on the speech test files used in this thesis see Table 4.1.

Once, the clean speech files are created, they are ‘corrupted’ with additive noise.

1ITU-T P-series are Recommendations on telephone transmission quality, telephone installations, local
line networks.

2In phonetically balanced utterances, phonemes appear with a similar frequency to their occurrence in
normal speech.

3The filter response is specified in ITU-T Recommendation G.712. The ITU-T models the overall
telephone transmission system (including the effects of the transmitting and the receiving end as the Inter-
mediate Reference System (IRS)). However, for speech coding purposes only part of this overall response
is seen by the speech coder. Telecommunications Industry Association (TIA) and ITU-T for speech coders
use mIRS that models only the transmitting side, [49].
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Table 4.1 Speech files. Numbers in square brackets indicate lengths in sec-
onds.

Speaker [prologue]Utterance1[pause]Utterance2[epilogue]

Male1 [0.3]The lure is used to catch trout and flounder.[0.5]
The hostess taught the new maid to serve.[0.2]

Male2 [0.3]A siege will crack the strong defense.[0.5]
The thaw came early and freed the stream.[0.2]

Female1 [0.3]The birch canoe slid on the smooth planks.[0.5]
Wipe the grease off his dirty face.[0.2]

Female2 [0.3]The nozzle of the fire hose was bright brass.[0.5]
The beach is dry and shallow at low tide.[0.2]

4.1.2 Noise Material

The noise files suggested in the ITU-T Recommendation on subjective test plan, [47], have

been used in this thesis. The noise types listed in the recommendation are: office babble,

car noise, street noise, Hoth and music. For the purposes of calculating the level at which

noise must be added, ITU-T Recommendation P.56 is used, [50]. Essentially, the SNR is

determined as the ratio of the active level for speech to the RMS level of the recorded noise.

Specifications for the measurement of the active level of speech signals are given as Method

B in [50].

4.2 The Experiment

The aim of the experiments is to evaluate the performance of the MELP speech coder (in

the presence of background noise) when its input is conditioned with the following four

noise suppression algorithms: MMSE-LSA, MMSE-LSA with ALSE, MMSE-LSA with

ALSP and the EVRC noise suppression rule. For the purposes of evaluation, noisy speech

(without any enhancement) is also encoded.

Apart from these noise suppression rules, the evaluation also aims at testing the two-

branch schemes (for instance, MMSE-LSA for LP parameter estimation, and the EVRC

noise suppression for residual signal computation). It must be noted that a total of p2

schemes can be produced, where p is the number of speech enhancement algorithm. In this

thesis, 5 “enhancement algorithms” (4 noise suppression rules and 1 without any enhance-

ment) are considered. Thus, there are 25 potential pre-processing schemes, see Table 4.3.
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Table 4.2 Nomenclature for noise suppression rules.

Algorithm Number Noise Suppression Rule

1 Noisy (no enhancement)
2 MMSE-LSA
3 MMSE-ALSE
4 MMSE-ALSP
5 EVRC noise suppression

To understand the nomenclature better consider the underlined combination “R4-L3”

in Table 4.3. Here ‘R’ stands for speech enhancement for Residual signal computation

(i.e., Type R enhancement), while 4 stands for the fourth algorithm (i.e., MMSE-LSA

with ALSP, Table 4.2). Similarly, ‘L’ stands for speech enhancement for LP parameter

estimation, while 3 stands for the third algorithm (MMSE-LSA with ALSE, Table 4.2).

This example of nomenclature description is seen in Fig. 4.1.

Table 4.3 The combinations used to test the system of Fig. 3.4. The nomen-
clature of Rn − Lm refers to n being used for Type R (i.e., Residual signal
computation) while m for Type L enhancement (i.e., LP parameter estima-
tion).

Type L Type R Enhancement
Enhancement Noisy (R1) LSA (R2) ALSE (R3) ALSP (R4) EVRC (R5)

Noisy (L1) R1-L1 R1-L2 R1-L3 R1-L4 R1-L5
LSA (L2) R2-L1 R2-L2 R2-L3 R2-L4 R2-L5

ALSE (L3) R3-L1 R3-L2 R3-L3 R3-L4 R3-L5
ALSP (L4) R4-L1 R4-L2 R4-L3 R4-L4 R4-L5
EVRC (L5) R5-L1 R5-L2 R5-L3 R5-L4 R5-L5

In order to decrease the complexity of the experimentation, initially only one noise

type—car noise with an SNR of 10 dB is considered. Preliminary subjective results are

obtained with car noise (see Section 4.3.2) and are used to identify the preferred speech

enhancement scheme from the 25 schemes listed in Table 4.3. Followed by this, objective

measures are used to qualify the reliability of the system in the presence of other background

noises at varying SNR.

