Preface

Since the book, Discrete Cosine Transform by K. R. Rao and P. Yip (Academic Press,
Boston) was published in 1990, the discrete cosine transform (DCT) has increasingly
attracted the attention of scientific, engineering and research communities. The DCT is used
in many applications and in data compression in particular. This is due to the fact that the
DCT has excellent energy-packing capability and also approaches the statistically optimal
Karhunen—Loéve transform (KLT) in decorrrelating a signal. The development of various
fast algorithms for the efficient implementation of the DCT involving real arithmetic only,
further contributed to its popularity. In the last several years there have been significant
advances and developments in both theory and applications relating to transform processing
of signals. In particular, digital processing motivated the investigation of other forms of
DCTs for their integer approximations. International standards organizations (ISO/IEC
and ITU-T) have adopted the use of various forms of the integer DCT. At the same time,
the investigation of other forms of discrete sine transforms (DSTs) has made a similar
impact. There is therefore a need to extend the coverage to include these techniques. This
book is aimed at doing just that.

The authors have retained much of the basic theory of transforms and transform processing,
since the basic mathematics remains valid and valuable. The theory and fast algorithms
of the DCTs, as well as those for the DSTs, are dealt with in great detail. There is also an
appendix covering some of the fundamental mathematical aspects underlying the theory
of transforms. It is no exaggeration to say that applications using DCT are numerous and
it is with this in mind that the authors have decided not to include applications explicitly.
Readers of this book will either have practical problems requiring the use of DCT, or
want to examine the more general theory and techniques for future applications. There
is no practical way of comprehensively dealing with all possible applications. However,
it must be emphasized that implementation of the various transforms is considered an
integral part of our presentation. It is the authors” hope that readers will not only gain some
understanding of the various transforms, but also take this knowledge to apply to whatever
processing problems they may encounter.

The book Discrete Cosine and Sne Transforms. General properties, Fast algorithms and
Integer Approximationsis aimed at both the novice and the expert. The fervent hopes and
aspirations of the authors are that the latest developments in the general DCT/DST field
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further lead into additional applications and also provide the incentive and inspiration to
further modify/customize these transforms with the overall motivation to improve their
efficiencies while retaining the simplicity in implementations.

V. Britanak
P. C.Yip
K. R. Rao

February 2006
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CHAPTER 1

Discrete Cosine and Sine Transforms

1.1 Introduction

Since the publication of original book [1] more than 15 years ago many new con-
tributions/extensions/modifications/updates/improvements to the origin, theoretical and
practical aspects of the discrete cosine transforms (DCTs) and discrete sine transforms
(DSTs) have been developed. Although the original book [1] has focused almost exclu-
sively on the fast algorithms and applications of the DCT of type II (DCT-II) which has
become the heart of many established international image/video coding standards [2], since
then other forms of the DCT and DST have been investigated in detail. The complete set of
DCTs and DSTs, called the discrete trigonometric transforms, has found a number of digital
signal processing applications. Among them, for example, the DCT/DST of type IV (DCT-
IV/DST-1V) and DCT-II/DST-II are used for the efficient implementation of lapped orthog-
onal transforms [6] and perfect reconstruction cosine/sine modulated filter banks (known
as modified discrete cosine/sine transforms (MDCTs/MDSTs) or equivalently modulated
lapped transforms (MLTs) [6]) for high-quality transform/subband audio coding.

The complete set of DCTs and DSTs constituting the entire class of discrete sinusoidal uni-
tary transforms is presented including their definitions, general mathematical properties,
relations to the Karhunen—Loeve transform (KLT), with the emphasis on fast algorithms
and integer approximations for their efficient implementations in the integer domain. The
DCTs and DSTs are real-valued transforms that map integer-valued signals to floating-
point coefficients. One of the important issues for the applicability of DCTs and DSTs is
the existence of fast algorithms that allow their efficient computation. Although the fast
algorithms reduce the computational complexity significantly, they still need floating-point
operations. To eliminate the floating-point operations, methods of integer approximations
have been proposed to construct and flexibly generate a family of integer transforms with
arbitrary accuracy and performance. The integer transforms currently represent the mod-
ern transform technologies for lossless transform-based coding. The integer DCTs/DSTs
with low-cost and low-powered implementation can replace the corresponding real-valued
transforms in wireless and satellite communication systems as well as portable computing
applications.
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The book covers various latest developments in DCTs and DSTs in a unified way, and it is
essentially a detailed excursion on orthogonal/orthonormal DCT and DST matrices, their
matrix factorizations and integer approximations. It is hoped that the book will serve as
an excellent reference in developing integer DCTs and DSTs as well as an inspiration for
further advanced research.

1.2 Organization of the book

The book is organized in terms of chapters starting with this introductory chapter; each
chapter has its own list of general references and appendices.

