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Series Editors’ Foreword 

The series Advances in Industrial Control aims to report and encourage technology 

transfer in control engineering. The rapid development of control technology has 

an impact on all areas of the control discipline. New theory, new controllers, 

actuators, sensors, new industrial processes, computer methods, new applications, 

new philosophies , new challenges. Much of this development work resides in 

industrial reports, feasibility study papers and the reports of advanced collaborative 

projects. The series offers an opportunity for researchers to present an extended 

exposition of such new work in all aspects of industrial control for wider and rapid 

dissemination. 

Computational Intelligence is a newly emerging discipline that, according to 

the authors Ajoy Palit and Dobrivoje Popovic, is about a decade old. Obviously, 

this is a very young topic the definition and content of which are still undergoing 

development and change. Nonetheless, the authors have endeavoured to give the 

topic a framework and demonstrate its procedures on challenging engineering and 

commercial applications problems in this new Advances in Industrial Control

monograph, Computational Intelligence in Time Series Forecasting.

The monograph is sensibly structured in four parts. It opens with an historical 

review of the development of “Soft Computing” and “Computational Intelligence”. 

Thus, Chapter 1 gives a fascinating insight into the way a new technology evolves 

and is consolidated as a self-evident discipline; in this case, proposals were made 

for constituent methods and then revised in the light of applications experience and 

the development of new methodologies which were added in to the core methods. 

No doubt the debate will continue for a few more years before widely accepted 

subject definitions appear, but it is very useful to have a first version of a 

“Computational Intelligence” technology framework to consider. 

In Part II, the core methods within Computational Intelligence are presented: 

neural networks, fuzzy logic and evolutionary computation – three neat self-

contained presentations of the building blocks for advanced development. It is in 

Part III that new methods are developed and presented based on hybridisation of 

the three basic routines. These new hybrid algorithms are demonstrated on various 

application examples. For the practicing engineer, chapters in Part II and III should 

almost provide a self-contained course on Computational Intelligence methods. 
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The current and future development of Computational Intelligence methods are 

the subject of Chapter 10 which forms Part IV of the monograph. This chapter 

balances the historical perspective of Chapter 1 by attempting to identify new 

development areas that might be of significant interest to the engineer. This is not 

an easy task since even a quick look at Chapter 10 reveals an extensive literature 

for a rapidly expanding field. 

This volume on Computational Intelligence by Dr. Palit and Dr. Popovic is a 

welcome addition to the Advances in Industrial Control monograph series. It can 

be used as a reference text or a course text for the subject. It has a good opening 

historical review and a nice closing chapter looking to the future. Most usefully, 

the text attempts to present these new algorithms in a systematic framework, which 

usually eases comprehension and will, we hope, lead the way to a new technology 

paradigm in industrial control methods. 

M.J. Grimble and M.A. Johnson 

Industrial Control Centre 

Glasgow, Scotland, U.K. 



Preface

In the broad sense, computational intelligence includes a large number of 

intelligent computing methodologies and technologies, primarily the evolutionary, 

neuro and fuzzy logic computation approaches and their combinations. All of them 

are derived through the studies of behaviour of natural systems, particularly of the 

connectionist and reasoning behaviours of the human brain/human being.  

The computational technology was evolved, in fact, from what was known as 

soft computing, as defined by Zadeh in 1994. Also, soft computing is a 

multidisciplinary collection of computational technologies still representing the 

core part of computational intelligence. The introductory chapter of this book is 

dedicated to the evolutionary process from soft computing to computational 

technology. However, we would like to underline that computational intelligence is 

more than the routine-like combination of various techniques in order to calculate 

“something”; rather, it is a goal-oriented strategy in describing and modelling of 

complex inference and decision-making systems. These soft computing approaches 

to problem formulation and problem solution admit the use of uncertainties and 

imprecisions. This, to a certain extent, bears a resemblance to artificial intelligence 

strategies, although these emphasize knowledge representation and the related 

reasoning rather than the use of computational components.  

Computational intelligence, although being not more than one decade old, has 

found its way into important industrial and financial engineering applications, such 

as modelling, identification, optimization and forecasting required for plant 

automation and making business decisions. This is due to research efforts in 

extending the theoretical foundations of computationally intelligent technologies, 

exploiting their application possibilities, and the enormous expansion of their 

capabilities for dealing with real-life problems.  

Although in the near past books on computational intelligence and soft 

computing have been published, today there is no other book dealing with the 

systematic and comprehensive expositions of methods and techniques for solving 

the forecasting and prediction problems of various types of time series, e.g.
nonlinear, multivariable, seasonal, and chaotic. In writing this book our intention 

was to offer researchers, practising engineers and applications-oriented 

professionals a reference volume and a guide in design, building, and execution of 
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forecasting and prediction experiments, and this includes from the collection and 

structuring of time series data up to the evaluation of experimental results.  

The fundamental knowledge and the methodologies of computationally 

intelligent technologies were drawn from various courses for advanced students 

and from the experimental studies of Ph.D. candidates at the Institute of 

Automation Technology of University of Bremen, the Control Engineering 

Laboratory of Delft University of Technology, and from our experience in co-

operation with industry. The material presented in the book is therefore suitable to 

be used as a source in structuring the one-semester course on intelligent 

computational technologies and their applications.  

The book is designed to be largely self-contained. The reader is supposed to be 

familiar with the elementary knowledge of neural networks, fuzzy logic, optimum 

search technique, and probability theory and statistics. The related chapters of the 

book are written so that the reader is systematically led to the deeper technology 

and methodology of the constituents involved in computational intelligence and to 

their applications. In addition, each chapter of the book is provided with a list of 

references that are intended to enable the reader to pursue individual topics in 

greater depth than that has been possible within the space limitations of this book. 

To facilitate the use of the book, an index of key terms is appended.  

The entire book material consists of 10 chapters, grouped into four parts, as 

described in the following.  

Part I of the book, containing the first two chapters, has the objectives of 

introducing the reader to the evolution of computational intelligence and to the 

traditional formulation of the time series forecasting problem and the approaches 

of its solution. 

The evolution of computational intelligence is presented in the introductory 

Chapter 1, starting with the soft computing as developed by Zadeh in 1994 up to 

the present day. During this time, the number of constituents of computational 

intelligence has grown from the fuzzy logic, neurocomputing, and probabilistic 

reasoning as postulated by Zadeh, with the addition of genetic algorithms (GAs), 

genetic programming, evolutionary strategies, and evolutionary programming. 

Particular attention is paid to the achievements of hybrid computational 

intelligence, which deals with the parameter tuning of fuzzy systems using neural 

networks, performance optimization of neural networks through monitoring, and 

parameter adaptation by fuzzy logic systems, etc. The chapter ends with the 

application fields of computational intelligence today. 

The ensuing Chapter 2 is devoted to the traditional definition and solving of the 

time series forecasting problem. In the chapter, after the presentation of the main 

characteristic features of time series and their classification, the objective of time 

series analysis in the time and frequency domains is defined. Thereafter, the 

problem of time series modelling is discussed, and the linear regression-based time 

series models that are mostly used in time series forecasting are presented, like the 

ARMA, ARIMA, CARIMA models, etc., as well as some frequently considered 

models, such as the multivariate, nonlinear, and chaotic time series models. This is 

followed by the discussion of model estimation, validation, and diagnostic checks 

on which the acceptability of the developed model depends. The core part of the 

chapter, however, deals with the forecasting approaches of time series based on 
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Box-Jenkins methods and the approaches using exponential smoothing, adaptive 

smoothing, and the nonlinear  combination of forecasts. The chapter ends with an 

example in control engineering from the industry. 

In Part II of the book, which is made up of Chapters 3, 4, and 5, the basic 

intelligent computational technologies, i.e. the neural networks, fuzzy logic 

systems, and evolutionary computation, are presented. 

In Chapter 3 the reader is introduced to neuro-technology by describing the 

architecture, operating principle, and the application suitability of the most 

frequently used types of neural network. Particular attention is given to various 

network training approaches, including the training acceleration algorithms. 

However, the kernel part of the chapter deals with the forecasting methodology 

that includes the data preparation, determination of network architecture, training 

strategy, training stopping and validation, etc. This is followed by the more 

advanced use of neural networks in combination with the traditional approaches 

and in performing the nonlinear combination of forecasts. 

Chapter 4 provides the reader with the foundations of fuzzy logic methodology 

and its application to fuzzy modelling on examples of building the Mamdani, 

relational, singleton, and Takagi-Sugeno models, suitable for time series modelling 

and forecasting. Special attention is paid to the related issues of optimal shaping of 

membership functions, to automatic rules generation using the iterative clustering 

from time series data, and to building of a non-redundant and conflict-free rule 

base. The examples included deal with chaotic time series forecasting, and 

modelling and prediction of second-order nonlinear plant output using fuzzy logic 

systems. Also here, the advantage of nonlinear combination of forecasts is 

demonstrated on temperature prediction in a chemical reactor. 

In Chapter 5 the main approaches of evolutionary computations or intelligent 

optimal solution search algorithms are presented: GAs, genetic programming, 

evolutionary strategies, evolutionary programming, and differential evolution. 

Particular attention is paid to the pivotal issues of GAs, such as the real-coded GAs 

and the optimal selection of initial population and genetic operators.  

Part III of the book, made up of Chapters 6 through to 9, presents the various 

combinations of basic computational technologies that work in a cooperative way 

in implementing the hybrid computational structures that essentially extend the 

application capabilities of computational intelligence through augmentation of 

strong features of individual components and through joint contribution to the 

improved performance of the overall system.  

The combination of neuro and fuzzy logic technology, described in Chapter 6, 

is the earliest experiment to generate hybrid neuro-fuzzy and fuzzy-neuro hybrid 

computational technology. The motivation for this technology merging, which in 

the mean time is used as a standard approach for building intelligent control 

systems, is discussed and the examples of implemented systems presented. Two 

major issues are pointed out: the training of typical neuro-fuzzy networks and their 

application to modelling nonlinear dynamic systems. In order to demonstrate the 

improved capability and performance of neuro-fuzzy systems, their comparisons 

with backpropagation and radial basis function networks are presented. Finally, 

forecasting examples are given from industrial practice, such as short-term 

forecasting of electrical load, prediction of materials properties, correction of 



xiv Preface 

pyrometer readings, tool wear monitoring, as well as the examples on modelling 

and prediction of Wang data and on prediction of chaotic time series. 

The subjects of the succeeding Chapter 7 are two most important, but very 

often neglected, and recently increasingly considered issues of model transparency 

and the interpretability of data-driven automated fuzzy models. Here, strong 

emphasis is placed on making the reader familiar with the compact and transparent 

modelling schemes that include the model structure selection, data clustering, 

similarity-based simplification, and model validation. In addition, the similarity-

based rule base simplification through removing irrelevant fuzzy sets, removing 

redundant inputs, and the merging of rules are presented. In this chapter some 

formal techniques are proposed for regaining the interpretability and transparency 

of the generated fuzzy model, which helps in generating the “white-box-like” 

model, unlike the black-box model generated by a neural network.  

Chapter 8 covers the application of GAs and evolutionary programming in 

evolution design of neural networks and fuzzy systems. This is a relatively new 

application field of evolutionary computation that has, in the past decade, been the 

subject of intensive research. The text of the chapter focuses on evolving the 

optimal application-oriented network architecture and the optimal values of their 

connection weights. Correspondingly, optimal selection of fuzzy rules and the 

optimal shaping of membership function parameters are on the agenda when 

evolving fuzzy logic systems. 

Chapter 9, again, deals in a sense with the inverse problem, i.e. with the 

problem of adaptation of GAs using fuzzy logic systems for optimal selection and 

tuning of genetic operators, parameters, and fitness functions. In the chapter, the 

probabilistic control of GA parameters and - in order to avoid the prematurity of 

convergence - the adaptation of population size while executing of search process 

is discussed. The chapter closes with the example of dynamically controlled GA 

using a rule-based expert system with a fuzzy government module for tuning the 

GA parameters. 

Part IV of the book, consisting of Chapter 10, introduces the reader to some 

more recently developed computationally intelligent technologies, like support 

vector machines, wavelet and fractal networks, and gives a brief outline about the 

development trends. In addition, the entropy and Kohonen networks-based fuzzy 

clustering approaches are presented and their relevance to the time series 

forecasting problem pointed out, for instance through the design of Takagi-Sugeno 

fuzzy model. In the introductory part of the chapter the reasons for selecting the 

above items of temporary computational intelligence are given. It is also indicated 

that the well advanced bioinformatics, swarm engineering, multi-agent systems, 

and fuzzy-logic-based data understanding are the constituents of future emerging 

intelligent technologies. 

Finally, we would like to thank Springer-Verlag, London, particularly the AIC 

series editors, Professor M.A. Johnson and Professor M.J. Grimble, and Mr. Oliver 

Jackson, Assistant Editor, Springer-Verlag, London, for their kind invitation to 

write this book. Our special thanks also go to Mr. Oliver Jackson, for his cordial 

cooperation in preparing and finalizing the shape of the book. 

Bremen, March 2005            Ajoy K. Palit  and  Dobrivoje Popovic 
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Introduction



1

Computational Intelligence: An Introduction 

1.1 Introduction 

Within the artificial intelligence society the term computational intelligence is 
largely understood as a collection of intelligent computational methodologies, such 
as fuzzy-logic-based computing, neurocomputing, and evolutionary computing, 
that help in solving complex computational problems in science and technology, 
not solvable or at least not easily solvable by using the conventional mathematical 
methods. 

1.2 Soft Computing 

The research activity in the area of combined application of intelligent computing 
technologies was initiated by Zadeh (1994), who has coined the term soft 
computing, which he defined as a “collection of methodologies that aim to exploit 
the tolerance for imprecision and uncertainty to achieve tractability, robustness, 
and low solution cost”. According to Zadeh, the principal constituents of soft 
computing are fuzzy logic, neurocomputing, and probabilistic reasoning. 

The reason for the need of soft computing was, in Zadeh’s opinion, that we live 
in a pervasively imprecise and uncertain world and that precision and certainty 
carry a cost. Therefore, soft computing should be seen as a partnership of distinct 
methods, rather than as a homogeneous body of concepts and techniques.  

Initially, as the main partnership members of soft computing, also called its 
principal constituents, the following technologies have been seen: 

fuzzy logic, which has to deal with the imprecisions in computing and to 
perform the approximate reasoning  
neurocomputing, which is required for learning and recognition purposes 
probabilistic reasoning, which is needed for dealing with the uncertainty 
and belief propagation phenomena 
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Later, the initial partnership group was extended by adding  

evolutionary computation  

belief theory  

learning theory. 

Fuzzy logic, which is the most important part of soft computing, bridges the gap 
between the quantitative information (i.e. the numerical data) and the qualitative 
information (or the linguistic statements), which can be jointly processed using 
fuzzy computing. In addition, fuzzy logic operates with the concept of IF-THEN 
rules in which the antecedents and the consequents are expressed using linguistic 
variables. Neural networks, for their part, have the capability of extracting 
knowledge from available data, i.e. the capability of learning from examples, 
which fuzzy logic systems do not have. This capability is known as the 
connectionist learning paradigm. 

The process of learning can take place in supervisory mode (when the 
backpropagation networks are used) or in unsupervised mode (when the recurrent

networks/Kohonen networks are used). This is due to the computing neuron or 
the perceptron (Rosenblatt, 1962), the theoretical background of which was 
worked out by Minsky and Papert (1969). It is the multi-layer perceptron 
configuration that is capable of emulating human brain behaviour in learning and 
cognition. The learning capability of multi-layer perceptrons, as proposed by 
Werbos (1974), should be obtained through a process of adaptive training on 
examples. 