For the preliminary evaluation, two male and two female speech files (Table 4.1) are

contaminated with car noise at 10 dB. These files are then high-pass filtered (as done by
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Fig. 4.1 Basic system under test.

the EVRC standard, Section 2.1.3). The files are then level-aligned with a clean reference

signal, prior to sending them through the four noise suppression algorithms, see Table 4.2.

After denoising the speech files they encoded using the MELP speech coder. Subjective

tests are performed on the encoded speech, Section 4.3. The files are once again level-aligned

so that they have the same playback volume. These files have also been time-aligned, and

its importance will be seen in Section 4.4.2.

4.3 Subjective Results

In Chapter 2, several subjective measures were listed. Most of those methods require rigid

testing environments. A simpler and more amenable subjective test is the A–B comparison

test and is described in Section 4.3.1.

4.3.1 A–B Comparison Test

The A–B comparison test involves presenting listeners with a sequence of two speech test

files4 (A and B). After listening to them once, they have to decide whether they preferred

file A or file B. If they have no preference they are allowed to choose as “don’t care”. It

may happen that the listener is slightly biased to the second file (B in this case), since

that is the last (s)he heard. This will be referred to as the order bias. To reduce this

bias, listeners are provided with both A–B and B–A orders at different times. Consider the

4Recall that a test file has the structure defined in Table 4.1.
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playlist in Table 4.4. In row 2 and 4 the order of the files is reversed (i.e., the listeners are

first presented combination R4-L3–R5-L5 and then the order is reversed to R5-L5–R4-L3).

However, the underlying speaker (female in this case) is the same while the utterances

change (Female1 in A–B case, while Female2 in B–A case). Further, the reversed order

is played after at least one other combination (Female1 R2-L3–R4-L3, in this instance) is

played. Such a spacing between reversed playback, allows listeners to forget about the first

combination (i.e., R4-L3–R5-R5 in this example).

Table 4.4 Sample playlist for the A–B comparison test.

Speaker A B

Male1 R1-L1 R2-L3
Female1 R4-L3 R5-L5
Female1 R2-L3 R4-L3
Female2 R5-L5 R4-L3

...
...

...

Complexity in A–B Comparison tests

Assume that there are p algorithms to be tested against each other. This would require

at least 2(p2 − p) speech test files, since a given algorithm is not compared with itself and

the files are duplicated to perform both A–B and B–A tests. In this thesis, there are 25

combinations to be tested against each other. This would translate to a total of 1200 test

files to be played to listeners. To reduce this number of test files, preliminary informal tests

were conducted (three subjects were used) to eliminate some of the 25 combinations. The

three listeners eliminated combinations that were terribly annoying, either due to muffled

speech output or the presence of tonal thumps. The five combinations that were selected

for exhaustive A–B comparison tests appear in boldface in Table 4.3. For convenience these

are listed again: R1-L1, R1-L3, R2-L3, R4-L3 and R5-L5. A detailed description of these

schemes is shown in Fig. 4.2. Note that prior to any sort of testing, subjective or objective,

the output from all schemes is coded with the MELP speech coder. For the rest of this

thesis, when referring to the output of any scheme, it is implied that it is coded as well.
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Fig. 4.2 Schemes on which the A–B was conducted.
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4.3.2 A–B Test Results

Male1, Male2, Female1 and Female25 (from Table 4.1) were used 10 times each, while

making sure that the same speaker with different utterances is used. A team of 15 listeners

(2 female and 13 male), aged between 19–26 were taken from the faculty of Engineering at

McGill University.

Table 4.5 Lower Triangle (A–B) and Upper Triangle (B–A). The format of
xA - d - yB, refers to x number of listeners preferring A, d denotes the “don’t
care” responses and y number preferring B.