Chapter 2 covers definitions and general properties of classical integral transforms, Fourier
cosine transform and Fourier sine transform. The general properties of these continuous
transforms such as inversion, linearity, shift in time/frequency, differentiation in time/
frequency, asymptotic behavior, integration in time/frequency and convolution in time
together with examples of integral transforms for selected continuous functions are pre-
sented in Sections 2.2-2.5. All the DCTs and DSTs are not simply discretized versions of
the corresponding integral continuous transforms rather, the discretized cosine and sine
functions form the basis functions for an entire family of DCTs and DSTs, and are actually
eigenfunctions (or eigenvectors) of certain tridiagonal matrix forms. This issue is addressed
in Sections 2.6 and 2.7. DCTs and DSTs possess nice mathematical properties such as uni-
tarity, linearity, scaling and shift in time, and, in particular, convolution properties which
are discussed in detail in Sections 2.8 and 2.9.

KLT an optimal transform from a statistical viewpoint is defined in Chapter 3 (Section
3.2) along with the demonstration of the asymptotic equivalence of DCT-I and DCT-II to
KLT in Section 3.3. Section 3.4 addresses the asymptotic equivalence of different types of
correlation matrices and their orthonormal representations leading to a general procedure
for generating certain discrete unitary transforms for a given class of signal correlation
matrices.

For the DCT and DST to be viable, feasible and practical, the fast algorithms for their
efficient implementation in terms of reduced memory, implementation complexity and
recursivity are essential. The fast algorithms for both one- and two-dimensional (1-D,
2-D, respectively) DCTs/DSTs are the main thrust in Chapter 4. In Section 4.2, the defini-
tions, properties of and relations between DCTs and DSTs are first presented, followed by
presentation of the explicit forms of orthonormal DCT and DST matrices for N =2, 4 and
8 in Section 4.3. The fast 1-D rotation-based algorithms for the computation of DCTs
and DSTs based on the (recursive) sparse matrix factorizations of the corresponding DCT
and DST matrices and represented by the generalized signal flow graphs are discussed
in Section 4.4. The matrix factorizations reveal various interrelations between different
versions of the DCT and DST. These selected fast algorithms are very convenient in con-
structing integer approximations of DCTs and DSTs. Section 4.5 analyzes existing 2-D fast
DCT/DST algorithms and suggests a simple method for generating 2-D direct DCT/DST
algorithms from the corresponding 1-D ones.

As integer versions of the DCT/DST have attracted the attention of researchers resulting
in substantial simplification in their implementation while still maintaining performance
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nearly equal to their earlier versions, it is only logical that this arena be focused in much
detail and depth in Chapter 5. Section 5.2 presents the basic material from linear alge-
bra, theory of matrices and matrix computations which is fundamental for understanding
the approximation methods. In order to evaluate the approximation error between the
approximated and original transform matrix and to measure the performance of resulting
approximated transform used in data compression, some theoretical criteria are defined in
Section 5.3. Finally, various developed methods and design approaches to integer approx-
imation of the DCT and DST are detailed in Section 5.4. More recent developments in
designing lossless DCTs, invertible integer DCTs and reversible DCTs including the latest
developments are discussed in Sections 5.5 and 5.6.

All chapters end with a summary, problems/exercises and references. Problems/exercises
reflect the contents of the corresponding chapters and are intended for the reader in terms of
refresh/review/reinforce their contents. Extensive definitions, principles, properties, signal
flow graphs, derivations, proofs and examples are provided throughout the book for proper
understanding of the strengths and shortcomings of the spectrum of cosine/sine transforms
and their application in diverse disciplines.

1.3 Appendices

Appendices A.1 through A.3 review the important basic concepts of linear algebra such
as vector spaces (Appendix A.1), matrix eigenvalue problem (Appendix A.2) and matrix
decompositions (Appendix A.3) in the form of definitions and theorems with exercises/
problems at the end. Deterministic as well as random signals, their classification and repre-
sentations are discussed in Appendix A.4. A number of examples are listed in Appendices
to illustrate the use of basic concepts in practical applications.

1.4 References

To retain the connectivity among the chapters of the book as much as possible, each
chapter in the book includes its own list of references related to the discussed sub-
ject. Therefore, some references may appear in the lists of references of chapters more
than once.

1.5 Additional references

An extensive list of additional references have been appended to this chapter. No claim for
completeness of this list is made. Additional references, although not cited in subsequent
chapters, reflect the various recent/latest developments in the efficient implementations of
DCTs and DSTs, mainly 1-D, 2-D, 3-D and in general, multi-dimensional fast DCT/DST
algorithms for the time period from 1989/1990 up to now. They supplement the compre-
hensive list of references related to DCTs and DSTs in the original books [1, 2]. Thus, this
book and books [1, 2] cover completely the theoretical developments, algorithmic history
of DCTs and DSTs including the recent active research topics.