Dubois and Prade (1998) remarked that soft computing, because it was a 
collection of various technologies and methodologies with distinct foundations and 
distinct scopes, “lumped together” although each of the components has little in 
common with the other, could not form a scientific discipline in the traditional 
sense of the term. Therefore, they understand the term soft computing more as a 
“fashionable name with little actual contents”. This is in fact a hard judgement, in 
view of the fact that in the meantime various combinations of the constituent 
technologies have been used to build hybrid computational systems, such as neuro-

fuzzy systems, fuzzy-neuro systems, evolutionary neural networks, adaptive 

evolutionary systems, and others, that were extensively documented by Bonissone 
(1997 and 1999). This issue is the main subject of Part 3 of this book, where it will 
be shown that the individual components of soft computing are not mutually 

competitive, but rather are complementary and co-operative. Jang et al. (1997) 
considered soft computing from the neuro-fuzzy point of view, rather than from the 
fuzzy set theory only, and pointed out that the neuro-fuzzy approach is to be seen 
as a technological revolution in modelling and control of dynamic systems, taking 
the adaptive network-based fuzzy inference system (ANFIS) as an example.

1.3 Probabilistic Reasoning 

As the third principal constituent of soft computing, probabilistic reasoning is a 
tool for evaluating the outcome of computations affected by randomness and 
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probabilistic uncertainties. To name a few, Bayesian belief networks and 
Dempster–Shafer theory belong to this kind of reasoning approach. 

At this point a few words of clarification concerning the similarity between the 
terms probability and fuzziness could be of use, because it is still controversial. 
The reason is that probability theory as a formal framework for reasoning about 
uncertainty was “there earlier” than fuzzy reasoning, so that some doubts have 
been raised about the fuzzy reasoning: Is it really something new or only a clever 
disguise for probability? Bezdek (1992b) denied this. Zadeh (1995) has even seen 
probability and fuzzy logic as being complementary, rather than as competitive 
approaches. In the meantime, this is actually accepted consensusly within the soft 
computing community. 

Probabilistic reasoning deals with the evaluation of the outcomes of systems 
that are subjects of probabilistic uncertainty. The reasoning helps in evaluating the 
relative certainty of occurrence of true or false values in random processes. It relies 
on sets described by means of some probability distributions. Therefore, 
probabilistic reasoning represents the possible worlds that are the solutions of an 
approximate reasoning problem and thus being consistent with the existing 
information and knowledge (Ruspini, 1996). Probabilistic reasoning methods are 
primarily interested in the likelihood, in the sense of whether a given hypothesis 
will be true under given circumstances. 

Zadeh (1979) extended the reasoning component of soft computing by 
introducing the concepts of 

fuzzy reasoning

possibilistic reasoning  

which belong to the approximated reasoning. According to Zadeh, approximate 
reasoning is the reasoning about imprecise propositions, such as the chains of 

inferences in fuzzy logic. Similarly, the predicate logic deals with precise 

propositions. Therefore, approximate reasoning can be seen as an extension of the 
traditional propositional calculus operating with the incomplete truth. 

Fuzzy reasoning, with roots in fuzzy set theory, deals with the fuzzy 

knowledge as imprecise knowledge. Unlike the probabilistic reasoning, fuzzy 
reasoning deals with vagueness rather than with randomness. Fuzzy reasoning is 
thus an approximate reasoning (Zadeh, 1979), in the sense that it is neither exact 
nor absolutely inexact, but only to a certain degree exact or inexact. Fuzzy 
reasoning schemes operate on chains of inferences in fuzzy logic, in a similar way 
to predicate logic reasons with precise propositions. That is why approximate 
reasoning is understood as an extension of traditional prepositional calculus 
dealing with uncertain or imprecise information, primarily with the elements of 
fuzzy sets, where an element belongs to a specific set only to some extent of 
certainty. The inference by reasoning with such uncertain facts produces new facts, 
with the degree of certainty corresponding to the original facts. 

Possibilistic reasoning, which also roots in fuzzy set theory (Zadeh, 1965), as 
an alternative theory to bivalent logic and the traditional theory of probability, 
tends to describe possible worlds in terms of their similarity to other sets of 
possible worlds and produces estimates that should be valid in each given case and 
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under all circumstances. Possibilistic reasoning produces solutions to the problems 
that bear the indication that the determination of validity is an impossible task. 

Possibility theory is closely related to evidence theory and the theory of belief.
It deals with events relying on uncertain information, such as fuzzy sets are, and it 
is a complementary alternative to the traditional probability theory. Therefore, the 
membership functions of a fuzzy set, which represent imprecise information, are to 
be considered as possibility distributions (Zadeh, 1978). 

The issue of the relationship between fuzziness and probability was for many 
years on the agenda. Kosko (1990) considers that probability arose from the 
question of whether or not an event occurs, in the sense that the probability that an 
event at a certain time occurs or does not occur is the certainty. Similarly, the 
probability that a possible event at a certain time occurs and does not occur is 
impossible. Fuzziness measures the degree to which an event occurs, but not 
whether it occurs. Therefore, fuzzy probability extends the classical concept of 
probability, admitting the outcomes to belong at the same time to several event 
classes to different degrees (Dubois and Prade, 1993). 

1.4 Evolutionary Computation 

Evolutionary computation, which was later adjoined to the methodologies of soft 
computing as their new constituent, is a computational technology made up of a 
collection of randomized global search paradigms for finding the optimal 
solutions to a given problem. The term evolutionary is borrowed from the 
terminology introduced by Charles Darwin (1859), describing the process of 
adaptation of survival capabilities through natural selection, fitness improvement 
of individual species, etc. To achieve this, evolutionary computation tries to model 
the natural evolution process for a successful survival battle, where reproduction 
and fitness play predominant roles. Being an evolutionary process, it is essentially 
based on the genetic material of offspring inherited from the parents. Therefore, if 
this material is of bad quality then the offspring can not win the battle of survival. 

The evolutionary process considers the population of individuals represented 
by chromosomes, each chromosome bearing its characteristics called genes. The 
genes are assigned their individual values. Through the process of crossover the 
offspring are generated by combining the gene values of their parents. During the 
combination, the genes can undergo a (low probability) mutation process 
consisting of random changes of gene value in a chromosome, in order to insert 
fresh genetic material into the chromosomes. Finally, the winner will be the 
offspring with the highest value of fitness, i.e. with the best characteristics 
inherited from the parents. 

However, the evolutionary computation algorithms used in practice are not 
strictly confined to the natural evolutionary process described above. In the 
meantime, various evolutionary algorithms and their modifications are found. But 
still, the following variants are only considered as basic evolutionary algorithms: 

genetic algorithms, which model genetic evolutionary processes in a 
generation of individuals 
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genetic programming, which is an extension of genetic algorithms to the 
population in which the individuals are themselves computer programs 
evolutionary strategies, which deal with “evolution of evolution” by 
modelling the strategic parameters that control variations in evolutionary 
process
evolutionary programming, which models adaptive evolutionary 
phenomena 

It is interesting to note that the algorithms of evolutionary computation listed 
above, although being structurally similar, have still been quite independently 
developed by different researchers without any contact between them. 

Genetic algorithms, the first evolutionary algorithms, have been widely studied 
across the world and predominantly used for optimum random search. The basic 
version of genetic algorithm, originally proposed by Holland (1975), models the 
genetic evolution of a population of individuals represented by strings of binary 
digits. Based on this model, genetic evolution is simulated using the operations of 
selection, crossover, and mutation and monitoring and controlling the simulation 
performance using the fitness function.

Genetic programming, developed by Koza (1992), extends the original version 
of genetic algorithms to the space of programs by representing the evolving 
individuals through individual programs to be evolved. While evolving the 
programs, genetic programming for each generation qualifies their fitnesses by 
measuring the performances. The qualifying one is used to find out the programs 
that at least approximately solve the problem at hand. 

Evolutionary strategies have been formulated by Rechenberg (1973) for the 
direct solving of the engineering optimization problems. This is performed by 
emulation of the evolutionary process of self-optimization of biological systems in 
the given environments. It is similar to the case in biological evolutionary 
processes. Schwefel (1975) extended the concept of initially formulated 
evolutionary strategies and developed the evolution of evolution strategy. In the 
latter, the individuals are represented by genetic building blocks and by a set of 
parameters related to the strategy and these are used to determine the behaviour of 
individuals in the given environment. The strategic parameters are simultaneously 
evolved while evolving the genetic characteristics of individuals. During the 
evolutionary process, the mutation operator is strictly permitted only if it directly 
improves the fitness value. 

Evolutionary programming was introduced by Fogel et al. (1975) using the 
concept of finite-state automata. In contrast to genetic algorithms, the algorithm 
deals with the development of adequate behavioural models, rather than of genetic 

models. Evolutionary programming was developed to simulate the adaptive 
behaviour of some real-life phenomena and by selecting the set of optimal 
behaviours using the fitness function as a measure of success. The substantial 
operative difference to genetic algorithms is that evolutionary programming does 
not use the crossover operator. 
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1.5 Computational Intelligence 

According to the published sources, the term computational intelligence was 
coined and defined by Bezdek (1992a), in his attempt to study the relationship 
between neural networks, pattern recognition, and intelligence. He stated that 
computational intelligence deals with the numerical data provided by the sensors 
and does not deal with knowledge. This is different from artificial intelligence, 

which mainly deals with the non-numerical system knowledge. 
Bezdek later attempted to classify the two kinds of intelligence, considering 
artificial intelligence as a “mid-level computation in the style of the mind”, 
whereas computational intelligence was the “the low-level computation in the style 
of the mind”. However, this classification and the definitions of two types of 
intelligence, viewed more or less from the aspect of pattern recognition and neural 
networks, remained as more of a personal view of the author than a general 
opinion. 

A still different view on computational intelligence was presented by Poole et
al. (1998), who considered computational intelligence as the study of intelligent 

agent design, i.e. capable of learning from experience and flexible to the changing 
environments and to the changing goals. 

However, a most decisive step in defining the nature of computational 
intelligence was made during the 1994 IEEE World Congress of Computational 
Intelligence (WCCI), which brought together the International Conferences on 
Neural Networks, Fuzzy Systems, and Evolutionary Programming. On the eve of 
the WCCI, Marks (1993), in his Editorial to IEEE Transactions of Neural 
Networks entitled “Intelligence: Computational Versus Artificial,” pointed out that 
“although seeking similar goals, computational intelligence has emerged as a 
sovereign field whose research community is virtually distinct from artificial 
intelligence”. This indicated that there are two alternative intelligent technologies, 
the artificial and computational. 

In the middle of the 1990s, some researchers advocated defining computational 
intelligence using the adaptivity concept. Eberhard et al. (1995) pleaded for a 
definition of computational intelligence as a methodology that exhibits the 
capability of learning and that comprises practical adaptation concepts, paradigms, 
algorithms, and implementations for facilitation of appropriate actions in complex 
and changing environments. Similarly, Fogel (1995) suggested that the intelligent 
technologies, i.e. neural, fuzzy, and evolutionary computation, brought together 
under the generic term computational intelligence should be viewed as a new 
research field holding the computational methodologies capable of adapting 
solutions to new problems without relying on human knowledge. Bezdeck went a 
step further and even viewed computational intelligence and adaptation as 
synonyms. 

To sum up, in the last decade or so, we have witnessed a parallel evolution of 
two computational streams, soft computing and computational intelligence, both 
based on methods and tools of artificial intelligence (Popovic and Bhatkar, 1994), 
predominantly on neural networks, fuzzy logic, and evolutionary computation. 
Nowadays, because both soft computing and computational intelligence have 
integrated a large number of computational methodologies, it is difficult to draw a 
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clear distinction between them. Tettamanzi and Tomassini (2001) rather view the 
scope of computational intelligence as the broader of the two methodologies, 
because computational intelligence encompasses most various techniques for 
describing and modelling of complex systems, which is not the case with the scope 
of soft computing. This is in accordance with the view of Zadeh (1993, 1996, 
1999), which defines computational intelligence as the combination of soft 
computing and numerical processing. But still, Engelbrecht (2002) suggests 
conceiving soft computing as an extension of computational intelligence in the 
sense that the probabilistic methods are added to the paradigms of computational 
intelligence.

In fact, the boundary of the disciplines associated with computational 
intelligence are still not finally defined. They are still growing up to include new 
emerging disciplines. For example, the agenda of the 2002 IEEE World Congress 
on Computational Intelligence includes neuroinformatics and neurobiology as 
new constituents. In the meantime, computational intelligence is viewed as a new-
generation artificial intelligence for human-like data and knowledge processing, 
professionally known as High Machine Intelligence Quotient (HMIQ)
technology. Most recently, the convergence of the core computational technologies 
- neural networks, fuzzy systems, and evolutionary computation - to a common 
frontier has drawn strong attention from the computational intelligence society. A 
related term was coined: autonomous mental development (Wenig, 2003). 

1.6 Hybrid Computational Technology 

In the 1990s we witnessed a new trend in computational intelligence. A growing 
number of publications on its applications have been published reporting on 
successful combination of intelligent computational technologies – neural, fuzzy, 
and evolutionary computation – in solving advanced artificial intelligence 
problems. The hybrid computational technology created in this way is rooted 
mainly in integrating various computational algorithms in order to implement more 
advanced algorithms required for solving more complex problems. For instance, 
neural networks have been combined with fuzzy logic to result in neuro-fuzzy or 
fuzzy-neuro systems in which: 

Neural networks tune the parameters of the fuzzy logic systems, which are 
used in building of adaptive fuzzy controllers, as implemented in the 
Adaptive Network-Based Fuzzy Inference System (ANFIS) proposed by 
Jang (1993). 
Fuzzy logic systems monitor the performance of the neural network and 
adapt its parameters optimally, for instance in order to achieve the 
nonlinear mapping and/or the function approximation to any desired 
accuracy (Wang, 1992). 
Fuzzy logic is used to control the learning rate of neural networks to avoid 
the creeping phenomenon in the network when approaching the solution 
minimum (Arabshahi et al., 1992).
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Evolutionary algorithms have also been successfully used in combination with 
fuzzy logic in improving heuristic rules and in manipulating optimally the genetic 
parameters, particularly the crossover operator (Herrera and Lozano, 1994). 

Neural networks, in combination with evolutionary algorithms, have profited in 
optimal evolution of network topology and in finding the optimal values of 
network weights directly, without network training (Maniezo, 1994). Finally, 
evolutionary algorithms have also profited through combinations with the 
traditional computing methods. For instance, in order to improve the efficiency and 
the accuracy of evolutionary computing algorithms in locating the global 
extremum, Renders and Bersini (1994) combined these algorithms with the 
conventional search methods, such as the hill climbing method. Renders and Flasse 
(1976) even simply integrated such a method in the crossover operator. 

1.7 Application Areas 

Computational intelligence and soft computing have proven to be very efficient 
and valuable tools for solving numerous problems in science and engineering that 
could not be solved using their individual constituents, i.e. neuro, fuzzy, or 
evolutionary computing alone. Although their constituents are themselves capable 
of solving problems that are difficult or even impossible to solve by traditional 
computation methods, the synergetic effect of aggregation of two or more 
constituents enlarges the number and the complexity of solvable problems. This 
holds not only for the so-called academic problems, but also for real-life problems, 
including the problems of industrial engineering. Moreover, application of soft 
computing and computational intelligence has provided the appropriate means for 
merging the vagueness (e.g. perceptions of human beings) and real-life uncertainty 
with a relatively simplified computational program. This has made them capable of 
participating in a variety of real-life applications in engineering and industry. For 
instance, the application of soft computing in engineering covers most areas of data 
handling, like: 

intelligent signal processing, which includes time series analysis and 
forecasting
data mining 
multisensor data fusion, including intelligent pattern recognition and 
interpretation, performance monitoring and fault diagnosis 
systems engineering, to which belong system identification, system 
modelling, advanced systems control 
planning and design processes, like optimal path planning and engineering 
design

Intelligent signal processing solves the problems of adaptive signal sampling, 
analysis of sampled data, signal features extraction, etc. Of outstanding interest for 
engineering, commerce, and management here is the forecasting of time series data 
(Kim and Kim, 1997). 
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Data mining is a strategy for rapid collection, storage and processing of huge 
amounts of data (Mitra and Mitra, 2002) in some particular application areas, such 
as in production and financial engineering (Heider, 1996; Major and Riedinger, 
1992), surgery (Blum, 1982), telecommunication networks (Pedrycz, Vasilakos, 
and Karnouskos, 2003/2004), Internet (Etzioni, 1996), etc.