B
A

R1-L1 R1-L3 R2-L3 R4-L3 R5-L5

R1-L1 × 0A - 1 -14B 8A - 1 - 6B 8A - 0 - 7B 2A - 9 - 4B
R1-L3 8A - 4 - 3B × 11A - 2 - 2B 12A - 0 - 3B 11A - 2 - 2B
R2-L3 13A - 1 - 1B 13A - 0 - 2B × 2A - 3 -10B 7A - 0 - 8B
R4-L3 13A - 1 - 1B 14A - 0 - 1B 4A - 6 - 5B × 1A - 0 -14B
R5-L5 5A - 2 - 8B 2A - 0 -13B 14A - 0 - 1B 0A - 2 -13B ×

Table 4.5 shows the A–B and B–A comparison test results. In this table the lower

triangle is representative of the A–B tests, while the upper triangle is an indication of

the B–A tests. For instance consider the underlined entry in the lower triangle (i.e., A–B

test) of the table (13A - 1 - 1B). This implies that the listeners are presented with R2-L3 (i.e.,

Scheme III) and then R1-L1 (i.e., Scheme I) in that order. From the raw data it is seen that

13 listeners preferred A, 1 did not have any preference over the two files and 1 listener preferred

B. To circumvent the order bias, the B–A test is performed. The results are seen in the upper

triangle of the table (8A - 1 - 6B). Thus, when the speech test files are played back in the reverse

order (R1-L1 first and R2-L3 second), it is seen that only 8 (as opposed to 13 in the A–B test)

preferred A, 1 did not have any preference and 6 preferred B (as opposed to 1, when the files were

played in the A–B order).

Playing the files in reverse order does may not always discount the order bias. For instance,

consider the italicized entries in Table 4.5. In the A–B test (lower triangle) 13 listeners prefer B

over A (B being the second file played), while from its counterpart during B–A testing (upper

triangle), 11 listeners prefer A over B (where A is now played second). This implies that the

5Each speech test file was corrupted with 10 dB car noise and denoised using different algorithms. It
would have been ideal to try 5 and 20 dB and other noise types as well, but to avoid listener strain the
tests were limited to 10 dB car noise only.
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listeners were biased as they preferred the second speech file regardless of the playback order

being reversed.

4.3.3 Summary of A–B Test Results

Table 4.6 shows the aggregate of the A–B and the B–A tests. These are then computed as

percentage. Readers are pointed to Fig. 4.2, to better understand the inferences drawn from

these A–B listening tests.

Table 4.6 Combined A–B and B–A results. The format of xA - d - yB,
refers to x percentage of listeners preferring A, d denotes the “don’t care”
responses and y percentage preferring B and .

B
A

R1-L1 R1-L3 R2-L3 R4-L3 R5-L5

R1-L1 ×
R1-L3 27A -16 -57B ×
R2-L3 70A - 7 -23B 80A - 7 -13B ×
R4-L3 70A - 3 -27B 87A - 0 -13B 20A -30 -50B ×
R5-L5 23A -37 -40B 43A - 7 -50B 70A - 0 -30B 3A - 7 -90B ×

• The majority of the listeners preferred R4-L3 (i.e., Scheme IV) over R5-L5 (i.e., Scheme V,

which is the EVRC noise suppression block only as noise suppression pre-processor for

each of the two branches) scheme (90%). This implies that the EVRC noise suppression

block is not an ideal pre-processing stage for low bit-rate speech coding. In fact, listen-

ers preferred no enhancement of noisy speech as input to vocoders (R1-L1 or Scheme I)

rather than pre-enhancing it with EVRC noise suppression rule (40% prefer no enhance-

ment over 23% preferring EVRC noise suppression and 37% have no preference). As seen

earlier in Section 3.2.4, EVRC noise suppression tends to floor attenuation to −13 dB, thus

filling spectral valleys with noise (and hence improving auditory impression) and disrupting

accurate LP estimation.

• Both R4-L3 and R2-L3 perform equally well as pre-processors. This is seen in their compa-

rable performance against R1-L1 and R1-L3. Against R5-L5, 90% listeners prefer R4-L3,

while only 70% preferred R2-L3. However, when R4-L3 is compared against R2-L3, it is

seems that 50% preferred R2-L3, while 30% did not care.
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From these results, it seems that R2-L3 and R4-L3 schemes are the most preferred pre-

processors to low bit-rate speech coding. These will be referred to as Scheme III and Scheme IV,

respectively, in the remainder of the thesis. In the following sections, these schemes are tested

against different noise types at various SNR values using some of the objective distortion measure

described in Chapter 2.

