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Preface

Since the book, Discrete Cosine Transform by K. R. Rao and P. Yip (Academic Press,
Boston) was published in 1990, the discrete cosine transform (DCT) has increasingly
attracted the attention of scientific, engineering and research communities. The DCT is used
in many applications and in data compression in particular. This is due to the fact that the
DCT has excellent energy-packing capability and also approaches the statistically optimal
Karhunen–Loéve transform (KLT) in decorrrelating a signal. The development of various
fast algorithms for the efficient implementation of the DCT involving real arithmetic only,
further contributed to its popularity. In the last several years there have been significant
advances and developments in both theory and applications relating to transform processing
of signals. In particular, digital processing motivated the investigation of other forms of
DCTs for their integer approximations. International standards organizations (ISO/IEC
and ITU-T) have adopted the use of various forms of the integer DCT. At the same time,
the investigation of other forms of discrete sine transforms (DSTs) has made a similar
impact. There is therefore a need to extend the coverage to include these techniques. This
book is aimed at doing just that.

The authors have retained much of the basic theory of transforms and transform processing,
since the basic mathematics remains valid and valuable. The theory and fast algorithms
of the DCTs, as well as those for the DSTs, are dealt with in great detail. There is also an
appendix covering some of the fundamental mathematical aspects underlying the theory
of transforms. It is no exaggeration to say that applications using DCT are numerous and
it is with this in mind that the authors have decided not to include applications explicitly.
Readers of this book will either have practical problems requiring the use of DCT, or
want to examine the more general theory and techniques for future applications. There
is no practical way of comprehensively dealing with all possible applications. However,
it must be emphasized that implementation of the various transforms is considered an
integral part of our presentation. It is the authors’hope that readers will not only gain some
understanding of the various transforms, but also take this knowledge to apply to whatever
processing problems they may encounter.

The book Discrete Cosine and Sine Transforms: General properties, Fast algorithms and
Integer Approximations is aimed at both the novice and the expert. The fervent hopes and
aspirations of the authors are that the latest developments in the general DCT/DST field
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further lead into additional applications and also provide the incentive and inspiration to
further modify/customize these transforms with the overall motivation to improve their
efficiencies while retaining the simplicity in implementations.

V. Britanak
P. C. Yip

K. R. Rao

February 2006
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CHAPTER 1

Discrete Cosine and Sine Transforms

1.1 Introduction

Since the publication of original book [1] more than 15 years ago many new con-
tributions/extensions/modifications/updates/improvements to the origin, theoretical and
practical aspects of the discrete cosine transforms (DCTs) and discrete sine transforms
(DSTs) have been developed. Although the original book [1] has focused almost exclu-
sively on the fast algorithms and applications of the DCT of type II (DCT-II) which has
become the heart of many established international image/video coding standards [2], since
then other forms of the DCT and DST have been investigated in detail. The complete set of
DCTs and DSTs, called the discrete trigonometric transforms, has found a number of digital
signal processing applications. Among them, for example, the DCT/DST of type IV (DCT-
IV/DST-IV) and DCT-II/DST-II are used for the efficient implementation of lapped orthog-
onal transforms [6] and perfect reconstruction cosine/sine modulated filter banks (known
as modified discrete cosine/sine transforms (MDCTs/MDSTs) or equivalently modulated
lapped transforms (MLTs) [6]) for high-quality transform/subband audio coding.

The complete set of DCTs and DSTs constituting the entire class of discrete sinusoidal uni-
tary transforms is presented including their definitions, general mathematical properties,
relations to the Karhunen–Loève transform (KLT), with the emphasis on fast algorithms
and integer approximations for their efficient implementations in the integer domain. The
DCTs and DSTs are real-valued transforms that map integer-valued signals to floating-
point coefficients. One of the important issues for the applicability of DCTs and DSTs is
the existence of fast algorithms that allow their efficient computation. Although the fast
algorithms reduce the computational complexity significantly, they still need floating-point
operations. To eliminate the floating-point operations, methods of integer approximations
have been proposed to construct and flexibly generate a family of integer transforms with
arbitrary accuracy and performance. The integer transforms currently represent the mod-
ern transform technologies for lossless transform-based coding. The integer DCTs/DSTs
with low-cost and low-powered implementation can replace the corresponding real-valued
transforms in wireless and satellite communication systems as well as portable computing
applications.
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The book covers various latest developments in DCTs and DSTs in a unified way, and it is
essentially a detailed excursion on orthogonal/orthonormal DCT and DST matrices, their
matrix factorizations and integer approximations. It is hoped that the book will serve as
an excellent reference in developing integer DCTs and DSTs as well as an inspiration for
further advanced research.

1.2 Organization of the book

The book is organized in terms of chapters starting with this introductory chapter; each
chapter has its own list of general references and appendices.

Chapter 2 covers definitions and general properties of classical integral transforms, Fourier
cosine transform and Fourier sine transform. The general properties of these continuous
transforms such as inversion, linearity, shift in time/frequency, differentiation in time/
frequency, asymptotic behavior, integration in time/frequency and convolution in time
together with examples of integral transforms for selected continuous functions are pre-
sented in Sections 2.2–2.5. All the DCTs and DSTs are not simply discretized versions of
the corresponding integral continuous transforms rather, the discretized cosine and sine
functions form the basis functions for an entire family of DCTs and DSTs, and are actually
eigenfunctions (or eigenvectors) of certain tridiagonal matrix forms. This issue is addressed
in Sections 2.6 and 2.7. DCTs and DSTs possess nice mathematical properties such as uni-
tarity, linearity, scaling and shift in time, and, in particular, convolution properties which
are discussed in detail in Sections 2.8 and 2.9.

KLT an optimal transform from a statistical viewpoint is defined in Chapter 3 (Section
3.2) along with the demonstration of the asymptotic equivalence of DCT-I and DCT-II to
KLT in Section 3.3. Section 3.4 addresses the asymptotic equivalence of different types of
correlation matrices and their orthonormal representations leading to a general procedure
for generating certain discrete unitary transforms for a given class of signal correlation
matrices.

For the DCT and DST to be viable, feasible and practical, the fast algorithms for their
efficient implementation in terms of reduced memory, implementation complexity and
recursivity are essential. The fast algorithms for both one- and two-dimensional (1-D,
2-D, respectively) DCTs/DSTs are the main thrust in Chapter 4. In Section 4.2, the defini-
tions, properties of and relations between DCTs and DSTs are first presented, followed by
presentation of the explicit forms of orthonormal DCT and DST matrices for N = 2, 4 and
8 in Section 4.3. The fast 1-D rotation-based algorithms for the computation of DCTs
and DSTs based on the (recursive) sparse matrix factorizations of the corresponding DCT
and DST matrices and represented by the generalized signal flow graphs are discussed
in Section 4.4. The matrix factorizations reveal various interrelations between different
versions of the DCT and DST. These selected fast algorithms are very convenient in con-
structing integer approximations of DCTs and DSTs. Section 4.5 analyzes existing 2-D fast
DCT/DST algorithms and suggests a simple method for generating 2-D direct DCT/DST
algorithms from the corresponding 1-D ones.

As integer versions of the DCT/DST have attracted the attention of researchers resulting
in substantial simplification in their implementation while still maintaining performance
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nearly equal to their earlier versions, it is only logical that this arena be focused in much
detail and depth in Chapter 5. Section 5.2 presents the basic material from linear alge-
bra, theory of matrices and matrix computations which is fundamental for understanding
the approximation methods. In order to evaluate the approximation error between the
approximated and original transform matrix and to measure the performance of resulting
approximated transform used in data compression, some theoretical criteria are defined in
Section 5.3. Finally, various developed methods and design approaches to integer approx-
imation of the DCT and DST are detailed in Section 5.4. More recent developments in
designing lossless DCTs, invertible integer DCTs and reversible DCTs including the latest
developments are discussed in Sections 5.5 and 5.6.

All chapters end with a summary, problems/exercises and references. Problems/exercises
reflect the contents of the corresponding chapters and are intended for the reader in terms of
refresh/review/reinforce their contents. Extensive definitions, principles, properties, signal
flow graphs, derivations, proofs and examples are provided throughout the book for proper
understanding of the strengths and shortcomings of the spectrum of cosine/sine transforms
and their application in diverse disciplines.

1.3 Appendices

Appendices A.1 through A.3 review the important basic concepts of linear algebra such
as vector spaces (Appendix A.1), matrix eigenvalue problem (Appendix A.2) and matrix
decompositions (Appendix A.3) in the form of definitions and theorems with exercises/
problems at the end. Deterministic as well as random signals, their classification and repre-
sentations are discussed in Appendix A.4. A number of examples are listed in Appendices
to illustrate the use of basic concepts in practical applications.

1.4 References

To retain the connectivity among the chapters of the book as much as possible, each
chapter in the book includes its own list of references related to the discussed sub-
ject. Therefore, some references may appear in the lists of references of chapters more
than once.

1.5 Additional references

An extensive list of additional references have been appended to this chapter. No claim for
completeness of this list is made. Additional references, although not cited in subsequent
chapters, reflect the various recent/latest developments in the efficient implementations of
DCTs and DSTs, mainly 1-D, 2-D, 3-D and in general, multi-dimensional fast DCT/DST
algorithms for the time period from 1989/1990 up to now. They supplement the compre-
hensive list of references related to DCTs and DSTs in the original books [1, 2]. Thus, this
book and books [1, 2] cover completely the theoretical developments, algorithmic history
of DCTs and DSTs including the recent active research topics.
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For clarity, the additional references are classified into the following categories with
guidelines:

• Other books discussing DCTs, DSTs and KLT [3–9]
The recent published books discuss both the theoretical and practical aspects of DCTs
and DSTs including the KLT.

• Fast 1-D radix-2 DCT/DST algorithms [10–67]
This category is further subdivided into three parts: fast algorithms for computation
of DCT-I, -II, -III, -IV and corresponding DST-I, -II, -III, -IV [10–32], fast DCT
algorithms only [33–59] and fast DST algorithms only [60–67].

• Fast direct 2-D DCT/DST algorithms [68–87]
This category includes the direct 2-D radix-2 DCT/DST algorithms, and direct
even/prime-length 2-D algorithms based on cyclic convolutions and circular or skew-
circular correlations. Since 2-D DCT/DST kernels are separable, the 2-D DCT/DST
computation can simply be realized by the so-called row–column method which
sequentially uses any fast 1-D DCT/DST algorithm on rows and columns of the input
data matrix. In general, many 1-D DCT/DST algorithms can be extended to the direct
2-D case using a 2-D decomposition process.

• Fast direct 3-D and multi-dimensional DCT/DST algorithms [88–97]
The higher-dimensional DCT/DST algorithms can be obtained by the similar methods
as those of 2-D DCT/DST ones.

• Fast even/odd/composite-length, prime-factor, radix-q and mixed-radix DCT/
DST algorithms [98–126]
The limitation common to most fast DCT/DST algorithms is that N must be a power
of 2 (radix-2 DCT/DST algorithms). In practice, various sequence lengths other than
a power of 2 may occur. To deal with such sequence lengths, new fast even/odd-length
(N is an even/odd integer), composite-length (N = p · q, where p and q are relatively
primes), prime-factor, radix-q (N = qn, where q is an odd integer) and mixed-radix
(N = 2n · q, where q = 3, 5, 6, 7, 9, . . .) DCT/DST algorithms have been proposed.
Even/odd-length and prime-factor DCT/DST algorithms can be directly mapped into
the corresponding even/odd-length and prime-factor complex-valued or real-valued
FFT modules, or they are based on shorter cyclic/skew-cyclic convolutions and skew-
circular correlations. The algorithms for sequence lengths other than 2n need quite
different methods for their derivation, and generally they have a higher computational
complexity and have more complex structure.

• Fast pruning DCT algorithms [127–134]
The standard DCT (radix-2) algorithms inherently assume that the lengths of input
and output data sequences are equal. However, in many applications such as data
compression, the most important information about the signal is kept by the low-
frequency DCT coefficients. Therefore, from N coefficients (N being the length of
data sequence) only N1 (N1 < N) lowest-frequency coefficients need to be computed.
Such a method where only a subset of the output coefficients is utilized to accelerate
the computation is referred to as “pruning”. Therefore the algorithms, called fast
pruning DCT algorithms, have been developed just for this purpose. In general, the fast
DCT algorithm to be pruned must be defined by a simple structured recursive matrix
factorization of the transform matrix and represented by the regular signal flow graph.
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• DCT/DST computation by recursive filter structures [135–149]
A class of algorithms for arbitrary length forward and inverse DCT/DST computations
are recursive algorithms where DCT/DST kernels are converted to regular regres-
sive structures based on sinusoidal recursive formulae, or recurrence formulae for
Chebyshev polynomials (of the second and third kind), or Clenshaw’s recurrence for-
mula. Although these recursive algorithms are not efficient in terms of computational
complexity, regressive structures provide simple and efficient schemes for the parallel
VLSI implementation of the variable length DCTs/DSTs.

• Fractional DCTs and DSTs [150–152]
Recently, the fractional DCTs (FRDCTs) and fractional DSTs (FRDSTs) for DCT-II,
symmetric cosine and symmetric sine transforms have been introduced. The defi-
nitions of FRDCTs and FRDSTs are based on eigen decompositions (eigenvalues
and eigenvectors) of the corresponding DCT and DST matrices; or simply by other
words, FRDCTs and FRDSTs are defined through the “fractional” real powers of
DCT and DST matrices. It is the same idea as that of the fractional discrete Fourier
transform (FRDFT). The investigation of FRDCT and FRDST, their general proper-
ties are recently an active and interesting research topic. Open problems involve the
rigorous definitions of FRDCTs and FRDSTs for other forms of DCT and DST, study
of their general properties, matrix representations and, in particular, fast algorithms
for their practical implementations [152].

• Fast quantum algorithms for DCTs and DSTs [153]
Quantum computing has recently become an exciting area of emerging digital signal
processing applications. A classical computer does not allow to calculate N-point
DCTs or DSTs, where N = 2n, in less than linear time. This trivial lower bound is no
longer valid for a quantum computer. In fact, it is possible to realize N-point DCTs
and DSTs with as little as O(log2

2N) operations on a quantum computer, whereas
the all known fast DCT/DST algorithms realized on a classical computer require
O(N log2N) operations. Based on existing efficient quantum circuits for the DFT, the
(extremely) fast quantum DCT/DST algorithms can be derived and implemented on
a number of quantum computing technologies.

We believe that the additional references, although not used in the book, will be a valuable
and useful source for the reader in her/his further study or advanced research or in solving
specific problems in the area of DCT/DST applications.

References

[1] K. R. Rao and P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications,
Academic Press, Boston MA, 1990.

[2] K. R. Rao and J. J. Hwang, Techniques and Standards for Digital Image/Video/Audio Coding,
Prentice-Hall, Upper Saddle River, NJ, 1996.

Other books discussing DCTs, DSTs and KLT

[3] A. K. Jain, Fundamentals of Digital Image Processing, Prentice-Hall, Englewood Cliffs, NJ,
1989.



Ch01-P373624.tex 7/8/2006 12: 52 Page 6

6 Discrete Cosine and Sine Transforms

[4] R. J. Clarke, Transform Coding of Images, 2nd Printing, Academic Press, London, 1990.

[5] W. K. Pratt, Digital Image Processing, 2nd Edition, John Wiley, New York, 1991.

[6] H. S. Malvar, Signal Processing with Lapped Transforms, Artech House, Norwood, MA,
1992.

[7] A. D. Poularikas, Editor, The Transforms and Applications Handbook, CRC & IEEE Press,
Boca Raton, FL, 1996.

[8] O. K. Ersoy, Fourier-Related Transforms, Fast Algorithms and Applications, Prentice-Hall,
Upper Saddle River, NJ, 1997.

[9] A. Mertins, Signal Analysis: Wavelets, Filter Banks, Time–Frequency Transforms and
Applications, John Wiley & Sons, Chichester, 1999.

Fast 1-D radix-2 DCT/DST algorithms

[10] S. C. Chan and K. L. Ho, “Direct methods for computing discrete sinusoidal transforms”,
IEE Proceedings – Radar and Signal Processing, Vol. 137, Part F, No. 6, December 1990,
pp. 433–442.

[11] L.-W. Chang and M.-C. Wu, “A unified systolic array for discrete cosine and sine transforms”,
IEEE Transactions on Signal Processing, Vol. 39, January 1991, pp. 192–194.

[12] R. Gluth, “Regular FFT-related transform kernels for DCT/DST-based polyphase filter
banks”, Proceedings of the IEEE ICASSP’91, Toronto, Canada, May 1991, pp. 2205–2208.
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CHAPTER 2

Definitions and General Properties

2.1 Introduction

Transforms, and in particular integral transforms, are used primarily for the reduction of
complexity in mathematical problems. Differential equations and integral equations may,
by judicious application of appropriate transforms, be changed into algebraic equations,
whose solutions are more easily obtained. It is thus important to derive the basic mathemat-
ical properties of these transforms before applications are considered. Transform analysis,
as applied in digital signal processing, bears a similar aim. The Fourier transform, which
decomposes a signal into its frequency components, and the Karhunen–Loéve transform
(KLT), which decorrelates a signal sequence, are well-known examples in the digital signal
processing area. Here the mathematical properties are also important.

In discussing the discrete cosine transform (DCT) and the discrete sine transform (DST),
we shall first consider the continuous versions of these, i.e., the Fourier cosine transform
(FCT) and the Fourier sine transform (FST). The properties of these continuous transforms
are well known and bear great resemblance to those of DCT and DST. It is tempting to
treat DCT and DST as discretized approximations of the continuous transforms. This
would be quite mistaken. As pointed out so elegantly by Strang [1] the family of DCTs and
DSTs is a natural outcome of different combinations of homogeneous boundary conditions
applied to the discretized solution of a simple harmonic oscillator equation. Hence, while
cosine and sine functions are the eigenfunctions of the homogeneous harmonic oscillator
system, the discretized cosine and sine functions, which form the basis functions for the
family of DCTs and DSTs, are eigenfunctions (or eigenvectors) in the discretized or matrix
version of the homogeneous harmonic oscillator system. This connection of the DCT and
DST to the simple harmonic oscillator is both elegant and amazing. The discretization of
the simple harmonic oscillator system reflects the reality in which one has to deal with
samples, measurements and time instants, all of which are discrete in nature. The notion
of a continuum may be regarded as simply an idealization to permit the use of the calculus.
On the other hand, the calculus is a powerful tool that has brought forward many important
results. The properties of FCT and FST are such results. As a convenient and reasonable
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reference point, we shall start with the definitions and properties of the FCT and FST in
the following sections.

2.2 The FCT

We start by recalling the definition of the Fourier transform. Given a function x(t) for
−∞ < t < ∞, its Fourier transform is given by (e.g., see Elliott and Rao [2], Sneddon [3]
or Poularikas [4]):

X(ω) ≡ F[x(t)] =
(

1

2π

)1/2 ∞∫
−∞

x(t)e−jωtdt (2.1a)

subject to the usual existence conditions for the integral. Here, j = √−1, and ω = 2πf is
the radian frequency and f is the frequency in Hertz. The function x(t) can be recovered
by the inverse Fourier transform, i.e.,

x(t) ≡ F−1[X(ω)] =
(

1

2π

)1/2 ∞∫
−∞

X(ω)e jωtdω. (2.1b)

In (2.1), F[·] and F−1[·] denote respectively the forward and the inverse Fourier transforms
of the functions enclosed. It is important to note here that the definitions used for the
forward and inverse Fourier transforms are symmetric in the scale factor (1/2π)1/2. Other
conventions include having a unit scale factor for the forward transform and (1/2π) for the
inverse transform. One has to exercise care in using tables of Fourier transform properties.
These properties are dependent on the definitions used. Similar care must also be exercised
for properties of FCT and FST. If x(t) is defined only for t ≥ 0, we can construct a function
y(t) given by

y(t) = x(t) t ≥ 0,

= x(−t) t ≤ 0.

Then,

F[y(t)] =
(

1

2π

)1/2



∞∫
0

x(t)e−jωtdt+
0∫

−∞
x(−t)e−jωtdt




=
(

1

2π

)1/2 ∞∫
0

x(t)[e−jωt + e jωt] dt

=
(

2

π

)1/2 ∞∫
0

x(t) cos(ωt) dt. (2.2)
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We can now define this as the FCT of x(t) given by

Xc(ω) ≡ Fc[x(t)] =
(

2

π

)1/2 ∞∫
0

x(t) cos(ωt) dt. (2.3)

Noting that Xc(ω) is an even function of ω, we can apply the Fourier inversion to (2.2) to
obtain

y(t) = x(t) ≡ F−1
c [Xc(ω)] =

(
2

π

)1/2 ∞∫
0

Xc(ω) cos(ωt) dω, t ≥ 0. (2.4)

Equations (2.3) and (2.4) define a FCT pair. Some of the properties are immediately
obvious:

(a) Inversion:

Fc = F−1
c (2.5)

It is clear from (2.3) and (2.4) that

Fc{Fc[x(t)]} = x(t), t ≥ 0.

(b) Linearity:

Fc[αx(t) + βy(t)] = αXc(ω) + βYc(ω), (2.6)

where α and β are constants. Fc is clearly a linear operator.

(c) Scaling in time:

Fc[x(at)] =
(

2

π

)1/2 ∞∫
0

x(at) cos(ωt) dt

= a−1
(

2

π

)1/2 ∞∫
0

x(τ) cos
(ωτ

a

)
dτ, τ = at,

= a−1Xc

(ω
a

)
, for real a > 0. (2.7)

Note the inverse scaling in the frequency domain.
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(d) Shift in time:

Fc[x(t − α)] =
(

2

π

)1/2 ∞∫
0

x(t − α) cos(ωt) dt

=
(

2

π

)1/2 ∞∫
0

x(τ) cos[ω(τ + α)] dτ, τ = t − α,

= cos(ωα) Fc[x(t)] − sin(ωα) Fs[x(t)], (2.8a)

where Fs denotes the FST given by

Fs[x(t)] ≡
(

2

π

)1/2 ∞∫
0

x(t) sin(ωt) dt. (2.8b)

We have also made the assumption that x(t) vanishes for negative t.

(e) Shift in frequency:

Xc(ω − β) =
(

2

π

)1/2 ∞∫
0

x(t) cos[(ω − β)t] dt, for β > 0,

=
(

2

π

)1/2



∞∫
0

x(t) cos(βt) cos(ωt) dt +
∞∫

0

x(t) sin(βt) sin(ωt) dt




= Fc[x(t) cos(βt)] + Fs[x(t) sin(βt)]. (2.9a)

Similarly, it can be shown that

Xc(ω + β) = Fc[x(t) cos(βt)] − Fs[x(t) sin(βt)]. (2.9b)

Combining (2.9a) and (2.9b) provides a shift in frequency result involving only FCT:

Fc[x(t) cos(βt)] = 1

2
[Xc(ω − β) + Xc(ω + β)]. (2.9c)

We note here that very similar result for a shift in time property can be derived from
(2.8b) involving only FCT.
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(f) Differentiation in time:

Fc

[
d

dt
x(t)

]
=
(

2

π

)1/2 ∞∫
0

[
d

dt
x(t)

]
cos(ωt) dt

=
(

2

π

)1/2

[x(t) cos(ωt)]|∞0 + ω

∞∫
0

x(t) sin(ωt) dt




= −
(

2

π

)1/2

x(0) + ωFs[x(t)]. (2.10)

We have assumed that x(t) vanishes as t tends to infinity and that the function is
completely continuous and differentiable. Transforms of higher derivatives may be
obtained in a similar fashion. In addition, transforms of even-order derivatives will
involve only FCT.

(g) Differentiation in frequency:
Similar to differentiation in the time domain, the transform operation reduces a
differentiation operation into multiplication by an appropriate power of the conjugate
variable. For the second-order derivative, we have

X (2)
c (ω) = d2

dω2

(
2

π

)1/2 ∞∫
0

x(t) cos(ωt) dt

=
(

2

π

)1/2 ∞∫
0

x(t)(−1)(t2) cos(ωt) dt

= Fc[(−1)t2x(t)]. (2.11a)

In general, for even-order derivatives, we have

X (2n)
c = Fc[(−1)nt2nx(t)]. (2.11b)

For odd orders, the FST results

X (2n+1)
c = Fs[(−1)n+1t2n+1x(t)]. (2.11c)

(h) Asymptotic behavior:
When the function x(t) is piecewise continuous and absolutely integrable over the
region [0, ∞), it can be shown that for the cosine transform that

lim
ω→∞ Xc(ω) = 0. (2.12)

The result is based on the Riemann–Lebesque theorem.
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(i) Integration in time:

Fc




∞∫
t

x(τ)dτ


 =
(

2

π

)1/2 ∞∫
0

∞∫
t

x(τ) dτ cos(ωt) dt

=
(

2

π

)1/2 ∞∫
0




τ∫
0

cos(ωt) dt


 x(τ) dτ

by reversing the order of the integration. Hence, we have

Fc




∞∫
t

x(τ) dτ


 = 1

ω
Fs[x(t)]. (2.13)

( j) Integration in frequency:
A similar and almost symmetric result exists for the integration in frequency,

∞∫
ω

Xc(β) dβ = Fs

[
−1

t
x(t)

]
. (2.14)

In (2.14) property (h) has been invoked.

(k) Convolution in time:
In order to use the convolution theorem for the Fourier transform to derive the same
theorem for the FCT, the function defined over the positive real line has to be extended
over the entire real line. This can be done using an even extension. Let x(t) and y(t) be
functions defined over [0, ∞) and let their FCT be denoted by Xc and Yc, respectively.
Define the even extensions of these functions by

xe(t) = x(|t|) and ye(t) = y(|t|).

Then the convolution of xe and ye is given by

xe ∗ ye =
∞∫

−∞
xe(τ)ye(t − τ) dτ, (2.15)

where ∗ denotes the convolution operation. Using the definition for the even exten-
sion, it is not difficult to see that in terms of the original functions (2.15) can be
written as

xe ∗ ye =
∞∫

0

x(τ)[y(|t − τ|) + y(t + τ)] dτ,
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which is easily seen as an even function of t. Applying the Fourier transform operator
on both sides and using the Fourier convolution theorem, we obtain the convolution
theorem for the FCT,

2πXc(ω)Yc(ω) = Fc




∞∫
0

x(τ)[y(t + τ) + y(|t − τ|)] dτ


. (2.16)

This result is clearly not as elegant as the corresponding result for the Fourier
transform. The consequence is also felt in the study of DCTs.

2.3 Some examples of the FCT

(a) The unit rectangular pulse:

x(t) = U(t) − U(t − 1), where U(t) = 0 for t < 0,
= 1 for t > 0,

is the Heaviside unit step function. Its FCT is given by

Xc(ω) =
(

2

π

)1/2 1∫
0

cos(ωt) dt =
(

2

π

)1/2 sin(ω)

ω
. (2.17)

This is a well-known result producing the sinc function.

(b) The inverse quadratic function:

x(t) = (α2 + t2)−1, Re(α) > 0.

Its FCT is obtained using a properly chosen contour integration,

Xc(ω) =
(

2

π

)1/2 ∞∫
0

x(t) cos(ωt) dt =
(π

2

)1/2 e−αω

α
. (2.18)

(c) The exponential function:

x(t) = e−αt , Re(α) > 0.

Except for a scaling factor, its FCT is exactly the same as the Laplace transform of
the cosine function,

Xc(ω) =
(

2

π

)1/2 ∞∫
0

e−αt cos(ωt) dt =
(

2

π

)1/2
α

α2 + ω2
. (2.19)
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(d) The sinc function:

x(t) = sin(at)

t
, a > 0.

As can be expected, its FCT behaves much like a step function,

Xc(ω) =
(

2

π

)1/2 ∞∫
0

sin(at)

t
cos(ωt) dt =

(π
2

)1/2
, if ω < a,

= 1

2

(π
2

)1/2
, if ω = a,

= 0, otherwise. (2.20)

(e) The decaying sine function:

x(t) = e−βt sin(at), a, Re(β) > 0.

The result of the FCT can be easily understood as related to the Laplace transform
of the function sin(at) cos(ωt) as can be seen here,

Xc(ω) =
(

2

π

)1/2 ∞∫
0

e−βt sin(at) cos(ωt) dt

= (2π)−
1
2

[
a + ω

β2 + (a + ω)2
+ a − ω

β2 + (a − ω)2

]
. (2.21)

Very similar result is obtained for the decaying cosine function.

(f) Bessel function of the first kind:
x(t) = J0(at), where a > 0 and J0 denotes the zero-order Bessel function of the first
kind. Its FCT is given by

Xc(ω) =
(

2

π

)1/2 ∞∫
0

J0(at) cos(ωt) dt =
(

2

π

)1/2

(a2 − ω2)−1/2, for 0 < ω < a,

= ∞, for ω = a,

= 0, for ω > a.

(2.22)

2.4 The FST

For the FST of a function x(t), t ≥ 0, we consider its odd extension and define the function

y(t) = x(t) t ≥ 0,

= −x(−t) t ≤ 0.
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Applying the Fourier transform operator to this odd extension of the function x(t) results in

Y (ω) = F[y(t)] = (2π)−1/2




∞∫
0

x(t)e−jωt dt −
0∫

−∞
x(−t)e−jωt dt




= (2π)−1/2

∞∫
0

x(t)[e−jωt − e jωt] dt

= −j

(
2

π

)1/2 ∞∫
0

x(t) sin(ωt) dt. (2.23)

Taking the negative imaginary part of this function yields the FST of x(t), or more directly,

Xs(ω) ≡ Fs[x(t)] = jF[y(t)] =
(

2

π

)1/2 ∞∫
0

x(t) sin(ωt) dt. (2.24)

When one applies the inverse Fourier transform operator to the function Y (ω), the odd
extension y(t) is recovered. On the positive real line is the function x(t). This can be
succinctly stated as

x(t) ≡ F−1
s [Xs(ω)] =

(
2

π

)1/2 ∞∫
0

Xs(ω) sin(ωt) dω. (2.25)

Equations (2.24) and (2.25) define an FST pair. Some obvious properties follow:

(a) Inversion:

Fs = F−1
s . (2.26)

This is clear from equation (2.25) meaning that,

Fs{Fs[x(t)]} = x(t), for t ≥ 0.

(b) Linearity:

Fs[αx(t) + βy(t)] = αXs(ω) + βYs(ω), (2.27)

where α, β are constants. The fact that FST involves integration makes it obvious
that it is a linear operator.

(c) Scaling in time:

Fs[x(at)] = a−1Xs

(ω
a

)
, for real a > 0. (2.28)
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This inverse scaling in the frequency domain is obtained in a fashion similar to that
in (2.7).

(d) Shift in time:

Fs[x(t − α)] = Fs[x(t)] cos(αω) + Fc[x(t)] sin(αω). (2.29)

As in (2.8a), the result is obtained using the compound angle expansion. By defining
an odd extension xo of the function x(t) such that

xo(t) = t

|t|x(|t|),

it is possible to get

Fs[xo(t + α) + xo(t − α)] = 2Xs(ω) cos (αω). (2.30)

(e) Shift in frequency:

Xs(ω − β) =
(

2

π

)1/2 ∞∫
0

x(t) sin[(ω − β)t] dt, for β > 0,

= Fs[x(t) cos(βt)] − Fc[x(t) sin(βt)], (2.31a)

and in a very similar way,

Xs(ω + β) = Fs[x(t) cos(βt)] + Fc[x(t) sin(βt)].

Combining this with (2.31a), we obtain a shift in frequency result involving FST
only,

Fs[x(t) cos(βt)] = 1

2
[Xs(ω − β) + Xs(ω + β)]. (2.31b)

(f) Differentiating in time:

Fs

[
d

dt
x(t)

]
=
(

2

π

)1/2 ∞∫
0

[
d

dt
x(t)

]
sin(ωt) dt,

= ωFc[x(t)]. (2.32)

The result is obtained using integration by parts and the fact that sine functions
vanish at the origin. That x(t) vanishes as t tends to infinity is also assumed. As in the
case of the FCT, even-order derivatives will transform with FST whereas odd-order
derivatives will transform with FCT. Note also that differentiation in the time domain
is transformed into a multiplication operation in the frequency domain, retaining the
simplification property of the Fourier transform.
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(g) Differentiating in frequency:
Similar to the differentiation in the time domain, we obtain here a reduction from a dif-
ferentiation operation to a multiplication operation. For the second-order derivative,
we have

X (2)
s (ω) = d2

dω2



(

2

π

)1/2 ∞∫
0

x(t) sin(ωt) dt




= Fs[(−1)t2x(t)]. (2.33)

As in the case of FCT, odd derivatives in the frequency domain change the transform
to FCT. But, as is obvious, the differentiation-to-multiplication transformation is
retained. Results similar to (2.11b) and (2.11c) can easily be derived.

(h) Asymptotic behavior:
For x(t) being a piecewise continuous and absolutely integrable over the positive real
line, the Riemann–Lebesque theorem guarantees that

lim
ω→∞Xs(ω) = 0. (2.34)

(i) Integration in time:
As opposed to the case for FCT, integration is considered over [0, t] and it gives the
following result,

Fs




t∫
0

x(τ) dτ


 = 1

ω
Fc[x(t)]. (2.35)

(j) Integration in frequency:

∞∫
ω

Xs(β) dβ = Fc[x(t)/t]. (2.36)

Property (h) has been invoked in arriving at this integration result. Note that the
property of changing a more complex operation to a simpler one has been maintained
under the FST.

(k) Convolution in time:
Again, as in the case for FCT, the convolution property for the FST is a little more
complicated than that for the Fourier transform. A similar result to (2.16) can be
obtained when the odd extended functions for x(t) and y(t) given by

xo(t) = t

|t|x(|t|) and yo(t) = t

|t|y(|t|)
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are convolved. The FCT of the convolution reduces to the product of the FSTs of the
two functions x(t) and y(t),

2πXs(ω)Ys(ω) = Fc




∞∫
0

x(τ)[y(t + τ) + yo(t − τ)] dτ


. (2.37)

The integral on the right-hand side represents the convolution of the odd extended
functions. Property (2.37) is obtained by applying the Fourier transform to the con-
volution and by using the convolution property. The right-hand side results in an FCT
because the integral is an even function and the Fourier transform of an even function
is directly related to the FCT of that function on the positive real line. Allowing the
convolutions of the odd extension of one with the even extension of the other provides
the following result,

2πXs(ω)Yc(ω) = Fs




∞∫
0

x(τ)[y(|t − τ|) − y(t + τ)] dτ


, (2.38a)

or

2πXs(ω)Yc(ω) = Fs




∞∫
0

y(τ)[x(t + τ) + xo(t − τ)] dτ


. (2.38b)

2.5 Some examples of the FST

(a) The unit rectangular pulse:
x(t) = U(t) − U(t − 1), where U(t) is the Heaviside unit step function.
The FST is given by

Xs(ω) =
(

2

π

)1/2 1∫
0

sin(ωt) dt =
(

2

π

)1/2 1 − cos(ω)

ω
. (2.39)

(b) The inverse quadratic function:

x(t) = (t2 + a2)−1, a > 0.

By using the techniques of contour integration, its FST is obtained as

Xs(ω) =
(

2

π

)1/2 ∞∫
0

1

(t2 + a2)
sin(ωt) dt,

=
(

1

2π

)1/2 1

a
[e−aωEi(aω) − eaωEi(−aω)]. (2.40)
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Here Ei and Ei are special functions called the exponential integral functions
defined by

Ei(τ) = −
∞∫

−τ

e−t

t
dt, |arg(τ)| < π

and

Ei(τ) = 1

2
[Ei(τ + j0) + Ei(τ − j0)]. (2.41)

The result here is somewhat more complicated than that for the FCT.

(c) The exponential function:

x(t) = e−αt , Re(α) > 0.

It is easily seen that the FST here is just the Laplace transform of the sine function
up to a scale factor,

Xs(ω) =
(

2

π

)1/2 ∞∫
0

e−αt sin(ωt) dt =
(

2

π

)1/2
ω

(α2 + ω2)
. (2.42)

(d) The sinc function:

x(t) = sin(at)

t
, a > 0.

Its FST is given by

Xs(ω) =
(

2

π

)1/2 ∞∫
0

1

t
sin(at) sin(ωt) dt,

=
(

1

2π

)1/2

ln

∣∣∣∣ω + a

ω − a

∣∣∣∣ . (2.43)

It is interesting to note here that since F−1
s = Fs, the FST of the resulting logarithmic

function is immediately seen to be the sinc function up to a scale factor.

(e) The decaying sine function:

x(t) = e−βt sin(at), a, Re(β) > 0.
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Its FST may be recognized as the Laplace transform of the function sin(at) sin(ωt)
up to a scale factor. Thus,

Xs(ω) =
(

2

π

)1/2 ∞∫
0

e−βt sin(at) sin(ωt) dt

=
(

1

2π

)1/2

β

[
1

β2 + (a − ω)2
− 1

β2 + (a + ω)2

]
. (2.44)

(f) Bessel function of the first kind:

x(t) = J0(at), a > 0.

The result of the FST is very similar to the FCT result, giving,

Xs(ω) =
(

2

π

)1/2 ∞∫
0

J0(at) sin(ωt) dt

= 0 if 0 < ω < a,

= ∞ if ω = a,

=
(

2

π

)1/2

(ω2 − a2)−1/2 if ω > a. (2.45)

2.6 The DCTs

As mentioned in the Introduction, DCTs are not simply the discretized versions of the
cosine functions. They arise naturally from the discretized solutions of the undamped
harmonic oscillator equation together with certain homogeneous boundary conditions. The
following discussion follows very closely the presentation made by Strang [1]. Consider
first the second-order eigenvalue problem:

u′′ + λu = 0 on the domain x ∈ [0, π]. (2.46)

The boundary condition of u′(0) = 0 at x = 0 will generate the cos(kx) as eigenfunctions
with λ = k2 as eigenvalues. The additional boundary condition of u′(π) = 0 at the other end
will determine the eigenvalues with k = 0, ±1, ±2, . . . . Similarly, when the Dirichlet con-
dition is applied at x = π, i.e., u(π) = 0, the corresponding values of k are k = ±(n + 1/2),
n = 0, 1, 2, . . . . Note that the eigenfunctions are periodic with a period 2π and symmetric
about the boundary points. Suppose (2.46) is to be solved using finite differences. Applying
the second central difference to the second-order derivative, on a equispaced grid labeled
by the index l = 0, 1, . . . , N − 1, we obtain the following difference equation at the grid
point l,

−ul−1 + 2ul − ul+1 = λul, for l 
= 0 or N − 1. (2.47)
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The Neumann condition at x = 0 is translated into u−1 = u1. At the other end, the Neu-
mann and Dirichlet conditions are respectively stated as uN = uN−2, and uN−1 = 0. All
the boundary conditions are applied at the grid points. When the boundary conditions are
applied at the midpoints of the grid, different eigenfunctions and eigenvalues are gener-
ated. Fig. 2.1 shows some typical situations of boundary conditions applied either at the
grid points or at mid-grid.

The discretized problem with Neumann boundary conditions can now be written in matrix
form:

A1uk =




2 −2
−1 2 −1

• • •
−1 2 −1

−2 2


uk = λkuk , k = 0, 1, . . . , N − 1. (2.48)

Using the definition of ulk = cos
(

kl π
N − 1

)
, as the l-th component of the k-th eigenvector,

we can show readily that the k-th eigenvalue is given by

λk = 2 − 2 cos

(
kπ

N − 1

)
, k = 0, 1, . . . , N − 1. (2.49)

Except for a scaling factor of 1/
√

2, for k = 0 and N − 1, the eigenvectors {�uk} are the
basis functions of the DCT-I. The scaling of the first and last eigenvectors is equivalent to
a similarity transformation of the matrix A1 into a symmetric matrix. Rewriting all of this
for the symmetric matrix, we obtain

(D−1A1D)(D−1uk) =




2 −√
2

−√
2 2 −1

• • •
−1 2 −√

2
−√

2 2


 (D−1uk) = λk(D−1uk)

(2.50)

where D = diag[
√

2, 1, 1, . . . ,1,
√

2]. The l-th component of the k-th eigenvector is given by

(D−1uk)l = γl cos

(
kl

π

N − 1

)
where γl = 1√

2
, for l = 0 or N − 1,

= 1, otherwise. (2.51)

These are precisely the unnormalized basis functions of DCT-I. Since they are the eigen-
functions of a symmetric real matrix, they are necessarily orthogonal. By introducing an
additional scaling factor (N − 1)−1/2 for k = 0 or N − 1, and

√
2(N − 1)−1/2 otherwise,

the basis functions are then normalized.

To introduce the orthonormal transform elements, we first define some scaling factors to
be used later:

γl = 1√
2

for l = 0 or N − 1; σl = 1√
2

for l = 0 and εl = 1√
2

for l = N − 1.
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Fig. 2.1. Boundary conditions, u′(0) = u′(π) = 0 applied at (a) grid points, grid size = π/(N − 1),
u−1 = u1 and uN = uN−2; (b) grid points, grid size = π/(N − 1), u−1 = u1 and uN−1 = 0; (c) mid-grid,
grid size = π/N , u−1 = u0 and uN = uN−1 and (d) mid-grid, grid size = π/N , u−1 = u0 and
uN = −uN−1.
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All these scale factors are unity except as specified. We now introduce a standard notation
for the elements of the N-th-order DCT-I transform matrix. Let its lk-th element be denoted
by (CI

N )lk where,

(CI
N )lk = γkγl

√
2

N − 1
cos

(
kl

π

N − 1

)
, k, l = 0, 1, . . . , N − 1. (2.52)

Recall that this result has been obtained by considering the Neumann problem where the
boundary conditions are applied at the grid points. The same Neumann problem with the
boundary conditions applied mid-grid will generate the elements of the DCT-II. Specifi-
cally, the conditions are applied at l = −1/2 and N − 1/2, giving u0 = u−1 at one end and
uN = uN−1 at the other. It should be noted that since the end points are at mid-grid, the
grid size is now π/N . The matrix that represents the discretized second-order derivative
A2 is now symmetric and the eigenvalue problem in matrix form is given by

A2uk =




1 −1
−1 2 −1

• • •
−1 2 −1

−1 1


uk = λkuk (2.53)

Using cos[(l + 1
2 )kπ/N] as the l-th component of the k-th eigenvector, it is readily shown

that the corresponding eigenvalue is [2 − 2 cos (k π
N )]. These are precisely the elements of

the N-th-order DCT-II matrix. They are, when normalized,

(CII
N )lk =

√
2

N
σk cos

[(
l + 1

2

)
kπ

N

]
, k, l = 0, 1, . . . , N − 1. (2.54)

It should be pointed out that this derivation of the DCT-II elements does not relate well to
the inherent decorrelation power of this well-known transform. The original derivation by
Ahmed et al. [5] points directly to the utility of this transform in decorrelating a Markov-1
signal. Our derivation follows the derivation by Strang [1], in preference to the unifying
second-order system under examination. Fig. 2.2 shows the basis functions for DCT-II,
N = 8.

When the Dirichlet condition is used at the far end, we again have two possibilities:
both boundary conditions applied at the grid points and both boundary conditions applied
mid-grid. The former generates the elements for DCT-III and the latter for DCT-IV. It is
interesting to see the matrices corresponding to the second-order derivatives in these cases.
We will call them A3 and A4, respectively:

A3 =




2 −2
−1 2 −1

• • •
−1 2 −1

−1 2


 and A4 =




1 −1
−1 2 −1

• • •
−1 2 −1

−1 3




We note that A3 is not symmetric. To ensure orthogonality of the eigenvectors, a similarity
transformation using the matrix D = diag[

√
2, 1, . . . , 1] is applied. This results in an extra
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Fig. 2.2. Basis functions for DCT-II, N = 8.

scaling factor for the l = 0 component of each of the eigenvectors. It is again readily shown
that cos[l(k + 1

2 )π/N] and cos[(l + 1
2 )(k + 1

2 )π/N] are respectively the l-th components of
the k-th eigenvectors for A3 and A4, respectively. We are now ready to write down the
elements of the DCT-III and DCT-IV matrices:

(CIII
N )lk =

√
2

N
σl cos

[
l

(
k + 1

2

)
π

N

]
(2.55)
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and

(CIV
N )lk =

√
2

N
cos

[(
l + 1

2

)(
k + 1

2

)
π

N

]
, l, k = 0, 1, . . . , N − 1. (2.56)

These four DCTs are sometimes referred to as the even DCTs. As we see from the above
discussion, they are the results of solving the harmonic oscillator system using finite
differences. For these DCTs, the boundary conditions at both ends are matched in that they
are both applied either at the grid points or at mid-grid. When the boundary conditions
are mismatched with one applied at the grid point and the other applied at mid-grid, the
so-called odd DCTs result. These are systematically labeled DCT-V to DCT-VIII. The
matrices, whose diagonalization will lead to the various DCTs, are listed in the following.

For the Neumann problem with a grid point boundary condition at x = 0 and a mid-grid
boundary condition at x = π, we get

A5 =




2 −2
−1 2 −1

• • •
−1 2 −1

−1 1




with the boundary conditions applied at the indices l = 0 and j = N − 1/2, meaning
u−1 = u1 and uN = uN−1 for the eigenfunctions. As in the case of A1, to ensure orthogonal-
ity of the eigenfunctions, A5 has to undergo a similarity transformation using the diagonal
matrix D = diag[

√
2, 1, . . . , 1]. This results in the j = 0 component of each vector being

scaled by a factor of 1/
√

2. Also, the grid size is now given by π

N − 1
2

. The elements of

the DCT-V are given by cos

[
kl

(
π

N − 1
2

)]
. These do not make a unitary matrix until we

include the normalization factor as well as the scaling factor for the l = 0 component. In
terms of the usual integer index, the matrix elements for DCT-V are:

(CV
N )lk = 2√

2N − 1
σlσk cos

[
kl

(
2π

2N − 1

)]
, l, k = 0, 1, . . . , N − 1. (2.57)

When the boundary conditions of the above case are reversed in their locations of appli-
cation, i.e., x = 0 applied at l = −1/2 and x = π at l = N − 1, the following matrix is
obtained:

A6 =




1 −1
−1 2 −1

• • •
−1 2 −1

−2 2


.

As can be seen, this matrix again requires a similarity transformation to make it real and
symmetric. This is provided by the diagonal matrix D = diag[1, 1, . . . ,

√
2] and hence
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the last element of each of the eigenvectors must be scaled by 1/
√

2. The elements of the
DCT-VI are then given by

(CVI
N )lk = 2√

2N − 1
σkεl cos

[(
l + 1

2

)
k

2π

2N − 1

]
, l, k = 0, 1, . . . , N − 1. (2.58)

When the condition at x = π is Dirichlet, the same mismatched applications result in
the remaining two odd DCTs. Here are the relevant matrices and the elements of the
corresponding DCT matrix elements:

A7 =




2 −2
−1 2 −1

• • •
−1 2 −1

−1 3


 and A8 =




1 −1
−1 2 −1

• • •
−1 2 −1

−1 2


,

(
CVII

N

)
lk = 2√

2N − 1
εkσl cos

[
l

(
k + 1

2

)
2π

2N − 1

]
, l, k = 0, 1, . . . , N − 1. (2.59)

Similarly, the elements of the DCT-VIII are given by

(
CVIII

N

)
lk = 2√

2N + 1
cos

[(
l + 1

2

)(
k + 1

2

)
2π

2N + 1

]
, l, k = 0, 1, . . . , N − 1.

(2.60)

We note that the normalization of this vector requires the factor
√

(2N + 1) because the
boundary condition at x = π is applied at the grid point l = N , which is N + 1/2 units away
from l = −1/2, the mid-grid at which the x = 0 boundary condition is applied.

Hence, the eight DCTs are defined by (2.52) and (2.54)–(2.60). It is inherently elegant to
see that all come from the diagonalization of matrices having exactly the same tridiago-
nal interior form. The only distinguishing features are the first and last rows, where the
boundary conditions are applied. Only DCT-II has been shown to be optimal in decorre-
lating a Markov-1 signals. However, it is clear from the common interior structure of these
matrices that all DCTs are asymptotically equivalent as N becomes very large, making the
effect of the boundary rows insignificant. It should be noted that aside from the scaling fac-
tors, DCT-III is the transpose of DCT-II and DCT-VI is the transpose of DCT-VII. Those
transform matrices that have a flat vector are specially adapted to analyzing signals with
DC components. On the other hand, DCT-IV and DCT-VIII “reach” beyond the boundary
and are good candidates as “lapped transforms”.

To complete our definitions, we will now examine the derivations for the eight DSTs.

2.7 The DSTs

All that is required to generate the DSTs is simply to replace the Neumann condition at
x = 0 with a Dirichlet condition. In exactly the same way, this condition can be applied
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either at a grid point or at mid-grid. These two possibilities with the two possible boundary
conditions applied either at grid point or at mid-grid combined to produce the eight DSTs,
four even ones and four odd ones, in much the same way the DCTs are derived. The details
of the derivation are left as an exercise. We shall denote the matrices to be diagonalized
by the DST matrices as Bn . They are listed below:

B1 =




2 −1
−1 2 −1

• • •
−1 2 −1

−1 2


 , B2 =




3 −1
−1 2 −1

• • •
−1 2 −1

−1 3


,

B3 =




2 −1
−1 2 −1

• • •
−1 2 −1

−2 2


 , B4 =




3 −1
−1 2 −1

• • •
−1 2 −1

−1 1


,

B5 =




2 −1
−1 2 −1

• • •
−1 2 −1

−1 3


 , B6 =




3 −1
−1 2 −1

• • •
−1 2 −1

−1 2


,

B7 =




2 −1
−1 2 −1

• • •
−1 2 −1

−1 1


 and B8 =




3 −1
−1 2 −1

• • •
−1 2 −1

−2 2


.

(2.61)

Considering the matrix B1, we note that it is real and symmetric, rendering an orthogonal
set of basis vectors. The matrix has an order of N − 1, and since the boundary conditions
(both are Dirichlet conditions) are applied at the grid points, the size of the grid is given
by π/N . Introducing the normalization constant of

√
2/N , the unitary matrix elements of

the DST-I can now be written as

(SI
N−1)lk =

√
2

N
sin
(

lk
π

N

)
, l, k = 1, 2, . . . , N − 1. (2.62)

Fig. 2.3 shows the basis functions for DST-I, N = 8.

Similar consideration for B2, which is also real and symmetric, gives the following matrix
elements for the DST-II:

(SII
N )lk =

√
2

N
εk sin

[
(l + 1

2 )(k + 1)π

N

]
, l, k = 0, 1, . . . , N − 1. (2.63)
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Fig. 2.3. Basis functions for DST-I, N = 8.

For B3, a similarity transformation is required to produce a real and symmetric matrix for
orthogonal basis vectors. The transformation matrix is D = diag[1, 1, . . . ,

√
2]. The matrix

elements for the DST-III are then given by

(SIII
N )lk =

√
2

N
εl sin

[
(l + 1)(k + 1

2 )π

N

]
, l, k = 0, 1, . . . , N − 1. (2.64)
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For B4 the matrix is symmetric and real, and hence the eigenvectors are orthogonal, giving
the elements for the DST-IV as

(SIV
N )lk =

√
2

N
sin

[
(l + 1

2 )(k + 1
2 )π

N

]
, l, k = 0, 1, . . . , N − 1. (2.65)

These are the so-called “even” DSTs. The “odd” DSTs are obtained with similar consider-
ations applied to matrices B5 to B8. These are listed in what follows without more detailed
discussion:

(SV
N−1)lk = 2√

2N − 1
sin

[
2lkπ

2N − 1

]
, l, k = 1, 2, . . . , N − 1, (2.66)

(SVI
N−1)lk = 2√

2N − 1
sin

[
2(l + 1

2 )(k + 1)π

2N − 1

]
, l, k = 0, 1, . . . , N − 2, (2.67)

(SVII
N−1)lk = 2√

2N − 1
sin

[
2(l + 1)(k + 1

2 )π

2N − 1

]
, l, k = 0, 1, . . . , N − 2, (2.68)

and

(SVIII
N )lk = 2√

2N − 1
εlεk sin

[
2(l + 1

2 )(k + 1
2 )π

2N − 1

]
, l, k = 0, 1, . . . , N − 1. (2.69)

Note: Sanchez et al. [16, 17] based on Martucci’s results [11–13] have shown that for
each version of the DCT and DST there exist a circulant matrix representing symmetric
convolution which can be decomposed into the sum of a symmetric Toeplitz matrix and
Hankel or close to Hankel matrix scaled by some constant factors. Each DCT and DST can
then be generated from the eigenvectors of the decomposed matrix, and the decomposed
matrix is thus diagonalized by the appropriate DCT and DST.

2.8 Properties of the DCTs and DSTs

To facilitate applications of DCT and DST in signal processing and other areas, basic
properties of these transforms are important. Some properties are intrinsic from the matrix
eigenvalue problems which give rise to these transforms, as the derivations in Sections 2.6
and 2.7 demonstrate. Some are similar in nature to those of FCT and FST, while others,
such as the convolution properties, require quite a distinctive approach (see Martucci
[11–13]). In what follows, some basic properties are discussed for some of the DCTs and
DSTs. Similar results can readily be obtained for the remaining DCTs and DSTs:

(a) The unitarity property:
The derivations in Sections 2.6 and 2.7 make it quite clear that the DCT and DST
(referred collectively sometimes as the discrete trigonometric transforms or DTTs)
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transform matrices as defined are unitary. The columns of these transform matrices
are eigenvectors of symmetric real matrices. The columns are thus orthogonal. Proper
scaling factors as introduced have rendered the column vectors unitary.

As an alternative point of view, the orthonormality of the DCT-I vectors is
demonstrated explicitly here.

Recall that the orthonormality of a real N-vector, uk = [u0k , u1k , . . . , uN−1, k]T is
given by the equation

〈uk , um〉 = δkm, (2.70)

where the inner product on the left-hand side is defined by

〈uk , um〉 =
N−1∑
n=0

unkunm, (2.71)

and δkm is the Kronecker delta which is zero if k and m are not the same and is unity
when they are the same.

Let uk be a DCT-I vector as defined in (2.52). We can then write the inner product
between two such vectors as

〈uk , um〉 =
N−1∑
n=0

(
2

N − 1

)
γkγnγnγm cos

(
nkπ

N − 1

)
cos

(
nmπ

N − 1

)
, (2.72)

where γn = 1/
√

2 for n = 0 or N − 1, and is unity otherwise. Separating out the first
and last terms in the summation and using a trigonometric identity for the cosine
function, we obtain

〈uk , um〉 = γkγm

N − 1

(
1 + (−1)m+k +

N−2∑
n=1

[
cos

(m + k)nπ

N − 1
+ cos

(m − k)π

N − 1

])
.

(2.73)

The first two terms inside the brackets can be returned into the summation by properly
reindexing the summations. This results in

〈uk , um〉 = γkγm

N − 1
Re

(
N−2∑
n=0

W−n(m−k)
2(N−1) +

N−1∑
n=1

W−n(m+k)
2(N−1)

)
. (2.74)

Here, Re (.) denotes “the real part of” and WM represents the primitive M-th root of
unity, i.e.,

WM = exp

[
−j

2π

M

]
= cos

(
2π

M

)
− j sin

(
2π

M

)
. (2.75)
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Now we examine the two summations in (2.74) separately. For the first summation
we set p = m − k to write

N−2∑
n=0

(W−p
2(N−1))

n = [1 − W−(N−1)p
2(N−1) ]

[1 − W−p
2(N−1)]

× [1 − W−p
2(N−1)]

∗

[1 − W−p
2(N−1)]

∗

=
[
2

(
1 − cos

pπ

N − 1

)]−1

(1 − W−(N−1)p
2(N−1) − Wp

2(N−1) + W−(N−2)p
2(N−1) ).

(2.76)

We have rationalized the complex quotient in preparation for taking the real part. The
second summation can be treated the same way. Letting q = m + k, we have

N−1∑
n=1

(W−q
2(N−1))

n =
[

2

(
1 − cos

qπ

N − 1

)]−1

(W−q
2(N−1) − WNq

2(N−1) − 1 + W−(N−1)q
2(N−1) )

(2.77)

Taking the real part of (2.76) gives

Re

{
N−2∑
n=0

(W−p
2(N−1))

n

}
=

[1 − (−1)−p]
[
1 − cos pπ

N−1

]

2
[
1 − cos pπ

N−1

] = 1

2
[1 − (−1)p],

and the real part of (2.77) similarly gives

Re

{
N−1∑
n=1

(W−q
2(N−1))

n

}
= −1

2
[1 − (−1)q].

Since p and q differ by 2k, when p is not zero, i.e., m 
= k, the above two expressions
cancel and we have

〈uk , um〉 = 0, for m 
= k. (2.78)

For m = k(p = 0), but k 
= 0 or N − 1, the result is

〈uk , um〉 = 1

N − 1
Re

{
N−2∑
n=0

1 +
N−1∑
n=1

(W−2k
2(N−1))

n

}
= 1, (2.79)

since the second sum is zero for the specified conditions on k. For k = 0 or N − 1 the
scale factors are 1/

√
2, and the expression in (2.79) becomes

〈uk , um〉 = 1

2(N − 1)
Re

{
N−2∑
n=0

1 +
N−1∑
n=1

1

}
= 1. (2.80)

Combining the expressions in (2.78)–(2.80) will complete the proof for unitarity of
DCT-I. The tediousness of this proof further demonstrates the elegance of relating
these vectors to the eigenvalue problem of the various real symmetric matrices.
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Based on their unitarity, the inverses of these transforms can be easily stated as
follows

(CI
N )−1 = (CI

N )T = (CI
N ); (CII

N )−1 = (CII
N )T = (CIII

N );

(CIII
N )−1 = (CIII

N )T = (CII
N ); (CIV

N )−1 = (CIV
N )T = (CIV

N );

(CV
N )−1 = (CV

N )T = (CV
N ); (CVI

N )−1 = (CVI
N )T = (CVII

N );

(CVII
N )−1 = (CVII

N )T = (CVI
N ); (CVIII

N )−1 = (CVIII
N )T = (CVIII

N ). (2.81)

Similar results exist for the eight DSTs. It is of interest to note that of these 8 DCTs
only four are involutary, i.e., they are their own inverses. Only these then retain the
inversion property of the FCT as stated in (2.5).

(b) The linearity property:
All DTTs are obviously linear operators satisfying the same equation as FCT in (2.6).

(c) The scaling in time property:
The discrete transforms deal with discrete time samples and the results of the trans-
forms are discrete frequency samples. A scaling in time will result in an inverse
scaling in the frequency domain with no impact on the overall transform as in the
case of the FCT noted in (2.7).

Based on the time–frequency uncertainty principle, if �t and �f are respectively the
time and frequency resolutions (or base units), then

�t · �f ≥ 1/(2π). (2.82)

Hence when �t is scaled by a factor a to become a�t, the frequency unit �f must
be scaled by the inverse of a to become (1/a)�f so that (2.82) is unchanged. The
overall magnitude of the transform remains unchanged.

(d) The shift in time property:
The fact that DTTs deal with discrete sample points and finite durations means that
the properties which are influenced by the finite end points, such as a shift or a finite
convolution will have very different forms [6–8]. It is demonstrated here for the shift
in time property for DCT-I.

Let x = [x(0), x(1), . . . , x(N − 1)]T and x+ = [x(1), x(2), . . . , x(N)]T be two sampled
data vectors of dimension N . Clearly, x+ is x shifted forward by one time unit, or one
sample point. While it may be more direct to treat these as completely different data
vectors for the purposes of transform analysis, it is nevertheless interesting and useful
to see how their transforms are related as compared to the case for FCT in (2.8a).

Referring to (2.52), we can write down the elements of the DCT-I vectors as

XC1 (m) =
√

2

N − 1
γm

N−1∑
n=0

γn cos

(
mnπ

N − 1

)
x(n),

XC1+ (m) =
√

2

N − 1
γm

N−1∑
n=0

γn cos

(
mnπ

N − 1

)
x(n + 1), m = 0, 1, . . . , N − 1.

(2.83)
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In matrix-vector form, the transformed vectors are

XC1 = (CI
N )x and XC1+ = (CI

N )x+. (2.84)

The shift in time property seeks to find some relations between the elements of the
two transformed vectors in (2.84). Except for the finiteness of the sampled vectors,
the derivation parallels that for FCT. Replacing the index n in the first equation in
(2.83) by (n + 1) − 1 and using the compound angle formula for the cosine function,
one obtains

XC1 (m) =
√

2

N − 1

{
γm cos

(
mπ

N − 1

) N−1∑
n=0

γn cos

(
m(n + 1)π

N − 1

)
x(n + 1)

+ γm sin

(
mπ

N − 1

) N−1∑
n=0

γn sin

(
m(n + 1)π

N − 1

)
x(n + 1)

}
. (2.85a)

If we represent the first sum in (2.85a) by C1 and the second sum by S1 the expression
simplifies to

XC1 (m) =
√

2

N − 1
γm

{
cos

(
mπ

N − 1

)
C1 + sin

(
mπ

N − 1

)
S1

}
. (2.85b)

Were C1 and S1, a DCT and a DST, respectively, the similarity with (2.8a) would be
complete. Unfortunately, there are some extra terms in both C1 and S1 making the
relationship a little more complex. We shall examine C1 first.

C1 =
N−1∑
n=0

γn cos

(
m(n + 1)π

N − 1

)
x(n + 1)

= 1√
2

cos

(
mπ

N − 1

)
x(1) +

N−1∑
n=2

cos

(
mnπ

N − 1

)
x(n)

+ 1√
2

(−1)m cos

(
mπ

N − 1

)
x(N). (2.86a)

Noting that the second term here most resembles a DCT-I, we add and subtract the
necessary terms to create a DCT-I, giving a final expression for C1,

C1 =
√

N − 1

2

1

γm
XC1 (m) − x(0)√

2
+
(

1√
2

− 1

)
cos

(
mπ

N − 1

)
x(1)

+
(

1 − 1√
2

)
(−1)mx(N − 1) + (−1)m

√
2

cos

(
mπ

N − 1

)
x(N). (2.86b)
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Similar considerations applied to the term S1 in constructing a DST-I for the vector
yields

S1 =
√

N − 1

2
XS1 (m) +

(
1√
2

− 1

)
sin

(
mπ

N − 1

)
x(1)

+ (−1)m

√
2

sin

(
mπ

N − 1

)
x(N). (2.86c)

Putting C1 and S1 together in (2.85b) finally produces the shift in time property for
DCT-I as

XC1+ (m) = cos

(
mπ

N − 1

)
XC1 (m) + γm sin

(
mπ

N − 1

)
XS1 (m)

+
√

2

N − 1
γm

{
− cos

(
mπ

N − 1

)[
x(0)√

2
− (−1)m

(
1 − 1√

2

)
x(N − 1)

]

+ (−1)m

√
2

x(N)

[
sin

(
mπ

N − 1

)
+ cos

(
mπ

N − 1

)]}
. (2.87)

The fact that such a relationship requires a DST as well as other terms involving the
end samples renders such a property less attractive. The direct computation of the
transform of the shifted sampled vector would, in most cases, be more direct and less
complicated. However, under some situations, such as adaptive filtering, the shift in
time property may be a useful one. The shift property is also stated here for DCT-II,
since this is one of the most effective DTTs. Other shift properties for the remaining
DTTs can be derived in a similar way [6, 7]. For DCT-II, we have

XC2+ (m) = cos
(mπ

N

)
XC2 (m) + sin

(mπ

N

)
XS2 (m − 1)

+
√

2

N
σm cos
(mπ

2N

)
[(−1)mx(N) − x(0)]. (2.88)

In the above discussion, we have used XC2+ (m), XC2 (m) and XS2 (m) to denote the m-th
elements respectively of the following transformed vectors

XC2+ = (CII
N )X+, XC2 = (CII

N )X and XS2 = (SII
N )X. (2.89)

Equation (2.88) expresses the shift property of DCT-II if the data sequence is shifted
by one sample point only, i.e., r = 1, where r is the shift parameter. This result was
extended to handle larger step sizes and the general formulae for shift properties of
the DCT-II (and corresponding DST-II) were derived generally for any value of the
shift parameter 0 < r < N to update transformed vectors reflecting r additional data
samples and removing r old data samples from the signal [9, 10]. Thus, the size of the
shift can be any value between 1 and N − 1, where N is the length of data sequence.
These shift properties of the DCT-II and DST-II would be useful in applications
where time constraints may not permit the immediate processing of every incoming
sample point.
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(e) The difference property:
While there are no direct analogs for the differentiation and integration operations in
the domain of discrete signals, there are some applications such as differential pulse
code modulation (DPCM) where the differencing of adjacent samples in a signal is
required. In such situations, the transform property on differencing may prove useful.

Consider a sequence consisting of differences of adjacent samples in a signal, say,

d(n) = x(n + 1) − x(n), n = 0, 1, . . . , N − 1

which, in vector form is

d = x+ − x. (2.90)

It is immediately clear from (2.90) that the shift properties discussed in (d) can be
applied. For example, if DCT-II is to be applied to (2.90), one obtains

DC2 ≡ (CII
N )d = XC2+ − XC2 . (2.91)

The use of (2.88) here may provide some simplification for the elements of DC2 .

2.9 Convolution properties

One of the most powerful, if not the most powerful properties of the Fourier transform in
signal processing is its convolution-multiplication property. Martucci [11–13] and Foltz
et al. [14, 15] successfully demonstrated that similar properties exist for the family of DTTs.

Such properties depend on the formalization of the notion of symmetric convolution. In the
case of discrete Fourier transform (DFT), the convolution-multiplication property exists
for what is defined as a “circular” convolution. The need to develop different convolutions
for the family of DTTs was perceived for the purpose of producing simple and useful
properties. We devote this section to the formalization of symmetric convolutions and the
derivation of the corresponding convolution-multiplication properties, following closely
Martucci’s discussion [11–13].

To begin, it is important to visualize a finite sampled sequence as a portion of an infinite
sequence. Any definition of convolution requires the assumed knowledge of how a finite
sequence behaves outside its finite support. A very close analogy can be drawn, and in fact
exists between this and the Fourier series theory. A function f (x) with a finite support of [0,
π] may be represented as a Fourier cosine series, or a Fourier sine series, if it has at most a
finite number of jump discontinuities. As a cosine series, f (x) is seen as that portion on [0,
π] of a function of infinite support that is periodic (P) and symmetric (S). As a sine series,
this same function is seen as that portion on [0, π] of a function of infinite support that is
periodic but antisymmetric (A). Hence, the basis functions and therefore the symmetries
that are chosen to represent this function of finite support will impact on any definition of
the convolution involving this function.

Sampled functions/sequences introduce yet an additional degree of complexity. While the
points of symmetry (POS) for a function on a finite but continuous support are always



Ch02-P373624.tex 7/8/2006 12: 59 Page 45

Definitions and General Properties 45

the end points, the POS of a sampled sequence can be either a grid point (point at which
the sample is taken) or at mid-grid (midway between two grid points). Martucci [11–13]
refers to these POS as whole sample (W) and half sample (H), respectively.

For each POS, the sampled sequence can therefore be extended as whole sample symmetric
(WS), whole sample antisymmetric (WA), half sample symmetric (HS) or half sample
antisymmetric (HA). There are always two POSs for a finite sequence, and therefore there
will be 16 possibilities of how a finite sequence can be seen as the finite portion of the
extended sequence of infinite support. Martucci [11–13] refers to this extended sequence
as the symmetric periodic sequence (SPS). It is of no surprise that these 16 combinations
correspond exactly to the 16 different eigenvalue problems used by Strang [1] to generate
the eight DCTs and eight DSTs (see Sections 2.6 and 2.7). In fact, using the notation of
ε = (WSHA) to denote an SPS extension of the finite sequence with WS at the left POS
and HA at the right POS, for instance, one can construct the following table of equivalence
relating the types of extension to the DTTs.

The DTTs from type V to VIII are referred to as odd DTTs since one POS is a whole sample
and the other is a half sample, dictating that the number of samples points be odd in one
period. The corresponding SPS of the DTTs will be the functions that are involved with
the convolution-multiplication property of that particular DTT. Before discussing these
convolution properties, it is useful to state them in a generic form. Let {x(n)} and {y(n)}
be two sequences or sampled functions and assume that all the relevant transforms exist.
Then a generic convolution-multiplication property can be stated as

T1{x ⊗ y} = T2{x} × T3{y}, (2.92)

where T1, T2 and T3 are transform operators that may not be of the same type, and ⊗ denotes
a convolution operation. Equation (2.92) holds true when all the transform operators are
Fourier transform operators and the convolution is the linear convolution operation for
x and y of infinite support. The equation is equally valid when the supports are finite
provided that the convolution is defined as a circular convolution. While such a property is
particularly elegant when all the transforms are of the same type, its usefulness is not at all
diminished if the transforms are of different types. In signal processing, the reduction of
the convolution operation in the time (or sample) domain to the multiplication operation in
the transform domain is desirable no matter one or more types of transforms are involved.

For finite sequences, their extension SPSs may be symmetric or antisymmetric. In addition,
the extension may be periodic (P) with a period N , such that

x(n) = x(n + N), n = 0, 1, . . . , N − 1, (2.93a)

or it may be antiperiodic (A) with a period N such that

x(n) = −x(n + N). (2.93b)

It is noted that the symmetric convolution is defined between sequences of the same type
of periodicity, i.e., the convolution of a periodic sequence with an antiperiodic sequence
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will vanish. We now define the symmetric convolution between two strictly symmetric
sequences of period N as the circular convolution given by

x(n) ⊗c y(n) ≡
n∑

k=0

x(k) y(n − k) +
N−1∑

k=n+1

x(k) y(n − k + N), n = 0, 1, . . . , N − 1.

(2.94)

Similarly the skew-circular convolution between two antiperiodic sequences is defined by

x(n) ⊗s y(n) ≡
n∑

k=0

x(k) y(n − k) −
N−1∑

k=n+1

x(k) y(n − k + N). (2.95)

Note: An antiperiodic sequence of period N is strictly periodic with a period of 2N .

In as much as {x(n)} and {y(n)}, for n = 0, 1, . . . , N are definitive samples of the extended
SPSs, the convolution sequences defined in (2.94) and (2.95) must also be interpreted as
definitive samples of some SPSs. Thus {x(n) ⊗c y(n)} in (2.94) is the representative finite
sequence of a strictly periodic SPS with a period of N , and {x(n) ⊗s y(n)} in (2.95) is the
representative finite sequence of an antiperiodic SPS with a period N . It is important to
note that when the index of the sequence takes a value beyond the range of [0, N − 1], the
actual extension ε must be examined to determine the value of the sample. For example,
x(−1) = −x(1) if the extension of the sequence {x(n)} is WA at the left POS.

Equation (2.92) holds true for the circular convolution when all the transforms are the DFT.
The interpretation involving both circular and skew-circular convolutions as well as the
various DTTs can be better understood by the introduction of a generalized DFT (GDFT),
where arbitrary shifts in both the time and the frequency domains may be applied. Such a
GDFT is denoted by (Ga,b) and its lk-th element is defined by

(Ga,b)lk = exp

{
−j(l + b)(k + a)

2π

N

}
, l, k = 0, 1, . . . , N − 1. (2.96)

Disregarding the scale factors which will make the transforms unitary, we can see that as
a and b are allowed to take on the values of either 0 or ½, the real and imaginary parts
of (Ga,b) are related directly to the various DTTs. For example, the real part of (G0,1/2)
is exactly (CII), when the extension SPS is given by ε = (WSWA), and the proper scale
factors are introduced to make the DCT-II unitary. In contrast, when the extension SPS is
ε = (WSHA), the real part of (G0,1/2) is (CVI), with the proper scaling factors.

Let the convolutions defined in (2.94) and (2.95) be written as u(n) and w(n), respectively,
so that,

u(n) = x(n) ⊗c y(n),

and w(n) = x(n) ⊗s y(n), n = 0, 1, . . . , N − 1. (2.97)
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Then, the generic convolution-multiplication relations using the GDFTs of (2.96) can be
summarized as follows:

(G0,0){u(n)} = (G0,0){x(n)} × (G0,0){y(n)},
(G0,1/2){u(n)} = (G0,1/2){x(n)} × (G0,0){y(n)}

and (G0,0){u(n − 1)} = (G0,1/2){x(n)} × (G0,1/2){y(n)}, n = 0, 1, . . . , N − 1 (2.98)

for the circular convolutions. For the skew-circular convolutions, we have

(G1/2,0){w(n)} = (G1/2,0){x(n)} × (G1/2,0){y(n)},
(G1/2,1/2){w(n)} = (G1/2,1/2){x(n)} × (G1/2,0){y(n)}

and (G1/2,0){w(n − 1)} = (G1/2,1/2){x(n)} × (G1/2,1/2){y(n)}, n = 0, 1, . . . , N − 1.

(2.99)

Equations (2.98) and (2.99) can now be used to generate all the convolution-multiplication
relations for the DTTs, by suitably matching the symmetry, the nature of the periodicity,
as well as the positions of the left and right POS, for the underlying extended SPS of the
sequence. It is easy to see that (2.98) and (2.99) are the relevant relations for periodic and
antiperiodic sequences, respectively.

To conclude this section, we derive a few of the many convolution-multiplication relations
for the DTTs to illustrate the procedure involved.

Consider two sequences {x(n)} and {y(n)}, n = 0, 1, . . . , N − 1. Let both sequences be
symmetrically extended by ε = [WSWS], i.e., both POS are whole sample, at grid points
and the sequences are symmetrically extended there. This will make both sequences strictly
periodic with a period of N . From Table 2.1, we note that the transform that is appropriate
for ε = [WSWS] is DCT-I. It is also easily verified that (CI) is the real part of (G0,0)
with the proper scaling factors. From the first equation in (2.98) we get the convolution-
multiplication relation for DCT-I:

(CI){x(n) ⊗c y(n)} = (CI){x(n)} × (CI){y(n)}. (2.100)

It is thus apparent that DCT-I retains the very nice structure that DFT has in its convolution
property.

For our next example, consider that the two sequences are extended by ε = [HSHS]. Again,
from Table 2.1, the equivalent transform is DCT-II. DCT-II can be generated by the real

Table 2.1. Equivalence of extensions to DTTs.

ε WSWS HSHS WSWA HSHA WSHS HSWS WSHA HSWA
DCT I II III IV V VI VII VIII

ε WAWA HAHA WAWS HAHS WAHA HAWA WAHS HAWS
DST I II III IV V VI VII VIII
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part of the GDFT of (G0,1/2). The underlying SPS for both sequences is strictly periodic
with a period N . Using the last equation in (2.98), the convolution-multiplication relation
for DCT-II is obtained as

(CI){x(n − 1) ⊗c y(n − 1)} = (CII){x(n)} × (CII){y(n)}. (2.101)

For the final example, consider a skew-circular convolution. Let both sequences be
extended based on ε = [HAHS] so that the corresponding SPSs are antiperiodic with a
period N . From Table 2.1 we find that the appropriate transform is DST-IV. Now (SIV) can
be obtained from the imaginary part of the GDFT (G1/2,1/2). In fact, −j (G1/2,1/2){x(n)} is
exactly (SIV){x(n)} up to the required scaling factors, when the sequence is extended in this
way. Referring to the last equation in (2.99) we note that the real part of (G1/2,0) produces
the elements for DCT-III. Hence the convolution-multiplication relation for DST-IV is
given by

(CIII){x(n − 1) ⊗s y(n − 1)} = (SIV){x(n)} × (SIV){y(n)}. (2.102)

2.10 Summary

In this chapter, definitions of the eight DCTs and the eight DSTs are provided together
with some of their basic properties. While there are useful relations to the FCT and
FST, these discrete transforms have been derived as a result of considering the solu-
tion of a discretized harmonic oscillator equation with different combinations of boundary
conditions and where they are applied. The basic operational properties are capped by
a discussion of the convolution-multiplication properties, which are of great impor-
tance in the application of these discrete transforms to different areas of digital signal
processing.

Problems and Exercises

1. Derive the property (2.9b).

2. Derive the property (2.14).

3. Verify that (2.26) is true.

4. Verify that (2.28) is true.

5. Derive the property (2.35).

6. For DCT-II, show that (uk)l = cos [(l + 1
2 )kπ/N] is the l-th element of the k-th

eigenvector in (2.53) with λk = 2 − 2 cos (kπ/N) as the corresponding eigenvalue.

7. Based on the information given in (2.55) and (2.56), determine the eigenvalues of
the A3 and A4, respectively, as given in Section 2.6.

8. Show that (2.69) defines the elements of the k-th eigenvector for B8 in (2.61) and
determine the k-th eigenvalue.
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9. Following the method outlined in subsection (a) in Section 2.8, demonstrate the
unitarity of one of the DCTs other than DCT-I.

10. In subsection (d) of Section 2.8, the shift properties of DST-II and DST-III for win-
dowed sequences similar to (2.88) were obtained by Sherlock and Kakad [9, 10].
Briefly discuss how their results may apply in data sampling and analysis where a
finite length data window is used.

11. Determine the appropriate convolution properties using the second equation in (2.98)
for the GDFT and all possible combinations of SPS.
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CHAPTER 3

The Karhunen–Loéve Transform and
Optimal Decorrelation

3.1 Introduction

In the previous chapter we have presented in a unified fashion the derivations of various
discrete trigonometric transforms (DTTs). These transforms have been shown to diago-
nalize certain tridiagonal matrices having very similar interior structure. However, these
derivations provide little or no reason why some of these transforms are so powerful in the
digital signal processing area. The original derivation of discrete cosine transform type II
(DCT-II) by Ahmed et al. [1] alludes to the decorrelation power of this transform when
applied to Markov-1 type random signals. In fact, Ahmed and Flickner [2] and Clarke [23,
24, 27] provided a derivation of DCT-II and discrete sine transform type I (DST-I) based
on the diagonalization of the correlation matrix of a stationary Markov signal of high and
low correlation coefficient. The wide utility of DCT-II comes from the fact that many real
signals do behave statistically like a stationary Markov-1 signal.

The transform that will exactly diagonalize the correlation matrix of any signal is the
Karhunen–Loéve transform (KLT), named after Karhunen [3] and Loéve [4], who inde-
pendently developed the continuous transform. Hotelling’s Principal Component Analysis
(PCA) [5] is an equivalent approach taken earlier. In essence, the KLT is a series rep-
resentation of a given random signal, whose orthogonal basis functions are obtained as
eigenvectors of the corresponding autocorrelation matrix. This interpretation is examined
in Section 3.2, together with a discussion of how this transform will also minimize the
mean square error (MSE) of a truncated representation of the actual signal (see Devijer
and Kittler [6]). While there are no closed form solutions for the KLT of a general random
signal, there is an analytic solution if the signal is stationary Markov-1. Ray and Driver
[7] provided this derivation.

Section 3.3 explores the link between DCTs and KLT, specifically, the derivation of DCTs
based on the work ofAhmed et al. [2] and that of Kitajima [8, 21]. In Section 3.4, we reflect
on the formal treatment of asymptotic equivalence (see Yemini and Pearl [9], Hamidi and

51
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Pearl [25], Jain [26, 28]) between classes of matrices and their orthogonal representations.
The discussion leads to the conclusion that DCT-II is asymptotically equivalent to the KLT
for Markov signals of all orders. Quadrature approximations are seen to produce actual
discrete unitary transforms as well. A summary is provided in Section 3.5.

3.2 The KLT

Let us begin by examining intuitively the problem of transmitting and reconstructing a pure
sinusoidal signal over an ideal medium that produces no distortion or degradation. The
accuracy of reconstructing the signal certainly depends on how the signal is transmitted. If
it is sampled and each sampled value of the signal is sent over the medium, then Shannon’s
sampling theorem (see Appendix A) determines how many samples per second would
be required for the exact duplication of the signal at the receiving end, and this rate of
transmission is dependent on the frequency contents of the signal.Yet, from an information
point of view, all that is required to reproduce the desired sinusoid are its magnitude,
phase and frequency, plus the fact that it is either a sine or cosine signal. Compared to
these defining parameters of the sinusoid, even the number of sample points limited by
Shannon’s theorem will contain a high degree of redundancy. Another way of saying this is
that the transmitted sampled data are highly correlated and contain redundant information.
A natural question that arises is whether or not it is possible to take the sample data points
and transform them into the defining parameters. For a deterministic signal such as our
example of a pure sinusoid, the answer is obvious. For random signals, the process is
to examine its correlation matrix and to examine its diagonalization, which will produce
uncorrelated components. The transform that enables this is the KLT.

Consider a zero mean signal vector of N points given by

x = (x0, x1, . . . , xN−1)T, (3.1)

whose samples are correlated. We seek to transform this vector by a linear transformation
WT so that the transformed vector will have samples that are not correlated. In other words,
we are looking for the vector y given by

y = WTx, (3.2)

so that the correlation matrix based on the vector y is strictly diagonal, or

E[yyT] = diag(λ0, λ1, . . . , λN−1), (3.3)

where diag(·) indicates a diagonal matrix and E[·] is the expectation operator. Substituting
(3.2) into (3.3) relates this back to the original vector x as follows:

E[WTx(WTx)T] = WTE[xxT]W = diag(λ0, λ1, . . . , λN−1). (3.4)

Denoting the correlation matrix E[xxT] for the vector x by A, and letting wn be the n-th
column in the matrix W, the following eigenvalue problem is obtained:

Awn = λnwn, n = 0, 1, . . . , N − 1. (3.5)
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In (3.5) we have applied the fact that the transformation matrix W is unitary. This is
necessary to preserve the energy contained in the vector x after it has been transformed.