Multisensor data fusion, again, is an advanced area of signal processing that 
deals with the simultaneous collection of multiple sensor values related to a 
physical system or to any observable phenomenon. It is the most useful technique 
for solving the problems of pattern recognition and pattern interpretation (Bloch, 
1996). For instance, in analysis of remotely sensed satellite images the multisensor 
image interpretation plays a crucial role. Here, the reflected radiation values from 
different sensors build a feature vector, which subsequently undergoes the feature 
extraction and classification process (Bloch, 1996). In engineering, multisensor 
data fusion has been applied to solve the problems of systems performance 
monitoring and the problems of fault diagnosis of rotating machinery based on 
vibration measurements (Emmanouilidis et al., 1998). In addition, the multisensor 
data fusion approach has been particularly applied in monitoring of operability of 
individual sensors (Taniguchi and Dote, 2001). In recent years, on-line fault 
detection and diagnosis of dynamic systems based on a reliable model of the 
overall system behaviour under normal operating conditions have been the subjects 
of research by the soft computing experts. Remarkable results have been reported 
in this field of research by Akhimetiv and Dote, (1999).  

In systems engineering, the application of soft computing encompasses the 
activities that are essential for system study, optimal system design, and design of 
adaptive system control concepts: identification and model building of dynamic 
systems (Tzafestas, 1999; Zurada et al., 1994). Here, model building and parameter 
estimation of dynamic systems are the initial steps in the generation of a 
mathematical description of dynamic systems behaviour, based on experimental 
data. The methodology of computational intelligence helps generally in 
implementation of advanced neuro and fuzzy controllers and supports the evolving 
of adaptive controllers. 

Optimal path planning is a soft computing application area widely needed in 
manufacturing, primarily in job-shop scheduling and rescheduling, in optimal 
routing in very large-scale integration layouts, and in robotics for optimal path 
planning of robots and manipulators. 

As a systems designer’s tool, computational intelligence helps in styling the 
circuit layout in microelectronics (Bosacci, 1997), optimal product shaping, etc.

1.8 Applications in Industry 

In the industrial reality, there is a growing need for employing completed machine 
and process automation, which includes not only the motion or process control, but 
also their performance monitoring, diagnosis, and similar tasks. Owing to the 
increasing complexity of the tasks, advanced intelligent computational tools, such 
as soft computing and computational intelligence, are called upon to help in 
handling the execution of the tasks efficiently. The application capabilities of both 
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intelligent computational tools presented above guarantee their successful use in 
solving the majority of high-complexity problems in the industrial world. This was 
demonstrated on a number of examples published in the last decade. 

The earliest use of fuzzy logic in the process industry was recorded in Japan, 
where, in the late 1980s, fuzzy logic facilities capable of solving complex 
nonlinear and uncertainty problems of a chemical reactor were used to replace the 
skilled plant operator. Around the same time, neural networks were applied in 
statistical analysis of huge sets of acquired sensor data by time series analysis and 
forecasting. This application was later extended to include data mining for 
managing very large amounts of more complex data using the methodologies of 
soft computing based on pattern recognition and multisensor data fusion. This was 
helpful in better understanding the process behaviour through analysis and 
identification of essential process features hidden in data piles. In addition, it was 
also possible to solve some accompanying problems related to plant monitoring 
and diagnosis, product quality control, production monitoring and forecasting, 
plant logistics and various services, etc.

In the iron and steel industry, enormous progress was made after introducing 
intelligent computational approaches in process modelling, advanced process 
control, production planning and scheduling, etc. For more than three decades the 
steel producers have profited from advanced methods, starting with direct digital 
control and finishing with the glorious distributed computer control systems 
developed by systems and control engineers (Popovic and Bhatkar, 1990). With the 
advent of intelligent computational technologies, fuzzy logic control, neural 
networks-based modelling, intelligent sensing, evolutionary computing-based 
optimization at various process and plant levels, etc. have been on the agenda 
mainly because of high international competition in this industrial branch in 
producing high quality product at the lowest production cost. 

However, it was the electronic industry that has to the most remarkable extent 
profited from the introduction of intelligent computational technology in chip 
design and production processes. 

Computational intelligence has also found wide application in manufacturing, 
particularly in product design, production planning and scheduling, monitoring of 
tool wear, manufacturing control and monitoring of automated assembly lines, and 
product quality inspection (Dagli, 1994). The use of intelligent technologies in this 
area was particularly accelerated after the discovery and massive applications of 
the mechatronics approach in product development. This has also contributed to 
extending the application field of intelligent technology to include rapid 
prototyping, integration of smart sensors and actuators, design of internal 
communication links oriented systems, etc. (Popovic and Vlacic, 1999). 
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2

Traditional Problem Definition 

2.1 Introduction to Time Series Analysis 

The importance of time series analysis and forecasting in science, engineering, and 
business has, in the past, increased steadily and it is still of actual interest for 
engineers and scientists. In process and production industry, of particular interest is 
time series forecasting where, based on some collected data, the future data values 
are predicted. This is important in process and production monitoring, in optimal 
processes control, etc.

A time series is a time-ordered sequence of observation values of a physical or 
financial variable made at equally spaced time intervals t, represented as a set of 
discrete values 1 2 3, , , ...,x x x etc. In engineering practice, the sequence of values is 

obtained from sensors by sampling the related continuous signals. Being based on 
measured values and usually corrupted by noise, time series values generally 
contain a deterministic signal component and a stochastic component representing 
the noise interference that causes statistical fluctuations around the deterministic 
values. 

The analysis of a given time series is primarily aimed at studying it’s internal 
structure (autocorrelation, trend, seasonality, etc.), to gain a better understanding of 
the dynamic process by which the time series data are generated. In process 
control, the predicted time series data values help in deciding about the subsequent 
control actions to be taken. 

The broad term of time series analysis encompasses activities like 

definition, classification, and description of time series  
model building using collected time series data  
forecasting or prediction of future values. 

For forecasting the future values of a time series a wide spectrum of methods is 
available. From the system-theoretical point of view they can be  

model-free, as used in exponential smoothing and regression analysis  
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model-based, particularly used in modelling of time series data to capture 
the feature of long-time behaviour of the underlying dynamic system.  

In the following, various traditional approaches to time series classification, 
modelling, and forecasting are considered and their application in engineering 
demonstrated on practical examples taken from process and production industry 
sectors. This should help in better understanding the modern approaches to time 
series analysis and forecasting using the methods and tools of artificial intelligence 
exposed in the chapters to follow. The items presented here should also serve as a 
source of definitions and explanations of terms used in this field of data processing. 
It will, however, be supposed that the time series, the model of which should be 
built, are homogeneous, made up of uniformly sampled discrete data values. 

2.2 Traditional Problem Definition 

Traditionally, time series analysis is defined as a branch of statistics that generally 
deals with the structural dependencies between the observation data of random 
phenomena and the related parameters. The observed phenomena are indexed by 
time as the only parameter; therefore, the name time series is used.  

Basically, there are two approaches to time series analysis:  

time domain approach, mainly based on the use of the covariance function 
of the time series  
frequency domain approach, based on spectral density function analysis 
and Fourier analysis. 

Both approaches are appropriate for application to a wide range of disciplines, but 
the time domain approach is mostly used in engineering practice. This is 
particularly due to the availability of the Box-Jenkins approach to time series 
analysis, which is primarily concerned with the linear modelling of stationary 
phenomena. However, Box and Jenkins have pointed out that their approach is also 
applicable to the analysis of nonstationary time series, after their differencings 
(trend removal). 

2.2.1 Characteristic Features 

The major characteristic features of time series are the stationarity, linearity,
trend, and seasonality. Although a time series can exhibit one or more of these 
features, for presentation, analysis, and prediction of time series values each 
feature is rather treated separately. 

2.2.1.1 Stationarity 
This property of a random process is related to the mean value and variance of 
observation data, both of which should be constant over time, and the covariance 
between the observations xt and xt-d should only depend on the distance between 
the two observations and does not change over time, i.e. the following relationships 
should hold:  
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{ }tE x ,     t = 1, 2, … 

2
0Var( ) {( ) }t tx E x ,      t = 1, 2, … 

 Cov( , ) {( )( )}t t d t t d dx x E x x ,

with  t = 1, 2, …,  d = ..., -2, -1, 0, 1, 2, ..., and where , 0 ,  and d  are some 

finite-value constants. 
In statistical terms, a time series is stationary when the underlying stochastic 

process is in a particular state of statistical equilibrium, i.e. when the joint 
distributions of X(t) and X(t- ) depend only on  but not on t. Consequently, the 
stationary model of a time series can be easily built if the process (or the dynamics 
generating the time series) remains in the equilibrium state for all times around a 
constant mean level. 

It is difficult to verify whether a given time series meets the three stationarity 
conditions formulated above simultaneously. In earlier practice, the stationarity of 
a time series was roughly checked by inspection of the time series pattern. A given  
time series was recognized as stationary when it is represented by a flat-looking 
pattern, with no trend or seasonality, and with time-invariant variance and 
autocorrelation structure. When the time series model is available, the stationarity 
of the process generating the time series observation values can be easily checked. 
For instance, for the first-order autoregressive process 

1t t tx x

the stationarity condition requires that the condition 

1Var( ) Var( )t tx x

or the equality 

2 2
1 2{[ ] } {[ ( 1)] }t tE x t E x t

holds. Therefore, because of mutual independence of t  and tx , the equality 

2
1Var( ) Var( ) Var( )t t tx x

follows, and finally the equality 

2 2
0 0 ,                        < < 1 

where 0  does not depend on time t.
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Although for the majority of time series used in practice the stationarity is a 
common assumption, forecasting of nonstationary time series is still of 
considerable importance. For instance, in engineering, business, and economics the 
collected observation data are better represented through nonstationary time series. 
Also, nonstationary time series can be transformed into the equivalent stationary 
time series by taking the differences between the successive data values along the 
time series pattern, i.e. by simple or multiple differencing the given time series 
data. This approach is generally recommended, because some stationary looking 
time series can still be nonstationary. To resolve the stationarity problem 
experimentally, the time series should first be partitioned into two or more “long 
enough” segments that are apparently stationary, then the autocorrelation and 
spectrum properties of each segment are checked and the results compared. 

2.2.1.2 Linearity 
Linearity of a time series indicates that the shape of the time series depends on it’s 
state, so that the current state determines the local time series pattern. If a time 
series is linear, then it can be represented by a linear function of the present value 
and the past values. Example of linear representations are the AR, MA, ARMA, 
and ARIMA models (see Section 2.5), based on autoregression and/or on a moving 
average technique. Nonlinear time series can be represented by the corresponding 
nonlinear or bilinear models. 

Time series represented by the linear model 

t i t i
i

X Z ,

generally describe a linear process, where i  is a set of constants that satisfies the 

condition 

i
i

,

and tZ  is white noise with a zero mean value and variance 2.

The multivariable form of a linear process is statistically defined by the relation 

t i t i
i

X C Z ,

where iC  represents a series of n n  matrices with the absolutely summable 

elements, and tZ  is the white noise with zero mean value and covariance matrix 

.

2.2.1.3 Trend 
The trend component of a time series is its long-term feature that is manifested 
through the local or global increase or decrease of data values as a consequence of 
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superposition of true time series values and a disturbance with upward or 
downward trend. The presence of a disturbing component is detectable by pursuing 
the changes in the mean values in certain successive time intervals across the time 
series pattern. 

Trend analysis is important in time series forecasting. In practice, it is 
accomplished using linear and nonlinear regression technique that satisfactorily 
helps in identifying non-monotonous trend component in the time series. For 
instance, for identifying the character of the trend present in a time series, the 
linear, exponential, or polynomial relation 

2

exp( )
t t

t t

t t

x t

x t

x t t

is used for fitting the collected data. 

2.2.1.4 Seasonality 
The seasonality component of a time series is demonstrated through its periodically 
fluctuating pattern. This feature is more common in economic time series and in 
time series in which the observations are taken from real life, where the pattern 
may repeat hourly, daily, weekly, monthly, yearly, etc. Thus, the main objective of 
seasonal time series analysis is focused on the detection of the character of its 
periodical fluctuations and on their interpretation. In engineering, seasonal time 
series are found in the problems of power, gas, water, and other distribution 
systems, where the prediction of consumer demands represents the basic problem. 

2.2.1.5 Estimation and Elimination of Trend and Seasonality 
When two or more time series with different features are superimposed, or when a 
time series is superimposed by trend and/or seasonality component, decomposition 
analysis is needed to discriminate and separate individual components involved. 
More frequently, decomposition analysis is used for de-trending and de-
seasonalizing the time series data. A classical decomposition example is complex 
decomposition, where a time series could be made up of various components, such 
as trend, random, seasonal, and cycling components. In this context, the seasonal 
component S(t) is viewed as a periodic component with a fixed cycling period 
corresponding to the individual seasons. In practice, it is convenient to combine the 
trend and the cyclical components into a trend-cycle component TC(t), so that the 
observed resulting value of the time series X at time t can be written as 

X(t) = S(t) + R(t) + TC(t),

where R(t) is the random component. This is the additive representation model of a 
multi-component time series. The corresponding multiplicative representation 
model is 
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Time series
data Data

Smoothing
Ratio

Building
Regression

Methods

Trend
Removal

Seasonal
Removal

Cycling
Removal

T, S, R, C

 ( ) ( ) ( ) ( )X t S t R t TC t .

Both models are useful because, in some real-life cases, time series made up of 
values collected in trade or in commerce, the seasonal and trend-cycle components 
can add their values to the main component or to multiply them as interrelated 
factors.

Anyhow, to make a proper forecast when a multi-component time series is 
given, it must first be identified to what extent the individual components are 
present in the time series data. This needs the decomposition of time series data to 
identify and extract the partial data superimposed to the main time series data. The 
time series decomposition process can be presented as shown in Figure 2.1. 

Figure 2.1. Time series decomposition process 

For solving the decomposition problem, two methods have been mostly used. 

Census I method, to eliminate the variability within the individual seasons. 
This uses the moving average windows for calculating the average time 
series values within the windows. The windows have a width equal to the 
length of the season. This enables the removal of both the seasonal and 
random components. Depending on the representation model used, 
moving-average values are subtracted from the time series values (when an 
additive model is used) or the time series values are divided by the moving 
average values (when the multiplicative model is used). In the first case the 
seasonal component is calculated as the average value. 
Census II method, an extended and improved Census I method. This is 
predominantly used in financial engineering, trading, and econometrics. It 
also relies on additive and multiplicative representation models, but it is 
very data-table oriented. 

2.3 Classification of Time Series 

Depending on the character of data that they carry, the time series could be 

stationary and nonstationary  
seasonal and non-seasonal  
linear and nonlinear  
univariate and multivariate  
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chaotic.

Time series encountered in practice can have two or more of the properties listed 
above. For instance, linear time series can be stationary, seasonal, and can have the 
trend component incorporated. In the following we will mainly focus on linear, 
nonlinear, univariate, multivariate, and chaotic time series. 

2.3.1 Linear Time Series 

Linear time series are generated through observation of linear processes,
mathematically defined by linear models of the form 

( ) ( )j
j

y t x t j ,

where the coefficients are subjected to the restriction 

i
i

Linear time series could be generated by second-order stationary processes that 
are generally linear processes or they can be transformed to linear processes using 
World’s decomposition (Brockwell and Davis, 2002) technique for elimination of 
its deterministic component. 