4.4 Testing the System for other Noise Types

From the A–B tests it is seen that there are at least two schemes that listeners prefer over the

others. To avoid listener fatigue and exhaustive data collection, the selected schemes (III and

IV) are tested for performance under other acoustic conditions (varying SNR) in the presence of

different noise environments. The purpose of this section is to look at some objective measures

that were discussed in Chapter 2. Segmental SNR and SNR improvements are meaningful when

noise is additive. However, noise introduced by vocoders (e.g., MELP speech coder) has correlated

noise components, [34, 37], and hence its computation is avoided in this thesis.

4.4.1 Mean Opinion Score

In Section 2.6.1, a detailed description of MOS ratings was presented. That section also introduced

the ITU-T standard P.861 on Perceptual Evaluation of Speech Quality (PESQ). Although it has

not been validated for speech enhancement schemes, it is used in this thesis to obtain MOS

ratings. Both Scheme III and Scheme IV are tested against four different noise types—Hoth

noise, car noise, office babble and music. Supplement 23 on ITU-T P series recommends use of

these noise types at SNR values of 10 dB and 20 dB. In addition, in this thesis, a more noisy

condition (SNR value of 5 dB) is tested. Fig. 4.3 shows plots of MOS ratings for speech (Male1

speech file, Table 4.1) corrupted with the aforementioned noise types. As required by PESQ, the

reference file is the uncoded noisy file (with the specified SNR), while the test file is the enhanced

speech file obtained by using Scheme III (dashed curve) and Scheme IV (solid curve) and are each

encoded using the MELP speech coder.

It must be noted that the MOS ratings seen in this figure are in the order expected for low

bit-rate speech coders, Fig. 1.2.

Two points can be inferred from these results:

• In all cases, for low input SNR (< 10 dB) Scheme IV outperforms Scheme III with a MOS

improvement in the range of 0.04–0.1. This result can be explained by considering Fig. 3.9,

which shows the gain curves for the various noise suppression rules. In that graph MMSE-
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Fig. 4.3 MOS ratings for several SNR in the presence of different background
noise.

LSA with ALSP (or algorithm number 4) tracks the MMSE-LSA (or algorithm number 3)

until very low a priori SNR values (about −35 dB). At lower than −35 dB MMSE-LSA

with ALSP, tends to attenuate the signal less thus trading off between signal distortion and

amount of noise attenuation better than MMSE-LSA. Hence, for low SNR values MMSE-

LSA with ALSP tends to show higher MOS ratings, as it tends to leave a little more noise in

the spectral valleys. For larger SNR, the MOS ratings are almost similar with the exception

when background disturbance is car noise (20 dB point on the star-solid/dashed curve).

• The steepness of the curves is the same, except for the car noise case. Between 5–10 dB, car

noise case MOS rating is the steepest (almost a 0.4 improvement in MOS over 10 dB) after

which it tends to follow the steepness of other curves. Unlike other noise types, car noise

has high energy content in low frequencies. Thus, at low SNR of 5 dB, the high frequency

content of speech is preserved.
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4.4.2 Objective Results

This subsection shows how the two schemes perform against each other in extracting speech

parameters (in the presence of several noise types) required by the MELP speech coder. In Fig. 4.4,

three plots are presented.

Fig. 4.4(a) shows similar results for either Scheme III (MMSE-LSA with ALSE for LP estima-

tion and MMSE-LSA for residual signal computation) and Scheme IV (MMSE-LSA with ALSE

for LP estimation and MMSE-LSA with ALSP for residual signal computation), Fig. 4.2. This

does not come as a surprise, since in either scheme the same speech enhancement (MMSE-LSA

with ALSE) is used to estimate the LPC parameters. Fig. 4.4(b) presents results on percentage

correct pitch prediction. In this graph it is seen that Scheme III performs slightly better (about

2–5%) when the SNR is in the range −10 to 10 dB. However, for higher SNR, enhancing speech

with either scheme produces almost identical results. In Fig. 4.4(c), results of percentage correct

bandpass voicing strength are plotted. It is noted that for either scheme the results are almost

identical.

4.5 Summary

This chapter looked at the methodology adopted to evaluate a speech enhancement system as a

pre-processor to low bit-rate speech coding. Such a speech enhancement system is one that uses

different noise suppression schemes to extract speech parameters (in the presence of background

noise) used by the MELP speech coder.