The process encompassed by equations (3.1)–(3.5) can be interpreted in the following
way. Given a random signal vector x, its correlation matrix is first estimated using the
definition E[xxT]. Solving (3.5), this matrix is diagonalized. The transformation W thus
obtained will take the vector x into its uncorrelated form y given by (3.2). Note that
because the correlation matrix for x is real and symmetric, the solution of (3.5) will result
in a real unitary transform matrix W (see Appendix A for detail). The eigenvalues in
(3.5) are essentially the variances of the vector y. From an information point of view,
the higher the variance the higher is the information content. As such, the magnitude of the
eigenvalue is an indication of the importance of the corresponding eigenvector wn in the
reconstruction of the signal vector x. This forms the general basis for many transform
domain signal compression schemes and can be understood much more clearly in the
following alternative derivation of the KLT from the point of view of MSE.

Consider the vector x given in (3.1) as an N-dimensional vector. Suppose this vector space
is spanned by a set of orthogonal basis vectors {wn}, where n = 0, 1, . . . , N − 1. Then it is
possible to express the vector x as a linear combination of these orthogonal basis vectors
(see Appendix A), i.e.,

x =
N−1∑
n=0

αnwn, (3.6)

where the coefficients are given by

αn = 〈x, wn〉/〈wn, wn〉, n = 0, 1, 2, . . . , N − 1. (3.7)

Thus the vector can be represented either by the actual samples {xn} or the N numbers in
(3.7) provided the basis vectors {wn} are known. Suppose in (3.7) only the first D(D < N)
coefficients are significantly different from zero. Then the vector x will be well represented
by these D coefficients, i.e.,

x̂ =
D−1∑
n=0

αnwn, (3.8)

may be considered a good approximation of the vector x. It can be seen immediately that
if a metric is defined for the error of representation, or the difference between x and x̂, then
the selection of the orthogonal basis functions that span the N-dimensional vector space
becomes one of minimizing the error metric. The error metric of choice here is the MSE
defined by

ε = E[(x − x̂)2]. (3.9)

The problem is to find the set of basis vectors {wn} that will minimize (3.9). If, in addition,
the basis vectors are to be normalized, then the additional condition

〈wm, wn〉 = δmn, m, n = 0, 1, 2, . . . , N − 1, (3.10)
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must also be satisfied. Equation (3.9) can be rewritten as

ε = E

[
N−1∑
n=D

α2
n

]
=

N−1∑
n=D

wT
n E[xxT]wn =

N−1∑
n=D

wT
n Awn. (3.11)

Based on these definitions, the variational equation needed to find the basis vectors is

δ

δwn
{ε − λn〈wn, wn〉} = 0, n = 0, 1, 2, . . . , N − 1. (3.12)

The parameter λn is introduced to include the constraint (3.10). When the variational
derivative is taken in (3.12), the following equation is obtained:

(A − λnI)wn = 0, n = 0, 1, 2, . . . , N − 1. (3.13)

This equation is exactly the same as (3.5), meaning that the vectors {wn} are exactly the
column vectors for the KLT matrix W. The fact that these vectors will provide a truncated
representation for the random vector x which minimizes the MSE is immediately obvious.
The MSE due to truncation of using only the first D vectors in W is given by

ε =
N−1∑
n=D

λn, (3.14)

which is a minimum for a given D when the eigenvalues are ranked in decreasing order.

It is not difficult to see that there are generally no closed form solutions for the trans-
formation matrix W since the correlation matrix A is obviously signal dependent. In the
particular case of a stationary Markov-1 signal, Ray and Driver [7] provided the solution.
The elements of the correlation matrix of a Markov-1 signal are characterized by

[A]mn = ρ|m−n|, m, n = 0, 1, . . . , N − 1, (3.15)

where ρ is the positive adjacent correlation coefficient with a magnitude less than unity.
Davenport and Root [10] discussed this in the continuous domain as a solution to a certain
integral equation. In the discrete domain, the m-th component of the n-th eigenvector for
the solution of (3.13) is given by

wn(m) =
√

2

N + λn
sin

{
µn

[
(m + 1) − N + 1

2

]
+ (n + 1)π

2

}
. (3.16)

Here, the eigenvalues are

λn = 1 − ρ2

1 − 2ρ cos(µn) + ρ2
, (3.17)
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Fig. 3.1. KLT basis functions for the stationary Markov-1 signal with a correlation coefficient ρ of
0.9543 and N = 8.

and µn’s are the real positive roots of the transcendental equation:

tan(Nµ) = − (1 − ρ2) sin(µ)

(1 + ρ2) cos(µ) − 2ρ
. (3.18)

Fig. 3.1 shows the KLT basis functions for the stationary Markov-1 signal with a correlation
coefficient ρ of 0.9543 and N = 8. The intrinsic sinusoidal nature of the functions is quite
unmistakable.

Based on the diagonalization of the correlation matrix, the KLT is said to be an optimal
transform which:

1. completely decorrelates the signal in the transform domain;

2. minimizes the MSE in bandwidth reduction or data compression;

3. contains the most variance (energy) in the fewest number of transform coefficients;

4. minimizes the total representation entropy of the data sequence.

Despite these ideal properties, its signal dependence and lack of a fast transform algorithm
have made it a desirable but impractical tool in signal processing. Since many real signals
do possess properties close to those of a stationary Markov-1 signal, a natural question to
ask is whether there are predetermined basis vectors that are good approximations to the
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KLT. It is in answering this question that attempts had been made to examine the diag-
onalization of matrices that are asymptotically equivalent to the correlation matrix given
by (3.15). The derivations for DCT-I and DCT-II in the next section clearly demonstrate
the success of this approach. The KLT for signals of different kinds of statistics cannot be
obtained analytically. However, approximation techniques for the basis functions and the
eigenvalues have been developed [11]. The KLT also serves well as a benchmark against
which other discrete transforms may be judged.

3.3 Asymptotic equivalence of DCT-I and DCT-II to KLT

In the case of a stationary Markov-1 signal, the correlation matrix is a symmetric Toeplitz
matrix. It is as we have seen in the last section, one which can be diagonalized in closed
form. Symmetric Toeplitz matrices have a great deal of structure and its properties are of
great general interest. In fact, a Toeplitz matrix may be treated as asymptotically equivalent
(as N , the size of the matrix tends to infinity) to a circulant matrix (see, for example, Davis
[12]). It is well known that the eigenvectors of the circulant matrix are the basis vectors of
the discrete Fourier transform (DFT). Hence, from this point of view, KLT and DFT are
asymptotically equivalent.

A parameter in the stationary Markov-1 signal is its adjacent correlation coefficient ρ.
One can also examine the behavior of the correlation matrix and its diagonalization as this
coefficient approaches zero or unity. Hence, in speaking about asymptotical equivalence,
we will distinguish between this case and the one which is based on the size of the matrix,
i.e., N becoming large.

Yet another approach may be taken. Instead of examining the actual correlation matrix A
of the given signal, it is possible to examine an approximation to A where only a few of the
diagonals are retained. If A is asymptotically equivalent to this approximation, whether in
size or in correlation coefficient, then the eigenvalues and eigenvectors of this approximate
matrix may be considered to be close to those of the KLT. When this approximation is
independent of the signal, the corresponding transform will have the desired property of
being predetermined and hence, will be much more practical.

These approaches have been successfully attempted by many researchers (see Refs [2,
8, 9]). From these studies have come not only DCTs and DSTs but also other discrete
unitary transforms. We examine the derivations for DCT-I and DCT-II here. Although the
derivations lack the elegance of the unified treatment given by Strang [13] presented in
the previous chapter, they do relate quite directly to the reasons why these transforms are
close to being optimal in decorrelation operations.

3.3.1 DCT-I

To begin, we recall that if a nonsingular matrixA is diagonalized by a matrix S in a similarity
transformation, then its inverse A−1 is also diagonalized by the same transformation. In
other words, if

S−1AS = � = diag(λ0, λ1, . . . , λN−1),
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then

S−1A−1S = �−1 = diag(λ−1
0 , λ−1

1 , . . . , λ−1
N−1). (3.19)

Another fact that is of importance is that a nonsingular symmetric Toeplitz matrix has a
tridiagonal inverse. In particular, for the matrix A given by (3.15) its inverse is given by

A−1 = (1 − ρ2)−1




1 −ρ 0 . . . . . . . . . . . .

−ρ 1 + ρ2 −ρ . . . . . . . . . . . .

0 −ρ 1 + ρ2 −ρ 0 . . . . . .

. . . 0 −ρ 1 + ρ2 −ρ . . . . . .

. . . . . . . . . . . . −ρ 1 + ρ2 −ρ

. . . . . . . . . . . . . . . −ρ 1




. (3.20)

Using the result in (3.19), one now seeks the transformation that will diagonalize (3.20)
instead of the matrix in (3.15). One cannot help but notice the similarity of structure between
(3.20) and the tridiagonal matrices treated in Section 2.6, where the unified derivation of
the DCTs is presented. In this derivation (3.20) is regarded as the sum of two matrices
so that

A−1 = B + R,

where

B = (1 − ρ2)−1




1 + ρ2 −√
2ρ 0 . . . . . .

−√
2ρ 1 + ρ2 −ρ . . . . . .

0 −ρ 1 + ρ2 −ρ . . .

. . . . . . . . . . . . −√
2ρ

. . . . . . . . . −√
2ρ 1 + ρ2


 ,

and

R = (1 − ρ2)−1




−ρ2 (
√

2 − 1)ρ 0 . . . . . .

(
√

2 − 1)ρ 0 0 . . . . . .

. . . . . . . . . 0 (
√

2 − 1)ρ
. . . . . . . . . (

√
2 − 1)ρ −ρ2


 . (3.21)

We note that R is close to being a null matrix except at the corners of the main diagonal.
Matrix B is further decomposed into

B = −2ρ

1 − ρ2
B1 + 1 + ρ2

1 − ρ2
IN . (3.22)
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Here, B1 is a very sparse matrix with only two nonzero off diagonals, i.e.,

B1 =




0
1√
2

0 . . . . . . . . .

1√
2

0
1

2
. . . . . . . . .

0
1

2
0

1

2
. . . . . .

. . . . . .
1

2
0

1

2
. . .

. . . . . . . . . . . . . . .
1√
2

. . . . . . . . . . . .
1√
2

0




. (3.23)

Based on (3.22) it is seen that the transformation that will diagonalize B1 will also
diagonalize B, since the remaining term in (3.22) is already diagonal.

The eigenvalue problem involving B1 may be written as

B1vm = ωmvm, m = 0, 1, . . . , N − 1. (3.24)

Note that the eigenvectors {vm} are also the eigenvectors for B. The solution of (3.24) is
based on a three-term recurrence relation for Tchebyshev polynomials of the first kind.
These are special functions (see, e.g., Sneddon [14] and Szego [20]) denoted by Tn(t),

Tn(t) = cos(nθ), where t = cos(θ), n = 0, 1, . . . , N − 1. (3.25)

The three-term recurrence relation that is relevant here is given by

1

2
Tn−1(t) + 1

2
Tn+1(t) = tTn(t), for n = 1, 2, . . . (3.26)

While (3.25) and (3.26) are valid for continuous values of t varying between zero and
unity, one may consider these equations for discrete values of t, specifically,

tm = cos

(
mπ

N − 1

)
, m = 0, 1, 2, . . . , N − 1. (3.27)

Applying these discrete values of t to the recurrence relation in (3.26), we obtain

T1(tm) = tmT0(tm),

1

2
Tn−1(tm) + 1

2
Tn+1(tm) = tmTn(tm), n = 1, 2, . . . , N − 2,
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and

TN−2(tm) = tmTN−1(tm). (3.28)

The equations in (3.28) can be easily verified using compound angle formulas for the
cosine function.

Consider now a vector whose components are made up of Tchebyshev polynomials so that

ṽm =
(

T0(tm)√
2

, T1(tm), T2(tm), . . . ,
TN−1(tm)√

2

)T

, (3.29)

which can be normalized by defining

vm = ṽm

|ṽm| .

It is straightforward to see that these are indeed the eigenvectors for the matrix B1 and the
eigenvalues ωm’s are simply the discrete values tm’s. Hence,

B1vm = tmvm, m = 0, 1, 2, . . . , N − 1. (3.30)

Equation (3.30) is just the equations in (3.28) written out in matrix–vector form. By (3.22),
the matrix B is also diagonalized and the equation is

Bvm = µmvm m = 0, 1, 2, . . . , N − 1, (3.31)

and the eigenvalues are clearly given by

µm = (1 − ρ2)−1
{

1 + ρ2 − 2ρ cos

(
mπ

N − 1

)}
. (3.32)

As N → ∞, B will asymptotically approach A−1 as can be shown in the transform domain.
Let the matrix V be

V = [v0, v1, . . . , vN−1]T. (3.33)

We note that V is a unitary matrix and VVT = IN . Applying the similarity transformation
to the inverse of A, one obtains

VTA−1V = VTBV + VTRV = diag(µ0, µ1, . . . , µN−1) + VTRV. (3.34)

The nm-th element of the last term in (3.34) can be obtained by direct matrix multiplica-
tion as

(VTRV)nm =




0 for n + m, odd

2γnγmρ

{
−ρ + (2 − √

2)[cos mπ
N−1 + cos nπ

N−1 ]
}

(N − 1)(1 − ρ2)

, otherwise, (3.35)
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where

γm =
{

1√
2

for m = 0 or N − 1,

1 otherwise.

Hence, for ρ �=1 these elements vanish as N tends to infinity and asymptotically the
diagonalization of the matrix A is given by

VTAV ≈ diag(µ−1
0 , µ−1

1 , . . . , µ−1
N−1) = diag(λ0, λ1, . . . , λN−1). (3.36)

Therefore, we have an asymptotic solution for (3.5). The eigenvectors, which are the
column vectors of the transformation matrix V are given in terms of (3.29). With proper
normalization, the m-th element of the n-th vector is defined by

vn(m) = γnγm

√
2

N − 1
cos

(
nmπ

N − 1

)
, n, m = 0, 1, . . . , N − 1. (3.37)

Equation (3.37) is identical to equation (2.52) in Chapter 2, which defines the elements of
DCT-I. It is noteworthy to point out that as N tends to infinity and ρ tends to one at the same
time (3.35) becomes indeterminate, and may not be ignored. The physical interpretation
is that for random signals of very high correlation (ρ → 1), DCT-I, which depends on
(3.35) being vanishingly small, loses its decorrelation power, since it will no longer be the
transformation that diagonalizes the correlation matrix of the Markov-1 signal.

It is interesting to note that the eigenvalues in (3.36) and those for the KLT in (3.17) are
identical in form. In fact, if µn = nπ/(N − 1) is used in (3.17) then the basis functions
in (3.37) are obtained (see Problem 8). The implication here is that instead of solving
(3.18) for the exact µn, we have simply approximated it by nπ/(N − 1). However, such a
derivation completely masks the asymptotic behavior of the transform.

It should also be pointed out that given a Markov-1 process, the eigenvectors as given by the
KLT are predetermined. However, its complex form has made any attempt in deriving fast
algorithms quite futile, while the DCT-I and others that are asymptotically equivalent to it
(either as ρ tends to one or as N tends to infinity) are amenable to fast algorithms, making
real-time implementations feasible. This, in the final analysis is the only justification for
the two levels of approximation involved, first that the signal statistics is Markov-1 and
secondly the replacement of the basis functions in (3.17) by other simpler ones.

3.3.2 DCT-II

In the derivation for DCT-I, we examine the case where N is large. For DCT-II, we return
directly to the KLT for the Markov-1 signal. The eigenvalues and eigenvectors are given
in equations (3.16)–(3.18). Applying the limit of ρ → 1 to (3.18), the positive real roots of
this transcendental equation are then given by

tan(Nµ) = lim
ρ→1

(1 − ρ2) sin µ

(1 + ρ2) cos µ − 2ρ
= 0. (3.38)
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The N real positive roots of (3.38) are then

µn = nπ

N
, n = 0, 1, . . . , N − 1. (3.39)

Substitution of (3.39) for n �= 0 in (3.17) will yield zero for all the eigenvalues. For n = 0
we recall that the trace of a matrix is preserved in a similarity transformation, so that

lim
ρ→1

tr(A) = lim
ρ→1

N−1∑
n=0

(A)nn = lim
ρ→1

N−1∑
n=0

λn = λ0. (3.40)

Since the diagonal elements of A are all one’s for a Markov-1 signal, λ0 is immediately
found to be N . Returning to the eigenvectors we then obtain

w0(m) = 1√
N

,

and

wn(m) =
√

2

N
sin

{
n(m + 1

2 )
π

N
+ π

2

}
=

√
2

N
cos

{
n(m + 1

2 )
π

N

}
, n �= 0. (3.41)

Introducing the factor σn, the expressions in (3.41) can be combined to give finally the
elements of the DCT-II matrix

wn(m) = σn

√
2

N
cos

{
n(m + 1

2 )
π

N

}
, m, n = 0, 1, . . . , N − 1, (3.42)

where

σn =
{ 1√

2
for n = 0,

1 otherwise.

In this particular case, it is worth noting that DCT-II asymptotically behaves like KLT for
Markov-1 signals for high correlation independent of the size N of the signal vector. In the
case of a perfectly correlated signal, all the variance or energy of the signal is packed in
the first eigenvector, which is just the DC component in this limiting case. As ρ decreases,
the variance or energy of the signal is spread over the other eigenvectors of the DCT-II.
This particular property of DCT-II explains why it is the premier trigonometric transform
in signal representation and data compression. In fact, for a perfectly correlated signal
when ρ = 1, the DCT-II basis functions are the eigenvectors of a singular matrix whose
elements are all ones (see Problem 9).

Other DCTs and DSTs can be derived in similar fashions. Compared with the unified
treatment of the DTTs in Chapter 2, it is easy to see that each of the tridiagonal matrices
treated there is asymptotically equivalent to the inverse of the Markov-1 correlation matrix
provided the second term in (3.34) vanishes asymptotically.
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In the case of DCT-II one can also ask what happens, asymptotically, when N becomes
large for a given value of ρ. The answer to this question would follow very closely the
procedure that has been used to derive DCT-I. However, there is much economy of thought
and elegance of argument in a more general formulation of equivalent classes of matrices
and their orthogonal representations. As an example, Gray [15] and Shanmugam [22] have
found that circulant matrices and Toeplitz matrices have similar eigenvalue distributions,
asymptotically speaking. Pearl [16] undertook a formalization of the so-called asymptotic
equivalence of spectral representations in various unitary transform domains. This work
was extended by Yemini and Pearl [9] to include a procedure for generating discrete
unitary transforms based on the idea of equivalence among classes of matrices. Such a
formulation will not only admit the Markov-1 type correlation matrix, but also a much more
general class of correlation matrices. The equivalence between this class and the correlation
matrix diagonalized by DCT-II, as N becomes large, demonstrates the decorrelation power
of DCT-II for Markov signals of all orders. In addition, the ready extension of such a
formulation to the actual generation of discrete unitary transforms is sufficient reason for
us to devote some space here to its consideration.

3.4 Asymptotic equivalence and generation of discrete unitary transforms

3.4.1 The Hilbert-Schmidt norms of a matrix

The formal discussion of equivalence between classes of matrices rests on the definition of
a norm or metric. The vanishing of such a norm as N tends to infinity is usually taken as the
necessary and/or sufficient condition for asymptotic equivalence. Since signal correlation
matrices are the primary concern here, we shall consider only real symmetric N × N
matrices. Let AN be such a matrix, whose eigenvalues are given by λn, n = 0, 1, 2, … ,
N − 1. The weak norm of AN is defined as

|AN |2 ≡ N−1
N−1∑

m, n=0

a2
mn = N−1

N−1∑
n=0

λ2
n. (3.43)

The strong norm is defined as

||AN ||2 ≡ sup{〈u, AN u〉 : 〈u, u〉 = 1} = max
n

{λ2
n}. (3.44)

Note that these norms are related to the Frobenius norm and the 2-norm, respectively, as
defined in Appendix A. It is not difficult to see that the following holds true, i.e.,

||AN || ≥ |AN |. (3.45)

As well, these norms are invariant under a unitary transformation T, or

|AN | = |THAN T| and ||AN || = ||THAN T||, (3.46)

where the superscript H denotes Hermitian conjugation.
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3.4.2 Nets, classes and sections

For ease of discussion in treating sequences of matrices of increasing size N , we define
the following terms:

1. Net: A sequence of strongly bounded matrices {AN }, N = 1, 2, … , ∞, denoted by
α. ||AN || ≤ M, for a finite M and all N .

2. Class: A collection of nets denoted by A with some common structural property.
For example, A is a diagonal class of matrices if it contains nets, each of which is a
sequence of strongly bounded diagonal matrices.

3. N-section: The collection of N × N matrices that belong to the nets in a class, denoted
by AN . For example, if A is a diagonal class, then AN is the N-section of this class.

The motivation behind the definitions of these terms is to generalize the concept of asymp-
totic equivalence from a matrix-to-matrix level to a net-to-net level and, hopefully also to
a class-to-class level. Such a generalization provides the necessary framework for deter-
mining the equivalence between, for example, the class of circulant matrices and the
class of Toeplitz matrices. So, instead of treating the equivalence of one particular matrix
to another as in the derivations earlier, a whole class of autocorrelation matrices with a
common structural property may be examined.

Starting with net equivalence, we say that the two nets α = {AN }∞N=1 and β = {BN }∞N=1 are
equivalent or

α ≈ β if lim
N→∞|AN − BN | = 0. (3.47)

Thus, the two nets are said to be asymptotically equivalent if a sequence of weak norms
of the difference matrices from the two nets vanishes as N tends to infinity. Equation
(3.47) indicates that the net equivalence is reflexive. Asymptotic class equivalence is a
little more complicated. Instead of directly defining equivalence, we introduce first the
notion of asymptotic covering of classes of matrices. If A and B are matrix classes, then
A is said to asymptotically cover B if for any net β ∈ B, there exists a net α ∈A, such that
α ≈ β. The definition is given by

A ⊂ B, if for any β ∈ B, there exists α ∈ A such that α ≈ β. (3.48)

Here, we have introduced the symbol “⊂” to denote the asymptotic covering. Note that
(3.48) is not necessarily reflexive. Class equivalence is defined if and only if A ⊂ B and
B ⊂A. It has been shown, for example, that the class of circulant matrices is asymptotically
equivalent to the class of Toeplitz matrices (see Pearl [16]). Hence in the notations that we
have introduced

A ≈ B if and only if A ⊂ B and B ⊂ A. (3.49)

The problem of diagonalization of a given signal, correlation matrix can now be formulated
more succinctly. Let τ be a given net of unitary transforms, and let S be the class of signal
correlation matrices. Denote the transformed signal correlation class of matrices by τHSτ.
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The question of diagonalization now becomes whether or not the diagonal class of matrices
D covers the transformed class τHSτ asymptotically. In Section 3.4.1, we noted that the
weak norm is invariant under a unitary transformation. Hence we see that

D ⊂ τHSτ if and only if τDτH ⊂ S. (3.50)

As the invariance of the weak norm under a unitary transformation, the asymptotic equiva-
lence of D with S is now a question of whether τDτH asymptotically covers the class S. To
discuss this in terms of an example, we require some properties of spectral representation
which we deal with in the next section.

3.4.3 Spectral representations and asymptotic equivalence

In (3.50), τHSτ is said to be the τ-spectral representation of the class S. If the transformation
results in a diagonal class, S is said to be class diagonal in the transform net τ. For example,
the class diagonal in the Fourier transform net is the class of circulant matrices (see Ref.
[7]). It is possible to examine the equivalence of two classes through their respective
orthogonal spectral representations. Suppose that U is the class diagonal in the unitary
transform net τ, and V is the class diagonal in the unitary transform net β. The asymptotic
equivalence between U and V can now be examined through the vanishing of a weak norm
of some difference matrix class defined using the spectral representations of U and V.

In essence, if U ∈ UN and V ∈VN (i.e., two individual matrices belonging to the N-sections
of the respective classes), and TN ∈ τ, BN ∈ β, being unitary matrices belonging to the
respective nets, the corresponding orthogonal spectral representations are given by

TH
N UTN = Dτ and BH

N VBN = Dβ, (3.51)

where Dτ = diag(τ0, τ1, … , τN−1) and Dβ = diag(β0, β1, … , βN−1) are diagonal matrices
belonging to the N-sections of the classes Dτ and Dβ respectively. These latter classes are
diagonal classes based on the transform nets of τ and β. How close the matrix U is to the
matrix V may be measured by looking at how closely its β-spectral representation is to
Dβ. Another way of putting this is to first consider the β-spectral representation of U as

BH
N UBN = BH

N (TN Dτ TH
N )BN , (3.52)

where the right-hand side of (3.52) may be regarded as the representation of U in the
space spanned by the eigenvectors of V. Let {t} and {b} be the characteristic vectors
making up, respectively, the matrices TN and BN . Then {t} completely characterizes UN
and {b} completely characterizes VN . The asymptotic equivalence between U and V can
be examined through {t} and {b}. Suppose we define the projection of U on to the space
spanned by {b} as

Pb[U] = TN U′TH
N , (3.53)

where U′ is used to denote the matrix obtained using only the diagonal elements of (3.52).
How close (3.53) is to the original U, or its τ-spectral representation, will indicate the
closeness of U and V. This argument can be understood easily in the special case when
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(3.52) is diagonal. When this is true, U and V are seen to be equivalent since they will be
related by a similarity transformation. Using the weak norm for such a measure

|U − Pb[U]|2 = 1

N

N−1∑
n=0

{(Dτ)2
nn − (U′)2

nn}. (3.54)

The vanishing of this weak norm provides the condition for equivalence.

Let the eigenvalues of U be denoted by µτn, so that

µτn = (Dτ)nn, (3.55)

and define a vector using these eigenvalues, i.e.,

µτ = (µτ0, µτ1, . . . , µτ(N−1))
T. (3.56)

Then,
N−1∑
n=0

(Dτ)2
nn = (µτ)T(µτ), (3.57)

and
N−1∑
n=0

(U′)2
nn = (µτ)TATA(µτ), (3.58)

where the mn-th element of the matrix A is given by

(A)mn = 〈bm, tn〉. (3.59)

The above relation is based on (3.52). Putting these into (3.54) we obtain

|U − Pb[U]|2 = 1

N
(µτ)T[I −ATA](µτ). (3.60)

If as N → ∞, and the quantity in (3.60) vanishes, then the classes of matrices characterized
by {t} and {b} are said to be asymptotically equivalent. In other words

lim
N→∞

1

N
(µτ)T[I − ATA](µτ) = 0

may be used as the condition for the classes of U and V to be asymptotically equivalent.
When this is true for every bounded µτ , a more compact form of the condition results:

lim
N→∞

{
1 − 1

N tr[ATA]
} = 0. (3.61)

This condition is sufficient for the two classes of matrices to be asymptotically equivalent.
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Since we have left out a great deal of subtle details in the above discussion, it is perhaps
useful to reflect on this a little in terms of the actual problem in the class of signal correlation
matrices. Suppose U in the above discussion belongs to the N-section of the class U of
signal autocorrelation matrices. Then the net τ contains the appropriate KLT matrices TN ,
since U is class diagonal with respect to τ. If one wants to examine another transform
net, say β, in which the matrices BN may be more readily available than the KLT matrices
(3.52) indicates that the diagonal elements of the β-spectral representation of U should be
considered. These diagonal elements are used to construct the projection Pb[U] which is
class diagonal with respect to τ. Hence, the condition (3.61) is used as a sufficient condition
for the τ-spectral representation of U (i.e., in terms of the KLT matrices TN ) and the
β-spectral representation of U (i.e., in terms of the more readily available matrices BN ) to
be asymptotically equivalent. In short (3.61) ensures that the matrix BN will diagonalize the
signal correlation matrix as N tends to infinity. In (3.60), the weak norm of the difference
between the matrix U and its projection may be used to derive a criterion of performance
of the BN transform matrices.

3.4.4 Gaussian quadrature and generation of transforms

The introduction of concepts of nets, classes and sections in Section 3.4.2 enables us to
consider the class of signal correlation matrices and its orthogonal spectral representations
in the limit. This limit of N → ∞, coupled with a finite support (assuming that the signal
lasts for a finite duration), naturally evokes the transition from the discrete domain to the
continuous domain. For example, the inner product of two N-dimensional vector u and v
is defined as

〈u, v〉 =
N−1∑
n=0

unvn. (3.62)

If u and v are vectors of finite duration 
 and N is allowed to increase indefinitely, it
is not difficult to see that (3.62) in fact will approach the following inner product of the
continuous functions u(t) and v(t) representing the vectors u and v, respectively,

〈u, v〉 =
∫



u(t) v(t) dt. (3.63)

Let um and vn be the m-th and n-th column vectors of the matrices U and V, respectively.
Then (3.62) and (3.63) represent the term-wise asymptotic behavior of the infinite matrix
product, or

(UHV)mn −→
N→∞

∫



um(t)vn(t)dt, (3.64)

where we have used um(t) and vn(t) to denote the continuous analogs of the discrete vectors
um and vn as N increases indefinitely over the finite time domain 
. More generally,
instead of dt, a measure given by dn(t), where n(t) is a distribution can be used. The
above discussion makes the link between the infinite matrix product required in examining
asymptotic equivalence and quadrature which is the process of evaluating integrals as
appearing on the right-hand side of (3.64).
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It is now possible to formulate the asymptotic equivalence of two unitary transform nets:
τ = {TN }∞N=1 and β = {BN }∞N=1. As an example, the former may represent the net of KLT
matrices and the latter may be the net of DCT matrices. Thus, if U is a class of signal
correlation matrices, then τH Uτ is a diagonal class of matrices �. To see how closely
the net β approximates the net τ, it is therefore important first to examine the β-spectral
representation of �, as discussed in the previous section, as N increases indefinitely. Hence,
we examine

(BH
N �N BN )mn −→

N→∞

∫



bm(t)λ(t)bn(t)dn(t), (3.65)

which is a generalization of (3.64) with a distribution measure dn(t) and λ(t) is used to
denote the continuous limit of the vector of the diagonal elements in �N as N increases
indefinitely. If the right-hand side of (3.65) is, or covers, the signal correlation matrix class
U, then U is asymptotically class diagonal with respect to the net β. In other words, the net
β is asymptotically equivalent to the net τ for the class of signal correlation matrices U.
Another way of putting this is to say that

lim
N→∞BH

N UBN = �. (3.66)

So, the class of signal correlation matrices is asymptotically class diagonal in the transform
net of DCT matrices.

Two aspects of (3.65) are of interest. First, when the integral represents an element of a
matrix belonging to the class U, it should have the structure common to the members of
that class. For signal correlation matrices, this common property is the Toeplitz structure.
Secondly, the term-wise convergence can be achieved with a finite N if the discrete left-
hand side is interpreted as a quadrature evaluation of the integral. It is well known, for
example, that the integral of a polynomial of degree 2N − 1 can be exactly reproduced
by a numerical quadrature of order N (see, for example, Krylov [17]). It should also be
noted that for a given function λ(t), and a support 
, the measure dn(t) and the orthonormal
functions bn(t)’s can be so chosen that the integral in (3.65) will have the necessary Toeplitz
structure. For example, with bn(t) = exp(−jωnt)/(2π), 
 = [−π, π] and dn(t) = dt, we have

(BH
N �N BN )mn −→

N→∞

(
1

2π

) π∫
−π

exp{−j(ωn − ωm)t}λ(t)dt,

where the right-hand side is clearly the Fourier transform of λ(t), denoted by λ̃(ωn − ωm).
As is clear from the form of the argument, the expression has a Toeplitz structure. We are
now able to establish a general procedure to generate transform nets that will asymptotically
diagonalize the signal correlation matrices:

1. Choose a set of orthonormal functions (polynomials) with respect to a support 
,
and a measure dn(t) such that the integral in (3.65) will have the required Toeplitz
structure.
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2. Discretize the orthonormal functions and choose proper weights for the quadrature
evaluation of the integral to insure term-wise convergence in (3.65). This will then
produce the transform net which asymptotically diagonalizes the class of signal
correlation matrices.

Discrete transforms obtained in such a procedure are called Gauss–Jacobi transforms (see
Yemini and Pearl [9]).

It is instructive to examine the details of such a construction that will lead to the DCT-II
transform matrix. Let the domain of definition of the polynomials Pm(t) be 
 = [−1, 1]
so that they are orthonormal with respect to a certain measure dn(t). The orthonormality
condition for these polynomials is then stated as

∫



Pm(t)Pn(t)dn(t) = δmn for m, n = 0, 1, . . . , N − 1. (3.67)

From the theory of numerical quadrature it is known that there exists a set of positive real
weights αn, n = 0, 1, 2, … , N − 1, corresponding to the N zeros of the polynomial PN (t)
in 
, denoted by {tn}, such that the quadrature of an arbitrary polynomial f (t) given by

QN ( f ) =
N−1∑
n=0

αn f (tn), (3.68)

is an exact evaluation of the integral

∫



f (t)dn(t),

provided the degree of f (t) is less than 2N − 1. Now, in (3.67) it is clear that the integrand
is of degree less than 2N − 1. Hence, its quadrature evaluation based on the weights and
the N zeros of the polynomial PN (t) can be used to replace the integral so that

N−1∑
i=0

αiPm(ti)Pn(ti) = δmn, m, n = 0, 1, . . . , N − 1, (3.69)

represents the orthonormality condition in (3.67). The transform net based on this choice
of the polynomial function can now be constructed so that the mn-th element of the N × N
transform matrix BN is given by

(BN )mn = √
αmPn(tm), m, n = 0, 1, . . . , N − 1. (3.70)

We conclude this section by applying the formalism presented to the specific case leading
up to the transform matrix for the DCT-II. Let the domain of definition of the polynomials
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be 
 = [−1, 1], and let dn(t) = √
1 − t2dt. Then, the polynomials are chosen to be the

Tchebyshev polynomials of the first kind, i.e., Pn(t) = Tn(t) = cos(nθ), with cos(θ) = t. To
construct the N-point transform, the zeros of TN (t) are chosen so that TN (tm) = 0 with

tm = cos

(
(2m + 1)π

2N

)
, m = 0, 1, . . . , N − 1. (3.71)

(see, for example, Fike [18]). The quadrature weights are obtained by observing that the
orthogonality condition for the discrete Tchebyshev polynomials is

N−1∑
m=0

Ti(tm)Tk(tm) = N

2
δik , (3.72)

where the following definitions for the discrete Tchebyshev polynomials have been used

T0(tm) = 1√
2

, and Tk(tm) = cos

(
(2m + 1)kπ

2N

)
. (3.73)

Taking into account the normalization factor and the definition for the polynomial functions
chosen, the mn-th element of the transformation matrix is now given as

(BN )mn =
√

2

N
Tn(tm),

which is clearly the same as the definition of the DCT-II element given in (3.42). As for the
matrix class that is class diagonal in this net of transforms, we return to (3.65), in which

we use 
 = [−1, 1], dn(t) = (1 − t2)−
1
2 dt and bn(t) = Tn(t), so that

∫



bm(t)λ(t)bn(t)dn(t) =
1∫

−1

Tm(t)Tn(t)λ(t)(1 − t2)−
1
2 dt.

Substituting the cosine form of the Tchebyshev polynomials and changing the integrating
variable to θ reduces the integral to

π∫
0

cos(mθ) cos (nθ)λ( cos−1 θ) dθ, (3.74)

which can be separated into two parts, using the compound angle formula for the cosine
function, so that (3.74) is written as

1

2




π∫
0

cos[(m − n)θ]λ( cos−1 θ) dθ +
π∫

0

cos [(m + n)θ]λ( cos−1 θ) dθ


. (3.75)
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The first term in (3.75) is clearly of Toeplitz structure while the second term is in what is
called a Hankel form (each crossdiagonal consists of the same element). It can be shown
that the weak norm of a Hankel form vanishes as N , the size of the matrix, increases,
provided certain smoothness condition1 is satisfied (see Yemini and Pearl in [9]).

This brief discussion on the generation of the DCT-II transform net using the Tchebyshev
polynomials demonstrates that it will diagonalize the Toeplitz class of matrices asymptot-
ically. Since this class includes the correlation matrix of Markov signals of all orders, it
also means that the DCT-II is asymptotically equivalent to the KLT for Markov signals of
all orders, a fact that has important consequences for the DCT-II.

By varying the choices of 
, Pn(t) and dn(t) in the quadrature procedure, other discrete
unitary transforms such as discrete sine transforms and discrete Legendre transforms can
be generated.

3.5 Summary

In this chapter, we have detailed the relationship between the DCT and the statistically opti-
mal KLT. The asymptotic behavior of the DCT is clearly demonstrated both as the sequence
length increases and also as the adjacent correlation coefficient increases. Although deriva-
tions are presented in details only for DCT-I and DCT-II, the results are similar for other
trigonometric transforms. A natural follow-up to this will be the efficient implementation
of these transforms based on algorithms that are developed in later chapters.

Section 3.4 deals with the more general problem of so-called equivalent classes of matrices
and their orthonormal representations. The emphasis here is on the asymptotic equivalence
of different types of correlation matrices. The outcome of the development leads to a rather
general and interesting procedure for generating certain discrete unitary transforms for a
given class of signal correlation matrices.

Problems and Exercises

1. Derive the equation (3.13).

2. Derive the expression (3.14).

3. Derive the equations (3.16) and (3.18).

1 Consider the Hankel form: 


a0 a1 a2 a3 . . .

a1 a2 a3 a4 . . .

a2 a3 a4 . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .


 .

Its weak norm is given by
1

N
{a2

0 + 2a2
1 + 3a2

2 + · · · + Na2
N−1}, which vanishes as N tends to infinity if the

following condition is satisfied:
∞∑

m=1
ma2

m−1 < ∞. This is referred to as the smoothness condition.
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4. Derive the equation (3.20).

5. Derive the equation (3.28).

6. Derive the result in (3.32).

7. Derive the result in (3.35).

8. Toward the end of the derivation for DCT-I in Section 3.3, it is stated that if
µn = nπ/(N − 1) is used in (3.17) the basis functions in (3.37) are obtained. Verify
this statement.

9. In Section 3.3, on DCT-II, it is stated that the basis functions for DCT-II are the
eigenvectors of a singular matrix whose elements are all ones when ρ = 1. Prove
this.

10. Show that as ρ tends to zero that the basis functions in (3.16) reduces to one of the
discrete sine transforms (see Jain [19]).

11. Show that DCT-IV is asymptotic to KLT as N tends to infinity. Investigate the form
of the correlation matrix diagonalized by the DCT-IV matrix.
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CHAPTER 4

Fast DCT/DST Algorithms

4.1 Introduction

Discrete cosine transforms (DCTs) and discrete sine transforms (DSTs) are members of the
class of sinusoidal unitary transforms [13]. A sinusoidal unitary transform is an invertible
linear transform whose kernel is defined by a set of complete, orthogonal/orthonormal
discrete cosine and/or sine basis functions. The well-known Karhunen-Loéve transform
(KLT) [11, 13], generalized discrete Fourier transform (DFT), generalized discrete Hartley
transform (DHT) or equivalently generalized discrete W transform, and various types of the
DCT and DST are members of this class of unitary transforms. The complete set of DCTs
and DSTs, so-called discrete trigonometric transforms, consists of eight versions of DCT
and corresponding eight versions of DST [14, 15, 54]. Each transform is classified as even
or odd and of type I, II, III and IV. Since all present applications involve only even DCT and
DST, this chapter considers only four types of even DCT and DST. The crucial aspect for
the applicability of DCT and DST is the existence of fast algorithms that allow their efficient
computation compared to the direct matrix–vector multiplication. The algorithmic history
of DCT and DST is parallel to that of the DFT. Over three decades many fast algorithms
for the efficient computation of one-/two-dimensional (1-D/2-D) DCT and DST have been
developed. In general, they are based on indirect computation (via other discrete orthogonal
transforms) or direct computation (recursive sparse matrix factorization of the transform
matrix), and they are generally classified as radix-2, split-radix, mixed-radix, odd-length,
composite-length and prime-factor algorithms [4]. However, one of the most important
requirements is that fast DCT/DST algorithms possess excellent numerical stability.

This chapter discusses the fast rotation-based DCT/DST algorithms. Almost all are direct
algorithms defined by the recursive (if exists) sparse matrix factorization of the transform
matrix. In Section 4.2, definitions, basic mathematical properties and relations between
corresponding DCT and DST which are important in deriving fast algorithms are recalled.
Then the explicit forms of orthonormal DCT and DST matrices for N = 2, 4 and 8 are
presented in Section 4.3. The fast and numerically stable DCT/DST algorithms with regular
structure employing only real arithmetic are presented in Section 4.4. In particular, these
rotation-based algorithms are very convenient for the construction of integer transforms.

73
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The generalized signal flow graphs corresponding to the sparse matrix decomposition of
the transform matrix are also provided. Finally, in Section 4.5 how 2-D DCT/DST fast
algorithms can be derived from the corresponding 1-D ones is discussed. The chapter
concludes with a summary, problems and exercises, and bibliography.

4.2 Orthogonal/orthonormal DCT/DST matrices:
definitions, properties and relations

Before deriving the explicit forms of orthonormal DCT and DST matrices we recall their
definitions, basic mathematical properties and relations. N is assumed to be an inte-
ger power of 2. A subscript in the matrix notation denotes order of the matrix, while
a superscript denotes the type.

Four orthonormal even DCTs (forward and inverse) in matrix form denoted by CI
N+1, CII

N ,
CIII

N and CIV
N , are respectively defined as [4, 7, 14, 18]

[CI
N+1]kn =

√
2

N

[
εk εn cos

πnk

N

]
, k, n = 0, 1, . . . , N ,

[CI
N+1]

−1 = [CI
N+1]

T = CI
N+1, (4.1)

[CII
N ]kn =

√
2

N

[
εk cos

π(2n + 1)k

2N

]
, k, n = 0, 1, . . . , N − 1,

[CII
N ]

−1 = [CII
N ]

T = CIII
N , (4.2)

[CIII
N ]kn =

√
2

N

[
εn cos

π(2k + 1)n

2N

]
, k, n = 0, 1, . . . , N − 1,

[CIII
N ]

−1 = [CIII
N ]

T = CII
N , (4.3)

[CIV
N ]kn =

√
2

N

[
cos

π(2n + 1)(2k + 1)

4N

]
, k, n = 0, 1, . . . , N − 1,

[CIV
N ]

−1 = [CIV
N ]

T = CIV
N , (4.4)

where

εp =
{ 1√

2
p = 0 or p = N ,

1 otherwise,

and the corresponding four orthonormal even DSTs (forward and inverse) in matrix form
denoted by SI

N−1, SII
N , SIII

N and SIV
N , are respectively defined as [4, 7, 14, 18]

[SI
N−1]kn =

√
2

N

[
sin

π(n + 1)(k + 1)

N

]
, k, n = 0, 1, . . . , N − 2,

[SI
N−1]

−1 = [SI
N−1]

T = SI
N−1, (4.5)
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[SII
N ]kn =

√
2

N

[
εk sin

π(2n + 1)(k + 1)

2N

]
, k, n = 0, 1, . . . , N − 1,

[SII
N ]−1 = [SII

N ]T = SIII
N , (4.6)

[SIII
N ]kn =

√
2

N

[
εn sin

π(2k + 1)(n + 1)

2N

]
, k, n = 0, 1 . . . , N − 1,

[SIII
N ]−1 = [SIII

N ]T = SII
N , (4.7)

[SIV
N ]kn =

√
2

N

[
sin

π(2n + 1)(2k + 1)

4N

]
, k, n = 0, 1 . . . , N − 1,

[SIV
N ]−1 = [SIV

N ]T = SIV
N , (4.8)

where

εq =
{ 1√

2
q = N − 1,

1 otherwise.

The DCT-I matrix given by (4.1) is defined for order N + 1 [9, 14]. It is a scaled version
of the symmetric cosine transform (SCT) [10] for N = 2m + 1. The SCT matrix denoted
by C̃I

N is of order N and it is defined as

[C̃I
N ]kn =

√
2

N − 1

[
εk εn cos

πnk

N − 1

]
, k, n = 0, 1, . . . , N − 1,

[C̃I
N ]−1 = [C̃I

N ]T = C̃I
N , (4.9)

where

εp =
{ 1√

2
p = 0 or p = N − 1,

1 otherwise.

Similarly, the DST-I given by (4.5) is defined for order N − 1 [13], and it is a scaled version
of the symmetric sine transform (SST) [11] for N = 2m − 1. The SST matrix denoted by
S̃I

N is of order N and it is defined as

[S̃I
N ]kn =

√
2

N + 1

[
sin

π(n + 1)(k + 1)

N + 1

]
, k, n = 0, 1, . . . , N − 1,

[S̃I
N ]−1 = [S̃I

N ]T = S̃I
N . (4.10)

The DCT-II (and its inverse, the DCT-III, first reported in [8]) has excellent energy com-
paction and among the currently known unitary transforms it is the best approximation to
the optimal KLT. The DST-II and its inverse, the DST-III, were introduced by Kekre and
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Solanki [12]. The DCT-IV and DST-IV introduced by Jain [13] have found applications in
the fast implementation of lapped orthogonal transforms and cosine/sine modulated filter
banks for efficient transform/subband coding [5].

Jain [13] has shown that the basis vectors of DCTs and DSTs are eigenvectors of the
parametrized symmetric tridiagonal Jacobi matrix. However, these DCTs and DSTs are
not complete. The complete set of DCTs and DSTs was reported in Ref. [14]. Recently,
Strang [15] proved that the column vectors of DCTs and DSTs (even and odd versions)
are eigenvectors of a simple symmetric second difference matrix (it is actually a tridiag-
onal matrix), and therefore they are orthogonal. By varying the boundary conditions the
complete set of DCTs and DSTs are obtained [54]. Similarly, in Refs. [16, 17] it has been
shown that the set of DCTs and DSTs can be generated by decomposing the matrix as
a sum of symmetric Toeplitz matrix, Hankel or near-Hankel matrix scaled by a constant
factor. Furthermore, the DCTs and DSTs are intrinsically related to generalized DFT [19],
and generalized DHT [20, 21] or equivalently generalized discrete W transform [22] for
real-valued data [18, 23].

The DCT and DST matrices given by (4.1)–(4.10) are real-valued and orthonormal. The
normalization factors

√
2/N ,

√
2/(N − 1) and

√
2/(N + 1) in the forward and inverse

transforms can be merged as 2/N , 2/(N − 1) and 2/(N + 1), respectively, and moved
either to the forward or inverse transform. If these normalization factors are merged these
DCT and DST matrices will only be orthogonal. The inverses of DCT and DST matrices
are simply obtained by transposing original matrices (unitarity property). The matrices
CI

N+1, CIV
N , SI

N−1, SIV
N including C̃I

N and S̃I
N are involutory, i.e., they are self-inverse.

The symmetry of the transform matrix indicates that the fast algorithms for the forward
and inverse transform computation are identical. The matrices CII

N and CIII
N are inverses

(transposes) of each other. The same property holds for matrices SII
N and SIII

N . It means that
fast algorithms for the inverse transform computation are obtained from the algorithms for
forward transform computation performed in the opposite direction.

To reduce the set of DCT and DST matrices considered for the efficient implementation we
can exploit the relations between DST and their corresponding DCT matrices. Specifically,
the matrix SII

N (SIII
N ) is related to CII

N (CIII
N ) matrix by [39, 40]

SII
N = JN CII

N DN , SIII
N = DN CIII

N JN , (4.11)

whereas the matrix SIV
N is related to CIV

N matrix by [40]

SIV
N = JN CIV

N DN , (4.12)

where JN is the cross-indentity (reflection) matrix and DN is the diagonal odd-sign changing
matrix given by DN = diag{(−1)k}, k = 0, 1, . . . , N − 1. Consequently, the efficient imple-
mentations of DST-II and DST-IV can be obtained from those of DCT-II and DCT-IV
respectively by appropriate sign changes and reversal of order.
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The matrix CIV
N is related to CII

N matrix by [48, 49]

CIV
N =




1
2 0 0 · · · 0

− 1
2 1 0 · · · 0
1
2 −1 1 · · · 0

− 1
2 1 −1 · · · 0
...

...
...

. . .
...

− 1
2 1 −1 · · · 1




CII
N




2 cos π
4N 0

2 cos 3π
4N

. . .

0 2 cos (N−1)π
4N


.

(4.13)

Finally, for the DCT and DST matrices the following relations hold [55]:

CI
N+1 JN+1 = DN+1 CI

N+1, SI
N−1 JN−1 = DN−1 SI

N−1,

CII
N JN = DN CII

N , SII
N JN = DN SII

N ,

JN CIII
N = CIII

N DN , JN SIII
N = SIII

N DN ,

(−1)N−1 CIV
N JN DN = JN DN CIV

N , (−1)N−1SIV
N JN DN = JN DN SIV

N . (4.14)

These relations allow us to limit our discussion in subsequent sections to CI
N+1, SI

N−1, CII
N ,

CIV
N , C̃I

N and S̃I
N .

4.3 The explicit forms of orthonormal DCT/DST matrices

In this section, we derive the explicit orthonormal forms of DCT/DST matrices for some
values of N . We consider only the matrices CI

N+1, SI
N−1, C̃I

N , S̃I
N , CII

N and CIV
N , and we

will subsequently derive their explicit orthonormal forms for values of N = 2, 4 and 8.
The matrices CIII

N , SII
N , SIII

N and SIV
N can be easily derived exploiting the mathematical

properties of DCT and DST matrices and relations between DST and their corresponding
DCT matrices. Having derived the explicit forms of the DCT and DST matrices for values
of N = 2, 4 and 8, the higher-order matrices can be generated from lower-order ones by
recursive sparse matrix factorization.

The elements of DCT-I matrix CI
N+1 are defined by (4.1). For values of N = 2, 4 and 8,

we have the following explicit forms:

CI
3 =




1
2

1√
2

1
2

1√
2

0 − 1√
2

1
2 − 1√

2
1
2


, CI

5 = 1√
2




1
2

1√
2

1√
2

1√
2

1
2

1√
2

cos π
4 0 − cos π

4 − 1√
2

1√
2

0 −1 0 1√
2

1√
2

− cos π
4 0 cos π

4 − 1√
2

1
2 − 1√

2
1√
2

− 1√
2

1
2




,
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CI
9 = 1

2




1
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1
2

1√
2

cos π
8 cos π

4 sin π
8 0 −sin π

8 −cosπ
4 −cosπ

8 − 1√
2

1√
2

cosπ
4 0 −cosπ

4 −1 −cosπ
4 0 cosπ

4
1√
2

1√
2

sin π
8 −cosπ

4 −cosπ
8 0 cosπ

8 cosπ
4 −sin π

8 − 1√
2

1√
2

0 −1 0 1 0 −1 0 1√
2

1√
2

−sin π
8 −cosπ

4 cosπ
8 0 −cosπ

8 cosπ
4 sin π

8 − 1√
2

1√
2

−cosπ
4 0 cosπ

4 −1 cosπ
4 0 −cosπ

4
1√
2

1√
2

−cosπ
8 cosπ

4 −sin π
8 0 sin π

8 −cosπ
4 cosπ

8 − 1√
2

1
2 − 1√

2
1√
2

− 1√
2

1√
2

− 1√
2

1√
2

− 1√
2

1
2




.

The elements of the DST-I matrix SI
N−1 are defined by (4.5). For N = 2, the matrix SI

1 = (1)
is trivial and for N = 4 and 8, we have the following forms:

SI
3 = 1√

2




sin π
4 1 sin π

4

1 0 −1

sin π
4 −1 sin π

4


,

SI
7 = 1

2




sin π
8 sin π

4 cos π
8 1 cos π

8 sin π
4 sin π

8

sin π
4 1 sin π

4 0 −sin π
4 −1 −sin π

4

cos π
8 sin π

4 −sin π
8 −1 −sin π

8 sin π
4 cos π

8

1 0 −1 0 1 0 −1

cos π
8 −sin π

4 −sin π
8 1 −sin π

8 −sin π
4 cos π

8

sin π
4 −1 sin π

4 0 −sin π
4 1 −sin π

4

sin π
8 −sin π

4 cos π
8 −1 cos π

8 −sin π
4 sin π

8




.

The elements of the SCT matrix C̃I
N are defined by (4.9). For values of N = 2, 4 and 8, we

have the following forms:

C̃I
2 = √

2

( 1
2

1
2

1
2 − 1

2

)
, C̃I

4 =
√

2

3




1
2

1√
2

1√
2

1
2

1√
2

cos π
3 −cosπ

3 − 1√
2

1√
2

−cosπ
3 −cosπ

3
1√
2

1
2 − 1√

2
1√
2

− 1
2




,
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C̃I
8 =

√
2

7




1
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1
2

1√
2

cos π
7 cos 2π

7 cos 3π
7 −cos 3π

7 −cos 2π
7 −cos π

7 − 1√
2

1√
2

cos 2π
7 −cos 3π

7 −cos π
7 − cos π

7 −cos 3π
7 cos 2π

7
1√
2

1√
2

cos 3π
7 −cos π

7 −cos 2π
7 cos 2π

7 cos π
7 −cos 3π

7 − 1√
2

1√
2

−cos 3π
7 −cos π

7 cos 2π
7 cos 2π

7 −cos π
7 −cos 3π

7
1√
2

1√
2

−cos 2π
7 −cos 3π

7 cos π
7 − cos π

7 cos 3π
7 cos 2π

7 − 1√
2

1√
2

−cos π
7 cos 2π

7 −cos 3π
7 − cos 3π

7 cos 2π
7 −cos π

7
1√
2

1
2 − 1√

2
1√
2

− 1√
2

1√
2

− 1√
2

1√
2

− 1
2




.

The elements of the SST matrix S̃I
N are defined by (4.10). For values of N = 2, 4 and 8,

we have the following forms:

S̃I
2 =

√
2

3

(
sin π

3 sin 2π
3

sin 2π
3 −sin π

3

)
, S̃I

4 =
√

2

5




sin π
5 sin 2π

5 sin 2π
5 sin π

5

sin 2π
5 sin π

5 −sin π
5 −sin 2π

5

sin 2π
5 −sin π

5 −sin π
5 sin 2π

5

sin π
5 −sin 2π

5 sin 2π
5 −sin π

5




,

S̃I
8 =

√
2

3




sin π
9 sin 2π

9 sin π
3 sin 4π

9 sin 4π
9 sin π

3 sin 2π
9 sin π

9

sin 2π
9 sin 4π

9 sin π
3 sin π

9 − sin π
9 −sin π

3 −sin 4π
9 −sin 2π

9

sin π
3 sin π

3 0 −sin π
3 − sin π

3 0 sin π
3 sin π

3

sin 4π
9 sin π

9 −sin π
3 −sin 2π

9 sin 2π
9 sin π

3 −sin π
9 −sin 4π

9

sin 4π
9 −sin π

9 −sin π
3 sin 2π

9 sin 2π
9 −sin π

3 −sin π
9 sin 4π

9

sin π
3 −sin π

3 0 sin π
3 − sin π

3 0 sin π
3 −sin π

3

sin 2π
9 −sin 4π

9 sin π
3 −sin π

9 − sin π
9 sin π

3 −sin 4π
9 sin 2π

9

sin π
9 −sin 2π

9 sin π
3 −sin 4π

9 sin 4π
9 −sin π

3 sin 2π
9 −sin π

9




.

The elements of the DCT-II matrix CII
N are defined by (4.2). For values of N = 2, 4 and 8,

we have the following forms:

CII
2 =




1√
2

1√
2

1√
2

− 1√
2


, CII

4 = 1√
2




1√
2

1√
2

1√
2

1√
2

cos π
8 sin π

8 −sin π
8 −cosπ

8

1√
2

− 1√
2

− 1√
2

1√
2

sin π
8 −cosπ

8 cos π
8 −sin π

8




,
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CII
8 = 1

2




1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

cos π
16 cos 3π

16 sin 3π
16 sin π

16 −sin π
16 −sin 3π

16 −cos 3π
16 −cos π

16

cos π
8 sin π

8 −sin π
8 −cos π

8 −cos π
8 −sin π

8 sin π
8 cos π

8

cos 3π
16 −sin π

16 −cos π
16 −sin 3π

16 sin 3π
16 cos π

16 sin π
16 −cos 3π

16

1√
2

− 1√
2

− 1√
2

1√
2

1√
2

− 1√
2

− 1√
2

1√
2

sin 3π
16 −cos π

16 sin π
16 cos 3π

16 −cos 3π
16 −sin π

16 cos π
16 −sin 3π

16

sin π
8 −cos π

8 cos π
8 −sin π

8 −sin π
8 cos π

8 −cos π
8 sin π

8

sin π
16 −sin 3π

16 cos 3π
16 −cos π

16 cos π
16 −cos 3π

16 sin 3π
16 −sin π

16




.

Finally, the elements of the DCT–IV matrix CIV
N are defined by (4.4) and for values of

N = 2, 4 and 8, we have the following explicit forms:

CIV
2 =

(
cos π

8 sin π
8

sin π
8 −cosπ

8

)
, CIV

4 = 1√
2




cos π
16 cos 3π

16 sin 3π
16 sin π

16

cos 3π
16 −sin π

16 −cos π
16 −sin 3π

16

sin 3π
16 −cos π

16 sin π
16 cos 3π

16

sin π
16 −sin 3π

16 cos 3π
16 −cos π

16




,

CIV
8 = 1

2




cos π
32 cos 3π

32 cos 5π
32 cos 7π

32 sin 7π
32 sin 5π

32 sin 3π
32 sin π

32

cos 3π
32 sin 7π

32 sin π
32 −sin 5π

32 −cos 5π
32 −cos π

32 −cos 7π
32 −sin 3π

32

cos 5π
32 sin π

32 −cos 7π
32 −cos 3π

32 −sin 3π
32 sin 7π

32 cos π
32 sin 5π

32

cos 7π
32 −sin 5π

32 −cos 3π
32 sin π

32 cos π
32 sin 3π

32 −cos 5π
32 −sin 7π

32

sin 7π
32 −cos 5π

32 −sin 3π
32 cos π

32 −sin π
32 −cos 3π

32 sin 5π
32 cos 7π

32

sin 5π
32 −cos π

32 sin 7π
32 sin 3π

32 −cos 3π
32 cos 7π

32 sin π
32 −cos 5π

32

sin 3π
32 −cos 7π

32 cos π
32 −cos 5π

32 sin 5π
32 sin π

32 −sin 7π
32 cos 3π

32

sin π
32 −sin 3π

32 sin 5π
32 −sin 7π

32 cos 7π
32 −cos 5π

32 cos 3π
32 −cos π

32




.

Investigating the basis functions or basis vectors, i.e., rows of the matrices CI
N+1, SI

N−1,
C̃I

N , S̃I
N and CII

N , we observe that they exhibit certain symmetries. The location of symmetry
center is determined by the length or order of the row, which is the discrete number of
elements. When the order of the matrix is even, the symmetry center is located in midpoint
between adjacent center elements of the row vector. Denoting the elements of the k-th
row of these matrices by �kn the basis vector is said to be symmetric, if �k,N−1−n = �kn

and antisymmetric, if �k,N−1−n = −�kn, n = 0, 1, . . . , N
2 − 1. Observing C̃I

N , S̃I
N and CII

N
matrices we see that the even-indexed rows are symmetric basis vectors, while odd-indexed
rows are antisymmetric basis vectors. Indeed, substituting n = N − 1 − n for n into (4.2),
(4.9) and (4.10) we note

�k,N−1−n = (−1)k�kn, n = 0, 1, . . . ,
N

2
− 1, (4.15)
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or

�2k,N−1−n = �2k,n, �2k+1,N−1−n = −�2k+1,n, k, n = 0, 1, . . . ,
N

2
− 1. (4.16)

Matrices with an even order exhibiting such symmetry denoted in general by TN , may be,
after proper bit-reversal of the rows and/or column indices, factorized into sparse matrices
as follows [37]:

TN =
(

E N
2

Ē N
2

O N
2

−Ō N
2

)
=

(
E N

2
0

0 Ō N
2

) (
I N

2
J N

2

J N
2

−I N
2

)
, (4.17)

or alternatively as [55]

TN =
(

E N
2

Ē N
2

O N
2

−Ō N
2

)
=

(
E N

2
0

0 O N
2

) (
I N

2
J N

2

I N
2

−J N
2

)
, (4.18)

where E N
2

and O N
2

are matrices of order N
2 with symmetric and antisymmetric properties

as defined in (4.15) and (4.16). Ē N
2

and Ō N
2

are given by

Ē N
2

= E N
2

J N
2

, Ō N
2

= O N
2

J N
2
.

When the order of the matrix is odd, the symmetry center is located on the center ele-
ment of the row vector. Whether a row vector is symmetric or antisymmetric is again in
correspondence with the row index, according to

�k,N−1 = (−1)k�kn, n = 0, 1, . . . ,
N

2
− 1, (4.19)

or

�2k,N−1 = �2k,n, �2k+1,N−1 = −�2k+1,n, k, n = 0, 1, . . . ,
N

2
− 1. (4.20)

Sparse matrix factorization is possible for an odd-order matrix similar to (4.17) and (4.18),
except for the “center” elements in the rows and columns.

Transform matrices of such symmetries, such as CI
N+1, SI

N−1, C̃I
N , S̃I

N and CII
N , are said to

form a class of even/odd transforms (EOT). The symmetry and antisymmetry inherent in
the basis vectors of the DCT and DST matrices are essential in manipulating and factorizing
these transform matrices.

4.4 The fast rotation-based DCT/DST algorithms

In this section, we review the fast and numerically stable DCT/DST algorithms (radix-2 and
split-radix) with regular structure and employing real arithmetic only. Almost all are direct
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algorithms based on real factorization of the corresponding DCT/DST matrix into products
of sparse (orthogonal) matrices of simple structure. Most of them are completely recursive
and use only permutations, butterfly operations and rotations. Compared to direct matrix–
vector multiplication for a given N-length input data vector, the fast DCT/DST algorithms
of radix-2 reduce the computational complexity approximately from 2N2 arithmetic opera-
tions (N2 multiplications and N(N − 1) additions) to 2N log2 N arithmetic operations
( N

2 log2 N multiplications and N log2 N additions).

The fast algorithms for a specific DCT/DST are presented in the order as were reported in
the literature. The description of each fast algorithm will include:

• General comments with reference to the bibliography,

• Complete formulae and/or

• Recursive (if there exist) sparse matrix factorizations to generate higher-order
transform matrices from lower-order ones,

• The corresponding regular generalized signal flow graphs involving transform block
sizes N = 2, 4 and 8.

We note that symmetric transform matrices CI
N+1, SI

N−1, C̃I
N , S̃I

N , CIV
N and SIV

N imply
that the forward and inverse computational algorithms are identical, and the sparse matrix
factorization will have the alternative transposed versions.

4.4.1 The fast DCT-I and SCT algorithms

4.4.1.1 DCT-I computation based on the SCT algorithm for N = 2m + 1

For the efficient SCT (see (4.9)) computation, a fast recursive algorithm with regular
structure has been proposed [10]. Assuming N = 2m + 1, the SCT algorithm can be adapted
for a new fast recursive computation of the DCT-I as follows.

Using c̃I
k and xn to represent the k-th and n-th elements of the transformed vector and input

vector, respectively, (4.9) for M = N − 1 can be expressed as

c̃I
k =

√
2

M
εk

M∑
n=0

εnxn cos
πnk

M
, k = 0, 1, . . . , M.

Ignoring the scaling factors, the essential part of the above sum can be expressed as

c̃I
k =

M−1∑
n=0

xn cos
πnk

M
+ (−1)kxM = aM (k) + (−1)kxM , k = 0, 1, . . . , M.

Splitting the sum aM (k) into even-indexed and odd-indexed points (i.e., respectively group-
ing 2n and 2n + 1 terms) and applying the symmetries of transform kernels the complete
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formulae are given by

aM (k) = a M
2

(k) + b M
2

(k), k = 0, 1, . . . ,
M

2
, b M

2

(
M

2

)
= 0,

aM (M − k) = a M
2

(k) − b M
2

(k), k = 0, 1, . . . ,
M

2
− 1, (4.21)

where

a M
2

(k) =
M
2 −1∑
n=0

x2n cos
πnk

M/2
,

b M
2

(k) =
M
2 −1∑
n=0

x2n+1 cos
π(2n + 1)k

2(M/2)
. (4.22)

The (M + 1)-point DCT-I is recursively decomposed into ( M
2 + 1)-point DCT-I and M

2 -
point DCT-II. The corresponding generalized signal flow graph for the forward and inverse
DCT-I computation for N = 3, 5 and 9 is shown in Fig. 4.1. The input data sequence {xn}
is in bit-reversed order. Full lines in Fig. 4.1 represent unity transfer factors while broken
lines represent transfer factors −1. © represents addition and ↓ represents multiplication
after addition. These notations hold through the chapter for all signal flow graphs.

On the other hand, the N-point SCT defined by (4.9) for N = 2n, without the scaling factors
can be expressed as

c̃I
k =

N−1∑
n=0

xn cos
πnk

N − 1
= aN (k), k = 0, 1, . . . , N − 1,

and decomposed by similar method used in (4.21) and (4.22) into N
2 -point SCT and N

2 -point
DCT-II as follows

aN (k) = a N
2

(k) + b N
2

(k), k = 0, 1, . . . ,
N

2
−1,

aN (N − 1 − k) = a N
2

(k) − b N
2

(k), k = 0, 1, . . . ,
N

2
−1, (4.23)

where

a N
2

(k) =
N
2 −1∑
n=0

x2n cos
πnk

N − 1
,

b N
2

(k) =
N
2 −1∑
n=0

x2n+1 cos
π(2n + 1)k

N − 1
. (4.24)



Ch04-P373624.tex 7/8/2006 13: 0 Page 84

84 Discrete Cosine and Sine Transforms

sincos

a

a

a

a

x0 x0

x8

x4

x6

x2

c I

c I

c I

c I

c I

c I

c I

c I

c I

x5

x3

x7

x1

0

1

2

3

4

5

6

7

8

cos
4
p

4
p

cos
8
p

8
p

sin
8
p

cos
8
p

x1x2

x0

x2x4

x3

x1

Fig. 4.1. The generalized signal flow graph for the forward and inverse DCT-I computation for
N = 3, 5 and 9 based on the SCT algorithm; α =

√
2

2 .

Unfortunately, the decomposition of the SCT given by (4.23) and (4.24) is not recursive
implying that the SCT matrix C̃I

N does not have a recursive structure. Alternatively, since
SCT is an EOT the C̃I

N matrix can be non-recursively factorized according to (4.17).

4.4.1.2 DCT-I recursive sparse matrix factorizations

The DCT-I matrix CI
N+1 for N = 2m can be factorized into the following recursive sparse

matrix form [7, 32, 40]:

CI
N+1 = PN+1

(
CI

N
2 +1

0

0 J N
2

CIII
N
2

J N
2

) 


I N
2

J N
2√

2

J N
2

−I N
2


, (4.25)
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2 .

where PN+1 is a permutation matrix, when it is applied to a data vector it corresponds to
the reordering

x̃0 = x0, x̃n+1 = x2n+2, x̃N−n = x2n+1, n = 0, 1, . . . ,
N

2
− 1. (4.26)

The (N + 1)-point DCT-I is decomposed recursively into ( N
2 + 1)-point DCT-I and N

2 -point
DCT-III. The generalized signal flow graph for the forward and inverse DCT-I computation
for N = 2, 4 and 8 is shown in Fig. 4.2.

Similarly, an orthogonal recursive sparse matrix factorization of the DCT-I matrix CI
N+1

with scaling
√

2 has been introduced in Ref. [55]. For N = 2m, m > 1, the matrix CI
N+1

can be factorized in the form:

CI
N+1 = PT

N+1

(
CI

N
2 +1

0

0 CIII
N
2

) √
2

2




I N
2

J N
2√

2

I N
2

−J N
2



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= PT
N+1

(
CI

N
2 +1

0

0 CIII
N
2

) 


I N
2

0

1

0 J N
2




√
2

2




I N
2

J N
2√

2

J N
2

−I N
2


, (4.27)

where PN+1 is a permutation matrix effecting the reordering

x̃0 = x0, x̃n+1 = x2n+2, x̃ N
2 +1+n = x2n+1, n = 0, 1, . . . ,

N

2
− 1. (4.28)

Note that PT
N+1 = P−1

N+1, here.

4.4.1.3 The split-radix DCT-I algorithm

The idea of 2m split-radix fast Fourier transform (FFT) algorithm [24–26] was extended to
the DCT-I [27]. The complete formulae of split-radix fast DCT-I algorithm (normalization
factors are omitted) are given by

cI
2k =

N
2∑

n=0

(xn + xN−n) cos
πnk

N/2
− x N

2
cos πk, k = 0, 1, . . . ,

N

2
,

cI
4k−1 = ak + bk , k = 1, 2, . . . ,

N

4
,

cI
4k+1 = ak − bk , k = 0, 1, . . . ,

N

4
− 1, b0 = 0, (4.29)

where

ak =
N
4∑

n=0

[
(xn − xN−n) cos

πn

N
+ (x N

2 −n − x N
2 +n) sin

πn

N

]
cos

πnk

N/4

− (x N
4

− x 3N
4

) cos
π

4
(4k + 1),

bk =
N
4 −1∑
n=1

[
(xn − xN−n) sin

πn

N
− (x N

2 −n − x N
2 +n) cos

πn

N

]
sin

πnk

N/4
. (4.30)

Thus, the first stage of split-radix decomposition replaces (N + 1)-point DCT-I by one
( N

2 + 1)-point DCT-I, one DCT-I of length ( N
4 + 1) and one DST-I of length ( N

4 − 1). The
decomposition is used recursively. It results in the generalized signal flow graph with
regular structure which is shown for N = 2, 4 and 8 in Fig. 4.3. The output data sequence
{cI

k} is in bit-reversed order. It is interesting to compare the generalized signal flow graphs
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2 .

shown in Figs. 4.1 and 4.3. Their lower parts imply that there exists a factorization of
N
2 -point DCT-III (see the factorizations given by (4.25) and (4.27)) consisting of a rotation
matrix, ( N

4 + 1)-point DCT-I and ( N
4 − 1)-point DST-I whose outputs are combined in the

final stage. Such a factorization of the CIII
N matrix actually exists (see (4.56) in Section

4.4.3.1). Moreover, these generalized signal flow graphs are mirror images of each other
although they are derived from quite differently formulated algorithms.

According to split-radix DCT-I algorithm, the matrix CI
N+1 can be recursively factorized

as follows

CI
N+1 = PN+1

(
CI

N
2 +1

0

0 K N
2

) 


I N
2

J N
2√

2

J N
2

−I N
2


, (4.31)
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where

K N
2

=




−I N
4 −1 J N

4 −1 0

J N
4 −1 I N

4 −1 0

0 0 I2





S̄I

N
4 −1

0

0 C̄I
N
4 +1


 R N

2
, (4.32)

and

K1 = 1√
2

, K2 =

−cosπ

4
1√
2

cos π
4

1√
2


, CI

2 = 1

2

(
1 1

1 −1

)
. (4.33)

PN+1 is a permutation matrix for reordering from bit-reversal to natural order. S̄I
N
4 −1

and

C̄I
N
4 +1

are unnormalized DST-I and DCT-I matrices respectively given by

S̄I
N
4 −1

= J N
4 −1(B N

4 −1SI
N
4 −1

)J N
4 −1,

C̄I
N
4 +1

= J N
4 +1(B N

4 +1CI
N
4 +1

)J N
4 +1,

where B N
4 −1 and B N

4 +1 are bit-reversal permutation matrices. R N
2

is a rotation matrix
given by

R N
2

=




−cos π
N 0 sin π

N 0

−cos 2π
N sin 2π

N

. .

−cos
( N

4 −1)π
N sin

( N
4 −1)π

N

0 cos π
4 0

sin
( N

4 −1)π
N cos

( N
4 −1)π

N

. .

sin 2π
N cos 2π

N

sin π
N cos π

N 0

0 0 0 1√
2




.

We note that the recursive sparse matrix factorization of DCT-I matrix given by (4.31)–
(4.33) is valid for N = 2, 4 and 8.

On the other hand, the matrix CI
N+1 can be recursively factorized into CI

N
2 +1

and CIII
N
2

, and

by orthogonal recursive matrix factorizations given by (4.27) and (4.56), we can obtain
the orthogonal factorization of CI

N+1 as [55]

CI
N+1 = PT

N+1

(
I N

2 +1 0

0 PT
N
2

A N
2

) 


CI
N
2 +1

CI
N
4 +1

SI
N
4 −1





I N

2 +1 0

0 T (0)
N
2


 T (1)

N+1,

(4.34)
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with orthogonal matrices

A N
2

=
(

I N
4

0
0 J N

4

) √
2

2




√
2

I N
4 −1 J N

4 −1√
2

J N
4 −1 −I N

4 −1




(
I N

4 +1 0

0 (−1)
N
4 D N

4 −1

)
,

T (1)
N+1 =

√
2

2




I N
2

J N
2√

2
I N

2
−J N

2


 =


I N

2

1
J N

2




√
2

2




I N
2

J N
2√

2
I N

2
−J N

2


,

and

T (0)
N
2

=
(

I N
4 +1 0

0 D N
4 −1

)

×




1 0 0 0

0 cos π
2N sin π

2N

cos 2π
2N sin 2π

2N

. .

cos
( N

4 −1)π
2N sin

( N
4 −1)π

2N

0 1 0

−sin
( N

4 −1)π
2N cos

( N
4 −1)π

2N

. .

−sin 2π
2N cos 2π

2N

0 −sin π
2N 0 cos π

2N




,

where PN+1 is a permutation matrix defined by (4.26), and permutation matrix P N
2

is defined by (4.54). D N
4 −1 = diag{(−1)k}, k = 0, 1, . . . , N

4 − 2 is the diagonal odd-sign
changing matrix.

4.4.2 The fast DST-I and SST algorithms

4.4.2.1 DST-I computation based on the SST algorithm for N = 2m − 1

Following the derivation of fast SCT algorithm [10] we can derive by similar methods
a new fast algorithm for SST (see (4.10)) computation with regular structure. Assuming
N = 2m − 1, it can be adapted for the new fast recursive computation of the DST-I as
follows.

Rewriting (4.10) for M = N + 1 we have

s̃I
k =

√
2

M

M∑
n=0

xn sin
π(n + 1)(k + 1)

M
= aM (k), k = 0, 1, . . . , M − 2.
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Ignoring the scaling factor we can split the sum aM (k) into even-indexed and odd-indexed
points (i.e., respectively grouping 2n and 2n + 1 terms) and using the symmetries of
transform kernels, the complete formulae are given by

aM (k) = b M
2

(k) + a M
2

(k), k = 0, 1, . . . ,
M

2
− 1, a M

2

(
M

2
− 1

)
= 0,

aM (M − k − 2) = b M
2

(k) − a M
2

(k), k = 0, 1, . . . ,
M

2
− 2, (4.35)

where

a M
2

(k) =
M
2 −2∑
n=0

x2n+1 sin
π(n + 1)(k + 1)

M/2
,

b M
2

(k) =
M
2 −1∑
n=0

x2n sin
π(2n + 1)(k + 1)

2(M/2)
. (4.36)

Hence, the (M − 1)-point DST-I is recursively decomposed into an M
2 -point DST-II and an

( M
2 − 1)-point DST-I. The corresponding generalized signal flow graph for the forward and

inverse DST-I computation for N = 3 and 7 is shown in Fig. 4.4. The input data sequence
{xn} is in bit-reversed order. The output data sequence {sI

k} is in reverse order.

On the other hand, the N-point SST defined by (4.10) for N = 2n, without the scaling
factors can be expressed as

s̃I
k =

N−1∑
n=0

xn sin
π(n + 1)(k + 1)

N + 1
= aN (k), k = 0, 1, . . . , N − 1,

and decomposed by similar methods used in (4.35) and (4.36) into N
2 -point SST and

N
2 -point DST-II as follows:

aN (k) = b N
2

(k) + a N
2

(k), k = 0, 1, . . . ,
N

2
− 1,

aN (N − k − 1) = b N
2

(k) − a N
2

(k), k = 0, 1, . . . ,
N

2
− 1, (4.37)

where

a N
2

(k) =
N
2 −1∑
n=0

x2n+1 sin
π(n + 1)(k + 1)

N + 1
,

b N
2

(k) =
N
2 −1∑
n=0

x2n sin
2π(2n + 1)(k + 1)

N + 1
. (4.38)
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Fig. 4.4. The generalized signal flow graph for the forward and inverse DST-I computation for
N = 3 and 7 based on the SST algorithm.

Unfortunately, the decomposition of the SST given by (4.37) and (4.38) is not recursive
implying that the SST matrix S̃I

N does not have a recursive structure. Alternatively, since
SST is an EOT the S̃I

N matrix can be non-recursively factorized according to (4.17).

4.4.2.2 DST-I recursive sparse matrix factorizations

One of the first recursive sparse matrix factorizations of the DST-I matrix was reported in
Ref. [29] and its corrected forms for N = 8 in Refs. [2, 30, 31]. The modified recursive
sparse matrix factorization of the DST-I matrix for N = 2m is defined as

SI
N−1 = BN−1

(
B N

2
SIII

N
2

0

0 SI
N
2 −1

J N
2 −1

) 


I N
2 −1 J N

2 −1√
2

J N
2 −1 −I N

2 −1


, (4.39)

where BN−1 is a permutation matrix permuting the transformed data sequence from the
bit-reversal order to natural order. The corresponding generalized signal flow graph for
N = 4 and 8 is shown in Fig. 4.5.
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Fig. 4.5. The generalized signal flow graph for the forward and inverse DST-I computation for
N = 4 and 8 based on (4.39).

A slightly different alternative recursive sparse matrix factorization of the DST-I matrix
for N = 2m is defined as [7, 32, 40]

SI
N−1 = PN−1


SIII

N
2

0

0 J N
2 −1SI

N
2 −1

J N
2 −1







I N
2 −1 J N

2 −1√
2

J N
2 −1 −I N

2 −1


, (4.40)

where PN−1 is a permutation matrix which when applied to a data vector corresponds to
the reordering

x̃0 = x0, x̃n+1 = x2n+2, x̃N−2−n = x2n+1, n = 0, 1, . . . ,
N

2
− 2. (4.41)

The generalized signal flow graph for the forward and inverse DST-I computation for N = 4
and 8 is shown in Fig. 4.6. In both factorizations (4.39) and (4.40), the (N − 1)-point DST-I
is recursively decomposed into N

2 -point DST-III and ( N
2 − 1)-point DST-I.

Similarly, an orthogonal recursive sparse matrix factorization of the DST-I matrix SI
N−1

with scaling
√

2 has been introduced in Ref. [55]. For N = 2m, m > 1, the matrix SI
N−1 can
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Fig. 4.6. The generalized signal flow graph for the forward and inverse DST-I computation for
N = 4 and 8 based on (4.40).

be factorized in the form:

SI
N−1 = PT

N−1

(
SIII

N
2

0

0 SI
N
2 −1

) √
2

2




I N
2 −1 J N

2 −1√
2

I N
2 −1 −J N

2 −1




= P
T

N−1

(
SIII

N
2

0

0 SI
N
2 −1

) 


I N
2 −1

1

J N
2 −1




√
2

2




I N
2 −1 J N

2 −1√
2

J N
2 −1 −I N

2 −1


,

(4.42)

or using the relation (4.11) in the form:

SI
N−1

= PT
N−1

(
D N

2
0

0 I N
2 −1

) 
CIII

N
2

0

0 SI
N
2 −1







J N
2 −1

1

I N
2 −1




√
2

2




I N
2 −1 J N

2 −1√
2

I N
2 −1 −J N

2 −1




= PT
N−1

(
D N

2
0

0 I N
2 −1

) (
CIII

N
2

0

0 SI
N
2 −1

) 


J N
2 −1

1

J N
2 −1




√
2

2




I N
2 −1 J N

2 −1√
2

J N
2 −1 −I N

2 −1


,

(4.43)
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where D N
2

= diag {(−1)k}, k = 0, 1, . . . , N
2 − 1 is the diagonal odd-sign changing matrix

and PN−1 is a permutation matrix which when applied to a data vector corresponds to the
reordering

x̃0 = x0, x̃n+1 = x2n+2, x̃ N
2 +n = x2n+1, n = 0, 1, . . . ,

N

2
− 2. (4.44)

Note that PT
N−1 = P−1

N−1, here.

4.4.2.3 The split-radix DST-I algorithm

The idea of 2m split-radix FFT algorithm [24–26] was also extended to the DST-I [27]. The
complete formulae of split-radix fast DST-I algorithm (normalization factors are omitted)
are given by

sI
2k =

N
2 −1∑
n=1

(xn − xN−n) sin
πnk

N/2
, k = 1, . . . ,

N

2
− 1,

sI
4k−1 = ak − bk , k = 1, 2, . . . ,

N

4
,

sI
4k+1 = ak + bk , k = 0, 1, . . . ,

N

4
− 1, a0 = 0, (4.45)

where

ak =
N
4 −1∑
n=1

[
(xn + xN−n) cos

πn

N
− (x N

2 −n + x N
2 +n) sin

πn

N

]
sin

πnk

N/4
,

bk =
N
4∑

n=0

[
(xn + xN−n) sin

πn

N
+ (x N

2 −n + x N
2 +n) cos

πn

N

]
cos

πnk

N/4

− x N
2

− (x N
4

+ x 3N
4

) cos
π

4
(4k + 1), (4.46)

Hence, the first stage of split-radix decomposition replaces (N − 1)-point DST-I by one
( N

2 − 1)-point DST-I, one DST-I of length ( N
4 − 1) and one DCT-I of length ( N

4 + 1). The
decomposition is used recursively. It results in the generalized signal flow graph with
regular structure which is shown for N = 4 and 8 in Fig. 4.7. The output data sequence
{sI

k} is in the bit-reverse order.