2.3.2 Nonlinear Time Series 

Many time series in engineering and macroeconometrics require nonlinear 
modelling (see Section 2.5.8). Some of them are represented as bilinear time 
series, modeled as  

1 1 1 1

p q r s

t t i t i j t j ij t i t j
i j i j

x z a x b z c x z .

2.3.3 Univariate Time Series 

The term univariate time series refers to time series obtained by sampling a single 
observation pattern, for instance the values of a single physical variable or of a 
single time-dependent signal at equal time intervals. Thus, in univariate time series 
the time is an implicit variable that is usually replaced by an index variable. If the 
data sampling is equispaced then the index variable can be omitted.  

Time series presented here in the majority of cases are univariate time series. In 
the case where a univariate time series can be exactly represented by a 
mathematical model, the time series is said to be deterministic. Otherwise, if the 
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time series can only be represented in terms of a probability distribution function,
then the time series is said to be non-deterministic or stochastic.

2.3.4 Multivariate Time Series 

Multivariate time series are generated by simultaneous observation of two or more 
processes. The observation values collected are represented here as vector values. 
These kinds of observation are very common in engineering, where two or more 
physical variables (temperature, pressure, flow, etc.) have to be simultaneously 
sampled for building the model of a dynamic system.  

Multivariate time series are best understood as being a set of simultaneously 
built  time series, the value of each series – apart from their internal dependency 
within the series itself – also have an interdependency with the values of other 
component series. Multivariate analysis, a branch of mathematical statistics 
qualified for processing of multidimensional sampled data, is used for their 
processing (Dillon and Goldstein, 1985; Johnson and Wichern, 1988). 

2.3.5 Chaotic Time Series 

Random components of a time series mainly fall into one of two categories:  

They are truly random, i.e. the observations are drawn from the underlying 
probability distribution characterized by a statistical distribution function or 
by statistical moments of data, such as mean, variance, skew, etc.
They are chaotic, characterized by values that appear to be randomly 
distributed and non-periodic, but are actually resulting from a completely 
deterministic process. 

The main feature of chaotic time series is that they have no definite periodicity, i.e.
they can be represented by the values that may be randomly repeated several times 
without maintaining any definite periodicity. A typical example of a chaotic signal 
generator is the nonlinear dynamic oscillating system 

22 2 0.5x d x dx dtd t ,

which is sensitive to its initial conditions. This can be presented geometrically by 
the trajectory of the system in the phase plane, in which the trajectory of non-
dissipative systems make up a set of nested closed curves, whereas those of 
dissipative nonlinear systems for all initial conditions lead to trajectories that 
either lie on a single surface or converge to individual points in phase space. The 
set of surfaces and points in the phase space to which all trajectories of the system 
converge is called the attractor of the system. The attractors of a chaotic system 
can have a non-integral, i.e. fractal, dimensions and are called strange attractors.
Such attractors are very important for forecasting of chaotic time series.  



 Traditional Problem Definition 25 

2.4 Time Series Analysis 

Time series analysis deals with the problems of identification of basic 
characteristic features of time series, as well as with discovering - from the 
observation data on which the time series is built - the internal time series 
structure.

2.4.1 Objectives of Analysis 

The main objectives of time series analysis are 

building of input-output models that represent the equivalent transfer 
functions of processes behind the time series  
forecasting the future time series values from the past values using the 
models developed  
control systems design, based on the result of analysis. 

Depending on the origin of the observation data, forecasting of future values of 
time series can also provide support in efficient process and production monitoring 
and failure diagnosis, in product quality inspection, etc., using the time-domain or 
frequency-domain approach.  

Once the time series model has been developed and tested it can be used for 
forecasting the future time series values at various time distances d. Of course, the 
forecasting does not deliver the exact future values of data that the given time 
series will really have, but rather their estimates. For example, using the auto-
regressive model  

1 1 2 2t t t tx x x

based on a one-step movement along the time series  

1 1 2 1 1t t t tx x x ,

we can formally write the predicted value to be 

1 1 2 1ˆt t tx x x .

For the two-steps ahead prediction, based on a two-steps movement along the 
time series, we can also formally write 

2 1 1 2 2 ,t t t tx x x

or

2 1 1 2 1 1 2 2( ) ,t t t t t tx x x x
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and the predicted value to be 

2 1 1 2ˆ ˆt t tx x x

or  

2 1 1 2 1 2ˆ ( ) .t t t tx x x x

2.4.2 Time Series Modelling 

In engineering, modelling of dynamic phenomena has long been seen as a valuable 
support tool for winning a deep insight into the structure and behaviour of dynamic 
systems. Much research and development efforts have been made in development 
and application of system models. In control engineering, system models have 
been widely used for design and implementation of advanced control strategies, 
such as adaptive, predictive, and self-tuning control. In business and financial 
engineering, as well as in water, gas, fuel, and electrical power distribution 
systems, the mathematical models have for a long time been used for quantity 
demand forecasting. This is, in fact, the most significant aspect of time series 
analysis, which also helps to reduce, or even to eliminate, the inherent disturbances 
or fluctuating components present in observed or in measured values. 

2.4.3 Time Series Models 

In statistics, two basic mathematical system models are used: 

deterministic models, mathematically viewed as analytical models 
represented by deterministic relations like  

  ( )tx f t ,

or by recurrence equations like  

1 2( , ,...)t t tx f x x

stochastic models, statistically viewed as functions of random variables.

Mathematical models used for time series analysis are generally  

regression models 
time-domain models 
frequency-domain models,

whereas, again, the time-domain models could be 

transfer function models  
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state-space models.

In the following, various approaches for building stationary models of time 
series are presented. 

2.5 Regressive Models 

Regressive models are built using regression analysis, which is a collection of 
methods for the study of relationships between the variables and for estimation and 
prediction of values of one variable using the values of other variables incorporated 
in a joint time series (Drapper and Smith, 1981). For instance, to implement an 
efficient predictor for a variable of interest, the measurable variables representing 
the strong indicators for the same variable should first be identified.  

The most popular regression models in engineering are the 

autoregression model (AR) 
moving-average model (MA)
ARMA model  
ARIMA model  
CARIMA models.

2.5.1 Autoregression Model  

Autoregression models express the current value of a time series by a finite linear 
aggregate of previous values and by a shock t

1 1 2 2 ...t t t t tx x x x ,

where 1 to are the autoregression parameters, t is the white noise and is

the model order. The validity of an autoregressive model assumes that the time 
series to be modeled is stationary. Also, because of some possible internal 
cumulative effects, the autoregressive process will only be stable if the values of 
parameters  are within a certain range. 

It is common to write the autoregressive equation in terms of deviations 
,t t tx x  generally using the variable Z and its deviation .Z Z  The 

individual terms of the time series now become 1 2 3, , , ,t t t tZ Z Z Z , resulting in the 

autoregressive model 

1 2 31 2 3 ,tt t t t t pp aZ Z Z Z Z

where 2
2 31 a, , ,..., ,, q  are unknown parameters to be estimated from the 

observation data. Introducing the autoregressive operator  
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2 3
1 2 31 p

pB B B B B

the autoregressive model can be written in the compact form  

.ttB aZ

The model contains (p+2) unknown parameters, i.e. p internal parameters and two 
additional parameters: the variance a

2 and the white noise at.
A crucial problem in modelling of autoregressive time series is the selection of 

the order of the model to be built. A useful approach in this case is the analysis of 
the related partial autocorrelation function and the inverse autocorrelation 
function, because using the autocorrelation function itself is computationally 
complicated in the case of building of higher order models. Alternatively, fitting 
the time series shape by models of progressively higher order can be used, along 
with the analysis of the residual sum of squares for each order.

2.5.2 Moving-average Model  

Another approach frequently used in modelling of univariate time series is based 
on the moving-average model

1 1 2 2 3 3t t t t q t qt a a a a aZ

which expresses tZ  in terms of an infinite weighted linear sum of 

21, , , ..., .t t t qta a aa Introducing the moving-average operator of order q

2 3
1 2 31 q

qB B B B B

the moving-average model can be written in the compact form as 

 ( )t tz B a

The model contains (q+2) unknown parameters 2
2 3 a1, , , , ,, q  to be 

estimated from the observation data. 

2.5.3 ARMA Model 

The combination of the AR and MA models makes up the ARMA model 

1 1 2 2 1 1 2 2... ... .t t t p t p t t t q t qZ Z Z Z a a a a

Rewriting the model as 
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1 1 2 2 1 1 2 2... ...t t t p t p t t t q t qZ Z Z Z a a a a

and rearranging it as 

2 2
1 2 1(1 ... ) (1 ... )p q

p t q tB B B Z B B B a

the model can finally be written in compact form as 

 ( ) ( )t tB Z B a ,

where B is a delay operator. The derived compact model contains (p+q+2) 
unknown parameters 1 2, , ,..., p and 2

1 2 a, ,..., ,q  that are to be estimated from 

the given time series data. In practice, for the representation of actually occurring 
stationary time series, it is frequently adequate enough to take p and q not greater 
than 2. The presence of both autoregressive and moving-average terms in the 
ARMA model enables the representation of complex time series with fewer 
parameters than would be needed using a corresponding AR model.  

2.5.4 ARIMA Model 

This Box-Jenkins variant of the ARMA model is predestinated for applications to 
nonstationary time series that become stationary after their differencing. 
Differencing is an operation by which a new time series is built by taking the 
successive differences of successive values, such as X(t) – X(t-1) along the 
nonstationary time series pattern. In the acronym ARIMA, the letter I stands for 
integrated.

The widely accepted convention for defining the structure of ARIMA models is 
ARIMA(p, q, d), where p stands for the number of autoregressive parameters, q is
the number of moving-average parameters, and d is the number of differencing 
passes. For instance, the ARIMA(2, 3, 1) model has two autoregressive parameters, 
three moving-average parameters, computed after the series have been differenced 
once. 

A variety of time series encountered in industry and business exhibit 
nonstationary behaviour. In particular, they do not vary about a fixed mean 
because of the possible presence of a drift component. Such time series may, 
nevertheless, exhibit homogeneous behaviour of a kind. In particular, although the 
general level about which fluctuations are occurring may be different at different 
times, the broad behaviour of the series, when differences in level are allowed for, 
may be similar. It can be shown that such behaviour may be represented by a 
generalized autoregressive operator

,1
d

B B B
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where  is the stationary autoregressive operator and  is the generalized 
autoregressive operator. One or more of the zeros of the polynomial  (i.e. one 
or more of the roots of the equation ( ) 0B ) is unity.  

The general form of a model to represent the homogeneous nonstationary 
behaviour of the time series is given by  

 ( ) ( ) ( )(1 ) ( )dB x t B B x t

or, 

 ( ) ( ) ( ) .tB x t B a

Defining now 

 ( ) (1 ) ( )dw t B x t ,

we get 

 ( ) ( ) ( ) .tB w t B a

Introducing the operator  

 (1 )B

the last equation becomes 

( ) ( ).dw t x t

where, 

 ( ) ( ) ( 1) (1 ) ( ).x t x t x t B x t

The homogeneous nonstationary behaviour can therefore be represented by a 
model which calls for the dth difference of the process to be stationary. In practice, 
it is mostly d = 0 or 1 but not greater than 2. 
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Figure 2.2. Block diagram of an ARIMA model 

From the above it follows that the general ARIMA process may be generated from 
white noise at by means of three filtering operation, as shown by the block diagram 
in Figure 2.2, where the first filter has the input at, the transfer function (B), and
output 

 ( )t te B a ,

where  

2
1 2( ) (1 ... )q

qB B B B

is the moving-average operator.  

Table 2.1. Summary of properties of AR, MA and ARMA processes 

Sl. No. Description AR MA ARMA 

1. Model in  

terms of x

tt
B x a 1

tt
B x a 1

tt
B B x a

2. Model in 

 terms of a

1
t tx a t tBx a 1

t
t

x B B a

3. = weights Infinite series Finite series Infinite series 

4. Stationary 
condition

Roots of 
0B  lie 

outside

unit circle 

Always 
stationary  

Roots of 0B

lie outside unit  

circle 

White
noise

First Filtering
Third

Filtering
Second
Filtering

Inverse AR
Sum

(Integration)

at

MA

et wt xt
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The second filter has the input et, transfer function (B), and output wt

1
t tBw e ,

and the third filter has the input wt, the transfer function sd  (i.e. it is a nonstationary 
summation filter) and the output tx

d
t tx s w

or

1( ) .d
t tB Bx s a

Table 2.1 summarizes some features of AR, MA, and ARMA model.  

2.5.5 CARMAX Model 

In systems and control theory the CARMAC model is used for design of minimum 
variance and predictive control (see Section 2.10.3). For deterministic dynamic 
systems with an input signal u(t) and a disturbance e(t) the CARMA or CARMAX 
model is defined as 

1 1 1( ) ( ) ( ) ( ) ( ) ( )A z y t B z u t C z e t ,

where  

1

0
( )

n
i

i
i

A z a z              0 1i

1

1
( )

m
j

j
j

B z b z

1

0
( )

p

C z c z            0 1c .

The acronym CARMAX stands control autoregressive moving-average model 
with auxiliary inputs. This has analogy with the Kalman notation of a state-space 
model of the filter.  
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2.5.6 Multivariate Time Series Models 

The observation values of some time series are multivariate, made up of 
components that themselves are observations of some time series. Such 
multivariate values are presented as vector values 1 2[ , ,... ]T

nx x x x , and the entire 

set of multiple values as a matrix made up of individual observation vectors 

11 12 1

21 22 2

1 2

...

...

... ... ...

...

n

n

n n nn

x x x

x x x
x

x x x

Multivariate time series are processed using multivariate analysis, which is the 
statistical methodology for processing of multidimensional data.  

Model building of multivariate time series is required when the values of one 
variable of an individual time series are dependent on the values of variables in 
other related time series. For better modelling and for more accurate analysis, all 
values concerned should be taken into account simultaneously. For instance, the 
corresponding joint observations of two mutually dependent variables have to be 
modeled under consideration of the components of a two-dimensional observation 
vector ( , )i i ix y z , for i=1, 2, 3, … etc. Thus, a bivariate time series has to be 

modeled based on two-dimensional observation vectors of the interdependent 
univate time series. But, before building the model it should be checked whether  

the two time series (represented by y and z values) mutually correlate, in 
which case only the correlation analysis has to be carried out, or 
the two series are causally related, in which case the time series model 
should be built. 

In practice, the number of time series to be considered simultaneously can be larger 
than two, so that multivariate time series have to be built using the observation 
vectors and the related observation matrix. Using this presentation approach, the 
great majority of basic theory of univariate time series can formally be extended to 
the multivariate time series. For instance, in an analogous way the equivalent 
ARMA model for a stationary multivariate time series, with zero mean vector, can 
be written as 

1 1 2 2 1 1 2 2... ...i t t t t t t n t nx x x x n

where tx  and t  are n-dimensional column vectors, t  being the multivariate 

white noise, and i  and i  are the elements of the corresponding [n n] matrix of 

ARMA model parameters 

,{ }j j kk ,    for  j = 1, 2, …, 
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,{ }j j kk ,   for   j = 1, 2, … , n.

It is usually supposed that the mean value of expectation is 

 { } 0jE ,  for all  j   

and the condition that the covariance matrix of j

2{ }j j kE ,     for k = 0. 

Finally 

1 1 2 2 ...t t t tx x x x ,

where the values of parameters 1  to and those of the covariance matrix should 

be estimated. This is rather mathematically complicated and requires computer 
support.  

For dimensionally reduced modelling of multivariable time series, the method 
of principal components analysis is used (Jolliffe, 1986). The analysis helps to 
reduce the initial number of correlated variables to a small number of variables, i.e.
to the principal factors that still contain (with minimal loss) the essential 
information of the initial number of variables. This reduces the computational 
effort needed for further time series data processing. 