Speech files are corrupted with additive car noise (such that the SNR is 10 dB) and presented to

listeners, to obtain their preference (using the A–B comparison test) on the various combinations

studied in Chapter 2 and Chapter 3. From the listeners choices two schemes were selected—

Scheme III and Scheme IV, see Fig. 4.2. Followed by this, the two schemes are tested for various

acoustic conditions (varying SNR values) in the presence of office babble, music, Hoth and car

noise. From the results obtained in Fig. 4.3 and Fig. 4.4, it is noted that Scheme IV outperforms

Scheme III slightly under harsh acoustic conditions (ranging from −10 to 10 dB). However for

benign environments (> 10 dB), either scheme can be used, as the results obtained are very

similar. Therefore, for low bit-rate coding it is seen that Scheme IV (MMSE-LSA with ALSE

for LP estimation and MMSE-LSA with ALSP for residual signal computation) can be used for

better auditory impression of MELP encoded speech even under harsh background noise.
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Fig. 4.4 Effect of Scheme III and Scheme IV on parameter extraction.
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Chapter 5

Conclusion

Improving the perceptual quality of degraded speech that is encoded with a 2.4 kbps voice coder is

the main goal of this thesis. In this work, a modification to the existing Ephraim and Malah Min-

imum Mean Square Error of the Log Spectral Amplitude (MMSE-LSA) estimator is introduced.

The motive is to maximize the Mean Opinion Score (MOS) ratings of the reconstructed signal. It

is shown that by using two different speech enhancement algorithms (referred to as the two-branch

pre-processor in this thesis), improvements in perceptual quality can be achieved. The purpose

of a two-branch scheme is to have one denoising algorithm that is tailored for LP estimation,

while the other for improved perception. Such a pre-processing system has demonstrated good

robustness properties with respect to the other noise types under varying acoustic levels (or SNR

conditions).

5.1 Thesis Summary

Chapter 2, starts off by introducing the fundamentals of noise suppression algorithms. It consid-

ers the assumptions, constraints and noise variance estimation issues that are mandatory to set

up a framework for building a noise suppression algorithm. This chapter focuses on the impor-

tance of Short Time Spectral Amplitude (STSA) estimators and the venerable noise suppression

algorithm described in the Enhanced Variable Rate Coder (EVRC). Two STSA algorithms that

were developed by Ephraim and Malah in 1984 (MMSE-STSA) and in 1985 (MMSE-LSA) are

studied in further detail. Followed by this, the chapter looks at the limitations of noise suppres-

sion algorithms; such as signal distortion, musical noise, and temporal smearing. This chapter is

concluded with a discussion of several distortion measures (both objective and subjective) that

are used to qualify effectiveness of speech enhancement algorithms.
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The purpose of Chapter 3 is two-fold. Section 3.1 starts off by arguing why the Mixed Excited

Linear Prediction (MELP) speech coder is used as testbed for the derived speech enhancement pre-

processor. It then describes the details of the relevant speech parameters (such as LP parameters,

pitch, bandpass voicing strength etc.) used by the encoder. This is followed by showing how these

parameters are disturbed in the presence of noise.

Section 3.2 gets into a specialized pre-processor that is tailored to estimate LP parameters

accurately. This pre-processor is referred to as the MMSE-LSA with Adaptive Limiting Scheme

for Estimation (ALSE), as it is built on the MMSE-LSA framework. The heuristic approach

taken by Martin and Cox in 1999 to tune this denoising algorithm is explored extensively, and

a similar procedure is adopted in this thesis to derive another noise suppression rule that aims

at maximizing MOS ratings. This newly derived algorithm is referred to as MMSE-LSA with

Adaptive Limiting Scheme for Perception (ALSP). Later in this chapter, a comparison and dis-

cussion of the various noise suppression rules (discussed in Chapter 2 and Chapter 3) is made.

This chapter ends by showing improvements of these specialized pre-processors insofar as LPC

parameter extraction, percentage correct pitch estimation and percentage correct bandpass voic-

ing strengths are concerned. From these preliminary objective plots it is seen that MMSE-LSA

with ALSE estimates LPC parameters more accurately than the others rules. On the other hand,

MMSE-LSA with ALSP has a higher percentage of correct pitch prediction.

From Chapter 3, it is concluded that different denoising algorithms are beneficial for speech

parameter extraction (such as LPC, pitch prediction etc.) required by the MELP speech coder.

Thus, it seems appropriate to define a speech pre-processor with two branches (each with a specific

denoising algorithm) so as to extract different speech parameters for the purposes of encoding.

The purpose of Chapter 4, is to evaluate the performance of the two-branch speech pre-processor.