Consider the generalized signal flow graph shown in Fig. 4.7. Its upper part implies that
there exists a factorization of N-point DST-III (see the factorization given by (4.40))
consisting of a rotation matrix, an ( N

2 − 1)-point DST-I and an ( N
2 + 1)-point DCT-I,

whose outputs are combined in the final stage. Specifically, according to split-radix DST-I
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Fig. 4.7. The generalized signal flow graph for the forward and inverse DST-I computation for
N = 4 and 8 based on split-radix algorithm.

algorithm the matrix SI
N−1 can be recursively factorized as follows:

SI
N−1 = PN−1

(
K N

2
0

0 SI
N
2 −1J N

2 −1

) 


I N
2

J N
2

1

J N
2

−I N
2


, (4.47)

where

K N
2

= Q N
2




I N
4 −1 J N

4 −1 0 0

J N
4 −1 −I N

4 −1 0 0

0 0 −1 0

0 0 0 1





S̄I

N
4 −1

0

0 C̄I
N
4 +1


 R N

2
, (4.48)

and

K2 =
(

sin π
4 −1

sin π
4 1

)
= SIII

2 , Q4 =




0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0


 . (4.49)
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PN−1 is a permutation matrix for reordering from bit-reversal to natural order. S̄I
N
4 −1

and

C̄I
N
4 +1

are unnormalized DST-I and DCT-I matrices respectively given by

S̄I
N
4 −1

= J N
4 −1(B N

4 −1SI
N
4 −1

)J N
4 −1,

C̄I
N
4 +1

= J N
4 +1(B N

4 +1C
I

N
4 +1

)J N
4 +1,

where B N
4 −1 and B N

4 +1 are bit-reversal permutation matrices. R N
2

is a rotation matrix
given by

R N
2

=




cos π
N 0 −sin π

N 0

cos 2π
N −sin 2π

N

. .

cos
( N

4 −1)π
N −sin

( N
4 −1)π

N

0 sin π
4 0

sin
( N

4 −1)π
N cos

( N
4 −1)π

N

. .

sin 2π
N cos 2π

N

sin π
N cos π

N 0

0 0 0 1




.

We note that the recursive sparse matrix factorization of DST-I matrix given by (4.47)–
(4.49) is valid for N = 4 and 8.

4.4.3 The fast DCT-II/DST-II and DCT-III/DST-III algorithms

4.4.3.1 DCT-II recursive sparse matrix factorizations

The first direct real-valued fast algorithm for the DCT-II computation has been reported in
Ref. [33] and it is based on the recursive sparse matrix factorization of DCT-II transform
matrix defined as

CII
N = BN


ĈII

N
2

0

0 ĈIV
N
2

J N
2




(
I N

2
J N

2

J N
2

−I N
2

)
, (4.50)

where ĈII
N
2

is the DCT-II matrix of half size with bit-reverse reordered rows, and ĈIV
N
2

J N
2

is

the DCT-IV matrix of half size with bit-reverse reordered rows and its columns in reverse
order. BN is a permutation matrix which permutes the transformed data sequence from
the bit-reverse order to natural order. The recursive sparse matrix factorization (4.50) has
become the fundamental form in the subsequent development of the direct real-valued
fast DCT-II algorithms and it has initiated an extensive search to find an optimal factor-
ization of the DCT-IV matrix [33, 36, 40, 41, 53, 55]. Essentially, the recursive sparse
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matrix factorization (4.50) is evident when we consider the DCT-II in the form of a sum
(the normalization factors are omitted) as follows:

cII
k =

N−1∑
n=0

xn cos
π(2n + 1)k

2N
, k = 0, 1, . . . , N − 1.

Splitting the sum into even-indexed and odd-indexed transform coefficients (i.e., grouping
2k and 2k + 1 terms) and using the symmetries of the transform kernels we get

cII
2k =

N
2 −1∑
n=0

(xn + xN−1−n) cos
π(2n + 1)k

2(N/2)
,

cII
2k+1 =

N
2 −1∑
n=0

(xn − xN−1−n) cos
π(2n + 1)(2k + 1)

4(N/2)
, k = 0, 1, . . . ,

N

2
− 1.

Thus, the N-point DCT-II is recursively decomposed into an N
2 -point DCT-II (even-

indexed coefficients) and an N
2 -point DCT-IV (odd-indexed coefficients). In general, since

the factorization of DCT-IV matrix is the basis of direct real-valued fast DCT-II algo-
rithms, all others proposed algorithms differ only by a modified/improved factorization
of DCT-IV matrix which corresponds for a given N to the lower part in an appropriate
signal flow graph. The generalized signal flow graph for the DCT-II computation with the
proposed factorization of CIV

N
2

[33] for N = 2, 4 and 8 is shown in Fig. 4.8.

A slightly different recursive sparse matrix factorization of the DCT-II matrix and for
completness of the DST-II matrix are respectively defined as [36, 40]

CII
N = PN

(
CII

N
2

0

0 J N
2

CIV
N
2

J N
2

) (
I N

2
J N

2

J N
2

−I N
2

)
, (4.51)

SII
N = PN

(
SIV

N
2

0

0 J N
2

SII
N
2

J N
2

) (
I N

2
J N

2

J N
2

−I N
2

)
, (4.52)

where PN is a permutation matrix which reorders the transformed vector such that the
first half are even-indexed coefficients in natural order, while the second half are odd-
indexed coefficients but in reverse order. The generalized signal flow graph for the DCT-II
computation with the proposed factorization of CIV

N
2

[40] for N = 2, 4 and 8 is shown

in Fig. 4.9. The fast DCT-II algorithm [40] with improved factorization of the DCT-IV
matrix (see Section 4.4.4) in terms of reduced arithmetic complexity has been proposed in
Ref. [41]. However, the proposed computational unit can be used for N > 8 (see Section
4.4.4.1).

The orthogonal recursive sparse matrix factorization of CII
N matrix with scaling

√
2 has

been introduced in Ref. [55]. For N = 2m, m > 1, the DCT-II matrix CII
N can be factorized
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on (4.50).

in the form

CII
N = PT

N


CII

N
2

0

0 CIV
N
2




√
2

2

(
I N

2
J N

2

I N
2

−J N
2

)

= PT
N


CII

N
2

0

0 CIV
N
2




(
I N

2
0

0 J N
2

) √
2

2

(
I N

2
J N

2

J N
2

−I N
2

)
, (4.53)

where PN is a permutation matrix which when applied to a data vector corresponds to the
reordering

x̃n = x2n, x̃ N
2 +n = x2n+1, n = 0, 1, . . . ,

N

2
− 1. (4.54)

Note that PT
N = P−1

N . By combining the orthogonal recursive sparse matrix factorizations of
CII

N
2

and CIV
N
2

given by (4.53) and (4.91), respectively, we obtain the following factorization
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of CII
N matrix (scaled DCT-II) [55]:

CII
N = PT

N


PT

N
2

0

0 PT
N
2




(
I N

2
0

0 A N
2

)



CII
N
4

CIV
N
4

CII
N
4

CII
N
4




×

T (0)

N
2

0

0 T (1)
N
2


 T (0)

N , (4.55)

where A N
2

, T (1)
N
2

and T (0)
N
2

, T (0)
N are orthogonal matrices defined as

A N
2

=
√

2

2




√
2 0

I N
4 −1 I N

4 −1

I N
4 −1 −I N

4 −1

0 −√
2




(
I N

4
0

0 D N
4

J N
4

)
,



Ch04-P373624.tex 7/8/2006 13: 0 Page 100

100 Discrete Cosine and Sine Transforms

x0

x2

x3

x1

x4

x5

x6

x7

�1

�1

a cos p
8

a cos p
16

a
2

a
2

a sin p
16

a sinp
8

a sinp
8

a cos p
8

a cos3p
16

a cos3p
16

a cos p
16

a sin p
16

a sin
3p
16

a sin
3p
16

c II
0 c II

0 c II
0

c II
1 c II

2 c II
4

c II
1 c II

2

c II
3 c II

6

c II
1

c II
5

c II
3

c II
7

Fig. 4.10. The generalized signal flow graph for the DCT-II computation for N = 2, 4 and 8 based
on (4.55); α = √

2.

T (1)
N
2

=
(

I N
4

0
0 D N

4

)

×




cos π
2N sin π

2N

cos 2π
2N sin 2π

2N
. .

cos
( N

4 −1)π
2N sin

( N
4 −1)π

2N

−sin
( N

4 −1)π
2N cos

( N
4 −1)π

2N

. .

−sin 2π
2N cos 2π

2N
−sin π

2N cos π
2N




,

T (0)
N
2

=
√

2

2

(
I N

4
J N

4

I N
4

−J N
4

)
=

(
I N

4
0

0 J N
4

) √
2

2

(
I N

4
J N

4

J N
4

−I N
4

)
,

where D N
4

= diag{(−1)k}, k = 0, 1, . . . , N
4 − 1 is the diagonal odd-sign changing matrix.

The corresponding generalized signal flow graph for the DCT-II computation for N = 2,
4 and 8 is shown in Fig. 4.10. For N = 8, each output coefficient should be normalized by

scaling factor
√

2
4 to get the true DCT-II coefficients.
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Finally, it is important to present a practical fast algorithm from the class of fast 8-point
DCT-II algorithms generated from the full matrix equation in a systematic way using
graph transformations and equivalence relations [45]. In the definition of DCT-II the
scaling constant

√
2 has been introduced which resulted in

√
2εk = 1 for k = 0 (scaled

DCT-II) allowing for the coefficient cII
0 to be evaluated without any multiplication. The

8-point DCT-II computation requires 11 multiplications and 29 additions, thus achieving
the theoretical lower bound of the number of multiplications for N = 8. The corresponding
signal flow graph for scaled DCT-II computation for N = 8 is shown in Fig. 4.11. For N = 8,
each output coefficient should be normalized by scaling factor 1√

8
to get the true DCT-II

coefficients. We note that the algorithm defined by (4.55) achieves also the theoretical
lower bound of the number of multiplications for N = 8.

In Section 4.4.1.3, we observe from the split-radix fast DCT-I algorithm that there
exists a factorization of N-point DCT-III matrix CIII

N (and hence SIII
N too) based on

( N
2 − 1)-point DST-I and ( N

2 + 1)-point DCT-I. Actually, such orthogonal recursive sparse
matrix factorizations of CIII

N and SIII
N transform matrices with scaling

√
2 are respectively
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defined as [55]

CIII
N = PT

N

(
I N

2
0

0 J N
2

) √
2

2




√
2

I N
2 −1 J N

2 −1√
2

J N
2 −1 −I N

2 −1




(
I N

2 +1 0

0 (−1)
N
2 D N

2 −1

)

×
(

CI
N
2 +1

0

0 SI
N
2 −1

) (
I N

2 +1 0

0 D N
2 −1

)
RN , (4.56)

and

SIII
N = PT

N

(
I N

2
0

0 −I N
2

) √
2

2




√
2

I N
2 −1 J N

2 −1√
2

J N
2 −1 −I N

2 −1




(
I N

2 +1 0

0 (−1)
N
2 D N

2 −1

)

×
(

CI
N
2 +1 0

0 SI
N
2 −1

) (
I N

2 +1 0

0 D N
2 −1

)
RN JN , (4.57)

where D N
2 −1 = diag{(−1)k}, k = 0, 1, . . . , N

2 − 2, is the diagonal odd-sign changing matrix,
PN is a permutation matrix defined by (4.54) and RN is the rotation matrix given by

RN =




1 0 0

0 cos π
2N sin π

2N

cos 2π
2N sin 2π

2N

. .

cos
( N

2 −1)π
2N sin

( N
2 −1)π

2N

−sin
( N

2 −1)π
2N cos

( N
2 −1)π

2N

. .

−sin 2π
2N cos 2π

2N

0 −sin π
2N cos π

2N




.

4.4.3.2 DCT-II computation via Walsh–Hadamard transform

Since any EOT (see Section 4.3) can be expressed in terms of any other EOT through
a conversion matrix [34], the DCT-II with even symmetry/even antisymmetry structure
of basis vectors can be realized via other simpler EOT [4, 28, 34, 37] such as sequency
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(Walsh) ordered Walsh–Hadamard transform (WHT) [1] whose basis vectors consist of
±1 elements only.

Denote the DCT-II and WHT respectively in the matrix-vector notation (the normalization
factors are omitted) as

cII = CII
N xT, w = WN xT. (4.58)

Examination of CII
N and WN matrices for a given N shows that there is a one-to-one

correspondence between the sequencies (the number of zero-crossings in sign) of the
rows of these transform matrices. This implies that the even symmetry/even antisymmetry
structure of the WHT matrix is preserved in the DCT-II matrix. If we rearrange the rows
of CII

N and WN in bit-reversed order, then (4.58) can be rewritten as

ĉII = ĈII
N xT, ŵ = ŴN xT. (4.59)

Since ŴN is an orthonormal matrix, substituting the relation ŴT
N ŴN = IN into the (4.59)

we get [34]

ĉII = ĈII
N ŴT

N ŴN xT = TN ŵT, TN = ĈII
N ŴT

N , (4.60)

where TN is the conversion matrix which takes the Walsh domain vector and converts it to
the DCT-II domain. The conversion matrix TN has two important properties:

1. It is orthonormal, being the product of two orthonormal matrices ĈII
N and ŴT

N .

2. It has a sparse block diagonal structure as long as the rows of CII
N and WN are in

bit-reversed order.

Equation (4.60) defines the fast algorithm for DCT-II computation via WHT involving two
steps: the efficient WHT computation and the implementation of the conversion matrix
TN . In order to illustrate the DCT-II computation via WHT consider N = 8. The W8 matrix
is given by [1]

W8 =




1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 1 −1 1 −1 1 −1




,

and the conversion matrix T8 = ĈII
8 ŴT

8 in analytical form is given by

T8 =



1 0
1

U2
0 U4


,
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where

U2 =
(

cos π
8 sin π

8

−sin π
8 cos π

8

)
,

U4 =




cos π
8 cos π

16 −sin π
8 sin π

16 sin π
8 cos π

16 cos π
8 sin π

16

sin π
8 sin 3π

16 cos π
8 cos 3π

16 −cosπ
8 sin 3π

16 sin π
8 cos 3π

16

−sin π
8 cos 3π

16 cos π
8 sin 3π

16 cos π
8 cos 3π

16 sin π
8 sin 3π

16

−cosπ
8 sin π

16 −sin π
8 cos π

16 −sin π
8 sin π

16 cos π
8 cos π

16




.

The M × M block matrices UM in the conversion matrix TN possessing the following
general structure [38]

UM =



A(1)
M
2

A(2)
M
2

−J M
2

A
(2)

M
2

J M
2

J M
2

A
(1)

M
2

J M
2


, M = 2, 4, 8, . . . ,

N

2
, (4.61)

can be further factorized into a product of sparse matrices. The higher-order conversion
matrix T2N can be generated recursively [37], i.e., having derived the block matrices
U2, U4, . . . , U N

2
for TN we need to derive for the T2N only the block matrix UN taking into

account its above general structure.

Among the existing sparse factorizations of U4 matrix [35, 37], the factorization presented
in Ref. [37] is preferred in terms of structural simplicity and regularity and it is defined as

U4 = P4




cos π
16 0 0 sin π

16

0 cos 3π
16 sin 3π

16 0

0 −sin 3π
16 cos 3π

16 0

−sin π
16 0 0 cos π

16







cos π
8 sin π

8 0 0

−sin π
8 cos π

8 0 0

0 0 cos π
8 sin π

8

0 0 −sin π
8 cos π

8




P4,

where

P4 =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


.

For the fast WHT computation, Manz’s algorithm is presented in Ref. [1] requiring the
input data sequence {xn} to be in bit-reversed order. Since WHT is an EOT according to
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(4.17) we can obtain more suitable factorization of Ŵ8 matrix as

Ŵ8 =




1 1 1 1
1 −1 −1 1 0
1 1 −1 −1
1 −1 1 −1

1 1 1 1
1 −1 −1 1

0 −1 −1 1 1
−1 1 −1 1




(
I4 J4
J4 −I4

)
,

where 


1 1 1 1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1


 =




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 −1 1




(
I2 J2
J2 −I2

)
,

and 


1 1 1 1
1 −1 −1 1

−1 −1 1 1
−1 1 −1 1


 =




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 −1 1




(
I2 J2

−J2 I2

)
,

defining the new alternative fast WHT algorithm for N = 8. The corresponding signal
flow graph for the DCT-II computation via WHT for N = 8 including N = 4 is shown in
Fig. 4.12.

If we compare the signal flow graph for N = 8 in Fig. 4.12 with the DCT-II implementation
via WHT presented in Ref. [35] the implementation here has the following advantages:

• Saves two bit-reversal permutations.

• For 5 plane rotations the number of rotation angles is reduced from four to three.

• The implementation is more regular.

4.4.3.3 DCT-II computation via DFT of real-valued data

A fast algorithm with simple recursive structure for the efficient evaluation both of the
DFT and DCT-II, called the fast Fourier-cosine transform (FFCT), has been proposed in
Refs. [42, 43]. Principally both problems, the efficient evaluation of the DFT and DCT-II,
are closely related since a DCT-II of dimension N can be mapped into a DFT of the same
size and output plane rotations, and since a DFT of dimension N can be mapped into DFT
of length N

2 and two DCTs-II of length N
4 . The method is recursively applied again, until

trivial only transforms remain.

Before presenting the complete formulae of FFCT algorithm let us define the following
discrete transforms of a real-valued data vector x of length N = 2m (the normalization



Ch04-P373624.tex 7/8/2006 13: 0 Page 106

106 Discrete Cosine and Sine Transforms

x0

x2

x3

x1

x4

x5

x6

x7

w0

w2

w3

w1

w4

w5

w6

w7

w0

w2

w3

w1

w4

w5

w6

w7

c II

c II

c II

c II

c II

c II

c II

c II

cos
8
p

cos
8
p

cos
8
p

cos
8
p

cos
8
p

cos
8
p

sin
8
p

sin
8
p

sin
8
p

sin
8
p

cos
16
p

cos
16
p

sin
16
p

cos
16
3p

cos
16
3p

sin
16
3p

sin
16
p

sin
8
p

sin
8
p

0

4

2

6

1

5

3

7

Fig. 4.12. The signal flow graph for the DCT-II computation via WHT for N = 8 (the fast WHT and
conversion matrix).
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factors are omitted) using the original notation introduced in Ref. [42]:

DFT(k, N , x) =
N−1∑
n=0

xne−j 2πnk
N , k = 0, 1, . . . , N − 1, j = √−1, (4.62)

DCT(k, N , x) =
N−1∑
n=0

xn cos
2π(2n + 1)k

4N
, k = 0, 1, . . . , N − 1, (4.63)

cos − DFT(k, N , x) =
N−1∑
n=0

xn cos
2πnk

N
, k = 0, 1, . . . , N − 1, (4.64)

sin − DFT(k, N , x) =
N−1∑
n=0

xn sin
2πnk

N
, k = 0, 1, . . . , N − 1. (4.65)

It is simple to verify that the following relations hold:

DFT(k, N , x) = cos − DFT(k, N , x) − i sin − DFT(k, N , x), (4.66)

DCT(N , N , x) = 0, (4.67)

DCT(−k, N , x) = DCT(k, N , x), (4.68)

DCT(2N − k, N , x) = −DCT(k, N , x), (4.69)

cos − DFT(N − k, N , x) = cos − DFT(k, N , x), (4.70)

sin − DFT(N − k, N , x) = −sin − DFT(k, N , x). (4.71)

The complete formulae of the FFCT algorithm for the efficient evaluation of the DCT-II
are given by

(
DCT(k, N , x)

DCT(N − k, N , x)

)
=

(
cos πk

2N −sin πk
2N

sin πk
2N cos πk

2N

) (
cos − DFT (k, N , x̃)

sin − DFT (k, N , x̃)

)
,

k = 0, 1, . . . ,
N

2
− 1,

DCT(N/2, N , x) =
√

2

2
cos − DFT(N/2, N , x̃), (4.72)

where

x̃n = x2n, x̃N−1−n = x2n+1, n = 0, 1, . . . ,
N

2
− 1. (4.73)

Hence, the N-point DCT-II is mapped into the DFT of the same size and output plane
rotations. The transforms cos − DFT(k, N , x̃) and sin − DFT(k, N , x̃) are respectively
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evaluated as

cos − DFT(k, N , x̃) = cos − DFT(k, N/2, x̃(1)) + DCT(k, N/4, x̃(2)),

k = 0, 1, . . . ,
N

2
− 1, (4.74)

with

x̃(1)
n = x̃2n, n = 0, 1, . . . ,

N

2
− 1, (4.75)

x̃(2)
n = x̃2n+1 + x̃N−1−2n, n = 0, 1, . . . ,

N

4
− 1, (4.76)

and

sin − DFT(k, N , x̃) = sin − DFT(k, N/2, x̃(1)) + DCT

(
N

4
− k, N/4, x̃(3)

)
,

k = 0, 1, . . . ,
N

2
− 1, (4.77)

with

x̃(3)
n = (−1)n(x̃2n+1 − x̃N−1−2n), n = 0, 1, . . . ,

N

4
− 1, (4.78)

whereby (4.69), (4.70) and (4.71) are applied when necessary. The transform cos − DFT
of dimension N is decomposed into cos − DFT of length N

2 and the DCT-II of length
N
4 . Similarly, the transform sin − DFT of dimension N is decomposed into sin − DFT of
length N

2 and the DCT-II of length N
4 . The transforms are recursively reduced to lower

sizes until they become trivial. The FFCT algorithm for N = 8 results in the signal flow
graph shown in Fig. 4.13.

4.4.3.4 The split-radix DCT-II algorithm

Besides the DCT-I and DST-I the idea of 2m split-radix FFT algorithm [24–26] can also
be extended to the DCT-II. The complete formulae of split-radix fast DCT-II algorithm
(normalization factors are omitted) are given by

cII
2k =

N
2∑

n=0

(xn + xN−1−n) cos
π(2n + 1)k

2(N/2)
, k = 0, 1, . . . ,

N

2
− 1,

cII
4k−1 = ak + bk , k = 1, 2, . . . ,

N

4
,

cII
4k+1 = ak − bk , k = 0, 1, . . . ,

N

4
− 1, b0 = 0, (4.79)
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Fig. 4.13. The signal flow graph for the DCT-II computation via DFT of real-valued data for N = 8.

where

ak =
N
4 −1∑
n=0

[
(xn − xN−1−n) cos

π(2n + 1)

2N
+ (x N

2 −1−n − x N
2 +n) sin

π(2n + 1)

2N

]

× cos
π(2n + 1)k

2(N/4)
,

bk =
N
4 −1∑
n=1

[
(xn − xN−1−n) sin

π(2n + 1)

2N
− (x N

2 −1−n − x N
2 +n) cos

π(2n + 1)

2N

]

× sin
π(2n + 1)k

2(N/4)
. (4.80)
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The first stage of split-radix decomposition replaces N-point DCT-II by one N
2 -point

DCT-II, one DCT-II of length N
4 and one DST-II of length N

4 . The decomposition is
used recursively. It defines the recursive sparse matrix factorization of the DCT-II matrix
given by

CII
N = BN

(
CII

N
2

0

0 K N
2

) (
I N

2
J N

2

J N
2

−I N
2

)
, (4.81)

where BN is a permutation matrix which permutes the transformed data sequence from
bit-reverse order to natural order. The matrix K N

2
is given by

K N
2

=




1 0

cos π
4 −sin π

4

I N
4 −2 −I N

4 −2

I N
4 −2 I N

4 −2

sin π
4 cos π

4

0 1




(
CII

N
4

0

0 SII
N
4

J N
4

)
R N

2
, (4.82)

where R N
2

is a rotation matrix given by

R N
2

=




sin π
2N cos π

2N

sin 3π
2N cos 3π

2N

. .

sin
( N

2 −1)π
2N cos

( N
2 −1)π

2N

−cos
( N

2 −1)π
2N sin

( N
2 −1)π

2N

. .

−cos 3π
2N sin 3π

2N

−cos π
2N sin π

2N




.

The corresponding generalized signal flow graph for the DCT-II computation based on
split-radix algorithm for N = 2, 4 and 8 is shown in Fig. 4.14. The output data sequence
{cII

k } is in bit-reversed order.

The recursive sparse matrix factorization given by (4.81) and (4.82) indicates two inter-
esting facts. First, comparing with the factorization (4.50) it can be seen that the matrix
K N

2
represents a new factorization of CIV

N
2

transform matrix consisting of a rotation matrix,
N
4 -point DCT-II and N

4 -point DST-II, whose outputs are combined in the final stage. Such
a factorization is actually defined by (4.91) in Section 4.4.4.1. Secondly, from the gener-
alized signal flow graph shown in Fig. 4.14 it is clear that using the definition of scaled
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Fig. 4.14. The generalized signal flow graph for the DCT-II computation for N = 2, 4 and 8 based
on the split-radix algorithm.

DCT-II, the split-radix algorithm for N = 8 achieves also the theoretical lower bound of
the number of multiplications.

Note: The DCT-III/DST-III sparse matrix factorizations are simply obtained by transpo-
sition of DCT-II/DST-II ones and the fast DCT-III/DST-III algorithms are obtained from
DCT-II/DST-II ones but performed in opposite direction.

4.4.4 The fast DCT-IV/DST-IV algorithms

In general, the efficient computation of DCT-IV/DST-IV can be realized in two ways:

1. Because of the relationship between DCT-II and DCT-IV matrices given by (4.13),
the DCT-IV of size N may be converted to the DCT-II of the same size at the cost of
additional N pre-multiplications and N − 1 recursive post-additions [48, 49]. Thus,
the existing fast DCT-II algorithms can be directly used for the efficient DCT-IV
computation.
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2. The DCT-II of size N is decomposed into N
2 -point DCT-II and N

2 -point DCT-IV (see
(4.50)). This fact leads to the following accepted conclusion [51]: the fast N-point
DCT-IV algorithms can be indirectly derived from existing fast 2N-point DCT-II
algorithms.

4.4.4.1 DCT-IV recursive sparse matrix factorizations

The first attempt to derive a direct DCT-IV sparse matrix factorization was presented in
Ref. [33], which at that time was not very efficient. This result was reconsidered [36]
and a factorization of DCT-IV matrix consisting of simple sparse buttefly binary and
cosine/sine matrices [40] was proposed. Subsequently, the sparse matrix factorization [40]
was improved identifying its more efficient basic computational unit [41].

The most compact form of the direct sparse matrix factorization of DCT-IV matrix is for-
mulated in Ref. [41]. For N = 2m, the DCT-IV matrix can be factorized into the following
product of sparse matrices:

CIV
N = PN V (m)

N Y (1)
N Y (2)

N . . . Y (m−2)
N Y (m−1)

N HN , (4.83)

where PN is a permutation matrix that reverses the order of odd-indexed components of a
data vector. V (m)

N is a cosine/sine block diagonal matrix formed by

V (m)
N = diag{T 1

4N
, T 5

4N
, . . . , T 2N−3

4N
}, Tr =

(
cos rπ sin rπ

sin rπ −cosrπ

)
,

Y (1)
N is a matrix consisting of the product of following matrices

Y (1)
N = R(m−1)

N X (m−1)
N R(m−2)

N X (m−2)
N . . . R(1)

N X (1)
N ,

where R(i)
N and X (i)

N , i = 1, 2, . . . , m − 1 are respectively binary and cosine/sine block
diagonal matrices defined as

R(i)
N = diag{IN−2i+1 , U(i)

2i+1}, U(i)
M = 1√

2
diag{B(i), B(i), . . . , B(i)}, B(i) =

(
I2i I2i

I2i −I2i

)

and

X (i)
N = diag{IN−2i , E(i)}, E(i) = diag{T 1

2i+1
, T 5

2i+1
, . . . , T 2i+1−3

2i+1
}.

All remaining matrices Y (2)
N , Y (3)

N . . . , Y (m−1)
N are defined as

Y (2)
N = diag{Y (1)

N
2

, I N
2
},

Y (3)
N = diag{Y (1)

N
4

, I N
4

, Y (1)
N
4

, I N
4
},

...
...

Y (m−1)
N = diag{Y (1)

4 , I4, . . . , Y (1)
4 , I4}.
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Fig. 4.15. The signal flow graph for the forward and inverse DCT-IV computation for N = 8 based
on (4.83) and (4.85).

Finally, the last matrix HN in (4.83) is also a permutation matrix that changes an increasing
index into a Hadamard index. To be more specific, let hN (i) represent the sequency (the
number of sign changes) of the i-th row of N × N Hadamard matrix [1]. If a data sequence
is ordered according to hN (i) then we say that the data sequence is in the Hadamard order.
The hN (i) can be recursively generated as [50]

h2N (2i) = hN (i), h2N (2i + 1) = 2N − 1 − hN (i), i = 1, 2, . . . , N − 1 (4.84)

with initial conditions h1(0) = 0 and h2(1) = 1. The corresponding signal flow graph for
the forward and inverse DCT-IV computation for N = 8 is shown in Fig. 4.15.

The improved factorization of CIV
N matrix [41] is based on replacing the computational

unit

Z(k, l) =




cos l
2k sin l

2k 0 0

sin l
2k −cos l

2k 0 0

0 0 cos l+k
2k sin l+k

2k

0 0 sin l+k
2k −cos l+k

2k




(
I2 I2

I2 −I2

) 


I2 0 0

0 cos l
k sin l

k

0 sin l
2 −cos l

k




(4.85)
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Fig. 4.16. The signal flow graph for the forward and inverse DCT-IV computation for N = 8 with
improved factorization of DCT-IV matrix (4.83) and (4.86).

by a more efficient one defined as [41]

Z(k, l) =




1 0 0 0

0 0 0 1

0 −1 0 0

0 0 1 0







cos l
2k sin l

2k 0 0

sin l
2k −cos l

2k 0 0

0 0 cos l
2k sin l

2k

0 0 sin l
2k −cos l

2k




(
I2 I2

I2 −I2

)
(4.86)

The corresponding signal flow graph for N = 8 is shown in Fig. 4.16. One can compare
the highlighted basic computational units in Figs. 4.15 and 4.16.

A slightly different sparse matrix factorization of the DCT-IV matrix for N = 2m is defined
as [32, 47]

CIV
N = RN


CIII

N
2

0

0 J N
2

SIII
N
2

J N
2







√
2

I N
2 −1 J N

2 −1√
2

−J N
2 −1 I N

2 −1


 PN , (4.87)
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where RN is the rotation matrix (Householder reflections) given by

RN =




cos π
4N sin π

4N

cos 3π
4N sin 3π

4N

. .

cos (N−1)π
4N sin (N−1)π

4N

sin (N−1)π
4N −cos (N−1)π

4N

. .

sin 3π
4N −cos 3π

4N

sin π
4N −cos π

4N




,

and PN is a permutation matrix which when applied to a data vector corresponds to the
reordering

x̃n = x2n, x̃N−1−n = x2n+1, n = 0, 1, . . . ,
N

2
− 1. (4.88)

The N-point DCT-IV is decomposed into the N
2 -point DCT-III and N

2 -point DST-III. If
it is necessary, the matrices CIII

N
2

and SIII
N
2

in (4.87) can be further decomposed using the

transposed versions of sparse matrix factorizations (4.50) or (4.51) in Section 4.4.3. The
generalized signal flow graph for the forward and inverse DCT-IV computation for N = 8
is shown in Fig. 4.17.

An alternative sparse matrix factorization of the DCT-IV matrix is defined as [52]

CIV
N = PN




√
2

I N
2 −1 −J N

2 −1

−√
2

−J N
2 −1 −I N

2 −1





CII

N
2

J N
2

0

0 CII
N
2

D N
2


 GN

(
J N

2
0

0 −J N
2

)
,

(4.89)

where PN is a permutation matrix which when applied to a data vector corresponds to the
reordering

x̃n = x2n, x̃N−1−n = −x2n+1, n = 0, 1, . . . ,
N

2
− 1. (4.90)
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Fig. 4.17. The generalized signal flow graph for the forward and inverse DCT-IV computation for
N = 8 based on (4.87).

D N
2

= diag{(−1)k}, k = 0, 1, . . . , N
2 − 1, is the diagonal odd-sign changing matrix, and GN

is the Givens rotation matrix

GN =




cos (N−1)π
4N −sin (N−1)π

4N

cos (N−3)π
4N −sin (N−3)π

4N

. .

cos π
4N −sin π

4N

sin π
4N cos π

4N

. .

sin (N−3)π
4N cos (N−3)π

4N

sin (N−1)π
4N cos (N−1)π

4N




.

Hence, the N-point DCT-IV is decomposed into the two N
2 -point DCT-II. Again, the

matrices CII
N
2

can be further decomposed using the sparse matrix factorizations (4.50) or
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Fig. 4.18. The generalized signal flow graph for the forward and inverse DCT-IV computation for
N = 8 based on (4.89).

(4.51) in Section 4.4.3. The corresponding generalized signal flow graph for the forward
and inverse DCT-IV computation for N = 8 is shown in Fig. 4.18.

The orthogonal recursive sparse matrix factorization of CIV
N matrix with scaling

√
2 has

been introduced in Ref. [55]. For N = 2m, m > 1, the DCT-IV transform matrix CIV
N can

be factorized into

CIV
N = PT

N

√
2

2




√
2 0

I N
2 −1 I N

2 −1

I N
2 −1 −I N

2 −1

0 −√
2




(
I N

2
0

0 D N
2

J N
2

) (
CII

N
2

0

0 CII
N
2

)

×
(

I N
2

0

0 D N
2

)
RN , (4.91)
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Fig. 4.19. The generalized signal flow graph for the forward and inverse DCT-IV computation for
N = 8 based on (4.91); α = √

2.

where RN is the Givens rotation matrix

RN =




cos π
4N sin π

4N

cos 3π
4N sin 3π

4N

. .

cos (N−1)π
4N sin (N−1)π

4N

−sin (N−1)π
4N cos (N−1)π

4N

. .

−sin 3π
4N cos 3π

4N

−sin π
4N cos 1π

4N




,

D N
2

= diag{(−1)k}, k = 0, 1, . . . , N
2 − 1, is the diagonal odd-sign changing matrix, and

PN is a permutation matrix defined by (4.54). The corresponding generalized signal flow
graph for the forward and inverse DCT-IV computation for N = 8 is shown in Fig. 4.19.

For N = 8, each output coefficient should be normalized by a scaling factor
√

2
4 to get the

true DCT-IV transform coefficients.

Note: The DST-IV sparse matrix factorizations and corresponding fast DST-IV algorithms
are simply obtained from the relation between DCT-IV and DST-IV transform matrices
given by (4.12).
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4.5 Fast 2-D DCT/DST algorithms

In the previous Section (Section 4.4), the fast algorithms for computation of 1-D DCT and
1-D DST transforms have been presented. However, in digital image/video processing,
compression and transform-based coding applications, fast 2-D algorithms (for the DCT-
II, in particular) are more significant than 1-D ones. The forward and inverse 2-D DCT/DST
transforms can be respectively written in matrix form as

Y = AN X AT
N , X = AT

N Y AN , (4.92)

where X is the N × N input data matrix, AN is the DCT/DST orthogonal/orthonormal trans-
form matrix of order N , and Y is the N × N output matrix of transform coefficients. Gener-
ally, there are two approaches to compute the 2-D DCT and 2-D DST: indirect and direct.
In the indirect approach, the 2-D DCT/DST computation can be realized via other 2-D
discrete orthogonal transforms such as the DFT or WHT of the same size. There are two
methods of direct approach which are based on the direct 2-D DCT/DST computation. The
first, the so-called row–column method, utilizes the separability property of 2-D DCT/DST
transform kernels and sequentially applies any fast 1-D DCT/DST algorithm first to the
rows of the input data block, and then transposes immediate results, followed by applying
1-D DCT/DST algorithm to the columns of the transformed data block. Thus, for an N × N
data block, where N = 2n, the row–column method requires totally 2N 1-D N-point trans-
forms to be computed, and its computational complexity is N2log2N multiplications and
3N2log2N − 2 N(N − 1) additions. The second is a 2-D vector-radix method [57] which
uses 2-D decomposition process. An algorithm obtained by this method outperforms the
row–column method in computational efficiency and works directly on 2-D data blocks.

4.5.1 Existing fast direct 2-D DCT-II algorithms

Since the 2-D DCT-II (typically 4 × 4, 8 × 8 and 16 × 16) is the standard decorrelation
transform in the international image/video coding standards [6] it is not suprising that
research efforts have been concentrated to develop algorithms for the efficient computation
of 2-D DCT-II only. The orthonormal 2-D DCT-II for an N × N input data matrix {xmn},
m, n = 0, 1, . . . , N − 1 is defined by the following relation [4, 6]:

cII
kl = 2

N
εkεl

N−1∑
m=0

N−1∑
n=0

xmn cos

[
π(2m + 1)k

2N

]
cos

[
π(2n + 1)l

2N

]
, k, l = 0, 1, . . . , N − 1,

(4.93)

and the inverse 2-D DCT-II, the 2-D DCT-III, as

xmn = 2

N

N−1∑
k=0

N−1∑
l=0

εkεlc
II
kl cos

[
π(2m + 1)k

2N

]
cos

[
π(2n + 1)l

2N

]
, m, n = 0, 1, . . . , N −1,

(4.94)

where

εp =
{ 1√

2
p = 0,

1 otherwise.
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Over the last three decades many fast algorithms for the direct 2-D DCT-II computation
have been developed [57–72]. Early proposed fast indirect and direct 2-D DCT-II algo-
rithms (before 1990) are described in detail in Refs. [4, 6], and some of them (short-length
DCT-II transforms) have been implemented in hardware or VLSI chips. An overview
of computational complexity (multiplicative and additive) of 1-D and 2-D DCT-II algo-
rithms together with possible improvements, scaling and implementation issues optimized
for transform-based coding is discussed in Ref. [44].

Among existing fast direct 2-D radix-2 (N = 2n) DCT-II algorithms, 8 × 8 DCT-II algo-
rithms based on algebraic properties of the DCT-II transform matrix [62], N × N DCT-II
algorithms based on polynomial transforms [64, 65] and a new fast N × N DCT-II algo-
rithm [66–69] and its refined version in terms of regularity [70, 71] are probably the most
efficient algorithms in terms of computational complexity known up to now.

The fast algorithms for the direct 8 × 8 DCT-II computation [62] are derived using an
algebraic and computational theoretical approach. First, a matrix factorization of DCT-II
transform matrix CII

8 is converted (with additions and permutations) to a direct sum of
matrices corresponding to certain polynomial products modulo irreducible polynomials.
Then, these constructions using theorems regarding the structure of Kronecker products of
matrices are exploited to derive efficient 8 × 8 DCT-II algorithms. Although a practical fast
algorithm for the 8 × 8 DCT-II computation requires 94 multiplications and 454 additions,
its computational structure is rather complicated.

The fast direct 2-D DCT-II algorithms based on polynomial transforms [64, 65] con-
vert the N × N DCT-II into N 1-D N-point DCTs-II and additions. In order to apply the
polynomial transform technique, the N × N DCT-II is mapped by a permutation into the
odd-time 2-D DFT of the same size which is inverted to an evaluation of a complex poly-
nomial having certain symmetries. The direct polynomial transform approach reduces the
number of multiplication to 50% compared to the conventional row–column method. The
computation of 8 × 8 DCT-II by improved polynomial transform approach [65] requires
96 multiplications and 466 additions. However, the mathematical computational struc-
ture of polynomial transforms is rather complicated, especially for larger sizes. Moreover,
arithmetics of complex numbers are required.

In the new direct 2-D DCT-II algorithm [66–69], the N × N DCT-II with data reordering
is mapped into N 1-D N-point DCTs-II, pre- and post-addition regular butterfly structures.
The main idea of the algorithm is to derive the transform kernel of the 2-D DCT-II in the
form cos(α) cos (β) = 1

2 [ cos (α − β) + cos (α + β)]. All the multiplications are required
only for the computation of 1-D N-point DCT-II. In the implementation of 1-D DCT-II any
existing fast algorithm can be used. The corresponding signal flow graphs for the forward
and inverse 4 × 4 DCT-II computation are shown in Figs. 4.20 and 4.21, respectively. The
signal flow graph for the 8 × 8 DCT-II computation can be found in Ref. [68]. The post-
addition stage of the algorithm can be further improved in terms of regularity [66, 69], at the
cost of increasing the number of additions. The computational complexity of the algorithm
consists of N2

2 log2 N multiplications and 5N2

2 log2 N − 2N(N − 1) additions. Thus, the
8 × 8 DCT-II computation requires 96 multiplications and 466 additions. Compared to
polynomial transform-based algorithm the new 2-D DCT-II algorithm has the advantage
in that the computational structure is highly regular and systematic, and only real arithmetic
is required.
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Fig. 4.20. The signal flow graph for the forward 4 × 4 DCT-II computation based on Refs. [66–69].
© 1991, IEEE.

A refined version of the direct 2-D DCT-II algorithm [68] has been presented in Ref. [70,
71]. Using a new proposed index-permutation the N × N DCT-II is mapped into N 1-D
N-point DCTs-II with a post-addition butterfly stage which is more regular than that of the
original algorithm. For illustration, the signal flow graph for the 4 × 4 DCT-II computation
is shown in Fig. 4.22. The refined signal flow graph for the 8 × 8 DCT-II computation can
be found in Refs. [70, 71]. It is interesting to note that if we consider two signal flow graphs
for 4 × 4 DCT-II computations shown in Refs. [70] and [71] separately, it is observed that
by exchanging indices of 2-D elements in the input and output data blocks, i.e., xmn and
cII

kl by xnm and cII
lk , the algorithm remains valid. This fact indicates a certain symmetry of

the algorithm.

In principle, all the above fast direct 2-D DCT-II algorithms have the same multiplicative
complexity and some structural similarities. These similarities are best summarized by
the fact that the N × N DCT-II has the same multiplicative complexity as N 1-D N-point
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Fig. 4.21. The signal flow graph for the inverse 4 × 4 DCT-II computation based on Refs. [66–69].
© 1991, IEEE.

DCTs-II. On the other hand, as was noted in Ref. [65] this fact leads to an important
conclusion: if an optimal algorithm is obtained for the 1-D DCT-II, then the corresponding
direct 2-D DCT-II algorithms [65, 68, 71] will also be optimal. In general, the idea of the
above efficient direct 2-D algorithms can be applied to any DCT/DST transform.

Another class of fast direct 2-D DCT-II algorithms with only moderate arithmetic com-
plexity having highly regular structure and in-place implementation has been formulated
by vector-radix method [57–61]. In the vector-radix method [57], (N × N)-point DCT-II
is decomposed into a sum of four ( N

2 × N
2 )-point DCTs-II, namely, even–even, even–odd,

odd–even and odd–odd indexed elements of the data block. The decomposition process is
recursively repeated until trivial (2 × 2)-point DCT-II remains. The resulting signal flow
graph has a simple and regular computational structure. The computational complexity
of the N × N DCT-II algorithm derived by vector-radix method consists of 3

4 N2 log2 N
multiplications and 3N2 log2 N − 2N(N − 1) additions, i.e., it saves 25% multiplications
compared to the conventional row–column method.
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Fig. 4.22. The signal flow graph for the 4 × 4 DCT-II computation based on Refs. [70, 71]. © 1998,
IEEE.

A structural approach is similar to the vector-radix method. The structural approach enables
the derivation of a 2-D DCT-II algorithm directly from the corresponding 1-D DCT-II
algorithm with the same reduction in the number of multiplications as the vector-radix
method [58–61]. Mathematical derivation of the direct 2-D DCT-II algorithm is quite sim-
ple and straightforward provided by a known sparse (recursive) matrix factorization of the
transform matrix. The matrix form of 1-D algorithm is extended to the 2-D matrix form
using Kronecker product of matrices as a construction tool. The resulting fast direct 2-D
algorithm is highly structured and simple both for hardware and software implementation.
The 2-D generalized signal flow graph preserves simple, regular and systematic compu-
tational structure and reveals one-to-one correspondence between 2-D algorithm and its
1-D counterpart.

In Section 4.4, the fast 1-D DCT/DST algorithms defined by recursive sparse matrix fac-
torizations of transform matrices have been discussed. Therefore, the structural approach
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can simply be applied to any DCT and DST transform to derive its fast direct 2-D algo-
rithm. With respect to equation (4.92), if the indices of elements of 2-D data blocks
X and Y are arranged in lexicographical order of their representation, i.e., they are
represented as a column vector obtained by concatenating their rows, then the N × N
2-D transform using Kronecker product of matrices can be represented in the matrix
form as

Y = (AN ⊗ AN )X. (4.95)

where ⊗ denotes Kronecker product of matrices. The structural approach is a simple and
straightforward method to generate the fast direct 2-D DCT/DST algorithm from the
corresponding 1-D one.

4.5.2 The optimal 1-D 8-point and 2-D 8 × 8 DCT-II algorithms

The theoretical lower bound on the multiplicative complexity of the 1-D 2n-point DCT-II
is given by [44, 46, 56]

µ(CII
N ) = 2n+1 − n − 2, (4.96)

whereas the theoretical lower bound on the multiplicative complexity of the 2-D (2n × 2n)-
point DCT-II is given by [56]

µ(CII
N ⊗ CII

N ) = 2n(2n+1 − n − 2), (4.97)

where µ denotes the minimum number of nonrational multiplications required to perform
the DCT-II transform which is represented by the N × N matrix ĈII

N , and N = 2n; ⊗ denotes
the Kronecker product of matrices.

Let ĈII
8 be the scaled DCT-II transform matrix with its rows rearranged in bit-reversed

order. The fast algorithm for 1-D 8-point scaled DCT-II computation [45] is defined by
the recursive sparse matrix factorization as

ĈII
8 =

√
2

4




(√
2CII

2 0

0
√

2J2CIV
2 J2

) (
I2 J2

J2 −I2

)
0

0
√

2J4ĈIV
4 J4




(
I4 J4

J4 −I4

)
, (4.98)

where

√
2CII

2 =
(

1 1

1 −1

)
,

√
2 J2CIV

2 J2 = √
2

(
cos 3π

8 sin 3π
8

−sin 3π
8 cos 3π

8

)
. (4.99)
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The sparse matrix factorization of
√

2 J4ĈIV
4 J4 is given by

√
2J4ĈIV

4 J4

= √
2




−cos π
4 0 0 sin π

4

0 1 0 0

0 0 1 0

sin π
4 0 0 cos π

4







1 0 1 0

0 −1 0 1

1 0 −1 0

0 1 0 1







cos 3π
16 0 0 sin 3π

16

0 cos π
16 sin π

16 0

0 −sin π
16 cos π

16 0

−sin 3π
16 0 0 cos 3π

16




=




−1 0 0 1

0
√

2 0 0

0 0
√

2 0

1 0 0 1







1 0 1 0

0 −1 0 1

1 0 −1 0

0 1 0 1







cos 3π
16 0 0 sin 3π

16

0 cos π
16 sin π

16 0

0 −sin π
16 cos π

16 0

−sin 3π
16 0 0 cos 3π

16




.

(4.100)

The signal flow graph for the fast 1-D 8-point scaled DCT-II computation is shown in
Fig. 4.10.

The computation of 8-point scaled DCT-II requires 11 multiplications and 29 additions.
The algorithm achieves the theoretical lower bound of the number of multiplications
defined by (4.96). Therefore it is the optimal 1-D 8-point DCT-II algorithm in terms
of multiplicative complexity. Using the optimal 1-D 8-point scaled DCT-II algorithm
in the 2-D 8 × 8 DCT-II algorithm proposed in Ref. [68] and refined in Refs. [70, 71]
results in an 8 × 8 DCT-II algorithm optimal in multiplicative complexity [72]. The
resulting number of multiplications will be 8 × 11 = 88, which is the same as the theo-
retical lower bound defined by (4.97), while the number of additions remains the same.
Both the algorithms have very regular computational structures and this fact leads to a
very efficient and effective implementation of the 8 × 8 DCT-II in digital image/video
applications. The normalization factors at the end of computation are reduced to shift
operations.

4.5.3 Kronecker sum and product of matrices

Kronecker sum of matrices (or direct sum) and Kronecker product of matrices (or tensor
product) are elegant and useful mathematical tools [3]:

• To simplify the representation of sparse matrix factorization of a transform matrix in
the compact block matrix form.

• In generating higher-order matrices from lower-order ones.

• To define the direct 2-D fast algorithms from corresponding 1-D ones which can be
readily generalized to higher dimensions (multidimensional transforms).
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Let A and B be m × n and p × q matrices, respectively. Kronecker sum of two matrices A
and B denoted by ⊕ is the block diagonal matrix

A ⊕ B =
(

A 0

0 B

)
, (4.101)

of dimension (m + p) × (n + q).

Kronecker product of two matrices A and B denoted by ⊗ is defined as

A ⊗ B =




a11B a12B . . . a1nB

a21B a22B . . . a2nB
...

...
. . .

...

am1B am2B . . . amnB


, (4.102)

where A ⊗ C is an (mp) × (nq) matrix. Note that A ⊗ B �= B ⊗ A. Kronecker product of
matrices possessess a few useful properties:

1. (A + B) ⊗ C = A ⊗ B + B ⊗ C,

2. (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C),

3. α(A ⊗ B) = (αA) ⊗ B = A ⊗ (αB), where α ∈ R,

4. (A ⊗ B)T = AT ⊗ BT,

5. (A ⊗ B)−1 = A−1 ⊗ B−1, where A and B are square matrices,

6. (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD),

7. A ⊗ B = (A ⊗ I)(I ⊗ B),

8.
∏r

k=1 (Ak ⊗ Bk) = (
∏r

k=1 Ak) ⊗ (
∏r

k=1 Bk), where Ak and Bk are square matrices,

9. det(A ⊗ B) = (det(A))m (det(B))n, where A is m × m and B is n × n square matrix,

10. Trace(A ⊗ B) = Trace(A) Trace (B),

11. If A and B are unitary, then A ⊗ B is also unitary.

4.5.4 Generating direct 2-D DCT/DST algorithms by structural approach

The structural approach generates a fast direct 2-D DCT/DST algorithm from the corre-
sponding 1-D DCT/DST algorithm by a simple and straightforward procedure using the
properties of Kronecker matrix products. For a given DCT/DST transform, we need only
a (recursive) block matrix factorization of its transform matrix.

To illustrate the construction of 2-D DCT/DST algorithm by the structural approach,
consider the computation of DCT-II for N = 8. The orthogonal recursive block matrix
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factorization of the DCT-II transform matrix CII
8 given by (4.55) with scaling

√
2 is

expressed as [55]

CII
8 =

√
2

4
PT

8

(
PT

4 0

0 PT
4

) (
I4 0

0 A4

)



√
2CII

2 0√
2CIV

2 √
2CII

2

0
√

2CII
2




×
(√

2T4 0

0
√

2R4

) (
I4 J4

I4 −J4

)
, (4.103)

or in the modified form

CII
8 =

√
2

4
B8

(
I4 0

0 A4

)



√
2CII

2 0√
2CIV

2 √
2CII

2

0
√

2CII
2




(√
2T4 0

0
√

2R4

)

×
(

I4 0

0 J4

) (
I4 J4

J4 −I4

)
, (4.104)

where the matrix B8 given by

B8 = PT
8

(
PT

4 0

0 PT
4

)
,

coincides with the bit-reversal matrix and matrices A4,
√

2CII
2 ,

√
2CIV

2 ,
√

2T4 and
√

2R4
are respectively given by

A4 =
√

2

2




√
2 0 0 0

0 1 0 1

0 1 0 −1

0 0
√

2 0


,

√
2CII

2 =
(

1 1

1 −1

)
,

√
2CIV

2 =
(

I2 0

0 D2

) √
2

(
cos π

8 sin π
8

−sin π
8 cos π

8

)
,
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Fig. 4.23. The signal flow graph for the 8-point scaled DCT-II computation based on (4.104).

√
2T4 =

(
I2 J2

I2 −J2

)
=

(
I2 0

0 J2

) (
I2 J2

J2 −I2

)
,

√
2R4 =

(
I2 0

0 D2

) √
2




cos π
16 0 0 sin π

16

0 cos 3π
16 sin 3π

16 0

0 −sin 3π
16 cos 3π

16 0

−sin π
16 0 0 cos π

16




.

The block matrix factorization (4.103) or (4.104) defines the 1-D 8-point scaled DCT-
II algorithm similar to Ref. [45]. It also requires 11 multiplications and 29 additions,
achieving the theoretical lower bound for the number of multiplications and is optimal.
The signal flow graph for the 1-D 8-point scaled DCT-II computation is shown in Fig. 4.23.
The signal flow graph is partitioned into the blocks S8

i , i = 1, 2, 3, 4, and blocks P8
j ,

j = 1, 2, 3, which are respectively related to the butterfly and plane rotation stages of the
algorithm.
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Now, the fast direct 8 × 8 DCT-II algorithm in the matrix form is defined as




cII
0

cII
4

cII
2

cII
6

cII
1

cII
5

cII
3

cII
7




= (CII
8 ⊗ CII

8 )




x0

x1

x2

x3

x4

x5

x6

x7




, (4.105)

where xi and cII
i are respectively columns vectors obtained by concatenating rows of

the input and output data blocks, respectively. Substituting the block matrix factorization
(4.104) of the DCT-II transform matrix CII

8 into (4.105), and using properties of Kronecker
matrix product (see properties 6 and 8 in Section 4.5.3), the fast direct 8 × 8 scaled DCT-II
algorithm has the form

CII
8 ⊗ CII

8 = (B8 ⊗ B8)

{(
I4 0

0 A4

)
⊗

(
I4 0

0 A4

)}

×







√
2CII

2 0√
2CIV

2 √
2CII

2

0
√

2CII
2


 ⊗




√
2CII

2 0√
2CIV

2 √
2CII

2

0
√

2CII
2







×
{(√

2T4 0

0
√

2R4

)
⊗

(√
2T4 0

0
√

2R4

)} {(
I4 0

0 J4

)
⊗

(
I4 0

0 J4

)}

×
{(

I4 J4

J4 −I4

)
⊗

(
I4 J4

J4 −I4

)}
, (4.106)

where the direct product B8 ⊗ B8 performs the 2-D permutation from bit-reverse to natural
order. The detailed analysis of the structure of direct 2-D DCT-II algorithm defined by
(4.104)–(4.106) results in the regular signal flow graph for the fast direct 8 × 8 scaled
DCT-II computation shown in Fig. 4.24. In order to show one-to-one correspondence
between the 2-D 8 × 8 DCT-II algorithm and its 1-D counterpart, the signal flow graph in
Fig. 4.24 is partitioned into 2-D blocks S8×8

i , i = 1, 2, 3, 4, and blocks P8×8
j , j = 1, 2, 3.

All blocks inscribed by S8
i and P8

j are defined in Fig. 4.23. Heavy lines represent vector
operations on rows of the input data block.

If the direct 8 × 8 scaled DCT-II computation is realized by the row–column method,
it requires 16 1-D 8-point scaled DCT-II and its computational complexity is 176
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Fig. 4.24. The signal flow graph for the direct 8 × 8 scaled DCT-II computation based on
(4.104)–(4.106).
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multiplications and 464 additions plus performing the transposition of semi-transformed
data block. From Fig. 4.24 it can be seen that all multiplications in the signal flow graph are
contained in the blocks S8 × 8

2 , S8 × 8
3 and S8

2, S8
3, including 2-D and 1-D plane rotations and

in the blocks P8 × 8
3 , P8

3 with twiddle factors
√

2
2 . With respect to (4.106) 2-D plane rotations

in blocks S8 × 8
2 and S8 × 8

3 are defined by the direct products (
√

2R4 ⊗ √
2R4) = 2(R4 ⊗ R4)

and (
√

2CIV
2 ⊗ √

2CIV
2 ) = 2(CIV

2 ⊗ CIV
2 ), respectively. The multiplications by

√
2

2 in the
block P8 × 8

3 are defined by direct product A4 ⊗ A4 and they can be combined reducing four
multiplications to shift operations. The total number of 1-D plane rotations to be performed
by the row–column method is 48 which require 144 multiplications and the same number
of additions. Each plane rotation is a Givens–Jacobi rotation defined by

Gϕ =
(

cos ϕ sin ϕ

−sinϕ cos ϕ

)
, GT

ϕ = G−1
ϕ =

(
cos ϕ −sinϕ

sin ϕ cos ϕ

)
= G−ϕ, (4.107)

where ϕ = π
8 , π

16 and 3π
16 . In order to reduce the number of multiplications, the direct

products 2(CIV
2 ⊗ CIV

2 ) and 2(R4 ⊗ R4) can be efficiently evaluated using the following
useful formula [46]:

Gα ⊗ Gβ = KT
4

(
Gα+β 0

0 Gα−β

)
K4, K4 =




1 −1 −1 −1

1 1 1 −1

1 1 −1 1

1 −1 1 1


. (4.108)

From the property of Kronecker matrix product (see property 4 in Section 4.5.3) we obtain
the formula for the transposed direct product of Givens–Jacobi rotations GT

α ⊗ GT
β as

(Gα ⊗ Gβ)T = GT
α ⊗ GT

β = KT
4

(
GT

α+β 0

0 GT
α−β

)
K4. (4.109)

The evaluation of direct products (Gα ⊗ Gβ)xT and (GT
α ⊗ GT

β)xT includes 2 plane rota-
tions and additions only. If α �= β it requires 6 multiplications and 22 additions. In case
α = β the number of arithmetic operations is even less; if α = β �= π

8 , 3 multiplications
and 19 additions are required, and if α = β = π

8 , 2 multiplications and 18 additions are
required. Using the formula (4.108), the direct product 2(CIV

2 ⊗ CIV
2 )xT is reduced to the

evaluation of

2(G π
8

⊗ G π
8
)xT requiring 2 multiplications and 18 additions,

and direct product 2(R4 ⊗ R4)xT is reduced to the evaluation of

2(G π
16

⊗ G π
16

)xT requiring 3 multiplications and 19 additions,
2(G π

16
⊗ G 3π

16
)xT requiring 6 multiplications and 22 additions,

2(G 3π
16

⊗ G π
16

)xT requiring 6 multiplications and 22 additions,

2(G 3π
16

⊗ G 3π
16

)xT requiring 3 multiplications and 19 additions.
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The evaluation of direct products 2(CIV
2 ⊗ CIV

2 ) and 2(R4 ⊗ R4) by (4.108) reduces the
number of 1-D Givens–Jacobi rotations to be evaluated from 48 to 35. Thus, the total
arithmetic complexity for the direct 8 × 8 scaled DCT-II algorithm derived by the structural
approach consists of 128 multiplications and 476 additions. Compared to the 8 × 8 DCT-II
algorithm derived by the vector-radix method the multiplicative complexity of the direct
8 × 8 scaled DCT-II algorithm derived by the structural approach is better. The reason
in the significant reduction of multiplicative complexity, but at the cost of the increased
number of additions can be explained

• by using the optimal 1-D 8-point scaled DCT-II algorithm,

• by efficient evaluation of direct products 2(Gα ⊗ Gβ) by (4.108).

The normalization of DCT-II transformed coefficients at the end of signal flow graph is
reduced to shift operations.

The idea of this fast direct 8 × 8 DCT-II algorithm can be easily extended to any DCT
and DST. Since almost all DCT/DST algorithms presented in Section 4.4 are based on the
(recursive) block matrix factorization of the transform matrix, the 2-D algorithm can be
directly constructed from corresponding 1-D algorithm by the structural approach.

4.6 Summary

The fast 1-D and 2-D DCT/DST algorithms for all even types of the DCT and DST
have been discussed in detail. Almost all are direct algorithms defined by the (recursive,
if it exists) sparse matrix factorization of the transform matrix. The definitions, basic
mathematical properties and relations between corresponding DCT and DST have been
briefly discussed (Section 4.2). The explicit forms of orthonormal DCT and DST matrices
for N = 2, 4 and 8 have been presented (Section 4.3). The fast 1-D DCT/DST algorithms are
numerically stable, have the regular computational structures and employ real arithmetics
only (Section 4.4). In particular, these rotation-based fast algorithms are very convenient
for the construction of corresponding integer transforms. The generalized signal flow
graphs corresponding to the sparse matrix factorization of the transform matrix for the fast
DCT/DST computation have also been provided and they are ready to be used in practical
applications. Finally, in Section 4.5 it is shown how the 2-D DCT/DST fast algorithms can
be derived from the corresponding 1-D ones.

Problems and Exercises

1. Using the definitions of DCT-II and DST-II prove the relation between the DCT-II
and DST-II matrices given by (4.11)(see [39]).

2. Using the definitions of DCT-IV and DST-IV prove the relation between the DCT-IV
and DST-IV matrices given by (4.12).

3. Using the definitions of DCT-IV and DCT-II prove the relation between the DCT-
IV and DCT-II matrices given by (4.13). (Hint: decompose the DCT-IV transform
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kernel using the trigonometric identity cos (α + β) = 2 cos(α) cos(β) − cos(α − β)
with the proper setting α and β.)

4. Prove the relations between DCT and DST matrices given by (4.14).

5. Based on the definitions of orthonormal DCT and DST matrices derive their explicit
forms for N = 16.

6. Prove the even symmetry/antisymmetry property of basis vectors defined by (4.15)
and (4.16) for C̃I

N , S̃I
N and CII

N matrices.

7. Prove the odd symmetry/antisymmetry property of basis vectors defined by (4.19)
and (4.20) for CI

N+1 and SI
N−1 matrices.

8. For the matrices C̃I
N , S̃I

N and CII
N , N = 4 and 8, derive their EOT matrix factorizations

defined by (4.17) or (4.18). If it is possible, apply EOT factorization recursively.

9. Consider the fast DCT-I computation based on the SCT algorithm defined by (4.21)
and (4.22). The corresponding generalized signal flow graph for N = 3, 5 and 9 is
shown in Fig. 4.1. Try to derive the recursive sparse matrix factorization of the DCT-I
matrix CI

N+1 and verify its correctness by computer program. Recall that the sparse
matrix factorization of the transform matrix defines the fast algorithm repesented by
the signal flow graph and vice versa.

10. Consider the fast DCT-I computation defined by (4.25) with the corresponding gen-
eralized signal flow graph for N = 2, 4 and 8 shown in Fig. 4.2. Write down the sparse
matrix factors and verify their correctness by computer program.

11. Develop the generalized signal flow graphs for the fast DCT-I computation for N = 2,
4 and 8 based on the sparse matrix factorization (4.27) and verify their correctness
by computer program.

12. The generalized signal flow graph for the fast DCT-I computation based on split-
radix algorithm is shown in Fig. 4.3. Investigate and verify the validity of split-radix
fast DCT-I algorithm for N = 16 defined by the sparse matrix factorization of DCT-I
matrix CI

N+1 (4.31)–(4.33) and draw the corresponding signal flow graph. Correct
the proposed sparse matrix factorization if necessary.

13. Develop the generalized signal flow graphs for the fast DCT-I computation for N = 2,
4 and 8 based on the sparse matrix factorization (4.34) and verify their correctness
by computer program.

14. For each fast DCT-I algorithm in Section 4.4.1 for N = 2, 4 and 8 verify its cor-
rectness by computer program and list its computational complexity (the number of
multiplications and additions).

15. Extend each fast DCT-I algorithm in Section 4.4.1 to N = 16, i.e., derive the sparse
matrix factorization of DCT-I matrix CI

16, draw the corresponding signal flow graph
and verify its correctness by computer program. List the computational complexity
of algorithms. Finally, compare the algorithms in terms of structural simplicity and
computational complexity.

16. Consider the fast DST-I computation based on the SST algorithm defined by (4.35)
and (4.36). The corresponding generalized signal flow graph for N = 3 and 7 is shown
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in Fig. 4.4. Try to derive the recursive sparse matrix factorization of the DST-I matrix
SI

N−1 and verify its correctness by computer program.

17. Consider the fast DST-I computation defined by (4.39) with the corresponding gen-
eralized signal flow graph for N = 4 and 8 shown in Fig. 4.5. Write down the sparse
matrix factors and verify their correctness by computer program.

18. Consider the fast DST-I computation defined by (4.40) with the corresponding gen-
eralized signal flow graph for N = 4 and 8 shown in Fig. 4.6. Write down the sparse
matrix factors and verify their correctness by computer program.

19. Develop the generalized signal flow graphs for the fast DST-I computation for N = 4
and 8 based on the sparse matrix factorizations (4.42) and (4.42), and verify their
correctness by computer program.

20. The generalized signal flow graph for the fast DST-I computation based on split-
radix algorithm is shown in Fig. 4.7. Investigate and verify the validity of split-radix
fast DST-I algorithm for N = 16 defined by the sparse matrix factorization of DST-I
transform matrix SI

N−1 (4.47)–(4.49) and draw the corresponding signal flow graph.
Correct the proposed sparse matrix factorization if necessary.

21. For each fast DST-I algorithm in Section 4.4.2 for N = 4 and 8 verify its correctness
by computer program and list its computational complexity.

22. Extend each fast DST-I algorithm in Section 4.4.2 to N = 16, i.e., derive the sparse
matrix factorization of DST-I matrix SI

15, draw the corresponding signal flow graph
and verify its correctness by computer program. Compare the algorithms in terms of
structural simplicity and computational complexity.

23. Extend the fast DCT-II algorithm defined by (4.50) to N = 16. The generalized signal
flow graph for N = 2, 4 and 8 is shown in Fig. 4.8. Write down the sparse matrix
factorization and draw the corresponding signal flow graph. Verify its correctness
by computer program and list the computational complexity. Because of recursivity
of DCT-II matrix the upper half of the signal flow graph for N = 16 after the first
butterfly stage will correspond to the signal flow graph for N = 8. Therefore it is
sufficient only to derive the sparse matrix factorization of DCT-IV matrix CIV

8 (see
Ref. [33]). Note that the matrix CIV

8 is symmetric.

24. Consider the fast DCT-II algorithm defined by (4.51) with corresponding generalized
signal flow graph for N = 2, 4 and 8 shown in Fig. 4.9. Write down sparse matrix fac-
tors for N = 2, 4 and 8, verify the correctness of algorithm and list its computational
complexity. Then extend the algorithm to N = 16 and repeat the above steps.

25. Consider the fast DCT-II algorithm defined by (4.53) and (4.55). Its generalized signal
flow graph N = 2, 4 and 8 is shown in Fig. 4.10. Write down sparse matrix factors
for N = 2, 4 and 8, verify the correctness of algorithm and list its computational
complexity. Then extend the algorithm to N = 16 and repeat the above steps.

26. The fast algorithm for 16-point scaled DCT-II computation represented by the signal
flow graph in Ref. [45] is not correct. Verify the signal flow graph and correct it.
Verify by computer program.
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27. Extend the fast DCT-II computation via WHT to N = 16. Develop the sparse matrix
factorization and draw corresponding signal flow graph. Verify the correctness of
algorithm by computer program and list its computational complexity. It is neces-
sary to find a sparse matrix factorization of WHT matrix [1] for N = 16. Use the
recursivity property of the conversion matrix to find a sparse matrix factorization
(analytical form) of the block matrix U8 (see Ref. [37]).

28. Verify the fast FFCT algorithm for the DCT-II computation via DFT for N = 8 by
computer program. Its generalized signal flow graph is shown in Fig. 4.13. Derive
the corresponding sparse matrix factorization of the DCT-II transform matrix CII

8 .
Extend the FFCT algorithm to N = 16, write down the sparse matrix factorization,
draw signal flow graph and list the computational complexity.

29. The generalized signal flow graph for the fast DCT-II computation based on split-
radix algorithm is shown in Fig. 4.14. Investigate and verify the validity of split-radix
fast DCT-II algorithm for N = 16 defined by the sparse matrix factorization of DCT-
II matrix CII

N (4.81) and (4.82) and draw the corresponding signal flow graph. Correct
the proposed sparse matrix factorization if necessary.

30. Extend the fast DCT-IV algorithm defined by (4.83) to N = 16 with the improved
factorization of DCT-IV matrix (equation (4.86)). The generalized signal flow graph
for N = 8 is shown in Fig. 4.16. Write down the sparse matrix factorization and draw
the corresponding signal flow graph. Verify its correctness by computer program and
list the computational complexity.

31. Consider the fast DCT-IV algorithm defined by (4.87) with corresponding general-
ized signal flow graph for N = 8 shown in Fig. 4.17. Write down sparse matrix factors
and verify the correctness of algorithm by computer program and list the computa-
tional complexity. Then extend the algorithm to N = 16 and repeat the above steps.

32. Consider the fast DCT-IV algorithm defined by (4.89) with corresponding general-
ized signal flow graph for N = 8 shown in Fig. 4.18. Write down sparse matrix factors
and verify the correctness of algorithm by computer program and list the computa-
tional complexity. Then extend the algorithm to N = 16 and repeat the above steps.

33. Consider the fast DCT-IV algorithm defined by (4.91) with corresponding general-
ized signal flow graph for N = 8 shown in Fig. 4.19. Write down the sparse matrix
factors, verify the correctness of algorithm by computer program and list the compu-
tational complexity. Then extend the algorithm to N = 16 and repeat the above steps.

34. Try to propose the fast split-radix DCT-IV algorithm. Derive the complete formulae,
the sparse matrix factorization of the DCT-IV matrix CIV

N and draw the corresponding
signal flow graph for N = 2, 4, 8 and 16.

35. Verify by computer program the direct fast algorithm for the forward and inverse
4 × 4 DCT-II computation respectively represented by the signal flow graphs shown
in Figs. 4.20 and 4.21. Substitute the suitable 1-D fast DCT-II algorithm.

36. Verify by computer program the refined direct fast algorithm for the forward 4 × 4
DCT-II computation represented by the signal flow graph shown in Fig. 4.22.
Substitute the suitable 1-D fast DCT-II algorithm.
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37. Implement the optimal 8-point scaled DCT-II and optimal 2-D 8 × 8 DCT-II algo-
rithm in terms of multiplicative complexity for the efficient computation of DCT-II
in the international coding standards [6].

38. Verify by computer program the fast algorithm for the 8-point DCT-II computation
represented by signal flow graph shown in Fig. 4.23.

39. Verify the direct 2-D fast algorithm for the 8 × 8 DCT-II computation represented
by the signal flow graph shown in Fig. 4.24. Analyze its computational complexity.

40. Prove (4.108) and (4.109).

41. Having the (recursive) sparse matrix factorizations of DCT and DST matrices for
N = 2, 4 and 8 and by defining the 1-D fast DCT and DST algorithms try to derive
subsequently the direct 2-D DCT and DST fast algorithms from corresponding 1-D
ones using the structural approach. Write down the sparse matrix factorizations and
draw the signal flow graphs. Verify the correctness by computer program. Compare
the obtained computational complexity with the conventional row–column method.
Extend to N = 16.
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CHAPTER 5

Integer Discrete Cosine/Sine Transforms

5.1 Introduction

The trend of low-powered discrete orthogonal sinusoidal transforms has become essential
due to the explosion of wireless technologies, especially for applications which run on
batteries. Digital image/video/audio signals are integer-valued which are quantized into
M-bit representations. The discrete cosine transforms (DCTs) and discrete sine transforms
(DSTs) are real-valued transforms that map integer-valued signals to floating-point coeffi-
cients. Although the fast algorithms for their computation reduce the number of arithmetic
operations significantly, they still need floating-point operations. Another disadvantage
associated with most of the fast algorithms that employ floating-point multiplications is
the difficulty in applying them to lossless compression due to finite-length representation
and corresponding round-off errors. More importantly, floating-point implementations in
hardware are slow, require too much memory and consume too much power. In the field
of VLSI, it is well known that floating-point multiplication is the operation consuming the
most time and power and, therefore, causes the resulting devices to be large and expensive.

To achieve faster realization, floating-point multipliers in most practical implementations
of discrete sinusoidal transforms are scaled up and approximated by integers. Specifically,
the implementation is realized in fixed-point arithmetic where each floating-point multi-
plier (in internal representation: sign, exponent and mantissa) is approximated and derived
in the form ±m · 2b, where b is an integer exponent and m is an integer mantissa which can
be a very large factor. This ad hoc approximation method still has problems: it does not
reduce the computational complexity much and it introduces truncation errors. Therefore,
it is important to develop new algorithms for the DCT and DST computation so that the
dependency on floating-point multiplications can be reduced or completely eliminated.

The DCTs and DSTs with integer coefficients are of great interest since they lead to low-cost
systems that can be designed more simply and implemented more efficiently with low-
power consumption. The research in this direction has great potential for mobile computing
and hand-held devices which run on batteries. The DCT and DST implementations based on
integer approximation are currently modern transform technologies adaptable to available
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power resources and suitable for transform-based lossless coding. The resulting integer
transforms are comparable with the original real-valued transforms, preserve all their
basic mathematical properties (linearity, orthogonality, symmetry of the basis vectors and
recursivity) and performance such as transform coding gain or transform efficiency. The
methods of integer approximation enable us to construct and flexibly generate a family
of integer transforms with arbitrary accuracy and performance with the fast, efficient
in-place multiplierless implementation using only binary additions and shifts. Thus, fast
multiplierless integer transforms can replace the corresponding real-valued transforms in
future wireless and satellite communications, as well as portable computing applications.

This chapter is devoted to integer DCT and DST. As the chapter is heavily manipulated
with matrices, the first section presents the basic material from linear algebra, theory of
matrices and matrix computations which is fundamental for understanding approximation
methods (basic linear algebra and matrix decompositions are also discussed in Appendices
A.1–A.3). In order to evaluate the approximation error between the approximated and
original transform matrix, and to measure the performance of resulting approximated
transform used in data compression applications, some theoretical criteria are defined in
the second section. Finally, in the last three sections various developed methods and design
approaches to integer approximation of DCTs and DSTs including the latest developments
are described in detail. The chapter concludes with a summary, problems and exercises,
and comprehensive references related to integer DCT and DST.

The chapter contains many new/improved/modified results. The fast integer DCTs and
DSTs in the form of generalized signal flow graphs are ready to be used in practical
applications.

5.2 Plane rotation matrices: factorizations and notations

Principally, many proposed fast algorithms for the efficient discrete trigonometric trans-
forms computation define for a given DCT and DST matrices a sparse matrix factorization,
in many cases consisting of butterfly matrices with elements ±1, and cascade of plane
rotations being the Givens–Jacobi rotations or Householder reflections [7–9].

One class of modern methods for integer approximation of DCTs and DSTs is based on the
fact that Givens–Jacobi rotations and Householder reflections can be further factorized into
a product of structurally simpler matrices, the so-called elementary matrices, defining an
efficient computational structure called in engineering literature “the ladder network” [7]
or “(scaled) lifting scheme” [8]. Consequently, having the sparse matrix factorization of
the real-valued transform matrix and factorizations of Givens–Jacobi rotations and House-
holder reflections, any DCT and DST can be approximated and implemented by reversible
integer-to-integer mapping or even they can be realized by multiplierless implementation
in the form of binary adds and shifts only, which is very desirable for lossless transform
coding.

Although the factorizations of Givens–Jacobi rotations and Householder reflections have
been heavily discussed in literature [7–9], a little effort has been devoted to explain the
origin of these factorizations exclusively with reference to basic results of linear algebra
and classical theory of matrices. Indeed, using the basic material from linear algebra and
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matrix theory, all the factorizations can be derived by more understandable way. Therefore,
in the following sections the review of basic material from linear algebra and matrix theory
(basic ideas and theorems) [1–5] is presented, which are indispensable to understand the
material in this chapter related to integer approximation methods of DCTs and DSTs. We
note that Appendices A.1 and A.2 deal also with basic linear algebra, specifically, vector
spaces (some important concepts) and the matrix eigenvalue problem are discussed in
detail. As well, Appendix A.3 covers matrix decompositions.

5.2.1 The determinant

If A is a square nonsingular matrix of order N then its determinant is given by
det(A) = a, a ∈ R. The determinant of A is defined in terms of N − 1 determinants [5]:

det(A) =
N∑

j=1

(−1) j+1 det(A1j), (5.1)

where A1j is an (N − 1) × (N − 1) matrix obtained by deleting the first row and jth column
of A. Useful properties of the determinant include:

• det(AB) = det(A) det(B), A and B are nonsingular matrices,

• det(AT) = det(A), T denotes matrix transposition,

• det(cA) = cN det(A), c ∈ R,

• det(A) �= 0 if A is nonsingular.

5.2.2 Orthogonal/orthonormal matrices

Matrix A is called orthogonal, if AAT = I , where I is the identity matrix. Additionally, if the
norm of each row (basis vector) of the matrix is equal to 1, then the matrix is orthonormal.
The orthogonal/orthonormal matrices possess a few useful properties [1]:

• The identity matrix I is orthogonal/orthonormal.

• If A is orthogonal/orthonormal, then A−1 = AT.

• If A is orthogonal/orthonormal, then AT is also orthogonal/orthonormal.

• The product of two orthogonal/orthonormal matrices is an orthogonal/orthonormal
matrix.

• Determinant of orthogonal/orthonormal matrix is equal to ±1. If det(A) = +1, then
A is called to be eigenorthogonal/eigenorthonormal. Otherwise, if det(A) = −1, then
A is called to be non-eigenorthogonal/non-eigenorthonormal.

5.2.3 Triangular matrices and algebra of triangular matrices

A matrix with all elements under/above the main diagonal equal to zero is called an
upper/lower triangular matrix. A unit triangular matrix is triangular matrix with 1s on the
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main diagonal. There are a few useful properties about products, inverses and determinants
of triangular matrices [5]:

• The inverse of upper (lower) triangular matrix is upper (lower) triangular.

• The inverse of unit upper (unit lower) triangular matrix is unit upper (unit lower)
triangular.

• The product of two upper (lower) triangular matrices is upper (lower) triangular
matrix.

• The product of two unit upper (unit lower) triangular matrices is unit upper (unit
lower) triangular matrix.

• Determinant of upper or lower triangular matrix is equal to the product of its diagonal
elements.

• Determinant of unit upper or unit lower triangular matrix is equal to 1.

5.2.4 Absolute value of a matrix and matrix/vector norms

The matrix/vector norms are frequently used for the analysis of matrix algorithms in linear
algebra and matrix computations. They provide a measure of distance on the space of
matrices/vector space, or more precisely, the space of matrices/vector space together with
matrix/vector norms define a metric space [4, 5]. In general, matrix norms are defined for
an arbitrary matrix, i.e., also for nonsquare matrices.

The absolute value (modulus) of a matrix A = {aij} is the matrix [4]:

|A| = {|aij|}, (5.2)

where |aij| are moduli of the elements of A. If A and B are matrices of the same type for
which the operations A + B and A · B are defined, then

• |A + B| ≤ |A| + |B|,
• |A · B| ≤ |A|·|B|,
• |α · A| = |α|·|A|, α ∈ R,

• |Ar | ≤ |A|r for a square matrix A, where r > 0 is an integer.

The norm of a matrix A = {aij} is a real number ‖A‖ satisfying the following properties
[4, 5]:

• ‖A‖ ≥ 0, (‖A‖ = 0 iff A = 0),

• ‖α · A‖ = |α|·‖A‖, α ∈ R, and in particular ‖−A‖ = ‖A‖,

• ‖A + B‖ ≤ ‖A‖ + ‖B‖,

• ‖A · B‖ ≤ ‖A‖·‖B‖ and in particular ‖Ar‖ ≤ ‖A‖r , where r > 0 is integer.
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One important inequality between the norms of matrices A and B of the same type is
given by:

‖A − B‖ ≥ | ‖B‖ − ‖A‖ |. (5.3)

The matrix norm is called canonical, if satisfies additional properties:

• |aij| ≤ ‖A‖,

• The inequality |A| ≤ |B| implies that ‖A‖ ≤ ‖B‖.

Subscripts on ‖·‖ are used to distinguish between various norms. The most frequently used
and easily computed matrix norms are [4, 5]:

‖A‖F =
√∑

i

∑
j

|aij|2, Frobenius norm, (5.4)

‖A‖1 = max
i

∑
j

|aij|, 1-norm, (5.5)

‖A‖∞ = max
j

∑
i

|aij|, ∞-norm. (5.6)

It can be verified that matrix norms ‖A‖F, ‖A‖1 and ‖A‖∞ are canonical. For a vector
x = [x1, x2, . . . , xN ]T these norms are defined as

‖x‖2 = |x| =
√

|x1|2 + |x2|2 + · · · + |xN |2, Euclidean norm or 2-norm, (5.7)

‖x‖1 = |x1| + |x2| + · · · + |xN |, (5.8)

‖x‖∞ = max
i

|xi|, maximum norm. (5.9)

A unit vector with respect to the norm ‖·‖ is a vector x that satisfies ‖x‖ = 1. We note that
vector norms are derived from the class of vector p-norms defined as [5]

‖x‖p = (|x1|p + |x2|p + · · · + |xN |p)
1
p , p ≥ 1.

A very important property concerning the vector norms is Cauchy–Schwartz inequality:

|xyT| ≤ ‖x‖2 ‖y‖2. (5.10)

Finally, for the identity matrix of order N we have

‖I‖F = √
N , ‖I‖1 = ‖I‖∞ = 1.
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5.2.5 Elementary rotation matrices

Elementary rotation matrices Gij are defined as [1]:

Gij =




1
. . .

c . . . −s
...

. . .
...

s . . . c
. . .

1




, G−1
ij = GT

ij =




1
. . .

c . . . s
...

. . .
...

−s . . . c
. . .