4 Discrete Cosine and Sine Transforms

For clarity, the additional references are classified into the following categories with
guidelines:

e Other books discussing DCTs, DSTs and KLT [3-9]
The recent published books discuss both the theoretical and practical aspects of DCTs
and DSTs including the KLT.

e Fast 1-D radix-2 DCT/DST algorithms [10-67]
This category is further subdivided into three parts: fast algorithms for computation
of DCT-I, -II, -III, -IV and corresponding DST-I, -II, -III, -IV [10-32], fast DCT
algorithms only [33-59] and fast DST algorithms only [60-67].

¢ Fast direct 2-D DCT/DST algorithms [68-87]

This category includes the direct 2-D radix-2 DCT/DST algorithms, and direct
even/prime-length 2-D algorithms based on cyclic convolutions and circular or skew-
circular correlations. Since 2-D DCT/DST kernels are separable, the 2-D DCT/DST
computation can simply be realized by the so-called row—column method which
sequentially uses any fast 1-D DCT/DST algorithm on rows and columns of the input
data matrix. In general, many 1-D DCT/DST algorithms can be extended to the direct
2-D case using a 2-D decomposition process.

e Fast direct 3-D and multi-dimensional DCT/DST algorithms [88-97]
The higher-dimensional DCT/DST algorithms can be obtained by the similar methods
as those of 2-D DCT/DST ones.

e Fast even/odd/composite-length, prime-factor, radix-g and mixed-radix DCT/
DST algorithms [98-126]
The limitation common to most fast DCT/DST algorithms is that N must be a power
of 2 (radix-2 DCT/DST algorithms). In practice, various sequence lengths other than
apower of 2 may occur. To deal with such sequence lengths, new fast even/odd-length
(N is an even/odd integer), composite-length (N =p - g, where p and q are relatively
primes), prime-factor, radix-g (N = ¢", where ¢ is an odd integer) and mixed-radix
(N=2"-¢q, where ¢=3,5,6,7,9, ...) DCT/DST algorithms have been proposed.
Even/odd-length and prime-factor DCT/DST algorithms can be directly mapped into
the corresponding even/odd-length and prime-factor complex-valued or real-valued
FFT modules, or they are based on shorter cyclic/skew-cyclic convolutions and skew-
circular correlations. The algorithms for sequence lengths other than 2" need quite
different methods for their derivation, and generally they have a higher computational
complexity and have more complex structure.

e Fast pruning DCT algorithms [127-134]
The standard DCT (radix-2) algorithms inherently assume that the lengths of input
and output data sequences are equal. However, in many applications such as data
compression, the most important information about the signal is kept by the low-
frequency DCT coefficients. Therefore, from N coefficients (N being the length of
data sequence) only N| (N1 < N) lowest-frequency coefficients need to be computed.
Such a method where only a subset of the output coefficients is utilized to accelerate
the computation is referred to as “pruning”. Therefore the algorithms, called fast
pruning DCT algorithms, have been developed just for this purpose. In general, the fast
DCT algorithm to be pruned must be defined by a simple structured recursive matrix
factorization of the transform matrix and represented by the regular signal flow graph.
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¢ DCT/DST computation by recursive filter structures [135-149]

A class of algorithms for arbitrary length forward and inverse DCT/DST computations
are recursive algorithms where DCT/DST kernels are converted to regular regres-
sive structures based on sinusoidal recursive formulae, or recurrence formulae for
Chebyshev polynomials (of the second and third kind), or Clenshaw’s recurrence for-
mula. Although these recursive algorithms are not efficient in terms of computational
complexity, regressive structures provide simple and efficient schemes for the parallel
VLSI implementation of the variable length DCTs/DSTs.

e Fractional DCTs and DSTs [150-152]

Recently, the fractional DCTs (FRDCTs) and fractional DSTs (FRDSTs) for DCT-II,
symmetric cosine and symmetric sine transforms have been introduced. The defi-
nitions of FRDCTs and FRDSTs are based on eigen decompositions (eigenvalues
and eigenvectors) of the corresponding DCT and DST matrices; or simply by other
words, FRDCTs and FRDSTs are defined through the “fractional” real powers of
DCT and DST matrices. It is the same idea as that of the fractional discrete Fourier
transform (FRDFT). The investigation of FRDCT and FRDST, their general proper-
ties are recently an active and interesting research topic. Open problems involve the
rigorous definitions of FRDCTs and FRDSTs for other forms of DCT and DST, study
of their general properties, matrix representations and, in particular, fast algorithms
for their practical implementations [152].

e Fast quantum algorithms for DCTs and DSTs [153]

Quantum computing has recently become an exciting area of emerging digital signal
processing applications. A classical computer does not allow to calculate N-point
DCTs or DSTs, where N =2", in less than linear time. This trivial lower bound is no
longer valid for a quantum computer. In fact, it is possible to realize N-point DCTs
and DSTs with as little as O(log,>N) operations on a quantum computer, whereas
the all known fast DCT/DST algorithms realized on a classical computer require
O(N log,N) operations. Based on existing efficient quantum circuits for the DFT, the
(extremely) fast quantum DCT/DST algorithms can be derived and implemented on
a number of quantum computing technologies.