However, the reduction in the number of initial variables is not a process of 
simple elimination of some non-relevant variables, as the eliminated variables still 
have an influence, or “echo”, on the remaining variables. This is because the 
principal components are first determined using a smaller number of linear 
combinations of the initial variables that are still able to reproduce the entire 
collection of observed variables within a relatively good accuracy. Applying 
principal component analysis, the optimal number of linear combinations can be 
found that are best predictors of the entire set of variables. The prediction accuracy 
achieved is considered as the best performance measure. It is also to be noted that - 
after transforming the initial variables to the reduced number of variables using 
linear combinations - the back-transformation of the reduced variables to the 
initial variables is not possible. 

Consider now the five observations of each of three variables 1 2 3, ,x x x

presented in matrix form 

11 21 31

12 22 32

15 25 35

x x x

x x x
x

x x x
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The components of the corresponding mean vector, made up of the mean of each 
variable, are calculated as 

3

1

1

5mi ij
j

x x ,  where  i = 1, 2, 3, … 

The elements of the corresponding variant-covariant matrix, or dispersion, made 
up of the variances of the variables along the main diagonal and the covariances 
between each pair of variables in the remaining location, are given by 

,

1
( )( ) ,

5
T

i jij i mi j mj
s x x x x ,  where   i, j = 1, 2, 3.   

Principal components, which are linear combinations of random variables with 
some characteristic properties with respect to the variances, play a key role in the 
analysis of multivariate time series. For instance, the first principal component is 
the sum of squares of the coefficients having the maximal variance. Furthermore, 
the principal components are in fact the characteristic vectors of the covariance 
matrix, so that they help in the study of the characteristic vectors and characteristic 
roots.

2.5.7 Linear Time Series Models  

Linear models of time series are based on linear relationships between the observed 
values. Typical examples of linear models are the AR, MA, ARMA, and ARIMA 
models. 

2.5.8 Nonlinear Time Series Models 

The difficulty in testing for nonlinearity in a given set of observation values calls 
for special approaches to building adequate time series models. The observation set 
of nonlinear time series may contain various shocks of different form and of 
different intensity. In financial engineering practice, it is common to check the time 
series nonlinearity using first a linear time series model. If the linear model does 
not fit the major part of observation data, then a nonlinear model is built and tested. 
However, the problem then is what nonlinear model should be selected that will 
best fit the collected data (Casdagli and Eubank, 1992). There are some traditional 
examples of such models like STAR (smooth transition autoregression model),
ARCH (autoregressive conditional heteroskedasticity) and the bilinear model,
widely used in econometrics and financial forecasting. Recently, the Markov 
switching model, threshold autoregression model, and smooth transition 
autoregression model are also becoming popular. 

For STAR models there have been some nonlinear alternatives like 

0 1 1 1( )( ) ,t t t d t tx x f x x
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with tx as a transition variable that can be described by an AR(1) model with the 

parameters 0  and 1  and with the nonlinear component 1( )( ).t d tf x x

There is also the ESTAR model

2( ) 1 exp[ ( ) ]t d t df x k x k

with k > 0, and the LSTAR model 

2

1
( )

1 exp[ ( ) ]t d
t d

f x
k x k

.

State-space modelling of nonlinear time series relies on the theory of first-
order Markov chains in the n-dimensional state space, where the observation 
vector is represented by 1 1( , ,..., ) ,T

t t t t nx x x x  and the nonlinear time series model 

is represented by the stochastic difference equation

1( , ).t t tx S x .

Alternatively, the nonlinear state space can be used for modelling the nonlinear 
time series, relying on transition probability 

1, 1 1 1, 1{ , , }t i i t t j tP x x x x x x j i

where 1, 1t ix denotes the (i+1)th component of 1.tx

2.5.9 Chaotic Time Series Models 

In the last two decades or so, research in the field of chaotic time series analysis
has steadily grown and it is today an interesting field of work for mathematicians 
and engineers. Initially, the research interest was in estimating the dimension of the 
underlying attractor and the Liapunov exponents of the chaotic systems that 
characterize the space-filling properties and the stability of dynamic systems. The 
attention was later focused on the techniques of chaotic time series modelling and 
on prediction of future time series values using most frequently the nonlinear 
autoregressive model for the state vector x(t).

1 2 1( ) [ ( ), ( ), ( ),..., ( )]nx t d F x t x t d x t d x t d

where d is the delay factor between the individual observations and n is the 
number of observations considered. Here, the nonlinear time series model is 
required when the model should hold globally. Otherwise, for local considerations, 
a local linear model is preferred.  
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In reality, the output system signals are corrupted by noise, as well as by 
chaotic signals generated by dynamic systems. Therefore, for modelling noise-
corrupted chaotic signals it should first be established whether the noise present 
corrupts the systems state vector (like the system noise) in the form  

y(t+1) = F [x(t) +n(t)] 

or, like the measurement disturbances, whether it only adds to the output signal 

ˆ( ) ( ) ( )y t y t n t .

The generation of chaotic signals by dynamic systems is based on the 
phenomena of initial-value sensitivity of the corresponding differential equations. 
This was first pointed out by Poincare´. For instance, the sequence  

1 14 (1 )n n nx x x

for any initial value 00 1x  and for any n = 0, 1, 2, … etc., produces the solution 

2 1
0sin [sin ( )]nx x ,

which is highly sensitive to the initial value selected, because it determines the 
value of the arcsin function. A small deviation 0x contributes here the 

02n x changes in 0 0arcsin x x .

2.6 Time-domain Models 

Two typical time series modelling approaches in the time domain are to build the 

transfer function model 
state space model 

Both models are of fundamental importance in traditional and modern control 
theory.

2.6.1 Transfer-function Models 

Transfer-function models are the extension of regression models in which the 
transfer function of a dynamic system is integrated into the model. This is used in 
systems theory for representation of relationships between the systems input and 
output variables.  

Building transfer-function models is based on experimental records of input 
and output time series. In engineering practice, transfer-function estimation is 
preferred because it does not require any system disturbance, say by step, pulse, or 
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sinusoidal test signal. Statistical estimation methods largely rely on normal 
operating records and are robust against the noise.  

Consider the multivariate time series in which supposedly a single output 

ty depends on some lagged values ,t ix i = 0, 1, 2, …, of the input time series in 

the following way: 

0 1 1 2 2 ...t t t t ty c x c x c x

where (t) is the output noise component of y. After introducing the unit delay 
operator D this becomes  

2
0 1 2[ ... ]t ty c c D c D ,

which finally results in 

 [ ]t t ty cD x ,

where [ ]cD represents the transfer function model of the system. It is supposed that 
the input series and the noise component (t) are mutually independent.  

In systems engineering, the ARMA(n, m) model  

1 1( ) ( 1) ... ( ) ( ) ( ) ... ( )n my t a y t a y t n e t c e t c e t m

plays a key role in model building. The compact form of the above model is 

1 1( ) ( ) ( ) ( ),A z y t C z e t

where the polynomials A(z-1) and C(z-1) are the respective operators, i.e. the 
polynomials in z-1. The corresponding transfer function of the system is 

1

1

( ) ( )

( ) ( )

y t C z

e t A z
.

2.6.2 State-space Models 

In systems theory, the widely preferred class of models are the state-space models.
The models are made of two sets of equations. One set represents the state-space 
model of the system  

1 ,t t t t t tx A x B u w
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based on state vector tx  and the system disturbance vector ,tw  and the other set 

models the systems output 

t t ty C x v ,

based on the observability vector ty  at system output and on the system output 

disturbances vector .tv  In the two sets of equations, , ,t tA B  and tC  represent the 

system matrix, control matrix, and observation matrix respectively, all at the 
instant t. In addition, the covariance matrices of the disturbance vectors are 
supposed to be  

cov{ }

cov{ }

t t

t t

w Q

v R

The objective of state-space modelling (Aoki, 1990) is to estimate the values of 
the state vector and to forecast its future values based on observations .ty

2.7 Frequency-domain Models 

In analogy with the signal representation in the frequency domain, also a time 
series can be represented in the same domain. This is because the time series 
values are generated by equidistant sampling of signals. Therefore, a time series 
made up of sampled values can also be presented as a collection of sine and cosine 
waves with different frequencies and be processed using spectral analysis
(Warner, 1998).  

A device that was designed to represent the given time series visually in the 
frequency domain is the periodogram. It is a simple spectral analysis facility made 
up of mixtures of sine and cosine components within a frequency spectrum. 

To illustrate the calculation of the periodogram, suppose that the number of 
observations is odd, say N = 2q+1, and the Fourier series model  to be fitted using 
the observation data is given as 

0
1
( ) ,

q

t i it i it t
i

x a a C b S e

where 

cos(2 ),

sin(2 ),

.

it i

it i

i

C f t

S f t

i
f

N
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If if  is the ith harmonic of the fundamental frequency 1/N, then the least square 

estimates of the coefficients 0a and ( , )i ia b  will be 

0

1

1

,

2
,

2
.

N

i t it
t

N

i t it
t

a x

a x C
N

b x S
N

The periodogram then consists of q = (N-1)/2 values  

2 2

1
( ) ( )

2

N

i i i
t

N
I f a b       i = 1, 2, …, q,

called intensities at frequency values .if

However, for an even value N, which should be set equal to 2q, the above 
equation holds for i = 1, 2, 3, ..., (q-1), and the last coefficients are 

1

1
( 1) ,

0,

N
t

q t
t

q

a x
N

b

and correspondingly 

2( ) (0.5) .q qI f I Na

Because in a given time interval the highest frequency is 0.5 cycles per interval, 
in the definition of sample spectrum - if fi is the ith harmonics of the fundamental 
frequency (1/N) - the definition of the periodogram is modified to 

2 2( ) ( )
2 f f

N
I f a b

where 0 0.5.f  In this case I( f ) is referred to as the sample spectrum.

Example 

The simplest Fourier model 

0 cos sint tX a a t b t Z

can, in the case of multidimensional analysis, be represented in matrix form as 



 Traditional Problem Definition 41 

E(X) = A ,

with,

1 2

0

( , ,..., )

( , , )

T
nX X X X

a a b

and

 A = 

1 cos sin

1 cos 2 sin 2

... .... ....

1 cos sinn n

.

Minimizing the least-squares  

2
0

1
( cos sin )

n

t
t

X a a t b t

the can be estimated using the pseudo inverse relation 

1ˆ ( )T TA A A X .

In order to use the spectral expansion technique for forecasting purposes, we 
need first to observe the given time series carefully to check whether it contains 
any trend and/or seasonality. This can, for instance, be identified by visual 
inspection of the graph of the given series. 

Trend removal from the time series can be carried out in two ways:  

by taking the first or the second difference of the given time series data 
by fitting a polynomial to it and then by subtracting the fitted polynomial 
from the given time series data.  

The coefficients of the fitted polynomial can be estimated by a least-squares fitting 
method which minimizes the sum of squares of the difference between actual data 
and the polynomial data to be fitted.  

The first difference is taken as (xt - xt+1) for t ranging from 1 to N-1, and where 
xt is the actual time series data at time instant t and N is the total number of 
observations in the given time series. Similarly, the first difference applied to the 
resulting first difference will give rise to the second difference. Once the series is 
de-trended, we have to check for various frequency components present in the 
residual of the time series. This is accomplished by first transforming the signals 
from the time domain into the frequency domain using a fast Fourier transform
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(FFT), and then by computing the power spectral density function as a measure of 
the energy at various frequencies  

 *yyP Y Y

where “*” represents the one-to-one multiplication of vector components or of 
matrix elements, and Y represents the complex conjugate of Y. The calculated 
values yyP  are then plotted against the frequencies. From the resulting plot, the 

major frequency components present in the residual time series signal can be 
identified.

The FFT is a computational technique that substantially reduces the time 
required to perform Fourier transformations on a digital computer. Introduced in 
the 1960s by Cooley and Tukey (1965), the transformation has steadily increased 
its popularity.  

2.8 Model Building

The Box and Jenkins methodology (Box and Jenkins, 1976) for building time 
series models includes a 

model identification phase, in which – apart from some preliminary 
statistical calculations – the number of model parameters is determined that 
are needed to ensure that the mathematical model to be built matches the 
collected time series data with the desired accuracy  
model estimation phase, in which the values of model parameters are 
estimated by minimizing the sum of squares of residuals  
model validation phase, in which the model accuracy is checked and the 
possible model improvement is established 
model forecasting phase, in which the model is used to establish the 
confidence limits of the forecast.  

The above methodology, however, is not a straight-forward process, rather it is a 
chain of iterative actions that Box and Jenkins described using the flow chart 
shown in Figure 2.3. 
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Model Postulation
(Heuristic)

Model Identification

Model Estimation

Model Evaluation

Model Application

Model
Acceptable

?

Yes

No

Figure 2.3. Box-Jenkins methodology of model building 

The Box-Jenkins model building process assumes that the time series to be 
modeled is stationary. Otherwise, it should be differenced several times until it 
becomes stationary. In some cases the time series values should be manipulated so 
that their mean becomes zero. Further to this, the seasonality of the time series has 
to be removed, which complicates the related calculations, particularly when 
building ARIMA models. 

2.8.1 Model Identification 

Box and Jenkins defined the model identification phase as a rough procedure for 
laying down the initial model structure that matches good enough with the 
collected observation data. The essence of the identification process was first 
demonstrated on the example of an ARMA model, for which the required number 
of parameters for both the autoregressive and the moving-average parts of the 
model have been determined. This could be done using the autocorrelation 
approach, usually by determining the sample autocorrelation function and the 
sample partial autocorrelation function.

The sample autocorrelation function is defined as the ratio 

ˆ( )
ˆ ( )

ˆ(0)

d
d ,

where 
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1

1
ˆ( ) ( )( ( ) )

n d

t
d t d x x t x

n

is the corresponding sample autocovariance function for – n < d < n.
In contrast with the autocorrelation function, which is infinite in extent, the 

partial autocorrelation function is described in terms of N non-zero 
autocorrelation functions 

1

N

i jN i j
j

, 1, 2,...,i N ;

which can be described in a compact form by the Yule-Walker equation

N N N ,

using the vectors 

1 2

1 2

, , ...,

, , ...,

N

T

N

T

N N N NN

and the matrix 

1 2 1

1 1 2

1 2

1 ...

1 ...

... ... ... ...

... 1

N

N
N

N N

Solving the Yule-Walker equation for N = 1, 2, 3, …, one gets 

11 1,

1

1 2
22

1

1

1

,
1

1

1 1

1 2

2 1 3

33

1 2

1 1

2 1

1

1

1

1

1

,

etc. The last equality, NN , represents the partial autocorrelation function. Here, 

the sample autocorrelation function for an AR(1) process should have mixed 
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exponentially decaying and damped sinusoidal components. In addition, for higher 
order autoregressive processes the sample partial autocorrelation function should 
also be considered, which becomes zero when more model parameters are involved 
than needed.  

The partial autocorrelation function is not helpful for identifying the order of 
the moving-average process because if the number of model parameters is higher 
than required, then the autocorrelation process becomes zero. Nevertheless, the fact 
that both the sample autocorrelation functions and the partial autocorrelation 
functions are random variables makes the model identification generally difficult, 
particularly the identification of a mixed ARMA model. Also, developing time 
series models using sample plots of both autocorrelation functions involves 
multiple trial-and-error iterations, which is time consuming. Akaike (1974) 
proposed the information criterion, known as the Akaike information criterion 
(AIC):

2( ) log ( ) 2eAIC n v ml n ,

with ml = RSS/  and RSS being the residual sum of squares. By minimizing the 
criterion with respect to n, the model order  can be determined, which helps 
automate the model identification process. For instance, in the case of two 
equivalent models being found, with both having acceptable residuals, the one 
having a lower AIC(n) value can be taken as the better one. 