1




,

(5.11)

where c2 + s2 = 1, c = cos ϕ, s = sin ϕ for some angle ϕ, and elementary rotation matrices
Hij are defined as [5]:

Hij =




1
. . .

c . . . s
...

. . .
...

s . . . −c
. . .

1




, H−1
ij = HT

ij = Hij. (5.12)

Subscript indices i and j (i < j) indicate positions of elements c and s in the matrix. The
elementary rotation matrices given by (5.11) and (5.12) differ from the identity matrix
only by four elements placed on crossing two rows and two columns. They are orthogonal
transformations playing a central role in the least squares solutions of overdetermined
systems of linear equations and symmetric eigenvalue problems [5]. Elementary rotation
matrices Gij are known as the Givens–Jacobi rotations. They are eigenorthogonal, i.e.,
det(Gij) = det(GT

ij ) = +1, whereby Gij and GT
ij are inverses to each other. On the other hand,

elementary rotation matrices Hij are known as the Householder reflections. They are non-
eigenorthogonal, i.e., det(Hij) = det(H−1

ij ) = −1, whereby H−1
ij = HT

ij = Hij. Through the
premultiplications (multiplications on the left) and/or postmultiplications (multiplications
on the right) of a nonsingular matrix by elementary rotation matrices we can reduce the
given matrix into various canonical forms introducing zero elements in the matrix by
properly choosing the rotation angle or reflection plane. For our purposes it will be sufficient
to consider the simplest case of 2 × 2 elementary rotation matrices.

A 2 × 2 orthogonal (eigenorthogonal) matrix is called Givens–Jacobi rotation, if it has the
form [5]:

Gϕ =
(

cos ϕ −sin ϕ

sin ϕ cos ϕ

)
, G−1

ϕ = GT
ϕ = G−ϕ. (5.13)
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A 2 × 2 orthogonal (non-eigenorthogonal) matrix is called Householder reflection, if it has
the form [5]:

Hϕ =
(

cos ϕ sin ϕ

sin ϕ −cos ϕ

)
, H−1

ϕ = HT
ϕ = Hϕ. (5.14)

Note: All coefficients in fast Fourier transform (FFT) algorithms are complex num-
bers with the magnitude equal to 1, i.e., every coefficient can be expressed in the form
[48, 49]:

ejθ = cos θ + j sin θ = c + js,

where j = √−1. If we denote a = c + js, where c2 + s2 = 1 and |a| = 1, then the complex
multiplication y = ax, where x = xr + jxi, can be written as

y = ax = (c + js)(xr + jxi) = (cxr − sxi) + j(sxr + cxi),

or in the equivalent matrix–vector notation as

y = (1 j)

(
c −s

s c

)(
xr

xi

)
, s �= 0. (5.15)

The matrix on the right-hand side of (5.15) is the 2 × 2 Givens–Jacobi rotation.

5.2.6 Elementary transformations

Elementary transformations are elementary matrices of a special form frequently per-
formed upon matrices as follows:

1. Multiplication to the elements of some row by a number α.

2. Adding to the elements of some row numbers proportional (αmultiple) to the elements
of some preceding row.

3. Adding to the elements of some row numbers proportional (αmultiple) to the elements
of some following row.

Sometimes such elementary transformations are made upon the columns of the matrix.
Any elementary transformation of the rows is equivalent to a premultiplication of the
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matrix by a nonsingular matrix of a special form. Thus, the operation (1) is equivalent to
a premultiplication by the matrix




1
. . .

1
α

1
. . .

1




. (5.16)

Operation (2) is equivalent to a premultiplication by the matrix




1
. . .

1
...

. . .

α . . . 1
. . .

1




, (5.17)

and the operation (3) is equivalent to a premultiplication by the matrix




1
. . .

1 . . . α

. . .
...

1
. . .

1




. (5.18)

Operations (1)–(3) can be performed alternatively upon the columns in postmultiplications
of the matrix.

Note: In general, the elementary rotation matrices can be thought of as the elementary
transformations, which are orthogonal.

5.2.7 QR, LU, LDU and PLUS factorizations

We mentioned that in linear algebra and matrix computations, a real nonsingular matrix
is reduced by elementary rotation matrices and elementary transformations into various
canonical forms in order to simplify subsequent computational steps of a solved problem.
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Such procedures lead to various useful factorizations of the matrix into the products of
structurally simpler matrices.

There exist two basic methods how to reduce a real nonsingular matrix of order N into
equivalent upper triangular form. The first method is based on premultiplications of the
matrix by elementary Givens–Jacobi rotation matrices. This procedure leads to the well-
known QR factorization, where Q is an orthogonal matrix and R is an upper triangular
matrix. The QR factorization is also discussed in the Appendix A.3 (see equations (A.27)–
(A.34)). The following theorem and corollaries state the QR factorization [1].

Theorem 5.1: ([1], Chapter 1, p. 37)
Arbitrary real nonsingular matrix

A =




a(0)
11 a(0)

12 . . . a(0)
1n

a(0)
21 a(0)

22 . . . a(0)
2n

...
...

. . .
...

a(0)
n1 a(0)

n2 . . . a(0)
nn




can be reduced through successive premultiplications by elementary Givens–Jacobi rota-
tion matrices Gij to an upper triangular matrix, whose all diagonal elements are positive
besides the last one, i.e.,

A(n−1) = Gn−1,n . . . G13 G12 A =




a(1)
11 a(1)

12 . . . a(1)
1n

0 a(2)
22 . . . a(2)

2n
...

...
. . .

...

0 0 · · · a(n−1)
nn




.

•

Corollary 5.1: (QR factorization)
Arbitrary real nonsingular matrix A is the product of an eigenorthogonal matrix Q and an
upper triangular matrix R, i.e., A = QR, where

Q = (Gn−1,n · · · G13 G12)−1 and R = A(n−1).

•

Corollary 5.2:
Any eigenorthogonal matrix A is the product of at most n(n−1)

2 elementary Givens–Jacobi
rotation matrices, i.e.,

A = G−1
12 G−1

13 · · · G−1
n−1,n A(n−1), where A(n−1) = I.

•
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The second method how to reduce a real nonsingular matrix to the upper triangular form
is based on premultiplications of the matrix by elementary transformations, specifically,
by elementary matrices of the form (2). The procedure leads to the well-known LU fac-
torization, where L is a lower triangular matrix and U is an upper triangular matrix. The
LU factorization is also discussed in the Appendix A.3 (see equations (A.18)–(A.24)). The
following theorem states LU factorization [1].

Theorem 5.2: ([1], Chapter 1, p. 20, and its general form in Ref. [3], Chapter 2, p. 50)
On condition that the principal minors of the matrix

A =




a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

an1 an2 . . . ann




are not equal to zero, i.e., that a11 �= 0, . . . , det(A) �= 0, the matrix A may be represented as
the product of a lower triangular matrix and an upper triangular matrix.

•
Note: LU factorization of a matrix A will be uniquely determined if we prescribe the values
for the diagonal elements of one of the triangular matrices. It is convenient to consider, for
example, that elements of U are equal to uii = 1, i = 1, 2, . . . , N [1, 3].

LU factorization is actually originated from the method of Gaussian elimination used for
solving systems of linear equations [3]. One step of Gaussian elimination is equivalent
to a premultiplication of the matrix by elementary matrix of the form (2) which is the
unit lower triangular and it is called Gauss elementary matrix. Thus, the transition from
original matrix A to its upper triangular form can be written as

Wm Wm−1 . . . W1A = U,

where Wi, i = 1, 2, . . . , m are Gauss elementary matrices. Then, we have

A = (Wm Wm−1 . . . W1)−1U = LU.

From the algebra of triangular matrices it follows that matrix L is the unit lower triangular
matrix. Moreover, if det(A) = +1, then det(LU) = det(L) det(U) = +1, then det(L) = +1
and det(U) = +1. Generally, if we take into account interchanges of two rows in the matrix
during the factorization process (the so-called pivoting operation in Gaussian elimination),
then we should consider in LU factorization premultiplied or postmultiplied permutation
matrices Pi.

In addition, according to the theorem ([3], Chapter 2, p. 53), an arbitrary matrix A, whose
all principal minors are not equal to zero, can be represented as the product of A = LDU,
where L is an unit lower triangular matrix, D is a diagonal matrix and U is an unit upper
triangular matrix.
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A variant of Gaussian elimination is Jordan elimination. Whereas the Gaussian elimination
leads to an upper triangular matrix and the Jordan elimination leads to a diagonal matrix.
One step of Jordan elimination is equivalent to a premultiplication of the matrix by




1 0 . . . α1,i . . . 0
0 1 . . . α2,i . . . 0
...

...
. . .

...
...

0 0 . . . αi−1,i . . . 0
0 0 . . . 1 . . . 0
0 0 . . . αi+1,i . . . 0
...

...
...

. . .
...

0 0 . . . αn,i . . . 1




, (5.19)

called the Jordan matrix. It can be easily verified that Jordan matrix is the product of
elementary matrices of the forms (2) and (3) (see elementary transformations).

The LU factorization is the basic approach to factorize an invertible matrix into the product
of triangular matrices and possibly permutation matrices taking into account row inter-
changes during the factorization process. In the special case, if a real nonsingular matrix A
has its determinant equal to +1, i.e., det(A) = +1, then it can be formulated theorem for
general PLUS matrix factorization of A [9–11] as follows.

Theorem 5.3: (PLUS factorization)
A real square nonsingular matrix A has a factorization of A = PLUS if and only if
det(A) = det(P) = +1, where P is a permutation matrix, L is an unit lower triangular,
U is an unit upper triangular and S is an unit lower triangular matrix of the form:

S =




1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

s1 s2 . . . sn−1 1




, where S−1 =




1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

−s1 −s2 . . . −sn−1 1




.

•
Note: In general, any real square nonsingular matrix A can be customizably factorized into
three triangular matrices, A = PLUS customizable factorization, where P is a permutation
matrix (in some cases P may be the identity matrix), U is an upper triangular matrix of
which the diagonal elements d1, d2, . . . , dN are customizable and they can be given by all
means as long as its determinant is equal to that of A up to a possible sign adjustment,
i.e., det(A) = det(U) = d1 d2 . . . dN . S is a unit lower or upper triangular matrix of which
all but N − 1 off-diagonal elements are also flexibly customizable such as a single-row,
single-column, bidiagonal matrix or other specially patterned matrices. Besides PLUS,
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a customizable factorization also has other alternatives, LUSP, PSUL and SULP for unit
lower triangular S, and PULS, ULSP, PSLU, SLUP for unit upper triangular S [10].

We note that any nonsingular matrix A with det(A) = −1 can be scaled to have its
det(A) = +1. More insight into the structure of PLUS factorization gives its factorization
algorithm [9, 10]. Let A be a real nonsingular (invertible) matrix of order N :

A =




a(0)
11 a(0)

12 . . . a(0)
1n

a(0)
21 a(0)

22 . . . a(0)
2n

...
...

. . .
...

a(0)
n1 a(0)

n2 . . . a(0)
nn




.

Then, there must exist a permutation matrix P1 for row interchanges such that

P1 A =




p(1)
11 p(1)

12 . . . p(1)
1n

p(1)
21 p(1)

22 . . . p(1)
2n

...
...

. . .
...

p(1)
n1 p(1)

n2 . . . p(1)
nn




,

and p(1)
1n �= 0, and hence there must exist a number s1 such that p(1)

11 − s1 p(1)
1n = 1. Then, we

get s1 = p(1)
11 −1

p(1)
1n

and we obtain a product of

P1 A S0,1 = P1 A




1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

−s1 0 . . . 1


 =




1 p(1)
12 . . . p(1)

1n

p(1)
21 − s1p(1)

2n p(1)
22 . . . p(1)

2n
...

...
. . .

...

p(1)
n1 − s1p(1)

nn p(1)
n2 . . . p(1)

nn


.

The second step is Gaussian elimination of the first column and it is achieved by the
premultiplication of product P1 A S0,1 by Gauss elementary matrix L1 as follows:

L1 P1 A S0,1 =




1 0 . . . 0

s1p(1)
2n − p(1)

21 1 . . . 0
...

...
. . .

...

s1p(1)
nn − p(1)

n1 0 . . . 1


 P1 A S0,1 =




1 a(2)
12 . . . a(2)

1n

0 a(2)
22 . . . a(2)

2n
...

...
. . .

...

0 a(2)
n2 . . . a(2)

nn




.

Continuing the factorization process for k = 2, 3, . . . , N − 1, where Pk defines the row
interchanges among the kth through N th rows to guarantee that kth element in the N th
column are not equal to zero, i.e., p(k)

kn �= 0, matrices S0,k convert elements a(k)
kk into 1s,
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where sk = p(k)
kk −1

p(k)
kn

, and matrices Lk represent row multipliers used for Gaussian elimination

of column k. Completing the factorization process we get the product:

LN−1 PN−1 . . . L2 P2 L1 P1 A S0,1 S0,3 . . . S0,N−1 =




1 a(N−1)
12 . . . a(N−1)

1n

0 1 . . . a(N−1)
2n

...
...

. . .
...

0 0 . . . a(N−1)
nn




= U.

Since det(A) = +1, a(N−1)
nn = 1 and U is the unit upper triangular. Having, respectively,

multiplied all matrices S0,k together all permutation matrices Pk together and all unit
lower triangular matrices Lk together, we have one matrix S−1, one premultiplying matrix
PT and one unit lower triangular matrix L−1. From algebra of triangular matrices it follows
that the inverse of a unit lower triangular matrix is also a unit lower triangular matrix and
we have

S0,1 S0,3 . . . S0,N−1 =




1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

−s1 −s2 . . . −sn−1 1




= S−1

and

LN−1 PN−1 . . . L2 P2 L1 P1

= LN−1 (PN−1 LN−2 PT
N−1) . . . (PN−1 . . . P2 L1 PT

2 . . . PT
N−1) (PN−1 . . . P2 P1)

= L−1 PT,

where

L−1 = LN−1 (PN−1 LN−2 PT
N−1) . . . (PN−1 . . . P2 L1 PT

2 . . . PT
N−1)

and

P−1 = PT = PN−1 . . . P2 P1.

Hence, finally we obtain

L−1 P−1 A S−1 = U or A = PLUS.

5.2.8 Matrix factorizations of Givens–Jacobi rotations and
Householder reflections

Givens–Jacobi rotations and Householder reflections can be further factorized into the
products of elementary matrices being the unit lower and unit upper triangular matrices
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and possibly a diagonal matrix. In this section it is shown that the basic material from
linear algebra and matrix theory is sufficient to derive all the factorizations of Givens–
Jacobi rotations and Householder reflections. We will concentrate only on the simplest
case of 2 × 2 matrices because of they are important in practical applications. A general
matrix factorization theory to factorize an invertible matrix of higher order into the product
of triangular matrices can be found in Refs. [9, 10].

Let Gϕ and Hϕ are respectively 2 × 2 Givens–Jacobi rotations and Householder reflections
given by (5.13) and (5.14). Since det(Gϕ) = +1 according to PLUS factorization theorem
we can apply to Givens–Jacobi rotations Gϕ the PLUS factorization algorithm. The permu-
tation matrix P in this case corresponds to the identity matrix and we can omit it. In the first
step, there must exist a number s1 such that cos ϕ + s1 sin ϕ = 1 and hence s1 = 1 − cos ϕ

sin ϕ

and we obtain the product of

Gϕ S−1 = Gϕ

(
1 0

cos ϕ−1
sin ϕ

1

)
=
(

1 −sin ϕ

1−cos ϕ
sin ϕ

cos ϕ

)
.

The second step is Gaussian elimination of the first column of Gϕ S−1, what is equivalent
to the premultiplication of Gϕ S−1 by Gauss elementary matrix L−1 as follows:

L−1 Gϕ S−1 =
(

1 0

cos ϕ−1
sin ϕ

1

)
Gϕ

(
1 0

cos ϕ−1
sin ϕ

1

)
=
(

1 −sin ϕ

0 1

)
= U,

and we obtained the factorization of L−1 Gϕ S−1. From algebra of unit triangular matrices
it follows that the inverse of unit lower/unit upper triangular matrix is also unit lower/unit
upper triangular matrix, and we easily find their inverses as

(
1 0

x 1

)−1

=
(

1 0

−x 1

)
,

(
1 x

0 1

)−1

=
(

1 −x

0 1

)
.

Thus, we finally get the factorization of Gϕ = LUS (and hence LUL factorization) given by

Gϕ =
(

1 0

1−cos ϕ
sin ϕ

1

)(
1 −sin ϕ

0 1

)(
1 0

1−cos ϕ
sin ϕ

1

)
, where sin ϕ �= 0 (5.20)

and

G−1
ϕ =

(
1 0

− 1−cos ϕ
sin ϕ

1

)(
1 sin ϕ

0 1

)(
1 0

− 1−cos ϕ
sin ϕ

1

)
. (5.21)

We note that tan ϕ
2 = 1−cos ϕ

sin ϕ
. The PLUS factorization of Givens–Jacobi rotations is the

well known in engineering literature as the “ladder network” [7] or “lifting scheme” [8].
Factored matrices on the right-hand sides of (5.20) and (5.21) in engineering literature
called “lifting matrices” are actually Gauss–Jordan elementary matrices being the unit
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Fig. 5.1. The LUL structures for implementation of Givens–Jacobi rotations based on PLUS
factorization: (a) forward and (b) inverse.

lower and unit upper triangular matrices. On the other hand, although the matrix Gϕ is the
orthogonal (eigenorthogonal), the factored matrices are not longer orthogonal, however
they are invertible. The PLUS factorization of Givens–Jacobi rotations Gϕ into the product
of Gauss–Jordan elementary matrices defines computational structures for the efficient
implementation of y = Gϕ x and x = G−1

ϕ y. The corresponding LUL structures are respec-
tively shown in Fig. 5.1(a) and (b), where (x0, x1)T is the input data vector and (y0, y1)T is
rotated vector.

Since Gϕ = GT−ϕ, from (5.20) we obtain the alternative ULU factorization as

Gϕ =
(

1 − 1−cos ϕ
sin ϕ

0 1

)(
1 0

sin ϕ 1

)(
1 − 1−cos ϕ

sin ϕ

0 1

)
(5.22)

and

G−1
ϕ =

(
1 1−cos ϕ

sin ϕ

0 1

)(
1 0

−sin ϕ 1

)(
1 1−cos ϕ

sin ϕ

0 1

)
. (5.23)

The corresponding forward and inverse ULU structures are respectively shown in Fig. 5.2
(a) and (b).

From the implementation point of view, to invert Givens–Jacobi rotation given by PLUS
factorization, we simply need to subtract out what was added in the forward computation.
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Fig. 5.2. The alternative ULU structures for implementation of Givens–Jacobi rotations based on
PLUS factorization: (a) forward and (b) inverse.

The implementation of Givens–Jacobi rotation Gϕ given by PLUS factorization compared
to its direct implementation has the following advantages:

1. The number of multiplications is reduced from four to three multiplications and
overall arithmetic complexity is 3 multiplications and 3 additions.

2. Leads to in-place implementation, i.e., without the need of auxilliary memory, which
is the desired property in VLSI implementations.

3. Multipliers in factor matrices can be quantized (using functions such as round, floor
or ceil) to obtain integer-to-integer mapping.

4. The perfect reconstruction property.

Note: The PLUS factorization theorem [9] has been originally formulated for a nonsingular
matrix, whose determinant is equal to ±1. In general, the PLUS factorization algorithm
can be applied also to the Householder reflections Hϕ, however one of factor matrices
will have one element on main diagonal equal to −1. This is not correct with respect to
the definition of the unit lower/unit upper triangular matrix. As an example, the PLUS
factorization of Hϕ is given by

Hϕ =
(

1 0

1−cos ϕ
sin ϕ

1

)(
1 sin ϕ

0 −1

)(
1 0

− 1−cos ϕ
sin ϕ

1

)
, where sin ϕ �= 0,

and in the corresponding computational structure we need to change the sign of one vector
component during the computation.
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In order to derive another factorizations of Givens–Jacobi rotations Gϕ and Householder
reflections Hϕ we use the elementary transformations of the forms (2) and (3) (Gauss–
Jordan elementary matrices) or Jordan elimination. At first, let us consider the Givens–
Jacobi rotations given by equation (5.13). Adding −( sin ϕ

cos ϕ
) multiple of the first row of Gϕ

to the second row is equivalent to the premultiplication of Gϕ by Gauss–Jordan elementary
matrix W1 and we obtain the product:

W1 Gϕ =
(

1 0

− sin ϕ
cos ϕ

1

)
Gϕ =

(
cos ϕ −sin ϕ

0 1
cos ϕ

)
.

Subsequently, adding (sin ϕ cos ϕ) multiple of the second row of W1Gϕ to the first row is
equivalent to the premultiplication of W1Gϕ by Gauss–Jordan elementary matrix W2 and
we get the product W2W1Gϕ = D, where D is a diagonal matrix or

(
1 sin ϕ cos ϕ

0 1

)(
1 0

− sin ϕ
cos ϕ

1

)
Gϕ =

(
cos ϕ 0

0 1
cos ϕ

)
= D.

Using the algebra of unit triangular matrices (inverses) we obtain the factorization of
Gϕ = W−1

1 W−1
2 D or

Gϕ =
(

1 0

sin ϕ
cos ϕ

1

)(
1 −sin ϕ cos ϕ

0 1

)(
cos ϕ 0

0 1
cos ϕ

)
, where cos ϕ �= 0. (5.24)

Since GT−ϕ = Gϕ, from (5.24) we finally get the DLU factorization

Gϕ =
(

cos ϕ 0

0 1
cos ϕ

)(
1 0

sin ϕ cos ϕ 1

)(
1 − sin ϕ

cos ϕ

0 1

)
(5.25)

and ULD factorization of G−1
ϕ

G−1
ϕ =


1 sin ϕ

cos ϕ

0 1



(

1 0

−sin ϕ cos ϕ 1

)( 1
cos ϕ

0

0 cos ϕ

)
, (5.26)

which is the well known in engineering literature as “scaled lifting scheme” [7, 8]. The
corresponding DLU and ULD structures are respectively shown in Fig. 5.3(a) and (b). We
note that the DLU factorization can be directly derived from the LU factorization theorem
([3], Chapter 2, p. 50).

Since G−1−ϕ = Gϕ, from (5.24) we obtain the alternative DUL factorization as

Gϕ =
( 1

cos ϕ
0

0 cos ϕ

)(
1 −sin ϕ cos ϕ

0 1

)(
1 0

sin ϕ
cos ϕ

1

)
(5.27)
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sin ϕ cos ϕ

cos ϕ
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Fig. 5.3. The DLU and ULD structures for implementation of Givens–Jacobi rotations based on LU
factorization.

and LUD factorization of G−1
ϕ

G−1
ϕ =

(
1 0

− sin ϕ
cos ϕ

1

)(
1 sin ϕ cos ϕ

0 1

)(
cos ϕ 0

0 1
cos ϕ

)
. (5.28)

The corresponding DUL and LUD structures are respectively shown in Fig. 5.4(a) and (b).

Now let us consider the Householder reflections Hϕ. By the exactly same factorization
procedure as for Gϕ we get the factorization of Hϕ as

Hϕ =
(

1 0

sin ϕ
cos ϕ

1

)(
1 −sin ϕ cos ϕ

0 1

)(
cos ϕ 0

0 − 1
cos ϕ

)
, where cos ϕ �= 0. (5.29)

Since H−1
ϕ = Hϕ, from (5.29) we get the DUL factorization

Hϕ =
( 1

cos ϕ
0

0 −cos ϕ

)(
1 sin ϕ cos ϕ

0 1

)(
1 0

− sin ϕ
cos ϕ

1

)
(5.30)
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Fig. 5.4. The alternative DUL and LUD structures for implementation of Givens–Jacobi rotations
based on LU factorization.

and LUD factorization of H−1
ϕ

H−1
ϕ =

(
1 0

sin ϕ
cos ϕ

1

)(
1 −sin ϕ cos ϕ

0 1

)(
cos ϕ 0

0 − 1
cos ϕ

)
. (5.31)

The corresponding DUL structure is similar to that of Gϕ except for sign changes.

Since Hϕ = HT
ϕ , from (5.29) we obtain the alternative DLU factorization as

Hϕ =
(

cos ϕ 0

0 − 1
cos ϕ

)(
1 0

−sin ϕ cos ϕ 1

)(
1 sin ϕ

cos ϕ

0 1

)
(5.32)

and ULD factorization of H−1
ϕ

H−1
ϕ =

(
1 − sin ϕ

cos ϕ

0 1

)(
1 0

sin ϕ cos ϕ 1

)( 1
cos ϕ

0

0 −cos ϕ

)
. (5.33)

For completeness, according to LDU factorization theorem ([3], Chapter 2, p. 49)
we directly obtain for the Givens–Jacobi rotations and Householder reflections the
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Fig. 5.5. The LUL structures for Givens–Jacobi rotations modified for the implementation of
Householder reflections: (a) forward and (b) inverse.

following factorizations:

Gϕ =
(

1 0

sin ϕ
cos ϕ

1

)(
cos ϕ 0

0 1
cos ϕ

)(
1 − sin ϕ

cos ϕ

0 1

)
, (5.34)

Hϕ =
(

1 0

sin ϕ
cos ϕ

1

)(
cos ϕ 0

0 − 1
cos ϕ

)(
1 sin ϕ

cos ϕ

0 1

)
. (5.35)

It is important to note that between the Givens–Jacobi rotations Gϕ and Householder
reflections Hϕ the following relations hold:

Gϕ =
(

cos ϕ sin ϕ

sin ϕ −cos ϕ

)(
1 0

0 −1

)
= Hϕ

(
1 0

0 −1

)
, (5.36)

Hϕ =
(

cos ϕ −sin ϕ

sin ϕ cos ϕ

)(
1 0

0 −1

)
= Gϕ

(
1 0

0 −1

)
. (5.37)

It means that the computational structures for Givens–Jacobi rotations can be used by
minor modification for the implementation of Householder reflections and vice versa. As
an example, in Fig. 5.5 is shown the LUL structure for Givens–Jacobi rotations based on
PLUS factorization modified for the implementation of Householder reflections.
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In general, any other plane rotations occurring in practical applications such as

R̄ϕ =
(−cos ϕ sin ϕ

sin ϕ cos ϕ

)
, R̄−1

ϕ = R̄ϕ,

R̃ϕ =
(

sin ϕ cos ϕ

cos ϕ −sin ϕ

)
, R̃−1

ϕ = R̃ϕ,

R̂ϕ =
(

sin ϕ cos ϕ

−cos ϕ sin ϕ

)
, R̂−1

ϕ = R̂T
ϕ ,

and

Řϕ =
(−sin ϕ cos ϕ

cos ϕ sin ϕ

)
, Ř−1

ϕ = Řϕ,

can be respectively converted to the Givens–Jacobi rotations as follows:

R̄ϕ =
(

cos ϕ sin ϕ

−sin ϕ cos ϕ

)(−1 0

0 1

)
= G−ϕ

(−1 0

0 1

)
,

R̃ϕ =
(

cos ϕ sin ϕ

−sin ϕ cos ϕ

)(
0 1

1 0

)
= G−ϕ

(
0 1

1 0

)
,

R̂ϕ =
(

cos ϕ −sin ϕ

sin ϕ cos ϕ

)(
0 1

−1 0

)
= Gϕ

(
0 1

−1 0

)
,

and

Řϕ =
(

cos ϕ −sin ϕ

sin ϕ cos ϕ

)(
0 1

1 0

)
= Gϕ

(
0 1

1 0

)
.

5.2.9 Evaluating the determinants of DCT/DST matrices

Exploiting the properties of determinant and relations between DCT and DST matrices
we can evaluate the determinants of explicit forms of orthonormal DCT/DST matrices
presented in Section 4.2 for N = 2, 4 and 8 as follows:

det(CI
3) = −1, det(SI

3) = −1, det(C̃I
2) = −1, det(S̃I

2) = −1,

det(CI
5) = +1, det(SI

7) = −1, det(C̃I
4) = +1, det(S̃I

4) = +1,

det(CI
9) = +1, det(C̃I

8) = +1, det(S̃
I

8) = +1,
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and

det(CII
2 ) = det(CIII

2 ) = −1, det(SII
2 ) = det(SIII

2 ) = −1, det(CIV
2 ) = det(SIV

2 ) = −1,

det(CII
4 ) = det(CIII

4 ) = +1, det(SII
4 ) = det(SIII

4 ) = +1, det(CIV
4 ) = det(SIV

4 ) = +1,

det(CII
8 ) = det(CIII

8 ) = +1, det(SII
8 ) = det(SIII

8 ) = +1, det(CIV
8 ) = det(SIV

8 ) = +1.

For N = 2 all the DCT and DST matrices are non-eigenorthogonal. For N > 2 the DCT and
DST matrices except for the DST-I are eigenorthogonal, i.e., their determinants are equal to
+1. Such matrices are also called the unit matrices [12, 13]. According to Corollary 5.2 of
Theorem 5.1 they can be factorized into the product of at most N(N−1)

2 elementary Givens–
Jacobi rotation matrices, and according to Theorem 5.3 they have PLUS factorizations.

5.3 Criteria for evaluation of approximated DCTs/DSTs

In general, the methods for integer approximation of DCT and DST matrices preserve
all basic mathematical properties of original real-valued transform matrices such as
orthogonality/orthonormality, linearity, symmetry of the basis vectors and recursivity.

In order to evaluate the approximation error between the approximated and original trans-
form matrix, and to measure the difference in performance in data compression, we need
some theoretical criteria. For this purpose, the input signal is frequently modeled as a first-
order stationary Markov process (Markov-1) with zero-mean, unit variance and adjacent
interelement correlation coefficient ρ ranging between zero and one. Then, the input signal
x is defined by a covariance matrix Rx, whose elements are given by

[Rx]ij = ρ|i−j|.

The matrix Rx is symmetric and Toeplitz. The covariance matrix Ry of the transformed
vector y, where y = Ax, is obtained as

Ry = A Rx AT.

Such assumption that the input signal is Markov-1 is generally used to define the theoretical
criteria (measures) for the evaluation of approximation error and performance of integer
DCTs/DSTs.

5.3.1 Mean-square error

For the evaluation of approximation error between the approximated and original transform
matrix we will use mean-square error (MSE) defined as follows. Let us assume that UN is
the original transform matrix and ÛN is its approximation. Then, for a given input vector
x of length N , the error vector is

e = UN x − ÛN x = (UN − ÛN ) x = D x.
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From above equation, the MSE between the original and approximated transform can be
defined as [46]

ε = 1

N
E [eeT] = 1

N
E [xTDTD x] = 1

N
E [Trace {D xxT DT}] = 1

N
Trace {D Rx DT},

(5.38)
where Rx is the covariance matrix of the input signal x. Trace in (5.38) denotes the trace
of a matrix, which is defined as the sum of its diagonal elements. Thus, to maintain
the compatibility between the original and approximated transform, the MSE should be
minimized.

5.3.2 Transform coding gain

For the transforms used in transform-based coding or data compression applications we
need the performance measures to evaluate the coding efficiency of the transform. One
of the important measures is transform coding gain defined by the covariance matrix Ry
as [6, 46]

Cg = 10 log10

1
N

∑N−1
i=0 σ

2

xi(∏N−1
i=0 σ

2
xi
‖ fi‖2

)1
N

, (5.39)

where N is the number of transform coefficients, σ
2

xi
is the variance of ith transform

coefficient being ith diagonal element of the matrix Ry and ‖ fi‖2 is the 2-norm of ith
basis function of the transform matrix. Transforms with higher coding gains Cg pack more
energy into fewer number of coefficients. As an example, the optimal Karhunen–Loève
transform (KLT) has transform coding gain Cg = 8.8462, while the DCT-II has transform
coding gain Cg = 8.8259 for a correlation coefficient ρ = 0.95.

5.3.3 Transform efficiency

An alternative measure to the transform coding gain is the transform efficiency defined
as [28]

η =
∑N−1

i=0 |rii|∑N−1
i=0

∑N−1
j=0 |rij|

100, (5.40)

where rij are elements of Ry. The transform efficiency measures the decorrelation ability of
the transform. The optimal KLT converts signal into completely uncorrelated coefficients
and it has transform efficiency η = 100 for all value of ρ, while the DCT-II has transform
efficiency η = 93.9911 for the correlation coefficient ρ = 0.95.

5.4 Methods for integer approximation of DCTs/DSTs

In this section, we present a survey of various methods and design approaches to the integer
approximation of DCTs/DSTs. The methods show how to convert real-valued DCTs/DSTs
into their integer versions which can be implemented using the simple integer arithmetic
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(multiplications and additions or even multiply-free implementation using binary additions
and shifts only). The integer transforms are obviously represented by integers with variable
bit length. Thus, they can be tuned with different accuracies for a given application. In
general, the longer the bit length for representation, the better is the performance. However,
this may be at the cost of increased computational complexity. The availability of many
integer transforms with different accuracies provides the flexibility to trade off between the
performance against low-cost hardware/software implementation and high-speed compu-
tation/processing in wireless, hand-held portable devices where CPU capacity, bus width
and battery power are limited.

There are two general approaches regarding how to construct the integer transform:

1. To directly replace the real-valued elements of a transform matrix by M-bit integers so
that all mathematical properties such as orthogonality/orthonormality and recursive
structure of the transform matrix are preserved.

2. To exploit the plane rotation-based sparse matrix factorization of a transform matrix
which defines the fast algorithm represented by the corresponding signal flow graph,
and to approximate the elements in factored matrices by dyadic rational numbers.

In order to approximate the DCT/DST matrix for a given N , we need both its explicit
and numerical form. Almost all methods can be applied to any DCT/DST, although the
solutions are not always guaranteed. On the other hand, there are modern methods giving
simple and elegant solutions to integer approximation of DCT/DST as long as there exists
a plane rotation-based sparse matrix factorization of the transform matrix. As we saw
in Section 4.4 such factorizations actually exist for all DCTs/DSTs, and therefore these
methods can be regarded as universal.

The approximation methods for generating integer DCTs/DSTs are illustrated in most
cases for the 8-point DCT-II since it is the basic processing component in the current
international image/video coding standards. The approximation error and performance of
the integer transforms are compared to the original real-valued ones based on the standard
theoretical criteria defined in Section 5.3 (MSE, transform coding gain and transform
efficiency). Higher-order integer DCTs/DSTs can be generated from lower-order ones
using the appropriate recursive sparse matrix factorization of the transform matrix. We
note that for values of N > 8 the complexity of derivation of the integer transform by a
given method can increase significantly. Since all mathematical properties of the original
real-valued transforms are preserved in the derived integer transforms, for their efficient
implementation we can use the corresponding fast algorithm by simply substituting the
integer parameters in the signal flow graph.

The description of each method to integer approximation of DCTs/DSTs will include:

• General comments and the main idea of the method with references to bibliography.

• Detailed presentation of the method almost in all cases illustrated for 8-point DCT-II.

• Fast and efficient implementation of forward and inverse integer transform.

• Examples for other DCTs/DSTs if the method can be applied to them.
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5.4.1 C-matrix transform

An integer approximation of DCT-II computed via theWalsh–Hadamard transform (WHT),
called C-matrix transform (CMT) [19, 22–24], is the first attempt to approximate the real-
valued discrete trigonometric transform in the integer domain. At first, Hein and Ahmed
[18] showed that DCT-II can be implemented via WHT through a conversion matrix which
has sparse-block-diagonal structure. Details of the algorithm for the DCT-II computation
via WHT can be found in Section 4.4.3.1. Subsequently, Jones et al. [22] generalized this
process and they showed that any even/odd transform (EOT) can be expressed in terms of
any other EOT and a conversion matrix. At the same time they obtained an approximation
to the DCT-II for N = 8 having the following properties:

• It is EOT and orthonormal transform.

• The conversion matrix has only integers as its elements.

From (4.60) it follows that the CMT matrix of order N denoted as CCMT
N is given by

ĈCMT
N = TN ŴN , TN = ĈII

N ŴT
N , (5.41)

where TN is the conversion matrix, ŴN is the sequency ordered WHT matrix and ĈII
N is

the DCT-II matrix, where all matrices, including TN , have their rows in bit-reversed order.
The matrix ŴN need not be approximated because its elements are ±1 only. From (5.41) it
can be seen that the DCT-II matrix CII

N is approximated indirectly through the conversion
matrix TN whose elements must be integers. The real-valued conversion matrix T8 both in
explicit and numerical form is given respectively as

T8 =




1
1

cos π
8 sin π

8 0

−sin π
8 cos π

8

cos π
8 cos π

16 −sin π
8 sin π

16 sin π
8 cos π

16 cos π
8 sin π

16

sin π
8 sin 3π

16 cos π
8 cos 3π

16 −cos π
8 sin 3π

16 sin π
8 cos 3π

16

0 −sin π
8 cos 3π

16 cos π
8 sin 3π

16 cos π
8 cos 3π

16 sin π
8 sin 3π

16

−cos π
8 sin π

16 −sin π
8 cos π

16 −sin π
8 sin π

16 cos π
8 cos π

16




=




1
1

0.92388 0.38268 0

−0.38268 0.92388

0.90613 −0.07466 0.37533 0.18024

0.21261 0.76818 −0.51328 0.31819

0 −0.31819 0.51328 0.76818 0.21261

−0.18024 −0.37533 −0.07466 0.90613




.
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Jones et al. [22] tried to manipulate the matrix T8 by approximating the ratios in certain
rows of the matrix and they derived CMT matrix by trial and error with the following
requirements:

• The rows are orthogonal to one another.

• The structure of the conversion matrix should be sparse block diagonal.

• The ratios of elements in a row are close as possible as to those of the conversion
matrix.

• The conversion matrix has positive main diagonal.

According to (5.41) the resulting integer versions of conversion matrix denoted by T̄8 and
associated CMT matrix CCMT

8 are respectively given as

T̄8 = 1

13




13
13 0

12 5
−5 12

12 0 4 3
0 12 −3 4

0 −4 3 12 0
−3 −4 0 12




,

CCMT
8 = 1√

8

1

13




13 13 13 13 13 13 13 13
19 13 11 5 −5 −11 −13 −19
17 7 −7 −17 −17 −7 7 17
11 5 −19 −13 13 19 −5 −11
13 −13 −13 13 13 −13 −13 13
13 −19 −5 11 −11 5 19 −13

7 −17 17 −7 −7 17 −17 7
5 −11 13 −19 19 −13 11 −5




.

This may be compared to the actual real-valued orthonormal DCT-II matrix CII
8 given by

CII
8 =




0.35355 0.35355 0.35355 0.35355 0.35355 0.35355 0.35355 0.35355

0.49039 0.41573 0.27779 0.09755 −0.09755 −0.27779 −0.41573 −0.49039

0.46194 0.19134 −0.19134 −0.46194 −0.46194 −0.19134 0.19134 0.46194

0.41573 −0.09755 −0.49039 −0.27779 0.27779 0.49039 0.09755 −0.41573

0.35355 −0.35355 −0.35355 0.35355 0.35355 −0.35355 −0.35355 0.35355

0.27779 −0.49039 0.09755 0.41573 −0.41573 −0.09755 0.49039 −0.27779

0.19134 −0.46194 0.46194 −0.19134 −0.19134 0.46194 −0.46194 0.19134

0.09755 −0.27779 0.41573 −0.49039 0.49039 −0.41573 0.27779 −0.09755




.
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MSE approximation error and performance measures of the originally proposed integer
CMT for N = 8 [22] are shown in Table 5.1. Following the same approach, the integer
conversion matrices were derived for N = 16 [23] and N = 32 [24].

Inspired by the method of integer approximation of DCT-II [28, 36] we describe a more
rigorous method to generate new CMTs for N = 8 using 6-bit representation (M = 64). To
construct integer conversion matrix T̄8 we need both the explicit and numerical form of
the T8. Observing the absolute values (magnitudes) of nonzero elements of the conversion
matrix T8 in explicit form we find that

|t00| = |t11| = 1,

|t22| = |t33| = cos
π

8
, |t23| = |t32| = sin

π

8
,

|t44| = |t77| = cos
π

8
cos

π

16
, |t45| = |t76| = sin

π

8
sin

π

16
,

|t54| = |t67| = sin
π

8
sin

3π

16
, |t55| = |t66| = cos

π

8
cos

3π

16
,

|t46| = |t75| = sin
π

8
cos

π

16
, |t47| = |t74| = cos

π

8
sin

π

16
,

|t56| = |t65| = cos
π

8
sin

3π

16
, |t57| = |t64| = sin

π

8
cos

3π

16
.

It can be seen that the conversion matrix T8 is represented by 11 different values. It
means that elements with the same magnitudes we can represent by a single variable.
Substituting a variable for each nonzero element of T8 results in a set of 11 variables
denoted by {a, b, c, d, e, f , g, h, i, j, k}. Preserving the signs for elements of T8 we will
search for integer conversion matrix T̄8 in the form:

T̄8 = 1

a




a

a 0

b c

−c b

d −e h i

f g −j k

0 −k j g f

−i −h −e d




, (5.42)

where the block matrices Ū2 and Ū4 are given by

Ū2 =
(

b c
−c b

)
, Ū4 =




d −e h i

f g −j k

−k j g f

−i −h −e d


, (5.43)

and variables a, b, c, d, e, f , g, h, i, j, k ∈ N are assumed to be integers.
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Since the real-valued conversion matrix T8 is orthonormal, T8 TT
8 = I8. The same relation

must hold for the integer conversion matrix T̄8, i.e., T̄8 T̄T
8 = I8. The equation requires that

the elements of T̄8 satisfy the following set of algebraic equations

df − eg − jh + ik = 0, (5.44)

dk + ej − hg − if = 0, (5.45)

b2 + c2 = d2 + e2 + h2 + i2 = f 2 + g2 + j2 + k2 = a2, (5.46)

which must be solved in the integer domain. Equations (5.44) and (5.45) are conditions
of orthogonality and they ensure that rows or basis vectors of T̄8 are orthogonal to each
other. Equation (5.46) is the normality condition, and it means that the 2-norm of each
basis vector of T̄8 is constant and is unity. Finally, in order to make the basis vectors of
T̄8 resemble those of real-valued conversion matrix T8 (magnitudes of integer elements of
T̄8 are approximately proportional to those of floating-point elements of T8), we need to
set up the constraints on variables a, b, c, d, e, f , g, h, i, j, k. Comparing the magnitudes of
elements of the matrix T8 in numerical form and T̄8 we obtain the following inequalities:

d > g > j > h > k > f > i > e > 0, (5.47)

j > c > h, (5.48)

b > d, (5.49)

a > b. (5.50)

All integer solutions satisfying (5.44)–(5.46) under constraints given by (5.47)–(5.50)
will guarantee that the approximated conversion matrix T̄8 is orthonormal and close to the
original conversion matrix T8. For any solution to integer approximation of CMT for N = 8
we will use the notation CMT8 (a, b, c, d, e, f , g, h, i, j, k). If we carry out computer search
of the set {a, b, c, d, e, f , g, h, i, j, k} satisfying (5.44)–(5.46) under constraints (5.47)–(5.50)
using 6-bit representation we find that there exist no solutions. However, by careful analysis
and modifying certain constraints we will able to find unique solutions. First, modifying
inequality (5.49) to be

b ≥ d − 1, (5.51)

we get the first solution

a b c d e f g h i j k a2

34 30 16 31 1 7 25 13 5 19 11 1156

denoted by CMT8 (34, 30, 16, 31, 1, 7, 25, 13, 5, 19, 11).

Alternatively, modifying inequality in (5.48) to be

j > c ≥ h − 1, (5.52)
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Table 5.1. Comparison of the MSE approximation error and performance measures of integer
CMT8 (a, b, c, d, e, f , g, h, i, j, k) with the 8-point DCT-II.

CMT8 (a, b, c, d, e, f , g, h, i, j, k) MSE Cg η

8-point DCT-II – 8.82591 93.99119
CMT8 (13, 12, 5, 12, 0, 0, 12, 4, 3, 3, 4) 3.300279e−003 8.69805 91.85097
CMT8 (34, 30, 16, 31, 1, 7, 25, 13, 5, 19, 11) 5.278476e−004 8.77386 92.80060
CMT8 (39, 36, 15, 35, 2, 8, 30, 16, 6, 19, 14) 2.268015e−004 8.80696 93.18319

we get the second solution

a b c d e f g h i j k a2

39 36 15 35 2 8 30 16 6 19 14 1521

denoted by CMT8 (39, 36, 15, 35, 2, 8, 30, 16, 6, 19, 14).

Comparison of the MSE approximation error and performance measures of the new
CMTs with the 8-point DCT-II are summarized in Table 5.1. From Table 5.1 we see
that the new CMTs are closer to those of the 8-point DCT-II both in terms of
MSE error and performance, and they are superior compared to CMT8 (13, 12, 5,
12, 0, 0, 12, 4, 3, 3, 4). One can notice the improved performance measures in
going from CMT8 (34, 30, 16, 31, 1, 7, 25, 13, 5, 19, 11) to CMT8 (39, 36, 15, 35, 2, 8, 30,
16, 6, 19, 14).

5.4.1.1 The fast CMT8 (a,b,c,d,e, f,g,h,i,j,k)

The orthonormality property and structure of the real-valued conversion matrix T8 are
preserved in the integer conversion matrix T̄8. This fact allows the use of any fast
algorithm for the DCT-II computation via WHT in efficient implementing the CMT. Con-
sequently, for the efficient implementation of CMT8 (a, b, c, d, e, f , g, h, i, j, k) we adopt
the signal flow graph from Fig. 4.12. The generalized signal flow graph for the fast
CMT8 (a, b, c, d, e, f , g, h, i, j, k) implementation is shown in Fig. 5.6. Although the real-
valued block matrix U4 can be readily factorized into sparse matrices, the problem remains
for the existence of sparse matrix factorization of block matrix Ū4 in the integer domain.
Therefore, Ū4 is implemented in the form of matrix–vector multiplication.

The fast CMT8 (a, b, c, d, e, f , g, h, i, j, k) implementation shown in Fig. 5.6 can be
further improved by replacing all integer multiplications with additions and shifts
resulting in a multiply-free implementation [24]. Consider the new CMT8 (39, 36,
15, 35, 2, 8, 30, 16, 6, 19, 14) with the best performance. Here, each multiplication constant
can be expressed in terms of additions and shifts as follows:

39 = 32 + 8 − 1 2 additions and 2 shifts,
36 = 32 + 4 1 addition and 2 shifts,
15 = 16 − 1 1 addition and 1 shift,
35 = 32 + 2 + 1 2 additions and 2 shifts,
2 1 shift,
8 1 shift,
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Fig. 5.6. The fast CMT8 (a, b, c, d, e, f , g, h, i, j, k) implementation.

30 = 32 − 2 1 addition and 2 shifts,
16 1 shift,
6 = 4 + 2 1 addition and 2 shifts,
19 = 16 + 2 + 1 2 additions and 2 shifts,
14 = 16 − 2 1 addition and 2 shifts.
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Table 5.2. The computational complexity of fast CMT8 (a, b, c, d, e, f , g, h, i, j, k).

CMT8 (a, b, c, d, e, f , g, h, i, j, k) Mults/adds Adds/shifts

CMT8 (13, 12, 5, 12, 0, 0, 12, 4, 3, 3, 4) 18/34 50/26
CMT8 (34, 30, 16, 31, 1, 7, 25, 13, 5, 19, 11) 20/38 64/32
CMT8 (39, 36, 15, 35, 2, 8, 30, 16, 6, 19, 14) 22/38 54/30

The computational complexity of fast CMT8 (a, b, c, d, e, f , g, h, i, j, k) in terms of the
number of integer multiplications/additions and multiply-free implementation in the
form of additions/shifts with respect to the signal flow graph in Fig. 5.6 is shown in
Table 5.2.

Note 1: From the relation between DCT-II and DST-II matrices given by (4.11) the
fast SMT8 (a, b, c, d, e, f , g, h, i, j, k) for the DST-II computed via WHT can be easily
obtained.

Note 2: From the set of DCTs/DSTs (see Chapter 4), the symmetric cosine transform
(SCT) and symmetric sine transform (SST) defined by (4.9) and (4.10), respectively,
are EOTs and therefore they can be approximated by the same method. However, the
conversion matrix TN for SCT and SST in contrast to the DCT-II will have the following
structure [19]

TN =

U(1)

N
2

0

0 U(2)
N
2


,

i.e., the block matrices U(1)
N
2

and U(2)
N
2

are of the same order. Note that the SCT and SST do

not have a recursive structure. Consequently, the conversion matrix TN cannot be generated
recursively.

5.4.2 Integer cosine/sine transforms

In this section, we will discuss the method to integer approximation of the DCT-II matrix
originally reported in Refs. [25–37]. The main idea of the method was partially utilized
to construct the new CMTs in the previous section. In essence, the method is to directly
replace the real-valued elements of DCT-II matrix by integers as opposed to the CMT
case where the DCT-II matrix is approximated indirectly through the conversion matrix.
In general, the method can be applied to any DCT and DST [31, 33] although the integer
solutions may not always exist. The resulting integer transforms are referred to as integer
cosine/sine transforms of order N (ICTN /ISTN ).

Let AN be the real-valued DCT/DST matrix with elements {aij}, i, j = 0, 1, . . . , N − 1, and
ĀN its integer approximation with elements {āij}. The integer approximated ICTN /ISTN
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should satisfy the following additional properties [28, 33, 36, 37]:

• The orthogonality property: Rows (columns) of the integer transform matrix are
orthogonal to each other.

• The integer property: Elements of the approximated transform matrix are integers. In
fact, the elements are approximated by rational numbers, i.e., ratios of integers. The
unitary nature of these matrices prevents the elements to be just integers.

• The relationship with real-valued transform matrix:

(a) if |aij| ≥ |aik|, then |āij| ≥ |āik|, i, j, k = 0, 1, . . . , N − 1;

(b) sign(aij) = sign(āij), i, j = 0, 1, . . . , N − 1.

The orthogonality property ensures that the forward and inverse ICTN /ISTN have the
same transform structure. The integer property eliminates the need for many floating-
point arithmetic operations in computing the transform, since the elements of integer
transform matrix can be represented by finite number of bits. The orthogonal integer
transform matrix it can further be made orthonormal by multiplying it by an appropriate
diagonal matrix. The approximation method guarantees that all mathematical properties
and the recursive structure (if exists) are preserved in the integer approximated transform
matrix. This fact allows any existing fast algorithm to efficiently implement ICTN /ISTN .
Moreover, the energy packing ability and performance will be close to the original
transform. Thus, ICTsN /ISTsN are functionally compatible to corresponding real-valued
DCTs/DSTs.

The method at first is illustrated in detail on the approximation of DCT-II matrix for
N = 8 together with its possible improvements and simplifications. Since in the recursive
sparse matrix factorization (4.50), the DCT-II matrix CII

N requires DCT-II and DCT-IV
matrices of half size, the integer approximation of DCT-IV is also presented. Finally, the
construction of integer transforms for other DCTs and DSTs is discussed.

5.4.2.1 Integer approximation of DCT-II matrix CII
8

In the following we describe all the steps to convert the real-valued DCT-II matrix CII
8

to an integer matrix. Let CICT-II
N be the integer approximation of CII

8 and ICT8-II be
resulting integer 8-point DCT-II. We will search for the approximated matrix CICT-II

8 in
the form:

CICT-II
8 = Q8 V8, (5.53)

where Q8 is a diagonal matrix with normalization factors on its main diagonal, and V8 is
an integer matrix (V8 is frequently called the prototype matrix). The procedure to construct
the approximated matrix CICT-II

8 from the corresponding DCT-II matrix CII
8 includes the
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following steps:

1. Generate the DCT-II matrix CII
8 in explicit and numerical form. The matrix CII

8 in
explicit and numerical form is given respectively as

CII
8 = 1

2




1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

cos π
16 cos 3π

16 sin 3π
16 sin π

16 −sin π
16 −sin 3π

16 − cos 3π
16 − cos π

16

cos π
8 sin π

8 −sin π
8 − cos π

8 −cos π
8 −sin π

8 sin π
8 cos π

8

cos 3π
16 −sin π

16 −cos π
16 −sin 3π

16 sin 3π
16 cos π

16 sin π
16 −cos 3π

16

1√
2

− 1√
2

− 1√
2

1√
2

1√
2

− 1√
2

− 1√
2

1√
2

sin 3π
16 −cos π

16 sin π
16 cos 3π

16 −cos 3π
16 −sin π

16 cos π
16 −sin 3π

16

sin π
8 −cos π

8 cos π
8 −sin π

8 −sin π
8 cos π

8 −cos π
8 sin π

8

sin π
16 −sin 3π

16 cos 3π
16 −cos π

16 cos π
16 −cos 3π

16 sin 3π
16 −sin π

16




=




0.35355 0.35355 0.35355 0.35355 0.35355 0.35355 0.35355 0.35355

0.49039 0.41573 0.27779 0.09755 −0.09755 −0.27779 −0.41573 −0.49039

0.46194 0.19134 −0.19134 −0.46194 −0.46194 −0.19134 0.19134 0.46194

0.41573 −0.09755 −0.49039 −0.27779 0.27779 0.49039 0.09755 −0.41573

0.35355 −0.35355 −0.35355 0.35355 0.35355 −0.35355 −0.35355 0.35355

0.27779 −0.49039 0.09755 0.41573 −0.41573 −0.09755 0.49039 −0.27779

0.19134 −0.46194 0.46194 −0.19134 −0.19134 0.46194 −0.46194 0.19134

0.09755 −0.27779 0.41573 −0.49039 0.49039 −0.41573 0.27779 −0.09755




.

2. Express the DCT-II matrix CII
8 in the form of a matrix of variables, whose elements are

assumed to be integers. Observing the absolute values (magnitudes) of the elements
of CII

8 in explicit form we find that

|c00| = |c01| = |c02| = |c03| = |c04| = |c05| = |c06| = |c07|
= |c40| = |c41| = |c42| = |c43| = |c44| = |c45| = |c46| = |c47| = 1√

2
,

|c10| = |c17| = |c32| = |c35| = |c51| = |c56| = |c73| = |c74| = cos
π

16
,

|c11| = |c16| = |c30| = |c37| = |c53| = |c54| = |c72| = |c75| = cos
3π

16
,

|c12| = |c15| = |c33| = |c34| = |c50| = |c57| = |c71| = |c76| = sin
3π

16
,

|c13| = |c14| = |c31| = |c36| = |c52| = |c55| = |c70| = |c77| = sin
π

16
,

|c20| = |c23| = |c24| = |c27| = |c61| = |c62| = |c65| = |c66| = cos
π

8
,

|c21| = |c22| = |c25| = |c26| = |c60| = |c63| = |c64| = |c67| = sin
π

8
.
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We can easily see that the matrix CII
8 is represented by seven different values. Let

us represent the elements with the same magnitude by a single variable from a
set {a, b, c, d, e, f , g}, where a, b, c, d, e, f , g ∈ N are integers. This integer property
ensures that the matrix V8 in (5.53) can be represented by finite number of bits. If we
substitute the variable for each element of CII

8 preserving the signs of the elements,
then according to (5.53) the approximated matrix CICT-II

8 can be expressed as

CICT-II
8 = Q8




g g g g g g g g

a b c d −d −c −b −a

e f −f −e −e −f f e

b −d −a −c c a d −b

g −g −g g g −g −g g

c −a d b −b −d a −c

f −e e −f −f e −e f

d −c b −a a −b c −d




. (5.54)

3. Find orthogonality conditions under which the ith and jth basis vectors (rows) vi and
vj of the matrix V8 are orthogonal. Basis vectors vi and vj are orthogonal if their
scalar product satisfies the following relation:

vi vT
j =

7∑
k=0

vik vkj = 0, ∀i �= j, i, j = 0, 1, . . . , 7.

The orthogonality condition ensures that the integer matrix V8 is orthogonal. Multi-
plying it by the diagonal matrix Q8 ensures that the 2-norm of each basis vector vi
of V8 is equal to unity, i.e.,

‖vi‖2 =
√√√√ 7∑

k=0

v
2

ik = 1, i, k = 0, 1, . . . , 7, (5.55)

and it ensures that CICT-II
8 is orthonormal. From (5.55) it follows that the normalization

factors (in general, diagonal elements of Q8 are irrational numbers) are given by 1√
qii

,
where

qii = ‖vi‖2

2. (5.56)

The orthogonality condition is equivalent to the evaluation of matrix product

V8 VT
8 = [Q−1

8 ]2I8, (5.57)
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leading to a set of algebraic equations which are to be solved in the integer domain.
The equations are

a (b − c) − d (b + c) = 0, (5.58)

and

q00 = q44 = 8g2,

q11 = q33 = q55 = q77 = 2 (a2 + b2 + c2 + d2),

q22 = q66 = 4 (e2 + f 2). (5.59)

Equation (5.58) depends on four variables a, b, c and d. This means that variables
e, f and g may be considered independently.

4. Set up the constraints on variables a, b, c, d, e, f , g in the form of inequalities. These
ensure that the magnitudes of basis vectors of integer matrix V8 are roughly propor-
tional to those of the matrix CII

8 . With respect to (5.58) and (5.59) we obtain three
inequalities as

a > b > c > d > 0, (5.60)

a > e > f > 0, (5.61)

a > g > 0. (5.62)

Since a is the maximal integer number, the variables e, f and g in the last two
constraints should be upper bounded by value of a.

5. Find a set of integers {a, b, c, d, e, f , g} that satisfy algebraic equation (5.58) under
constraints (5.60)–(5.62). To find integer solutions for the set {a, b, c, d, e, f , g}, a
computer search is performed using M-bit representations. In general, the set of
algebraic equations may have infinite number of solutions. This implies that infinite
number of integer approximated transforms may be generated. The integer transforms
defined on the set {a, b, c, d, e, f , g} will be denoted as ICT8-II (a, b, c, d, e, f , g).
The resulting solution on the set {a, b, c, d, e, f , g} is substituted into the matrix V8
in equation (5.54). Similarly, the constants qii given by (5.59) are substituted into
the matrix Q8. All solutions satisfying algebraic equation (5.58) under constraints
(5.60)–(5.62) will guarantee that the approximated matrix CICT-II

8 given by (5.54) is
orthonormal and close to the matrix CII

8 . The implementation efficiency of ICT8-II
(a, b, c, d, e, f , g) depends on the magnitude of variable with highest value in M-bit
representation, i.e., it depends on value of variable a.

In the original proposed construction of integer transforms ICT8-II (a, b, c, d, e, f , g)
[28] the variables g and e, f have been considered independently and fixed to values
g = 1 and e = 3, f = 1. In Table 5.3 are summarized several integer transforms ICT8-II
(a, b, c, d, 3, 1, 1) with the best performances using 3-, 4-, 5-, 6-, 7- and 8-bit represen-
tations. One can compare the MSE approximation error and performance measures of
integer transforms ICT8-II (a, b, c, d, 3, 1, 1) with the 8-point DCT-II.
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Table 5.3. Comparison of the MSE approximation error and performance measures of originally
proposed integer transforms ICT8-II (a, b, c, d, 3, 1, 1) with the 8-point DCT-II.

ICT8-II (a, b, c, d, 3, 1, 1) MSE Cg η

8-point DCT-II – 8.82591 93.99119
ICT8-II (5, 3, 2, 1, 3, 1, 1) 2.721681e−003 8.65131 91.12119
ICT8-II (7, 4, 3, 1, 3, 1, 1) 3.006062e−003 8.61464 90.36893
ICT8-II (10, 9, 6, 2, 3, 1, 1) 2.060647e−004 8.81413 94.09451
ICT8-II (14, 12, 9, 2, 3, 1, 1) 4.691150e−004 8.78172 93.39701
ICT8-II (12, 10, 6, 3, 3, 1, 1) 4.154884e−004 8.78296 92.98370
ICT8-II (15, 12, 8, 3, 3, 1, 1) 2.059246e−004 8.80668 93.56563
ICT8-II (24, 21, 15, 4, 3, 1, 1) 2.914385e−004 8.80304 93.69778
ICT8-II (25, 21, 14, 5, 3, 1, 1) 1.302862e−004 8.81437 93.97981
ICT8-II (25, 24, 16, 5, 3, 1, 1) 4.693343e−004 8.80224 93.54565
ICT8-II (26, 24, 15, 6, 3, 1, 1) 2.913951e−004 8.80452 93.69983
ICT8-II (45, 39, 26, 9, 3, 1, 1) 1.380974e−004 8.81589 94.16741
ICT8-II (45, 42, 28, 9, 3, 1, 1) 3.317750e−004 8.80878 93.78668
ICT8-II (55, 51, 34, 11, 3, 1, 1) 3.049383e−004 8.81000 93.84130
ICT8-II (55, 48, 32, 11, 3, 1, 1) 1.458331e−004 8.81586 94.16161
ICT8-II (65, 57, 38, 13, 3, 1, 1) 1.524257e−004 8.81576 94.15771
ICT8-II (75, 66, 44, 15, 3, 1, 1) 1.578933e−004 8.81565 94.15491
ICT8-II (85, 75, 50, 17, 3, 1, 1) 1.624316e−004 8.81554 94.15281
ICT8-II (120, 105, 70, 24, 3, 1, 1) 1.492797e−004 8.81581 94.15948
ICT8-II (175, 153, 102, 35, 3, 1, 1) 1.481648e−004 8.81583 94.16015
ICT8-II (185, 162, 108, 37, 3, 1, 1) 1.503612e−004 8.81580 94.15886
ICT8-II (230, 201, 134, 46, 3, 1, 1) 1.475946e−004 8.81584 94.16049
ICT8-II (250, 219, 146, 50, 3, 1, 1) 1.508895e−004 8.81579 94.15856

For the integer transform ICT8-II (10, 9, 6, 2, 3, 1, 1) from Table 5.3, for example, the
approximated transform matrix CICT-II

8 according to (5.54) is given by

CICT-II
8 = Q8




1 1 1 1 1 1 1 1

10 9 6 2 −2 −6 −9 −10

3 1 −1 −3 −3 −1 1 3

9 −2 −10 −6 6 10 2 −9

1 −1 −1 1 1 −1 −1 1

6 −10 2 9 −9 −2 10 −6

1 −3 3 −1 −1 3 −3 1

2 −6 9 −10 10 −9 6 −2




,

where elements qii of the diagonal matrix Q8 are given by

q00 = q44 = 1√
8

, q11 = q33 = q55 = q77 = 1√
442

, q22 = q66 = 1√
40

.
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Table 5.4. Comparison of the MSE approximation error and performance measures of integer
transforms ICT8-II (a, b, c, 0, e, f , 1) with the 8-point DCT-II.

ICT8-II (a, b, c, 0, e, f , 1) MSE Cg η

8-point DCT-II – 8.82591 93.99119
ICT8-II (4, 2, 2, 0, 2, 1, 1) 6.208293e−003 8.34366 88.05940
ICT8-II (4, 2, 2, 0, 4, 1, 1) 6.634078e−003 8.31022 88.05968
ICT8-II (4, 2, 2, 0, 8, 1, 1) 7.899882e−003 8.22918 87.38482

5.4.2.2 Improvements/simplifications of the method

The original method just described to construct integer transforms ICT8-II (a, b, c, d, e, f , g)
can be further modified to improve/simplify the implementation of integer transforms in
terms of computational complexity or required computer memory. A simple approach to
improve the computational efficiency of integer transforms ICT8-II (a, b, c, d, e, f , g) has
been proposed in Ref. [36]. The elements were required to be powers of 2 resulting in a
multiply-free implementation using only binary addition and shift operations. To obtain
correct solutions of the algebraic equation (5.58), the inequality (5.60) must be slightly
modified to the form:

a > b ≥ c > d = 0

with variables g and d fixed to values g = 1 and d = 0. In Table 5.4 are shown some integer
transforms ICT8-II (a, b, c, 0, e, f , 1) with solutions being powers of 2 using 3- and 4-bit
representations. It can be seen that the computational efficiency is improved at the cost of
degraded performance (the approximated matrix contains zero elements).

The approximated matrix CICT-II
8 given by (5.53) and (5.54) is the product of diagonal

matrix Q8 and integer matrix V8. According to (5.59) the diagonal elements of Q8 are
related to the 2-norm of basis vectors of the integer matrix V8. In general, the diagonal
elements of Q8 are irrational numbers. To eliminate floating-point normalization factors
we require the values of diagonal elements qii, i = 0, . . . , 7, to be powers of 2. It means
that we require the 2-norm of basis vectors given by (5.59) to be [37]

q00 = q44 = 8g2 = 2p1 ,

q11 = q33 = q55 = q77 = 2 (a2 + b2 + c2 + d2) = 2p2 ,

q22 = q66 = 4 (e2 + f 2) = 2p3 ,

where p1, p2 and p3 are positive integers. Although for the variable g a solution always
exists (e.g., g = 1, 2, 4, . . .), the solutions for subsets {a, b, c, d} and {e, f } under constraints
(5.60) and (5.61), respectively, do not exist.

On the other hand, if we require the 2-norm of the basis vectors to be constant, then the
diagonal matrix Q8 can be reduced to a single constant q so that the approximated matrix
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CICT-II
8 can be written in the simplified form as [38]

CICT-II
8 = 1√

q




g g g g g g g g

a b c d −d −c −b −a

e f −f −e −e −f f e

b −d −a −c c a d −b

g −g −g g g −g −g g

c −a d b −b −d a −c

f −e e −f −f e −e f

d −c b −a a −b c −d




, (5.63)

where

q = 8g2 = 2 (a2 + b2 + c2 + d2) = 4 (e2 + f 2). (5.64)

The constraints on variables a, b, c, d, e, f , g have to be modified to the following
inequalities:

a > b > c > d > 0, (5.65)

a > e > b, a > c > f > d, (5.66)

a > b > g > c. (5.67)

Thus, only one normalization constant q is necessary to be stored instead of the diagonal
matrix Q8. Such integer transforms are referred to as integer transforms with constant norm
of basis vectors (or with constant self-scalar product) and they are denoted by 1√

q ICT8-II

(a, b, c, d, e, f , g). To generate the integer transforms 1√
q ICT8-II (a, b, c, d, e, f , g) it is nec-

essary to find integer solutions for the subset {a, b, c, d} satisfying algebraic equation (5.58)
under constraint (5.65), then to find integers {e, f } under constraint (5.66), and finally inte-
ger g under constraint (5.67) so that the 2-norm of basis vectors given by (5.64) is constant.
The complete set of six distinct integer transforms 1√

q ICT8-II (a, b, c, d, e, f , g) in 5-, 6-,
7- and 8-bit representations together with MSE approximation error and performances are
shown in Table 5.5.

5.4.2.3 The fast ICT8-II (a,b,c,d,e, f,g)

The computational efficiency of the integer transforms ICT8-II (a, b, c, d, e, f , g) can be
further improved with a fast computational algorithm.

Consider the recursive sparse matrix factorization of matrix CII
8 defined by (4.50). Its

general form is the EOT factorization defined by (4.17), but applied recursively. Let
ĈICT-II

8 be the approximated matrix with its rows in bit-reversed order. Then, it can be
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Table 5.5. Comparison of the MSE approximation error and performance measures of integer trans-
forms 1√

q ICT8-II (a, b, c, d, e, f , g) with constant norm of basis vectors with the 8-point DCT-II.

1√
q ICT8-II (a, b, c, d, e, f , g) MSE Cg η

8-point DCT-II – 8.82591 93.99119
1√

2312
ICT8-II (24, 20, 12, 6, 23, 7, 17) 5.278476e−004 8.77386 92.80060

1√
57800

ICT8-II (116, 96, 78, 12, 115, 35, 85) 1.094566e−003 8.71624 92.72111
1√

57800
ICT8-II (116, 96, 78, 12, 113, 41, 85) 9.049480e−004 8.73176 92.87965

1√
57800

ICT8-II (116, 96, 78, 12, 97, 71, 85) 2.301285e−003 8.63349 91.39731
1√

121032
ICT8-II (180, 130, 104, 20, 147, 93, 123) 1.572639e−003 8.67613 91.05764

1√
57800

ICT8-II (120, 100, 60, 30, 113, 41, 85) 3.382300e−004 8.78938 92.95941

recursively factorized into the product of orthogonal integer matrices as

ĈICT-II
8 =


ĈICT-II

4 0

0 ĈICT−IV
4 J4




 I4 J4

J4 −I4




=





CICT-II

2 0

0 CICT-IV
2 J2




 I2 J2

J2 −I2


 0

0 ĈICT-IV
4 J4




I4 J4

J4 −I4


, (5.68)

where CICT-II
2 , CICT-IV

2 and ĈICT-IV
4 are lower-order integer matrices given by

CICT-II
2 =

(
g g
g −g

)
, CICT-IV

2 J2 =
(

f e
−e f

)
,

ĈICT-IV
4 J4 =




d c b a
b d −a c

−c −a −d b
−a b −c d


. (5.69)

The matrix CICT-II
2 is an integer DCT-II matrix of order 2, whereas CICT-IV

2 and ĈICT-IV
4

are integer DCT-IV matrices of orders 2 and 4, respectively. The advantage of recursive
sparse matrix factorization (5.68) is manifold:

• Gives clear insight into recursive structure of the matrix ĈICT-II
N

• Reveals the relationships among recursively factorized lower-order integer approxi-
mated matrices ĈICT-II

N
2

and ĈICT-IV
N
2

.
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• Simplifies the construction of higher-order integer approximated matrix ĈICT-II
2N by

the composition of lower-order matrices ĈICT-II
N and ĈICT-IV

N .

• Defines the efficient implementation of integer transforms ICT8-II, the so-called fast
ICT8-II, which includes lower-order fast integer transforms.

Consider the recursive sparse matrix factorization (5.68). The factored lower-order
integer matrix CICT-II

2 defined by element g, and CICT-IV
2 defined on the subset {e, f }

are always orthogonal while the integer matrix ĈICT-IV
4 defined on the subset {a, b, c, d} is

orthogonal if

a(b − c) − d(b + c) = 0, a > b > c > d > 0.

It means that the orthogonality condition for integer transforms ICT8-II (a, b, c, d, e, f , g)
given by (5.58) actually corresponds to the orthogonality condition for integer transforms
ICT4-IV (a, b, c, d). Thus, the integer transforms ICT2-II (g), ICT2-IV (e, f ) and ICT4-
IV (a, b, c, d) can be solved independently, and this is the reason why in the original
construction of ICT8-II (a, b, c, d, e, f , g) [28], the integer solutions for subsets {a, b, c, d},
{e, f } and {g} were considered independently. On the other hand, having the integer lower-
order matrices CICT-II

2 , CICT-IV
2 and ĈICT-IV

4 , we can generate the higher-order integer
matrix ĈICT-II

8 . Therefore, all solutions for the integer transforms ICT8-II (a, b, c, d, e, f , g)
in Tables 5.3 and 5.4 define implicitly the solutions for integer transforms ICT2-II (g),
ICT2-IV (e, f ) and ICT4-IV (a, b, c, d). We note that the integer DCT-IV matrices CICT-IV

2
and CICT-IV

4 are symmetric with constant norm for the basis vectors.

The solutions for integer transforms 1√
q ICT8-II (a, b, c, d, e, f , g) shown in Table 5.5 define

implicitly also solutions for integer transforms ICT2-II (g), ICT2-IV (e, f ) and ICT4-
IV (a, b, c, d), however they are constrained by the condition that the 2-norm of their
basis vectors is constant, i.e., q = 4g2 = 2(e2 + f 2) = a2 + b2 + c2 + d2. The constraints
(5.65)–(5.67) can be expressed in the form of one inequality as

a > e > b > g > c > f > d > 0, (5.70)

and thus, the known solutions for integer transforms ICT4-IV (a, b, c, d) determine the con-
straints on solutions for integer transforms ICT2-IV (e, f ) and ICT2-II (g). The constraint
(5.70) expresses the relations among integer matrices CICT-II

2 , CICT-IV
2 and CICT-IV

4 , if a
single normalization constant q is required.

The recursive sparse matrix factorization (5.68) defines the fast algorithm for the efficient
implementation of integer transforms ICT8-II, called the fast ICT8-II (a, b, c, d, e, f , g).
In order to complete the fast ICT8-II (a, b, c, d, e, f , g) we need to derive a sparse matrix
factorization of integer matrix CICT-IV

4 J4. With reference to the generalized signal flow
graph for the fast 8-point DCT-II computation shown in Fig. 4.8 its lower half defines the
sparse matrix factorization of DCT-IV matrix ĈIV

4 J4 given by (note that cos π
16 = sin 7π

16
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and sin π
16 = cos 7π

16 )

ĈIV
4 J4 =




cos 7π
16 0 0 sin 7π

16

0 cos 3π
16 sin 3π

16 0

0 −sin 3π
16 cos 3π

16 0

−sin 7π
16 0 0 cos 7π

16







1 1 0 0

1 −1 0 0

0 0 −1 1

0 0 1 1




×




1 0 0 0

0 −cos π
4 cos π

4 0

0 cos π
4 cos π

4 0

0 0 0 1




. (5.71)

Parametrizing the sparse matrix factorization (5.71) we search for the sparse matrix
factorization of integer matrix CICT-IV

4 J4 in the following general product of integer
matrices as

ĈIV
4 J4 =




u 0 0 v

0 z y 0

0 −y z 0

−v 0 0 u







p s 0 0

r −p 0 0

0 0 −p r

0 0 s p







1 0 0 0

0 −1 1 0

0 1 1 0

0 0 0 1


, (5.72)

where the parameters p, r, s, u, v, y, z are integers or dyadic rationals. Note that the dyadic
rational number is expressed in the form k

2m , where k, m are integers and k is an odd.
Multiplying the factored matrices on right-hand side of (5.72) we get

ĈIV
4 J4 =




d c b a

b d −a c

−c −a −d b

−a b −c d


 =




up s(v − u) s(u + v) vp

zr p(z − y) −p(z + y) yr

−yr −p(z + y) −p(z − y) zr

−vp s(u + v) −s(v − u) up


, (5.73)

and comparing the corresponding elements in the upper half of both matrices in (5.73)
leads to the following set of equations:

up = d, s (v − u) = c, zr = b, p (z − y) = d,

vp = a, s (u + v) = b, yr = c, p (z + y) = a, (5.74)

where the values of a, b, c, d are given a priori. The equations in (5.74) are mutually
dependent through the parameters p and r. To find a unique solution we need to set up first
initial values for p and r, and then to find the remaining solutions. For example, consider
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the integer transform ICT8-II (5, 3, 2, 1, 3, 1, 1) from Table 5.3. We have a = 5, b = 3, c = 2
and d = 1. Then equations in (5.74) are written as

up = 1, s (v − u) = 2, zr = 3, p (z − y) = 1

vp = 5, s (u + v) = 3, yr = 2, p (z + y) = 5.

Setting up the initial values of p = 1 and r = 1 we find the unique solution as

p = 1, r = 1, s = 1

2
, u = 1, v = 5, z = 3, y = 2,

and the sparse matrix factorization of integer matrix CICT-IV
4 J4 is given by

ĈIV
4 J4 =




1 2 3 5

3 1 −5 2

−2 −5 −1 3

−5 3 −2 1




=




1 0 0 5

0 3 2 0

0 −2 3 0

−5 0 0 1







1 1
2 0 0

1 −1 0 0

0 0 −1 1

0 0 1
2 1







1 0 0 0

0 −1 1 0

0 1 1 0

0 0 0 1


,

Example 1: Consider the integer transform ICT8-II (10, 9, 6, 2, 3, 1, 1) from Table 5.3. For
p = 2 and r = 3, we have

s = 3

2
, u = 1, v = 5, z = 3, y = 2,

and the sparse matrix factorization of integer matrix CICT-IV
4 J4 is given by

ĈIV
4 J4 =




2 6 9 10

9 2 −10 6

−6 −10 −2 9

−10 9 −6 2




=




1 0 0 5

0 3 2 0

0 −2 3 0

−5 0 0 1







2 3
2 0 0

3 −2 0 0

0 0 −2 3

0 0 3
2 2







1 0 0 0

0 −1 1 0

0 1 1 0

0 0 0 1


.
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Example 2: Consider the integer transform ICT8-II (4, 2, 2, 0, 2, 1, 1) from Table 5.4. For
p = 2 and r = 2, we have

s = 1, u = 0, v = 2, z = 1, y = 1,

and the sparse matrix factorization of integer matrix CICT-IV
4 J4 is given by

ĈIV
4 J4 =




0 2 2 4

2 0 −4 2

−2 −4 0 2

−4 2 −2 0




=




0 0 0 2

0 1 1 0

0 −1 1 0

−2 0 0 0







2 1 0 0

2 −2 0 0

0 0 −2 2

0 0 1 2







1 0 0 0

0 −1 1 0

0 1 1 0

0 0 0 1


.

Example 3: Consider the integer transform 1√
2312

ICT8-II (24, 20, 12, 6, 23, 7, 17) from
Table 5.5. For p = 3 and r = 4, we have

s = 2, u = 2, v = 8, z = 5, y = 3,

and the sparse matrix factorization of integer matrix CICT-IV
4 J4 is given by

ĈIV
4 J4 =




6 12 20 24

20 6 −24 12

−12 −24 −6 20

−24 20 −12 6




=




2 0 0 8

0 5 3 0

0 −3 5 0

−8 0 0 2







3 2 0 0

4 −3 0 0

0 0 −3 4

0 0 2 3







1 0 0 0

0 −1 1 0

0 1 1 0

0 0 0 1


.

The generalized signal flow graph for the efficient implementation of integer trans-
forms ICT8-II, the fast ICT8-II (a, b, c, d, e, f , g), is shown in Fig. 5.7. The computational
complexity of selected integer transforms ICT8-II (a, b, c, d, e, f , g) with the best perfor-
mance in terms of both the number of integer multiplications/additions and multiply-free
implementation with respect to signal flow graph in Fig. 5.7 is summarized in Table 5.6.
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Fig. 5.7. The fast ICT8-II (a, b, c, d, e, f , g) implementation.

Table 5.6. The computational complexity of fast ICT8-II (a, b, c, d, e, f , g).

ICT8-II (a, b, c, d, e, f , g) Mults/adds Adds/shifts

ICT8-II (5, 3, 2, 1, 3, 1, 1) 10/26 32/10
ICT8-II (10, 9, 6, 2, 3, 1, 1) 16/26 36/18
ICT8-II (4, 2, 2, 0, 2, 1, 1) – 24/10

1√
2312

ICT8-II (24, 20, 12, 6, 23, 7, 17) 22/26 42/24

Note: Based on the relation between DCT-II and DST-II matrices given by (4.11), the fast
integer transforms IST8-II (a, b, c, d, e, f , g) can be easily obtained from the corresponding
fast integer ICT8-II (a, b, c, d, e, f , g).

5.4.2.4 Integer approximation of DCT-IV matrix CIV
8

Let CICT-IV
8 be the integer approximation of the DCT-IV matrix CIV

8 . Since CIV
8 is sym-

metric with constant norm we will search for the integer approximated matrix CICT-IV
8 in

the form:

CICT-IV
8 = 1√

q
V8, (5.75)
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where V8 is an integer matrix and q is the normalization constant. The DCT-IV matrix CIV
8

in explicit and numerical form is given respectively as

CIV
8 = 1

2




cos π
32 cos 3π

32 cos 5π
32 cos 7π

32 sin 7π
32 sin 5π

32 sin 3π
32 sin π

32

cos 3π
32 sin 7π

32 sin π
32 −sin 5π

32 −cos 5π
32 −cos π

32 −cos 7π
32 −sin 3π

32

cos 5π
32 sin π

32 −cos 7π
32 −cos 3π

32 −sin 3π
32 sin 7π

32 cos π
32 sin 5π

32

cos 7π
32 −sin 5π

32 −cos 3π
32 sin π

32 cos π
32 sin 3π

32 −cos 5π
32 −sin 7π

32

sin 7π
32 −cos 5π

32 −sin 3π
32 cos π

32 −sin π
32 −cos 3π

32 sin 5π
32 cos 7π

32

sin 5π
32 −cos π

32 sin 7π
32 sin 3π

32 −cos 3π
32 cos 7π

32 sin π
32 −cos 5π

32

sin 3π
32 −cos 7π

32 cos π
32 −cos 5π

32 sin 5π
32 sin π

32 −sin 7π
32 cos 3π

32

sin π
32 −sin 3π

32 sin 5π
32 −sin 7π

32 cos 7π
32 −cos 5π

32 cos 3π
32 −cos π

32




=




0.49759 0.47847 0.44096 0.38651 0.31720 0.23570 0.14514 0.04901

0.47847 0.31720 0.04901 −0.23570 −0.44096 −0.49759 −0.38651 −0.14514

0.44096 0.04901 −0.38651 −0.47847 −0.14514 0.31720 0.49759 0.23570

0.38651 −0.23570 −0.47847 0.04901 0.49759 0.14514 −0.44096 −0.31720

0.31720 −0.44096 −0.14514 0.49759 −0.04901 −0.47847 0.23570 0.38651

0.23570 −0.49759 0.31720 0.14514 −0.47847 0.38651 0.04901 −0.44096

0.14514 −0.38651 0.49759 −0.44096 0.23570 0.04901 −0.31720 0.47847

0.04901 −0.14514 0.23570 −0.31720 0.38651 −0.44096 0.47847 −0.49759




.