We believe that the additional references, although not used in the book, will be a valuable
and useful source for the reader in her/his further study or advanced research or in solving
specific problems in the area of DCT/DST applications.
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CHAPTER 2

Definitions and General Properties

2.1 Introduction

Transforms, and in particular integral transforms, are used primarily for the reduction of
complexity in mathematical problems. Differential equations and integral equations may,
by judicious application of appropriate transforms, be changed into algebraic equations,
whose solutions are more easily obtained. It is thus important to derive the basic mathemat-
ical properties of these transforms before applications are considered. Transform analysis,
as applied in digital signal processing, bears a similar aim. The Fourier transform, which
decomposes a signal into its frequency components, and the Karhunen-Loéve transform
(KLT), which decorrelates a signal sequence, are well-known examples in the digital signal
processing area. Here the mathematical properties are also important.

In discussing the discrete cosine transform (DCT) and the discrete sine transform (DST),
we shall first consider the continuous versions of these, i.e., the Fourier cosine transform
(FCT) and the Fourier sine transform (FST). The properties of these continuous transforms
are well known and bear great resemblance to those of DCT and DST. It is tempting to
treat DCT and DST as discretized approximations of the continuous transforms. This
would be quite mistaken. As pointed out so elegantly by Strang [1] the family of DCTs and
DSTs is a natural outcome of different combinations of homogeneous boundary conditions
applied to the discretized solution of a simple harmonic oscillator equation. Hence, while
cosine and sine functions are the eigenfunctions of the homogeneous harmonic oscillator
system, the discretized cosine and sine functions, which form the basis functions for the
family of DCTs and DSTs, are eigenfunctions (or eigenvectors) in the discretized or matrix
version of the homogeneous harmonic oscillator system. This connection of the DCT and
DST to the simple harmonic oscillator is both elegant and amazing. The discretization of
the simple harmonic oscillator system reflects the reality in which one has to deal with
samples, measurements and time instants, all of which are discrete in nature. The notion
of a continuum may be regarded as simply an idealization to permit the use of the calculus.
On the other hand, the calculus is a powerful tool that has brought forward many important
results. The properties of FCT and FST are such results. As a convenient and reasonable
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reference point, we shall start with the definitions and properties of the FCT and FST in
the following sections.

2.2 The FCT

We start by recalling the definition of the Fourier transform. Given a function x(t) for
—00 < t < 00, its Fourier transform is given by (e.g., see Elliott and Rao [2], Sneddon [3]
or Poularikas [4]):

1\ /2 X .
X(w) = Flx()] = (Z) / x(H)e?dt (2.1a)

—00

subject to the usual existence conditions for the integral. Here, j=+/—1, and w =27f is
the radian frequency and f is the frequency in Hertz. The function x(¢) can be recovered
by the inverse Fourier transform, i.e.,

12 %
x(t) = F ' [X(0)] = (%) / X(w)el” dw. (2.1b)

—00

In(2.1), F[-]and F~![-] denote respectively the forward and the inverse Fourier transforms
of the functions enclosed. It is important to note here that the definitions used for the
forward and inverse Fourier transforms are symmetric in the scale factor (1/27)!/2. Other
conventions include having a unit scale factor for the forward transform and (1/27) for the
inverse transform. One has to exercise care in using tables of Fourier transform properties.
These properties are dependent on the definitions used. Similar care must also be exercised
for properties of FCT and FST. If x(¢) is defined only for ¢ > 0, we can construct a function
y(t) given by

yo =xr) =0,

=x(—1) t<0.
Then,
N2 T . 0 ,
Fly®] = <—> / x(t)e ' dr+ / x(—ne 1 dr
2
0 —00

N2 T . .
<2—> /x(t)[eﬂ‘“’ +el®dr
i
0

2\ 12 0
<;> / x(t) cos(wt) dt. 2.2)
0
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We can now define this as the FCT of x(¢) given by
2\ /2 0
Xc(w) = Fe[x()] = (—) /x(t) cos(wt) dt. (2.3)
bid
0

Noting that X.(w) is an even function of w, we can apply the Fourier inversion to (2.2) to
obtain

12 %
y@):xa)EF;WXan==<%> ‘/Xawﬂm%wﬂdw, t>0. (2.4)
0

Equations (2.3) and (2.4) define a FCT pair. Some of the properties are immediately
obvious:

(a) Inversion:
F.=F! (2.5)

It is clear from (2.3) and (2.4) that
F{Fe[x(D]} = x(1), t=0.

(b) Linearity:
Felax(r) + By(1)] = aXo(w) + BYc(w), (2.6)

where o and § are constants. F, is clearly a linear operator.