The experimental protocol of Supplement 23 on ITU-T for P-series is adopted to create speech test

files. Owing to the complexity and the time required in performing subjective testing (the A–B/B–

A comparison test), 5 different combinations of the two-branch pre-processor schemes are tested

with one noise type—car noise with an initial Signal-to-Noise-Ratio (SNR) of 10 dB. Results from

the A–B comparison test allow for the selection of 2 most preferred speech enhancement schemes.

These are referred to as Scheme III (MMSE-LSA with ALSE for LP estimation and MMSE-LSA

for residual signal computation) and Scheme IV (MMSE-LSA with ALSE for LP estimation and

MMSE-LSA with ALSP for residual signal computation). In fact, analysis of these subjective

results show that Scheme IV is preferred by 90% listeners over using the EVRC noise suppression

rule in each of the two-branches as a pre-processor to the MELP speech coder.

After having selected Scheme III and Scheme IV as potential candidates for the two-branch

pre-processor, they are tested for different noise types—Hoth, office babble, music and car noise
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at varying initial SNR. ITU-T recommendation P.862 on Perceptual Evaluation of Speech Quality

(PESQ)1 is used to obtain MOS ratings for the two schemes under varying acoustic conditions

(i.e., various initial SNR values ranging from 5–20 dB). From the results it is seen that Scheme IV

outperforms Scheme III at very low SNR (< 10 dB) by MOS ratings in the range 0.04–0.1.

The chapter concludes by testing the two schemes against each other based on their accuracy of

parameter extraction from speech corrupted with the other noise types and SNR values ranging

from −10 to 40 dB. These results confirm the supremacy of Scheme IV over Scheme III under

harsh acoustic conditions (< 10 dB). Thus, it is shown that Scheme IV can be used to process

speech prior to coding even under harsh noisy environments.

5.2 Future Research Directions

The purpose of this section is to look at some issues that were not considered in this thesis. The

complexity of the two-branch pre-processor is almost doubled. Therefore it would be interesting

to merge the benefits of MMSE-LSA with ALSE and MMSE-LSA with ALSP into one algorithm.

Although, Scheme IV showed perceptual improvement, it would be useful to see the effects of

using the masking properties of the human ear. Inclusion of a post-filter (that is perceptually

weighted) will allow for some masking of low level distortions and perceptible tonal thumps, that

occur in low bit-rate coded speech.

As seen in Chapter 2, the accuracy of a Voice Activity Detector (VAD) decision is essential

in denoising corrupted speech. Its inaccuracy can either lead to poor noise variance estimation

or insufficient noise removal or aggressive signal attenuation. Lack of robust VADs (that which

produce accurate decisions on noisy speech), will lead to poor denoising. Presently, the algorithms

derived in this thesis, takes two inputs: (1) the corrupted speech file, and (2) pre-estimated

VAD decisions. In order to make the algorithm Single-Input-Single-Output (SISO), it would be

desirable to incorporate a VAD in the algorithm. Such a VAD would have to be robust under

varying noisy conditions. Besides, most industry VADs are hard-decision rules. This is to say

that they return either a ‘1‘ or a ‘0’ if the speech segment is active or pause/silence, respectively.

Currently, noise variance is estimated from speech pauses/silence. If a “soft-decision” VAD were

available, better knowledge of noise would be obtained from corrupted speech data.

In Section 2.5.3, it was seen that the accurate phase information becomes necessary for speech

corrupted at SNR < 2.5 dB. Thus far, only the magnitude of the clean speech is estimated from

the noisy observation. The estimate is appended with the phase of the noisy signal to obtain the

1Note that PESQ has neither been validated for low bit-rate coded speech not for speech resulting from
speech enhancement schemes, see Section 2.6.1.
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‘enhanced’ speech frame. It would be worthwhile to incorporate a phase estimation algorithm to

see if perceptual quality of coded signal can be improved under such low SNR conditions.

Unfortunately, owing to the complexity of subjective tests, the proposed two-branch schemes

could not be subjectively tested for other noise types and varying acoustic conditions. Thus,

only car noise with 10 dB SNR was tested in the laboratory using the A–B comparison test.

Results drawn from this, were used to speculate performance of the scheme in the presence of

other noise types using some objective measures. Therefore, it would be interesting to perform

more A–B tests to see if the trends observed hold. In this thesis the MELP speech coder is used

as a testbed. How well Scheme IV performs for other speech coders, such as G.729, Adaptive

Multi-Rate (AMR) speech coder, would be worth analyzing.
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