Again the elements of CIV
8 can be represented by eight different values. Let these be the

set {h, i, j, k, l, m, n, o}, where h, i, j, k, l, m, n, o ∈ N are integers. If we substitute a variable
for each element of CIV

8 preserving the signs of the elements, then according to (5.75) the
integer approximated matrix CICT-IV

8 can be expressed as

CICT-IV
8 = 1√

q




h i j k l m n o

i l o −m −j −h −k −n

j o −k −i −n l h m

k −m −i o h n −j −l

l −j −n h −o −i m k

m −h l n −i k o −j

n −k h −j m o −l i

o −n m −l k −j i −h




. (5.76)
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Table 5.7. The complete set of 17 distinct integer transforms 1√
q ICT8-IV (h, i, j, k, l, m, n, o)

using 6- and 7-bit representations.

h i j k l m n o q

42 38 37 32 22 19 10 4 6562
62 61 49 47 37 31 21 5 14971

108 107 81 76 70 61 29 1 44913
93 88 76 66 58 42 34 1 32810

117 106 90 82 59 50 42 1 47490
120 108 104 85 69 52 32 2 52598

94 93 73 70 58 51 26 6 34391
82 79 68 62 50 37 31 6 26299
81 76 64 61 41 38 25 7 23953
87 80 70 65 43 40 25 7 27217

121 111 105 89 69 63 15 8 54927
115 111 109 88 82 59 19 8 55801
126 114 111 96 66 57 30 12 59058

81 80 74 67 53 40 23 13 28033
120 114 103 94 68 57 34 14 56066
121 119 107 97 79 68 19 15 61111

84 81 74 72 42 35 33 18 28679

The orthogonality property leads to a set of algebraic equations

h (i − m) + l (i − j) − k (m + n) + o (j − n) = 0,

h ( j + n) + l (m − n) − k (i + j) + o (i + m) = 0,

h (k + l) − i (m + j) + n (m − j) + o (k − l) = 0, (5.77)

and the normalization constant q related to the 2-norm of basis vectors is given by

q = h2 + i2 + j2 + k2 + l2 + m2 + n2 + o2. (5.78)

Finally, comparing the corresponding elements of integer matrix V8 and CIV
8 in numerical

form (it is sufficient to compare one row only) we obtain the constraints on h, i, j, k, l, m, n, o
in the form of the inequality:

h > i > j > k > l > m > n > o > 0. (5.79)

The complete set of 17 distinct solutions for integer 1√
q ICT8-IV (h, i, j, k, l, m, n, o)

satisfying (5.77) under constraint (5.79) using 6- and 7-bit representations are shown
in Table 5.7. In Table 5.8 are shown some 8-bit solutions. For the integer transform
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Table 5.8. Some 8-bit solutions for integer transforms 1√
q ICT8-IV (h, i, j, k, l, m, n, o).

h i j k l m n o q

134 119 118 98 70 69 11 10 65527
166 162 151 126 118 91 23 10 115311
128 124 119 100 88 87 22 12 68782
126 114 111 96 66 57 30 12 59058
166 152 140 123 89 80 36 12 101150
164 158 136 124 100 74 62 12 105196
188 186 146 140 116 102 52 12 137564
240 228 204 177 150 114 70 12 223069
168 152 148 128 88 76 40 16 104992
162 160 148 134 106 80 46 26 112132
210 204 202 169 147 104 46 26 190298
246 230 229 196 146 115 58 32 243202
252 242 225 202 152 121 69 34 252159
228 222 213 188 148 111 60 36 221102

1√
6562

ICT8-IV (42, 38, 37, 32, 22, 19, 10, 4) from Table 5.7, for example, the approximated

transform matrix CICT-IV
8 according to (5.76) is given by

CICT-IV
8 = 1√

6562




42 38 37 32 22 19 10 4

38 22 4 −19 −37 −42 −32 −10

37 4 −32 −38 −10 22 42 19

32 −19 −38 4 42 10 −37 −22

22 −37 −10 42 −4 −38 19 32

19 −42 22 10 −38 32 4 −37

10 −32 42 −37 19 4 −22 38

4 −10 19 −22 32 −37 38 −42




.

In the recursive sparse matrix factorization (5.68) we discussed the sparse matrix fac-
torization of integer matrix ĈICT-IV

4 J4 and the corresponding efficient implementation of
integer transforms ICT4-IV (a, b, c, d). The fast computational algorithm for the efficient
implementation of integer transforms 1√

q ICT8-IV (h, i, j, k, l, m, n, o) can be obtained by

using the recursive sparse matrix factorization of the DCT-IV matrix CIV
8 presented in

Section 4.4.4.

Note: Based on the relation between DCT-IV and DST-IV matrices given by (4.12) the
fast integer transforms 1√

q IST8-IV (h, i, j, k, l, m, n, o) can be easily obtained from the

corresponding fast integer 1√
q ICT8-IV (h, i, j, k, l, m, n, o).
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5.4.2.5 Integer approximation of the DCT-II matrix CII
16

In the following we briefly discuss the construction of integer transforms ICT16-II. Let
CICT-II

16 = Q16 V16 be the integer approximation of CII
16. The construction of integer trans-

forms ICT16-II can be substantially simplified exploiting the recursive sparse matrix
factorization of integer approximated matrix CICT-II

16 . There is no need to derive CICT-II
16 in

the form of a matrix of variables compared to Refs. [30, 35].

Let ĈICT-II
16 be the integer approximated matrix with its rows in bit-reversed order. Then, it

can be recursively factorized into the product of orthogonal integer matrices as

ĈICT-II
16 =

(
ĈICT-II

8 0

0 ĈICT-IV
8 J8

)(
I8 J8

J8 −I8

)
, (5.80)

where

ĈICT-IV
8 J8 =




o n m l k j i h

k m −i −o h −n −j l

m h l −n −i −k o j

i −l o m −j h −k n

−n −k −h −j −m o l i

−j o k −i n l −h m

−l −j n h o −i −m k

−h i −j k −l m −n o




.

The approximated matrix ĈICT-II
8 is again recursively factorized according to (5.68). Thus,

the approximated matrix ĈICT-II
16 can be generated by using the lower-order matrices ĈICT-II

8
and ĈICT-IV

8 whose integer solutions are shown in Tables 5.3–5.5 and Tables 5.7–5.8,
respectively.

We recall that elements of the diagonal matrix Q16 are related to the 2-norm of the basis vec-
tors of ĈICT-II

8 and ĈICT-IV
8 . To reduce Q16 to a single normalization constant q, naturally, it

raises the question: Does have exist a single normalization constant q such that ICT16-II will
be the integer transform with constant basis vectors? In other words, is there a q such that

q = 16g2 = 8(e2 + f 2) = 4(a2 +b2 +c2 +d2) = 2(h2 + i2 + j2 +k2 + l2 +m2 +n2 +o2)?
(5.81)

In order to get the answer we need to perform a very time-consuming procedure: to
find the complete 8-bit solutions for integer transforms 1√

q ICT8-IV (h, i, j, k, l, m, n, o)
and choose a solution with the normalization constant q identical to a solution for inte-
ger transforms 1√

q ICT8-II (a, b, c, d, e, f , g) summarized in Table 5.5. Fortunately, there
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Table 5.9. The complete 8-bit solutions for integer transforms ICT16-II with two normalization
constants.

1√
q1

ICT8-II (a, b, c, d, e, f , g) 1√
q2

ICT8 − IV (h, i, j, k, l, m, n, o)

1√
166464

(144, 120, 72, 36, 138, 42, 102) 1√
171598

(150, 138, 133, 116, 82, 69, 37, 16)
1√

226576
(168, 140, 84, 42, 161, 49, 119) 1√

231106
(169, 159, 156, 137, 99, 74, 52, 25)

1√
230622

(170, 167, 141, 138, 94, 79, 62, 26)
1√

295936
(192, 160, 96, 48, 184, 56, 136) 1√

299404
(196, 186, 165, 144, 124, 83, 80, 8)

1√
374544

(216, 180, 108, 54, 207, 63, 153) 1√
379788

(228, 209, 190, 164, 128, 104, 63, 8)
1√

394182
(231, 213, 191, 177, 117, 95, 86, 21)

1√
378358

(218, 213, 181, 177, 119, 95, 89, 33)
1√

462400
(240, 200, 120, 60, 230, 70, 170) 1√

473382
(246, 237, 204, 186, 150, 111, 93, 18)

1√
462400

(240, 200, 120, 60, 226, 82, 170)

exists a more efficient procedure. Consider all unique solutions for integer transforms
1√
q ICT4-IV (a, b, c, d) from Table 5.5 given as:

a b c d

24 20 12 6
116 96 78 12
180 130 104 20

Then, for the given set {a, b, c, d} we must find solutions for 1√
q ICT8-IV (h, i, j, k, l, m, n, o)

which satisfy equations (5.77) under the constraints:

h > a > i > j > b > k > l > c > m > n > d > o > 0, (5.82)

and such that the 2-norm of basis vectors is constant, i.e., equation (5.81)
holds. The inequality (5.82) actually defines the relation between integer transforms

1√
q ICT4-IV (a, b, c, d) and 1√

q ICT8-IV (h, i, j, k, l, m, n, o) if the single normalization
constant q is required. A computer search reveals that the diagonal matrix Q16 can
only be reduced to two normalization constants q1 for integer transforms 1√

q1
ICT8-

II (a, b, c, d, e, f , g) and q2 for integer transforms 1√
q2

ICT8-IV (h, i, j, k, l, m, n, o). The
complete 8-bit solutions with two normalization constants q1 and q2 are shown in
Table 5.9. As can be seen from Table 5.9 for a given solution {a, b, c, d} of 1√

q1
ICT8-

II (a, b, c, d, e, f , g) there may be more than one solution {h, i, j, k, l, m, n, o} for 1√
q2

ICT8-
IV (h, i, j, k, l, m, n, o) satisfying constraints (5.82) and vice versa.
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It is important to note that by constructing the integer transforms ICT16-II we get at
the same time the integer transforms ICT2-II (g), ICT2-IV (e, f ), ICT4-IV (a, b, c, d),
ICT8-II (a, b, c, d, e, f , g) and ICT8-IV (h, i, j, k, l, m, n, o).

Finally, the recursive sparse matrix factorization of integer approximated matrix CICT-II
16

given by (5.80) defines the fast ICT16-II. Due to the recursive structure of matrix CICT-II
16 , the

upper half of generalized signal flow graph representing the fast ICT16-II will correspond
to the signal flow graph shown in Fig. 5.7. To complete the lower part of fast ICT16-II we
need only derive a sparse matrix factorization of the integer approximated matrix CICT-IV

8 .

5.4.2.6 General procedure to construct integer DCTs/DSTs

The integer approximation method previously described in detail to construct inte-
ger transforms ICTN-II/ISTN-II and ICTN-IV/ISTN-IV from corresponding real-valued
DCT-II/DST-II and DCT-IV/DST-IV, respectively, can be applied to any DCT and DST
and in general, to any discrete sinusoidal transform such as the discrete Fourier transform
(DFT) and discrete Hartley transform (DHT) [37].

In the following are summarized all steps of the general procedure to construct inte-
ger trigonometric transform including possible improvements and simplifications. Let
CN/SN be the real-valued DCT/DST matrix. Then the general procedure for construction
of approximated integer transform is as follows:

1. Based on the definition of DCT/DST generate the transform matrix CN/SN both in
explicit and numerical forms. The corresponding integer approximated transform
matrix CICT

N /SIST
N can be expressed in product form QN VN , where QN is a diagonal

matrix whose elements on main diagonal represent normalization factors (generally
they are irrational numbers) and VN is an integer matrix.

2. Represent the elements of transform matrix CN/SN in explicit form by a set of
variables whose values are assumed to be integers. Elements with the same absolute
value are represented by a single variable. Substituting a variable for each element
of CN/SN and preserving the signs of the elements results in an integer matrix VN .

3. Find the orthogonality conditions for the variables under which the integer
matrix VN is orthogonal. This is equivalent to the evaluation of matrix product
VN VT

N = [Q−1
N ]2IN which leads to a set of algebraic equations. The elements of

the diagonal matrix QN are related to the 2-norm of the rows of VN , and they are
given by 1√

qii
, where constants qii = ‖vi‖2

2, ‖vi‖2
2 = ∑N−1

k=0 v2
ik , i, j = 0, 1, . . . , N − 1.

Multiplying the integer matrix VN by diagonal matrix QN the approximated matrix
CICT

N /SIST
N becomes orthonormal.

4. Find the constraints in the form of inequalities on the set of variables representing
integer matrix VN by ordering the magnitudes of elements of transform matrix CN/SN .

5. Find the integer solutions for the set of variables satisfying the orthogonality con-
ditions, i.e., satisfying the set of algebraic equations under constraints using M-bit
representation. For each integer solution compute the elements of diagonal matrix
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QN . The method can be further modified to improve and simplify the implementation
of integer transforms:

• Find integer solutions being powers of 2 to obtain directly the multiply-free
implementation.

• To reduce the diagonal matrix QN to a single normalization constant q, find integer
solutions such that the 2-norm of basis vectors is constant.

6. Maximize the computational efficiency of the integer transform by a fast com-
putational algorithm. The existence of a (recursive) sparse matrix factorization
of the transform matrix CN/SN defining the fast algorithm enables the efficient
implementation of integer transforms. Moreover, the recursive sparse matrix factor-
ization of approximated transform matrix simplifies the construction of higher-order
approximated matrix simply by the composition of lower-order integer approximated
matrices.

5.4.2.7 Examples of construction of integer DCTs/DSTs

To conclude this section, we present the construction of integer transforms for the remaining
DCTs and DSTs for N = 8. Examples show that the solutions for a given approximated
transform may not always exist.

Integer approximation of DCT-I matrix CI
9

According to definition (4.1) the transform matrix CI
9 in explicit and numerical form is

given respectively as

CI
9 = 1

2




1
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1
2

1√
2

cos π
8 cos π

4 sin π
8 0 −sin π

8 −cos π
4 −cos π

8 − 1√
2

1√
2

cos π
4 0 −cos π

4 −1 −cos π
4 0 cos π

4
1√
2

1√
2

sin π
8 −cos π

4 −cos π
8 0 cos π

8 cos π
4 −sin π

8 − 1√
2

1√
2

0 −1 0 1 0 −1 0 1√
2

1√
2

−sin π
8 −cos π

4 cos π
8 0 −cos π

8 cos π
4 sin π

8 − 1√
2

1√
2

−cos π
4 0 cos π

4 −1 cos π
4 0 −cos π

4
1√
2

1√
2

−cos π
8 cos π

4 −sin π
8 0 sin π

8 −cos π
4 cos π

8 − 1√
2

1
2 − 1√

2
1√
2

− 1√
2

1√
2

− 1√
2

1√
2

− 1√
2

1
2




=




0.25000 0.35355 0.35355 0.33555 0.35355 0.35355 0.35355 0.35355 0.25000

0.35355 0.46194 0.35355 0.19134 0.00000 −0.19134 −0.35355 −0.46194 −0.35355

0.35355 0.35355 0.00000 −0.35355 −0.50000 −0.35355 0.00000 0.35355 0.35355

0.35355 0.19134 −0.35355 −0.46194 0.00000 0.46194 −0.35355 −0.19134 −0.35355

0.35355 0.00000 −0.50000 0.00000 0.50000 0.00000 −0.50000 0.00000 0.35355

0.35355 −0.19134 −0.35355 0.46194 0.00000 −0.46194 −0.35355 0.19134 −0.35355

0.35355 −0.35355 0.00000 0.35355 −0.50000 0.35355 0.00000 −0.35355 0.35355

0.35355 −0.46194 0.35355 −0.19134 0.00000 0.19134 −0.35355 0.46194 −0.35355

0.25000 −0.35355 0.35355 −0.35355 0.35355 −0.35355 0.35355 −0.35355 0.25000




.
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The elements of CI
9 can be represented by five different values, i.e., by the set {a, b, c, d, e},

where a, b, c, d, e ∈ N are integers. Substituting a variable for each element of CI
9 and

preserving the signs of the elements, the approximated matrix CICT-I
9 is expressed as

CICT-I
9 = Q9 V9 = Q9




d c c c c c c c d

c b c e 0 −e −c −b −c

c c 0 −c −a −c 0 c c

c e −c −b 0 b c −e −c

c 0 −a 0 a 0 −a 0 c

c −e −c b 0 −b c e −c

c −c 0 c −a c 0 −c c

c −b c −e 0 e −c b −c

d −c c −c c −c c −c d




,

where diagonal elements of the matrix Q9 are given by

q00 = q88 = 7c2 + 2d2,

q11 = q33 = q55 = q77 = 2(b2 + 2c2 + e2),

q22 = q66 = a2 + 6c2,

q44 = 3a2 + 2c2.

The orthogonality condition of CICT-I
9 leads to a set of algebraic equations

c(2d − a) = 0, or 2d − a = 0,

2c2 − a2 = 0,

2d2 − c2 = 0,

and the constraint on variables a, b, c, d, e is given by the inequality:

a > b > c > d > e > 0.

From the set of algebraic equations it follows that a = √
2c and c = √

2d. In number theory
it is well known that

√
2 is irrational number and, therefore, a and c cannot be integers.

Consequently, the integer solutions for the set {a, b, c, d, e} do not exist, i.e., the matrix CI
9

cannot be integer approximated by the method.
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Integer approximation of DST-I matrix SI
7

According to definition (4.5) the transform matrix SI
7 in explicit and numerical form is

given respectively as

SI
7 = 1

2




sin π
8 sin π

4 cos π
8 1 cos π

8 sin π
4 sin π

8

sin π
4 1 sin π

4 0 −sin π
4 −1 −sin π

4

cos π
8 sin π

4 −sin π
8 −1 −sin π

8 sin π
4 cos π

8

1 0 −1 0 1 0 −1

cos π
8 −sin π

4 −sin π
8 1 −sin π

8 −sin π
4 cos π

8

sin π
4 −1 sin π

4 0 −sin π
4 1 −sin π

4

sin π
8 −sin π

4 cos π
8 −1 cos π

8 −sin π
4 sin π

8




=




0.19134 0.35355 0.46194 0.50000 0.46194 0.35355 0.19134

0.35355 0.50000 0.35355 0.00000 −0.35355 −0.50000 −0.35355

0.46194 0.35355 −0191340 −0.50000 −0.19134 0.35355 0.46194

0.50000 0.00000 −0.50000 0.00000 0.50000 0.00000 −0.50000

0.46194 −0.35355 −0.19134 0.50000 −0.19134 −0.35355 0.46194

0.35355 −0.50000 0.35355 0.00000 −0.35355 0.50000 −0.35355

0.19134 −0.35355 0.46194 −0.50000 0.46194 −0.35355 0.19134




.

The elements of SI
7 can be represented by four different values, i.e., by the set {a, b, c, d},

where a, b, c, d ∈ N are integers. Substituting a variable for each element of SI
7 and

preserving the signs of the elements, the approximated matrix SIST-I
7 is expressed as

SIST-I
7 = Q7 V7 = Q7




a b c d c b a

b d b 0 −b −d −b

c b −a −d −a b c

d 0 −d 0 d 0 −d

c −b −a d −a −b c

b −d b 0 −b d −b

a −b c −d c −b a




,

where diagonal elements of the matrix Q7 are given by

q00 = q22 = q44 = q66 = 2(a2 + b2 + c2) + d2,

q11 = q55 = 4b2 + 2d2,

q33 = 4d2.
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The orthogonality condition of SIST-I
7 leads to a set of algebraic equations

2b2 − d2 = 0,

2a2 − 2 b2 + 2 c2 − d2 = 0 or 2a2 − 2b2 + c2 = 0,

and the constraint on variables a, b, c, d is given by the inequality as

d > c > b > a > 0.

Again, from the set of algebraic equations it follows that d = √
2b. Since

√
2 is irrational

number, d cannot be integer and, therefore, the matrix SI
7 cannot be integer approximated

by the method.

Integer approximation of SCT matrix C̃I
8

According to definition (4.9) the transform matrix C̃I
8 in explicit and numerical form is

given respectively as

C̃
I

8 =
√

2

7




1
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1
2

1√
2

cos π
7 cos 2π

7 cos 3π
7 −cos 3π

7 −cos 2π
7 −cos π

7 − 1√
2

1√
2

cos 2π
7 −cos 3π

7 −cos π
7 − cos π

7 −cos 3π
7 cos 2π

7
1√
2

1√
2

cos 3π
7 −cos π

7 −cos 2π
7 cos 2π

7 cos π
7 −cos 3π

7 − 1√
2

1√
2

−cos 3π
7 −cos π

7 cos 2π
7 cos 2π

7 −cos π
7 −cos 3π

7
1√
2

1√
2

−cos 2π
7 −cos 3π

7 cos π
7 −cos π

7 cos 3π
7 cos 2π

7 − 1√
2

1√
2

−cos π
7 cos 2π

7 −cos 3π
7 −cos 3π

7 cos 2π
7 −cos π

7
1√
2

1
2 − 1√

2
1√
2

− 1√
2

1√
2

− 1√
2

1√
2

− 1
2




=




0.26726 0.37796 0.37796 0.37796 0.37796 0.37796 0.37796 0.26726

0.37796 0.48159 0.33327 0.11894 −0.11894 −0.33327 −0.48159 −0.37796

0.37796 0.33327 −0.11894 −0.48159 −0.48159 −0.11894 0.33327 0.37796

0.37796 0.11894 −0.48159 −0.33327 0.33327 0.48159 −0.11894 −0.37796

0.37796 −0.11894 −0.48159 0.33327 0.33327 −0.48159 −0.11894 0.37796

0.37796 −0.33327 −0.11894 0.48159 −0.48159 0.11894 0.33327 −0.37796

0.37796 −0.48159 0.33327 −0.11894 −0.11894 0.33327 −0.48159 0.37796

0.26726 −0.37796 0.37796 −0.37796 0.37796 −0.37796 0.37796 −0.26726




.

The elements of C̃I
8 can be represented by five different values, i.e., by the set {a, b, c, d, e},

where a, b, c, d, e ∈ N are integers. If in addition we require the norm of basis vectors to
be constant, then Q8 is reduced to a single constant q. Substituting a variable for each
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element of C̃I
8 and preserving the signs of the elements, the approximated matrix CISCT

8 is
expressed as

CISCT
8 = 1√

q




b d d d d d d b

d e c a −a −c −e −d

d c −a −e −e −a c d

d a −e −c c e −a −d

d −a −e c c −e −a d

d −c −a e −e a c −d

d −e c −a −a c −e d

b −d d −d d −d d −b




.

where

q = 2(b2 + 3d2) = 2(a2 + c2 + d2 + e2).

The orthogonality condition for CISCT
8 is equivalent to a set of algebraic equations

(b + c) − (a + e) = 0,

d2 + e(a − c) − ac = 0,

and the constraint on variables a, b, c, d, e is given by

e > d > c > b > a > 0.

4- and 5-bit solutions for integer transforms 1√
q ISCT8 (a, b, c, d, e) are shown in Table

5.10. You can note that some integer solutions are multiples of the corresponding unique
solutions.

Although the matrix C̃I
8 does not have a recursive structure it is an EOT. Let ĈISCT

8 be
the approximated matrix with its rows in bit-reversed order. In order to get an efficient
implementation of 1√

q ISCT8 (a, b, c, d, e), called the fast ISCT8 (a, b, c, d, e), according

to (4.17), and (4.23) and (4.24), the approximated matrix ĈISCT
8 can be factorized into the

following nonrecursive matrix product:

CISCT
8 = 1√

q




b d d d

d −a −e c 0

d c −a −e

d −e c −a

a c e d

e −a −c d

0 −c −e a d

−d d −d b




(
I4 J4

J4 −I4

)
.
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Table 5.10. 4- and 5-bit solutions for integer transforms 1√
q ISCT8 (a, b, c, d, e).

a b c d e q

1 6 9 11 14 798
1 8 16 19 23 2294
1 11 13 17 23 1976
2 5 7 8 10 434
2 7 14 16 19 1634
2 9 23 26 30 4218
2 12 18 22 28 3192
2 15 17 22 30 3354
3 6 10 11 13 798
3 8 19 21 24 2774
3 9 11 13 17 1176
4 7 13 14 16 1274
4 9 24 26 29 4218
4 10 14 16 20 1736
4 13 15 18 24 2282
4 15 20 24 31 3906
5 8 16 17 19 1862
5 11 17 19 23 2408
5 12 13 15 20 1638
5 14 18 21 27 3038
5 17 19 23 31 3752
6 9 19 20 22 2562
6 12 20 22 26 3192
6 15 21 24 30 3906
7 10 22 23 25 3374
7 13 23 25 29 4088
8 11 25 26 28 4298
8 15 20 22 27 3354
8 16 17 19 25 2678
9 12 28 29 31 5334
9 17 19 21 27 3224
10 15 17 18 22 2394
10 18 21 23 29 3822
11 19 23 25 31 4472
13 18 22 23 27 3822

Integer approximation of SST matrix S̃I
8

According to definition (4.10) the transform matrix S̃I
8 in explicit and numerical form is

given below.
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S̃I
8 =

√
2

3




sin π
9 sin 2π

9 sin π
3 sin 4π

9 sin 4π
9 sin π

3 sin 2π
9 sin π

9

sin 2π
9 sin 4π

9 sin π
3 sin π

9 −sin π
9 −sin π

3 −sin 4π
9 −sin 2π

9

sin π
3 sin π

3 0 −sin π
3 −sin π

3 0 sin π
3 sin π

3

sin 4π
9 sin π

9 −sin π
3 −sin 2π

9 sin 2π
9 sin π

3 −sin π
9 −sin 4π

9

sin 4π
9 −sin π

9 −sin π
3 sin 2π

9 sin 2π
9 −sin π

3 −sin π
9 sin 4π

9

sin π
3 −sin π

3 0 sin π
3 −sin π

3 0 sin π
3 −sin π

3

sin 2π
9 −sin 4π

9 sin π
3 −sin π

9 −sin π
9 sin π

3 −sin 4π
9 sin 2π

9

sin π
9 −sin 2π

9 sin π
3 −sin 4π

9 sin 4π
9 −sin π

3 sin 2π
9 −sin π

9




=




0.16123 0.30301 0.40825 0.46424 0.46424 0.40825 0.30301 0.16123

0.30301 0.46424 0.40825 0.16123 −0.16123 −0.40825 −0.46424 −0.30301

0.40825 0.40825 0.00000 −0.40825 −0.40825 −0.00000 0.40825 0.40825

0.46424 0.16123 −0.40825 −0.30301 0.30301 0.40825 −0.16123 −0.46424

0.46424 −0.16123 −0.40825 0.30301 0.30301 −0.40825 −0.16123 0.46424

0.40825 −0.40825 −0.00000 0.40825 −0.40825 −0.00000 0.40825 −0.40825

0.30301 −0.46424 0.40825 −0.16123 −0.16123 0.40825 −0.46424 0.30301

0.16123 −0.30301 0.40825 −0.46424 0.46424 −0.40825 0.30301 −0.16123




.

The elements of S̃I
8 can be represented by four different values, i.e., by the set {a, b, c, d},

where a, b, c, d ∈ N are integers. If we require the norm of basis vectors to be con-
stant, then Q8 is reduced to a single constant q. Substituting a variable for each
element of S̃I

8 and preserving the signs of the elements, the approximated matrix SISST
8 is

expressed as

SISST
8 = 1√

q




a b c d d c b a

b d c a −a −c −d −b

c c 0 −c −c 0 c c

d a −c −b b c −a −d

d −a −c b b −c −a d

c −c 0 c −c 0 c −c

b −d c −a −a c −d b

a −b c −d d −c b −a




.
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where

q = 2(a2 + b2 + c2 + d2) = 6c2.

The orthogonality condition for SISST
8 is equivalent to a set of algebraic equations

c(a + b − d) = 0 or a + b − d = 0,

a(d − b) + bd − c2 = 0,

and the constraint on variables a, b, c, d is given by

0 < a < b < c < d.

4-, 5- and 6-bit solutions for integer transforms 1√
q ISST8 (a, b, c, d) are shown in

Table 5.11. You can note that some integer solutions are multiples of the corresponding
unique solutions.

Similarly, the matrix S̃I
8 does not have a recursive structure, however, it is an EOT. Let

ŜISST
8 be the approximated matrix with its rows in bit-reversed order. In order to get an

efficient implementation of 1√
q ISST8 (a, b, c, d), called the fast ISST8 (a, b, c, d), according

to (4.17), and (4.37), (4.38), the approximated matrix ŜISST
8 can be factorized into the

Table 5.11. 4-, 5- and 6-bit solutions for integer transforms 1√
q ISST8 (a, b, c, d).

a b c d q

3 5 7 8 294
5 16 19 21 2166
6 10 14 16 1176
7 8 13 15 1014
7 33 37 40 8214
9 15 21 24 2646
10 32 38 42 8664
11 24 31 35 5766
12 20 28 32 4704
13 35 43 48 1094
14 16 26 30 4056
15 25 35 40 7350
15 48 57 63 19494
16 39 49 55 14406
18 30 42 48 10584
21 24 39 45 9126
21 35 49 56 14406
28 32 52 60 16224
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following nonrecursive matrix product:

SISCT
8 = 1√

q




a b c d

d −a −c b 0

c c 0 −c

b −d c −a

a c d b

c 0 −c c

0 −b −c a d

−d c −b a




(
I4 J4

J4 −I4

)
.

5.4.3 Generalized Chen transform

RICOH® Research Center developed a parametrized orthogonal/orthonormal transform
(the proprietary transform technology), called the generalized Chen transform (GCT),
which is essentially a rationalized approximation of the DCT-II matrix [39, 40–42]. The
GCT is based on the parametrization of recursive sparse matrix factorization of the DCT-II
matrix [17]. The method exploits the recursive structure of matrix CII

N and relations among
its cosine/sine elements. The parametrized GCT can approximate the DCT-II with arbi-
trary accuracy if the parameters are approximated by dyadic rational numbers (see Section
5.4.4). Consequently, this fact reduces the computational complexity of DCT-II leading
to its multiply-free implementation if the normalization is combined with the quantiza-
tion/dequantization step of transform-based coding scheme. Thus, the GCT is comparable
with the DCT-II and for properly chosen approximated parameters it complies with
recommendations of international coding standards in terms of accuracy requirements [41].

In the following we present a detailed description of the procedure to derive the
parametrized GCT for N = 8. Let ĈII

8 be the DCT-II matrix of order 8 with its rows
in bit-reversed order. Then, according to equation (4.50) it can be recursively factorized as

ĈII
8 = 1

2

(
ĈII

4 0

0 ĈIV
4 J4

)(
I4 J4

J4 −I4

)

= 1

2







(
CII

1 0

0 CIV
1

)(
1 1

1 −1

)
0

0 CIV
2 J2



(

I2 J2

J2 −I2

)
0

0 ĈIV
4 J4




(
I4 J4

J4 −I4

)
,

(5.83)
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where CII
1 , CII

2 , CII
4 and CIV

1 , CIV
2 , CIV

4 are DCT-II and DCT-IV matrices of order 1, 2 and
4, respectively, and they are given in explicit form as

CII
1 = CIV

1 = 1√
2

,

CII
2 =




1√
2

1√
2

1√
2

− 1√
2


, CIV

2 =

cos π

8 sin π
8

sin π
8 −cos π

8


 =


sin 3π

8 cos 3π
8

cos 3π
8 −sin 3π

8


,

CII
4 =




1√
2

1√
2

1√
2

1√
2

cos π
8 sin π

8 −sin π
8 −cos π

8

1√
2

− 1√
2

− 1√
2

1√
2

sin π
8 −cos π

8 cos π
8 −sin π

8




=




1√
2

1√
2

1√
2

1√
2

sin 3π
8 cos 3π

8 −cos 3π
8 −sin 3π

8

1√
2

− 1√
2

− 1√
2

1√
2

cos 3π
8 −sin 3π

8 sin 3π
8 −cos 3π

8




,

CIV
4 =




cos π
16 cos 3π

16 sin 3π
16 sin π

16

cos 3π
16 −sin π

16 −cos π
16 −sin 3π

16

sin 3π
16 −cos π

16 sin π
16 cos 3π

16

sin π
16 −sin 3π

16 cos 3π
16 −cos π

16




=




cos π
16 sin 5π

16 cos 5π
16 sin π

16

sin 5π
16 −sin π

16 −cos π
16 −cos 5π

16

cos 5π
16 −cos π

16 sin π
16 sin 5π

16

sin π
16 −cos 5π

16 sin 5π
16 −cos π

16




=




sin 7π
16 cos 3π

16 sin 3π
16 cos 7π

16

cos 3π
16 −cos 7π

16 −sin 7π
16 −sin 3π

16

sin 3π
16 −sin 7π

16 cos 7π
16 cos 3π

16

cos 7π
16 −sin 3π

16 cos 3π
16 −sin 7π

16




=




sin 7π
16 sin 5π

16 cos 5π
16 cos 7π

16

sin 5π
16 −cos 7π

16 −sin 7π
16 −cos 5π

16

cos 5π
16 −sin 7π

16 cos 7π
16 sin 5π

16

cos 7π
16 −cos 5π

16 sin 5π
16 −sin 7π

16




,

(5.84)

where cosine/sine elements of CIV
2 are related as

cos
π

8
= sin

3π

8
, sin

π

8
= cos

3π

8
, (5.85)

while cosine/sine elements of CIV
4 are related as

cos
π

16
= 1√

2

(
cos

3π

16
+ sin

3π

16

)
= 1√

2

(
sin

5π

16
+ cos

5π

16

)
= sin

7π

16
,

sin
π

16
= 1√

2

(
cos

3π

16
− sin

3π

16

)
= 1√

2

(
sin

5π

16
− cos

5π

16

)
= cos

7π

16
,

cos
3π

16
= 1√

2

(
cos

π

16
+ sin

π

16

)
= 1√

2

(
sin

7π

16
+ cos

7π

16

)
= sin

5π

16
,

sin
3π

16
= 1√

2

(
cos

π

16
− sin

π

16

)
= 1√

2

(
sin

7π

16
− cos

7π

16

)
= cos

5π

16
. (5.86)
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Therefore, in (5.84) we have two different equivalent forms of the matrix CIV
2 (and hence

also two different equivalent forms of the matrix CII
4 ), and four different equivalent forms

of the matrix CIV
4 resulting in totally eight different equivalent forms of the matrix CII

8 .

In order to obtain the parametrized version of transform matrix CII
8 , the GCT8 transform,

we will parametrize at first the matrix CIV
2 and then CIV

4 . The parametrized matrices CIV
2

and CIV
4 will be derived in the form of matrix product DM RM , M = 2 and 4, where DM

is a diagonal matrix required for normalization and RM is a parametrized DCT-IV matrix.
Using the trigonometric identities

cos α = 1√
1 + tan2α

, sin α = tan α√
1 + tan2α

, (5.87)

the first form of CIV
2 in (5.84) can be parametrized as follows:

CIV
2 =

(
cos π

8 sin π
8

sin π
8 −cos π

8

)
=
(

cos π
8 0

0 cos π
8

)(
1 tan π

8

tan π
8 −1

)

=



1√
1+b2

0

0 1√
1+b2



(

1 b

b −1

)
, (5.88)

where b = tan π
8 = √

2 − 1. Similarly, for the second form of CIV
2 in (5.84) we get

CIV
2 =


sin 3π

8 cos 3π
8

cos 3π
8 −sin 3π

8


 =


cos 3π

8 0

0 cos 3π
8




tan 3π

8 1

1 −tan 3π
8




=



1√
1+b2

0

0 1√
1+b2



(

b 1

1 −b

)
, (5.89)

where b = tan 3π
8 = √

2 + 1. Thus, we have two different parametrized CIV
2 matrices and

we denote them as GCT2-IV (b), where b = tan π
8 or tan 3π

8 .

Four equivalent forms of the matrix CIV
4 in (5.84) can be parametrized either directly or

indirectly through their sparse matrix factorizations. Consider the first explicit form of CIV
4

in (5.84). Using the relations among cosine/sine elements given by (5.86) and trigonometric
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identities (5.87) the matrix CIV
4 can be directly parametrized as

CIV
4 =




cos π
16 cos 3π

16 sin 3π
16 sin π

16

cos 3π
16 −sin π

16 −cos π
16 −sin 3π

16

sin 3π
16 −cos π

16 sin π
16 cos 3π

16

sin π
16 −sin 3π

16 cos 3π
16 −cos π

16




=




cos π
16

cos 3π
16

cos 3π
16

cos π
16







1 1√
2

(1 + tan π
16 ) 1√

2
(1 − tan π

16 ) tan π
16

1 − 1√
2

(1 − tan 3π
16 ) − 1√

2
(1 + tan 3π

16 ) −tan 3π
16

tan 3π
16 − 1√

2
(1 + tan 3π

16 ) 1√
2

(1 − tan 3π
16 ) 1

tan π
16 − 1√

2
(1 − tan π

16 ) 1√
2

(1 + tan π
16 ) −1




=




1√
1 + a2

1√
1 + c2

1√
1 + c2

1√
1 + a2







1 r(1 + a) r(1 − a) a

1 −r(1 − c) −r(1 + c) −c

c −r(1 + c) r(1 − c) 1

a −r(1 − a) r(1 + a) −1




, (5.90)

where a = tan π
16 , c = tan 3π

16 and r = 1√
2
. Denote the parametrized transform matrix CIV

4 as

GCT4-IV (a, c, r). Since the reordered matrix ĈIV
4 J4 has the sparse matrix factorization

ĈIV
4 J4 =




sin π
16 sin 3π

16 cos 3π
16 cos π

16

cos 3π
16 sin π

16 −cos π
16 sin 3π

16

−sin 3π
16 −cos π

16 −sin π
16 cos 3π

16

−cos π
16 cos 3π

16 −sin 3π
16 sin π

16




=




sin π
16 0 0 cos π

16

0 cos 3π
16 sin 3π

16 0

0 −sin 3π
16 cos 3π

16 0

−cos π
16 0 0 sin π

16







1 1 0 0

1 −1 0 0

0 0 −1 1

0 0 1 1







1 0 0 0

0 − 1√
2

1√
2

0

0 1√
2

1√
2

0

0 0 0 1




,

(5.91)

following the same procedure we can alternatively parametrize the sparse matrix factoriza-
tion (5.91) into equivalent form as

ĈIV
4 J4 = D4




a 0 0 1

0 1 c 0

0 −c 1 0

−1 0 0 a







1 1 0 0

1 −1 0 0

0 0 −1 1

0 0 1 1







1 0 0 0

0 −r r 0

0 r r 0

0 0 0 1




=




a r(1 − a) r(1 + a) 1

1 r(1 − c) −r(1 + c) c

−c −r(1 + c) −r(1 − c) 1

−1 r(1 + a) −r(1 − a) a


, (5.92)
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where D4 = diag { 1√
1 + a2

, 1√
1 + c2

, 1√
1 + c2

, 1√
1 + a2

} and a = tan π
16 , c = tan 3π

16 , r = 1√
2
.

Finally, substituting the parametrized DCT-IV matrices CIV
2 J2 given by (5.88) or (5.89)

into (5.83) we obtain respectively

ĈII
8 = 1

2
D̂8







1 1 0

1 −1

b 1

0 −1 b



(

I2 J2

J2 −I2

)
0

0 ĈIV
4 J4



(

I4 J4

J4 −I4

)
, (5.93)

where b = tan π
8 , or

ĈII
8 = 1

2
D̂8







1 1 0

1 −1

1 b

0 −b 1



(

I2 J2

J2 −I2

)
0

0 ĈIV
4 J4





I4 J4

J4 −I4


, (5.94)

where b = tan 3π
8 , D̂8 = diag { 1√

2
, 1√

2
, 1√

1 + b2
, 1√

1 + b2
, 1√

1 + a2
, 1√

1 + c2
, 1√

1 + c2
, 1√

1 + a2
}

and ĈIV
4 J4 is given by (5.92).

Equations (5.93) and (5.94) lead to the following important conclusions:

• They define the parametrized GCT8 or two equivalent parametrized CII
8 matrices

which are given respectively as

CII
8 = D8




1 1 1 1 1 1 1 1

1 r(1 + a) r(1 − a) a −a −r(1 − a) −r(1 + a) −1

1 b −b −1 −1 −b b 1

1 −r(1 − c) −r(1 + c) −c c r(1 + c) r(1 − c) −1

1 −1 −1 1 1 −1 −1 1

c −r(1 + c) r(1 − c) 1 −1 −r(1 − c) r(1 + c) −c

b −1 1 −b −b 1 −1 b

a −r(1 − a) r(1 + a) −1 1 −r(1 + a) r(1 − a) −a




,

(5.95)
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where b = tan π
8 , and

CII
8 = D8




1 1 1 1 1 1 1 1

1 r(1 + a) r(1 − a) a −a −r(1 − a) −r(1 + a) −1

b 1 −1 −b −b −1 1 b

1 −r(1 − c) −r(1 + c) −c c r(1 + c) r(1 − c) −1

1 −1 −1 1 1 −1 −1 1

c −r(1 + c) r(1 − c) 1 −1 −r(1 − c) r(1 + c) −c

1 −b b −1 −1 b −b 1

a −r(1 − a) r(1 + a) −1 1 −r(1 + a) r(1 − a) −a




,

(5.96)

where b = tan 3π
8 , and D8 = diag{ 1

2
√

2
, 1

2
√

1 + a2
, 1

2
√

1 + b2
, 1

2
√

1 + c2
, 1

2
√

2
, 1

2
√

1 + c2
,

1
2
√

1 + b2
, 1

2
√

1 + a2
}. For the set of real-valued parameters a = tan π

16 , b = tan π
8 or

tan 3π
8 , c = tan 3π

16 and r = 1√
2

the parametrized GCT8 denoted as GCT8-II (a, b, c, r)

is exactly the ordinary DCT-II matrix CII
8 .

• They define implicitly lower-order parametrized transform matrices CII
2 , CIV

2 , CII
4 , CIV

4
denoted as GCT2-II (r), GCT2-IV (b), GCT4-II (b, r), GCT4-IV (a, c, r), respectively.

• They define together with the sparse matrix factorization of ĈIV
4 J4 given by (5.92)

the fast GCT8-II (a, b, c, r).

• In general, the higher-order parametrized GCT of order 2N can be generated from
lower-order parametrized matrices CII

N and CIV
N . All that is necessary is to parametrize

the matrix CIV
N and derive its sparse matrix factorization to complete its efficient

implementation.

For completeness we present the parametrizations of the remaining three equivalent
forms of the matrix CIV

4 (direct parametrization and parametrization through its sparse
matrix factorization). Substituting them into (5.93) and (5.94) the remaining six forms
of parametrized GCT8-II (a, b, c, r) can be obtained. In all cases the diagonal matrix is
given by D4 = diag{ 1√

1 + a2
, 1√

1 + c2
, 1√

1 + c2
, 1√

1 + a2
}.

(A) GCT4-IV (a,c,r), a = tan π
16 , c = tan 5π

16 , r = 1√
2

CIV
4 =




cos π
16 sin 5π

16 cos 5π
16 sin π

16

sin 5π
16 −sin π

16 −cos π
16 −cos 5π

16

cos 5π
16 −cos π

16 sin π
16 sin 5π

16

sin π
16 −cos 5π

16 sin 5π
16 −cos π

16




= D4




1 r(1 + a) r(1 − a) a

c −r(c − 1) −r(c + 1) −1

1 −r(c + 1) r(c − 1) c

a −r(1 − a) r(1 + a) −1




,
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ĈIV
4 J4 =




sin π
16 cos 5π

16 sin 5π
16 cos π

16

sin 5π
16 sin π

16 −cos π
16 cos 5π

16

−cos 5π
16 −cos π

16 −sin π
16 sin 5π

16

−cos π
16 sin 5π

16 −cos 5π
16 sin π

16




=




sin π
16 0 0 cos π

16

0 sin 5π
16 cos 5π

16 0

0 −cos 5π
16 sin 5π

16 0

−cos π
16 0 0 sin π

16







1 1 0 0

1 −1 0 0

0 0 −1 1

0 0 1 1







1 0 0 0

0 − 1√
2

1√
2

0

0 1√
2

1√
2

0

0 0 0 1




= D4




a 0 0 1
0 c 1 0

0 −1 c 0

−1 0 0 a







1 1 0 0

1 −1 0 0

0 0 −1 1

0 0 1 1







1 0 0 0

0 −r r 0

0 r r 0

0 0 0 1




=




a r(1 − a) r(1 + a) 1

c r(c − 1) −r(c + 1) c

−1 −r(c + 1) −r(c − 1) c

−1 r(1 + a) −r(1 − a) a




.

(5.97)

(B) GCT4-IV (a, c, r), a = tan 7π
16 , c = tan 3π

16 , r = 1√
2

CIV
4 =




sin 7π
16 cos 3π

16 sin 3π
16 cos 7π

16

cos 3π
16 −cos 7π

16 −sin 7π
16 −sin 3π

16

sin 3π
16 −sin 7π

16 cos 7π
16 cos 3π

16

cos 7π
16 −sin 3π

16 cos 3π
16 −sin 7π

16




= D4




a r(a + 1) r(a − 1) 1

1 −r(1 − c) −r(1 + c) −c

c −r(1 + c) r(1 − c) 1

1 −r(a − 1) r(a + 1) −a




,

ĈIV
4 J4 =




cos 7π
16 sin 3π

16 cos 3π
16 sin 7π

16

cos 3π
16 cos 7π

16 −sin 7π
16 sin 3π

16

−sin 3π
16 −sin 7π

16 −cos 7π
16 cos 3π

16

−sin 7π
16 cos 3π

16 −sin 3π
16 cos 7π

16




=




cos 7π
16 0 0 sin 7π

16

0 cos 3π
16 sin 3π

16 0

0 −sin 3π
16 cos 3π

16 0

−sin 7π
16 0 0 cos 7π

16







1 1 0 0

1 −1 0 0

0 0 −1 1

0 0 1 1







1 0 0 0

0 − 1√
2

1√
2

0

0 1√
2

1√
2

0

0 0 0 1



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= D4




1 0 0 a

0 1 c 0

0 −c 1 0

−a 0 0 1







1 1 0 0

1 −1 0 0

0 0 −1 1

0 0 1 1







1 0 0 0

0 −r r 0

0 r r 0

0 0 0 1




=




1 r(a − 1) r(a + 1) a

1 r(1 − c) −r(1 + c) c

−c −r(1 + c) −r(1 − c) 1

−a r(a + 1) −r(a − 1) 1




. (5.98)

(C) GCT4-IV(a,c,r), a = tan 7π
16 , c = tan 5π

16 , r = 1√
2

CIV
4 =




sin 7π
16 sin 5π

16 cos 5π
16 cos 7π

16

sin 5π
16 −cos 7π

16 −sin 7π
16 −cos 5π

16

cos 5π
16 −sin 7π

16 cos 7π
16 sin 5π

16

cos 7π
16 −cos 5π

16 sin 5π
16 −sin 7π

16




= D4




a r(a + 1) r(a − 1) 1

c −r(c − 1) −r(c + 1) −1

1 −r(c + 1) r(c − 1) c

1 −r(a − 1) r(a + 1) −a




,

ĈIV
4 J4 =




cos 7π
16 cos 5π

16 sin 5π
16 sin 7π

16

sin 5π
16 cos 7π

16 −sin 7π
16 cos 5π

16

−cos 5π
16 −sin 7π

16 −cos 7π
16 sin 5π

16

−sin 7π
16 sin 5π

16 −cos 5π
16 cos 7π

16




=




cos 7π
16 0 0 sin 7π

16

0 sin 5π
16 cos 5π

16 0

0 −cos 5π
16 sin 5π

16 0

−sin 7π
16 0 0 cos 7π

16







1 1 0 0

1 −1 0 0

0 0 −1 1

0 0 1 1







1 0 0 0

0 − 1√
2

1√
2

0

0 1√
2

1√
2

0

0 0 0 1




= D4




1 0 0 a

0 c 1 0

0 −1 c 0

−a 0 0 1







1 1 0 0

1 −1 0 0

0 0 −1 1

0 0 1 1







1 0 0 0

0 −r r 0

0 r r 0

0 0 0 1




=




1 r(a − 1) r(a + 1) a

c r(c − 1) −r(c + 1) 1

−1 −r(c + 1) −r(c − 1) c

−a r(a + 1) −r(a − 1) 1




. (5.99)
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Note: There exist even better parametrizations of four different equivalent forms of the
matrix CIV

4 in terms of the number of parameters including two parameters only. Unfor-
tunately, sparse matrix factorizations of these parametrized forms of CIV

4 do not exist.
These four parametrized CIV

4 matrices with two parameters denoted by GCT4-IV (a, r) are
respectively given as

CIV
4 =




cos π
16 cos 3π

16 sin 3π
16 sin π

16

cos 3π
16 −sin π

16 −cos π
16 −sin 3π

16

sin 3π
16 −cos π

16 sin π
16 cos 3π

16

sin π
16 −sin 3π

16 cos 3π
16 −cos π

16




= 1√
1 + a2




1 r(a + 1) r(1 − a) a

r(1 + a) −a −1 −r(1 − a)

r(1 − a) −1 a r(1 + a)

a −r(1 − a) r(1 + a) −1




, a = tan
π

16
, r = 1√

2
,

•

CIV
4 =




cos π
16 sin 5π

16 cos 5π
16 sin π

16

sin 5π
16 −sin π

16 −cos π
16 −cos 5π

16

cos 5π
16 −cos π

16 sin π
16 sin 5π

16

sin π
16 −cos 5π

16 sin 5π
16 −cos π

16




= 1√
1 + a2




r(1 + a) 1 a r(1 − a)

1 −r(1 − a) −r(1 + a) −a

a −r(1 + a) r(1 − a) 1

r(1 − a) −a 1 −r(1 + a)




, a = tan
3π

16
, r = 1√

2
,

•
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CIV
4 =




sin 7π
16 cos 3π

16 sin 3π
16 cos 7π

16

cos 3π
16 −cos 7π

16 −sin 7π
16 −sin 3π

16

sin 3π
16 −sin 7π

16 cos 7π
16 cos 3π

16

cos 7π
16 −sin 3π

16 cos 3π
16 −sin 7π

16




= 1√
1 + a2




r(a + 1) a 1 r(a − 1)

a −r(a − 1) −r(a + 1) −1

1 −r(a + 1) r(a − 1) a

r(a − 1) −1 a −r(a + 1)




, a = tan
5π

16
, r = 1√

2
,

•

CIV
4 =




sin 7π
16 sin 5π

16 cos 5π
16 cos 7π

16

sin 5π
16 −cos 7π

16 −sin 7π
16 −cos 5π

16

cos 5π
16 −sin 7π

16 cos 7π
16 sin 5π

16

cos 7π
16 −cos 5π

16 sin 5π
16 −sin 7π

16




= 1√
1 + a2




a r(a + 1) r(a − 1) 1

r(a + 1) −1 −a −r(a − 1)

r(a − 1) −a 1 r(a + 1)

1 −r(a − 1) r(a + 1) −a




, a = tan
7π

16
, r = 1√

2
,

•

5.4.3.1 The fast GCT8-II (a,b,c,r)

Equations (5.93) and (5.94) with the sparse matrix factorization of ĈIV
4 J4 given by

(5.92) define the fast GCT8-II (a, b, c, r) for the efficient implementation of parametrized
GCT8-II (tan π

16 , tan π
8 , tan 3π

16 , 1√
2
) and GCT8-II (tan π

16 , tan 3π
8 , tan 3π

16 , 1√
2
), respectively.

The corresponding generalized signal flow graphs are shown in Figs. 5.8 and 5.9.

We note that GCT8-II (a, b, c, r) originally proposed in Refs. [39, 40–42] is a combination
of GCT2-II ( 1√

2
), GCT2-IV (tan 3π

16 ) given by (5.89) and GCT4-IV (tan 7π
16 , tan 5π

16 , 1√
2
)

given by (5.99), all substituted into (5.83).

Each one of the eight equivalent forms of GCT8-II (a, b, c, r) has the associated fast GCT8-
II (a, b, c, r). They differ only by appropriate butterfly stages corresponding to GCT2 -IV
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Fig. 5.8. The fast GCT8-II (tan π
16 , tan π

8 , tan 3π
16 , 1√
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) implementation.
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Fig. 5.9. The fast GCT8-II (tan π
16 , tan 3π

8 , tan 3π
16 , 1√
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) implementation.
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Table 5.12. Selected approximations of the
parameters a, b, c, r by dyadic rationals.

tan π
8 = √

2 − 1 0.414214
3/8 0.375000
13/32 0.406250
53/128 0.414063
tan 3π

8 = √
2 + 1 2.414214

19/8 2.375000
77/32 2.406250
309/128 2.414063
tan π

16 0.198912
3/16 0.187500
25/128 0.195313
51/256 0.199219
tan 3π

16 0.668179
11/16 0.687500
85/128 0.664063
171/256 0.667969
tan 5π

16 1.496606
3/2 1.500000
191/128 1.492188
383/256 1.496094
tan 7π

16 5.027339
5 5.000000
161/32 5.031250
643/256 5.023438

1√
2

0.707107
11/16 0.687500
91/128 0.710938
181/256 0.707031

(b) and GCT4-IV (a, c, r). It is interesting to note that if GCT8-II (a, b, c, r) is viewed as
a real-valued transform, then with respect to signal flow graphs in Figs. 5.9 and 5.10 the
computation of 8-point DCT-II without normalization requires only 8 multiplications and
26 additions.

At this moment GCT8-II (a, b, c, r) is real-valued with the set of parameters {a, b, c, r}
which are irrational numbers. However, approximating parameters a, b, c, r by dyadic
rationals, i.e., in the form k

2m , where k, m are integers, and k is an odd, results in the
final rationalized approximation of the DCT-II matrix CII

8 . Rational approximations of
the parameters increase the computational speed in implementing the GCT8-II (a, b, c, r)
since binary addition and shift operations replacing multiplications enable a multiply-free
implementation of the fast GCT8-II (a, b, c, r). The GCT8-II (a, b, c, r) can operate with
arbitrarily chosen parameters which can approximate the DCT-II matrix CII

8 with arbitrary
accuracy. The closer the approximated parameters a, b, c, r are to the original irrational
values, the more perfect is the resulting GCT8-II (a, b, c, r), but at a higher computational
and/or hardware cost. Thus, the GCT8-II (a, b, c, r) is a flexible transform with different
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Table 5.13. Comparison of the MSE approximation error and performance measures of rationalized
GCT8-II (tan π

16 , tan π
8 , tan 3π

16 , 1√
2
) with the 8-point DCT-II.

GCT8-II (tan π
16 , tan π

8 , tan 3π
16 , 1√

2
) MSE Cg η

8-point DCT-II 8.82591 93.99119
GCT8-II (3/16, 3/8, 11/16, 91/128) 4.235859e−005 8.79995 93.82347
GCT8-II (25/128, 13/32, 85/128, 91/128) 3.541383e−006 8.80372 93.89385
GCT8-II (51/256, 53/128, 171/256, 181/256) 7.783073e−009 8.82635 93.99570

Table 5.14. The computational complexity of rationalized GCT8-II
(tan π

16 , tan π
8 , tan 3π

16 , 1√
2
).

GCT8-II ( tan π
16 , tan π

8 , tan 3π
16 , 1√

2
) Adds/shifts

GCT8-II (3/16, 3/8, 11/16, 11/16) 38/20
GCT8-II (3/16, 3/8, 11/16, 91/128) 42/24
GCT8-II (25/128, 13/32, 85/128, 91/128) 48/30
GCT8-II (51/256, 53/128, 171/256, 181/256) 54/36

desirable characteristics. Rational parameters are chosen as a tradeoff between computa-
tional efficiency and desired accuracy. In Table 5.12 are shown selected approximations
of parameters a, b, c, r by dyadic rationals.

Comparison of the MSE approximation error and performance measures of some rational-
ized GCT8-II (tan π

16 , tan π
8 , tan 3π

16 , 1√
2
) with the 8-point DCT-II is summarized in Table

5.13. The computational complexity of rationalized GCT8-II (tan π
16 , tan π

8 , tan 3π
16 , 1√

2
)

with respect to signal flow graphs in Figs. 5.9 and 5.10 is summarized in Table 5.14.

Note: It may seem that if the DCT/DST matrix has a recursive structure and its sparse
matrix factorization exists, then it may be parametrizable. This is not the case. Although the
DCT-I matrix CI

N+1 and DST-I matrix SI
N−1 defined by (4.1) and (4.5), respectively, have

the recursive structure they cannot be parametrized and their rationalized approximations
do not exist.

5.4.3.2 Generalized CMT

The parametrized GCT motivated us to derive quite different and new parametrized DCT-II
matrix CII

8 which we will call the generalized CMT (GCMT). It is based on the computation
of DCT-II via WHT (see Section 4.4.3.2) through the conversion matrix which has a
sparse-block-diagonal structure and it can be recursively generated from lower-order block
matrices. Let ĈII

8 be the DCT-II matrix of order 8 with its rows in bit-reversed order. From
(4.60) it follows that the matrix ĈII

8 can be expressed as

ĈII
8 = T8Ŵ8, T8 = ĈII

8 ŴT
8 , (5.100)
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where ŴT
8 is the sequency ordered WHT matrix and T8 is the conversion matrix given by

T8 =




1 0

1

U2

0 U4


, (5.101)

where the block matrices U2 and U4 with the sparse matrix factorization are given by

U2 =
(

cos π
8 sin π

8

−sin π
8 cos π

8

)
,

U4 = P4




cos π
16 0 0 sin π

16

0 cos 3π
16 sin 3π

16 0

0 −sin 3π
16 cos 3π

16 0

−sin π
16 0 0 cos π

16




(
U2 0

0 U2

)
P4,

and P4 is a permutation matrix given by

P4 =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


.

In order to obtain the parametrized GCMT it is sufficient to parametrize the conversion
matrix T8, or in other words, to parametrize the block matrices U2 and U4. First, let us
parametrize the block matrix U2. Using the trigonometric identity (5.87) we get

U2 =

 cos π

8 sin π
8

−sin π
8 cos π

8


 =


cos π

8 0

0 cos π
8



(

1 tan π
8

− tan π
8 1

)

=



1√
1+b2

0

0 1√
1+b2




 1 b

−b 1


, (5.102)
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where b = tan π
8 . Similarly, for the factorized block matrix U4 we obtain

U4 = P4




cos π
16

cos 3π
16

cos 3π
16

cos π
16







1 0 0 tan π
16

0 1 tan 3π
16 0

0 − tan 3π
16 1 0

− tan π
16 0 0 1




×




cos π
8

cos π
8

cos π
8

cos π
8







1 tan π
8 0 0

− tan π
8 1 0

0 0 1 tan π
8

0 0 − tan π
8 1




P4

= P4
1√

1 + b2




1√
1+a2

1√
1+c2

1√
1+c2

1√
1+a2







1 0 0 a

0 1 c 0

0 −c −1 1

−a 0 0 1







1 b 0 0

−b 1 0 0

0 0 1 b

0 0 −b 1




P4,

(5.103)

where a = tan π
16 and c = tan 3π

16 . Substituting the parametrized block matrices U2 and U4
into (5.101) the conversion matrix T8 has the following form:

T̄8 = 1√
8

D̂8




1

1

1 b

−b 1

1 −ab b a

cb 1 −c b

−b c 1 cb

−a −b −ab 1




, (5.104)

where D̂8 = diag{1, 1, 1√
1 + b2

, 1√
1 + b2

, 1√
(1 + a2)(1+b2)

, 1√
(1 + c2)(1+b2)

, 1√
(1 + c2)(1 + b2)

,

1√
(1 + a2)(1 + b2)

}. Finally, according to (5.100) by evaluating the matrix product T8 Ŵ8

and exploiting the EOT factorization (4.17), the parametrized ĈII
8 matrix is given by

ĈII
8 = 1√

8
D̂8

(
E4 0

0 O4

)(
I4 J4

J4 −I4

)
(5.105)
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where

E4 =




1 1 1 1
1 −1 −1 1

1 + b 1 − b −(1 − b) −(1 + b)
1 − b −(1 + b) 1 + b −(1 − b)


,

O4 =




−[(1 − a) − b(1 + a)] −[(1 + a) − b(1 − a)] −[(1 − a) + b(1 + a)] −[(1 + a) + b(1 − a)]

−[(1 + c) − b(1 − c)] (1 − c) − b(1 + c) (1 + c) + b(1 − c) −[(1 − c) + b(1 + c)]

(1 − c) + b(1 + c) (1 + c) + b(1 − c) −[(1 − c) − b(1 + c)] −[(1 + c) − b(1 − c)]

(1 + a) + b(1 − a) −[(1 − a) + b(1 + a)] (1 + a) − b(1 − a) −[(1 − a) − b(1 + a)]


.

5.4.3.3 The fast GCMT8 (a, b, c)

Let us denote the new parametrized transform as GCMT8 (a, b, c), where a = tan π
16 ,

b = tan π
8 and c = tan 3π

16 . Equation (5.100) and the parametrized block matrices U2 and U4
in (5.102) and (5.103) define the fast GCMT8 (a, b, c). The corresponding generalized sig-
nal flow graph is shown in Fig. 5.10. Again, it is interesting to note that if GCMT8 (a, b, c)
is viewed as the actual transform, then with respect to the signal flow graph in Fig. 5.10
the computation of 8-point DCT-II without normalization requires only 10 multiplications
and 34 additions.

Approximating the set of parameters {a, b, c} by dyadic rationals (see Table 5.12) we
obtain new rationalized approximation of the DCT-II matrix CII

8 . Compared to the integer
CMT described in Section 5.4.1, the GCMT8 (a, b, c) is more elegant and flexible with
multiply-free implementation. In the Table 5.15, there is a summarized comparison of
the MSE approximation error and performance measures of some rationalized GCMT8
(tan π

16 , tan π
8 , tan 3π

16 ) with the 8-point DCT-II. The multiply-free computational complex-
ity of rationalized GCMT8 (tan π

16 , tan π
8 , tan 3π

16 ) with respect to the signal flow graphs in
Fig. 5.10 is summarized in Table 5.16.

5.4.4 BinDCT/BinDST and IntDCT/IntDST

Fast multiplierless approximations of the 8-point DCT-II, called the BinDCT (Binary arith-
metic DCT) [43–45, 46, 50, 51] and IntDCT (Integer DCT) [47, 50, 51] represent modern
transform technologies to approximation of the DCT-II in integer domain. Although the
BinDCT and IntDCT have been proposed independently, the simple and elegant methods
for their construction are the same. They differ only in the fast DCT-II algorithm employed
for the approximation.

In the theory of fast algorithms for the discrete orthogonal transforms computation, a
recursive or nonrecursive sparse matrix factorization of a transform matrix defines a fast
algorithm which is represented by the corresponding generalized signal flow graph and
vice versa. In many cases the sparse matrix factorization of DCT-II matrix consists of the
product of butterfly matrices whose elements are ±1, and rotation matrices composed of
cascades of 2 × 2 plane rotations (see Section 4.4.3). Invertible BinDCTs and IntDCTs
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Fig. 5.10. The fast GCMT8 (a, b, c) implementation.

are derived from plane rotation-based sparse matrix factorizations of the DCT-II matrix
exploiting matrix factorizations of Givens–Jacobi rotations Gϕ and Householder reflec-
tions Hϕ. In Section 5.2 it was shown that Gϕ and Hϕ can be factored into product of
Gauss–Jordan elementary matrices being the unit lower and unit upper triangular matri-
ces, and a diagonal matrix. Each matrix factorization of Gϕ (LUL, ULU, DLU, DUL)
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Table 5.15. Comparison of the MSE approximation error and performance measures
of rationalized GCMT8 (tan π

16 , tan π
8 , tan 3π

16 ) with the 8-point DCT-II.

GCMT8 (tan π
16 , tan π

8 , tan 3π
16 ) MSE Cg η

8-point DCT-II 8.82591 93.99119
GCMT8 (3/16, 3/8, 11/16) 1.428576e−004 8.81701 93.49390
GCMT8 (25/128, 13/32, 85/128) 6.380515e−006 8.82571 93.93420
GCMT8 (51/256, 53/128, 171/256) 8.885787e−009 8.82590 93.98777

Table 5.16. The computational complexity of rationalized GCMT8

(tan π
16 , tan π

8 , tan 3π
16).

GCMT8 (tan π
16 , tan π

8 , tan 3π
16) Adds/shifts

GCMT8 (3/16, 3/8, 11/16) 46/22
GCMT8 (25/128, 13/32, 85/128) 56/32
GCMT8 (51/256, 53/128, 171/256) 54/36

and factorization of Hϕ (DLU, DUL) has an associated efficient computational struc-
ture for the forward and inverse computation. For DCT-II, factorizing Gϕ and Hϕ is just
another way to implement the conventional floating-point DCT-II. Matrix factorizations
of Gϕ and Hϕ offer the versatility in constructing multiplierless approximations to fast
transforms.

The multiplierless approximation of a fast transform is obtained by replacing each 2 × 2
plane rotation in the sparse matrix factorization of the transform matrix (or equivalently
in the generalized signal flow graph) by its proper LUL, ULU, DLU or DUL matrix fac-
torization (or equivalently by its corresponding efficient computational structure), and
approximating the floating-point multipliers with dyadic rationals. Dyadic approxima-
tions of multipliers provide fast, efficient in-place computation of transform coefficients,
the ability to map integers to integers with perfect reconstruction property and an ele-
gant implementation utilizing only add and shift operations. The resulting BinDCTs and
IntDCTs closely approximate the floating-point DCT-II. They can have different com-
putational complexities depending on the required approximation precision. In general,
with a higher computational complexity a higher accuracy is achieved. Thus, the vari-
ous configurations of BinDCT and IntDCT can be tailored to the requirements of a given
application.

The method can be straightforwardly extended to any DCT and DST [52, 54, 56], and
generally to any discrete sinusoidal transform such as the generalized DHL (GDHT) or the
generalized discrete W transform (GDWT) [55, 57] as long as a plane rotation-based sparse
matrix factorization of the transform matrix is known. Actually, such factorizations for all
DCTs and DSTs exist and they are presented in Section 4.4. Since complex multiplications
in FFT algorithms by twiddle factors e jϕ can be converted to the Givens–Jacobi rotations
of complex vector (see equation (5.15)), the method has been applied to split-radix FFT
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algorithm [14–16] to construct fast multiplierless approximation of the DFT called Integer
FFT (IntFFT) [48, 49, 53].

5.4.4.1 Matrix factorizations of Gϕi and Hϕi : notations and analysis

Matrix factorizations of Givens–Jacobi rotations Gϕi and Householder reflections Hϕi are
key mathematical tools in constructing the multiplierless approximations of fast transforms.
In Section 5.2 we showed that Gϕi defined by (5.13) and Hϕi defined by (5.14) can be
factored into the product of Gauss–Jordan elementary matrices that are unit lower and
unit upper triangular matrices, and a diagonal matrix. LUL, ULU, DLU (ULD) and DUL
(LUD) efficient computational structures of Gϕi (forward and inverse) which correspond
to LUL, ULU, DLU (ULD) and DUL (LUD) factorizations are respectively shown in Figs.
5.1–5.4. DLU and DUL structures of Hϕi are quite similar to that of Gϕi except for sign
changes. We note that LUL and ULU factorizations (and hence their efficient structures)
are equivalent in view of the realization of computation, and they are alternatives to each
other. Therefore, the choice of LUL or ULU structure for the efficient implementation
of Gϕi in practical applications is left to the reader. Similar conclusion is valid for DLU
and DUL structures of Gϕi and Hϕi . We recall that there exist relationships between Gϕi

and Hϕi given by (5.36) and (5.37), and the structure of Gϕi can be adapted with minor
modification for the implementation of Hϕi and vice versa. Furthermore, any other plane
rotation Rϕi (see Section 5.2.8) can be always converted to Gϕi .

In this section, we prefer LUL and DLU factorizations of Gϕi with the corresponding
computational structures and in the following they are discussed in detail. The LUL fac-
torizations of Gϕi and its inverse, G−ϕi , with the multipliers pi and ui are respectively
defined as

Gϕi =
(

cos ϕi −sin ϕi

sin ϕi cos ϕi

)
=
(

1 0
pi 1

)(
1 −ui

0 1

)(
1 0
pi 1

)
,

G−ϕi =
(

cos ϕi sin ϕi

−sin ϕi cos ϕi

)
=
(

1 0
−pi 1

)(
1 ui

0 1

)(
1 0

−pi 1

)
, (5.106)

where

pi = 1 − cos ϕi

sin ϕi
= tan

ϕi

2
and ui = sin ϕi �= 0.

The corresponding forward and inverse LUL structures are respectively shown in Fig.
5.11(a) and (b), where (x0, x1)T and (y0, y1)T are the input and rotated vectors, respectively.

pi pipi piui ui

(b)(a) x0 x0y0 y0

x1 x1y1 y1
�

�

�� �

�

Fig. 5.11. The LUL structures: (a) of Gϕi and (b) of its inverse G−ϕi .
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In the practical implementations of the LUL structure of Gϕi for a rotation angle ϕi the
value of the multiplier ui can be arbitrarily small and consequently, the dynamic range
of multiplier pi can be arbitrarily large. Therefore, we should control the range of the
multipliers pi and ui as follows. If the rotation angle ϕi ∈ (−π

2 , 0) ∪ (0, π
2 ), then the value

of cos ϕi > 0 and

|pi| =
∣∣∣tan

ϕi

2

∣∣∣ =
∣∣∣∣1 − cos ϕi

sin ϕi

∣∣∣∣ =
∣∣∣∣ sin ϕi

1 + cos ϕi

∣∣∣∣
= | sin ϕi|

∣∣∣∣ 1

1 + cos ϕi

∣∣∣∣ < | sin ϕi| = |ui| < 1, (5.107)

and multipliers pi and ui fall between −1 and +1. However, if the rotation angle
ϕi ∈ (−π, π

2 ) ∪ (π
2 , π), then the value of cos ϕi < 0 and |pi| > 1 which is not desirable.

The absolute values of multipliers pi and ui can be controlled to be always less than or
equal to 1 by replacing Gϕi with its equivalent form −Gϕi+π as [49]

Gϕi = −Gϕi+π = −
(−cos ϕi sin ϕi

−sin ϕi −cos ϕi

)
= −

(
1 0

p̄i 1

)(
1 −ui

0 1

)(
1 0

p̄i 1

)
, (5.108)

where

p̄i = 1 + cos ϕi

sin ϕi
= 1

tan ϕi
2

and ui = sin ϕi �= 0.

When rotation angle ϕi ∈ (−π, π
2 ) ∪ (π

2 , π), then we have

p̄i| =
∣∣∣∣ 1

tan ϕi
2

∣∣∣∣ =
∣∣∣∣1 + cos ϕi

sin ϕi

∣∣∣∣ =
∣∣∣∣ sin ϕi

1 − cos ϕi

∣∣∣∣
= | sin ϕi|

∣∣∣∣ 1

1 − cos ϕi

∣∣∣∣ < | sin ϕi| = |ui| < 1, (5.109)

and new multipliers p̄i and ui fall again between −1 and +1. In order to obtain the corre-
sponding LUL structure of −Gϕi+π we need to modify the LUL structure of Gϕi replacing
the multiplier pi by p̄i and changing signs of the result.

Now consider the DLU and ULD factorizations of Gϕi and its inverse, G−1
ϕi

, respectively,
with the multipliers pi and ui which are defined as

Gϕi =
(

cos ϕi −sin ϕi

sin ϕi cos ϕi

)
=
(

cos ϕi 0

0 1
cos ϕi

)(
1 0

ui 1

)(
1 −pi

0 1

)
,

G−1
ϕi

=
(

cos ϕi sin ϕi

−sin ϕi cos ϕi

)
=
(

1 pi

0 1

)(
1 0

−ui 1

)
1

cos ϕi
0

0 cos ϕi


, (5.110)

where

pi = sin ϕi

cos ϕi
= tan ϕi, cos ϕi �= 0 and ui = sin ϕi cos ϕi.
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On the other hand, the DLU and ULD factorizations of Hϕi and its inverse, H−1
ϕi

,
respectively, are defined as

Hϕi =
(

cos ϕi sin ϕi

sin ϕi −cos ϕi

)
=
(

cos ϕi 0

0 − 1
cos ϕi

)(
1 0

−ui 1

)(
1 pi

0 1

)
,

H−1
ϕi

=
(

cos ϕi sin ϕi

sin ϕi −cos ϕi

)
=
(

1 −pi

0 1

)(
1 0
ui 1

)( 1
cos ϕi

0

0 −cos ϕi

)
, (5.111)

where multipliers pi and ui are the same as in (5.110). The DLU and ULD structures of
Gϕi and its inverse, G−1

ϕi
, respectively, are shown in Fig. 5.12(a). The DLU and ULD

structures of Hϕi and its inverse, H−1
ϕi

, respectively, are shown in Fig. 5.12(b). Equations
(5.106) and (5.110) imply that the Givens–Jacobi rotations Gϕi can be represented by LUL
or DLU factorization. To simplify the construction of multiplierless approximations of fast
transforms, the concept of scaled transform can be applied and any plane rotation at the end
of the signal flow graph can be replaced by the proper DLU structure involving only two
multipliers. Elements of the diagonal matrix D are simply absorbed into the quantization
stage [46].

Similarly, in practical implementations of the DLU structure of Gϕi (or Hϕi ) there is a
problem related to numerical instability for some rotation angles [46]. Specifically, the
signal at the point V in DLU structure of Gϕi shown in Fig. 5.12 (a) can be expressed as

V = ui x0 + (1 − piui)x1 = sin ϕi cos ϕi x0 + cos2 ϕi x1. (5.112)

If the rotation angle ϕi is close to kπ+π
2 , where k is an integer, then the value of 1 − piui, i.e.,

cos2ϕi would be very small. For example, for the rotation angle 7π
16 , cos2( 7π

16 ) = 0.038060.
Therefore, a large relative error for 1 − piui could result when multipliers pi and ui are
truncated or rounded, leading to a drastic change in frequency response of the result.

x0 y0

y1x1

pi piui ui

piuipi ui

cos wi

y1cos wi

y1�cos wi

y0cos wi

cos wi

1

y0
cos wi

1

y0cos wi

1

y1cos wi

1

x0

x1

x0

x1

x0

x1

(a)

(b)

V

�

�

�

�

�

�

�

�

�

Fig. 5.12. The DLU and ULD structures: (a) of Gϕi and its inverse G−1
ϕi

and (b) of Hϕi and its
inverse H−1

ϕi
.
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x0 y0

x1 y1 y1

pi ui ui

1
sin wi

1
sin wi

�sin wi

sin wi y0 x0

x1
V

(a) (b)

- pi
-

�

��

�

�

Fig. 5.13. The permuted DLU and ULD structures: (a) of Gϕi and (b) its inverse G−1
ϕi

.

Another problem is that the multiplier pi = tan ϕi would be much greater than 1. This fact
increases the dynamic range of intermediate result and it is undesirable in both software
and hardware implementations.

To eliminate the effect of finite-length approximations of multipliers on the performance of
multiplierless approximations of fast transforms, an alternative equivalent permuted DLU
factorization of Gϕi is suggested and it is given by [46]

Gϕi =
(

cos ϕi −sin ϕi

sin ϕi cos ϕi

)
=
(

0 1

1 0

)(sin ϕi 0

0 − 1
sin ϕi

)(
1 0

−ui 1

)(
1 p̄i

0 1

)
, (5.113)

where

p̄i = 1

tan ϕi
and ui = cos ϕi sin ϕi.

The corresponding permuted DLU and ULD structures of Gϕi and its inverse, G−1
ϕi

, are
respectively shown in Fig. 5.13 (a) and (b). Evaluating the signal at the point V in the
permuted DLU structure of Gϕi shown in Fig. 5.13 (a) with the new multipliers p̄i and ui
we get

V = −ui x0 + (1 − p̄iui)x1 = −sin ϕi cos ϕi x0 + sin2 ϕi x1, (5.114)

and comparing with (5.112) the coefficient of x1 changes from cos2 ϕi to sin2 ϕi which is
more robust to truncation errors for rotation angles ϕi close to kπ + π

2 .

In general, when the DLU structure of Gϕi is used to obtain finite-length approximation of
fast transform with minimal dynamic range and balanced performance, its implementation
can be controlled as follows. The original DLU structure shown in Fig. 5.12 (a) should be
used if cos2 ϕi > sin2 ϕi, and the permuted DLU computational structure shown in Fig. 5.13
(a) should be adopted if cos2 ϕi < sin2 ϕi. When cos2 ϕi = sin2 ϕi both structures reduce
to the unnormalized Haar transform. Similar sensitivity analysis can be performed for the
DLU structure of Hϕi .

Whereas Gϕi and Hϕi rotation matrices are orthogonal (Gϕi is eigenorthogonal while Hϕi is
non-eigenorthogonal), the factored Gauss–Jordan elementary matrices in LUL and DLU
factorizations are not orthogonal. However, they are invertible. The invertibility guarantees
perfect reconstruction between forward and inverse transformations.
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If the multipliers pi and ui are floating-point numbers, then LUL structures shown in
Fig. 5.11 represent the fast Givens–Jacobi rotation. If a floor operator (the largest integer
that is less than or equal to the operand), a ceil operator (the smallest integer that is
greater than or equal to the operand) or a round operator (see Section 5.5.2) is applied to
each multiplier pi and ui, then the LUL and DLU structures can map integers to integers
without destroying the perfect reconstruction property. If each step in the computational
structure is chosen to be dyadic, then all multipliers can be replaced by finite-length binary
numbers.

5.4.4.2 Dyadic rational numbers

The dyadic rational number is a binary fractional one of the form k
2b , where k, b ∈ N and k

is an odd integer [50, 51]. Multiplication by dyadic rational number can be implemented
using only binary arithmetic. The multiplicand is first multiplied by numerator k and the
result is shifted to the right by b-bits. Neglecting shift operations, the minimum num-
ber of additions required for implementing a given binary fraction is equal to that for
implementing its numerator k. An integer multiplication is equivalent to bit- shifting the
multiplicand to the left by different numbers of bits and summing up these bit-shifted
versions. The total number of shifts and additions required can be counted from the binary
representation of the integer multiplier. For example, multiplication by 5 = (101)2 can
be implemented by 1 addition and 1 shift. Similarly, multiplication by 7 = (111)2 can
be implemented by 2 additions and 2 shifts, since 7 = 4 + 2 + 1 = (100)2 + (10)2 + (1)2.
However, this is not the minimum number of additions needed to multiply a number by
7, because if we express 7 = 8 − 1 = (1000)2 − (1)2, it is immediately clear that only 1
addition and 1 shift are required. This fact is related to minimum-adder representation of
integer multiplier k which is based on the concept of multiplicative irreducibility in terms of
adders [50, 51].

Definition 5.1: (Multiplicative irreducibility)
A positive integer multiplier x is said to be multiplicatively irreducible in terms of adders if
the minimum number of adders required to implement its multiplication is equal to nx − 1,
where nx is the number of 1s in the binary representation of x.

The multiplicative irreducibility is important in determining the minimum-adder represen-
tation of an integer multiplier.

Definition 5.2: (Minimum-adder representation)
An integer x can be decomposed into the form x = a − b, where a, b ∈ N are multiplica-
tively irreducible containing na and nb binary 1s, respectively. The minimum number of
adders required to implement the multiplication by x is na + nb − 1.

Definition 5.3: (Irreducible form)
Given an integer x, minimum-adder representation is said to be the irreducible form
of x.

An algorithm for systematically finding the multiplierless approximations of fast trans-
forms with minimum-adder representation while minimizing MSE approximation error or
maximizing the performance of approximated transform is presented in Refs. [50, 51].
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Note: The so-called SOPOT (Sum-Of-Powers-Of-Two) approximation of a floating-point
multiplier was introduced in Refs. [52, 53]. The SOPOT approximation is defined as

M∑
k=1

ak 2bk , ak ∈ {−1, 0, 1}, bk ∈ {−r, . . . , −1, 0, 1, . . . , r},

where r is the range of multiplier and M is the number of terms. Thus, each floating-point
multiplier can be replaced by the limited number of additions and shifts. However, the
SOPOT approximation is actually a dyadic rational number after summing up the terms.

5.4.4.3 Dyadic multiplierless approximations of G 3π
8

and H π
4

In the following we present in detail the examples of how to replace:

• Givens–Jacobi rotation Gϕ and its inverse, G−ϕ, by LUL structures with dyadic
approximations of multipliers in terms of minimum-adder representation for rotation
angle ϕ = 3π

8 .

• Householder reflection Hϕ and its inverse, H−1
ϕ , by DLU and ULD structures,

respectively, with dyadic approximations of multipliers in terms of minimum-adder
representation for rotation angle ϕ = π

4 .

Consider the LUL factorizations of Gϕ and its inverse, G−ϕ, given by (5.106) and their cor-
responding LUL structures shown in Fig. 5.11 (a) and (b), respectively. For rotation angle
ϕ = 3π

8 the values of multipliers p and u may have the following dyadic approximations:

p 0.668179 u 0.923880

3/4 0.750000 1 1.000000
5/8 0.625000 7/8 0.875000
11/16 0.687500 15/16 0.937500
21/32 0.656250 29/32 0.906250

As a tradeoff between computational cost and approximation precision we choose the
dyadic approximations 5/8 and 15/16 for multipliers p and u, respectively. Substituting
the dyadic approximations of p and u into the LUL structure we get the dyadic form of
G 3π

8
denoted by Ḡ 3π

8
, (5/8,15/16). The scheme for replacing G 3π

8
by its dyadic form Ḡ 3π

8

(5/8,15/16) is shown in Fig. 5.14 (a), and for replacing G− 3π
8

by its dyadic form Ḡ− 3π
8

(5/8,15/16) is shown in Fig. 5.14 (b).