(c) Scaling in time:

2\ 172 ®
F.[x(at)] = (;) /x(at) cos(wt) dt
0

2\ /2 r T
=a! <—> /x(r) cos(—) dr, 71 =at,
b4 a
0

-1 @
=a X <—) , forreala > 0. 2.7
a

Note the inverse scaling in the frequency domain.
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(d) Shift in time:

2\ 12 0
F.x(t —a)] = (;) /x(t — a) cos(wt) dt

0

2\ 12 X
(;) /x(t) coslw(t +a)]dr, T=t—0,
0

cos(wa) Fe[x(t)] — sin(wa) F[x(1)], (2.8a)

where F denotes the FST given by
2\ 1/2 %
Fix(1)] = (—) /x(t) sin(wt) dt. (2.8b)
b4
0

We have also made the assumption that x(¢) vanishes for negative ¢.

(e) Shift in frequency:

2\ /2 X
Xc(w— p) = (;) /x(t) cos[(w — P)t]dt, for B> 0,
0

172 %®
= (%) / x(t) cos(Bt) cos(wt) dt + / x(t) sin(Bt) sin(wt) dt
0 0
= F¢[x(2) cos(Br)] + Fi[x(7) sin(Br)]. (2.9a)

Similarly, it can be shown that
Xe(w + B) = Fel[x(1) cos(Br)] — Fs[x(r) sin(Br)]. (2.9b)
Combining (2.9a) and (2.9b) provides a shift in frequency result involving only FCT:
1
Fe[x(r) cos(Bt)] = E[Xc(w — B+ Xc(w + B)]. (2.9¢)

We note here that very similar result for a shift in time property can be derived from
(2.8b) involving only FCT.
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(f) Differentiation in time:

d 2\ [rd
F, I:ax(;)i| = (;) / [ax(t)] cos(wt) dt
0
o\ 12 ?
= (;) [x(2) cos(wn)]|§° +wfx(t) sin(wr) dt
0

2\ 172
=— <;> x(0) + wF[x(1)]. (2.10)

We have assumed that x(#) vanishes as ¢ tends to infinity and that the function is
completely continuous and differentiable. Transforms of higher derivatives may be
obtained in a similar fashion. In addition, transforms of even-order derivatives will
involve only FCT.

(g) Differentiation in frequency:
Similar to differentiation in the time domain, the transform operation reduces a
differentiation operation into multiplication by an appropriate power of the conjugate
variable. For the second-order derivative, we have

a2 /2\'/2 x®
XP(w) = a7 (—) / x() cos(wt) dt
w? \ 7
0

2\ 1/2 *®
- (;) / x(1)(=1)(1%) cos(wt) dt
0

= Fe[(=1*x(1)]. (2.11a)
In general, for even-order derivatives, we have
X2 = F [(—=1)""x(n)). (2.11b)
For odd orders, the FST results
XD = F[(—1y" 2 (). (2.11¢)
(h) Asymptotic behavior:
When the function x(¢) is piecewise continuous and absolutely integrable over the
region [0, 00), it can be shown that for the cosine transform that

lim X.(w) = 0. (2.12)
w—> 00

The result is based on the Riemann—Lebesque theorem.
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Integration in time:

F. /x(‘l,')dl' = (—) //x(r) dt cos(wt) dt
t d 0 ¢
5 12 00 T
= (—) / / cos(wt)dt | x(r)dt
T
o Lo

by reversing the order of the integration. Hence, we have

]

F. /x(t)dr :éFs[x(t)]. (2.13)

t

Integration in frequency:
A similar and almost symmetric result exists for the integration in frequency,

fXC(ﬁ) dg = F; I:—;x(t):| . (2.14)

w

In (2.14) property (h) has been invoked.

Convolution in time:

In order to use the convolution theorem for the Fourier transform to derive the same
theorem for the FCT, the function defined over the positive real line has to be extended
over the entire real line. This can be done using an even extension. Let x(¢) and y(¢) be
functions defined over [0, oo) and let their FCT be denoted by X, and Y., respectively.
Define the even extensions of these functions by

xe(r) =x(|t) and ye(r) = y(|z]).
Then the convolution of x. and y, is given by

oo

Xe % Yo = / xe(Oyelt — 7 dr, 2.15)

—00

where * denotes the convolution operation. Using the definition for the even exten-
sion, it is not difficult to see that in terms of the original functions (2.15) can be
written as

o]

Xe % Yo = / @t — Tl) + ¥t + D] dr,

0
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which is easily seen as an even function of #. Applying the Fourier transform operator
on both sides and using the Fourier convolution theorem, we obtain the convolution

theorem for the FCT,
2nX (W)Y (w) = F, /x(r)[y(t + 1)+ y(t —t]dr . (2.16)
0

This result is clearly not as elegant as the corresponding result for the Fourier
transform. The consequence is also felt in the study of DCTs.