A similar criterion was proposed by Schwarz, known as the Bayesian
information criterion (BIC), defined as 

2( ) log ( ) log .e eBIC n v ml n v

It delivers a lower order model than the AIC, which is an argument for its 
preference. But also here, in the initial phase of the model identification process, 
the stationarity, seasonality, etc. of the given time series have to be checked and 
removed by de-trending and de-seasonalization of time series data.  

A successful identification phase of model building is to a great extent a matter 
of knowledge and practical experience, rather than the matter of some given rigid 
instructions about how to do it. Yet, some recommendations related to the initial 
parameter estimation of a pure AR process are still available, relying on the use of 
the Yule-Walker approach. Much more difficult is to model the MA part of an 
ARMA model, where a system of nonlinear equations has to be solved.  

2.8.2 Model Estimation  

Once the preliminary time series model has been identified, i.e. the number of 
required model parameters has been determined, the actual model parameter values 
have to be estimated using the observation data. This is a nonlinear estimation 
problem that needs some special statistical procedures, like the maximum
likelihood method or nonlinear least-squares estimation. The parameter values 
estimated at this stage of model building should minimize the sum of squared 
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residuals. The estimated values are usually called most likelihood parameter 
values or the least-squares parameter values.

The maximum likelihood method applied to the ARMA(p, q) process with the 
sampled values arranged as the components of the vector 1 2,[ , ..., ]T

ny y y  and with the 

non-zero mean µ starts with the extended model 

1 1
( )

p q

i i t i t j t j
i j

Y Y z z

with p+q+2 parameters 2
,, VAR( )i j z , and { }.iY  A matrix V( , )

should now be defined so that the relation 

 VAR(Y) = 2 ,V ,

holds, where 

1 2

1 2

1 2

1 2

[ , ,..., ]

[ , ,..., ]

[ , ,..., ]

[ , ,..., ]

T
p

T
q

T
n

T
n

y y y y

Y Y Y Y

with the elements of V( , ) being proportional to the autocorrelation coefficients 
of { iY }.

Supposing now that iz values are normally distributed, so will Y also be 

normally distributed, so that the log-likelihood function will be defined by 

2 2 1 21
( , , , ) [ log log ( , ) ( ) [ ( , )] ( ) / ]

2
TL n V y I V y I

where I is the identity vector [1, 1, ..., 1]TI .

Given initial values of and , the maximum estimate of µ and 2  are 

1 1

2 1

ˆ ( , ) { [ ( , )] }/{ [ ( , )] }

1
ˆ ˆ( , ) [ ( , ) ] /{[ ( , )] [ ( , ) ]

T T

T

I V y I V I

y I V y I
n

This, after substituting in the above likelihood equation, gives 

2
0

1
( , ) [ log ( , ) log ( , )]

2
L n V .
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The maximum likelihood estimates ˆ  and ˆ  can now be determined in the 
conventional way. 

Parameter estimation of autoregressive models can, based on the Yule-Walker 
approach, be managed in a relatively direct way. Multiplying the autoregressive 
model 

1

p

t i t i t
i

X X Z

by t jX , j > 0, and calculating the expectation of each term of the resulting 

equation, we obtain 

1

p

t t j i t i t j t t j
i

X X X X Z X .

Taking into account that tZ  and t jZ  are statistically independent, the relation 

1

p

j i j i
i

,

is obtained, which after division by 0  becomes the relation of autocorrelation 

functions

1
.

p

j i j i
i

Subsequently, by substituting the values j = 1, 2, …, p in the last equation a set of 
linear equations can be built, the matrix form of which will be 

1ˆ ,R

where 1 2ˆ ˆ ˆ ˆ[ , , ..., ]T
p  is the parameters vector, 1 2[ , , ..., ]T

p  is the 

autocorrelations vector, and 

1 1

1 2 2

1 2

1, , ...,

, , ...,

... ... ... ...

, , ...,1

p

p

p p

R

is the corresponding matrix. The parameters of the autoregressive models can now 
be determined by solving the above matrix equation. 
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2.8.3 Model Validation and Diagnostic Check  

In the last phase of model building the model validity or the model adequacy
should be verified, i.e. it should be checked how good the developed model fits the 
collected time series data and how close the predicted future values are close to the 
actual future values of the time series itself. If the model built fits the time series 
data satisfactorily, then the residuals should behave consistently with the model.  

The model diagnostic check on the other side, includes checking the model 
sensitivity to the characteristics of the input data. For this, Box and Jenkins 
proposed the overfitting procedure, which starts with an identified and estimated 
low-order model and continues with the fitting of more-elaborate models by 
augmenting the model dimension. If the augmented model is overfitted, then the 
previous model is taken as the better one. Alternatively, in starting with a high-
order model, if the previous model is already overfitted, then the diagnostic check 
continues with checking of lower order models, the dimensions of which are 
reduced and repeatedly checked against overfitting.  

Anyhow, although the overfitting approach to model diagnostic checks appears 
to be rather simple, it still presumes the normality of the statistical distribution and 
is strongly influenced by the correlation structure of the data. For instance, taking 
the ARMA(p, q) model for overfitting and repeating the fitting procedure for 
ARMA(p+1, q) and ARMA(p, q+1), we will get the maximum log-likelihood 
values, say 0 1 2, , .L L L  If the initial ARMA(p, q) model is adequate, then the 

generalized likelihood ratio test procedure expects that each of the statistics 

1 0( )L L  and 2 0( )L L  is chi-squared distributed.

A simplified approach to verifying the minimum number of model parameters 
really needed to represent the observation data is the check of the mutual non-
correlation of residuals. If the residuals correlate, then the number of model 
parameters should be increased. For verifying this correlation the residual 
diagnostic methods are appropriate, and for detection of parameters that are 
irrelevant for model presentation the parameter diagnostics approaches are 
recommended. Both approaches support finding the alternative models that, again, 
can help in improving the current model.  

Residual diagnostics includes statistical calculations of 

mean percentage error and the residual mean, i.e. the average of all the 
computed residuals 
autocorrelation of residuals  
closeness-of-fit statistics.

If the value of the residual mean deviates significantly from zero, then this 
indicates that the fitted values deviate from the original time series values or that 
the residuals are not balanced out, in the sense that the positive or the negative 
residuals are predominant. The unbalanced residuals represent a kind of bias, so 
that in this case the biased forecasts are determined. The mean percentage error is 
similar to the residual mean. 
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For checking the mutual correlation of residuals the correlogram of residuals is
evaluated. The presence of spikes in the correlogram indicates that the residuals 
might be correlated and that the model developed is not adequate.  

The residual values 1 2, ,..., nz z z  of the noise sequence 0 1, ,..., nZ Z Z  of an ARMA 

process are obtained by substituting in the likelihood function all the estimated 
values of and into each of the related time series y(t), y(t+1), y(t+2), ..., y(t+n-
1) and by solving the resulting system of equations. This is generally a difficult 
issue. It is much easier to extract the residual sequence for the AR(p) and the 
MA(q) part of the ARMA(p, q) process separately. For instance, in the case of an 
AR(p) model 

1
( ) [ ( ) ( )]

p

i
i

Y t Y t i Z t ,

for  t = p+1, …, n, the residuals are 

1
ˆ ˆ ˆ( ) [ ( ) ] [ ( ) ]

p

i
i

z t y t y t i ,

whereby for t p the residuals are not defined. In the case of an MA(q) model 

1
( ) ( ) ( )

q

i
i

Y t Z t i Z t ,

that can be rewritten as 

1
( ) [ ( ) ] ( )

q

i
i

Z t Y t Z t i ,

and the residuals are defined as 

1 1

2 2 1 1

1

ˆ

ˆ

... ... ....
q

t t i t i
i

z y

z y Z

z y Z

where the last equality holds for t > q.

2.9 Forecasting Methods 

Once the time series model has been built, it can be employed in forecasting the 
future values using an adequate forecasting method. Viewed historically, the term 
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forecasting is closely linked with the term prediction. The earliest researchers 
working on methods of determination of future values of empirical functions, 
based on a set of collected values, coined the term prediction, rather than
forecasting. Forecasting is predominantly associated with the problem of time 
series analysis. The term prediction, however, is still preferably used in systems 
and control engineering.  

2.9.1 Some Forecasting Issues  

Forecasting the future values of a time series is defined in the following way:  

given a set of observed values x1, x2, x3, ..., xn of a time series, the future 
value xn+1, xn+2, …, should be estimated  
q-steps ahead prediction xn+q, calculated at time point n, is denoted by 

( ),ˆ n qx  where the integer q is called the lead time.

Generally, the forecasting approaches can be classified into  

objective forecasts, made on a subjective basis using judgement, intuition, 
commercial knowledge and any other relevant information  
univariate forecasts, based entirely on fitting a one-dimensional model to 
the collected data and on extrapolation of the time series pattern  
multivariate forecasts, based on simultaneous observation of two or more 
variables and on models of multivariate time series. 

In practice, a forecasting approach can include a combination of two of the above 
approaches. For example, univariate forecasts – after being carried out – can be 
adjusted subjectively. Or, put in another way, the marketing forecast based on 
various predictions developed statistically from the past data can be combined with 
the experience or knowledge of people deeply involved in the market. Finally, the 
simplest way of more reliable forecasting takes into account the combination of 
two or more weighted objective forecast estimations to calculate the final forecast 
value (see Section 2.9.6).  

Before selecting a forecasting method it is essential to consider how this is to 
be used, what forecasting accuracy is expected, what computational resources are 
available, how many items are to be forecast, how much data are available, and 
how far ahead forecasts are needed. Furthermore, the forecasting method may 
somehow depend on the required lead time, although in engineering it is mainly 
short-term forecasts that are of interest, whereas in management it is mostly lead 
time of nine months that may be of interest. For example, in stock control, the lead 
time for which forecasts are required is the time between ordering an item and its 
delivery, which is usually a few weeks or a few months.  

Apart from this, some forecasting methods simply produce point forecasts. But 
in some cases it is desirable to produce interval forecasts. Some procedures, such 
as the one from Box-Jenkins, enable one to do this by addressing the upper and 
lower limits on a subjective basis. 

Basically, for all forecasting approaches, plotting the time series data is 
recommended as the first step of data analysis. This is because much useful 
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information can often be obtained from a visual examination of the plots, which 
helps in selecting the most appropriate forecasting procedure. In addition to 
calculating the best forecasts, it is also important to specify the accuracy with 
which the forecasts are to be determined, so that the risk associated with decisions 
based upon the forecasts may be calculated.  

2.9.2 Forecasting Using Trend Analysis 

For trend forecasting, linear or nonlinear regression is mostly used. This is based 
on trend line fitting of time series data using a linear, quadratic, or exponential 
function 

2

exp[ ]

p

p

p

x ax b

x ax bx c

x ax b

2.9.3 Forecasting Using Regression Approaches 

Regression analysis is a mathematical tool that supports the study of relationships 
among the observed variables. Its main objective is to estimate and predict the 
value of one variable by taking into account the values of the possibly related other 
observed variables. Thus, before using the regression technique for prediction of a 
specific variable, all variables related to this variable should be identified. For 
prediction  

simple regression  
multiple regression  
nonlinear regression  

can be used. 
Forecasting using simple regression is based on the equation 

0 1i i iY a a X ,  where    i = 1, 2, …, n;

where the mean value of the error i  is supposed to be zero, and its variance is 

one. The unknown values of parameters a0 and a1 should be estimated so that  

2
0 1

1
( )

n

i i
i

y a a x

is minimized. This can be achieved in a straight-forward way by differentiating the 
above sum with respect to the parameters a0 and a1.

In the majority of practical cases, multiple regression is used as a mutual 
relation
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0 1 1 2 2 ... n ny a a x a x a x    

between the observed variables ,ix i = 1,  2,  …, n, and the resulting variable to be 

estimated y. Also here, using the above equation and the collected data, the 
problem is to determine the values of the coefficients a0, a1, a2, ..., an that will 
guarantee the best fitting of the regression line to the experimental data. This is 
verified through correlation analysis. 

The compact form of multiple regression is  

y Ax

where 

1 2

1 2

1 2

[ , ,..., ]

[ , ,..., ]

[ , ,..., ]

T
n

T
n

T
n

y y y y

x x x x

are the corresponding vectors and  

11 12 1

21 22 2

1 2

...

...

... ... ... ...

...

n

n

n n nn

a a a

a a a
A

a a a

the corresponding parameter matrix. 
To apply the least-squares estimator to find the best estimation value of ˆ,x  we 

first build the error value 

( x̂ ) = ˆ( )y Ax

and try to find the x̂ value that minimizes the product 

ˆ( )Ty Ax ˆ( )y Ax .

Using the least-squares estimation procedure with respect to ˆ,x  the equation 

ˆ2 2 0T TA Ax A y

is obtained, from which the estimated value of x̂
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1ˆ [ ] ,T Tx A A A y

follows.
The generalization of the least-squares estimator consists of minimization of 

the linear form  

ˆ ˆ( ) ( )Ty Ax B y Ax

with the diagonal positive definite matrix 

B = diag [ nccc ,...,, 21 ]

playing the role of a weighting matrix. Using the above calculations, the 
corresponding generalized least-squares formulation 

1ˆ [ ] ,T Tx A CA A Cy

is achieved. 
The mathematical model on which the nonlinear regression relies has the 

general form 

 ( , ) ,i iy f x

where yi is the ith observation of dependent variable y, xi is the ith observation of x,
and f is a selected nonlinear function. In practice, the polynomial  

0

n
i

i
i

y x

is frequently selected as the nonlinear function. 

2.9.4 Forecasting Using the Box-Jenkins Method 

Box and Jenkins have developed a general forecasting methodology for time series 
generated by a stationary autoregressive moving-average process. In the following, 
the methodology is explained on regressive models described in Section 2.4.  

2.9.4.1 Forecasting Using an Autoregressive Model AR(p) 
The autoregressive model 

1

p

t i t i
i

x a X

can be used to estimate the forecasts for any number of steps ahead. For example, 
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the one-step prediction  

1 1
1

ˆ
p

t i t t
i

x a X .

2.9.4.2 Forecasting Using a Moving-average Model MA(q) 
For the moving average model 

1

q

t i t i t
i

x e e

the estimated optimal linear forecast of j steps ahead is given by 

1
ˆ

q

t j i t i j
i

x e

2.9.4.3 Forecasting Using an ARMA Model 
The general form of an ARMA process is written as 

1 1
( ) ( ) ( ) ( )

p q

i i
i i

y t y t i y t i Z t ,

with Z(t) as white noise. For simplicity, the transcription 

 ( ) ( ) ( ) ( )B y t B Z t ,

is preferred, where ( )B  and ( )B  are the corresponding polynomials.  
Considering now the general form of a linear process 

0
( ) ( )i

i
y t Z t i  (2.1) 

the estimated forecast can be built as 

1

0
ˆ( ) ( )

t

i
i

y t k w y t i . (2.2) 

Combining the last two equations we get the estimated forecast as 

1

0 0
ˆ( ) ( ).

t

i j
i j

y t k w Z t i j
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or in final form as  

0
ˆ( ) .j t j

j
y t k W Z  (2.3) 

The next objective is to estimate the mean squared forecast error (MSE) from the 
difference  

2ˆMSE {[ ( ) ( )] }y t k y t k

2

0 0
MSE {[ ( ) ( ] }i j

i j
Z t k i W Z t j

or, 

 MSE
1

2

0
{[ ( ) ( ) ( )] }.

k

i i i
i i k

Z t k i W k Z t j i

Assuming that the tZ  are mutually independent with a mean of zero and 

variance 2 ,  the last equation of mean square error becomes 

1
2 2 2

0
[ ( ) ]

k

i i i k
i i k

MSE W .