Since the dyadic multipliers can be decomposed into minimum-adder representation as

5

8
= 4 + 1

8
= 1

2
+ 1

8
requiring 1 addition and 2 shifts,

15

16
= 16 − 1

16
= 1 − 1

16
requiring 1 addition and 1 shift,
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Fig. 5.14. Replacing: (a) G 3π
8

by its dyadic form Ḡ 3π
8

(5/8, 15/16) and (b) G− 3π
8

by its dyadic form

Ḡ− 3π
8

(5/8,15/16).

and taking into account 3 additions required by the LUL structure, the total computational
cost in implementing the dyadic form Ḡ 3π

8
(5/8,15/16) as well as Ḡ− 3π

8
(5/8,15/16) is

6 additions and 5 shifts.

Now consider the DLU and ULD factorizations of Hϕ and its inverse, H−1
ϕ , respectively,

given by (5.111) and their corresponding DLU and ULD structures shown in Fig. 5.12 (b).
For rotation angle ϕ = π

4 the values of multipliers are p = 1 and u = 1
2 , which are already in

dyadic form. By direct substitution of p = 1 and u = 1
2 into DLU factorization (5.111) we get

H π
4

=
(√

2
2 0

0 −√
2

)(
1 0

− 1
2 1

)(
1 1

0 1

)
=
(√

2
2 0

0
√

2

)(
1 1
1
2 − 1

2

)
, (5.115)

and H π
4

is reduced to the unnormalized Haar transform. Denote the dyadic form of H π
4

as

DH̄ π
4

(1,1/2), where D = diag{√2/2, − √
2}. The scheme for replacing H π

4
by its dyadic

form DH̄ π
4

(1, 1/2) is shown in Fig. 5.15 (a), and for replacing H−1
π
4

by its dyadic form

H̄−1
π
4

(1, 1/2)D−1 is shown in Fig. 5.15 (b).

Provided the diagonal elements of D are incorporated into the quantization stage, the
total computational cost in implementing the dyadic form DH̄ π

4
(1, 1/2) as well as H̄−1

π
4

(1, 1/2)D−1 is 2 additions and 1 shift.

5.4.4.4 Construction of BinDCT/BinDST and IntDCT/IntDST

In the following is described the construction and implementation of multiplierless approx-
imations of fast DCTs and DSTs. In order to uniquely distinguish the multiplierless
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by its dyadic form DH̄ π
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by its dyadic form H̄−1
π
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(1, 1/2)D−1.

approximation of a specific DCT and DST, we will use the notation BinDCT-x/BinDST-x
and IntDCT-x/IntDST-x, where x denotes the type I, II, III or IV.

Generally, the construction of multiplierless approximation of a given fast DCT/DST
consists of two common steps:

1. To consider a plane rotation-based sparse matrix factorization of DCT/DST matrix
defining its fast algorithm which is equivalently represented by a corresponding
generalized signal flow graph.

2. To convert each plane rotation to Gϕi or Hϕi , if it is necessary, and then to factorize it
into LUL or DLU form. Finally, to replace the Gϕi or Hϕi by the corresponding LUL
or DLU form with dyadic approximation of multipliers.

In almost all cases for a given N , it is sufficient to consider the signal flow graph. After the
approximation of all plane rotations we obtain immediately the forward and inverse fast
multiplierless BinDCT and IntDCT implementations. The construction of BinDCT and
IntDCT is illustrated for 8-point DCT-II and its inverse, DCT-III. Constructing BinDCT-II
and IntDCT-II and their inverses, BinDCT-III and IntDCT-III, are based on the following
fast algorithms:

• Fast algorithm for the DCT-II computation and its inverse, DCT-III [17] (see Section
4.4.3.7). Their fast multiplierless approximations are denoted as BinDCT-IIC and
BinDCT-IIIC. The construction of BinDCT-IIC and BinDCT-IIIC is presented as
complete as possible.

• Fast algorithm for the scaled DCT-II and DCT-III computation [20] (see Sec-
tion 4.4.3.1). Their multiplierless approximations are denoted as BinDCT-IIL and
BinDCT-IIIL.
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• Fast split-radix algorithm for the DCT-II and DCT-III computation (see Sec-
tion 4.4.3.4). Their multiplierless approximations are denoted as BinDCT-IIS and
BinDCT-IIIS.

• The fast algorithm DCT-II and DCT-III computation via WHT [18, 19] (see Section
4.4.3.2). Their multiplierless approximations are denoted as IntDCT-II and IntDCT-
III.

5.4.4.5 Construction of BinDCT-IIC and BinDCT-IIIC

Let ĈII
8 be the DCT-II matrix with its rows in bit-reversed order. Then, according to the

recursive sparse matrix factorization (4.50) it can be written as

ĈII
8 = D̂8



(

CII
2 0

0 CIV
2 J2

)(
I2 J2

J2 −I2

)
0

0 ĈIV
4 J4



(

I4 J4

J4 −I4

)
, (5.116)

where

CII
2 =




√
2

2

√
2

2
√

2
2 −

√
2

2


 =

(
cos π

4 sin π
4

sin π
4 −cos π

4

)
= H π

4
,

CIV
2 J2 =

(
sin π

8 cos π
8

−cos π
8 sin π

8

)
=

 cos 3π

8 sin 3π
8

−sin 3π
8 cos 3π

8


 = G− 3π

8
, (5.117)

and among the sparse matrix factorizations of ĈIV
4 J4 (see Section 5.4.3) the most suitable

form is given by

ĈIV
4 J4 =




cos 7π
16 sin 3π

16 cos 3π
16 sin 7π

16

cos 3π
16 cos 7π

16 −sin 7π
16 sin 3π

16

−sin 3π
16 −sin 7π

16 −cos 7π
16 cos 3π

16

−sin 7π
16 cos 3π

16 −sin 3π
16 cos 7π

16




=




cos 7π
16 0 0 sin 7π

16

0 cos 3π
16 sin 3π

16 0

0 −sin 3π
16 cos 3π

16 0

−sin 7π
16 0 0 cos 7π

16







1 1 0 0

1 −1 0 0

0 0 −1 1

0 0 1 1







1 0 0 0

0 −cos π
4 sin π

4 0

0 sin π
4 cos π

4 0

0 0 0 1




.

(5.118)

The diagonal matrix D̂8 in (5.116) for the normalization of DCT-II coefficients is given
by D̂8 = diag{ 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 }. The generalized signal flow graph for the fast 8-point
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Fig. 5.16. The generalized signal flow graph for the fast 2-, 4- and 8-point DCT-II computation and
its inverse, DCT-III, based on (5.116)–(5.118) with highlighted plane rotations.

DCT-II computation with embedded 2- and 4-point transforms based on (5.116)–(5.118)
with highlighted plane rotations is shown in Fig. 5.16. The computation of the 8-point
DCT-II requires 13 floating-point multiplications and 29 floating-point additions. Com-
paring Figs. 4.8 with 5.16 we note that two butterflies with multipliers cos π

4 in Fig. 4.8
have been replaced by plane rotations with the angle π

4 in Fig. 5.16.

The signal flow graph in Fig. 5.16 involves 5 plane rotations, specifically,

H π
4
, G− 3π

8
, R̄ π

4
= G− π

4

(−1 1

0 1

)
, G− 3π

16
and G− 7π

16
.

Now all that is needed is to replace each plane rotation by the proper LUL or DLU
structure with dyadic approximation of multipliers pi and ui, i = 0, 1, 2, 3, 4. Replacing
G− 3π

8
by the LUL structure with dyadic approximation of multipliers is shown in Fig. 5.14

(b), while replacing H π
4

by the DLU structure is shown in Fig. 5.15 (a). The remaining

plane rotations R̄ π
4
, G− 3π

16
and G− 7π

16
in the lower half of the signal flow graph in Fig. 5.16

are similarly replaced by LUL structures. In Table 5.17 are summarized all plane rotations
with analytical values of the multipliers pi, ui, i = 0, 1, 2, 3, 4 together with their dyadic
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Table 5.17. Plane rotations with analytical values of the multipliers, their dyadic approximations
and the computational cost of DLU and LUL structures in BinDCT-IIC.

Plane Multiplier Analytical Dyadic Computational Computational
rotation value approximation structure cost (adds + shifts)

H π
4

p0 1 DLU
u0 1/2 DH̄ π

4
(1, 1/2) 2A + 1S

G− 3π
8

p1 0.668179 5/8 ≈ 0.625000 LUL
u1 0.923880 15/16 ≈ 0.937500 Ḡ− 3π

8
(5/8, 15/16) 6A + 5S

LUL

R̄ π
4

p2 0.414214 7/16 ≈ 0.437500 Ḡ− π
4

(7/16, 3/4) ×
u2 0.707107 3/4 ≈ 0.750000 diag{−1, 1} 6A + 6S

G− 3π
16

p3 0.303347 1/4 ≈ 0.250000 LUL
u3 0.555570 1/2 ≈ 0.500000 Ḡ− 3π

16
(1/4, 1/2) 3A + 3S

G− 7π
16

p4 0.820679 13/16 ≈ 0.812500 LUL
u4 0.980785 1 Ḡ− 7π

16
(13/16, 1) 7A + 6S

approximations and the computational cost of DLU and LUL structures in terms of add
and shift operations.

The general forms of the forward fast multiplierless 8-point BinDCT-IIC and its inverse,
BinDCT-IIIC, with embedded 2- and 4-point transforms are shown in Fig. 5.17 (a) and (b),
respectively. The diagonal matrix D̂8 for the normalization of coefficients of fast multipli-

erless BinDCT-IIC is given by D̂8 = diag{
√

2
4 ,

√
2

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 }. The fast multiplierless
BinDCT-IIIC implementation in Fig. 5.17 (b) is obtained by reversing the BinDCT-IIC
signal flow graph and taking inverses of the DLU and LUL structures. If multipliers pi
and ui are floating-point numbers, then implementations of the 8-point DCT-II in Figs.
5.16 and 5.17 (a) are equivalent. Any other dyadic approximations of pi and ui can be sub-
stituted into the corresponding DLU and LUL structures in Table 5.17 to obtain various
configurations of BinDCT-IIC with different accuracies and computational costs. We note
that plane rotations G− 3π

8
, G− 3π

16
and G− 7π

16
at the end of the signal flow graph in Fig. 5.16

can be alternatively replaced by DLU structures. Such BinDCT-IIC configurations can be
found in Refs. [46, 50, 51].

For the dyadic approximations of multipliers pi and ui shown in Table 5.17, if we use
them with the appropriate DLU and LUL forms of Hϕi and Gϕi and multiply the factored
Gauss–Jordan elementary matrices followed by substitution of the resulting matrices into
(5.117) and (5.118), we obtain the lower-order approximated matrices C̄II

2 , C̄IV
2 J2 and

ˆ̄CIV

4 J4 as

C̄II
2 =

(
1 1
1
2 − 1

2

)
, C̄IV

2 J2 =
(

53
128

15
16

− 905
1024

53
128

)
,
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Fig. 5.17. The general forms of the forward fast multiplierless 8-point (a) BinDCT-IIC, (b) and its
inverse, BinDCT-IIIC, with embedded 2- and 4-point transforms.
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ˆ̄CIV

4 J4 =




3
16

155
256

13
16 1

7
8

455
2048 − 127

128
1
2

− 15
32 − 7823

8192 − 121
512

7
8

− 247
256

3217
4096 − 153

256
3
16




.

Substituting the above lower-order approximated matrices into the sparse factorization
(5.116) the BinDCT-IIC basis vectors approximating the DCT-II matrix ĈII

8 are given by

ˆ̄CII

8 = D̂8




1 1 1 1 1 1 1 1

1
2 − 1

2 − 1
2

1
2

1
2 − 1

2 − 1
2

1
2

15
16

53
128 − 53

128 − 15
16 − 15

16 − 53
128

53
128

15
16

53
128 − 905

1024
905

1024 − 53
128 − 53

128
905

1024 − 905
1024

53
128

1 13
16

155
256

3
16 − 3

16 − 155
256 − 13

16 −1

1
2 − 127

128
455
2048

7
8 − 7

8 − 455
2048

127
128 − 1

2

7
8 − 121

512 − 7823
8192 − 15

32
15
32

7823
8192

121
512 − 7

8

3
16 − 153

256
3217
4096 − 247

256
247
256 − 3217

4096
153
256 − 3

16




,

where D̂8 = diag{
√

2
4 ,

√
2

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 }.
In Table 5.21 is summarized the MSE approximation error, performance measures of the
fast multiplierless BinDCT-IIC compared with the 8-point DCT-II, and the total compu-
tational complexity of BinDCT-IIC and BinDCT-IIIC for specific dyadic approximations
of the multipliers from Table 5.17.

5.4.4.6 Construction of BinDCT-IIL and BinDCT-IIIL

The fast algorithm for the 8-point scaled DCT-II and its inverse, DCT-III [20], with respect
to (5.116) and (5.117) is based on the sparse factorization of the scaled transform matrix
ĈII

8 defined as

ĈII
8 = D̂8







√
2CII

2 0

0
√

2J2CIV
2 J2



(

I2 J2

J2 −I2

)
0

0
√

2J4ĈIV
4 J4



(

I4 J4

J4 −I4

)
,

(5.119)
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where

√
2CII

2 =

1 1

1 −1


 ,

√
2CIV

2 J2 = √
2


 cos 3π

8 sin 3π
8

−sin 3π
8 cos 3π

8


 = √

2G− 3π
8

, (5.120)

and the sparse factorization of
√

2J4CIV
4 J4 is given by

√
2J4ĈIV

4 J4 = √
2




−cos π
16 cos 3π

16 −sin 3π
16 sin π

16

−sin 3π
16 −cos π

16 −sin π
16 cos 3π

16

cos 3π
16 sin π

16 −cos π
16 sin 3π

16

sin π
16 sin 3π

16 cos 3π
16 cos π

16




= √
2




−cos π
4 0 0 sin π

4

0 1 0 0

0 0 1 0

sin π
4 0 0 cos π

4







1 0 1 0

0 −1 0 1

1 0 −1 0

0 1 0 1







cos 3π
16 0 0 sin 3π

16

0 cos π
16 sin π

16 0

0 −sin π
16 cos π

16 0

−sin 3π
16 0 0 cos 3π

16




=




−1 0 0 1

0
√

2 0 0

0 0
√

2 0

1 0 0 1







1 0 1 0

0 −1 0 1

1 0 −1 0

0 1 0 1







cos 3π
16 0 0 sin 3π

16

0 cos π
16 sin π

16 0

0 −sin π
16 cos π

16 0

−sin 3π
16 0 0 cos 3π

16




.

(5.121)

The diagonal matrix D̂8 in (5.119) is given by D̂8 = diag{ 1√
8
, 1√

8
, 1√

8
, 1√

8
, 1√

8
, 1√

8
, 1√

8
, 1√

8
}.

The generalized signal flow graph for the fast 8-point scaled DCT-II with embedded
2- and 4-point transforms based on (5.119)–(5.121) with highlighted plane rotations is
shown in Fig. 5.18. The computation of 8-point scaled DCT-II requires 11 floating-point
multiplications and 29 floating-point additions. In the construction of BinDCT-IIL the
scaling factors

√
2 in (5.120) and (5.121) are incorporated into the diagonal matrix having

the form D̂8 = diag{ 1√
8
, 1√

8
, 1

2 , 1
2 , 1√

8
, 1

2 , 1
2 , 1√

8
}.

The signal flow graph in Fig. 5.18 involves 3 plane rotations, specifically,

G− 3π
8

, G− π
16

and G− 3π
16

.

In Table 5.18 are summarized all plane rotations with analytical values of the multipliers
pi, ui, i = 0, 1, 2 together with their dyadic approximations and the computational cost of
the corresponding LUL structures in terms of add and shift operations.
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Fig. 5.18. The generalized signal flow graph for the fast 2-, 4- and 8-point scaled DCT-II computation
and its inverse, DCT-III, based on (5.119)–(5.121) with highlighted plane rotations.

Table 5.18. Plane rotations with analytical values of the multipliers, their dyadic approximations
and the computational cost of the corresponding LUL structures in BinDCT-IIL.

Plane Multiplier Analytical Dyadic Computational Computational
rotation value approximation structure cost (adds + shifts)

G− 3π
8

p0 0.668179 5/8 ≈ 0.625000 LUL
u0 0.923880 15/16 ≈ 0.937500 Ḡ− 3π

8
(5/8, 15/16) 6A + 5S

G− π
16

p1 0.098491 3/32 ≈ 0.093750 LUL
u1 0.195090 3/16 ≈ 0.187500 Ḡ− π

16
(3/32, 3/16) 7A + 8S

G− 3π
16

p2 0.303347 5/16 ≈ 0.312500 LUL
u2 0.555570 9/16 ≈ 0.562500 Ḡ− 3π

16
(5/16, 9/16) 7A + 8S

The general form of the fast multiplierless 8-point BinDCT-IIL with embedded 2- and
4-point transforms is shown in Fig. 5.19. The fast multiplierless BinDCT-IIIL implemen-
tation is obtained by reversing the BinDCT-IIL signal flow graph and taking inverses
of the LUL structures. Again, if multipliers pi and ui are floating-point numbers, then
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Fig. 5.19. The general form of the fast multiplierless 8-point BinDCT-IIL with embedded 2- and
4-point transforms.

implementations of the 8-point DCT-II in Figs. 5.18 and 5.19 are equivalent. Various other
configurations of BinDCT-IIL can be found in Ref. [46].

In Table 5.21 is summarized the MSE approximation error, performance measures of the
fast multiplierless BinDCT-IIL compared with the 8-point DCT-II, and the total compu-
tational complexity of BinDCT-IIL and BinDCT-IIIL for specific dyadic approximations
of the multipliers from Table 5.18.

5.4.4.7 Construction of BinDCT-IIS and BinDCT-IIIS

Let ĈII
8 be the DCT-II matrix with its rows in bit-reversed order. Then, according to the

split-radix factorization given by (4.81) and (4.82) it can be written as

ĈII
8 = D̂8




(
CII

2 0

0 K2

)(
I2 J2

J2 −I2

)
0

0 K4



(

I4 J4

J4 −I4

)
, (5.122)
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where

K2 =
(

sin π
8 cos π

8

−cos π
8 sin π

8

)
=

 cos 3π

8 sin 3π
8

−sin 3π
8 cos 3π

8


 = G− 3π

8
, (5.123)

and

K4 =




sin π
16 sin 3π

16 cos 3π
16 cos π

16

cos 3π
16 sin π

16 −cos π
16 sin 3π

16

−sin 3π
16 −cos π

16 −sin π
16 cos 3π

16

−cos π
16 cos 3π

16 −sin 3π
16 sin π

16




=




1 0 0 0

0 cos π
4 −sin π

4 0

0 sin π
4 cos π

4 0

0 0 0 1







1 1 0 0

1 −1 0 0

0 0 1 1

0 0 −1 1







sin π
16 0 0 cos π

16

0 sin 3π
16 cos 3π

16 0

0 −cos 3π
16 sin 3π

16 0

−cos π
16 0 0 sin π

16




=




1 0 0 0

0 cos π
4 −sin π

4 0

0 sin π
4 cos π

4 0

0 0 0 1







1 1 0 0

1 −1 0 0

0 0 1 1

0 0 −1 1







cos 7π
16 0 0 sin 7π

16

0 cos 5π
16 sin 5π

16 0

0 −sin 5π
16 cos 5π

16 0

−sin 7π
16 0 0 cos 7π

16




.

(5.124)

The diagonal matrix D̂8 in (5.122) is given by D̂8 = diag { 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 }. It is easily

seen that K2 = CIV
2 J2 and K4 = ĈIV

4 J4. The generalized signal flow graph for the 8-point
DCT-II computation with embedded 2- and 4-point transforms based on (5.122)–(5.124)
with highlighted plane rotations is shown in Fig. 5.20. The computation of the 8-point
DCT-II requires 13 floating-point multiplications and 29 floating-point additions. Com-
paring Figs. 4.14 with 5.20 we note that two butterflies with multipliers cos π

4 in Fig. 4.14
have been replaced by plane rotations with the angle π

4 in Fig. 5.20. The signal flow graph
in Fig. 5.20 involves 5 plane rotations, specifically,

H π
4
, G− 3π

8
, G− 5π

16
, G− 7π

16
and G π

4
.

In Table 5.19 we summarize all plane rotations with analytical values of the multipliers pi,
ui, i = 0, 1, 2, 3, 4 together with their dyadic approximations and the computational cost
of the DLU and LUL structures in terms of add and shift operations.
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Fig. 5.20. The generalized signal flow graph for the fast 2-, 4- and 8-point DCT-II computation and
its inverse, DCT-III, based on (5.122)–(5.124) with highlighted plane rotations.

Table 5.19. Plane rotations with analytical values of the multipliers, their dyadic approximations
and the computational cost of DLU and LUL structures in BinDCT-IIS.

Plane Multiplier Analytical Dyadic Computational Computational
rotation value approximation structure cost (adds + shifts)

H π
4

p0 1 DLU
u0 1/2 DH̄ π

4
(1, 1/2) 2A + 1S

G− 3π
8

p1 0.668179 5/8 ≈ 0.625000 LUL
u1 0.923880 15/16 ≈ 0.937500 Ḡ− 3π

8
(5/8, 15/16) 6A + 5S

G− 5π
16

p2 0.534511 17/32 ≈ 0.531250 LUL

u2 0.831470 13/16 ≈ 0.812500 Ḡ− 5π
16

(17/32, 13/16) 7A + 6S

G− 7π
16

p3 0.820679 13/16 ≈ 0.812500 LUL
u3 0.980785 31/32 ≈ 0.968750 Ḡ− 7π

16
(13/16, 31/32) 8A + 5S

G π
4

p4 1 DLU
u4 1/2 DḠ π

4
(1, 1/2) 2A + 1S
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Fig. 5.21. The general form of the fast multiplierless 8-point BinDCT-IIS with embedded 2- and
4-point transforms.

The general form of the fast multiplierless 8-point BinDCT-IIS with embedded 2- and 4-
point transforms is shown in Fig. 5.21. The fast BinDCT-IIIS implementation is obtained
by reversing the BinDCT-IIS signal flow graph and taking inverses of the DLU and LUL
structures. Again, if multipliers pi and ui are floating-point numbers, then implementations
of the 8-point DCT-II in Figs. 5.20 and 5.21 are equivalent.

In Table 5.21 is summarized the MSE approximation error, performance measures of the
fast multiplierless BinDCT-IIS compared with the 8-point DCT-II, and the total compu-
tational complexity of BinDCT-IIS and BinDCT-IIIS for specific dyadic approximations
of the multipliers from Table 5.19.

5.4.4.8 Construction of IntDCT-II and IntDCT-III

The construction of fast multiplierless IntDCT-II is based on the DCT-II computation via
WHT [18, 19]. According to (4.60) the DCT-II matrix ĈII

8 with its rows in bit-reversed
order is defined as

ĈII
8 = D̂8 T8 Ŵ8, (5.125)
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where Ŵ8 is the WHT matrix and T8 is the conversion matrix. Block matrices U2 and U4
in the conversion matrix are given by

U2 =
(

cos π
8 sin π

8

−sin π
8 cos π

8

)
= G− π

8
, (5.126)

and

U4 = P4




cos π
16 0 0 sin π

16

0 cos 3π
16 sin 3π

16 0

0 −sin 3π
16 cos 3π

16 0

−sin π
16 0 0 cos π

16







cos π
8 sin π

8 0 0

−sin π
8 cos π

8 0 0

0 0 cos π
8 sin π

8

0 0 −sin π
8 cos π

8


P4,

(5.127)

where P4 is a permutation matrix. The diagonal matrix D̂8 in (5.125) is given by
D̂8 = diag { 1√

8
, 1√

8
, 1√

8
, 1√

8
, 1√

8
, 1√

8
, 1√

8
, 1√

8
}. The generalized signal flow graph for the

8-point DCT-II computation via WHT and its inverse, DCT-III, with highlighted plane
rotations is shown in Fig. 5.22. The computation of DCT-II via WHT requires 15
floating-point multiplications and 39 floating-point additions.

The signal flow graph in Fig. 5.22 involves five plane rotations with 3 different rotation
angles, specifically,

G− π
8
, G− π

16
and G− 3π

16
.

In Table 5.20 are summarized all plane rotations with analytical values of the multipliers
pi, ui, i = 0, 1, 2, 3, 4 together with their dyadic approximations and the computational
cost of the corresponding LUL structures in terms of add and shift operations.

The general form of the fast multiplierless 8-point IntDCT-II is shown in Fig. 5.23. The
fast IntDCT-III implementation is obtained by reversing the IntDCT-II signal flow graph
and taking inverses of the LUL structure. Other configurations of IntDCT-II can be found
in [50, 51]. If multipliers pi and ui are floating-point numbers, then implementations of
the 8-point DCT-II in Figs. 5.22 and 5.23 are equivalent.

In Table 5.21 is summarized the MSE approximation error, performance measures of the
fast IntDCT-II compared with the 8-point DCT-II, and the total computational complexity
of IntDCT-II and IntDCT-III for specific dyadic approximations of the multipliers from
Table 5.20.
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Fig. 5.22. The generalized signal flow graph for the fast 8-point DCT-II computation and its inverse,
DCT-III, via WHT with highlighted plane rotations.
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Table 5.20. Plane rotations with analytical values of the multipliers, their dyadic approximations
and the computational cost of the corresponding LUL structures in IntDCT-II.

Plane Multiplier Analytical Dyadic Computational Computational
rotation value approximation structure cost (adds + shifts)

G− π
8

p0,1,2 0.198912 3/16 ≈ 0.187500 LUL
u0,1,2 0.382683 3/8 ≈ 0.375000 Ḡ− π

8
(3/16, 3/8) 7A + 6S

G− 5π
16

p3 0.098491 3/32 ≈ 0.093750 LUL

u3 0.195090 3/16 ≈ 0.187500 Ḡ− π
16

(3/32, 3/16) 6A + 6S

G− 3π
16

p4 0.303347 5/16 ≈ 0.312500 LUL
u4 0.555570 9/16 ≈ 0.562500 Ḡ− 3π

16
(5/16, 9/16) 6A + 6S

5.4.4.9 Relationships among BinDCTs-II, IntDCTs-II and WHT

It is interesting to note that if all multipliers pi and ui are set to zero in the fast multiplier-
less BinDCT-IIC, BinDCT-IIL, BinDCT-IIS and IntDCT-II, then the relationships among
BinDCTs-II, IntDCTs-II and WHT become appearent.

Consider the signal flow graph in Fig. 5.16 used for the construction of BinDCT-IIC.
If we remove the intermediate plane rotation R̄ π

4
, replace all the other plane rotations

by butterflies, and insert a permutation as shown by the dashed box in Fig. 5.24, the
factorization (5.116) is reduced to a new 8-point fast WHT, which can be tuned into a
special BinDCT-IIC.

Similarly, in constructing BinDCT-IIL from the signal flow graph shown in Fig. 5.18, if
we delete 2 plane rotations G− π

16
and G− 3π

16
, and add one more butterfly as shown by the

dashed box in Fig. 5.25, the factorization (5.119) is reduced to another new 8-point fast
WHT.

In the construction of BinDCT-IIS from the signal flow graph shown in Fig. 5.20, if we
remove the plane rotation G π

4
and replace the other plane rotations by butterflies, the

factorization (5.122) is reduced to the exact 8-point fast WHT shown in Fig. 5.22.

In the case of IntDCT-II setting all multipliers pi and ui in Fig. 5.20 to zero, it is reduced
to the 8-point fast WHT. Hence, the proposed BinDCTs-II and IntDCTs-II families can
bridge the gap between DCT-II and WHT by increasing the resolution of the dyadic
approximations of the multipliers pi and ui.

5.4.4.10 Concluding notes

• Based on the relation between DCT-II and DST-II matrices given by (4.11), the fast
multiplierless BinDST-II/BinDST-III and IntDST-II/IntDST-III can be obtained.

• The construction of BinDCT-II/BinDST-II and IntDCT-II/IntDST-II and their
inverses, BinDCT-III/BinDST-III and IntDCT-III/IntDST-III, can be further
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Fig. 5.23. The general form of the fast multiplierless 8-point IntDCT-II.

improved in terms of computational complexity. To reduce the number of add and
shift operations, the plane rotations at the end of signal flow graph can be replaced
by the DLU structure of Gϕi or Hϕi .

• Extension of the method to N = 16 and higher is straightforward. For a given N we
need only a sparse factorization of the transform matrix and the corresponding signal
flow graph.
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Table 5.21. Comparison of the MSE approximation error, performance measures
between the fast multiplierless BinDCTs-II, IntDCT-II compared with the 8-point
DCT-II, and the total computational complexities of BinDCTs-II and IntDCT-II.

MSE Cg η Adds/shifts

8-point DCT-II – 8.82591 93.99119 –
BinDCT-IIC 2.719030e−004 8.81602 93.06690 40/21
BinDCT-IIL 6.958096e−005 8.82228 93.42311 40/21
BinDCT-IIS 8.533458e−005 8.81855 93.52233 41/18
IntDCT-II 5.467468e−005 8.82393 93.75567 54/28
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Fig. 5.24. The 8-point fast WHT derived from the factorization (5.116).

• In the implementation of two-dimensional (2-D) BinDCT-II/BinDST-II and
IntDCT-II/IntDST-II, and their inverses for transform-based coding applications, the
normalization by diagonal elements of D̂N is reduced to shift operations.

• The dynamic range of BinDCTs-II and IntDCTs-II must be examined carefully in
relation to the maximum/minimum values in the input vector. As all elements of
BinDCT-II and IntDCT-II have magnitude less than or equal to unity, they can min-
imize the intermediate dynamic range. Since the absolute sum of the first row of the
approximated transform matrix is much greater than that of other rows, the dynamic
range of the BinDCTs-II and IntDCTs-II is thus determined by the DC subband
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Fig. 5.25. The 8-point fast WHT derived from the factorization (5.119).

(0th coefficient). For 8-point input, a 14-bit representation of the 2-D BinDCT-II
and IntDCT-II output coefficients is needed. This way, the implementations of 2-D
BinDCTs-II and 2-D IntDCTs-II can well fit into a 16-bit architecture [46].

Compared to the conventional floating-point DCT-II, the BinDCTs-II and IntDCTs-II offer
the following advantages [43, 45, 46, 47]:

• Both the forward and inverse transforms have an elegant implementation using only
binary add and shift operations. No multiplications are needed.

• BinDCTs-II and IntDCTs-II inherit all desirable DCT-II characteristics such as high
coding gain, no DC leakage (for constant signal only the 0th transform coefficient is
nonzero), symmetric basis vectors and recursive construction.

• BinDCTs-II and IntDCTs-II also inherit all properties of plane rotation factorizations
such as fast implementation, invertible integer-to-integer mapping, in-place computa-
tion and low dynamic range. The integer-to-integer mapping with exact reconstruction
property is pivotal in transform-based lossless coding and allows for a unifying lossy/
lossless coding framework.

• In software implementation the BinDCTs-II and IntDCTs-II is faster than that
of floating-point DCT-II. Much higher speed can be achieved in their hardware
implementation.
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• The multiplierless property of BinDCTs-II and IntDCTs-II allows for an efficient
VLSI implementation in terms of chip area and power consumption.

• BinDCTs-II and IntDCTs-II aproximate the DCT-II very closely. Coding strategies
designed specifically for the DCT-II can be applied to the BinDCTs-II and IntDCTs-II
immediately without any modification.

• The 2-D BinDCTs-II and IntDCTs-II allow 16-bit implementation, enable lossless
compression and maintain satisfactory compatibility with the DCT-II.

5.4.4.11 Construction of fast multiplierless BinDCT-IV/BinDST-IV

Finally, as an example, we present the construction of fast multiplierless BinDCT-IV/
BinDST-IV for N = 8 based on the fast algorithm for DCT-IV computation [21]. Let CIV

8
be the DCT-IV matrix. Then, according to the improved sparse factorization (4.83) it can
be written as

CIV
8 = D8P8




cos π
32 sin π

32 0 0 0 0 0 0

sin π
32 −cos π

32 0 0 0 0 0 0

0 0 cos 5π
32 sin 5π

32 0 0 0 0

0 0 sin 5π
32 −cos 5π

32 0 0 0 0

0 0 0 0 cos 9π
32 sin 9π

32 0 0

0 0 0 0 sin 9π
32 −cos 9π

32 0 0

0 0 0 0 0 0 cos 13π
32 sin 13π

32

0 0 0 0 0 0 sin 13π
32 −cos 13π

32




×
(

I4 I4

I4 −I4

)



I4 0

1 0 0 0

0 0 0 1

0 0 −1 0 0

0 0 1 0







I2 I2 0

I2 −I2

cos π
8 sin π

8 0 0

sin π
8 −cos π

8 0 0

0 0 0 cos π
8 sin π

8

0 0 sin π
8 −cos π

8




×




I2 0

cos π
4 sin π

4

sin π
4 −cos π

4

I2 I2

0 I2 −I2




H8, (5.128)

where P8 is a matrix that permutes odd-indexed components to reversed order, and the
matrix H8 permutes columns of the transform matrix into a Hadamard order. The diagonal
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Fig. 5.26. The generalized signal flow graph for the fast 8-point DCT-IV computation based on
factorization (5.128) with highlighted plane rotations.

matrix is given by D8 = diag{ 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 , 1
2 , 1

2 }. The generalized signal flow graph for
the fast 8-point DCT-IV computation based on (5.128) with highlighted plane rotations
is shown in Fig. 5.26. The computation of 8-point DCT-IV requires 20 floating-point
multiplications and 36 floating-point additions. Comparing Figs. 4.16 with 5.26, we note
that the butterfly with multipliers cos π

4 in Fig. 4.16 has been replaced by plane rotation
with the angle π

4 in Fig. 5.26.

The signal flow graph in Fig. 5.26 involves 7 plane rotations of the same type, Householder
reflections with six different rotation angles, specifically,

H π
4
, H π

8
, H π

32
, H 5π

32
, H 9π

32
and H 13π

32
.

Taking into account the relation between Hϕi and Gϕi given by (5.37), each Householder
reflection Hϕi can be converted to Givens–Jacobi rotation Gϕi as

Hϕi = Gϕi

(
1 0

0 −1

)
,

and Gϕi can be replaced by the modified LUL structure with dyadic approximations of
the multipliers pi, ui, i = 0, 1, 2, 3, 4, 5, 6. Table 5.22 summarizes all plane rotations
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Table 5.22. Plane rotations with analytical values of the multipliers, their dyadic approximations
and the computational cost of the corresponding LUL structures in BinDCT-IV.

Plane Multiplier Analytical Dyadic Computational Computational
rotation value approximation structure cost (adds + shifts)

LUL
H π

4
p0 0.414214 13/32 ≈ 0.406250 Ḡ π

4
(13/32, 23/32) × 9A + 8S

u0 0.707107 23/32 ≈ 0.718750 diag{1, −1}
LUL

H π
8

p1,2 0.198912 3/16 ≈ 0.187500 Ḡ π
8

(3/16, 3/8) × 12A + 12S
u1,2 0.382683 3/8 ≈ 0.375000 diag{1, −1}

LUL
H π

32
p3 0.049127 3/64 ≈ 0.046875 Ḡ π

32
(3/64, 3/32) × 6A + 6S

u3 0.098017 3/32 ≈ 0.093750 diag{−1, 1}
LUL

H 5π
32

p4 0.250487 1/4 ≈ 0.250000 Ḡ 5π
32

(1/4, 15/32) × 4A + 4S

u4 0.471397 15/32 ≈ 0.468750 diag{−1, 1}
LUL

H 9π
32

p5 0.472965 15/32 ≈ 0.468750 Ḡ 9π
32

(15/32, 3/4) × 6A + 6S
u5 0.773010 3/4 ≈ 0.750000 diag{−1, 1}

LUL
H 13π

32
p6 0.741651 3/4 ≈ 0.750000 Ḡ 13π

32
(3/4, 15/16) × 6A + 5S

u6 0.956940 15/16 ≈ 0.937550 diag{−1, 1}

with analytical values of the multipliers together with their dyadic approximations and the
computational cost of the corresponding LUL structures.

The general form of the fast multiplierless 8-point BinDCT-IV is shown in Fig. 5.27. The
total computational complexity of BinDCT-IV for specific dyadic approximations of the
multipliers shown in Table 5.22 is 59 additions and 41 shifts. Since the DCT-IV matrix
is symmetric, the implementation of inverse BinDCT-IV is the same. Based on relation
between DCT-IV and DST-IV matrices given by (4.12), the fast multiplierless BinDST-IV
transform can be easily obtained. If multipliers pi and ui are floating-point numbers then
implementations in Figs. 5.26 and 5.27 are equivalent. Any other dyadic approximations of
pi and ui may be substituted to obtain various configurations of BinDCT-IV with different
accuracies and computational costs. In order to reduce the computational cost, plane
rotations at the end of the signal flow graph may be replaced by DLU structures.

5.5 Other methods and approaches

The methods discussed in previous sections were originally developed for the integer
approximations of DCTs/DSTs. The resulting integer DCTs/DSTs preserve all mathemat-
ical properties of the original real-valued transforms and they are efficiently implemented
in the integer domain. Besides these, other methods and approaches have been proposed to
construct integer DCTs [9–11, 58–65]. Essentially, these methods do not construct integer
DCTs directly in the integer domain. The computations are still realized with floating-point
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Fig. 5.27. The general form of the fast multiplierless 8-point BinDCT-IV.

arithmetic with a nonlinear operation (rounding, floor or ceil) in the intermediate compu-
tational steps. The result is guaranteed to be integer and the invertibility (reversibility) of
the transform is preserved. In general, the construction of integer transform is based on:

• A factorization of the transform matrix into a product of invertible matrices with
simpler structure (QR, LU and PLUS matrix factorizations).

• A (recursive) factorization of the transform matrix into the product of sparse, orthog-
onal matrices, where each matrix factor is a block-diagonal matrix with blocks being
orthogonal matrices of order 2. Then each 2 × 2 orthogonal (rotation) matrix is
subsequently again factorized and integer approximated, for example, by rounding
procedure such that the process is invertible (reversible).

In the following sections principles for the construction of integer transforms such as a
lossless DCT [58], DCT with reversible integer mapping [9–11], invertible integer DCTs
[59–61], reversible DCTs [62, 63] and square wave transform based on DCT-II [65] are
described in detail.

5.5.1 Lossless DCT

The concept of lossless DCT-II (LDCT-II) has been introduced in Ref. [58]. The LDCT-II
is a modification of the DCT-II that produces integer transform coefficients. The principle
behind the LDCT-II is very simple. It is based on the factorization of DCT-II matrix
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CII
N into the following product:

CII
N = D P1L UP2, (5.129)

where P1 and P2 are permutation matrices, D is a diagonal matrix for scaling transform
coefficients, and L, U are respectively a unit lower and unit upper triangular matrix. For a
given integer input data vector x the LDCT-II computes the integer transform coefficient
vector c̄II as

c̄II = P1�L�U P2 xT��, (5.130)

where � · � denotes the rounding to nearest integer. Thus, the LDCT-II is implemented in
floating-point arithmetic with the results immediately rounded to the nearest integer. Since
inverses of L, U matrices exist (L−1 and U−1 are of the same type), the original input data
vector can be losslessly recovered from c̄II by the inverse LDCT-II. The computational
complexity of the forward and inverse LDCT-II is of order a matrix–vector multiplication.
The maximum error (truncation error introduced by rounding operator) is bounded with
the bound being independent of the range of input data vector.

A general matrix factorization theory for reversible integer mapping of an invertible linear
transform is presented in Refs. [9–11]. Factorizing the transform matrix into a product of
(unit) triangular matrices (LU and PLUS factorizations) and introducing rounding operator
is the basic approach for implementing the transform by reversible integer mapping. The
advantages of integer implementation of invertible linear transform are:

• integer-to-integer mapping,

• perfect reconstruction,

• in-place computation.

In view of linear algebra and matrix computations the DCT/DST matrices possess nice
mathematical properties such as linearity, orthogonality/orthonormality, symmetry of
the basis vectors, eigenorthogonality/eigenorthonormality and recursiveness. In order to
obtain an implementation of DCT/DST with reversible integer mapping, we utilize the
results of linear algebra only: QR, LU and PLUS matrix factorizations. Such factoriza-
tions allow to factorize a transform matrix to be written as products of structurally simpler
matrices to efficiently realize subsequent computational steps.

Consider the 8-point DCT-II defined by the matrix CII
8 . The direct analytical derivation of

QR, LU and PLUS factorizations for the matrix CII
8 can be a relatively complex procedure.

In order to simplify the analytical derivation of QR, LU and PLUS for CII
8 we exploit the

EOT factorization defined by (4.17). According to the EOT factorization, the matrix CII
8

can be recursively reduced to the butterfly matrices and DCT-II and DCT-IV matrices of
lower orders. Finding QR, LU and PLUS factorizations of the lower-order DCT-II and
DCT-IV matrices and substituting them into the EOT factorization results in the regular
computational structures for 8-point DCT-II computation with reversible integer mapping.
With respect to [58] they will be called QR-, LU- and PLUS-based LDCTs-II. Although
the approach will be illustrated for the 8-point DCT-II, in general, it can be applied to any
DCT and DST.
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5.5.1.1 EOT matrix factorization of ĈII
8

Let ĈII
8 be the DCT-II matrix with its rows rearranged so that the upper half consists of

even-indexed rows followed by the lower half of odd-indexed rows, both in natural order.
Then, according to the EOT factorization defined by (4.17), the matrix ĈII

8 can be written as

ĈII
8 = 1

2

(
C̄II

4 C̄II
4 J4

C̄IV
4 −C̄IV

4 J4

)
= 1

2

(
C̄II

4 0

0 C̄IV
4 J4

)(
I4 J4

J4 −I4

)
, (5.131)

where

C̄II
4 =




√
2

2

√
2

2

√
2

2

√
2

2

cos π
8 sin π

8 −sin π
8 − cos π

8√
2

2 −
√

2
2 −

√
2

2

√
2

2

sin π
8 −cos π

8 cos π
8 −sin π

8




,

C̄IV
4 J4 =




sin π
16 sin 3π

16 cos 3π
16 cos π

16

−sin 3π
16 −cos π

16 −sin π
16 cos 3π

16

cos 3π
16 sin π

16 −cos π
16 sin 3π

16

−cos π
16 cos 3π

16 −sin 3π
16 sin π

16


. (5.132)

The eigenorthonormal matrices CII
4 and CIV

4 J4 (see Section 4.3) are given by

CII
4 =

√
2

2




√
2

2

√
2

2

√
2

2

√
2

2

cos π
8 sin π

8 −sin π
8 −cos π

8
√

2
2 −

√
2

2 −
√

2
2

√
2

2

sin π
8 −cos π

8 cos π
8 −sin π

8




,

CIV
4 J4 =

√
2

2




sin π
16 sin 3π

16 cos 3π
16 cos π

16

−sin 3π
16 −cos π

16 −sin π
16 cos 3π

16

cos 3π
16 sin π

16 −cos π
16 sin 3π

16

−cos π
16 cos 3π

16 −sin 3π
16 sin π

16




=
√

2

2




sin π
16

√
2

2 (cos π
16 − sin π

16 )
√

2
2 (cos π

16 + sin π
16 ) cos π

16

−
√

2
2 (cos π

16 − sin π
16 ) −cos π

16 −sin π
16

√
2

2 (cos π
16 + sin π

16 )

√
2

2 (cos π
16 + sin π

16 ) sin π
16 −cos π

16

√
2

2 (cos π
16 − sin π

16 )

−cos π
16

√
2

2 (cos π
16 + sin π

16 ) −
√

2
2 (cos π

16 − sin π
16 ) sin π

16




.

(5.133)
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Comparing (5.132) and (5.133), we have

C̄II
4 =

√
2

2
CII

4 , C̄IV
4 J4 =

√
2

2
CIV

4 J4. (5.134)

Thus,

ĈII
8 =

√
2

2

(
CII

4 0

0 CIV
4 J4

)(
I4 J4

J4 −I4

)
. (5.135)

Now, since CII
4 and CIV

4 J4 have det(CII
4 ) = det(CIV

4 J4) = +1, they must have QR, LU and
PLUS factorizations. Finding QR, LU and PLUS factorizations for CII

4 and CIV
4 J4 and sub-

stituting them into the modified EOT factorization (5.135) we obtain regular computational
structures for the 8-point DCT-II with reversible integer mapping.

The DCT-II matrix ĈII
8 possesses recursive property. Therefore, the matrix CII

4 in (5.135)
can be again factorized according to the EOT factorization. Similarly, let ĈII

4 be the matrix
with its rows rearranged so that the upper half consists of even-indexed rows followed by
the lower half of odd-indexed rows, both in natural order. Then, it can be written as

ĈII
4 =

√
2

2

(
CII

2 CII
2 J2

CIV
2 −CIV

2 J2

)
=

√
2

2

(
CII

2 0

0 CIV
2 J2

)(
I2 J2

J2 −I2

)
, (5.136)

where

CII
2 =




√
2

2

√
2

2

√
2

2 −
√

2
2


 =

(
sin π

4 cos π
4

cos π
4 −sin π

4

)
=
(

cos π
4 sin π

4

−sin π
4 cos π

4

)
J2 = G− π

4
J2,

CIV
2 J2 =

(
sin π

8 cos π
8

−cos π
8 sin π

8

)
=

 cos 3π

8 sin 3π
8

−sin 3π
8 cos 3π

8


 = G− 3π

8
, (5.137)

where G− π
4

and G− 3π
8

are Givens–Jacobi rotations and det(G− π
4
) = det(G− 3π

8
) = +1.

Therefore, the modified EOT factorization (5.135) can be further simplified and improved
in terms of computational complexity and structural simplicity.

5.5.1.2 QR-based factorization of DCT matrices

QR factorization of a real square nonsingular matrix A of order N is stated by Theorem
5.1 and Corollary 5.1 in Section 5.2.7, where Q is an orthogonal matrix and R is an upper
triangular matrix. We note that the QR factorization is also discussed in Appendix A.3
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(see equations (A.27)–(A.34)). The QR process is useful only in the determination of the
elementary Givens–Jacobi rotation matrices which are easily implemented via orthogonal
butterflies in the flow diagram. Actual orthogonal matrix Q is not used.

The QR factorization algorithm [1] consists of successive premultiplications (multipli-
cations on the left) of the matrix A by elementary Givens–Jacobi rotation matrices Gij,
i < j, defined by (5.11). In one step of the algorithm to null the element aji �= 0 of A under
principal diagonal, the values of c and s are chosen such that

s = − aji√
a2

ii + a2
ji

, c = aii√
a2

ii + a2
ji

, i = 1, 2, . . . , N and j = i+1, . . . , N , (5.138)

and new values of elements in ith and jth rows of A are given by

a(1)
ik = caik − sajk ,

a(1)
jk = saik + cajk , k = 1, 2, . . . , N . (5.139)

For k = i from (5.138) and (5.139) it follows that

a(1)
ii =

√
a2

ii + a2
ji > 0, a(1)

ji = 0.

Since the matrices CII
4 and CIV

4 J4 in (5.133) are eigenorthonormal, according to Corollary
5.2 of Theorem 5.1 in Section 5.2.7 they can be factorized into the product only of at most
6 elementary Givens–Jacobi rotation matrices Gij as follows:

CII
4 = Q(1)

4 R4,

CIV
4 J4 = Q(2)

4 R4, (5.140)

where

Q(1)
4 = G−1

12 (ϕ1)G−1
13 (ϕ2)G−1

14 (ϕ3)G−1
23 (ϕ4)G−1

24 (ϕ5)G−1
34 (ϕ6),

Q(2)
4 = G−1

12 (ψ1)G−1
13 (ψ2)G−1

14 (ψ3)G−1
23 (ψ4)G−1

24 (ψ5)G−1
34 (ψ6), (5.141)

and R4 = I4 is the identity matrix. In fact, by the numerical procedure defined by (5.138)
and (5.139) we obtain the following factorizations of CII

4 and CIV
4 J4 matrices, where Q(1)

4
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and Q(2)
4 matrices are products of the following elementary Givens–Jacobi rotation matrices

Q(1)
4 =




0.60778 −0.79410 0 0

0.79410 0.60778 0 0

0 0 1 0

0 0 0 1







0.85455 0 −0.51938 0

0 1 0 0

0.51938 0 0.85455 0

0 0 0 1




×




0.96269 0 0 −0.27060

0 1 0 0

0 0 1 0

0.27060 0 0 0.96269







1 0 0 0

0 −0.31666 0.94854 0

0 −0.94854 −0.31666 0

0 0 0 1




×




1 0 0 0

0 0.73451 0 0.67860

0 0 1 0

0 −0.67860 0 0.73451







1 0 0 0

0 1 0 0

0 0 −0.38268 −0.92388

0 0 0.92388 −0.38268


,

and

Q(2)
4 =




0.76278 −0.64666 0 0

0.64666 0.76278 0 0

0 0 1 0

0 0 0 1







0.91797 0 −0.39664 0

0 1 0 0

0.39664 0 0.91797 0

0 0 0 1




×




0.99044 0 0 −0.13795

0 1 0 0

0 0 1 0

0.13795 0 0 0.99044







1 0 0 0

0 −0.52879 0.84875 0

0 −0.84875 −0.52879 0

0 0 0 1




×




1 0 0 0

0 0.91797 0 0.39664

0 0 1 0

0 −0.39664 0 0.91797







1 0 0 0

0 1 0 0

0 0 −0.76278 −0.64666

0 0 0.64666 −0.76278


.

However, such factorization procedure is more convenient rather for purposes of numerical
analysis. We alternatively derive QR factorizations of CII

4 and CIV
4 J4 matrices by the ana-

lytical procedure with proper choice of premultiplied elementary Givens–Jacobi rotation
matrices Gij.
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For the CII
4 matrix we get the following factorization:

CII
4 =




cos π
4 0 −sin π

4 0

0 1 0 0

sin π
4 0 cos π

4 0

0 0 0 1







1 0 0 0

0 cos 3π
8 0 sin 3π

8

0 0 1 0

0 −sin 3π
8 0 cos 3π

8




×




cos π
4 0 0 −sin π

4

0 1 0 0

0 0 1 0

sin π
4 0 0 cos π

4







1 0 0 0

0 cos π
4 sin π

4 0

0 −sin π
4 cos π

4 0

0 0 0 1







1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1




= G13

(π

4

)
G24

(
−3π

8

)
G14

(π

4

)
G23

(
−π

4

)
R4

= G24

(
−3π

8

)
G13

(π

4

)
G23

(
−π

4

)
G14

(π

4

)
R4

= Q4 R4, (5.142)

and for the CIV
4 J4 matrix we get the factorization:

CIV
4 J4 =




cos 7π
16 0 0 sin 7π

16

0 1 0 0

0 0 1 0

−sin 7π
16 0 0 cos 7π

16







1 0 0 0

0 −cos π
16 −sin π

16 0

0 sin π
16 −cos π

16 0

0 0 0 1







0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0




×




cos π
4 0 0 sin π

4

0 1 0 0

0 0 1 0

−sin π
4 0 0 cos π

4







cos π
4 −sin π

4 0 0

sin π
4 cos π

4 0 0

0 0 1 0

0 0 0 1







1 0 0 0

0 1 0 0

0 0 cos π
4 −sin π

4

0 0 sin π
4 cos π

4




×




1 0 0 0

0 −cos π
4 −sin π

4 0

0 sin π
4 −cos π

4 0

0 0 0 1







1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1




= G14

(
−7π

16

)[
−G23

(
− π

16

)]
P4 G14

(
−π

4

)
G12

(π

4

)
G34

(π

4

)[
−G23

(
−π

4

)]
R4

=
[
−G23

(
− π

16

)]
G14

(
−7π

16

)
P4G14

(
−π

4

)
G34

(π

4

)
G12

(π

4

)[
−G23

(
−π

4

)]
R4

= Q4 R4, (5.143)
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Fig. 5.28. QR-based structure for the 8-point DCT-II computation.

where P4 = diag{J2, J2} is a permutation matrix and R4 = diag{1, 1, −1, −1} is a diagonal
matrix. Comparing (5.142) and (5.143) with (5.140) the following differences are evi-
dent. QR factorizations of CII

4 and CIV
4 J4 eigenorthonormal matrices given by (5.140)

obtained by the numerical procedure in both cases involve 6 elementary Givens–Jacobi
rotation matrices with 6 different angles. QR factorization of CII

4 (5.142) derived by the
analytical procedure involves only 4 elementary Givens–Jacobi rotation matrices with 2
different angles, while QR factorization of CIV

4 J4 (5.143) involves 6 elementary Givens–
Jacobi rotation matrices with 3 different angles including the permutation matrix P4. The
numerical approach produces I4 for the R4 factor whereas the analytical approach pro-
duces R4 = diag{1, 1, −1, −1}, both of which have unit determinants. We note that some
elementary Givens–Jacobi rotation matrices in (5.142) and (5.143) are commutative.

Substituting analytically derived QR factorizations of CII
4 and CIV

4 J4 matrices into the
modified EOT factorization of ĈII

8 defined by (5.135) we obtain the regular QR-based
structure for the 8-point DCT-II computation which is shown in Fig. 5.28. Normal-
ization factors for the output transform coefficients are defined by the diagonal matrix

D̂8 = diag{
√

2
2 ,

√
2

2 ,
√

2
2 ,

√
2

2 ,
√

2
2 ,

√
2

2 ,
√

2
2 ,

√
2

2 }.

As the matrix CII
4 in (5.135) can be again factorized according to EOT factorization

defined by (5.136), where CII
2 = G− π

4
J2 and CIV

2 J2 = G− 3π
8

are Givens–Jacobi rotations,
the QR-based structure in Fig. 5.28 can be simplified and improved replacing QR fac-
torization of CII

4 by the EOT factorization of ĈII
4 defined by (5.136) and (5.137). The
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Fig. 5.29. The simplified and improved QR-based structure for the 8-point DCT-II computation.

final simplified and improved QR-based structure for the 8-point DCT-II computation is
shown in Fig. 5.29. Normalization factors for the output transform coefficients are defined

by D̂8 = diag{ 1
2 , 1

2 , 1
2 , 1

2 ,
√

2
2 ,

√
2

2 ,
√

2
2 ,

√
2

2 }. The computational complexity of the final
QR-based structure is 19 floating-point multiplications and 31 floating-point additions
provided that the computational cost of each Givens–Jacobi rotation with the angle π

4 is
reduced to 2 multiplications and 2 additions.

EOT factorization of the transform matrix ĈII
8 applied recursively in combination with QR

factorizations of lower-order matrices CII
2 , CIV

2 J2 and CIV
4 J4 provides the simplified and

improved QR-based structure shown in Fig. 5.29. It consists of butterflies that do not destroy
the integer-to-integer mapping, and Givens–Jacobi rotations Gϕ or ±G−ϕ. We know that
Givens–Jacobi rotation Gϕ can be factorized into the product of Gauss elementary matrices
that are unit lower and unit upper triangular matrices defining LUL or ULU structures. In
fact, the matrix factorizations and corresponding computational structures of Gϕ are key
mathematical tools in constructing the multiplierless approximations of fast transforms
which are described in Section 5.4.4. In the QR-based structure if we replace each Givens–
Jacobi rotation by its proper LUL structure with approximation of floating-point multipliers
such as dyadic rationals, we obtain the multiplierless approximation of 8-point DCT-II with
reversible integer mapping called the QR-based LDCT-II.

QR-based structure in Fig. 5.29 involves 8 Givens–Jacobi rotations with 4 different angles,
specifically,

G− π
4
, −G− π

4
, G π

4
, G− 3π

8
, −G− π

16
and G− 7π

16
.
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Fig. 5.30. The general form of the forward multiplierless 8-point QR-based LDCT-II.

It is sufficient to replace each Givens–Jacobi rotation by the proper LUL structure
with dyadic approximation of the multipliers pi and ui, i = 0, 1, . . . , 7. The general
form of the forward multiplierless 8-point QR-based LDCT-II is shown in Fig. 5.30.
The normalization factors for output LDCT-II coefficients are defined by D̂8 =
diag{ 1

2 , 1
2 , 1

2 , 1
2 ,

√
2

2 ,
√

2
2 ,

√
2

2 ,
√

2
2 }.

If multipliers pi and ui are floating-point numbers then the implementations of the 8-point
DCT-II in Figs. 5.29 and 5.30 are equivalent. In Table 5.23 are summarized all Givens–
Jacobi rotations with analytical values of the multipliers pi and ui together with their dyadic
approximations and computational cost of the corresponding LUL structures in terms of the
number of add and shift operations. The total computational complexity of multiplierless
8-point QR-based LDCT-II for the specific dyadic approximations of multipliers shown
in Table 5.23 is 62 additions and 49 shifts. The inverse multiplierless 8-point QR-based
LDCT-II, LDCT-III, is obtained by reversing LDCT-II computational structure and taking
inverses of the LUL structures.

5.5.1.3 LU-based factorization of DCT matrices

LU factorization of a real square nonsingular matrix A of order N is stated by Theorem 5.2
in Section 5.2.7, where L = {lij}, lij = 0 for j > i, is a lower triangular matrix, and U = {uij},
uij = 0 for i > j, is an upper triangular matrix. We note that the LU factorization is also
discussed in Appendix A.3 (see equations (A.18)–(A.24)).

Generally, the sufficient condition for the matrix A to have LU factorization is to be nonsin-
gular. If the matrix A has LU factorization, then the elements of A = {aij}, i, j = 1, 2, . . . , N
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Table 5.23. Givens–Jacobi rotations with analytical values of the multipliers, their dyadic approx-
imations and computational cost of the corresponding LUL structures in multiplierless 8-point
QR-based LDCT-II.

Givens–Jacobi Multiplier Analytical Dyadic Computational cost of LUL
rotation value approximation structure (adds + shifts)

G π
4

(±)G− π
4

p0,1,2,3,4 0.414214 7/16 ≈ 0.437500
u0,1,2,3,4 0.707107 3/4 ≈ 0.750000 6A + 6S

G− 3π
16

p5 0.668179 5/8 ≈ 0.625000
u5 0.923880 15/16 ≈ 0.937500 6A + 5S

G− π
16

p6 0.098491 3/32 ≈ 0.093750
u6 0.195090 3/16 ≈ 0.187500 7A + 8S

G− 7π
16

p7 0.820679 13/16 ≈ 0.093750
u7 0.980785 1 7A + 6S

can be expressed in terms of the LU matrix product as

aij =


∑j

k=1 likukj, if i ≥ j,

∑i
k=1 likukj, if i < j.

(5.144)

Equation (5.144) defines a system of linear equations. If we prescribe values for the
diagonal elements L or U to be 1s, i.e., lii = 1 or uii = 1, respectively, then the system
(5.144) has the unique solutions and hence, such LU factorizations of A are uniquely
determined. In the following we prefer the elements on principal diagonal of U to be
uii = 1, and U will be the unit triangular matrix.

Consider the eigenorthonormal matrices CII
4 and CIV

4 J4 given by (5.133). Then according
to (5.144) the LU matrix product is given by

CII
4 = CIV

4 J4 = LU

=




l11 l11u12 l11u13 l11u14

l21 l21u12 + l22 l21u13 + l22u23 l21u14 + l22u24

l31 l31u12 + l32 l31u13 + l32u23 + l33 l31u14 + l32u24 + l33u34

l41 l41u12 + l42 l41u13 + l42u23 + l43 l41u14 + l42u24 + l43u34 + l44




.

(5.145)
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Comparing the corresponding matrix elements in (5.145) and solving the system of linear
equations for the CII

4 we obtain

CII
4 = LU =




1
2 0 0 0

√
2

2 cos π
8 −sin π

8 0 0

1
2 −1 cot π

8 − 1 0

√
2

2 sin π
8 −cos π

8
1

sin π
8

l44







1 1 1 1

0 1 cot π
8

√
2 cot π

8

0 0 1
√

2 cot π
8

cot π
8 −1

0 0 0 1




,

(5.146)

where

l44 =
√

2[ sin π
8 (1 − 2 cot π

8 ) − cos π
8 cot π

8 ]

cot π
8 − 1

.

Since det(CII
4 ) = +1 we have det(CII

4 ) = det(LU) = det(L) det(U) = +1 and, therefore,
det(L) = +1. LU factorization of CII

4 given by (5.146) can be converted to DLU scal-
ing up the matrix L by a diagonal matrix D. Then L will have the unit-diagonal elements.
This is just the approach used in construction of the 8-point LDCT-II in Ref. [58].

Similarly, comparing the corresponding matrix elements in (5.145) and solving the system
of linear equations for the CIV

4 J4 we obtain

CIV
4 J4 = LU

=




√
2

2 sin π
16 0 0 0

− 1
2 (cos π

16 − sin π
16 ) l22 0 0

1
2 (cos π

16 + sin π
16 ) l32 l33 0

−
√

2
2 cos π

16 l42 l43 l44







1
√

2
2 (cot π

16 − 1)
√

2
2 (cot π

16 + 1) cot π
16

0 1 u23 u24

0 0 1 u34

0 0 0 1




,

(5.147)

where

l22 = −
√

2

2

[
cos

π

16
− 1

2

(
cos

π

16
− sin

π

16

) (
cot

π

16
− 1
)]

,

l32 =
√

2

2

[
sin

π

16
− 1

2

(
cos

π

16
+ sin

π

16

) (
cot

π

16
− 1
)]

,

l33 = −
√

2

2

[
cos

π

16
+ 1

2

(
cos

π

16
+ sin

π

16

) (
cot

π

16
+ 1
)]

− l32u23,
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l42 = 1

2

[(
cos

π

16
+ sin

π

16

)
+ cos

π

16

(
cot

π

16
− 1
)]

,

l43 = −1

2

[(
cos

π

16
− sin

π

16

)
− cos

π

16

(
cot

π

16
+ 1
)]

− l42u23,

l44 =
√

2

2

[
sin

π

16
+ cos

π

16
cot

π

16

]
− l42u24 − l43u34,

and

u23 = sin π
16 − 1

2 (cos π
16 − sin π

16 )(cot π
16 + 1)

cos π
16 − 1

2 (cos π
16 − sin π

16 )(cot π
16 − 1)

,

u24 = −
√

2

2

[(cos π
16 + sin π

16 ) + (cos π
16 − sin π

16 )cot π
16 ]

[cos π
16 − 1

2 (cos π
16 − sin π

16 )(cot π
16 − 1)]

,

u34 =
1
2 [(cos π

16 − sin π
16 ) − (cos π

16 + sin π
16 ) cot π

16 ] − l32u24

l33
.

Analogously, since det(CIV
4 J4) = +1 we have det(CIV

4 J4) = det(LU) = det(L) det(U) = +1
and consequently, det(L) = +1. Similarly, LU factorization of CIV

4 J4 given by (5.147) can
be converted to DLU scaling up the matrix L by a diagonal matrix D. Then L will have
unit-diagonal elements.

As the matrix CII
4 in (5.135) can be again factorized according to the EOT factorization

defined by (5.136) and (5.137), where

CII
2 =




√
2

2

√
2

2
√

2
2 −

√
2

2


 , CIV

2 J2 =
(

cos 3π
8 sin 3π

8

−sin 3π
8 cos 3π

8

)
, (5.148)

we can replace LU factorization of CII
4 given by (5.146) and by the EOT factorization of

ĈII
4 with substituted LU factorizations of matrices CII

2 and CIV
2 J2. According to (5.144) the

LU matrix product is given by

CII
2 = CIV

2 J2 = LU =
(

l11 l11u12

l21 l21u12 + l22

)
. (5.149)

Again, comparing the corresponding matrix elements in (5.149) and solving the system of
linear equations for matrices CII

2 and CIV
2 J2 we obtain

CII
2 = LU =




√
2

2 0
√

2
2 −√

2



(

1 1

0 1

)
,

CIV
2 J2 = LU =


 cos 3π

8 0

− sin 3π
8

1
cos 3π

8




1 tan 3π

8

0 1


. (5.150)
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Fig. 5.31. The LU-based structure for the 8-point DCT-II computation.

Substituting the analytically derived LU factorizations of matrices CII
2 , CIV

2 J2 and CIV
4 J4

into the modified EOT factorizations of ĈII
8 and ĈII

4 defined by (5.135) and (5.136),
respectively, we obtain the regular LU-based structure for the forward 8-point DCT-II
computation which is shown in Fig. 5.31. The normalization factors for output DCT-II

coefficients are defined by D̂8 = diag{ 1
2 , 1

2 , 1
2 , 1

2 ,
√

2
2 ,

√
2

2 ,
√

2
2 ,

√
2

2 }. Inverses of L, U matri-
ces exist and are triangular. Therefore, the computational structure for inverse 8-point
DCT-II computation, DCT-III, is simply obtained by reversing each stage of the forward
LU-based structure. Introducing the rounding operator we obtain the 8-point LU-based
LDCT-II structure.

5.5.1.4 PLUS-based factorization of DCT matrices

PLUS factorization of a real square nonsingular matrix A of order N with det(A) = +1
is stated by Theorem 5.3 in Section 5.2.7, where P is a permutation matrix, L is a unit
lower triangular, U is a unit upper triangular and S is a unit lower triangular matrix. If we
apply the PLUS factorization algorithm described in Section 5.2.7 to the eigenorthonormal
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matrices CII
4 , CIV

4 J4 given by (5.133) we respectively obtain

CII
4 = PLUS

=




1 0 0 0

0 1 0 0

1 −1 1 0

0

(
tan π

8 − 1√
2 cos π

8

)
3√

2 cos π
8

1







1 u12 u13
1
2

0 1 2 −
√

2
2 cos π

8

0 0 1 −
√

2
2 cos π

8

0 0 0 1




×




1 0 0 0

0 1 0 0

1 0 1 0

−1
( √

2
cos π

8
− tan π

8

) (
2
√

2
cos π

8
+ tan π

8

)
1




, P = I4, (5.151)

where

u12 = 1

2

(
1 −

√
2

cos π
8

+ tan
π

8

)
,

u13 = 1

2

(
1 −

√
2

cos π
8

− tan
π

8

)
,

and similarly,

CIV
4 J4 = PLUS =




1 0 0 0

l21 1 0 0

l31 l32 1 0

l41 l42 l42 1







1 u12 u13

√
2

2 cos π
16

0 1 u23

√
2

4

0 0 1 1
2 (cos π

16 − sin π
16 )

0 0 0 1




×




1 0 0 0

0 1 0 0

0 0 1 0

s1 s2 s3 1




, P = I4, (5.152)
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where

l21 =
√

2

2
− 1

2 cos π
16

+
√

2

2
tan

π

16
,

l31 =
√

2

2
+ 1

2 cos π
16

−
√

2

2
tan

π

16
,

l41 =
−

√
2

2 + cos π
16 + sin π

16 − 1
cos π

16
+

√
2

2 tan π
16

cos π
16 − sin π

16

,

l32 = −1 + √
2
(

sin
π

16
− cos

π

16

)
,

l42 =
√

2(cos π
16 − sin π

16 ) − 2 cos π
16 − sin π

16 + 2 cos2 π
16

cos π
16 − sin π

16

,

l43 = −√
2 cos π

16 − 2

cos π
16 − sin π

16

,

u12 = 2 cos
π

16
−

√
2

2
+ 2

√
2 cos2 π

16
,

u13 =
3
√

2
2 + 2 cos2 π

16 −
√

2
2 sin π

16 + 2 cos π
16 sin π

16 (1 + √
2 cos π

16 − √
2 sin π

16 )

cos π
16 − sin π

16

,

u23 =
√

2
2 + cos π

16 + sin π
16

cos π
16 − sin π

16

,

and

s1 = tan
π

16
−

√
2

cos π
16

,

s2 = −3
√

2

2
+ 1

cos π
16

−
√

2

2
tan

π

16
− 4 cos

π

16
,

s3 =
−3 − √

2 cos π
16 −

√
2

2 cos π
16

+ tan π
16 − 4 cos π

16 sin π
16 − 2

√
2 sin π

16 + 4 sin2 π
16

cos π
16 − sin π

16

.

The matrix CII
4 in (5.135) can again be factorized according to the EOT factorization

defined by (5.136), where CII
2 = G− π

4
J2 and CIV

2 J2 = G− 3π
8

are Givens–Jacobi rotations
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Fig. 5.32. The PLUS-based structure for the 8-point DCT-II computation.

which have also PLUS factorizations as

CII
2 =

(
cos π

4 sin π
4

−sin π
4 cos π

4

)
J2 =

(
1 0

1 − √
2 1

)(
1

√
2

2

0 1

)(
1 0

1 − √
2 1

)
J2,

CIV
2 J2 =


 cos 3π

8 sin 3π
8

−sin 3π
8 cos 3π

8


 =

(
1 0

−tan 3π
8 1

)(
1 sin 3π

8

0 1

)(
1 0

−tan 3π
8 1

)
.

(5.153)

In fact, the LUL structures of Gϕ correspond to PLUS factorizations. Substituting the ana-
lytically derived PLUS factorizations of matrices CII

2 , CIV
2 J2 and CIV

4 J4 into the modified
EOT factorizations of ĈII

8 and ĈII
4 defined by (5.135) and (5.136), respectively, we obtain

the regular PLUS-based structure for the forward 8-point DCT-II computation which is
shown in Fig. 5.32. The normalization factors for output DCT-II coefficients are defined

by D̂8 = diag{ 1
2 , 1

2 , 1
2 , 1

2 ,
√

2
2 ,

√
2

2 ,
√

2
2 ,

√
2

2 }. Inverses of L, U and S matrices exist and are
triangular. Therefore, the computational structure for inverse 8-point DCT-II computa-
tion, DCT-III, is obtained by reversing each stage of the forward PLUS-based structure.
Introducing the rounding operator we obtain the PLUS-based 8-point LDCT-II structure.

5.5.1.5 Optimization of LU- and PLUS-based computational structures

Every linear transform built with LU or PLUS factorization is immediately integer
reversible and its inverse has exactly the same computational complexity as the forward
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transform. LU and PLUS factorizations define the regular computational structures which
can be implemented in-place. The factorization of a specific DCT/DST matrix may
be practically optimized for lower computational complexity and less error by search-
ing for a proper permutation matrix. An optimization scheme can be considered as a
minimization of [9]:

• the number of factored matrices,

• the computational complexity of each individual step,

• the error with respect to the theoretical computation.

However, such optimization is not easy in practice. The basic method involves complete
pivoting, i.e., applying row and column permutations to the transform matrix. Chosen
pivots bring forth the most zeros in factored matrices and the most equal elements in a row.

5.5.1.6 Error estimation method for LU and PLUS factorizations

Since rounding operations are applied to all noninteger elements in the factored matrices,
truncation errors are inevitable. The rounding-off errors are in the interval 〈−0.5, 0.5〉. In
order to estimate errors we use matrix and vector norms (maximum or ∞-norm) and scalar
u to denote the unit round-off error which is defined as the largest error that can occur in a
rounding operation, i.e., 0.5. Let um denotes the rounding error vector resulting from the
transformation of the mth triangular matrix. If all elements in the mth factored matrix are
integers then, um = 0, and the matrix does not produce any errors, but it still transfers and
propagates existent errors produced by previous matrices.

For the PLUS factorization, the total rounding error is defined as [9]

u = P(u1 + L(u2 + Uu3)) = P(u1 + Lu2 + LUu3), (5.154)

where u1, u2 and u3 are error vectors for matrices L, U and S, respectively, and only the
N th element of u3 is not 0. Hence,

|u| = |P(u1 + Lu2 + LUu3)| ≤ (|u1| + |Lu2| + |LUu3|), (5.155)

where |·| denotes absolute values of all elements in a vector. An error bound can be
estimated as [9]

‖u‖∞ ≤ u · (1 + ‖L‖∞ + ‖LUeN‖∞), (5.156)

where eN = [0, 0, . . . , 0, 1]. Equation (5.155) implies that the total rounding error and error
bound for LU factorization are respectively defined as

|u| ≤ (|u1| + |Lu2|) (5.157)

and

‖u‖∞ ≤ u · (1 + ‖L‖∞). (5.158)
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By numerical evaluation of LU factorizations of the transform matrix CIV
4 J4 given by

(5.147), and transform matrices CII
2 , CIV

2 J2 given by (5.150) which define the 8-point
LU-based LDCT-II structure shown in Fig. 5.31, the total rounding error and error bound
are respectively estimated as

|u| ≤ |[1, 1, 1.38268, 1.92388, 1.13795, 1.03237, 2.40333, 5.82782]T|,

and

‖u‖∞ ≤ u · 18.20268.

Similarly, by numerical evaluation of PLUS factorizations of the transform matrix CIV
4 J4

given by (5.152), and transform matrices CII
2 , CIV

2 J2 given by (5.153) which define the
8-point PLUS-based LDCT-II structure shown in Fig. 5.32, the total rounding error and
error bound are respectively estimated as

|u| ≤ |[1.70711, 2.12132, 1.92388, 2.05086, 1.69352, 2.92563, 2.42774, 2.59510]T|,

and

‖u‖∞ ≤ u · 10.90223.

QR-, LU- and PLUS-based factorizations of DCT matrices provide the regular compu-
tational structures and introducing rounding operators the corresponding QR-, LU- and
PLUS-based LDCTs with reversible integer-to-integer mapping are obtained.

5.5.2 Invertible integer DCTs

Integer approximated DCT-II and DCT-IV, called invertible integer DCTs, have been pro-
posed in Refs. [59–61]. The approach to construction of invertible integer DCTs is based
on recursive factorizations of DCT-II and DCT-IV matrices into products of sparse orthog-
onal matrices of simple structure. The derived invertible integer DCTs are very close to
the original DCTs and map integer vectors to integer vectors. By suitable permutations,
each matrix factor is transformed into block-diagonal form where each block is an orthog-
onal matrix of order 2, and thus the construction of invertible integer DCTs is reduced
to the construction of only integer transforms of length 2. Each 2 × 2 orthogonal (rota-
tion) matrix is factorized into a product of Gauss–Jordan elementary matrices defining the
LUL or equivalently ULU factorization (see Section 5.2.7), and the rounding procedure
in corresponding LUL or ULU structure is added to obtain integer-to-integer transform
whereby the truncation errors are explicitly estimated. In particular, for the fast integer
DCT algorithms explicit error bounds for the difference between results of exact DCT and
the related integer DCT in the Euclidean and maximum norm are estimated [59].

In general, the method for construction of invertible integer DCTs is quite similar to
that of BinDCT discussed in Section 5.4.4 where the multipliers in LUL or ULU struc-
ture are approximated by dyadic rationals. Although the DCT-II and DCT-IV are linear
mappings which are generated by the corresponding matrices, naturally, by introducing
a nonlinear rounding operation into computational steps, the invertible integer DCTs are
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no longer linear mappings. Thus, the invertible integer DCT is understood to be nonlin-
ear, (left)-invertible mapping which acts on ZN (N-dimensional vector space over Z) and
approximates the classical DCT. The results can be directly extended to the 2-D integer
DCT. Using the (recursive) factorization of a DCT/DST matrix, the method can easily be
applied to any other trigonometric transform.

5.5.2.1 Orthogonal factorizations of DCT-II and DCT-IV matrices

Let N ≥ 4 be an even integer, and let CII
N and CIV

N be the DCT-II and DCT-IV matrices
of order N defined by (4.2) and (4.4), respectively. Then, the DCT-II matrix CII

N can be
recursively factorized into the product of sparse orthogonal matrices as [59, 60]

CII
N = PT

N


CII

N
2

0

0 CIV
N
2


T (0)

N , (5.159)

with the orthogonal matrix

T (0)
N =

√
2

2


I N

2
J N

2

I N
2

−J N
2


 =


I N

2
0

0 J N
2




√
2

2


I N

2
J N

2

J N
2

−I N
2


.

The DCT-IV matrix CIV
N can be recursively factorized into the product of sparse orthogonal

matrices as [59, 60]

CIV
N = PT

N AN


CII

N
2

0

0 CII
N
2


T (1)

N , (5.160)

with the orthogonal matrices

AN =
√

2

2




√
2 0

I N
2 −1 I N

2 −1

I N
2 −1 −I N

2 −1

0 −√
2





I N

2
0

0 D N
2

J N
2


,

T (1)
N =


I N

2
0

0 D N
2







cos π
4N sin π

4N

cos 3π
4N sin 3π

4N
. .

cos (N−1)π
4N sin (N−1)π

4N

−sin (N−1)π
4N cos (N−1)π

4N
. .

−sin 3π
4N cos 3π

4N

−sin π
4N cos π

4N




,
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where D N
2

= diag{(−1)k}, k = 0, 1, . . . , N
2 − 1, is the diagonal odd-sign changing matrix,

and PN is the even–odd permutation matrix given by PN x = [x0, x2, . . . , xN−2, x1, x3, . . . ,
xN−1]T, where P−1

N = PT
N . From (5.159) and (5.160) it can be easily seen that up to permu-

tations and changes of sign, the orthogonal matrices T (0)
N , AN and T (1)

N can be represented
as block-diagonal matrices R2(ϕ) of order 2 of the form:

R2

(π

4

)
=
(

cos π
4 sin π

4

sin π
4 −cos π

4

)
= H π

4
,

being Householder reflections or

R2(ϕ) =
(

cos ϕ sin ϕ

−sin ϕ cos ϕ

)
= G−ϕ, ϕ = (2k + 1)π

4N
, k = 0, 1, . . . ,

N

2
− 1,

being the Givens–Jacobi rotation matrices. The constructions of invertible integer DCT-II
and DCT-IV are based on this essential fact.

5.5.2.2 Integer transforms of the length 2

The main idea to obtain an invertible integer DCT is as follows. For a given invertible matrix
R2 and for arbitrary vector x ∈ Z2, find a suitable integer approximation of R2x such that
this process is invertible. The simple structure of the matrix factors of CII

N and CIV
N implies

that it is necessary to find a suitable solution only for the orthogonal matrices R2(ϕ) (being
Householder reflections or Givens–Jacobi rotations) with rotation angles ϕ ∈ (0, π

4 ).

From Section 5.2.7 we know that Givens–Jacobi rotations G−ϕ and Gϕ (forward and
inverse) can be represented as a product of three Gauss–Jordan elementary matrices that
are unit lower and unit upper triangular matrices defining LUL factorization (see (5.20)
and (5.21)) or equivalently ULU factorization (see (5.22) and (5.23)). Here we prefer the
use of forward and inverse ULU factorizations of G−ϕ and Gϕ, respectively, which are
defined as

G−ϕ =
(

1 tan ϕ
2

0 1

)(
1 0

−sin ϕ 1

)(
1 tan ϕ

2

0 1

)
,

Gϕ =
(

1 −tan ϕ
2

0 1

)(
1 0

sin ϕ 1

)(
1 −tan ϕ

2

0 1

)
, sin ϕ �= 0. (5.161)

The corresponding ULU structures are shown in Fig. 5.2(a) and (b). The ULU factorizations
consist of nonorthogonal matrix factors which are still invertible. These factorizations can
be used for the construction of invertible integer DCT as follows.

For a ∈ R let �a� = max{x ≤ a: x ∈ Z} and {a} = a − �a� ∈ 〈0, 1). Then {a} is the noninteger
part of a. Further, let round (a) = �a + 1

2� be the integer closest to a. Consider the last matrix
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factor in the right-hand side of (5.161). One computational step in the matrix–vector form
can be written as

ŷ =
(

1 s

0 1

)
x, s ∈ R,

where x = [x0, x1]T ∈ Z2. Then, ŷ = [ŷ0, ŷ1]T can be approximated by y = [y0, y1]T ∈ Z2

with

y0 = x0 +
⌊

sx1 + 1

2

⌋
= x0 + round(sx1), y1 = x1.

This transform is invertible with

x0 = y0 −
⌊

sy1 + 1

2

⌋
= y0 − round(sy1), x1 = y1.

Indeed, we have

y0 − round(sy1) = x0 + round(sx1) − round(sx1) = x0, y1 = x1.

The following theorem is fundamental for the integer approximation of ULU factorized
rotation matrix R2 = R2(ϕ) by rounding procedure with explicit estimates of truncation
errors [59].

Theorem 5.4: (Rounding procedure of the rotation matrix R2(ϕ) represented by ULU
structure with explicit truncation error estimates)

Let R2 = R2(ϕ) with ϕ ∈ (0, π
4 〉 be a rotation matrix represented by ULU structure. Then for

arbitrary x = [x0, x1]T ∈ Z2, a suitable integer approximation y = [y0, y1]T ∈ Z2 of ŷ = R2x
is given by y0 = z2, y1 = z1, where

z0 = x0 + round
(

x1 tan
ϕ

2

)
, z1 = x1 + round(−z0 sin ϕ), z2 = z0 + round

(
z1 tan

ϕ

2

)
.

The procedure is invertible and its inverse is x0 = v2, x1 = v1, where

v0 = y0 − round
(

y1 tan
ϕ

2

)
, v1 = y1 − round(−v0 sin ϕ), v2 = v0 − round

(
v1 tan

ϕ

2

)
.

Further, the truncation error can be estimated by

‖ŷ − y‖2 ≤ √h(ϕ), ‖ŷ − y‖∞ ≤ g(ϕ), (5.162)

where functions h(ϕ) and g(ϕ) are respectively given by

h(ϕ) = 3

4
+ sin ϕ + 1

2
cos ϕ + 1

4
tan2 ϕ

2
, g(ϕ) = 1

2

(
1 + tan

ϕ

2
+ cos ϕ

)
.

•
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Fig. 5.33. Plot of the function h(ϕ).
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Fig. 5.34. Plot of the function g(ϕ).

The formulae for y0, y1 and x0, x1 (after inverse transform) directly follow by applying the
input vector x to three matrices in (5.161). The elegant proof of truncation error estimates
given by (5.162) can be found in Ref. [59]. Plots of the functions h(ϕ) and g(ϕ) are
respectively shown in Figs. 5.33 and 5.34.