2.3 Some examples of the FCT
(a) The unit rectangular pulse:

x()=U@)—U({t—1), where U(t) =0 forr <0,

=1 fort>0,
is the Heaviside unit step function. Its FCT is given by
1
2\ /2 N2 g
Xo(w) = <—> / cos(wr) di = (-) sin(w) 2.17)
i i 1)
0

This is a well-known result producing the sinc function.

(b) The inverse quadratic function:
x() =@+, Re(a) > 0.

Its FCT is obtained using a properly chosen contour integration,

12 ¥ —aw
Xo(w) = (%) / (1) cos(wt) dt = (g)m ¢ (2.18)
0

o

(c) The exponential function:
x(t) =e™™, Re(x)> 0.

Except for a scaling factor, its FCT is exactly the same as the Laplace transform of
the cosine function,

Xo(w) = (2 " Ooe_‘”cos(a)t)dt— 2\ _a (2.19)
T\ T\ o2 + w?’ ’
0
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(d) The sinc function:
sin(at)

x(t) = P a > 0.

As can be expected, its FCT behaves much like a step function,

X (2 172 C>osin(at) Adf — (n)l/Z £
(w) = p ; cos(wt)dt = 5 s ifw<a,
0

1 /m\1/2
:—(—) , ifw=a,

21\2

= otherwise. (2.20)
(e) The decaying sine function:
x(7) = e P sin(ar), a, Re(B) > 0.

The result of the FCT can be easily understood as related to the Laplace transform
of the function sin(at) cos(wt) as can be seen here,

2\ 12 0
Xo(w) = <;> / e P sin(at) cos(wr) dt
0

(2.21)

=(2n)é[ a+w a—w ]

/32-i-(a+a))2—i_,32+(a—a))2

Very similar result is obtained for the decaying cosine function.

(f) Bessel function of the first kind:
x(t) = Jo(at), where a > 0 and Jy denotes the zero-order Bessel function of the first
kind. Its FCT is given by

2\ 1/2 0 2\ 12
Xo(w) = <;> /Jo(at) cos(wr)dt = <;> @ =2, for0<w<a,
0

= 00 for w = a,
=0, for w > a.
(2.22)

2.4 The FST

For the FST of a function x(t), ¢t > 0, we consider its odd extension and define the function

y(@) = x(1) t>0,
=—x(—t) t=<0.
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Applying the Fourier transform operator to this odd extension of the function x(¢) results in

[e9) 0

Y(w) = Fly()] = 2m)~'/? / x(r)e 1 dt — / x(—ne I dr

0 —0o0

o0

= Qn)~/? f x(H)[e? — el dr

0

2\ 1/2 °
=—j <;> /x(t) sin(wt) dz. (2.23)
0

Taking the negative imaginary part of this function yields the FST of x(¢), or more directly,
2\ /2 x
Xs(w) = F[x(1)] = jFy(0)] = (;) / x(2) sin(wt) dt. (2.24)
0

When one applies the inverse Fourier transform operator to the function Y (w), the odd
extension y(¢) is recovered. On the positive real line is the function x(¢). This can be
succinctly stated as

12 %
x(t) = F7 [Xg(w)] = (%) / X(w) sin(w?) do. (2.25)
0

Equations (2.24) and (2.25) define an FST pair. Some obvious properties follow:

(a) Inversion:
Fy=F". (2.26)

This is clear from equation (2.25) meaning that,
F{Fs[x(D]} = x(r), forz=0.

(b) Linearity:
Fglax(t) + By(t)] = aXs(w) + BYs(w), (2.27)

where «, 8 are constants. The fact that FST involves integration makes it obvious
that it is a linear operator.

(c) Scaling in time:

Fulx(an] = a—'X, (%) for real a > 0. (2.28)
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This inverse scaling in the frequency domain is obtained in a fashion similar to that
in (2.7).

Shift in time:
Fi[x(t — )] = Fg[x(1)] cos(aw) + F.[x(2)] sin(aw). (2.29)

As in (2.8a), the result is obtained using the compound angle expansion. By defining
an odd extension x, of the function x(¢) such that

Xo(f) = HX(Itl)

it is possible to get
F[xo(t + ) + xo(t — )] = 2Xs(w) cos (aw). (2.30)

Shift in frequency:

1/2
Xy(w — B) = < > x(t)sin[(w — B)t]dt, for B> 0,

Fq[x(?) cos(,Bt)] — F[x(¢) sin(B1)], (2.31a)
and in a very similar way,
Xs(w + B) = Filx(t) cos(Bn)] + Fc[x(1) sin(B1)].