From this it follows that the mean square error is minimized by taking  

 ( ) 0,i i kW

wherefrom it follows that  

 .i i kW

This, when introduced into the k-step forecast (or k-step prediction) equation (2.3), 
gives

1
ˆ( ) i k t i

i
y t k Z

which can also be expressed as 

ˆ( ) .i t k i
i k

y t k Z  (2.4) 
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2.9.4.4 Forecasting Using an ARIMA Model 
The forecasting approaches presented so far refer only to stationary models. In 
practice, however, many important time series are not stationary, so that they have 
to be transformed to stationary time series. For instance, the generalization of an 
ARMA model can be modified to provide a model for a time series that is 
nonstationary in the mean (see Section 2.4.4). The modified version of an ARMA 
is known as ARIMA (i.e. the autoregressive integrated moving average). The term 
integrated indicates the fact that the model is produced by repeated integrating or 
summing of the ARMA process. For example, by multiple summing the ARMA 
process we get the ARIMA model  

1 1

p q

n i n i j n j
i j

y a y Z

for 0n , where  

1
.

n

n i
i

x y

Using the last equation we can build  

1n n nx x y

which, after applying the z-transformation, results in 

1( ) (1 ) ( )y z z x z ,

so that the z-transformed ARIMA model is 

1( )(1 ) ( ) ( ) ( )a z z x z z Z z .

Again, after d successive integrations, the last equation is converted to 

1( )(1 ) ( ) ( ) ( )da z z x z z Z z ,

This is the ARIMA(p, d, q) model with p and q as the degrees of polynomials a(z)
and (z) respectively. 

We now consider the ARMA value 

0
( ) ( )i

i
y t Z t i  (2.5) 

and the prediction  
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ˆ( ) i t k i
i k

y t k Z  (2.6)  

and build the prediction error 

0
ˆ( ) ( ) ( ) ,i i t k i

i i k
y t Z t i y t k Z

or definitely 

1

0
( ) .

k

i t k i
i

y t Z

2.9.4.5 Forecasting Using a CARIMAX Model 
The predictive capability of the CARIMAX model is discussed in detail, along 
with its application to predictive control, in Section 2.10.6. 

2.9.5 Forecasting Using Smoothing 

Processing of sampled signals mainly includes  

signal smoothing, i.e. optimal estimation of a signal value within a given 
time interval, based on signal values within the interval  
signal filtering, i.e. optimal estimation of actual signal value at the present 
point based on the past and the present sampled values of the signal  
signal prediction, i.e. optimal estimation of future signal values based on 
the past and the present sampled values  

In time series analysis, smoothing is a technique focused on reduction of 
irregularities or random fluctuations in time series data in order to provide a clean 
time series pattern out of contaminated observation data. The simplest smoothing 
technique used is moving-average smoothing, as well as its more advanced 
modification, i.e. exponential smoothing.

2.9.5.1 Forecasting Using a Simple Moving Average  
Moving averages are used for prediction of future values based on weighted 
averages of the past values. They are useful in reducing the random variations 
present in observation data. For example, the moving average that uses n past
observations and the most recent one to calculate the next time series value is 

( ) ( 1) ... ( )
( 1)m

x t x t x t n
x t

n
.

Some modifications of the moving average are  
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centred moving average, a modification of a simple moving average in 
which the average is placed in the middle of an interval of n periods, i.e. at 
the n/2 point, which holds for odd numbers n
weighted moving average, an averaging algorithm that discriminates the 
participation of individual observations according to their “age”, as shown 
in the following equation: 

1 2( 1) ( ) ( 1) ... ( )w nx t w x t w x t w x t n .

From the equation it is evident that more recent observations could be given higher 
weights by greater values of weights w than the older ones. However, the sum of 
all weights used should be equal to one.  

The moving average is easy to understand and simple to use, but it gives equal 
weight to all past data, of which a large number have to be stored and used for 
forecasts. This also holds for the weighted moving average, for which it is difficult 
to select the optimal values for individual weights.  

Therefore, a more advanced version of the weighted moving average is an 
alternative like exponential smoothing, a version with exponentially decreasing 
weights as the observation data become older. 

2.9.5.2 Forecasting Using Exponential Smoothing  
The exponential smoothing approach is particularly convenient for short-time 
forecasting. Although it also employs weighting factors for past values, the 
weighting factors here decay exponentially with distance of the past values of the 
time series from the present time. This enables a compact formulation of the 
forecasting algorithm in which only a few most recent data are required and less 
calculations are needed, which is highly relevant to on-line applications in 
industrial automation, where programmable controllers and signal processors are 
used.  

Smoothing of observation data is basically required when the data are to a 
certain degree erroneous due to the superposition of some error component (t) and 
the exact value x(t), i.e. when the measured signal ( )ex t  is expressed as 

 ( ) ( ) ( )ex t x t t .

In exponential smoothing, the concept of a weighted moving average is used. In 
using exponentially decaying coefficients not all past values are used for 
prediction; rather, a reduced number of measured and calculated data are used, 
represented by the iterative exponential smoothing algorithm 

 ( ) ( ) (1 ) ( 1),e ex t x t x t

with the forecast 

(t + k) = ( )ex t k .
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Here, ( )ex t  is the exponentially smoothed value, ( )x t  is the observed value at the 

same point of time,  is the smoothing constant value, and ( 1)ex t  is the previous 

exponentially smoothed value.  
The value of the smoothing constant  depends on the properties of the given 

time series. Values between 0.1 and 0.3 are most commonly used because they 
produce a forecast which depends on a large number of past observations. Values 
close to one are rarely used because they give forecasts which depend much more 
on recent observations. For instance, when smoothing constant  = 1, the forecast 
is equal to the most recent observation. 

The term exponential can be understood from the result of iterative calculation 
of ( )ex t  using ( 1)ex t , ( 2)ex t , ( 3)ex t , etc., which results in 

( ) (1 )[ ( 1) (1 ) ( 2)]

( ) (1 ){ ( 1) (1 )[ ( 2) (1 ) ( 3)]}
e

e

x t x t x t

x t x t x t x t

or generally 

2( ) ( ) (1 )[ ( 1) (1 ) ( 2) ... (1 ) (0)]t
ex t x t x t x t x ,

from where the exponentially decreasing value of weights is evident.  
In addition, because the expression in the second term on the right-hand side of 

the last equation within the bracket is equal to ( 1),ex t  it can be rewritten as 

 ( ) ( ) (1 ) ( 1)e ex t x t x t

From this equation it follows that in order to estimate the smoothed value ( )ex t  of 

the time series at the time point t, we need the current value ( )x t  and the estimate 
of the smoothed value ( 1)ex t  at the previous time point (t-1), supposing that the 

value of the constant  is time invariant. 
Prior to applying exponential smoothing algorithm it should be decided 

how to initialize the exponential smoothing process  
how to select the value of smoothing constant .

For simplicity, the algorithm is initialized by setting (2) (2)ex x . With regard the 

value of exponential smoothing constant , it can generally be arbitrarily selected 
within the interval [0, 1]. Its optimal value depends largely on the time series 
pattern and on the smoothing objectives. Since the value of  determines how 
strong the older observations are dampened, selection of higher  values dampens 
the old values more strongly than the selection of lower  values. There is also a 
direct experimental way to evaluate the optimal value of  in which the values  = 
0.1, 0.2, …, 0.9 are taken and for each value the efficiency of estimation is 
calculated. In this way the value of  giving the best efficiency is found.
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The value of  can also be calculated directly from the past data values using 
the sum squared prediction errors (SSE) for different values of .  The value of 
which minimizes the SSE is taken for forecasting. For instance, given the value of 
search step 0.1 , the following algorithm can be used to select the best value 
for starting with any initial value of  within 0 < < 1: 

Algorithm 2.1. Algorithm for selection of best smoothing constant 

Given a time series X = {X1, X2, X3,…., Xn},

                              for t ={1, 2, 3, …,n}.

   Set:

1

2 2

ˆ (1,1)

ˆ (1,1)

X X

e X X

   Then:

3

3 3

ˆ ˆ(2,1) (1,1)

ˆ (2,1)

... ... ... ... ...

ˆ ( 1,1)n n

X X X

e X X

e X X n

   Calculate:

2

2
SSE

n

i
i

e

    Repeat:

                       the same procedure for other values  
         of  0 < < 1, say in steps of  0.1

               Select:
                      the value for which SSE computed  
                      is the minimum  
   End:

Because the surface of SSE near its minimum is quite flat, the choice of  is not 
very critical and can be found very easily.  

The considerable disadvantage of so-called single exponential smoothing 
described above is that it does not work efficiently when a remarkable trend 
component is present in the time series pattern. This can be improved by upgrading 
the single exponential smoothing algorithm to the double exponential smoothing 
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algorithm, which simultaneously considers the trend components by processing the 
equations  

( ) ( ) (1 ) ( 1)

( ) [ ( ) ( 1)] (1 ) ( 1)
e e

t e e t

X t X t X t

X t X t X t X t

in which the constant can (under certain boundaries) be freely selected. In this 
case the resulting  estimated forecasting value for steps ahead is defined by 

( ) ( ) ( )f e tx t x t x t

The double exponential smoothing algorithm can also be extended to deal with the 
time series containing trend and seasonal components. The extended algorithm is 
the triple exponential smoothing algorithm or Holt-Winter algorithm, based on 
simultaneous consideration of the following three equations: 

( ) [ / ( )] (1 )[ ( 1) ( 1)]

( ) [ ( ) ( 1)] (1 ) ( 1)

( ) [ / ( ) (1 ) ( )

e s t e t

t e e t

s e s

x t x t x x t x t

x t x t x t x t

x t x t x t

from which the estimated value for  steps-ahead forecast is defined as 

( ) [ ( ) ( )] ( )f e t sx t x t x t x t

Also here, the constant value , under certain limits, can be freely selected. 
For assessment of forecasting results the MAE criterion  

1
MAE (1/ )

n

i
i

n e

can be used, or alternatively the RMSE criterion  

2

1
RMSE

n

i
i

e ,

or the MAPE criterion 

1
MAPE (1/ ) 100%

( )

n
i

i f

e
n

x i
.

For estimation of the confidence intervals for the forecast ( 1)fx t  the criterion
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CI 2RMSE ( )n n p

is preferred, where p represents the number of parameters estimated in the 
forecasting method. 

2.9.5.3 Forecasting Using Adaptive Smoothing 
In adaptive smoothing, which is a more advanced version of exponential 
smoothing, the smoothing constant  is adjusted on-line according to the actual 
value of the forecast error. This is presented below on the example of the k-step 
prediction equation  

y(t + k) = 
1

1

( )

( )

C z

A z
(t +k)   (2.7) 

with the polynomial operators  

 A = ( )
m

j
j

j o
a z ,        with 0 0a

 C =
0

n
i

i
i

c z ,             with 0 0c

and (t) as a white noise. The prediction is qualified as good if it minimizes the 
cost function 

2{ ( )}kV E y t k

Introducing the output prediction error 

ˆ( ) ( ) ( )y t k y t k y t k t ,

where ˆ( )y t k t is the predicted value  

ˆ( ) { ( ) }y t k t E y t k t

   = E
1

1

( )
( )

( )

C z
t k t

A z

of the real future value y(t + k) using the minimum mean square error MMSE. 
Introducing now the Diophantine equation  

1 1 1 1( ) ( ) ( ) ( )kC z A z F z z G z  (2.8)  
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where,  

F(z 1 ) = 
1

0

k
i

i
i

f z     (2.9) 

G(z 1 ) = 
1

0

m
j

j
j

g z  (2.10) 

With 0 0f  and 0 0g , and assuming that the noise (t) is time-independent, i.e.

that the equality 

{ ( )} { ( ) }E t E t t

holds for any positive , the polynomial ratio C/A in Equation (2.7) can be written 
as

1 1
1

1 1

( ) ( )
( )

( ) ( )
kC z G z

F z z
A z A z

.  (2.11) 

Now, inserting Equation (2.11) into Equation (2.7) we get the expected values 

E{y(t+k) t} = E
1

1

( )
( )

( )

G z
t t

A z
 (2.12) 

Equation (2.7) can now be rewritten to give the expected values  

1

1

( )
( ) { ( ) }

( )

A z
y t k E t k t

C z
 (2.13) 

for  0. Finally, from the last two equations follows the expected value 

E{y(t+k)|t} = 
1

1

( )
( )

( )

G z
y t

C z
.

The cost function to be minimized now becomes  

1

01

( )
ˆ( ) ( )

( )k

G z
V E t y t k t k

A k

with 

0k  = 2 2
if , 0 0f ,
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where 2  is the variance of noise .
Finally, the minimum of kV  is

1

1

( )
ˆ( ) ( )

( )

G z
y t k t y t

C z

Taking into account the k-step prediction defined by Equation (2.7) and the 
Diophantine Equation (2.8), this result is now used to find the predictor value 
ˆ( )y t k t  from the relation 

y(t+k) = 1ˆ( ) ( ) ( )y t k t F z e t k ,

which is equivalent to 

1( ) ( ) ( )y t F z e t .

This finally results in 

1

1) 1

( )
ˆ( ) ( )

( ) ( )

G z
y t k t y t

A z F z
.

2.9.5.4 Combined Forecast 
Thus far, various traditional methods available for time series forecasting have 
been presented. It was mentioned that, unfortunately, there are no specific 
guidelines for selection of a best forecasting method to solve a forecasting 
problem. Besides, not each available method, applied to the same problem, delivers 
the forecasting results with the same accuracy. For example, to forecast a 
nonstationary, non-seasonal time series one can use the autoregressive method, 
Holt-Winter’s exponential smoothing technique, the Box-Jenkins ARMA/ARIMA 
method, Kalman filtering, etc. Different methods will, for a given time series, 
provide different forecasting results, so that, after comparing the individual 
forecasting results, a decision has to be made about what prediction method should 
be ultimately selected for further considerations. This is a difficult task requiring 
much professional experience. As a way out of the selection dilemma the 
nonlinear combination of forecasts has been advocated, as described below. 

The need for combined forecast of a time series has been well understood for a 
long time. Many studies have been done and revealed that not any arbitrary 
combination of methods is decisive for an improved forecast, but it is essential that 
the combination is nonlinear. Only the nonlinearity provides a combination with 
better forecasts than either of the combination components separately, due to a 
kind of synergic effect generated. It was also revealed that the forecasting results 
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generally improve as more methods are included in the combination. This is shown 
in the following example.  

Let the forecasts f1, f2, f3, ..., fk, of the random variable z be given and let them 
be linearly combined to give the resulting forecast fc, defined as 

1
( ),

k

c i i
i

f w f z

where ,iw i = 1, 2, …, k, are the assigned weights to the individual forecasts. The 

main problem is how to select the individual weights optimally. The simplest way 
would be to select an equal weighted combination based on the arithmetic average 
of the individual forecasts. This has proven to be relatively robust and accurate, 
which is evident when two unbiased forecasts f1 and f2 of a given time series are 
linearly combined as 

1 2(1 )cf kf k f ,

which will have a minimum mean square error for suitably chosen k. The 
corresponding forecast errors for the combination, ec, is defined using the 
individual errors e1 and e2 as

c 1 2(1 )e ke k e .