Note 1: Since there exists the relation between Givens–Jacobi rotation and Householder
reflection given by (5.36) and (5.37), the procedure of Theorem 5.4 can also be obtained
for Householder reflections Hϕ. In this case, the integer approximation y = [y0, y1]T ∈ Z2

of R2x is of the form y0 = z2, y1 = − z1 with z0, z1, z2 as in Theorem 5.4, and the truncation
error estimates hold as before.

Note 2: Let ŷ = R2(ϕ)x with arbitrary vector x ∈ Z2 be given and let y be its integer
approximation. The special values for truncation errors ‖ŷ − y‖2 and ‖ŷ − y‖∞ via the
rounding procedure for rotation angles ϕ ∈ {π

4 , π
8 , π

16 , 3π
16

}
can be obtained by substituting

values of ϕ into formulae (5.162). In particular, we obtain

‖ŷ − y‖2 ≤




1.361453 for ϕ = π
4 ,

1.266694 for ϕ = π
8 ,

1.199128 for ϕ = π
16 ,

1.320723 for ϕ = 3π
16 ,

‖ŷ − y‖∞ ≤




1.060660 for ϕ = π
4 ,

1.061396 for ϕ = π
8 ,

1.039638 for ϕ = π
16 ,

1.067408 for ϕ = 3π
16 .
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Further, for all ϕ ∈ 〈0, π
4 ) we have

‖ŷ − y‖∞ ≤ max
{

g(ϕ): ϕ ∈
〈
0,

π

4

)}
≈ 1.067442.

5.5.2.3 Fast invertible integer DCT algorithms

The method to integer approximation of R2(ϕ) described by Theorem 5.4 enables us to
derive the fast invertible integer DCT-II and integer DCT-IV algorithms of the length
N = 2m based on recursive matrix factorizations of CII

N and CIV
N defined by (5.159) and

(5.160), respectively.

Algorithm A: The first step is to apply the rounding procedure to all rotation matrices
R2(ϕ) represented by ULU structure in the orthogonal matrix factors of CII

N and CIV
N . In

this way we get a direct integer approximation of CII
N x and CIV

N x. The inverse integer
DCT computed by algorithm A is obtained by going backwards and taking the inverse
procedures defined by Theorem 5.4. It is noted that integer DCTs realized by algorithm A
are invertible on ZN .

Consider the 8-point DCT-II computation. For N = 8, combining the sparse matrix factor-
izations of CII

N and CIV
N matrices defined by (5.159) and (5.160), respectively, we obtain

the following orthogonal factorization of CII
8 transform matrix as [59]

CII
8 = PT

8

(
CII

4 0

0 CIV
4

)
T (0)

8

= B8

(
I4 0

0 A4

)



CII
2 0

CIV
2

CII
2

0 CII
2





T (0)

4 0

0 T (1)
4


T (0)

8 , (5.163)

where B8 is the bit-reversal matrix, and matrices A4, CII
2 , CIV

2 , T (0)
4 , T (0)

8 and T (1)
4 are

respectively given by

A4 =
√

2

2




√
2 0 0 0

0 1 0 1

0 1 0 −1

0 0
√

2 0




,

CII
2 =

√
2

2

(
1 1

1 −1

)
= H π

4
,
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CIV
2 =

(
cos π

8 sin π
8

sin π
8 −cos π

8

)
=
(

I2 0

0 D2

)(
cos π

8 sin π
8

−sin π
8 cos π

8

)
=
(

I2 0

0 D2

)
G− π

8
,

T (0)
4 =

√
2

2

(
I2 J2

I2 −J2

)
=
(

I2 0

0 J2

) √
2

2

(
I2 J2

J2 −I2

)
,

T (0)
8 =

√
2

2

(
I4 J4

I4 −J4

)
=
(

I4 0

0 J4

) √
2

2

(
I4 J4

J4 −I4

)
,

T (1)
4 =

(
I2 0

0 D2

)



cos π
16 0 0 sin π

16

0 cos 3π
16 sin 3π

16 0

0 −sin 3π
16 cos 3π

16 0

−sin π
16 0 0 cos π

16




,

where D2 = diag{1, −1}. The orthogonal factorization (5.163) defines the fast 8-point DCT-
II algorithm involving a total of 13 rotations. Note that this factorization with scaling

√
2

implies a fast 8-point scaled DCT-II algorithm with 11 multiplications and 29 additions
similar to that of Ref. [20]. Applying the rounding procedure to all rotation matrices we
get the fast 8-point integer DCT-II algorithm with 39 rounding operations. Due to the large
number of rotations in matrix factors the arithmetic complexity of such an algorithm is
relatively high. However, admitting a scaling factor an alternative integer DCT-II with
smaller arithmetic complexity can be obtained.

Algorithm B: By introducing the scaling factors
√

N1 and
√

N2 for the CII
N and

CIV
N matrices, where N1 = N

2 and N2 = N
4 the following factorizations for N ≥ 8 are

proposed [59]:

√
N1 CII

N = PT
N

√
N2


CII

N
2

0

0 CIV
N
2


√

2 T (0)
N , (5.164)

√
N1 CIV

N = PT
N

√
2 AN

√
N2


CII

N
2

0

0 CII
N
2


T (1)

N , (5.165)

starting with

√
2CII

4 = PT
4

(
CII

2 0

0 CIV
2

)√
2 T (0)

4 ,

√
2CIV

4 = PT
4 A4

√
2

(
CII

2 0

0 CII
2

)
T (1)

4 ,
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where in the factorization of
√

2CIV
4 the scaling factor

√
2 is used for the matrix factor

(
CII

2 0

0 CII
2

)

differing from the rule for N ≥ 8. The matrix factor
√

2CII
2 generates a left-invertible

mapping on Z2 and, therefore, integer DCTs realized by algorithm B are only left invertible
on ZN .

For N = 8, combining the sparse matrix factorizations of scaled CII
N and CIV

N defined by
(5.164) and (5.165), respectively, we obtain the following factorization of scaled 2CII

8
matrix as [59]

2CII
8 = B8

(
I4 0

0 A4

)



CII
2 0

CIV
2 √

2CII
2

0
√

2CII
2






√
2T (0)

4 0

0 T (1)
4


√

2T (0)
8 .

(5.166)

The factorization (5.166) defines the fast 8-point scaled DCT-II algorithm. The corre-
sponding signal flow graph for the fast 8-point scaled DCT-II with highlighted Householder
reflections and Givens–Jacobi rotations is shown in Fig. 5.35. The matrices

√
2CII

2 ,
√

2T (0)
4

and
√

2T (0)
8 contain only integers and rounding procedures are not necessary and the

number of rotations is reduced to only 5. Applying the rounding procedure to all rota-
tion matrices we get the fast 8-point integer scaled DCT-II algorithm with 15 rounding
operations.

5.5.2.4 Error bounds between the exact (scaled) DCT-II and corresponding
integer (scaled) DCT-II

The rounding procedure defined by Theorem 5.4 enables us to estimate the difference
between the results of exact (scaled) DCT-II and the corresponding integer (scaled) DCT-II
for both the algorithms A and B.

Let N = 2m, m ≥ 1, and let x ∈ ZN be an arbitrary input vector. Further, let y ∈ ZN be the
resulting integer approximation of ŷ = CII

N x obtained by the algorithm A. Denote eII
N ,2 and

eII
N ,∞ to be the error bound in the Euclidean norm and maximum norm, respectively, i.e.,

eII
N ,2 = sup{‖CII

N x − y‖2: x ∈ ZN }, eII
N ,∞ = sup{‖CII

N x − y‖∞: x ∈ ZN }.

Analogously, for the integer approximation w of CIV
N x via algorithm A, denote the error

bounds by eIV
N ,2 and eIV

N ,∞, i.e.,

eIV
N ,2 = sup{‖CIV

N x − w‖2: x ∈ ZN }, eIV
N ,∞ = sup{‖CIV

N x − w‖∞: x ∈ ZN }.
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Fig. 5.35. The signal flow graph for the fast 8-point scaled DCT-II with highlighted Householder
reflections and Givens–Jacobi rotations.

The error bounds between the results of exact DCT-II and the corresponding integer DCT-II
obtained by algorithm A can be estimated by using the following theorem [59].

Theorem 5.5: (Error bounds estimates between the results of exact DCT-II and the
corresponding integer DCT-II obtained by algorithm A in the Euclidean and maximum
norm)

Let N = 2m, m ≥ 1, and let eII
N ,2, eII

N ,∞, eIV
N ,2 and eIV

N ,∞ be the error bounds occurring, if
exact DCT-II output vectors are compared with the corresponding integer DCT-II results
of algorithm A. Then, error bounds in the Euclidean norm can be recursively computed by

eII
2,2 =

√
h
(π

4

)
, eIV

2,2 =
√

h
(π

8

)
,

eII
N ,2 =

√
(eII

N1,2
)2 + (eIV

N1,2
)2 +

√
N1 h

(π

4

)
, m ≥ 2,

eIV
N ,2 =

√√√√N1−1∑
k=0

h

(
(2k + 1)π

4N

)
+ √

2eII
N1,2

+
√

(N1 − 1) h
(π

4

)
, m ≥ 2.
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Error bounds in maximum norm are

eII
2,∞ = g

(π

4

)
, eIV

2,∞ = g
(π

8

)
,

eII
N ,∞ = max{eII

N1,∞, eIV
N1,∞} +√N1g

(π

4

)
, m ≥ 2,

eIV
N ,∞ = √

N max
{

g(ϕ): ϕ ∈
(

0,
π

4

〉}
+ √

2eII
N1,∞ + g

(π

4

)
, m ≥ 2.

•
For the proof of estimates in Theorem 5.5, the factorizations (5.159), (5.160) and Theorem
5.4 are used [59].

Theorem 5.5 yields the following error bounds for several values of N = 2m, m =
1, 2, . . . , 6:

N eII
N ,2 eII

N ,∞ eIV
N ,2 eIV

N ,∞
2 1.361453 1.060660 1.266694 1.061396
4 3.784973 2.561396 5.070715 4.695545
8 9.050477 6.816865 10.23107 7.702204

16 17.51041 10.70220 19.96457 14.97093
32 32.00139 19.21357 35.07515 22.23433
64 55.18159 28.23423 59.96287 36.77229

The fastly increasing error bounds between exact DCT-II and the corresponding integer
DCT-II obtained by algorithm A is caused by the large number of rounding procedures
defined by Theorem 5.4.

Consider the integer scaled DCT-II obtained by algorithm B. Let N = 2m, m ≥ 1, and
let x ∈ ZN be an arbitrary input vector. Further, let y ∈ ZN be the resulting integer
approximation of ŷ = √

N1CII
N x applying algorithm B. Denote again eII

N ,2 and eII
N ,∞ to

be the error bounds in the Euclidean and maximum norm, respectively. For the integer
approximation w ∈ ZN of

√
N1CIV

N x via algorithm B, denote the error bounds by eIV
N ,2

and eIV
N ,∞.

Theorem 5.6: (Error bounds estimates between the result of exact scaled DCT-II and
the corresponding integer scaled DCT-II obtained by algorithm B in the Euclidean and
maximum norm)

Let N = 2m, m ≥ 1, and let eII
N ,2, eII

N ,∞, eIV
N ,2 and eIV

N ,∞ be the errors occurring, if exact DCT-II
output vectors scaled by

√
N1 are compared with the corresponding integer scaled DCT-II
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of algorithm B. Then error bounds in the Euclidean norm can be recursively computed by

eII
2,2 =

√
h
(π

4

)
, eII

N ,2 =
√

(eII
N1,2

)2 + (eIV
N1,2

)2, m ≥ 2,

eIV
2,2 =

√
h
(π

8

)
, eIV

4,2 = √
2

√
h
( π

16

)
+ h

(
3π

16

)
+
√

h
(π

4

)
,

eIV
N ,2 = √N1

√√√√√
N
2 −1∑
k=0

h

(
(2k + 1)π

4N

)
+ 2eII

N1,2
+ 1

2

√
2, m ≥ 3.

Error bounds in maximum norm are

eII
2,∞ = g

(π

4

)
, eII

N ,∞ = max{eII
N1,∞, eIV

N1,∞}, m ≥ 2,

eIV
2,∞ = g

(π

8

)
, eII

4,∞ = 2max

{
g
( π

16

)
, g

(
3π

16

)}
+ g
(π

4

)
,

eIV
N ,∞ = N1

√
2 max

{
g(ϕ): ϕ ∈

(
0,

π

4

〉}
+ 2eII

N1,∞ + 1

2
, m ≥ 3.

•
Using the factorizations (5.164), (5.165) and Theorem 5.4, the proof of estimates in
Theorem 5.6 is similar to the proof of Theorem 5.5 [59].

Theorem 5.6 yields the following error bounds for several values of N = 2m,
m = 1, 2, . . . , 6:

N eII
N ,2 eII

N ,∞ eIV
N ,2 eIV

N ,∞
2 1.361453 1.060660 1.266694 1.061396
4 1.859588 1.061396 3.884236 3.195544
8 4.306432 3.195545 9.466687 8.661157

16 10.40017 8.661157 19.39821 18.96782
32 22.01032 18.96782 41.66265 41.92577
64 47.11932 41.92577 85.03752 86.74255

In particular, the error bounds for 8-point scaled integer DCT-II are reasonably small.

5.5.2.5 A global method to construct invertible integer DCTs

A new global method to derive integer transform from a given arbitrary invertible linear
transform has been proposed in Ref. [61]. Principally, the method can be seen as an
extension of integer transform with expansion factors. The construction of invertible integer
DCT is illustrated for the 8-point DCT-II.
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For a general linear transform F̂: RN → RN given by F̂(x) = HN x, where HN is an
invertible transform matrix, it can be found an invertible integer transform F: ZN → ZN

approximating F̂ by

F(x) = round(HN x),

if HN satisfies the expansion condition 〈− 1
2 , 1

2 )N ⊆ HN ((− 1
2 , 1

2 〉N ), where HN ((− 1
2 , 1

2 〉N ) =
{HN r: r ∈ (− 1

2 , 1
2 〉N } is the image of unit cube 〈− 1

2 , 1
2 )N under the linear mapping F̂

generated by HN . However, the transform matrix HN frequently does not satisfy this
condition. In this case we can apply to HN a suitable expansion factor αN > 1 such that
αN HN satisfies the expansion condition, i.e., αN HN ((− 1

2 , 1
2 〉N ) completely covers the unit

cube 〈− 1
2 , 1

2 )N . Then, an invertible integer transform is simply given by

F(x) = round(αN HN x).

This nonlinear integer transform is very close to the exact (scaled) transform αN HN x and
the error αN HN x − F(x) is at most 1

2 in each component.

The idea is applied to the DCT-II matrix to derive invertible integer DCT-II. Generally,
we just need to apply a fast DCT-II algorithm to the input data vector x and to compute
in floating-point arithmetic αN CII

N x, where αN is a relatively small constant depending
on the value of N . Finally, each DCT-II coefficient is rounded to the nearest integer. The
proposed integer transform has two advantages:

1. The fast algorithm being already implemented for the DCT-II can be directly applied.

2. The difference between integer transform and exact (scaled) linear transform is
controlled.

Now consider the discrete trigonometric transforms where DCT/DST matrices are obvi-
ously orthogonal. But orthogonal matrices do not satisfy the expansion condition and need
to be multiplied with a suitable expansion factor. For a given trigonometric transform
matrix HN generating the linear mapping F̂: x → HN x it is necessary to find a minimal
expansion factor α > 0 such that αHN satisfies the expansion condition. In the follow-
ing theorem is shown how to determine the minimal expansion factor for trigonometric
transform matrix [61].

Theorem 5.7: (The nonlinear integer mapping for trigonometric transform matrix with
the minimal expansion factor)

Let HN be an invertible matrix and F̂: RN → RN with F̂(x) = HN x be the linear mapping
generated by HN . Then the nonlinear mapping F(x): ZN → ZN given by

F(x) = round(α HN x),

with α ≥ αN = ‖H−1
N ‖∞ is an invertible mapping, and we have

x = round

(
1

α
H−1

N F(x)

)
.
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Moreover, it follows that the error is

‖αF̂(x) − F(x)‖∞ ≤ 1

2
,

i.e., F is close to the scaled linear mapping αF̂.

•
The proof of theorem can be found in Ref. [61]. Analogous invertible mappings can be
constructed using other rounding operators such as the floor or ceil operator.

Specifically, for integer DCT-II the nonlinear invertible mapping F(x): ZN → ZN

approximating the DCT-II is defined by

F(x) = round(α CII
N x)

with

α ≥ αN = 1√
N

+ 1√
2N

(
cot

π

4N
− 1
)
.

The nonlinear mapping F is invertible, and we have

x = round

(
1

α
[CII

N ]TF(x)

)
= round

(
1

α
· CIII

N F(x)

)
.

Moreover, comparing x̂ = αCII
N x and y = F(x) componentwise, we find that

|yj − x̂j| <
1

2
, j = 0, 1, . . . , N − 1,

i.e., in all components, the nonlinear mapping F rounds the exact (scaled) DCT-II coef-
ficients to the next integer. In particular, the constants αN satisfy αN ≤ √

N , i.e., we can

replace the normalization factor
√

2
N in the definition of CII

N by
√

2 and apply a fast DCT-II
algorithm to this scaled DCT-II.

Based on the above discussion, the algorithm for integer N-point DCT-II computation
is very simple. For integer input vector x ∈ ZN the computation of the forward integer
N-point DCT-II consists of the following steps:

1. Compute x̂ = α CII
N x by a fast DCT-II algorithm, where α ≥ αN is chosen suitably,

for example, take αN = √
N .

2. Compute y = round(x̂), where y ∈ ZN approximates α CII
N x.

For N = 8 we can just take the factor α = 2
√

2 > αN and use a fast 8-point DCT-II algorithm
for 2

√
2CII

N x.
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The inverse integer N-point DCT-II algorithm is equivalently simple and consists of the
following steps:

1. Compute ŷ = 1
α

[CII
N ]Ty = 1

α
CIII

N y by a fast inverse DCT-II algorithm, where α is
chosen as in the forward integer DCT-II algorithm.

2. Compute x = round(ŷ), where x ∈ ZN is the original input vector.

Using the Theorem 5.7 the integer transforms can be derived for other discrete trigono-
metric transforms analogously.

5.5.3 Reversible DCTs

Lossless block DCT-II and DCT-IV, called reversible DCTs (RDCTs), have been pro-
posed in Refs. [62–64]. In order to construct the RDCT, the forward and inverse N-point
reversible transform is introduced, which is defined by a simple set of equations with asso-
ciated computational structure. Inserting a nonlinear operation (round, floor or ceil) into
the intermediate computational steps, the reversible transform maps integer input signal to
integer transform coefficients and integer input signal can be losslessly recovered by the
inverse of reversible transform. Essentially, the N-point reversible transform defined by the
set of equations is represented by an N × N generalized transform matrix whose determi-
nant is equal to −1. The elements of generalized transform matrix are derived in the form
of algebraic expressions consisting of unknown real-valued coefficients. For a specific
N-point DCT its reversible version, N-point RDCT, is obtained by comparing the ele-
ments of the N × N generalized transform matrix with the corresponding elements of a
desired N × N DCT matrix. The process leads to solving the system of linear equations,
and the unknown coefficients for the desired DCT matrix can be determined. Having the
recursive sparse matrix factorization of DCT matrix the fast N-point RDCT is simply con-
structed by substituting the lower-order RDCTs, for the corresponding lower-order block
DCTs which make up the N-point DCT. If the nonlinear floor operation is ignored, then
the RDCT becomes the original real-valued DCT with determinant ±1. The normalized
N-point RDCT can also be used to avoid the problem that the dynamic range of transform
coefficients is nonuniform.

Since the N-point RDCT is represented by the N × N generalized transform matrix, the
method can be applied to any other discrete trigonometric transform using the (recursive)
factorization of a given DCT/DST matrix.

5.5.3.1 Matrix factorizations of 2-point block transforms

Let A be a matrix of order 2 with elements a, b, c, d ∈ R, b �= 0 and with det(A) = +1. Then,
the matrix A and its inverse A−1 can be respectively factorized into the following matrix
products [7]:

A =
(

a b

c d

)
=
(

1 0
d−1

b 1

)(
1 b

0 1

)(
1 0

a−1
b 1

)
,

A−1 =
(

1 0

− d−1
b 1

)(
1 −b

0 1

)(
1 0

− a−1
b 1

)
. (5.167)
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Fig. 5.36. The computational structures for the 2-point block transform represented by the matrix A:
(a) forward and (b) inverse.

The matrices A and A−1 represent forward and inverse 2-point block transforms, respec-
tively. The corresponding computational structures for the forward and inverse 2-point
block transform are shown in Fig. 5.36(a) and (b), respectively. Actually, the factoriza-
tion of matrix A given by (5.167) can be obtained by the PLUS factorization algorithm
described in Section 5.2.7. Substituting a = d = cos ϕ, b = −sin ϕ and c = sin ϕ into fac-
torization (5.167) we get the well-known LUL factorization of Givens–Jacobi rotation Gϕ

and G−ϕ.

Let B be a matrix of order 2 with elements a, b, c, d ∈ R, a �= 0 and with det(B) = −1. Then,
the matrix B can be factorized into the following matrix product [63, 64]:

B =
(

a b

c d

)
=
(

0 1

1 c−1
a

)(
0 1

1 a

)(0 1

1 b−1
a

)
. (5.168)

Since the inverse of each factored matrix in (5.168) is given by

(
0 1

1 s

)−1

=
(−s 1

1 0

)
,

then the factorization of matrix B−1 has the following form:

B−1 =
(− b−1

a 1

1 0

)(−a 1

1 0

)(− c−1
a 1

1 0

)
. (5.169)

The factorization of matrix B given by (5.168) can be also obtained by PLUS factorization
algorithm described in Section 5.2.7. Matrix factors are of the same type with opposite unit
main diagonal. The corresponding computational structures for the forward and inverse
2-point block transform are shown in Fig. 5.37(a) and (b), respectively.

Note: Since J2 J2 = I2 and det(J2) = −1, the factorization of matrix B given by (5.168) can
be flexibly modified by row and column permutations in factored matrices to get different
but equivalent factorizations defining the same computational structure which is shown in
Fig. 5.37.

The factorization of matrix B given by (5.168) is essential to derive N-point reversible
transform.
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Fig. 5.37. Computational structures for the 2-point block transform represented by the matrix B: (a)
forward and (b) inverse.

5.5.3.2 N-point reversible transform

2-point block transform represented by the matrix B with the factorization given by (5.168)
applied to integer input vector x = [x0, x1]T can be expressed as

(
y1

y2

)
=
(

0 1

1 c−1
a

)(
0 1

1 a

)(
0 1

1 b−1
a

)(
x0

x1

)
, (5.170)

where y1 and y2 are real-valued coefficients. Equation (5.170) is equivalent to the following
set of equations [63, 64]:

y0 = x0 + k0x1,

y1 = x1 + k1y0,

y2 = y0 + k2y1, x0, x1 ∈ Z , y0, y1, y2 ∈ R and k0, k1, k2 ∈ R, (5.171)

where k0 = b−1
a , k1 = a and k2 = c−1

a , and y1 and y2 are transform coefficients. The 2-point
block transform defined by (5.171) can be represented by the generalized transform matrix
T2 as (

y1

y2

)
= T2

(
x0

x1

)
, T2 =

(
k1 1 + k0k1

1 + k1k2 k0 + k2(1 + k0k1)

)
. (5.172)

It is easy to verify that the generalized transform matrix T2 has a determinant equal to −1.
For a specific 2-point block transform, the unknown coefficients k0, k1 and k2 are obtained
by comparing the elements of the generalized transform matrix T2 with the corresponding
elements of a desired 2 × 2 transform matrix (e.g., CII

2 or CIV
2 ). Introducing the floor

function the equation (5.171) becomes

y0 = x0 +
⌊

k0x1 + 1

2

⌋
,

y1 = x1 +
⌊

k1y0 + 1

2

⌋
,

y2 = y0 +
⌊

k2y1 + 1

2

⌋
, x0, x1, y0, y1, y2 ∈ Z and k0, k1, k2 ∈ R. (5.173)
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Fig. 5.38. Computational structures for the 2-point reversible transform: (a) forward and (b) inverse.
Q denotes the floor function.

Equation (5.173) is reversible, i.e., x0 and x1 are losslessly reconstructed from y1 and y2 as

y0 = y2 −
⌊

k2y1 + 1

2

⌋
,

x1 = y1 −
⌊

k1y0 + 1

2

⌋
,

x0 = y0 −
⌊

k0x1 + 1

2

⌋
. (5.174)

The computational structures for the forward and inverse 2-point reversible transform are
shown in Fig. 5.38(a) and (b), respectively. Q denotes the floor function.

The 2-point reversible transform can be generalized to an N-point reversible transform as
[62–64]

yj = xj +
 j−1∑

i=0

kijyi +
N−1∑

i=j+1

kijxi + 1

2

, j = 0, 1, . . . , N − 1,

yN = y0 +
⌊

N−1∑
i=1

kiN yi + 1

2

⌋
, kij ∈ R, (5.175)

where
∑−1

i=0 = ∑N−1
i=N ≡ 0, and y1, y2, . . . , yN ∈ Z are transform coefficients and

xi, i = 0, . . . , N − 1 are input vector components. The inverse N-point reversible transform
is then defined as

y0 = yN −
⌊

N−1∑
i=1

kiN yi + 1

2

⌋
,

xj = yj −
 j−1∑

i=0

kijyi +
N−1∑

i=j+1

kijxi + 1

2

, j = 0, 1, . . . , N − 1, kij ∈ R. (5.176)

In Section 5.2.9 the determinants of DCT/DST matrices have been evaluated. For N = 2 all
the DCT and DST matrices are non-eigenorthogonal, i.e., their determinant is equal to −1
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while for N > 2 almost all DCT and DST matrices are eigenorthogonal with determinant
equal to +1. The N-point reversible transform can be represented by N × N generalized
transform matrix TN with determinant −1. In the case that determinants of TN and of
DCT/DST matrix differ, the construction of N-point RDCT/RDST (reversible DST) trans-
form can be realized without any problem. Comparing the corresponding elements of the
generalized transform matrix TN and the desired N × N DCT/DST matrix we determine
the values of unknown coefficients kij. If the determinant of the desired DCT/DST matrix
is +1 then substituting the obtained coefficients kij for elements of TN its determinant will
also have the value of +1, and elements in the last row of TN will have opposite signs in
what is equivalent to multiplying the last row by −1 [63]. It indicates that the generalized
transform matrix TN is adaptable according to the value of the determinant of the desired
transform matrix. Consequently, the last transform coefficient will have the value with
opposite sign. In fact, this can be observed in the construction of the 4-point RDCT-IV.

Consider the 4-point reversible transform defined by (5.175). For N = 4 we obtain the set
of equations defining the forward 4-point reversible transform as

y0 = x0 +
⌊

k10x1 + k20x2 + k30x3 + 1

2

⌋
,

y1 = x1 +
⌊

k01y0 + k21x2 + k31x3 + 1

2

⌋
,

y2 = x2 +
⌊

k02y0 + k12y1 + k32x3 + 1

2

⌋
,

y3 = x3 +
⌊

k03y0 + k13y1 + k23y2 + 1

2

⌋
,

y4 = y0 +
⌊

k14y1 + k24y2 + k34y3 + 1

2

⌋
, (5.177)

where y1, y2, y3, y4 ∈ Z are transform coefficients. The 4-point reversible transform can be
represented by the generalized transform matrix T4 given by




y1

y2

y3

y4


 = T4




x0

x1

x2

x3


, T4 =




t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

t41 t42 t43 t44


, (5.178)

where

t11 = k01,

t12 = 1 + k01k10,

t13 = k21 + k01k20,

t14 = k31 + k01k30,
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t21 = k02 + k12t11,

t22 = k02k10 + k12t12,

t23 = 1 + k02k20 + k12t13,

t24 = k02k30 + k12t14 + k32,

t31 = k03 + k13t11 + k23t21,

t32 = k03k10 + k13t12 + k32t22,

t33 = k03k20 + k13t13 + k32t23,

t34 = 1 + k03k30 + k13t14 + k32t24,

t41 = 1 + k14t11 + k24t21 + k34t31,

t42 = k10 + k14t12 + k24t22 + k34t32,

t43 = k20 + k14t13 + k24t23 + k34t33,

t44 = k30 + k14t14 + k24t24 + k34t34.

It can be verified that the determinant of generalized transform matrix T4 is equal to
−1. For a specific 4-point block transform the unknown coefficients kij are obtained by
comparing the elements of the generalized transform matrix T4 with the corresponding
elements of a desired transform matrix of order 4 (e.g., CIV

4 ). The computational structures
for the forward and inverse 4-point reversible transform are shown in Fig. 5.39(a) and
(b), respectively. Q denotes the floor function. The computational structure in Fig. 5.39(a)
defines the following factorization of the generalized transform matrix T4:

T4 =




0 1 0 0

0 0 1 0

0 0 0 1

1 k14 k24 k34







1 0 0 0

0 1 0 0

0 0 1 0

k03 k13 k23 1







1 0 0 0

0 1 0 0

k02 k12 1 k32

0 0 0 1




×




1 0 0 0

k01 1 k21 k31

0 0 1 0

0 0 0 1







1 k10 k20 k30

0 1 0 0

0 0 1 0

0 0 0 1


. (5.179)

It is interesting to note that the factored matrices in (5.179) are the so-called single-row
elementary matrices introduced in Ref. [9].

In the following section the construction of fast RDCT is illustrated for 8-point DCT–II.
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Fig. 5.39. Computational structures for the 4-point reversible transform: (a) forward and (b) inverse.
Q denotes the floor function.

5.5.3.3 The fast 8-point RDCT-II

From the modified EOT factorization of matrix ĈII
8 given by (5.135) and (5.136) applied

recursively we have

ĈII
8 =

√
2

2




√
2

2

(
CII

2 0

0 CIV
2 J2

)(
I2 J2

J2 −I2

)
0

0 CIV
4 J4




I4 J4

J4 −I4


, (5.180)
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where the non-eigenorthogonal matrices CII
2 , CIV

2 and the eigenorthogonal CIV
4 matrix are

given by

CII
2 =




√
2

2

√
2

2√
2

2 −
√

2
2


, det(CII

2 ) = −1,

CIV
2 J2 =

(
cos π

8 sin π
8

sin π
8 −cos π

8

)
J2, det(CIV

2 ) = det(J2) = −1, det(CIV
2 J2) = +1,

CIV
4 J4 =

√
2

2




cos π
16 cos 3π

16 sin 3π
16 sin π

16

cos 3π
16 −sin π

16 −cos π
16 −sin 3π

16

sin 3π
16 −cos π

16 sin π
16 cos 3π

16

sin π
16 −sin 3π

16 cos 3π
16 −cos π

16




J4,

det(CIV
4 ) = +1, det(J4) = +1 and det(CIV

4 J4) = +1. (5.181)

According to the modified EOT factorization, the matrix ĈII
8 is decomposed into 2- and

4-point DCT-II and DCT-IV block transforms. In order to obtain the 8-point RDCT-II we
need to compare the elements of the generalized matrix T2 in (5.172) with the corresponding
elements of the matrices CII

2 and CIV
2 , and then to compare the elements of generalized

matrix T4 in (5.178) with the corresponding elements of the matrix CIV
4 .

For the 2-point RDCT-II we get the values of coefficients k0, k1 and k2 as

k1 =
√

2

2
, k0 = k2 = 1 − √

2,

and for the 2-point RDCT-IV we get the following values of coefficients k0, k1 and k2 as

k1 = cos
π

8
, k0 = k2 = sin π

8 − 1

cos π
8

.

Finally, comparing the corresponding elements of generalized transform matrix T4 in
(5.178) and the matrix CIV

4 we get the values of the coefficients kij for the 4-point
RDCT-IV as

k01 =
√

2

2
cos

π

16
,

k10 = cos 3π
16 − √

2

cos π
16

,

k12 = −
√

2

2

[
sin

π

16
+ k10 cos

3π

16

]
,
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k02 =
√

2

2

[
cos

3π

16
− k12 cos

π

16

]
,

k20 = −
√

2
2

[
cos π

16 + k12 sin 3π
16

]
k02

,

k21 =
√

2

2

[
sin

3π

16
− k20 cos

π

16

]
,

k32 = k21,

k30 = −
√

2
2

[
sin 3π

16 + k12 sin π
16

]− k12

k02
,

k31 =
√

2

2

[
sin

π

16
− k30 cos

π

16

]
,

k03 = −k01,

k13 = −k31,

k23 = k21,

k14 = −k30,

k24 = k20,

k34 = −k10.

Substituting the 2- and 4-point RDCTs-II and RDCTs-IV for the corresponding 2- and
4-point DCT-II and DCT-IV block transforms which make up the 8-point DCT-II transform
in (5.180) we obtain the fast 8-point RDCT-II which is shown in Fig. 5.40. The fast
4-point RDCT-II is shown in a dotted box. Since det(CIV) = +1 and det(T4) = −1, then
for given coefficients kij in the implementation of 4-point RDCT-IV by computational
structure shown in Fig. 5.39 the last transform coefficient y4 has the opposite sign, i.e.,
y4 = −y4. The normalization of output RDCT-II coefficients is given by the diagonal matrix

D̂8 = diag{ 1
2 , 1

2 , 1
2 , 1

2 ,
√

2
2 ,

√
2

2 ,
√

2
2 ,

√
2

2 }.
The concept of normalized DCT-II is based on the orthogonal EOT matrix factorization of
DCT-II matrix. The orthogonal EOT factorization of ĈII

8 is defined as

ĈII
8 =



(

CII
2 0

0 CIV
2 J2

) √
2

2

(
I2 J2

J2 −I2

)
0

0 CIV
4 J4




√
2

2

(
I4 J4

J4 −I4

)
, (5.182)

where matrices CII
2 , CIV

2 and CIV
4 are given by (5.181). Compared to (5.180) in the

orthogonal EOT factorization of ĈII
8 , all factored matrices including butterfly matrices
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Fig. 5.40. The fast 4- and 8-point RDCTs-II.

are orthogonal and consequently no normalization is needed. Thus, the dynamic range
of the output transform coefficients can be kept uniform. By suitable permutations, the
orthogonal EOT factorization of the ĈII

8 matrix can be decomposed into 2-point DCT-II
block transforms and 2- and 4-point DCT-IV block transforms only. Replacing each 2- and
4-point DCT-II and DCT-IV block transforms by the corresponding 2- and 4-point RDCTs-
II and RDCTs-IV, respectively, the 8-point normalized RDCT-II is obtained. The fast
8-point normalized RDCT-II is shown in Fig. 5.41. The fast 4-point normalized RDCT-II
is shown in a dotted box.

The inverse 8-point RDCT-II, RDCT-III, is obtained by reversing the forward 8-point
RDCT-II and performing the inverse 2- and 4-point RDCTs-II and RDCTs-IV, respectively.

5.5.4 Signed DCT square wave transform

An efficient square wave transform called the signed DCT-II (SignDCT-II) has been
proposed in Ref. [65]. The SignDCT-II is obtained by applying the signum function oper-
ator to the elements of the DCT-II matrix CII

N , i.e., the SignDCT-II matrix of order N
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Fig. 5.41. The fast 4- and 8-point normalized RDCTs-II.

denoted by CSignDCT-II
N is defined as

[
CSignDCT-II

N

]
ij

= sign

(
cos

π(2j + 1)i

2N

)
, i, j = 0, 1, . . . , N − 1, (5.183)

where

sign(x) =



+1 x > 0,
0 x = 0,

−1 x < 0.

Several advantages are immediately apparent for the SignDCT-II. All the elements
are ±1 and no multiplication is required, i.e., it is multiplierless. Transform order of
the SignDCT-II need not to be a specific integer such as a power of 2. The SignDCT-II
maintains the periodicity and spectral properties of the DCT-II, and consequently, it has
good decorrelation and energy compaction characteristics. This fact can be verified for a
given value of N by comparing spectra of the DCT-II and SignDCT-II that are very close
to each other [65].
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Using the definition of SignDCT-II for N = 8 its transform matrix CSignDCT-II
8 is given by

CSignDCT-II
8 = 1√

8




1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 −1 1 1 1 −1

1 −1 −1 1 1 −1 −1 1

1 −1 1 1 −1 −1 1 −1

1 −1 1 −1 −1 1 −1 1

1 −1 1 −1 1 −1 1 −1




, (5.184)

and the det(CSignDCT-II
8 ) = 1

2 . Since the SignDCT-II is derived from the DCT-II, any fast
algorithm for the DCT-II computation can be adopted for the efficient SignDCT-II com-
putation. This is valid for the forward SignDCT-II only, because the matrix CSignDCT-II

8 is
not orthogonal. However, it is invertible and its inverse is given by

[
CSignDCT-II

8

]−1 = 1√
8




1 2 1 2 1 0 1 0

1 2 1 0 −1 −2 −1 0

1 0 −1 −2 −1 0 1 2

1 0 −1 0 1 2 −1 −2

1 0 −1 0 1 −2 −1 2

1 0 −1 2 −1 0 1 −2

1 −2 1 0 −1 2 −1 0

1 −2 1 −2 1 0 1 0




. (5.185)

Unfortunately, these specialized features of the SignDCT-II are not valid for all orders. In
order to obtain the fast multiplierless 8-point SignDCT-II, we utilize the EOT factorization
defined by (4.17). Let ĈSignDCT-II

8 be the SignDCT-II matrix with its rows rearranged so
that the upper half consists of even-indexed rows followed by the lower half of odd-
indexed rows, both in bit-reversed order. Then, according to EOT factorization the matrix
ĈSignDCT-II

8 can be recursively factorized as

ĈSignDCT-II
8 = 1√

8




ĈSignDCT-II
4 0

1 1 1 1

0 1 1 −1 1

−1 −1 −1 1

−1 1 −1 1




(
I4 J4

J4 −I4

)
, (5.186)
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Fig. 5.42. The fast forward multiplierless 8-point SignDCT-II.

where

ĈSignDCT-II
4 =




1 1 0 0

1 −1 0 0

0 0 1 1

0 0 −1 1



(

I2 J2

J2 −I2

)
,




1 1 1 1

1 1 −1 1

−1 −1 −1 1

−1 1 −1 1


 =




1 0 0 1

0 1 1 0

0 −1 1 0

−1 0 0 1







1 0 1 0

1 1 0 0

0 0 −1 1

0 1 0 1


. (5.187)

The corresponding fast forward multiplierless 8-point SignDCT-II is shown in Fig. 5.42.
Its computational complexity is 24 additions.
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5.6 Late additions with comments

The integer approximation of discrete sinusoidal transforms has recently been an active
research topic. The recently established international coding standards such as JPEG2000,
MPEG recommend the use of integer transforms for lossless signal coding applications.
For example, MPEG is considering the need for development of a new voluntary standard
specifying a fixed-point approximation to the ideal inverse and forward 8 × 8 DCT-II
(see document ISO/IEC/SC29/WG11/N6915, Hong Kong, January 2005). This document
provides all details including evaluation criteria, developing the inverse and forward 8 × 8
IntDCT that can meet the evaluation criteria and integrating with MPEG codecs.

One can observe that the results of linear algebra have played an important role in the
integer approximation of transforms. In fact, matrix factorizations are powerful mathe-
matical tools to construct invertible/reversible transforms with integer-to-integer mapping
from the corresponding linear transform matrices. At the time of finalizing this book sev-
eral articles have appeared in the refereed journals and conferences which are related to
improving the integer approximation of transforms [66–74]. Therefore, in this section
we briefly comment on the recent important developments. Reader can find the details in
references.

5.6.1 P L1 U L2 factorization of transform matrices

In Ref. [66] it has been shown that a linear transform defined by an invertible matrix TN
of order N with a determinant of unit magnitude can be factorized into a product of unit
triangular matrices with diagonal elements ±1 as

TN = P L1 U L2, (5.188)

where P is a permutation matrix, L1 and L2 are unit lower triangular matrices and U is a
unit upper triangular matrix. Matrices L1, U and L2 are reversibly implemented by matrix–
vector multiplications in floating-point arithmetic with results immediately rounded to the
nearest integer. The factorization (5.188) is actually a PLUS factorization (L2 = S) of TN
described in Section 5.5.1 for the DCT-II matrix CII

8 .

5.6.2 The normalized integer transforms

When an integer transform is used for lossless coding applications, it has to be normalized
to preserve the energy of the input signal in the frequency domain [70]. The normal-
ized integer transform is associated with the orthogonal (recursive) factorization of the
corresponding transform matrix. As an example, see the recursive EOT orthogonal fac-
torization of CII

8 matrix given by (5.182) in Section 5.5.3 (reversible DCTs). All trivial
butterflies are orthogonal. Rotation matrices H π

4
or equivalently G− π

4
J2 are computed by

using the LUL (ULU) structure, where each scalar multiplication is followed by a round-
ing operation. Consequently, more multiplications are needed and thus the computational
complexity both of noninteger and approximated integer transform increases. As well, due
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to the realization of trivial orthogonal butterflies the error caused by integer approximation
increases too. In case of long transform sizes this approximation error in the frequency
domain becomes considerable. The total accumulated approximation error has a signifi-
cant impact on the lossless coding efficiency. In order to improve the integer transform it is
desirable to minimize not only the computational complexity and the number of rounding
operations but also the approximation error as much as possible [68–70]. With the aim
to improve integer transforms in terms of the computational efficiency and reducing the
approximation error, two schemes have been presented in Ref. [70]:

1. The first scheme is based on the employment of two-step. DLU structure instead
of three-step LUL (ULU) structure. Consequently, the number of multipliers to be
approximated in trivial orthogonal butterflies is reduced.

2. The second scheme is based on the so-called multidimensional (MDL) computational
structure defined by the factorization of a diagonal block matrix into the product of
three block matrices [68–70]. The MDL computational structure significantly reduces
both the number of rounding operations and the approximation error.

5.6.3 The MDL computational structure

The block matrices of the form:

(±IN 0

TN ±IN

)
,

(±IN TN

0 ±IN

)
, (5.189)

where IN is the identity matrix and TN is the square nonsingular matrix both of order N ,
are respectively called the lower and upper quasi-triangular matrices [3]. In particular, the
block matrix of the form: (

AN 0

0 BN

)
, (5.190)

where AN and BN are square nonsingular matrices, is called a quasi-diagonal matrix [3].
Generally, the algebra of square (quasi-triangular) block matrices such as addition and
multiplication is similar to that of square (triangular) matrices with scalar elements. In
particular [3]:

• The product of two lower (upper) quasi-triangular matrices is lower (upper) quasi-
triangular matrix.

• The determinant of quasi-triangular matrix (and quasi-diagonal matrix too) with
square diagonal blocks is equal to the product of determinants of diagonal square
block matrices.

• The transposition of lower (upper) quasi-triangular matrix is upper (lower) quasi-
triangular matrix.
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Obviously, the inverses of quasi-triangular matrices given by (5.189) exist and they can be
simply obtained as

(
IN 0

TN IN

)−1

=
(

IN 0

−TN IN

)
,

(−IN 0

TN IN

)−1

=
(−IN 0

TN IN

)
,

(
IN 0

TN −IN

)−1

=
(

IN 0

TN −IN

)
,

(−IN 0

TN −IN

)−1

=
(−IN 0

−TN −IN

)
. (5.191)

The MDL computational structure is based on the factorization of 2 × 2 diagonal scaling
matrix with determinant equal to +1 into the product of three unit lower and unit upper
triangular matrices as follows [67]:

(
d 0

0 d−1

)
=
( −1 0

d−1 1

)(
1 −d

0 1

)(
0 1

1 d−1

)

=
( −1 0

d−1 1

)(
1 −d

0 1

)(
1 0

d−1 1

)
J2, d ∈ R, d �= 0. (5.192)

The factorization (5.192) provides the basic idea to derive the MDL computational struc-
ture. It can be extended to cases where each scalar element in the factored matrices is a
square nonsingular matrix. In fact, for an arbitrary invertible matrix TN of order N the
following factorization is possible [68–70]:

(
TN 0

0 T−1
N

)
=
(−IN 0

T−1
N IN

)(
IN −TN

0 IN

)(
0 IN

IN T−1
N

)

=
(−IN 0

T−1
N IN

)(
IN −TN

0 IN

)(
IN 0

T−1
N IN

)
J2N , (5.193)

and the MDL computational structure is defined exactly by the factorization of quasi-
diagonal matrix into the product of lower and upper quasi-triangular matrices. An
alternative factorization of a quasi-diagonal matrix with opposite main diagonal is defined
as [71]

(
0 TN

T−1
N 0

)
=
(

IN 0

−T−1
N IN

)(−IN TN

0 IN

)(
IN 0

T−1
N IN

)
. (5.194)

A reversible integer-to-integer mapping is simply constructed by the implementation of
matrix–vector multiplications in floating-point arithmetic with the results rounded to the
nearest integer. If the integer input vector is applied to a matrix on the right-hand side of
(5.193), the first half of integer values is processed by the matrix T−1

N (TN ) and then rounded
to integer values before adding to the second half of integer values. Hence, the large parts
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of the transforms are computed without rounding operations, only the results of matrix–
vector multiplications are rounded and added. A different factorization of the general
block transform matrix into the product of lower and upper quasi-triangular matrices and
quasi-diagonal matrix has been proposed in Refs. [72, 73].

If the factorization (5.193) is applied to the DCT-IV matrix CIV
N and taking into account

that [CIV
N ]−1 = CIV

N , it becomes [68, 69]:

(
CIV

N 0

0 CIV
N

)
=
(−IN 0

CIV
N IN

)(
IN −CIV

N

0 IN

)(
IN 0

CIV
N IN

)
J2N . (5.195)

The MDL computational structure defined by (5.193) can be used for invertible integer
approximations of the TN or an invertible approximation of certain scaling operations.
Moreover, substituting the factorization (5.193) into a recursive sparse matrix factorization
of the transform matrix (e.g., CIV

N ) results in further reducing the overall computational
complexity compared to noninteger implementation of the transform.

5.6.3.1 Error bound estimates between the exact (scaled) DCT-II and corresponding
integer (scaled) DCT-II obtained by dyadic approximation

In the construction of integer DCTs, frequently the floating-point multipliers are either
approximated by dyadic rationals or are rounded to the nearest integer. Both dyadic
approximation and the rounding procedure introduce truncation errors. In Section 5.5.2 the
construction of invertible integer 8-point DCT-II by rounding procedure has been discussed
and explicit estimates of truncation errors for integer approximation of ULU factorized
rotation matrix R2(ϕ) = G−ϕ have been specified in Theorem 5.4. On the other hand, in
Section 5.4.4 the fast multiplierless 8-point BinDCTs-II and IntDCTs-II have been derived
from the rotation-based sparse matrix factorization of DCT-II matrix where multipliers in
LUL (ULU) factorized Givens–Jacobi rotation matrices Gϕ and G−ϕ were approximated by
dyadic rationals. The approximation accuracy between resulting BinDCT-II and IntDCT-II
and exact real-valued DCT-II was evaluated by the MSE error between approximated and
original DCT-II matrix. However, a little attention has been paid to the analysis of errors
caused by dyadic approximation. Recently, the integer-to-integer 8-point DCT-II derived
from the orthogonal rotation-based factorization of the matrix CII

8 [59, 60] with dyadic
approximation of ULU factorized rotation matrix R2(ϕ) = G−ϕ has been proposed in Ref.
[74]. Moreover, the explicit estimates of truncation errors have been derived as follows.

For simplicity, let us use the notation used in Section 5.5.2. Replacing the trigonometric
values tan ϕ

2 and sin ϕ by the dyadic rationals a = βa
2n and b = βb

2n , βa, βb, n ∈ N , respectively,
in the ULU factorization of G−ϕ = R2(ϕ) given by (5.161), and multiplying the factored
matrices we obtain the approximation matrix R̃2(ϕ) in the form:

R̃2(ϕ) =
(

1 − ab a + a(1 − ab)

−b 1 − ab

)
. (5.196)
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The following theorem states how to estimate truncation errors caused by the dyadic
approximation of ULU factorized rotation matrix R2(ϕ) = G−ϕ [74].

Theorem 5.8: (The integer approximation of rotation matrix R2(ϕ) represented by
ULU structure, where the multipliers are approximated by dyadic rationals and explicit
truncation error estimates)

Let R2(ϕ) be a rotation matrix represented by ULU structure and R̃2(ϕ) its approximation
matrix with ϕ ∈ (0, π

2 〉. Further, let a = a(ϕ) = βa
2n ≥ 0 and b = b(ϕ) = βb

2n ≥ 0, βa, βb, n ∈ N
be given with ∣∣∣tan

ϕ

2
− a
∣∣∣ ≤ 2−j and | sin ϕ − b| ≤ 2−j

for some fixed j ∈ N . Then for arbitrary x = [x0, x1]T ∈ (−2k , 2k〉 ∩ Z2, a suitable integer
approximation y = [y0, y1]T ∈ Z2 of ŷ = R̃2x is given by y0 = z2, y1 = z1, where

z0 = x0 + round(x1 a), z1 = x1 + round(−z0 b), z2 = z0 + round(z1 a).

The procedure is left-invertible and its left inverse is x0 = w2, x1 = w1, where

w0 = y0 − round(y1 a), w1 = y1 − round(−w0 b), w2 = w0 − round(w1 a).

Further, the componentwise truncation error can be estimated by

|ŷ0 − y0| ≤ (2 + a + a2 + sin ϕ
(

1 + a + tan
ϕ

2

)
2k−j + 1

2
(2 + a − ab),

|ŷ1 − y1| ≤ (1 + a + sin ϕ)2k−j + 1

2
(b + 1). (5.197)

•
The formulae for y0, y1 and x0, x1 (after inverse transform) directly follow by applying the
input vector x to three matrices in (5.161). The elegant proof of truncation error estimates
(5.197) can be found in Ref. [74]. Explicit overall error bound estimates for two integer-to-
integer 8-point DCT-II algorithms (the invertible integer DCT-II described in Section 5.5.2
and IntDCT-II described in Section 5.4.4) with dyadic approximations are also discussed.
Provided the integer input vector x is quantized into 8-bit representation, from the analysis
it follows that the overall error bound estimates depend crucially on the range of input
data (value of k) if intermediate results rapidly increase through the computation, and
approximation quality.

5.7 Summary

Integer transforms are current modern transform technologies especially suitable for
low-cost, low-powered and computationally efficient transform-based lossless coding.
The resulting integer transforms are comparable to the corresponding original real-
valued transforms, and preserve all their mathematical properties (linearity, orthogonality,
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orthonormality, symmetry of the basis vectors and recursivity) and performance measures.
The methods of integer approximation enable us to construct and flexibly generate the fam-
ily of integer transforms with arbitrary accuracy and performance with the fast, efficient
in-place or even multiplierless implementation using only binary additions and shifts.

Various methods to the construction of integer discrete cosine/sine transforms have been
presented. At first the review of basic material from linear algebra, theory of matrices
and matrix computations (determinant, orthonormal and orthogonal matrices, triangular
matrices, absolute value of a matrix, matrix/vector norms, elementary rotation matrices,
elementary transformations, QR, LU and PLUS matrix factorizations) has been presented
(Section 5.2). In particular, it is shown how the basic material from linear algebra and
matrix theory can be used to derive the factorizations of Givens–Jacobi rotations and
Householder reflections into the products of Gauss–Jordan elementary matrices. In order
to evaluate the approximation error between the approximated and original transform
matrix and to measure the performance of resulting approximated integer transform used in
data compression applications, some theoretical criteria are defined (Section 5.3). Finally,
in the last three sections (Sections 5.4 and 5.5) various developed methods and design
approaches to integer approximation of DCTs and DSTs are described in detail including
recent important developments (Section 5.6). The fast integer DCTs and DSTs in the form
of generalized signal flow graphs are ready to be used in practical applications.

Problems and Exercises

1. In Section 5.4.1 an integer approximation of the 8-point DCT-II computed via
WHT, called the CMT, is described in detail. For the new CMT denoted by CMT8
(a, b, c, d, e, f , g, h, i, j, k) two 6-bit integer solutions have been obtained. Write com-
puter program to find complete 7- and 8-bit integer solutions satisfying orthogonal
and orthonormal conditions given by (5.44)–(5.46) under constraints (5.47)–(5.50).
At first, replace inequality (5.49) by (5.51), and then (5.48) by (5.52). For each integer
solution derive the corresponding conversion matrix T̄8 with associated CMT matrix
CCMT

8 . Compute MSE approximation error, performance measures and compare the
resulting CMTs to the 8-point DCT-II. Finally, analyze the computational complexity
in terms of integer multiplications/additions and multiply-free implementation in the
form of additions/shifts.

2. Write computer program for the fast CMT8 (a, b, c, d, e, f , g, h, i, j, k) implementation
shown in Fig. 5.6 and verify its correctness.

3. The open problem in construction of the fast CMT8 (a, b, c, d, e, f , g, h, i, j, k) is the
existence of a sparse matrix factorization of the block matrix Ū4 in the integer
domain. Try to find a such factorization. If there exists then modify the fast CMT8
implementation in Fig. 5.6.

4. Modify the fast CMT8 (a, b, c, d, e, f , g, h, i, j, k) implementation in Fig. 5.6 for the
integer 8-point DST-II computed via WHT and verify its correctness by computer
program.

5. Implement the integer 8 × 8 DCT-II computation based on the fast CMT8
shown in Fig. 5.6. You note that the normalization factors are reduced to shift
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operations. Analyze the total computational complexity for given integer solutions
{a, b, c, d, e, f , g, h, i, j, k}.

6. Derive the orthogonality and orthonormality conditions and constraints on variables
to construct the CMT for the integer approximation of 16-point DCT-II computed
via WHT. Remember that the conversion matrix T16 can be generated recursively,
i.e., it is sufficient to derive the explicit and numerical form of the block matrix U8
and to find its sparse matrix factorization. At first, write computer program to find
complete 8-bit integer solutions and compare resulting q integer CMTs with those of
presented in Refs. [23 24]. Then design the fast CMT16 implementation and verify
its correctness by computer program.

7. Following the method to integer approximation of the 8-point DCT-II computed via
WHT construct the CMT for SCT defined by (4.9). For N = 4 and 8 write computer
program to find complete 8-bit integer solutions. For each solution derive the cor-
responding conversion matrix with associated CMT matrix. Design the fast CMT
implementation based on the EOT factorization of SCT matrix and verify its correct-
ness by computer program. Note that the SCT matrix has no recursive property and
the corresponding conversion matrix has a block-diagonal structure and consists of
two block matrices of the same order.

8. Similarly, following the method to integer approximation of the 8-point DCT-II
computed via WHT construct the CMT for SST defined by (4.10). For N = 4 and 8
write computer program to find complete 8-bit integer solutions. For each solution
derive the corresponding conversion matrix with associated CMT matrix. Design the
fast CMT implementation based on the EOT factorization of SST matrix and verify its
correctness by computer program. Note that the SST matrix has no recursive property
and the corresponding conversion matrix has a block-diagonal structure and consists
of two block matrices of the same order.

9. In Section 5.4.2 an approximation method to construct integer DCTs/DSTs is
described. In construction of the integer 8-point DCT-II denoted by ICT8-II
(a, b, c, d, e, f , g), the set of seven variables has been used. However, using the
relations between cosine/sine elements of CII

8 (actually of the matrix CIV
4 ) given by

cos
3π

16
=

√
2

2

(
cos

π

16
+ sin

π

16

)
, sin

3π

16
=

√
2

2

(
cos

π

16
− sin

π

16

)
,

the explicit form of the matrix CII
8 can be represented only by five different elements

so reducing the set of variables from 7 to 5. Following the procedure in Section
5.4.2 generate by computer program the family of integer ICTs8-II (a, b, c, d, e) with
simplifications and improvements using the 8-bit representation. Design the fast
ICT8-II (a, b, c, d, e) implementation and verify its correctness by computer program.
Compute MSE approximation error, performance measures and compare the result-
ing integer ICTs8-II (a, b, c, d, e) to the 8-point DCT-II. Compare the computational
complexity of integer ICTs8-II (a, b, c, d, e) with those of ICTs8-II (a, b, c, d, e, f , g)
presented in Section 5.5.2.



Ch05-P373624.tex 7/8/2006 13: 1 Page 296

296 Discrete Cosine and Sine Transforms

10. Similarly, using the relations between cosine/sine elements of CIV
8 given by

cos
π

32
=

√
2

2

(
cos

7π

32
+ sin

7π

32

)
, sin

π

32
=

√
2

2

(
cos

7π

32
− sin

7π

32

)
,

cos
3π

32
=

√
2

2

(
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and trigonometric identities
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where α = π
32 , 3π

32 , 5π
32 , 7π

32 , the explicit form of CIV
8 can be represented only by four dif-

ferent elements so reducing the set of variables from 8 to 4. Following the procedure
to construct integer 1√

q ICT8-IV described in Section 5.4.2 find by computer pro-

gram complete 8-bit solutions for integer 1√
q ICT8-IV (a, b, c, d). Design the fast 1√

q

ICT8-IV (a, b, c, d) implementation using a suitable fast 8-point DCT-IV algorithm
from Section 4.4.4. Verify its correctness by computer program.

11. Modify the fast integer ICT8-II (a, b, c, d, e, f , g) implementation shown in Fig. 5.7
for the fast integer IST8-II (a, b, c, d, e, f , g).

12. Implement the integer 8 × 8 DCT-II computation based on the fast ICT8-II
(a, b, c, d, e, f , g) shown in Fig. 5.7. Analyze the total computational complexity for
given integer solutions {a, b, c, d, e, f , g}.

13. Design the fast integer ICT16-II implementation using a suitable fast 16-point DCT-II
algorithm (see Sections 4.4.3 and 4.4.4). Remember that the matrix CIV

16 is recursive.
Therefore, you need only derive the fast integer 1√

q ICT8-IV.

14. Write computer program to find complete 6-, 7- and 8-bit integer solutions for the inte-
ger 1√

q ISCTs8 (a, b, c, d, e). Design the fast 1√
q ISCT8 (a, b, c, d, e) implementation

and verify its correctness by computer program.

15. Write computer program to find complete 6-, 7- and 8-bit integer solutions for the
integer 1√

q ISSTs8 (a, b, c, d). Design the fast 1√
q ISST8 (a, b, c, d) implementation

and verify its correctness by computer program.
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16. In Section 5.4.3 an orthogonal/orthonormal parametrized GCT as a rationalized
approximation of the DCT-II for N = 8 is described. For the 8-point DCT-II there are
eight different equivalent parametrized forms of the matrix CII

8 and only two forms are
presented in Section 5.4.3. Derive remaining six forms of the parametrized CII

8 matrix.

17. Verify by computer program the fast GCT8-II (a, b, c, r) implementations shown in
Figs. 5.8 and 5.9. Choose suitable approximations of the parameters a, b, c, r by
dyadic rationals.

18. Design the fast GCT8-II (a, b, c, r) implementations for the remaining six equivalent
forms of the parametrized CII

8 matrix and verify their correctness by computer pro-
gram. Choose suitable approximations of the parameters a, b, c, r by dyadic rationals.

19. Implement the integer 8 × 8 DCT-II computation based on the fast GCT8-II (a, b, c, r)
transform for given approximations of the parameters a, b, c, r by dyadic rationals,
analyze its total computational complexity and compare with that of presented in
Refs. [39–42].

20. Parametrize the DCT-IV matrix CIV
8 and construct the parametrized GCT8-IV.At first,

rewrite the explicit form of the matrix CIV
8 using the relations between cosine/sine

elements (see Problem 10). Design the fast GCT8-IV implementation and choose
suitable approximations of the parameters by dyadic rationals. Verify its correctness
by computer program. You need find the sparse matrix factorization of CIV

8 .

21. Construct the parametrized GCT16 and design the corresponding fast GCT16
implementation. Verify its correctness by computer program.

22. Verify by computer program the fast GCMT8 (a, b, c) implementation shown in
Fig. 5.10. Choose suitable approximations of the parameters a, b, c by dyadic
rationals.

23. Implement the integer 8 × 8 DCT-II computation based on the fast GCMT8-II (a, b, c)
for given approximations of the parameters a, b, c by dyadic rationals, analyze its total
computational complexity and compare with that of based on GCT8-II (a, b, c, r).

24. In Section 5.4.4 the constructions of fast multiplierless approximation of the 8-point
DCT-II, called BinDCTs-II and IntDCTs-II, are described. In Fig. 5.17(a) and (b)
the general forms of the forward and inverse 8-point fast multiplierless BinDCTs-IIC
are shown. Verify their correctness by computer program and choose suitable dyadic
approximations of multipliers in terms of minimum-adder representation.

25. Implement the forward and inverse 8 × 8 fast multiplierless approximation of the
DCT-II based on BinDCT-IIC shown in Fig. 5.17. Analyze the total compu-
tational complexity for given dyadic approximations of multipliers in terms of
minimum-adder representation.

26. Verify by computer program the general form of 8-point fast multiplierless BinDCT-
IIL shown in Fig. 5.19. Choose suitable dyadic approximations of multipliers in
terms of minimum-adder representation.

27. Implement the forward and inverse 8 × 8 fast multiplierless approximation of the
scaled DCT-II based on BinDCT-IIL shown in Fig. 5.19. Analyze the total com-
putational complexity for given dyadic approximations of multipliers in terms of
minimum-adder representation.
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28. Verify by computer program the general form of 8-point fast multiplierless BinDCT-
IIS shown in Fig. 5.21. Choose suitable dyadic approximations of multipliers in terms
of minimum-adder representation.

29. Implement the forward and inverse 8 × 8 fast multiplierless approximation of the
DCT-II based on BinDCT-IIS shown in Fig. 5.21. Analyze the total compu-
tational complexity for given dyadic approximations of multipliers in terms of
minimum-adder representation.

30. Verify by computer program the general form of 8-point fast multiplierless IntDCT-II
shown in Fig. 5.23. Choose suitable dyadic approximations of multipliers in terms
of minimum-adder representation.

31. Implement the forward and inverse 8 × 8 fast multiplierless approximation of the
DCT-II based on IntDCT-II shown in Fig. 5.23. Analyze the total computational com-
plexity for given dyadic approximations of multipliers in terms of minimum-adder
representation.

32. Modify the 8-point fast multiplierless BinDCTs-II and IntDCTs-II for BinDST-II
and IntDST-II, respectively.

33. Verify by computer program the general form of 8-point fast multiplierless
BinDCT-IV shown in Fig. 5.27. Choose suitable dyadic approximations of multipliers
in terms of minimum-adder representation.

34. Modify the 8-point fast multiplierless BinDCT-IV for BinDST-IV.

35. Construct the 8-point fast multiplierless BinDCT-II based on the orthogonal recursive
sparse matrix factorization of CII

8 given by (4.53) and (4.55). Design the general form
of fast multiplierless BinDCT-II and verify its correctness by computer program.You
note that trivial butterflies are orthogonal 2 × 2 rotation matrices. Therefore, they can
be also realized by LUL (ULU) structures.

36. Method of the construction of fast multiplierless BinDCTs and IntDCTs presented
in Section 5.4.4 offers the high versatility to construct various configurations of
BinDCTs and IntDCTs. For example, all rotations at the end of a signal flow graph
realized by LUL (ULU) structure can be replaced by DLU structure incorporating
scaling factors into the normalization. Construct such configurations.

37. Construct the fast multiplierless BinDCTs-II and IntDCTs-II for N = 16 using the
(orthogonal) recursive sparse matrix factorizations of DCT-II matrix CII

16 (see Section
4.4.3.1).

38. Following the method described in Section 5.4.4 construct the fast multiplierless
approximations of the DCT-I, DST-I, SCT and SST for N = 4 and 8.

39. Dyadic approximations of multipliers in LUL (ULU) and DLU (ULD) structures
can be replaced by round, floor or ceil operators. Implement the fast BinDCTs and
IntDCTs introducing round, floor or ceil operators.

40. In Section 5.5.1 the lossless 8-point DCTs-II based on QR, LU and PLUS factoriza-
tions of the corresponding DCT-II matrices are discussed. Since all DCT and DST
matrices for N > 2 except for the DST-I are eigenorthonormal, i.e., their determinants
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are equal to +1, they must have QR, LU and PLUS factorizations. Derive QR
factorizations both by numerical and analytical procedure for remaining DCT and
DST matrices for N = 8. To simplify the problem utilize a (recursive) sparse matrix
factorization of corresponding transform matrix. Design the QR-based DCT/DST
computational structure, construct lossless integer LDCT/LDST by dyadic approxi-
mations or rounding procedure. Finally, implement the resulting lossless QR-based
integer DCT/DST.

41. Derive LU factorizations for remaining DCT and DST matrices for N = 8. Again,
to simplify the problem utilize a (recursive) sparse matrix factorization of corre-
sponding transform matrix. Design the LU-based DCT/DST computational structure,
construct lossless integer LDCT/LDST by rounding procedure. Finally, implement
the resulting lossless LU-based integer DCT/DST.

42. Derive PLUS factorizations for remaining DCT and DST matrices for N = 8. To
simplify the problem utilize a (recursive) sparse matrix factorization of correspond-
ing transform matrix. Design the PLUS-based DCT/DST computational structure,
construct lossless integer LDCT/LDST by rounding procedure. Finally, implement
the resulting lossless PLUS-based integer DCT/DST.

43. In Section 5.5.2 the construction of 8-point invertible integer DCT-II is discussed.
Following the method construct the 8-point invertible integer DCTs and DSTs for
remaining types of the DCT and DST. Design the fast invertible integer DCTs/DSTs
and verify their correctness by computer program.

44. The global method to obtain integer-to-integer 8-point DCT-II is very simple. It is
sufficient to use any fast DCT-II algorithm implemented in floating-point arithmetic
so that resulting transform coefficients are rounded to the nearest integer. Apply the
method to other DCTs and DSTs for N = 8.

45. In Section 5.5.3 the construction of (normalized) reversible 8-point DCT-II is
described. Apply the method to other DCTs and DSTs for N = 8. You note that
the concept of normalized transform is associated with the orthogonal sparse matrix
factorization of the corresponding transform matrix. Consequently, no normalization
of transform coefficients is needed.

46. The methods described in Section 5.5 to construct lossless, invertible integer and
reversible DCTs/DSTs can be directly extended to N = 16. Repeat the problems
above for N = 16.

References

[1] D. K. Faddeev and V. N. Faddeeva, Computational Methods of Linear Algebra, GIFML,
Moskow, 1963 (in Russian), English translation: Dover Publications Inc., New York, 1959.

[2] I. S. Berezin and N. P. Zhidkov, Computational Methods, Vol. 2, GIFML, Moskow, 1962 (in
Russian).

[3] F. R. Gantmacher, The Theory of Matrices, 2nd Edition, Nauka, Moskow, 1966 (in Russian),
English translation: Vols. 1 and 2, Chelsea, New York, 1959.



Ch05-P373624.tex 7/8/2006 13: 1 Page 300

300 Discrete Cosine and Sine Transforms

[4] B. P. Demidovic and I. A. Maron, Basics of Numerical Mathematics, GIFML, Moscow, 1960
(in Russian).

[5] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd Edition, The Johns Hopkins
University Press, Baltimore, 1996.

[6] H. S. Malvar, Signal Processing with Lapped Transforms, Artech House, Norwood, MA, 1992,
Chapters 1 and 2, pp. 1–80.

[7] F. A. M. L. Bruekers and A. W. M. van den Enden, “New networks for perfect inversion and
perfect reconstruction”, IEEE Journal of Selected Areas in Communications, Vol. 10, No. 1,
January 1992, pp. 130–137.

[8] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting steps”, The Journal
of Fourier Analysis and Applications, Vol. 4, No. 3, 1998, pp. 247–269.

[9] P. Hao and Q. Shi, “Matrix factorizations for reversible integer mapping”, IEEE Transactions
on Signal Processing, Vol. 49, No. 10, October 2001, pp. 2314–2324.

[10] P. Hao, “Customizable triangular factorizations of matrices”, Linear Algebra and Its
Appications, Vol. 382, May 2004, pp. 135–154.

[11] Y. She and P. Hao, “On the necessity and sufficiency of PLUS factorizations”, Linear Algebra
and Its Applications, Vol. 400, May 2005, pp. 193–202.

[12] T. Toffoli, “Almost every unit matrix is a ULU”, Linear Algebra and Its Applications, Vol. 259,
July 1997, pp. 31–38.

[13] G. Strang, “Every unit matrix is a LULU”, Linear Algebra and Its Applications, Vol. 265,
November 1997, pp. 165–172.

[14] P. Duhamel and H. Hollmann, “Split-radix FFT algorithm”, Electronics Letters, Vol. 20, No. 1,
January 1984, pp. 14–16.

[15] H. V. Sorensen, M. T. Heideman and C. S. Burrus, “On computing the split-radix FFT”, IEEE
Transactions on Acoustics, Speech and Signal Processing, Vol. ASSP-34, No. 1, February
1986, pp. 152–156.

[16] P. Duhamel, “Implementation of split-radix FFT algorithms for complex, real, and real-
symmetric data”, IEEE Transactions on Acoustics, Speech and Signal Processing, Vol.
ASSP-34, No. 2, April 1986, pp. 285–295.

[17] W. H. Chen, C. H. Smith and S. C. Fralick, “A fast computational algorithm for the discrete
cosine transform”, IEEE Transactions on Communications, Vol. COM-25, September 1977,
pp. 1004–1009.

[18] D. Hein and N. Ahmed, “On a real-time Walsh–Hadamard/cosine transform image processor”,
IEEE Transactions on Electromagnetic Compatibility, Vol. EMC-20, No. 3, August 1978,
pp. 453–457.

[19] S. Venkataraman, V. R. Kanchan, K. R. Rao and M. Mohanty, “Discrete transforms
via the Walsh–Hadamard transform”, Signal Processing, Vol. 14, No. 4, June 1988,
pp. 371–382.

[20] C. Loeffler, A. Ligtenberg and G. S. Moshytz, “Practical fast 1-D DCT algorithms with
11 multiplications”, Proceedings of the IEEE ICASSP’89, Glasgow, Scotland, May 1989,
pp. 988–991.



Ch05-P373624.tex 7/8/2006 13: 1 Page 301

Integer Discrete Cosine/Sine Transforms 301

[21] N. Suehiro and M. Hatori, “Fast algorithms for the discrete Fourier transform and other trans-
forms”, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. ASSP-34, June
1986, pp. 642–644.

[22] H. W. Jones, D. H. Hein and S. C. Knauer, “The Karhunen–Loève, discrete cosine and related
transforms obtained via the Hadamard transform”, Proceedings of the International Telemetring
Conference, Los Angeles, CA, November 1978, pp. 87–98.

[23] R. Srinivasan and K. R. Rao, “An approximation to the discrete cosine transform for N = 16”,
Signal Processing, Vol. 5, January 1983, pp. 81–85.

[24] H. S. Kwak, R. Srinivasan and K. R. Rao, “C-matrix transform”, IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol. ASSP-31, October 1983, pp. 1304–1307.

[25] W. K. Cham and Y. T. Chan, “Integer discrete cosine transforms”, Proceedings of the Inter-
national Symposium on Signal Processing, Theories, Implementations, and Applications
(ISSPA’87), Brisbane, Australia, August 1987, pp. 674–676.

[26] C. S. Choy, W. K. Cham and L. Lee, “An LSI implementation of integer cosine transform”, Pro-
ceedings of the International Conference on Circuits and Communication Systems (ICCS’88),
Singapore, November 1988, pp. 17.5.1–17.5.5.

[27] C. S. Choy, W. K. Cham and L. Lee, “An integer transform chip using ASIC technology”,
Proceedings of the Picture Coding Symposium (PCS’88), Torino, Italy, September 1988,
pp. 5.5.1–5.5.2.

[28] W. K. Cham, “Development of integer cosine transforms by the principle of dyadic symmetry”,
IEE Proceedings, Vol. 136, No. 4, Pt. I, August 1989, pp. 276–282.

[29] W. K. Cham and F. S. Wu, “On compatibility of order-8 integer cosine transforms and the
discrete cosine transform”, Proceedings of the IEEE Region 10 Conference on Computer and
Communication Systems, Hong Kong, September 1990, pp. 447–449.

[30] W. K. Cham and Y. T. Chan, “An order-16 integer cosine transform”, IEEE Transactions on
Signal Processing, Vol. 39, May 1991, pp. 1205–1208.

[31] W. K. Cham and P. C. Yip, “Integer sinusoidal transforms for image processing”, International
Journal of Electronics, Vol. 70, 1991, pp. 1015–1030.

[32] W. K. Cham, C. S. Choy and W. K. Lam, “A 2-D integer cosine transform chip set and its
application”, IEEE Transactions on Consumer Electronics, Vol. 38, May 1992, pp. 43–47.

[33] P. W. Hawkes, Editor, Advances in Electronics and Electron Physics, Vol. 88, Academic Press,
Boston, 1994, Chapter 1: Integer sinusoidal transforms, pp. 1–61.

[34] T. C. J. Pang, C. S. O. Choy, C. F. Chan and W. K. Cham, “A self-timed ICT chip for image
coding”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 9, September
1999, pp. 856–860.

[35] S. N. Koh, S. J. Huang and K. K. Tang, “Development of order-16 integer transforms”, Signal
Processing, Vol. 24, No. 3, September 1991, pp. 283–289.

[36] K. M. Cheung, F. Pollara and M. Shahshahani, “Integer cosine transform for image com-
pression”, NASA TECH BRIEF, Vol. 18, No. 4, Item #44 from JPL New Technology Report,
NPO-18564, California Institute of Technology, JET Propulsion Laboratory, Pasadena, CA,
April 1994.



Ch05-P373624.tex 7/8/2006 13: 1 Page 302

302 Discrete Cosine and Sine Transforms

[37] S. C. Pei and J. J. Ding, “The integer transforms analogous to discrete trigonometric transforms”,
IEEE Transactions on Signal Processing, Vol. 48, No. 12, December 2000, pp. 3345–3364.

[38] A. Marcek and L. Tomasovic, “A modified integer cosine transform with constant self scalar
product of the basis vectors”, Applied Signal Processing, Vol. 2, 1995, pp. 37–47.

[39] J. D. Allen and S. M. Blonstein, “The multiply-free Chen transform – a rational approach to
JPEG”, Proceedings of the Picture Coding Symposium (PCS’91), Tokyo, Japan, September
1991, pp. 237–240.

[40] M. Boliek, “Real-time discrete cosine transform chip using generalized Chen transform
technology”, Electronics Imaging International, Boston, MA, September 1991, pp. 428–432.

[41] J. Hara, J. D. Allen, S. M. Blonstein and N. Murayama, “Multiply-free DCT”, Proceedings of
the Picture Coding Symposium, Tokyo, Japan, October 1991.

[42] M. Boliek, J. D. Allen, T. Ryu, Y. Sato and J. Hara, “JPEG image compression hardware
implementation with extensions for fixed-rate and compressed image editing applications”,
Proceedings of SPIE, Vol. 2187, San Jose, February 1994.

[43] T. D. Tran, “Fast multiplierless approximation of the DCT”, Proceedings of the 33rd Annual
Conference on Information Sciences and Systems, Baltimore, MD, March 1999, pp. 933–938.

[44] T. D. Tran, “A fast multiplierless block transform for image and video compression”, Pro-
ceedings of the IEEE International Conference on Image Processing (ICIP’99), Kobe, Japan,
October 1999, pp. 822–826.

[45] T. D. Tran, “The BinDCT: fast multiplierless approximation of the DCT”, IEEE Signal
Processing Letters, Vol. 7, June 2000, pp. 141–144.

[46] J. Liang and T. D. Tran, “Fast multiplierless approximations of the DCT with the lifting scheme”,
IEEE Transactions on Signal Processing, Vol. 49, No. 12, December 2001, pp. 3032–3044.

[47] Y. J. Chen, S. Oraintara and T. Nguyen, “Integer discrete cosine transform (IntDCT)”, Pro-
ceedings of the 2nd International Conference on Information, Communications and Signal
Processing, Singapore, December 1999.

[48] S. Oraintara, Y. J. Chen and T. Nguyen, “Integer fast Fourier transform (IntFFT)”, Proceedings
of the IEEE ICASSP’2001, Salt Lake City, UT, May 2002.

[49] S. Oraintara, Y. J. Chen and T. Nguyen, “Integer fast Fourier transform (IntFFT)”, IEEE
Transactions on Signal Processing, Vol. 50, No. 3, March 2002, pp. 607–618.

[50] Y. J. Chen, S. Oraintara, T. D. Tran, K. Amaratunga and T. Q. Nguen, “Multiplierless approx-
imation of transforms using lifting scheme and coordinate descent with adder constraint”,
Proceedings of the IEEE ICASSP’2002, Vol. 3, Orlando, FL, May 2002, pp. 3136–3139.

[51] Y. J. Chen, S. Oraintara, T. D. Tran, K. Amaratunga and T. Q. Nguyen, “Multiplierless approx-
imation of transforms with adder constraint”, IEEE Signal Processing Letters, Vol. 9, No. 11,
November 2002, pp. 344–347.

[52] S. C. Chan and P. M. Liu, “Multiplier-less discrete sinusoidal and lapped transforms using
sum-of-powers-of-two (SOPOT) coefficients”, Proceedings of the International Symposium
on Circuits and Systems (ISCAS’2001), Vol. 2, Sydney, Australia, May 2001, pp. 13–16.

[53] S. C. Chan and P. M. Liu, “An efficient multiplierless approximation of the Fast Fourier trans-
form using sum-of-powers-of-two (SOPOT) coefficients”, IEEE Signal Processing Letters,
Vol. 9, No. 10, October 2002, pp. 322–325.



Ch05-P373624.tex 7/8/2006 13: 1 Page 303

Integer Discrete Cosine/Sine Transforms 303

[54] L. Z. Cheng, H. Xu and Y. Luo, “Integer discrete cosine transform and its fast algorithm”,
Electronics Letters, Vol. 37, No. 1, January 2001, pp. 64–65, Errata: Electronics Letters, Vol.
37, No. 12, July 2001, p. 803.

[55] Y. Zeng, G. Bi and Z. Lin, “Integer sinusoidal transforms based on lifting factorization”,
Proceedings of the IEEE ICASSP’2001, Salt Lake City, UT, May 2001, pp. 1181–1184.

[56] Y. Zeng, L. C. Cheng, G. Bi and A. C. Kot, “Integer DCTs and fast algorithms”, IEEE
Transactions on Signal Processing, Vol. 49, No. 11, November 2001, pp. 2774–2782.

[57] Y. Zeng, G. Bi and Z. Lin, “Lifting factorization of discrete W transform”, Circuits Systems
and Signal Processing, Vol. 21, No. 3, May–June 2002, pp. 277–298.

[58] W. Philips, “The lossless DCT for combined lossy/lossless image coding”, Proceedings of the
IEEE International Conference on Image Processing (ICIP’98), Vol. 3, Chicago, IL, 1998,
pp. 871–875.

[59] G. Plonka and M. Tasche, “Invertible integer DCT algorithms”, Applied and Computational
Harmonic Analysis, Vol. 15, No. 1, July 2003, pp. 70–88.

[60] G. Plonka and M. Tasche, “Integer DCT-II by lifting steps”. In: W. Haussmann, K. Jetter,
M. Reimer and J. Stokler (Editors), International Series in Numerical Mathematics, Vol. 145,
Birkhauser, Basel, 2003, pp. 235–252.

[61] G. Plonka, “A global method for invertible integer DCT and integer wavelet algorithms”,
Applied and Computational Harmonic Analysis, Vol. 16, No. 2, March 2004, pp. 79–110.

[62] K. Komatsu and K. Sezaki, “Reversible discrete cosine transform”, Proceedings of the IEEE
ICASSP’98, Seattle, WA, May 1998, pp. 1769–1772.

[63] K. Komatsu and K. Sezaki, “Design of lossless block transforms and filter banks for image
coding”, IEICE Transactions Fundamentals, Vol. E82-A, No. 8, August 1999, pp. 1656–1664.

[64] K. Komatsu and K. Sezaki, “Design of lossless LOT and its performance evaluation”,
Proceedings of the IEEE ICASSP’2000, Istanbul, Turkey, June 2000, pp. 2119–2122.

[65] T. I. Haweel, “A new square wave transform based on DCT”, Signal Processing, Vol. 81, No. 11,
Nov. 2001, pp. 2309–2319.

[66] J. Wang, J. Sun and S. You, “1-D and 2-D transforms from integers to integers”, Proceedings
of the IEEE ICASSP’2003, Vol. 2, Hong Kong, April 2003, pp. 549–552.

[67] R. Geiger and G. Schuller, “Integer low delay and MDCT filter banks”, Proceedings of the
36th Asilomar Conference on Signals, Systems and Computers, Vol. 1, Pacific Grove, CA,
November 2002, pp. 811–815.

[68] R. Geiger,Y.Yokotani and G. Schuller, “Improved integer transforms for lossless audio coding”,
Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers, Pacific
Grove, CA, November 2003, pp. 2119–2123.

[69] R. Geiger, Y. Yokotani, G. Schuller and J. Herre, “Improved integer transforms using multi-
dimensional lifting”, Proceedings of the IEEE ICASSP’2004, Montreal, Canada, May 2004,
pp. 1005–1008.

[70] Y. Yokotani, S. Oraintara, R. Geiger, G. Schuller and K. R. Rao, “A comparison of integer
fast Fourier transforms for lossless coding”, Proceedings of the International Symposium on
Communications and Information Technologies 2004 (ISCIT 2004), Sapporo, Japan, October
2004, pp. 1069–1073.