Combining this with (2.31a), we obtain a shift in frequency result involving FST
only,

1
Fslx(®) cos(Bn] = S1Xs(@ = B) + Xs(w + 1. (2.31b)

Differentiating in time:

d 12 ¥
F [&x(t)} = ( ) / |:—x(t):| sin(wt) dt,
0

= wF.[x(1)]. (2.32)

The result is obtained using integration by parts and the fact that sine functions
vanish at the origin. That x(¢) vanishes as ¢ tends to infinity is also assumed. As in the
case of the FCT, even-order derivatives will transform with FST whereas odd-order
derivatives will transform with FCT. Note also that differentiation in the time domain
is transformed into a multiplication operation in the frequency domain, retaining the
simplification property of the Fourier transform.
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Differentiating in frequency:

Similar to the differentiation in the time domain, we obtain here a reduction from a dif-
ferentiation operation to a multiplication operation. For the second-order derivative,
we have

@ |2\ 7
XP(w) = — (;> / x(t) sin(wt) dt

dw?
0
= F[(—D2x()]. (2.33)

As in the case of FCT, odd derivatives in the frequency domain change the transform
to FCT. But, as is obvious, the differentiation-to-multiplication transformation is
retained. Results similar to (2.11b) and (2.11c) can easily be derived.

Asymptotic behavior:
For x(¢) being a piecewise continuous and absolutely integrable over the positive real
line, the Riemann—Lebesque theorem guarantees that

lim X (w) = 0. (2.34)
w—>00

Integration in time:
As opposed to the case for FCT, integration is considered over [0, ] and it gives the
following result,

t

Fi /x(r) dr | = éFc[x(t)]. (2.35)
0
Integration in frequency:
[ x#rap = Fetxwyn, 236)

Property (h) has been invoked in arriving at this integration result. Note that the
property of changing a more complex operation to a simpler one has been maintained
under the FST.

Convolution in time:

Again, as in the case for FCT, the convolution property for the FST is a little more
complicated than that for the Fourier transform. A similar result to (2.16) can be
obtained when the odd extended functions for x(#) and y(¢) given by

xolt) = |§—|x<|t|> and yo<t>=ﬁy<|r|)
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are convolved. The FCT of the convolution reduces to the product of the FSTs of the
two functions x(¢) and y(¢),

]

21X (@)Ys(w) = F. /x(f)[y(t + 1) +yo(t —ldr ¢ (2.37)
0

The integral on the right-hand side represents the convolution of the odd extended
functions. Property (2.37) is obtained by applying the Fourier transform to the con-
volution and by using the convolution property. The right-hand side results in an FCT
because the integral is an even function and the Fourier transform of an even function
is directly related to the FCT of that function on the positive real line. Allowing the
convolutions of the odd extension of one with the even extension of the other provides
the following result,

2rXs(w)Ye(w) = F /X(T)[y(lt — 1)) —y(t+1)ldry, (2.382)
0
or
2nXs(w)Y.(w) = Fy /y(t)[x(t + 1)+ xo(t — 7)]dT . (2.38b)
0

2.5 Some examples of the FST

(a) The unit rectangular pulse:

x(t)=U(t) — U(t — 1), where U(¢) is the Heaviside unit step function.
The FST is given by

12 | 12 1
X,(w) = (%) / sin(wr) df = (%) 1~ cos(@) (2.39)
0

w

(b) The inverse quadratic function:

x() =@ +a>7, a>o0.

By using the techniques of contour integration, its FST is obtained as

NP
Xs(cu) = (;) /msln(w[)dt,
0

1\"*1 —
= (_) ~[e™“Ei(aw) — e Ei(—aw)). (2.40)
2 a
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Here Ei and Ei are special functions called the exponential integral functions
defined by

-
Ei(7) = — / eT dt, Jarg(t)] < 7
-7

and
Ei(r) = %[El'(l’ +j0) + Ei(r — jO)]. (2.41)

The result here is somewhat more complicated than that for the FCT.

(c) The exponential function:
x(t) =e™*, Re(x) > 0.

It is easily seen that the FST here is just the Laplace transform of the sine function
up to a scale factor,

o\ 12 0 2\ 1/2 o
Xg(a)) = <;> /e_“t sin(wt) dt = (;) m (242)
0

(d) The sinc function:

in(at
x(t) = smia ), a> 0.

Its FST is given by

2\ 71
Xs(w) = (—) / — sin(at) sin(wt) dt,
v t

0

(1)1/2 ‘w—i—a
=(|— In

2 w—a

It is interesting to note here that since F; ! = Fy, the FST of the resulting logarithmic
function is immediately seen to be the sinc function up to a scale factor.

. (2.43)

(e) The decaying sine function:

x(7) = e P sin(ar), a,Re(B) > 0.
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Its FST may be recognized as the Laplace transform of the function sin(at) sin(wt)
up to a scale factor. Thus,

2\ 1/2 %
X (w) = (;) / e P sin(ar) sin(wt) dr
0

1\'? 1 1
~() #rraar mrarer) 0¥
(f) Bessel function of the first kind:
x(t) = Jo(at), a > 0.