Ch05-P373624.tex 7/8/2006 13: 1 Page 304

304 Discrete Cosine and Sine Transforms

[71] H. Huang, R. Yu, X. Lin and S. Rahardja, “Method for realising reversible integer type-IV
discrete cosine transform”, Electronics Letters, Vol. 40, No. 8, April 2004, pp. 514–515.

[72] J. Li, “Reversible FFT and MDCT via matrix lifting”, Proceedings of the IEEE ICASSP’2004,
Vol. 4, Montreal, Canada, May 2004, pp. 173–176.

[73] J. Li, “Low noise reversible MDCT (RMDCT) and its application in progressive-to-lossless
embedded audio coding”, IEEE Transactions on Signal Processing, Vol. 53, No. 5, May 2005,
pp. 1870–1880.

[74] M. Primbs, “Worst-case error analysis of lifting-based fast DCT-algorithms”, IEEE Transac-
tions on Signal Processing, Vol. 53, No. 8, Part 2, August 2005, pp. 3211–3218.



App-P373624.tex 7/8/2006 13: 3 Page 305

APPENDIX A

A.1 Vector spaces

In this section, some important concepts in vector spaces are reviewed. Some examples
are listed to begin this review.

Example 1: In a three-dimensional Euclidean space, any plane containing the origin is a
vector space over the field of real numbers.

Example 2: Polynomials of degree n with real coefficients form a vector space.

Example 3: Solutions of a linear n-th-order homogeneous differential equation form a
vector space.

Example 4: Solutions of a system of n linear homogeneous equations form a vector space.

The common properties that make these examples, vector spaces can be stated more
formally in the following definition.

Definition 1: Vector space: A nonempty set V of elements a, b, c, . . . called vectors, is a
vector space, if the operations of vector addition and scalar multiplication on the elements
are defined as follows:

I. Vector addition: For vectors a, b, c, . . . in V ,

(a) a + b is in V (closure).

(b) a + b = b + a (commutativity).

(c) (a + b) + c = a + (b + c) (associativity).

(d) there exists a 0 in V such that 0 + a = a (additive identity).

(e) there exists a −a for every a in V such that a + (−a) = 0 (additive inverse).

II. Scalar multiplication: For vectors a, b, . . . in V and scalars m, n, . . . over a field F

(a) ma is in V (closure).

(b) m(na) = (mn)a (associativity).

305
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(c) m(a + b) = ma + mb (distributivity).

(d) (m + n)a = ma + na (distributivity).

(e) there exists a 1 in F such that 1.a = a (multiplicative identity).

In particular, when F is the field of real numbers R, V is a real vector space, and when F
is the field of complex numbers C, V is a complex vector space. A more detailed example
is given here to illustrate the important aspects of the definition.

Example 5: The solution set S of the linear homogeneous system

a11x + a12y = 0

a21x + a22y = 0

is a vector space over the real numbers R (if aij’s are in R).

To see this, let u = (x1, y1)T and v = (x2, y2)T be two such solutions in S. The closure
property in the vector addition is clear, because u + v and v + u are obviously also solutions
in S. The trivial solution 0 = (0, 0)T satisfies the homogeneous equations. Therefore S has
an additive identity. Also, if u is a solution, so is −u. Thus u has an additive inverse. The
scalar multiplication properties can be demonstrated in a similar way. Hence S is a vector
space. We have used the superscript T to denote transposition.

A counter-example is important. Here is one.

Example 6: The set of all three-dimensional vectors over R, with non-vanishing magni-
tudes is not a vector space, since there is no additive identity in the set.

The questions of how the vectors in a vector space are related and of how to represent a
vector space lead to the concept of linear independence, which is set out in the following
definition.

Definition 2: Linear independence: a set of vectors, ai, i = 1, 2, . . . , m in a vector space
V is said to be linearly independent if the linear combination.

m∑
i=1

ciai

vanishes (=0) only when all the scalars ci’s are zero. Otherwise, the vectors ai’s are linearly
dependent.

In particular, the set of all possible linear combinations is also a vector space S called the
“span” of {ai, i = 1, 2, . . . , m}. If the vectors ai’s are linearly independent, they form a
“basis” for the span S. Note that S is called a “subspace” of V if the span of {ai, i = 1,
2, . . . , m} is not V .
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Example 7: Two non-collinear nonzero vectors in the Euclidean three-dimensional space
are linearly independent and form a basis for the two-dimensional vector subspace, which
is the plane containing these two vectors passing through the origin.

Example 8: Any three nonzero vectors which are coplanar are linearly dependent since
one can always be expressed as a linear combination of the remaining two as is evident in
the following diagram.

c1 a1

a3

c2 a2

a1

a2

i.e., a3 = c1a1 + c2a2 or c1a1 + c2a2 − a3 = 0. Noting that the vanishing combination is
obtained by nonzero coefficients, we see that the vectors are linearly dependent.

Example 8 is a special case of a much more general result which states that any (n + 1)
nonzero vectors in an n-dimensional vector space (the span of n linearly independent
vectors) are linearly dependent. The result stated more formally in the following theorem
touches on a wide range of engineering applications.

Theorem 1: Any nonzero vector v, in an n-dimensional vector space V can be expressed
as a linear combination of n linearly independent vectors ai’s, i = 1, 2, . . . , n, in V , i.e.,

v =
n∑

i=1

ciai. (A.1)

This is demonstrated in the next example.

Example 9: The vector (1, 2, 3)T in a three-dimensional vector space can be expressed
as a linear combination of the three linearly independent vectors

a1 = (1, 1, 1)T, a2 = (0, 1, 1)T and a3 = (0, 0, 1)T so that

(1, 2, 3)T = (1, 1, 1)T + (0, 1, 1)T + (0, 0, 1)T = a1 + a2 + a3.

We note here that if the linearly independent vectors are

b1 = (1, 0, 0)T, b2 = (0, 1, 0)T and b3 = (0, 0, 1)T

and we will have

(1, 2, 3)T = b1 + 2b2 + 3b3.

This illustrates that there can be more than one basis set of linearly independent vectors
for a given vector space. These different basis sets are “equal” in that they all span the same
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vector space. But there are some more “equal” than others, because they are easier to use
in (A.1). To make this clear, we give the definitions of inner product and orthogonality.

Definition 3: Inner product: An inner product on a vector space V is a function that maps
a pair of vectors a, b in V on to a scalar function denoted by <a, b> over the field F such
that the following will hold for arbitrary vectors a, b, c in V and scalars m, n over F

(a) <a, b> = <b, a> (commutativity).

(b) <ma + nb, c> = m<a, c> + n<b, c> (distributivity).

(c) <a, a> > 0 if a > 0 (positive definiteness).

Example 10: The “dot” product between two physical vectors a and b defined as

a · b = |a||b| cos θ,

where | · | denotes the magnitude of the vector, and θ is the angle between the two vectors
is an inner product as can be easily verified.

Any vector space for which a real inner product function has been defined is called a
Euclidean space. Many of the geometrical (metric) properties of the well-known three-
dimensional space can be usefully transferred to such a vector space. One such property
is that of orthogonality. Note from Example 10 that

a · b = 0 if θ = π

2
,

i.e., when a is perpendicular to b. In a similar way two vectors in a vector space are said
to be orthogonal if their inner product vanishes. This is stated in the following definition.

Definition 4: Orthogonality: Two nonzero vectors a and b in a vector space V are said to
be orthogonal if their inner product vanishes, i.e.,

<a, b> = 0. (A.2)

Example 11: The vector space of n-tuples has an inner product function defined between
two vectors a and b as

<a, b> =
n∑

i=1

aibi, (A.3)

where {ai} and {bi} are components of the vectors a and b, respectively. a and b are
said to be orthogonal to each other if the sum on the righthand side of (A.3) vanishes. In
particular, we note, for instance, that the two 4-tuples

(1, −1, 1, −1)T and (1, 1, 1, 1)T

are orthogonal to each other.

It is simple to visualize in a three-dimensional Euclidean space that any three mutually
orthogonal vectors must be linearly independent because it is not possible to express one
as a linear combination of the other two. This means that any three mutually orthogonal
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vectors in the three-dimensional Euclidean space form a basis and span the vector space.
These orthogonal basis vectors are the “more equal” basis vectors, because they are much
easier to use in representing other vectors in the vector space. This is shown in the next
example.

Example 12: Find the linear combination of a, b and c that will give vector d in a three-
dimensional vector space V , in which the inner product is defined and a, b, c are orthogonal
basis vectors.

Let d = d1a + d2b + d3c. If we form the inner product with a on both sides, we get the
equation

<a, d> = d1<a, a> or d1 = <a, d>/<a, a>,

since the inner products of a with b and c are zero. d2 and d3 can be just as easily obtained.
It can be seen very clearly that such simple solutions are not possible when the basis vectors
are not orthogonal.

The above example is a special case of a much more general result which is now stated in
the form of a theorem.

Theorem 2: If {ai, i = 1, 2, . . . , n} is an orthogonal set of basis vectors for an n-
dimensional vector space V , then any nonzero vector d in V can be expressed as a linear
combination of these basis vectors, i.e.,

d =
n∑

i=1

diai,

where the scalar coefficients are given by

di = <ai, d>/<ai, ai>. (A.4)

If these orthogonal basis vectors are “more equal” than just linearly independent basis
vectors, is it possible to make or produce a mutually orthogonal set from a merely linearly
independent set? To answer this question, we should really proceed in two stages. First,
we should investigate whether there always exists such an orthogonal basis set in a vector
space V . If there is, then we ask how to find such a set. The following existence theorem
answers the first part of the question, and the well-known Gram–Schmidt’s procedure of
orthogonalization which is the main part of the constructive proof of this theorem, answers
the second part of the question.

Theorem 3: Every finite dimensional Euclidean vector space (one in which an inner
product function has been defined) possesses an orthogonal basis.

The proof is outlined here in order to highlight the Gram–Schmidt’s procedure.
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Let {ai, i = 1, 2, . . . , n} be a linearly independent set of basis vectors in the vector space
V . We will seek to produce a set of basis vectors {bi, i = 1, 2, . . . , n}, which is orthogonal.
We proceed as follows:

1. Let b1 = a1 (this is an arbitrary choice, any of the other a’s could be chosen).

2. Let b2 = a2 + c21b1, in such a way that <b2, b1> = 0. This gives

c21 = −<a2, b1>/<b1, b1>.

3. Let b3 = a3 + c32b2 + c31b1, in such a way that b3 will be orthogonal to the two
vectors, b1 and b2 already constructed.

This means that

c32 = −<a3, b2>/<b2, b2> and c31 = −<a3, b1>/<b1, b1>.

4. Continuing in this fashion, the general formula for the Gram–Schmidt’s procedure
is obtained as

bm = am −
m−1∑
i=1

〈am, bi〉
〈bi, bi〉 bi, m = 2, 3, . . . , n. (A.5)

Thus, it is always possible to construct the set {bi, i = 1, 2, . . . , n} from the basis {ai}. If
in addition, <bi, bi> = 1 for all i, {bi} is an orthonormal basis set for the vector space V .
We should note that the set {bi} is not unique since the basis vectors {ai} can enter the
Gram–Schmidt’s procedure in any order. A specific example follows.

Example 13: Given a1 = (1, 1, 1)T, a2 = (0, 1, 1)T and a3 = (0, 0, 1)T as a basis in
the three-dimensional vector space, find an orthogonal set {bi, i = 1, 2, 3} using the
Gram–Schmidt’s process.

Let b3 = a3 = (0, 0, 1)T, then let b2 = a2 + c23b3 such that <b2, b3> = 0. This condition
determines the constant c23, so that

c23 = −<a2, b3>/<b3, b3> = −<a2, a3>/<a3, a3> = −1,

giving

b2 = a2 − a3 = (0, 1, 0)T.

Proceed now to the third and last vector by letting

b1 = a1 + c12b2 + c13b3 and requiring that it be orthogonal

to the two vectors already constructed, i.e., <b1, b2> = <b1, b3> = 0. From these two
conditions, the constants are

c12 = −<a1, b2>/<b2, b2> = −1 and c13 = −<a1, b3>/<b3, b3> = −1.
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Therefore, b1 = (1, 0, 0)T. Note, in addition, that the vectors are also normalized with unit
magnitudes.

In this last example, if a matrix is constructed using the three row vectors aT
i , i = 1, 2, 3,

so that

A =



aT
3

aT
2

aT
1


 =


0 0 1

0 1 1
1 1 1


,

then the Gram–Schmidt’s process can be represented by a set of row operations given by
the transformation matrix

T =

 1 0 0

−1 1 0
0 −1 1


, so that TA =




bT
3

bT
2

bT
1


 = B.

The matrix B, in which the rows are mutually orthogonal is called an orthogonal matrix.
Thus the Gram–Schmidt’s procedure can be regarded as the transformation that will take
a matrix of full row rank (i.e., linearly independent rows) and turn it into an orthogonal
matrix (i.e., mutually orthogonal rows).

The Gram–Schmidt’s procedure and the concept of orthogonal basis for a vector space
combine to produce a very important result. This result states that if U is a subspace of a
finite dimensional Euclidean space V , it is always possible to find a subspace U+, which
is orthogonal to U, and together with it to make up the complete V . Before stating this
important result as a theorem, we will see its realization in the three-dimensional Euclidean
space in the following example.

Example 14: Let V be the three-dimensional Euclidean vector space. Then P, any plane
passing through the origin, is a subspace of V as shown in the following diagram.

P�

P

The normal to the plane through the origin, denoted by P+, is orthogonal to all vectors
lying in P, and P+ is a subspace of V . Note that choosing any two orthogonal vectors in
P emanating from the origin, and combining with a vector along P+ will produce three
mutually orthogonal vectors in V , which form its basis. Thus, P and P+ together make up
the vector space V . P+ is called the orthogonal complement of P in V .
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Now the theorem.

Theorem 4: If U is a subspace of a finite dimensional Euclidean space V , then there exists
a unique subspace U+, orthogonal to U such that U ⊕ U+ = V (⊕ denotes direct sum,
i.e., the collection of all vectors in both subspaces). Each of U and U+ is the orthogonal
complement of the other in V .

The proof of this theorem is instructive and highlights the usefulness of the Gram–
Schmidt’s procedure. The proof is outlined in what follows.

Proof: Let {a1, . . . , ar} be a basis for U. Then it is not difficult to see that by extending
this set, we can find a set

{a1, . . . , ar , cr+1, . . . , cn},
which will be a basis for the vector space V . By applying the Gram–Schmidt’s procedure
on this set of basis vectors as ordered, an orthogonal set of basis vectors can be found
denoted by

{b1, . . . , br , br+1, . . . , bn}.
Based on the procedure, {b1, . . . , br} are linear combinations of {a1, . . . , ar} and form
an orthogonal basis for U. The remaining members {br+1, . . . , bn} are orthogonal to all
vectors in U, again by the Gram–Schmidt’s construction, and span a subspace U+. That
U ⊕ U+ = V is obvious. Now, since every vector which is orthogonal to U must be in U+,
U+ is unique. Note that although the basis set {br+1, . . . , bn} is not unique, the subspace
U+ which it spans is.

An example in four dimensions concludes this section.

Example 15: Let a1 = (0, 0, 0, 1)T, a2 = (0, 0, 1, 1)T, a3 = (0, 1, 1, 1)T and a4 =
(1, 1, 1, 1)T be the basis of a four-dimensional Euclidean space V . Let us choose {a1, a2}
as the basis for the subspace U and try to find U+, its orthogonal complement in V .

Let b1 = a1, then b2 = a2 − b1<a2, b1>/<b1, b1> = (0, 0, 1, 0)T. Thus, {b1, b2} form
an orthogonal basis for U. We now continue this process outside of U.

Let b3 = a3 −
2∑

i=1

bi<a3, bi>/<bi, bi> = (0, 1, 0, 0)T.

Similarly, b4 = a4 −
3∑

i=1

bi<a4, bi>/<bi, bi> = (1, 0, 0, 0)T.

Note that {b3, b4} spans a subspace where all vectors are orthogonal to the subspace U.
This is the orthogonal complement U+ that we were looking for.
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Problems and Exercises A.1

1. Determine whether each of the following statement is true or false:

(a) The set of all m × n matrices defined over the field of real numbers R is a vector
space.

(b) The set of all n-th degree polynomials defined over R with real coefficients is a
vector space.

(c) Any plane in a three-dimensional Euclidean space is a vector subspace.

(d) The set of all possible sinusoidal signals limited within a given frequency band
is a vector space.

(e) The set of all non-vanishing dyadic signals limited in a given sequency band is
a vector space.

2. Determine whether each set of the following vectors is linearly independent:

(a) a1 = (1, 1, 1)T, a2 = (1, 2, 2)T, a3 = (1, 2, 3)T.

(b)

[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
1 0
0 0

]
,

[
0 0
1 0

]
.

(c) a1 = 1, a2 = x, a3 = x2, a4 = x3, for x in (−1, 1).

(d) a1 = sin x, a2 = cos x, a3 = sin 2x, a4 = sin x cos x, x in (0, 2π).

(e) (1, 1, 1), (1, 2, 2), (0, 0, 0).

3. Prove the inequality: <a + b, a + b> ≤ <a, a> + <b, b>.

4. Find the linear combination of the matrices in Exercise 2(b) which will produce the
matrix [

3 4
5 6

]
.

5. If the inner product between two matrices is defined as

<A, B> =
∑

i

∑
j

aijbij,

determine which pairs of matrices in Exercise 2(b) are orthogonal.

6. Based on Exercise 5 and the Gram–Schmidt’s procedure, generate an orthogonal
basis for the vector space of 2 × 2 matrices.

7. For the functions: f0 = 1, f1 = x, f2 = x2, f3 = x3, with x in (−1, +1), define an inner
product

<fi, fj> =
1∫

−1

fi(x) fj(x)dx,

(a) show that the given functions are not mutually orthogonal,

(b) use the Gram–Schmidt’s procedure to generate an orthogonal basis.
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8. If V is the vector space of all polynomials defined over the real line R with degree
less than or equal to three, and W is the vector space of all polynomials defined over
R of degree less than or equal to one,

(a) show that W is a subspace of V ,

(b) find the orthogonal complement W+ of W in V .

9. Assume an orthonormal basis {a1, . . . , an} for an n-dimensional Euclidean space V :

(a) Prove the Bessel’s inequality for any vector v in V

m∑
i=1

<v, ai>
2 ≤ <v, v>, for m < n.

(b) Prove the Parseval’s identity for u, v in V

n∑
i=1

<u, ai><v, ai> = <u, v>.

10. Let U be the vector subspace spanned by the vectors

(1, 1, 0, 1) and (0, 1, 1, 0),

in a four-dimensional vector space V . Show that U+, its orthogonal complement
in V , is the solution space of two homogeneous linear equations in four unknowns.
(Hint: any member of U+ must be orthogonal to any vector in U which is a linear
combination of the two given vectors.)

A.2 The matrix eigenvalue problem

As we have seen in examples in the foregoing section, vector spaces and homogeneous
linear simultaneous equations are closely related. In particular, the so-called “eigenvalue”
problem is a classic example of such a system. A very simple example leads off our
discussion.

Example 16: The vibrations of a coupled spring–mass system as represented by the
following diagram (ignoring all gravitational forces and frictions)

k1�3
m1�1

y1�0 y2�0

k2�2
m2�1
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where m1, m2, k1, k2, y1 and y2 are respectively the masses, spring constants and the
displacements, can be represented by a set of coupled second-order differential equations

d2y1

dt2
= −5y1 + 2y2,

d2y2

dt2
= 2y1 − 2y2.

Using vector notations so that y = ( y1, y2)T and letting y = x e jωt , where x = (x1, x2)T and
j = √−1, we obtain the matrix equation

−ω2x =
(−5 2

2 −2

)
x,

which can be reduced to the form

Ax = λx. (A.6)

The solution of (A.6) gives in turn the general solution for the original spring–mass
system.

The importance of this example cannot be over-emphasized. The solutions of the homo-
geneous linear simultaneous equation (A.6) form a vector space in which all possible
solutions of the original spring–mass system reside. (Think of these solutions as being
generated by applying different initial disturbances to the point masses m1 and m2.) A
direct application of ideas in the previous section means that if we can find a basis for
this vector space, then all possible solutions are simply linear combinations of these basis
vectors. To find these basis vectors, we shall continue with Example 17 and look for the
solution space of (A.6).

Example 17: Solve the linear homogeneous system

(−5 2
2 −2

) (
x1
x2

)
= λ

(
x1
x2

)
.

Rewriting these we obtain

(−5 − λ 2
2 −2 − λ

) (
x1
x2

)
=

(
0
0

)
, (A.7)

where nontrivial solutions will exist only if the determinant of the coefficient matrix
vanishes. Thus,

det

(−5 − λ 2
2 −2 − λ

)
= (5 + λ)(2 + λ) − 4 = 0.
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This is equivalent to the equation: (λ + 6)(λ + 1) = 0. Therefore, the nontrivial solutions
exist for λ1 = −1 and λ2 = −6. These are called eigenvalues. For λ1 = −1, (A.7) reduces to

(−4 2
2 −1

) (
x1
x2

)
=

(
0
0

)

or (
x1
x2

)
= a

(
1
2

)
= ax1.

Note that the solution ax1 is determined up to an arbitrary constant a and x1 is referred
to as the eigenvector corresponding to the eigenvalue λ1 = −1. For λ2 = −6, similar
considerations will give (

x1
x2

)
= b

(−2
1

)
= bx2.

It is easy to show that the eigenvectors x1 and x2 are linearly independent. In fact, in this
case, <x1, x2> = 0, so that they are orthogonal to each other.

The various aspects of such a problem are dealt with in the following definition.

Definition 5: Matrix eigenvalue problem: Let A be an n × n matrix, x be an n × 1 column
vector and λ, a scalar, defined over a field F. Then the equation

Ax = λx (A.8)

is called a matrix eigenvalue problem for the matrixA. The values of λ, for which nontrivial
solutions exist are called eigenvalues. The corresponding solutions are called eigenvectors.
All solutions of (A.8) (including the trivial solution x = 0) form a vector space called the
eigen-space. The set of eigenvalues λ’s is called the spectrum of A and the largest absolute
value of λ is called the spectral radius of A.

There are innumerable applications of eigenvalue problems in different engineering dis-
ciplines, and such applications necessitate a large amount of numerical methods for com-
puters. Meanwhile, some of the more important analytical properties of the eigenvalue
problem are considered.

Theorem 5: The eigenvalues of an n × n matrix are the roots of the so-called characteristic
equation given by

D(λ) = det|A − λI| = 0. (A.9)

Equation (A.9) is simply the necessary and sufficient condition for the n × n homogeneous
system to have nontrivial solutions. D(λ), the characteristic polynomial, is one of n-th
degree. The eigenvalues which are the roots of (A.9) can be real, complex, distinct or
repeated as the roots of any polynomial equation can be. They are, however, often subject
to physical interpretations. In Example 17, the eigenvalues are the squares of the angular
frequencies of vibration of the system. The frequencies correspond to the two modes of
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vibration exemplified by their corresponding eigenvectors. (One in which the masses move
in phase and the other in which the masses move out of phase.) A typical 3 × 3 example is
shown here for the evaluation of the eigenvalues.

Example 18: Find the eigenvalues of the 3 × 3 matrix A given by

A =

2 −1 2

1 1 −1
2 3 0


.

The characteristic polynomial is given by

D(λ) = det


2 − λ −1 2

1 1 − λ −1
2 3 −λ


,

= (2 − λ){−(1 − λ)λ + 3} + {−λ + 2} + 2{3 − 2(1 − λ)}
= λ3 − 3λ2 + 10 = 0.

The roots of this cubic are 3.3089, −0.1545 + j1.7316 and −0.1545 − j1.7316.

This example shows that even when the matrix A is defined over the field of real numbers
R, the eigenvalues, and therefore the eigenvectors may be defined over the field of complex
numbers C. The subject of matrix eigenvalue problem is a very rich one and there are many
interesting properties associated with the eigenvalues of a given matrix A. Some important
ones are listed here.

Properties of eigenvalues: Let λ1, λ2, . . . , λn be the eigenvalues of an n × n matrix A.
Then the following properties hold:

1. Trace: Tr(A) =
n∑

i=1
aii =

n∑
i=1

λi.

2. Determinant: det |A| =
n∏

i=1
λi.

3. Inverse: If A is nonsingular, then the eigenvalues of A−1 are λ−1
1 , λ−1

2 , . . . , λ−1
n .

4. Spectral shift: The matrix (A − kI) has eigenvalues λ1 − k, . . . , λn − k, for a
constant k.

5. Spectral mapping: The matrix kmAm + km−1Am−1 + · · · + k1A + k0I has eigen-
values

kmλm
j + km−1λ

m−1
j + · · · + k1λj + k0, j = 1, 2, . . . , n.

More important are the eigenvalue problems of matrices of special symmetries. The
definitions for some of these special matrices are given here.
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Definition 6: Hermitian matrix: A square matrix A defined over the field of complex
numbers C is said to be Hermitian if

aij = a∗
ji

and is said to be skew-Hermitian if

aij = −a∗
ji,

where the asterisk * denotes complex conjugation. In matrix notations A is Hermitian if

AT = A∗,

and is skew-Hermitian if

AT = −A∗.

In the special case where the matrix elements are all real, these two reduce to being
symmetric and skew-symmetric, respectively.

Definition 7: Unitary matrix: A nonsingular square matrix A is unitary if

A−1 = (A∗)T( = AH),

where the superscript H denotes conjugate transposition.

Here are examples of the special matrices.

Example 19:

A =
(

1 j
−j 2

)
, B =

(
0 j
j 0

)
, C = 1√

2

(
1 j

−j −1

)
.

Note that AT =A∗, therefore A is Hermitian (you note that aii’s are real). BT = −B∗,
therefore B is skew-Hermitian (you note that bii’s are zero). CHC = I, therefore C is
unitary.

The following is a very important result about the eigenvalues of these special matrices.

Theorem 6: Eigenvalues of special matrices:

1. The eigenvalues of a Hermitian matrix are real.

2. The eigenvalues of a skew-Hermitian matrix are purely imaginary or zero.

3. The eigenvalues of a unitary matrix have absolute value 1.
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Proof: The proof of (1) above is instructive and is outlined here.

Let A be a square Hermitian matrix so that AT =A*, and let the eigenvalue be λ, so that

Ax = λx.

Premultiply this equation by xH to get

xHAx = λxHx, so that λ = (xHAx)/xHx.

Now, xHx, the magnitude squared of the eigenvector x is of course real. The quantity xHAx
is also real since,

(xHAx)H = xHAH(xH)H = xHAx.

Thus λ must be real. The proofs of (2) and (3) in Theorem 6 are left as exercises. The
theorem is valid also when the matrix elements are real, giving rise to symmetric and
skew-symmetric matrices for (1) and (2).

Eigenvectors also form a very rich subject. To this subject we now turn our attention first
by introducing the concept of similarity between matrices.

Definition 8: Similarity of matrices: An n × n matrix A is said to be similar to a matrix B
if they are related by the equation

B = T−1AT, (A.10)

where T is some nonsingular n × n transformation matrix. Matrix A is said to have
undergone a similarity transformation in (A.10).

Example 20: The matrix A =
(

1 j
−j 2

)
is similar to the matrix

B = 1

2

(
5 −j
j 1

)
,

since

B = 1√
2

(
1 j

−j −1

) (
1 j

−j 2

)
1√
2

(
1 j

−j −1

)
= C−1AC.

Note in this example that the characteristic equation for the matrix A is given by

det|A − λI| = (1 − λ)(2 − λ) − 1 = λ2 − 3λ + 1 = 0.

The characteristic equation for the matrix B is given by

det|B − λI| = (2.5 − λ)(0.5 − λ) − 0.25 = λ2 − 3λ + 1 = 0.
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Thus, it is seen that A and B have exactly the same eigenvalues. This is a special case of a
more general result stated in the following theorem.

Theorem 7: If B =T−1AT, then B has the same eigenvalues as A. Also, if x is an
eigenvector of A, then T−1x is an eigenvector of B.

Proof: The proof is straightforward and will be outlined here.

Let Ax = λx be the eigenvalue problem for the matrix A, and let B be similar to A by the
transformation B =T−1AT. We can apply the transformation T−1 to the equation to obtain

T−1A(TT−1)x = λT−1x,

which is the same as:

(T−1AT)(T−1x) = B(T−1x) = λ(T−1x) (A.11)

which clearly states that the vector (T−1x) is an eigenvector of the matrix B.

Eigenvalues are very often physical quantities in a system being analyzed, and, therefore,
similar matrices represent in many ways equivalent physical systems. In particular, when
the eigenvectors of a matrix A are linearly independent, they can be used to form a trans-
formation T. The matrix A is then similar to the diagonal matrix with the eigenvalues along
the diagonal, through this transformation matrix T. This, we show in our next example.

Example 21: Recall the matrix in Example 17 where

A =
(−5 2

2 −2

)
and λ1 = −1, λ2 = −6.

The eigenvectors are found to be x1 = (1, 2)T and x2 = (−2, 1)T. Let

T = (x1, x2) =
(

1 −2
2 1

)
.

Then,

T−1 = 1

5

(
1 −2
2 1

)
.

We find that

B = T−1AT = 1

5

(
1 −2
2 1

) (−5 2
2 −2

) (
1 −2
2 1

)
=

(−1 0
0 −6

)
.



App-P373624.tex 7/8/2006 13: 3 Page 321

Appendix A 321

Such a relation as shown in Example 21 only exists if the eigenvectors are linearly inde-
pendent, forming a basis for the eigen-space for A. This situation is assured when the
eigenvalues are all distinct. The result is stated more formally in the following theorem.

Theorem 8: If the eigenvalues λ1, λ2, . . . , λn of a matrix A are distinct, the correspond-
ing eigenvectors x1, x2, . . . , xn are linearly independent and form a basis for the eigen-
space of A.

In fact, basis of eigenvectors exists under much weaker condition than is stated in Theorem
8. In other words, it is possible under certain conditions for a linearly independent set of
eigenvectors to exist even when the eigenvalues are not all distinct. This is illustrated in
our next example.

Example 22: Consider the 3 × 3 matrix A given by

A =

 2 0 2

−1 1 −2
0 0 1


 whose eigenvalues are λ1 = λ2 = 1 and λ3 = 2,

as can easily be verified. To find the eigenvector for λ3 = 2, we have Ax3 = 2x3, or


 0 0 2

−1 −1 −2
0 0 −1


 x3 =


0

0
0


,

giving x3 = (1, −1, 0)T. For λ1 = λ2 = 1,


 1 0 2

−1 0 −2
0 0 0


 xi =


0

0
0


,

giving xi = a(−2, b, 1)T, i = 1, 2.

By choosing a = 1, b = 2 for x1 and a = −1, b = 1 for x2, x1 = (−2, 2, 1)T, x2 =
(2, −1, −1)T and together with x3 above, they form a linearly independent set. Using
these eigenvectors we can form the transformation matrix T given by

T =

−2 2 1

2 −1 −1
1 −1 0


 and T−1 =


1 1 1

1 1 0
1 0 2


.

From these, it is not difficult to verify that

T−1AT =

1 0 0

0 1 0
0 0 2


.
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Thus the existence of T to “diagonalize”A depends on whether it is possible to find linearly
independent eigenvectors for the repeated eigenvalues. It turns out that for matrices of
certain special symmetries it is always possible. The following theorem illustrates some
of these cases.

Theorem 9: An n × n Hermitian, skew-Hermitian or unitary matrix has a set of linearly
independent eigenvectors (defined over Rn or Cn), which form a unitary transforma-
tion matrix T. In particular, a symmetric matrix has a set of orthonormal eigenvectors.
Symbolically, we have

THAT = diag(λ1, . . . , λn) when A is Hermitian, skew-Hermitian or unitary;

and TTAT = diag(λ1, . . . , λn), when A is symmetric. (A.12)

Here, we have used the convention of diag(λ1, . . . , λn) to denote a diagonal matrix made
up of eigenvalues λ1, . . . , λn.

One of the most important and in our case most relevant diagonalization problems is that of
a circulant matrix. The matrix which diagonalizes a circulant matrix is exactly the matrix
representing the discrete Fourier transform (DFT). We will first review the definition of
a circulant matrix and then discuss its diagonalization as a concluding example of this
section.

Definition 9: Circulant matrix: A circulant matrix C of order n is an n × n matrix in which
the elements of each row are identical to those of the previous row, but are moved one
position to the right and wrapped around. Thus,

C =




c1 c2 . . . cn
cn c1 . . . cn−1
...

...
...

...

c2 c3 . . . c1


 is a circulant matrix. (A.13)

Note that C is also Toeplitz, i.e., each main diagonal consists of the same element.

Example 23: In this example, the circulant matrix of order n and its diagonalization are
examined. Let C be a circulant matrix of order n. Define a matrix F∗ whose elements are
given by

(F∗)km = 1√
n

W (k−1)(m−1)
n , k, m = 1, . . . , n

and Wn = exp(−2πj/n) = cos(2π/n) − j sin(2π/n) is the primitive n-th root of unity. Note
that F∗ is unitary and is the inverse of the n-th-order DFT. Let us look at the k-th column
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of the matrix. This is given by the column vector fk :

fk = 1√
n

(1, W (k−1)
n , W2(k−1)

n , . . . , W (n−1)(k−1)
n )T.

Consider now the product Cfk , denoted by the vector gk . The first element of this vector,
denoted by the scalar g1k , is

g1k = 1√
n

(c1 + c2W (k−1)
n + c3W2(k−1)

n + · · · + cnW (n−1)(k−1)
n )

= 1√
n

(c1 + c2z + c3z2 + · · · + cnzn−1) = pk(z).

Note that we have defined W (k−1)
n as z and this first element is simply an (n − 1)-th degree

polynomial of z as defined by pk(z).

The second element of the vector gk , denoted by g2k , is

g2k = 1√
n

(cn + c1z + · · · + cn−1zn−1)

= 1√
n

z(c1 + c2z + c3z2 + · · · + cnzn−1) since zn = 1,

= zpk(z).

Similarly, the m-th element gmk of the vector gk is given by

gmk = zm−1pk(z).

Therefore, the vector gk is given by

gk = pk(W (k−1)
n )(1, W (k−1)

n , W2(k−1)
n , . . . , W (n−1)(k−1)

n )T

= pk(W (k−1)
n )fk .

Thus, Cfk = pk(W (k−1)
n )fk , which is saying that the vector fk is an eigenvector for the

circulant matrix C. Since the vectors fk , k = 1, . . . , n make up the unitary matrix F∗, it is
clear that the matrix F∗ will diagonalize the circulant C, or

(F∗)−1C(F∗) = diag( p1(W0
n ), p2(W1

n ), p3(W2
n ), . . . , pn(Wn−1

n )). (A.14)

Note that the scalar polynomials pi need not be distinct, and while the actual elements in
C will affect the eigenvalues pi, they have no effect on the eigenvectors, so long as C is
circulant. Note also that the circulant matrix, which is not one of the special types included
in Theorem 8, is always diagonalizable too. Therefore, Theorem 9 is not exhaustive.
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Problems and Exercises A.2

1. Find the eigenvalues for the following matrices:

A =
(

1 j
−j 2

)
, B =

(
0 j
j 0

)
, C = 1√

2

(
1 j

−j −1

)
,

and verify the statements in Theorem 6.

2. Prove, for an n × n matrix A, where n is odd, that there is at least one real eigenvalue,
if all elements of A are real.

3. Prove, for an n × n matrixA defined over the field of real numbers R, that the complex
eigenvalues will appear in complex conjugate pairs.

4. Consider the coupled differential equations

d2y1

dt2
= −5y1 + 2y2 + 1,

d2y2

dt2
= 2y1 − 2y2 + 2.

which can be written in matrix form
d2y
dt2

=Ay + b.

Find a time-independent transformation matrix T, so that z =T−1y and T−1 AT = D
is diagonal.

Apply the matrix T−1 to get the de-coupled system

d2z
dt2

= Dz + T−1b.

Solve this de-coupled system and find the solution to the original equations.

5. Prove, for an n × n matrix A with eigenvalues λ1, λ2, . . . , λn, that

(a) Trace (A) =
n∑

i=1

λi and (b) det|A| =
n∏

i=1

λi.

In particular, show that at least one of the eigenvalues for a singular matrix must
be zero.

6. Prove, if A is an n × n triangular (upper or lower) matrix, that its eigenvalues are its
diagonal elements, i.e.,

λi = aii, i = 1, 2, . . . , n.

7. If the elements of the first row in an n × n circulant matrix C are

c1, c2, c3, . . . , cn,

what conditions must be satisfied by these elements so that
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(a) C is symmetric,

(b) C is Hermitian,

(c) C is skew-Hermitian.

8. Prove that if k is a positive integer and the matrix A is circulant, Ak is also circulant.
In addition, if A is also nonsingular, then A−k is also circulant.

9. Diagonalize the n × n circulant matrix J, whose first row is (1, 1, 1, . . . , 1).

10. In Example 23 it is shown that the k-th eigenvalue of an n × n circulant matrix C is
given by

pk(z) = (c1 + c2z + c3z2 + · · · + cnzn−1),

where z = exp[j2π(k − 1)/n] and ci is the i-th element of C in the first row. Use this
result to find the determinant of the circulant matrix whose first row is (x, 1, 1, 1),
where x is any real number.

A.3 Matrix decompositions

Matrices occur most naturally in problems involving simultaneous equations. We have
seen that a set of second-order differential equations describing the motion of a coupled
spring–mass system can be reduced to matrix form. Its solution is intimately related to
the eigenvalue decomposition problem that we describe in the last section. Looking at the
eigenvalue problem as one of diagonalization, we can see why the equation

A = TDT−1, (A.15)

where D is a diagonal matrix, can be considered as one of decomposing the matrix A into
factor matrices. Of course, it may not be always possible to achieve the decomposition in
this form. In fact, the relevant form of decomposition depends critically on the purpose of
the decomposition. In this section we shall examine some other forms of decomposition
for matrices.

As is our custom, an example is used to begin the discussion.

Example 24: Consider the equation

Ax = b, (A.16)

where

A =

0 8 2

3 5 2
6 2 8


,

and b = (−7, 8, 26)T, which has the solution x = (4, −1, 0.5)T, as can be easily verified.
The actual solution of (A.16) is obtained by a combination of Gauss eliminations and back
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substitutions. The idea is neatly summarized in the following schematic diagram:

(A, b) → by Gauss eliminations → (U, b′)

(U, b′) → by back substitutions → (I, x), (A.17)

where U is an “upper triangular” matrix. In our case, after the proper Gauss eliminations
we have for (A.16) the upper triangular system


3 5 2

0 8 2
0 0 6





x1

x2
x3


 =


 8

−7
3


,

from which we get x3 = 0.5, x2 = −1 and x3 = 4 by back substitutions.

In this example, the Gauss elimination steps can be summarized by a matrix G with the
result that

GA = U. (A.18)

If G is nonsingular, we have the equivalent relation

A = G−1U = L′U, (A.19)

which is saying that A has been factorized into two factor matrices, one of which is upper
triangular. In the case of Example 24, we have

A =

0 1 0

1 0 0
2 −1 1





3 5 2

0 8 2
0 0 6


.

Suppose the first two rows in A are interchanged. This is equivalent to interchanging the
first two equations in (A.16), resulting in an exactly equivalent system of equations. Then,

PA =

1 0 0

0 1 0
2 −1 1





3 5 2

0 8 2
0 0 6


 = LU, (A.20)

where P is a 3 × 3 permutation matrix representing the interchange of the first two rows.
Note that (A.20) indicates that PA can be factorized into a lower triangular matrix L and
an upper triangular matrix U. This is in fact true for any nonsingular matrix. The following
theorem on LU decomposition states this result more formally.

Theorem 10: For any nonsingular matrix A, the rows of A can be permuted so that
the resulting matrix PA can be factorized into the form PA = LU, where L and U are
respectively lower triangular and upper triangular. In particular, if the diagonal elements
of L are ones, the factors L and U are unique (the Doolittle factorization). If instead, the
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diagonal elements of U are ones, the factorization is called Crout’s factorization which is
also unique.

Instead of proving the theorem, it is more illuminating to examine the consequences of the
theorem. Let

PAx = Pb, (A.21a)

be a set of equations in which the required row interchange operations have taken place.
Using the theorem it is seen that

L(Ux) = Pb, (A.21b)

which can be separated into two sets of simultaneous equations

Ly = Pb and Ux = y. (A.22)

It is apparent that y can be found from the first equation in (A.22) by forward substitution,
since L is lower triangular. Using the solution y in the second equation, x can be obtained
by backward substitution, since U is upper triangular. Generally, the forward and back-
ward substitutions in (A.22) are more easily accomplished computationally than the direct
inversion of the matrix PA.

While all nonsingular matrices have LU decompositions, given the required row opera-
tions, symmetric positive definite matrices have LU decompositions which have additional
symmetries. Suppose A is symmetric positive definite1and has an LU decomposition given
by A = LU, then it is easy to see that

AT = UTLT = A = LU, (A.23)

from which we can choose a decomposition for A such that

L = UT. (A.24)

In this particular case, the requirement that either U or L should have unit diagonal elements
must be removed. The resulting decomposition is called the Cholesky’s decomposition.
An example of the process of this decomposition follows.

Example 25: Consider the symmetric positive definite matrix A

A =

4 2 4

2 10 5
4 5 21


.

The LU decomposition in this case is in the following form

A = LLT =

l11 0 0

l21 l22 0
l31 l32 l33





l11 l21 l31

0 l22 l32
0 0 l33


,

1 A is positive definite matrix if xTAx > 0 for all x 	= 0.
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from which the following equations can be obtained for the elements of the matrix L

l11l11 = 4, l11 = 2. l11l21 = 2, l21 = 1.

l11l31 = 4, l31 = 2. l2
21 + l2

22 = 10, l22 = 3.

l31l21 + l32l22 = 5, l32l22 = 3, l32 = 1.

l2
31 + l2

32 + l2
33 = 21, l33 = 4.

Hence,

L =

2 0 0

1 3 0
2 1 4


.

It can be seen in this example that the matrix L obtained as a result of this procedure is not
unique because of the square root operations. However, if the diagonal elements of L are
chosen to be positive this Cholesky decomposition is unique. When the matrix A is just
symmetric (but not positive definite), L will be a matrix with complex elements. In relation
to solving systems of linear equations, it is seen that when A is symmetric and positive
definite the Cholesky decomposition does provide a very compact and computationally
efficient way for solving the linear equations.

When a matrix A is similar to a diagonal matrix D, and at the same time can be LU
decomposed so that the diagonal elements of L are ones, its eigenvalues and the diagonal
elements of U are very intimately related. Because A is similar to D and det|L| = 1, the
following equalities hold:

det|A| = det|U| = det|D|. (A.25)

Alternatively, denoting the eigenvalues of A by λi,

∏
i

uii =
∏

i

dii =
∏

i

λi. (A.26)

The question which leads to interesting results is whether or not the λi’s can be identified
with the individual uii’s. If so, the eigenvalue problem for A can be efficiently solved by
some type of LU decomposition. The answer, however, is not as straightforward as one
would like it to be. To explore this connection, a different orthogonal decomposition of
the matrix A needs to be considered.

In this decomposition, a real matrix A is factorized into two factor matrices Q and R, so
that A = QR. Q is an orthogonal normalized (unitary) matrix so that QTQ = I, and R is
an upper triangular matrix. Such a decomposition is called a QR decomposition and the
procedure to obtain the factors Q and R can be illustrated by what follows. The idea is to
apply orthogonal operations to A so that the final result will be an upper triangular matrix
R. One can systematically do this by working on one column at a time in the matrix A.
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For the first column in the matrix

A =




a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

...

an1 an2 . . . ann


,

we apply an orthogonal operation defined as a premultiplication by a matrix C1 so that the
element a21 will become zero. This can be accomplished by using what is called a Givens
rotation. Such a matrix is given by

C1 =



c1 −s1 . . . . . .

s1 c1 1 . . .

. . . . . . . . . . . .

. . . . . . . . . 1


,

where the elements are all zeros except along the diagonal where they are ones, and the
first four elements in the upper left are as shown. We require that the product C1A to have
a zero for the first element in the second row. This and the requirement that the matrix C1
be unitary give the following equations

a11s1 + a21c1 = 0 and c2
1 + s2

1 = 1.

It can be seen easily that if c1 = cos θ and s1 = sin θ, the matrix C1 is a rotation matrix,
and the angle of rotation can be determined from the two equations. Similarly the element
a31 can be eliminated by applying a second unitary matrix C2 given by

C2 =



c2 . . . −s2 . . .

. . . 1 . . . . . .

s2 . . . c2 . . .

. . . . . . . . . . . .


.

After all the elements below a11 have been nulled, the procedure is repeated for the
(n − 1) × (n − 1) submatrix below the first row, to eliminate all the elements below a22.
The process is continued until all elements below the main diagonal are eliminated so that
the result is an upper triangular matrix R. The result is stated as

( · · · Cn−1Cn−2 · · · C2C1)A = R, (A.27)

and since all the C’s are unitary, (A.27) can be written as

A = ( · · · Cn−1Cn−2 · · · C2C1)TR = QR. (A.28)

It is seen that since each C is orthogonal, the transpose of the product of these matri-
ces is also orthogonal, giving Q with the required property. The procedure for the QR
decomposition of a symmetric real matrix is illustrated in the next example.
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Example 26: Find the QR decomposition for the real symmetric matrix A given by

A =

4 2 4

2 10 5
4 5 21


.

Step 1: Find C1 =

c −s 0

s c 0
0 0 1


 such that the element [C1A]21 = 0 and c2 + s2 = 1; the

nulling to the 21-element gives: 4s + 2c = 0. These two equations for c and s provide one
possible solution of s = −1/

√
5 and c = 2/

√
5. Note that c and s are not unique. Thus A1

the matrix after this operation is:

A1 = C1A =

c −s 0

s c 0
0 0 1





4 2 4

2 10 5
4 5 21


 =




10√
5

14√
5

13√
5

0
18√

5

6√
5

4 5 21




.

Step 2: Find C2 =

c 0 −s

0 1 0
s 0 c


 such that [C2A1]31 = 0. Hence, (10/

√
5)s + 4c = 0, and

c2 + s2 = 1. One possible solution is, s = −2/3 and c = √
5/3. The result of this operation

on A1 is

A2 = C2A1 =

c 0 −s

0 1 0
s 0 c







10√
5

14√
5

13√
5

0
18√

5

6√
5

4 5 21




=




6 8
55

3

0
18√

5

6√
5

0
−1√

5

79√
45




Step 3: Find C3 =

1 0 0

0 c −s
0 s c


 such that [C3A2]32 = 0. In this case, the solution

s = −1/
√

325 and c = −18/
√

325 is a possibility. The final matrix R which is upper
triangular is given by

R = C3A2 =

1 0 0

0 c −s
0 s c







6 8
55

3

0
18√

5

6√
5

0
−1√

5

79√
45




=




6 8
55

3

0 −√
65

−49√
195

0 0
−473√

325




.
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The orthogonal matrix Q is just the transpose of the product C3C2C1 and is given to four
decimal places by

Q =

0.6667 0.4134 0.6202

0.3333 −0.9096 0.2481
0.6667 0.0413 −0.7442


.

It should be noted that since the elements in the matrices C’s are determined up to a sign,
the QR decomposition cannot be considered as unique. As indicated earlier, the C matrices
can be considered as rotation matrices so that the elements c and s are respectively cosine
and sine of an angle of rotation θ. The question of whether such Givens rotations will
always exist is examined in the following.

Consider the lm-th element of a matrix A to be nulled in its QR decomposition. (note that
l > m since the element is below the main diagonal). It is only necessary to consider the
2 × 2 matrix made up of all, alm, aml and amm, i.e.,

A′ =
(

all aml
alm amm

)
.

An orthogonal matrix C’=
(

cos θ − sin θ

sin θ cos θ

)
, for which [C′A′]21 = 0 will require that the

angle of rotation satisfies the equations

all sin θ + alm cos θ = 0 (A.29)

or

sin θ = −alm√
a2

lm + a2
ll

and cos θ = all√
a2

lm + a2
ll

. (A.30)

The solution (A.30) always exists for real matrix elements in A, although the solution is
not unique. The actual matrix C is made up of the elements of C′ located exactly as the
four elements in A together with unit elements along the remaining diagonal positions.
Thus the matrix C used to null the lm-th element of a matrix A is given by

C =




1 . . .

c . . . −s
1 . . .

1
s . . . . . . c

. . . . . . 1




, (A.31)

where the cosine and sine elements are located along the m-th and the l-th rows. The QR
decomposition theorem can now be stated.
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Theorem 11: Any square matrix A defined over the field of real numbers can be
decomposed so that

A = QR,

where Q is an orthogonal matrix and R is an upper triangular matrix. In particular, Q can
be constructed using a series of Givens rotations, C1, C2, . . . , CN to null all the elements
below the main diagonal. Then Q is given by

Q = (CN · · · C2C1)T (A.32)

and R is given by

R = (CN · · · C2C1)A. (A.33)

It is no exaggeration to say that LU and QR decompositions form the backbone of the
body of computational techniques in numerical matrix algebra.

As Q is an orthogonal matrix it is immediately evident that A is similar to a matrix B
defined by the factors Q and R in the product

B = RQ = Q−1QRQ = Q−1AQ = QTAQ. (A.34)

Hence, A and B have the same eigenvalues. Intuitively, B is obtained from A by applying
Givens rotations to the rows as well as to the columns. This has the effect of decreasing
the magnitudes of the off-diagonal elements. Suppose the matrix B is QR decomposed,
so that

B = Q1R1.

Then, the matrix B1 = R1Q1 will still be similar to A. But, since it is obtained by applying
the Givens rotations to the rows and columns of B, its off-diagonal elements will be even
smaller in magnitude than those in B. One sees that by iterating this procedure a diagonal
matrix consisting of eigenvalues of the original matrix can be obtained eventually. The next
example illustrates this procedure of estimating the eigenvalues of a symmetric matrix.

Example 27: Find the eigenvalues of the matrix A =

4 2 4

2 10 5
4 5 21


.

Step 1: Perform a QR decomposition for A so that

A = QR, where Q =

0.6667 0.4134 0.6202

0.3333 −0.9096 0.2481
0.6667 0.0413 −0.7442



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and

R =




6 8
55

3

0 −√
65

−49√
195

0 0
−473√

325




=

6.000 8.000 18.333

0 −8.0623 −2.0259
0 0 −11.9073


.

Step 2: Find the matrix B = RQ giving

B =

18.8889 4.0380 −7.9384

4.0380 7.2496 0.4923
−7.9382 0.4923 8.8615


.

Note that B is symmetric as expected.

Step 3: Repeat Steps 1 and 2 for the matrix obtained in Step 2 until the off-diagonal
elements are sufficiently small. For this example, after six iterations of Steps 1 and 2, the
following matrix is obtained

B7 =

 23.9282 −0.0029 −0.00

−0.0029 8.0999 0.0101
−0.00 0.0101 2.9719


.

The diagonal elements of B7 are exactly the eigenvalues of the matrix A to four decimal
places.

While LU, QR and eigenvalue decompositions are important matrix factorizations for
square matrices, there are physical systems which require nonsquare matrix representa-
tions. Not the least important of these is the least squares problem, where a solution to the
following m × n system is sought:

Ax = b, (m > n), (A.35)

so as to minimize the squared error defined by

||Axs − b||2. (A.36)

Here, the solution xs that minimizes (A.36) is generally denoted by xLS as the least squares
solution to (A.35). Since A is a nonsquare matrix, the notion of a pseudoinverse for A has to
be introduced. If n is the rank of matrix A (i.e., the columns of A are linearly independent),
this pseudoinverse is defined as

AI = (ATA)−1AT

from which the solution xLS =AIb = (ATA)−1ATb is obtained. The existence of this pseu-
doinverse is assured by the invertibility of the matrix (ATA), which is full rank (rank = n).
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However, when r, the rank of A, is less than n, the matrix (ATA) will be rank deficient
and a more general pseudoinverse has to be defined. Such a pseudoinverse depends on
another important orthogonal decomposition of the matrix A called the singular value
decomposition or SVD. The decomposition is described formally by the SVD theorem.

Theorem 12: For a real m × n matrix A, there exist orthogonal matrices U and V of
dimension m × m and n × n, respectively, such that

A = U�VT, (A.37)

where � =
(

D 0
0 0

)
is an m × n matrix in which the submatrix D = diag(σ1, σ2, σ3, . . . , σr)

is a diagonal matrix with strictly positive elements σi, known as the singular values of A
and r ≤ min (m, n) is the rank of A.

While the SVD may seem unfamiliar at this point, it can be related readily to the eigenvalue
decomposition of a matrix. From (A.37) it can be seen that

ATA = V(�T�)VT and AAT = UT(��T)U, (A.38)

using the unitarity property of U and V (i.e., UTU = Im, VVT = In). Equation (A.38) is
easily seen as showing the similarity transformation of ATA and of AAT to the diagonal
matrices �T� and ��T, respectively. Since these latter matrices are of the form diag
(σ2

1 , σ2
2 , . . . , σ2

r , 0, . . .), (A.38) represents the eigenvalue decompositions of ATA and AAT,
while the columns of V and U are related to the eigenvectors of these matrices. The column
vectors ui and vi, i = 1, 2, . . . , r are respectively called the left and the right eigenvectors
of the matrix A. We show two examples here on the SVD, one on a full rank square
matrix and one on a rank deficient nonsquare matrix based on its relation to the eigenvalue
decomposition as shown by (A.38).

Example 28: Find the SVD for the matrix A =
(

0.96 1.72
2.28 0.96

)
.

Form the product ATA =
(

6.12 3.84
3.84 3.88

)
and the product AAT =

(
3.88 3.84
3.84 6.12

)
.

The eigenvalue decomposition of these two matrices gives λ1 = 9 and λ2 = 1. The eigen-
vectors for ATA are v1 = (0.8 0.6)T, and v2 = (−0.6 0.8)T and those for AAT are
u1 = (0.6 0.8)T and u2 = (0.8 −0.6)T. From this is obtained the SVD for A as

A =
(

0.96 1.72
2.28 0.96

)
= U�VT =

(
0.6 0.8
0.8 −0.6

) (
3 0
0 1

) (
0.8 0.6

−0.6 0.8

)
.

Note that the singular values of A are the positive square roots of the eigenvalues of ATA
and AAT.
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Example 29: Find the SVD of the matrix A =

1 2 3 4

2 1 4 3
2 4 6 8


.

Note that this is a rank 2 nonsquare matrix, meaning that both the matrices AAT and ATA
are singular with at least one zero eigenvalue.

For the matrix ATA, the eigenvalues are 176.7179, 3.2821, 0 and 0. The corresponding
eigenvectors are

v1 = (0.2138, 0.3389, 0.5822, 0.7074)T,

v2 = (−0.5309, 0.4612, −0.5774, 0.4147)T,

v3 = (0.4838, −0.5159, −0.4930, 0.5067)T

and v4 = (0.6621, 0.6374, −0.2908, −0.2661)T.

For the matrix AAT, the eigenvalues are 176.7179, 3.2821 and 0. The corresponding
eigenvectors are

u1 = (0.4113, 0.3925, 0.8227)T,

u2 = (0.1755, −0.9198, 0.3511)T

and u3 = (−0.8944, 0, 0.4472)T.

Combining these the SVD of A can be obtained as

A =

1 2 3 4

2 1 4 3
2 4 6 8


 = U� VT

=

0.4113 0.1755 −0.8944

0.3925 −0.9198 0
0.8227 0.3511 0.4472





13.2935 0 0 0

0 1.8116 0 0
0 0 0 0




×



0.2138 0.3389 0.5822 0.7074
−0.5309 0.4612 −0.5774 0.4147

0.4838 −0.5159 −0.4930 0.5067
0.6621 0.6374 −0.2908 −0.2661




Again note that the singular values are the positive square roots of the eigenvalues of AAT

and ATA. It should also be pointed out that while the eigenvectors of nonzero eigenvalues
(both right and left) are determined to a sign, those of zero eigenvalues are required simply
to be orthogonal to those of the nonzero eigenvalues. Thus, for example, v3 and v4 are
required to be orthogonal to v1 and v2 and also be mutually orthogonal. They may therefore
be quite different from the ones shown in the above example.
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Returning to the solution of the rank deficient least squares problem of (A.35), the more
general pseudoinverse of the matrix A can now be defined as

AI = V�+UT, (A.39)

where �+ =
(

D−1 0
0 0

)
and D−1 = diag(σ−1

1 , σ−1
2 , . . . , σ−1

r ). Applying this to the

solution of (A.35) gives xLS =AI b and the minimized squared error is then || (AAI − I)b||2.

Aside from providing the pseudoinverse and thus the least squares solution for a rank
deficient nonsquare system such as (A.35) there are important properties associated with
the SVD of a matrix A. This section is concluded with a list of some of these important
properties.

Properties of SVD of an m × n matrixA: If UTAV = diag(σ1, σ2, . . . , σp), where p = min
(m, n), and σi = 0, for i > r, then

1. Rank (A) = r.

2. The null space of A is N(A) = span {vr+1, vr+2, . . . , vn}.

3. The range space of A is R(A) = span {u1, u2, . . . , ur}.

4. A =
r∑

i=1
σiuivT

i

5. The Frobenius norm of A is || A ||2F =
r∑

i=1
σ2

i .

6. The 2-norm of A is || A ||2 = σ2
1 .

Problems and Exercises A.3

1. Find the LU decomposition for the following matrices:

A =

1 2 3

2 5 8
3 8 14


 and B =


 5 4 1

10 9 4
10 13 15


.

2. Find the Doolittle and Crout factorizations of the following matrices:

A =

 3 9 6

18 48 39
9 −27 42


 and B =


 2 2 4

4 5 13
10 14 43


.

3. Show that the matrix A in Exercise 1 is symmetric positive definite and find its
Cholesky factorization.
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4. The LU decomposition for a nonsingular matrix A is based on Gauss eliminations of
matrix elements below the main diagonal. Explain why the matrix G−1 representing
the inverse of the Gauss eliminations can be permuted to give the required lower
triangular form.

5. Using the Cholesky decomposition in Exercise 3, solve the matrix equation


1 2 3

2 5 8
3 8 14





x

y
z


 =


4

3
1


.

6. Explain why by requiring the diagonal elements of L or of U to be ones, that the LU
decomposition of a given nonsingular matrix will be unique.

7. Determine the QR decomposition of the following matrices:

A =

1 2 3

2 3 4
3 4 4


 and B =


2 3 1

3 5 4
1 4 7


.

8. If A is a square singular matrix defined over the field of real numbers R, determine
whether there exists a QR decomposition for A.

9. Find the eigenvalues of matrices A and B in Exercise 7 using the QR decomposition
procedure described in this section.

10. Examine the procedure used in Exercise 9 to obtain the eigenvalues. Can the corre-
sponding eigenvectors be extracted from the factor matrices (Q’s and R’s) without
directly solving the simultaneous equations? (Hint: the final diagonal matrix is
similar to the original matrix through the set of Q (orthogonal) matrix factors.)

A.4 Signal and its representations

We conclude this Appendix with a discussion of signal and its representations. What is a
signal and why is it important to us? The second part of this question is probably more
easily answered. When we look, we see words or images; when we touch, we feel heat or
cold and when we listen, we hear music or noise. The words or images, heat or cold and
music or noise are all perceived by our senses, transmitted to our brains where they are
processed and understood. For want of a better word, what is being perceived, transmitted
and processed is called a “signal”. In this wide sense, it would be impossible to imagine a
world with no signals.

So, in a very intuitive way, signals are manifestations of physical phenomena; manifes-
tations that are sufficiently concrete so they can be perceived and understood. As the
phenomenon changes, so does the associated signal. Since most changes are observed
as time varies, it is natural to think about signals as functions of time. For example, the
location of an eagle taking flight is a continuous function of time while the Dow–Jones
average changes from day to day and is a function of discrete time. Signal can also vary
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as a function of location. In short, a signal is just a function of some independent variable
or variables. The mathematical definition of a function need not be strictly adhered to in
this definition of a signal.

To understand signals in a more technical sense, they need to be classified and there are
many ways of doing that, depending on what processing may be desirable.

Deterministic or random signals: A signal can be deterministic or random depending on
the physical process it represents. Suppose that

f = f (t) (A.40)

is a continuous signal or function of time t. When f (t) can be determined as t changes
from t1 to t2, the signal is regarded as deterministic. Generally, the function f will satisfy
a differential equation of some kind, which together with prescribed initial conditions will
completely determine f . Hence, the voltage of an RC circuit is completely determined by
the values of the elements, the initial voltage and current, and the second-order differential
equation derived from Kirchoff’s law.

On the other hand, when f is governed by a random process and is not predictable, the
signal is random. The Dow–Jones daily average is a good example. The processing of this
kind of signal is usually done with statistical techniques.

While a predictable signal implies that it is deterministic, the reverse is not necessarily true.
There are chaotic signals generated by deterministic dynamical systems that appear to be
random. Weather patterns are a prime example in which short-term predictions are fairly
accurate while long-term accurate predications are impossible to make. Thus, although the
variables governing the weather such as temperature and pressure satisfy a set of dynamical
equations, the solutions can be chaotic and can appear to be random. In this work chaotic
signals are not dealt with.

Energy or power signals: A signal can also be classified according to its energy or power
content. Define energy E and power P for a signal f (t) as

E = lim
T→∞

∫ T

−T
f 2(t) dt (A.41)

and

P = lim
T→∞

1

2T

T∫
−T

f 2(t) dt. (A.42)

Definition 10: f (t) is an energy signal if 0 < E < ∞ and P = 0; it is a power signal if
E → ∞ and 0 < P < ∞. A signal is not realistic if it is neither a power signal nor an
energy signal.

A time signal can also be represented as a frequency signal through a valid transform.
When the energy or power of such a signal is expressed in the frequency domain, we have
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the notion of energy or power spectra. For the f (t) in (A.40), if

E =
∞∫

−∞
G(ω) dω

or

P =
∞∫

−∞
S(ω) dω, (A.43)

then G(ω) and S(ω) are respectively the energy density and power density spectra of f .

Periodic or aperiodic signals: Another classification which is of significance is whether
or not a signal is periodic. If

f (t + T ) = f (t), t ∈ R (A.44)

for some finite T , then f is a periodic function or signal. When T is the minimum for which
(A.44) is true it is called the period. If (A.44) is not satisfied for any nonzero T , f is said
to be aperiodic.

Periodic signals form a very important class. Much of classical transform analysis is
based on the notion of periodic signals of different periods. It is interesting to note that a
nonsingular periodic signal is naturally a power signal. One of the most important ways
of representing a periodic signal is by using complex numbers. For example,

f (t) = A exp (jωt), (A.45)

where A and ω are real and fixed, is a periodic signal with a period of T = 2π/ω. The real
and imaginary parts of (A.45) are respectively given by

Re[ f (t)] = A cos (ωt), Im[ f (t)] = A sin (ωt), (A.46)

both of which are periodic. These are sometimes referred to as the I and Q channels of the
signal f .

Continuous or discrete signals: If the signal in (A.40) is defined for all t ∈ R, f (t) is
defined as a continuous signal. If f is defined only for t ∈ {t1, t2, . . . , tN }, with ti ∈ R, f (t)
is said to be a discrete signal. In particular, if

f (ti) = f (t) for t = ti, i = 1, 2, . . . , N , (A.47)

f (ti) is said to be the sampled version of f (t) and ti’s are the sampling instants.

Discrete signals need not in any way be related to a continuous signal through sampling.
Naturally occurring discrete signals such as daily maximum temperature, monthly utility
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bills or annual rainfalls abound, either as a result of the measurement process or as a result
of the underlying physical phenomena. However, practically all digital signal processing
techniques are developed for sampled signals which are by definition discrete.

While a discrete signal is defined at only given instants of time (or whatever the independent
variable happens to be) its values need not be discrete. When the signal can only assume
discrete values, it is said to be quantized. Digital signals are generally understood to be
both quantized and discrete. Thus,

f = f (t) for which f ∈ { f1, f2, . . . , fM} and t ∈ {t1, t2, . . . , tN } (A.48)

is a discrete signal with M levels of quantization and is typical of a digital signal.

We have seen in the above discussion on the classification of signals that a signal is
mathematically represented by a function. However, the notion of function here is not
strictly mathematical. Many signals are well presented by distributions, particularly when
special properties of the signal under study have to be highlighted. Before we examine
some typical operations on signals such as sampling, interpolation, etc., we list examples
of some elementary signals and their properties which will be of use.

Example 30: The Heaviside or unit step signal.

u(t − t0) = 0 for t ≤ t0,
(A.49)= 1 for t > t0.

t0
t

1

u(t � t0)

It is easy to see that u(t − t0) is a deterministic aperiodic continuous power signal.

Example 31: The unit pulse signal.

π(t) = u

(
t + 1

2

)
− u

(
t − 1

2

)
. (A.50)

1/2
t

1

�1/2
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Note that π(t) is made up of two unit step signals. It is easy to see that π(t) is a deterministic
aperiodic continuous energy signal.

In both examples, the word continuous is used not to imply mathematical continuity but to
distinguish it from discrete signals. As can be easily seen, both u(t) and π(t) contain jump
discontinuities at which the functions cannot be differentiated.

Example 32: The scaled rectangular pulse signal.

πT (t − t0) =
(

1

T

) {
u

[
t +

(
t0 − T

2

)]
− u

[
t −

(
t0 + T

2

)]}
. (A.51)

1/T

t0�T/2 t0�T/2

πT (t − t0) is a deterministic continuous aperiodic energy signal. Since πT (t − t0) is scaled,
its energy content is kept at unity, independent of the extent of the pulse width T .

Example 33: The unit impulse signal (Dirac’s delta function).

δ(t − t0) = lim
T→0

πT (t − t0). (A.52)

This is not a function in the ordinary sense. Its value is zero everywhere except at t = t0,
where it is not defined. The integral of this function, as can be seen by examining the
integral of πT (t − t0) for finite T and taking the limit of T to zero, is always unity. In
addition, it can be shown that for any function f (t), defined at t = t0 the following equality
holds

f (t0) =
∫ ∞

−∞
f (t)δ(t − t0) dt. (A.53)

Hence, δ(t − t0) is a deterministic continuous aperiodic energy signal.

Example 34: The infinite ramp signal.

r(t) = 0 for t < 0,

= t for t ≥ 0. (A.54)
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r

t

We note that this cannot be a physical signal since it is neither a power nor an energy signal.
It is however deterministic, continuous (even in the mathematical sense) and aperiodic.

Example 35: The unit ramp function.

rT (t) =
(

2

T

)
r(t)πT (t). (A.55)

By combining r(t) with the scaled rectangular pulse, rT (t) is obtained. It is as can be easily
seen an energy signal.

In many ways, the Examples 30–35 may be regarded as elemental signals from which more
complex ones can be constructed. In fact, Examples 31 and 35 are just such composite
signals. Example 33 is a particularly important elemental signal in that it can be used as a
“probe” to sample a general continuous signal at discrete times. We list two other examples
involving periodic signals.

Example 36: Single frequency sinusoid.

s(t) = A cos (ωt + θ), (A.56)

where A, ω and θ are respectively the amplitude, frequency and phase of the sinusoid. The
signal is deterministic, continuous and periodic; it is obviously a power signal.

Example 37: Linear combination of sinusoids.

S(t) =
N∑

i=1

si(t) =
N∑

i=1

Ai cos (ωit + θi), (A.57)

where Ai, ωi and θi are the amplitude, frequency and phase of the individual sinusoids.
While the signal in (A.57) is similar to s(t) in (A.56) in all its classifications, it may however
not be a periodic signal. Equation (A.57) is a special case of the more general Fourier series
analysis which forms the foundation of many classical discrete transforms.

As a final example, we demonstrate the operation of sampling on a continuous signal f (t),
using the probe or sampling ability of the unit impulse signal or the Dirac delta function.
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Example 38: Let f (t) be a continuous signal to be sampled every Ts (the sampling
interval). The operation of sampling means that the discrete signal f ∗(t) will be

f ∗(t) = f (tk) for t = tk = kTs

= 0 otherwise. (A.58a)

By using the property of the Dirac delta function we have for causal signals

f ∗(t) =
∫ ∞

0
f (τ)δ(τ − tk) dτ for t = tk

= 0 otherwise. (A.58b)

This can be more compactly represented if the Kronecker delta function is introduced

δnk = 1 if n = k,

= 0 otherwise. (A.59)

The sampled signal can now be written as

f ∗(t) =
∑

k

f (tk)δttk =
∑

k

∫ ∞

0
f (τ)δ(τ − tk) dτδttk . (A.60)

It is perhaps worth noting that (A.60) is very often expressed incorrectly as

f ∗(t) =
∑

k

f (tk)δ(t − tk),

using the Dirac delta function instead of the Kronecker delta function.

While a continuous signal can be sampled at discrete times, a discrete signal can be inter-
polated so that a continuous signal will be reconstructed as a result. This possibility is
stated most succinctly in the well-known sampling theorem by Shannon, which we now
use to conclude this section on signal and its representation.

Sampling theorem (Shannon, 1949): If f (t), the signal to be sampled is band limited, i.e.,
if it contains no frequency components above some fc – then it can be completely described
(reconstructed) by uniformly spaced samples taken at a rate of at least 2fc samples/s.
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Absolute value of a matrix, 144
Adaptive filtering, 43
Aperiodic signals, 339
Approximated DCT/DST, 162
Asymptotic behavior, 20, 26
Asymptotic covering, 63
Asymptotic equivalence, 56, 62, 64

B
Basis functions for

DCT-I, 30
DCT-II, 33
DST-I, 37
KLT Markov-1 process, 55

Basis vectors
Antisymmetric, 81
Symmetric, 81

Binary arithmetic DCT/DST, 214, 223
BinDCT/BinDST, 215, 223
Block matrix factorization, 128, 129
Block transforms, 276

C
Cholesky’s decomposition, 327
Circulant matrix, 322
Circular convolution, 46
Class equivalence, 63
C-matrix transforms, 165
Complex multiplication, 147
Conjugate transposition, 318
Continuous signals, 339
Convolution in time, 21, 22, 26
Convolution-multiplication property, 45
Convolution properties, 44
Convolution theorem for FCT, 21

Convolution theorem for FST, 26
Correlation matrix, 52
Cosine transform

Discrete, 29
Symmetric, 75

Covariance matrix, 162
Cross-indentity matrix, 76

D
DCT-I, 30
DCT-I computation based on the SCT

algorithm, 82
DCT-I recursive sparse matrix factorization, 84
DCT-II, 32
DCT-II computation via discrete Fourier

transform, 105
DCT-II computation via Walsh–Hadamard

transform, 102
DCT-II recursive sparse matrix

factorizations, 96
DCT-III, 32
DCT-IV, 32
DCT-IV recursive sparse matrix

factorizations, 112
DCT-V, 34
DCT-VI, 35
DCT-VII, 35
DCT-VIII, 35
DCT/DST property

Difference, 44
Linearity, 41
Scaling in time, 18, 24, 41
Shift in frequency, 19, 25
Shift in time, 19, 25, 41
Unitarity, 38

DCT/DST computation by recursive filter
structures, 5
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Determinant, 143
Deterministic signals, 338
Diagonal matrix, 52
Difference property, 44
Differentiation

in Frequency, 20
in Time, 20

Dirichlet boundary condition, 29
Discrete cosine transform (DCT), 29

Asymptotic equivalence to KLT, 56
Discrete signals, 339
Discrete sine transform (DST), 35
Discrete trigonometric transform, 73
DLU

Factorization, 157
Structures, 158

DST-I, 36
DST-I computation based on the SST

algorithm, 89
DST-I recursive sparse matrix

factorizations, 91
DST-II, 36
DST-III, 37
DST-IV, 38
DST-V, 38
DST-VI, 38
DST-VII, 38
DST-VIII, 38
DUL

Factorization, 158
Structures, 159

Dyadic multiplierless approximations, 222
Dyadic rational numbers, 221

E
Eigen space, 316
Eigen values, 316

Properties, 317
Eigen vectors, 316
Elementary rotation matrices, 146
Elementary transformations, 147
Energy signals, 338
EOT, 81
EOT matrix factorization, 81, 247
Equivalence

Class, 63
Net, 63

Error bounds between exact (scaled) and
integer invertible DCTs

by Dyadic approximation, 292
by Rounding procedure, 270

Error estimation method for LU and PLUS
factorizations, 262

Euclidean
Norm, 145

Space, 308
Vector space, 308, 309

Evaluating the determinants of DCT/DST
matrices, 161

Even DCT, 34
Even DST, 38
Even/odd transform (EOT), 81
Examples of the FCT and FST for functions

Bessel function of the first kind, 23, 29
Decaying sine, 23, 28
Exponential, 22, 28
Inverse quadratic, 22, 27
Sinc, 23, 28
Unit rectangular pulse, 22, 27

Existing fast direct 2-D DCT-II
algorithms, 119

Expectation operator, 52
Explicit forms of orthonormal

DCT/DST matrices, 77
Explicit truncation error estimates, 266
Exponential function, 22, 28
Exponential integral functions, 28
Extensions of functions

Even, 21
Odd, 23

Extensions of sequences
Antiperiodic, 45
Antisymmetric, 45
Periodic, 45
Symmetric, 45

F
Factorization of DCT matrices

LU-based, 254
PLUS-based, 258
QR-based, 248

Fast 2-D DCT/DST algorithms, 4, 119
Fast 3-D DCT/DST algorithms, 4
Fast DCT/DST algorithms

Composite-length, 4
Even-length, 4
Mixed-radix, 4
Odd-length, 4
Prime-factor, 4
Radix-2, 4
Radix-q, 4

Fast CMT, 169
Fast DCT-I and SCT algorithms, 82
Fast DCT-II/DST-II and DCT-III/DST-III

algorithms, 96
Fast DCT-IV/DST-IV algorithms, 111
Fast DST-I and SST algorithms, 89
Fast DST-IV, 118
Fast Fourier cosine transform (FFCT), 105
Fast ICT/IST, 178
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Fast invertible integer DCT algorithms, 268
Fast GCMT, 214
Fast GCT, 208
Fast multi-dimensional DCT/DST

algorithms, 4
Fast pruning DCT algorithms, 4
Fast rotation-based DCT/DST algorithms, 81
Fast WHT, 238
Fourier cosine transform (FCT), 17
Fourier sine transform (FST), 23
Fractional DCTs and DSTs, 5

G
Gauss elementary matrix, 150
Gauss elimination, 150, 326
Gaussian quadrature and generation of

transforms, 66
Gauss–Jacobi transforms, 68
Gauss–Jordan elementary matrices, 155
GCMT, 212
GCT, 199
GDFT, 46
Generalized Chen transform (GCT), 199
Generalized C-matrix transform, 211
Generalized CMT (GCMT), 211
Generalized discrete Fourier transform

(GDFT), 46, 76
Generalized discrete Hartley transform

(GDHT), 76, 216
Generalized discrete W transform (GDWT),

76, 216
Generalized transform matrix, 276
Givens–Jacobi rotations, 131, 146
Givens rotations, 116, 118, 329
Global method for construction of integer

invertible DCTs, 273
Gram–Schmidt’s orthogonalization procedure,

309

H
Haar transform, 220
Half sample

Antisymmetric (HA), 45
Symmetric (HS), 45

Hadamard
Matrix, 113
Order, 113

Hankel matrix, 38, 70
Harmonic oscillator equation, 29
Heaviside signal, 340
Hermitian matrix, 318
Hilbert–Schmidt norms, 62
Hotelling’s PCA, 51
Householder reflection matrix, 147

I
Inner product, 39, 66, 308
Integer approximation of

DCT-I matrix, 191
DCT-II matrix, 172, 188
DCT-IV matrix, 184
DST-I matrix, 193
SCT matrix, 194
SST matrix, 196
DCT/DST, 163, 164

Integer cosine/sine (ICT/IST), 171
Integer cosine/sine (ICT/IST) with constant

norm of basis vectors, 179
Integer DCT/DST (IntDCT/IntDST), 214, 223
Integer FFT (IntFFT), 217
Integration

in Frequency, 21
in Time, 21

Inverse quadratic function, 22, 27
Inversion, 18, 24
Invertible integer DCT, 263
Irreducible form, 221

J
Jordan elimination, 151
Jordan matrix, 151
JPEG2000, 289

K
Karhunen–Loéve transform (KLT), 51
KLT, 51
Kronecker delta, 39
Kronecker product, 126
Kronecker properties, 126
Kronecker sum, 125

L
Laplace transform, 23, 29
LDCT (Lossless DCT), 245
LDU matrix factorization, 148
Lexicographical order, 124
Linear independence, 306
Linearity property, 41
Lossless DCT, 245
Lower quasi-triangular matrices, 290
LU-based factorization of DCT matrices, 254
LU-based structure, 258
LU matrix factorization, 150, 326

Crout’s factorization, 327
Doolittle factorization, 326

LUD
Factorization, 158
Structures, 159

LUL
Factorization, 154
Structures, 155
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M
Markov-1 process, 162
Matrix

Cross-indentity (reflection), 76
Diagonal odd-sign changing, 76
Eigenorthogonal, 143
Hermitian, 318
Involutory, 76
Non-eigenorthogonal, 143
Skew-Hermitian, 318
Symmetric positive definite, 327
Unitary, 318

Matrix eigenvalue problem, 314, 316
Matrix factorization

LDU, 150
LU, 150
PLUS, 151
QR, 149

Matrix norms, 144
1-norm, 145
∞-norm, 145
Canonical, 145
Frobenius, 145, 336

MDCT/MDST, 1
Mean square error (MSE), 162
Methods for integer approximation of

DCTs/DSTs, 163
Minimum-adder representation, 221
Modulated lapped transform (MLT), 1
MPEG, 289
Multi-dimensional (MDL) structure, 290
Multiplicative irreducibility, 221

N
Net equivalence, 63
Nets, 63
Neumann boundary condition, 30
Normalization factor, 76
Normalized integer transforms, 289
N-point

Reversible transform, 278
SCT, 75
SST, 75

N-point zero mean signal, 52
N-section, 63

O
Odd DCT, 34
Odd DST, 38
Optimal 1-D 8-point DCT algorithm, 124
Optimal 2-D 8 × 8 DCT-II algorithm, 124
Orthogonal, 308

Basis functions, 51
DCT/DST, 74
EOT matrix factorization, 284

Factorizations of DCT-II and DCT-IV
matrices, 264

Matrices, 332
Transformations, 146

Orthogonality, 308
Orthonormal

Basis set, 310
DCT/DST, 74

Orthonormality, 39

P
Perfectly correlated signal, 61
Periodic signals, 339
Permutation matrix, 85, 102, 118, 245, 326
Plane rotation matrices, 142
PL1UL2 matrix factorization, 289
PLUS-based factorization of DCT matrices,

258
PLUS-based structure, 261
PLUS factorization algorithm, 152
PLUS matrix factorization, 151
Points of symmetry (POS), 44
Power signals, 338
Principal component analysis (PCA), 51
Pseudoinverse matrix, 333

Q
QR-based factorization of DCT matrices, 248
QR-based structure, 252, 253
QR matrix factorization, 149, 328
Quantization, 199, 219, 223, 340
Quantum computing, 5
Quasi-

Diagonal matrix, 290
Triangular (lower) matrices, 290
Triangular (upper) matrices, 290

R
Random signals, 338
Recursive sparse matrix factorizations

DCT-I, 84
DCT-II, 96
DCT-IV, 112
DST-I, 91

Reversible DCT, 276
Rotation-based DCT/DST, 81
Rotation matrix, 88,102
Rounding, 245
Rounding procedure, 266

S
Sampling theorem, 343
Scalar multiplication, 305
Scaled DCT-II, 99
Scaling in time, 18, 24, 41
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Section, 63
Shift

in Frequency, 19, 25
in Time, 19, 25, 41

Signal and its representation, 337
SignDCT, 285
Signed DCT square wave transform, 285
Similarity of matrices, 319
Similarity transformation, 56, 319
Sinc function, 23, 28
Sine transform

Discrete, 35
Symmetric, 75

Singular value decomposition (SVD), 334
Skew-circular convolution, 46
Spectral

Mapping, 317
Radius, 316
Shift, 317

Spectral representations and asymptotic
equivalence, 64

Spectrum, 316
Split-radix

DCT-I algorithm, 86
DCT-II algorithm, 108
DST-I algorithm, 94
FFT algorithm, 217

Strong norm, 62
Symmetric convolution, 44
Symmetric cosine transform (SCT), 75
Symmetric periodic sequence (SPS), 45
Symmetric sine transform (SST), 75

T
Tchebyshev polynomials, 58, 69
Toeplitz matrix, 38, 56, 69–70, 162
Trace of a matrix, 163, 317
Transform coding gain, 163

Transform efficiency, 163
Triangular matrices, 143

U
ULD

Factorization, 157
Structures, 158

ULU
Factorization, 155
Structures, 156

Unitarity property, 38
Unitary matrix, 318
Unit rectangular pulse, 22, 27
Unit vector, 145
Upper quasi-triangular matrices, 290

V
Vector addition, 305
Vector norms, 144

Euclidean or 2-norm, 145, 336
Maximum, 145
p–norms, 145

Vector space, 305
Complex, 306
Euclidean, 309
Real, 306

W
Walsh–Hadamard transform (WHT), 102
Weak norm, 62
Whole sample

Antisymmetric (WA), 45
Symmetric (WS), 45

WHT, 102

Z
Zero order Bessel function, 23, 29
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