The result of the FST is very similar to the FCT result, giving,

2\ 12 X
Xs(w) = (;) fJo(at) sin(wt) dt
0

=0 if0<w<a,

=00 if w=a,
2\ 1/2

= (—) (a)2 — az)_l/2 if w > a. (2.45)
g

2.6 The DCTs

As mentioned in the Introduction, DCTs are not simply the discretized versions of the
cosine functions. They arise naturally from the discretized solutions of the undamped
harmonic oscillator equation together with certain homogeneous boundary conditions. The
following discussion follows very closely the presentation made by Strang [1]. Consider
first the second-order eigenvalue problem:

' +iu=0 onthe domain x € [0, 7]. (2.46)

The boundary condition of «’'(0) =0 at x =0 will generate the cos(kx) as eigenfunctions
with A = k2 as eigenvalues. The additional boundary condition of &’ (r) = 0 at the other end
will determine the eigenvalues withk =0, £1, +2, . ... Similarly, when the Dirichlet con-
dition is applied at x = 7, i.e., u(;r) = 0, the corresponding values of k are k = +(n+ 1/2),
n=0,1,2, .... Note that the eigenfunctions are periodic with a period 27 and symmetric
about the boundary points. Suppose (2.46) is to be solved using finite differences. Applying
the second central difference to the second-order derivative, on a equispaced grid labeled
by the index /=0, 1, ..., N — 1, we obtain the following difference equation at the grid
point /,

—uj—1 +2u; —upyy = Ay, forl#A0orN —1. (2.47)
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The Neumann condition at x =0 is translated into u_; = u;. At the other end, the Neu-
mann and Dirichlet conditions are respectively stated as uy =uy—_p, and uy_; =0. All
the boundary conditions are applied at the grid points. When the boundary conditions are
applied at the midpoints of the grid, different eigenfunctions and eigenvalues are gener-
ated. Fig. 2.1 shows some typical situations of boundary conditions applied either at the
grid points or at mid-grid.

The discretized problem with Neumann boundary conditions can now be written in matrix
form:

2 =2
-1 2 -1
Aluk = ° ° (] u;, = )\,kllk, k= O, 1,...,N —1. (248)
-1 2 -1
-2 2

Using the definition of uj = cos (kl ﬁ) as the /-th component of the k-th eigenvector,
we can show readily that the k-th eigenvalue is given by

Ak:2—2cos< il > k=0,1,....N—1. (2.49)

N -1

Except for a scaling factor of 1/+/2, for k=0 and N — 1, the eigenvectors {ii;} are the
basis functions of the DCT-I. The scaling of the first and last eigenvectors is equivalent to
a similarity transformation of the matrix A into a symmetric matrix. Rewriting all of this
for the symmetric matrix, we obtain

2 =2
V2 2 -1
DA D)D) = . o o 5 D ') = (D )
-1 2 =2
_ﬁ 2

(2.50)
where D = diag[«/i, 1,1,...,1, ﬁ]. The I-th component of the k-th eigenvector is given by

T 1
D 'w), = kil ——— h =, forl=0orN —1,
D w)r =y COS( N 1) where y; 7 or or

=1, otherwise. 2.51)

These are precisely the unnormalized basis functions of DCT-I. Since they are the eigen-
functions of a symmetric real matrix, they are necessarily orthogonal. By introducing an
additional scaling factor (N — 1)~'/2 for k=0 or N — 1, and ~/2(N — 1)~/2 otherwise,
the basis functions are then normalized.

To introduce the orthonormal transform elements, we first define some scaling factors to
be used later:

1
yy=— forl=00rN—-1; o= fori/=0 and ¢ = forl=N—1.

1 1
NG V2 V2
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6_,
5_,
4 -+ B R
3_, — 1
2_, — 1
1_, 1 1 1

(@) -1 0 1 2 . . . . .N-2N-1N

6_7

4_7

2_7 —
1+ H 1 H

() -1 0 1 2 . . . . . N-2N-1

w b~ 01O N

24+ H— 1 I S
1+ — 1 I S

() -1 0 1 2 . . . . N-1 N

-2
(d) -4

Fig. 2.1. Boundary conditions, u'(0) =u'(r) =0 applied at (a) grid points, grid size =7m/(N — 1),
u_y =u; and uy = uy_»; (b) grid points, grid size =7/(N — 1), u_; = u; and uy_; = 0; (c) mid-grid,
grid size=n/N, u_y=uy and uy =uy_; and (d) mid-grid, grid size=n/N, u_; =uy and
uy = —Uun—i.




32 Discrete Cosine and Sine Transforms

All these scale factors are unity except as specified. We now introduce a standard notation
for the elements of the N-th-order DCT-I transform matrix. Let its /k-th element be denoted
by (C}V)lk where,

2 T
Chi = viviy/ kl , ki1=0,1,...,N—1. 2.52
(Cik = vy N1 COS< N 1) (2.52)

Recall that this result has been obtained by considering the Neumann problem where the
boundary conditions are applied at the grid points. The same Neumann problem with the
boundary conditions applied mid-gr