For the two mutually independent forecast errors the value  

2 2 2 2 2 2
2 1 2 2 1 2k E E Ee e e e e e

delivers the minimum value of 2
cE e , 2e  being the local estimate of the expected 

error squared. 
Anyhow, the linear combination of forecasts is not likely to be the appropriate 

in forecasting practice, as the following example shows, in which k different 
forecast methods are given, the ith individual forecast having an information set {Ii

: Ic , Isi }, Ic being the common part of the information used by all k models and Isi

the special information for the ith forecast only. Denoting the ith forecast by fi = 
Fi(Ii ), the linear combination of forecasts can be expressed as  

c ( )i i iF w F I ,

where wi is the weight of the ith forecast. On the other hand, every individual 
forecasting model given can also be regarded as a subsystem for information 
processing, while the combination method 

c c 1 2,( , ,..., )kf F I I I
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is regarded as such a system. It follows that the integration of forecasts is more 
than their sum, because the performance of the integrated system is more than the 
sum of the performances of its subsystems. So, the trustworthiness of the linear 
forecast combination is quite questionable. Rather, more trust should be paid to a 
nonlinear interrelation between the individual forecasts, such as 

c 1 1 2 2[ ( ), ( ),..., ( )]k kf F I F I F I

where  is a nonlinear function. While the given information is processed by 
individual forecasting models, it is likely that the parts of the entire information 
can be lost. For instance, it could happen that the information set Ii is not used 
efficiently, or different forecasts may have different parts of information lost. This 
is why as many different forecasts should be present in the combination as 
possible, even when the individual forecast depends on the same set of 
information. What still remains is how to determine the form of the nonlinear 
relationship .

2.10 Application Examples 

In the following, some examples are given of practical applications of time series 
analysis and forecasting in business and industry.  

2.10.1 Forecasting Nonstationary Processes 

As the first example, forecasting of a nonstationary non-seasonal time series is 
taken, based on collected equidistantly spaced temperature values of an 
uncontrolled chemical plant (Box and Jenkins, 1976). For forecasting, the ARMA 
process model and the Holt-Winter exponential smoothing technique are used. It is 
an experiment based on 226 time series data, approximately fitted by the model 

1 1 2 1 1 10.8 1.8t t t tz z z a

or by 

1ˆ (1) 0.8 1.8t t tz z z

where the time t is the origin at which the forecast ˆtz l  is made and l is the lead 

time of forecast, representing the number of time steps ahead the forecast should be 
made with respect to origin, and a lt  is the random shock. Based on the above 

model, the forecast has been made with the lead time l = 1 at different origins t = 2, 
3, 4, ..., 225. Consequently, a total of m = 224 data have been generated as a Box 
and Jenkins forecast series.  
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Similarly, the Holt-Winter exponential smoothing technique has been applied 
to generate the second forecasts of the same temperature series 

1 0 1 1 2 2ˆ ( ) ...t t tz t c z c z c z

where  

 (1 )i
ic ,  where     i = 0, 1, 2, …  

 and  is a constant value within the interval 0 1 . This results in 

1ˆ ˆ(1) (1 ) (1).t t tz z z

The two forecast series are then arranged as columns 1 and 2 and the actual 
temperature series as column 3 of an HBXIO matrix  

1 1 1

2 2 2HBXIO
... ... ...

B H

B H

Bm Hm m

f f d

f f d

f f d

The sum squared error (SSE) of the generated forecast has been also computed 
as SSE = 0.5 TE E , where E is the column vector of errors ei = (fi – di), with fi, di

representing the forecast at ith instant and actual value of the time series at ith 
instant and ET is the transposition of E. Consequently, the sum squared error for the 
Box-Jenkins forecast is 2.0080 and that of the Holt-Winter forecast is 1.1688, 
computed for the entire forecast series (Palit, 1999).  

It is important to note that in the above example of Holt-Winter’s smoothing 
technique the smoothing constant  = 1.6 has been selected because that gave the 
minimum value of SSE for generated forecasts, which is quite unusual.

2.10.2 Quality Prediction of Crude Oil 

In the following example, time series analysis is applied to crude oil physical and 
chemical qualities prediction (Debska and Ivasczek, 2001). The observation data 
are collected from oil fields within time period of 5 years and first analyzed 
statistically for estimation of values of the most relevant chemical physical 
parameters, such as specific gravity, density, colour, viscosity, relative and 
kinematic viscosity, drip and set point, etc. The statistical methods used for these 
purposes are: preprocessing and smoothing of data, partial and autocorrelation 
calculation, seasonality and trend-analysis, decomposition, etc. For decomposition 
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of complex time series with cyclic components and for extraction of underlying 
sine and cosine functions of different frequencies, frequency analysis has been 
employed, supported by building and analysis of corresponding periodograms for 
interpretation of the data. Finally, for prediction of crude oil properties the Fourier 
transformation has been used as a nonlinear, parametric model that can forecast 
future values by processing the past values.  

2.10.3 Production Monitoring and Failure Diagnosis 

Production monitoring and failure diagnosis are the major objectives in on-line 
observation of overall performance of a production plant. In manufacturing, the 
major attention is paid to the monitoring and diagnosis of numerical machines and 
of machine tools. In both cases – apart from modern approaches relying on 
intelligent technology – statistical methods, based on time series analysis, are still 
used. The main reason is that, for monitoring purposes, an abundant number of 
observation data are collected on-line to be processed statistically. 

Damiano et al. (1999) reported on the use of nonlinear time series to form a 
one-step prediction map for machine monitoring and failure diagnosis in which the 
sequence of previously collected observation data helped in the estimation of the 
next time series data point. The map built in this way models efficiently the 
dynamics of the system generated by a time series. Applying nonlinear time series 
analysis, the optimum time delay is determined to be used for reconstruction of the 
attractor, required for creation of the map that approximates the attractor. For 
reconstruction of a multidimensional attractor, the method of delays was used, 
where the vector components were created from the given time series using time 
series values mutually separated by the delay time.  

The one-step prediction is now applied to the machinery diagnosis. A baseline 
time series is built out of data collected from the machine under normal operating 
conditions and the nonlinear time series analysis used to build the corresponding 
one-step prediction map. Using the map, the average map error is calculated for the 
baseline time series. The calculated error and the map built are then employed for 
machine monitoring by calculating the average absolute map error using the 
current time series. The calculation results are then compared with the map error 
for baseline time series and the difference between the two types of map error is 
finally used to detect the possible changes in the machine being monitored. 

2.10.4 Tool Wear Monitoring 

In the following example, the most significant problem in flexible manufacturing 
systems, the problem of monitoring of tool wear during the cutting and drilling 
process, is assessed. This monitoring task is needed to maintain constant quality of 
products and to avoid damage to the workpiece. To achieve this, a set of versatile 
nondestructive sensing elements have to be installed for on-line tracing of the 
status of tool wear during normal operation. The objective is to detect and replace 
the tool when worn beyond the tolerable limits. In practice, acoustic emission 
sensors are regularly used instead of power- or force-based sensors, because of 
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their close relationship between the generation of the emission signal and the wear 
condition of the tool.  

The acoustic emission technique used is an adequate means for monitoring the 
cutting tool wear condition (Liang and Dornfeld, 1989), because the frequency 
band emitted by tool wear is much higher than the machine vibration frequency 
band. Thus, the two frequency bands can be easily separated by a high-pass filter. 
Also, the frequency signal emitted can be picked up directly from a sensor installed 
on the tool holder.  

Once the measured signal is obtained, the time series data sets can be built by 
sampling the acoustic emission signal and thereafter its prediction can be made by 
processing the time series data. The main difficulty here, however, is the high 
sampling frequency required to build the time series of the emitted acoustic signal 
having a frequency band of 100 kHz to 1 MHz and requiring a sampling frequency 
of over 2 MHz.  

2.10.5 Minimum Variance Control 

Time series analysis and forecasting have been, since the earliest days of 
engineering, powerful tools for problem solving in signal and system analysis and 
prediction. Initially, the application of vibration analysis to machines and like 
objects was the essential field of application, but later this was extended to 
encompass most various application fields, including systems identification, 
parameter estimation, and in self-tuning and predictive control.  

An excellent representative application example is found in model building, 
parameter estimation, and predictive control of dynamic systems. For this purpose, 
the modifications of ARMA and ARIMA models are used, known as CARMA (or 
CARMAX) and CARIMA (or CARIMAX), where C stands for control and X for 
auxiliary input signal.

We would first like to use the CARIMA model 

1 1 1( ) ( ) ( ) ( ) ( ) ( )kA z y t z B z u t C z e t   (2.14) 

to implement minimum variance control, designed to keep the output of a 
stochastic system to the set point value. This requires that, for each time instant t,
the value of the control signal u(t) should be determined to minimize the output 
variance 

2{ ( )}J E y t k

Introducing the Diophantine equation

kC AF z G  (2.15) 

with the polynomials  
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1

0
,

k
i

i
i

F f z 0 0f   (2.16) 

0
,gn

j
j

G g z    (2.17) 

and g a cmax( 1, )n n n k , the CARMA equation becomes 

( ) ( ) ( ) ( )
B G

y t k u t e t Fe t k
A A

.  (2.18) 

Taking e(t + k) from Equation (2.14) as 

( ) ( ) ( )kA B
e t k y t k z u t k

C C

and using the Diophantine equation, Equation (2.18) becomes  

( ) ( ) ( ) ( )
BF G

y t k u t y t Fe t k
C C

 (2.19) 

or
ˆ( ) ( ) ( )y t k y t k t Fe t k .  (2.20) 

The resulting output variance  

2ˆ{[ ( ) ( )] }J E y t k t Fe t k

is now minimized for ˆ( ) 0y t k t , to become 

2
min .eJ F

From Equations (2.19) and (2.20) it follows that  

( ) ( ) 0
BF G

u t y t
C C

or, 
 ( ) ( ) 0BFu t Gy t

which finally results in 
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( ) ( )
G

u t y t
BF

.

2.10.6 General Predictive Control 

General predictive control (Hueseyin and Karasu, 2000) is based on the CARIMA 
model 

1 1

1 1

( ) ( )
( ) ( 1) ( )

( ) ( )

B z C zy t u t e t
A z A z

, (2.21) 

where,  
11 .z

Introducing the term 

1

( )
( )

( )

e t
t

C z

and presuming that  

1( ) 1C z ,

the CARIMA model (2.21) takes the form 

1 1( ) ( ) ( ) ( 1) ( ) /A z y t B z u t t . (2.22) 

Based on this model, the predictive control (Camacho and Bordons, 1999; Clarke 
et al., 1987) is implemented through the following steps and should be repeated for 
every sample instant: 

prediction of output value using the CARIMA model and the observation 
data collected up to time t
determination of control signal value that produces the future output value 
close to the predicted output value 
closing the control loop using the above results. 

To determine a d-step predictor for y(t), i.e. y(t+d) using the Equation (2.22), the 
Diophantine equation  

1 1 1( ) ( ) ( ) 1d
d dP z A z z Q z
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is introduced in which the polynomials P and Q are uniquely determined given the 
polynomial A and number of prediction steps d. Now, multiplying the above 
CARIMA model (2.22) by d

dP z  and using the Diophantine equation, the 

predicted value will be  

 ( ) ( 1) ( ) ( )d d dy t d P B u t d Q y t P t d . (2.23) 

Next, to determine the predictive control law, the future set-points w(t+d), d =
1, 2, … should be given, or it is supposed that they have a constant value w. The 
control objectives would then be to find the control law that will drive the system 
output y(t+d) as close as possible to the set points w(t+d). This value is obtained 
by minimizing the cost function 

2 2

1

2 2
1 2

1
( , ) [ ( ) ( )] ( )[ ( 1)]

n n

d n d
J n n y t d w t d d u t d ,

which is the expectation value, in which (d) is a weighting factor of control 
sequences, and 1 2,n n  are the minimum and maximum cost horizons. But still, the 

solution found in this way is the open-loop feedback-optimal control. To find the 
corresponding closed-loop control we will proceed as follows. 

The CARIMA Equation (2.23), after ignoring the future noise component 
(t+d), is written as 

( ) ( 1) ( )d dy t d G u t d Q y t

where,  

d dG P B

with 

1 2
0 1 2 ...d d d dG g g z g z

Writing now the above equation for d = 1, 2, …, n, the set of generated prediction 
equations will be 

1 1( 1) ( ) ( )y t G u t Q y t

2 2( 2 ) ( 1) ( )y t G u t Q y t

     …    …      ... 

( ) ( 1) ( )n ny t n G u t n Q y t
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In the above equations the right-hand terms should be taken for further processing. 
These obviously depend only on the past values, so that they produce the set of 
equations written in matrix form as 

y = Gu + f,

where, 
[ ( 1), ( 2)..., ( )]

[ ( ), ( 1),..., ( 1)]

[ ( 1), ( 2),..., ( )]

T

T

T

y y t y t y t n

u u t u t u t n

f f t f t f t n

and G is the lower triangular n n  matrix 

0

1 0

1 2 0

0............0

..........0

....................

....n n

g

g g
G

g g g

.

Introducing now the set-point sequence 

[ ( 1), ( 2),..., ( )]Tw w t w t w t n

and minimizing the expected value of 

( ) ( )T TJ E y w y w u u ,

or, of 
 {( ) ( ) }T TJ Gu f w Gu f w u u

the projected control increment vector 

1( ) ( )T Tu G G I G w f

is determined with the unit vector I. From the last result, only the first element of 
u is taken as the next control value  

( ) ( 1) ( )Tu t u t g w f

where Tg is the first row of  

1

( ) .T TG G I G
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Part II 

Basic Intelligent Computational Technologies 



3

Neural Networks Approach 

3.1 Introduction 

Neural networks are massively parallel, distributed processing systems 
representing a new computational technology built on the analogy to the human 
information processing system. That is how we know the neural networks today, 
but the evolution of artificial neural networks, from the early idea of neuro-
physiologist Heb (1949) about the structure and the behaviour of a biological 
neural system up to the recent model of artificial neural system, was very long. The 
first cornerstones here were laid down by the neurologists McCulloch and Pitts 
(1943) who, using formal logic, modelled neural networks using the neurons as 
binary devices with fixed thresholds interconnected by synapses. Nevertheless, the 
list of pioneer contributors in this field of work is long. It certainly includes the 
names of distinguished researchers like Rosenblatt (1958), who extended the idea 
of the computing neuron to the perceptron as an element of a self-organizing 
computational network capable of learning by feedback and by structural 
adaptation. Further pioneer work was also done by Widrow and Hoff (1960), who 
created and implemented the analogue electronic devices known as ADALINE 
(Adaptive Linear Element) and MADALINE (Multiple ADALINE) to mimic the 
neurons, or perceptrons. They used the least mean squares algorithm, simply called 
the delta rule, to train the devices to learn the pattern vectors presented to their 
inputs. In 1969, Minsky and Papert (1969) portrayed perceptron history in an 
excellent way but their view, that the multilayer perceptron (MLP) systems had 
limited learning capabilities similar to the one-layer perceptron system, was later 
disproved by Rumelhart and McClelland (1986). Rumelhart and McClelland in fact 
showed that multilayer neural networks have outstanding nonlinear discriminating 
capabilities and are capable of learning more complex patterns by 
backpropagation learning. This essentially terminates the most fundamental 
development phase of perceptron-based neural networks.  

After a period of stagnation, the research interest was turned to the possible 
alternative network variants that have been found in self-organizing networks 
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(Amari and Maginu,1988), resonating neural networks (Grossberg, 1988), 
feedforward networks (Werbos, 1974), associative memory networks (Kohonen, 
1989), counterpropagation networks (Hecht-Nielsen, 1987a), recurrent networks 
(Elman, 1990), radial basis function networks (Broomhead and Lowe, 1988), 
probabilistic networks (Specht, 1988), etc. Nevertheless, up to now, the most 
comprehensively studied and, in engineering practice, most frequently used neural 
networks are the multilayer perceptron networks (MLPN) and radial basis function 
networks (RBFN), which are frequently the subject of further research and 
applications.

Neural networks have, since the very beginning of their practical application, 
proven to be a powerful tool for signal analysis, features extraction, data 
classification, pattern recognition, etc. Owing to their capabilities of learning and 
generalization from observation data, the networks have been widely accepted by 
engineers and researchers as a tool for processing of experimental data. This is 
mainly because neural networks reduce enormously the computational efforts 
needed for problem solving and, owing to their massive parallelity, considerably 
accelerate the computational process. This was reason enough for intelligent 
network technology to leave soon the research laboratories and to migrate to 
industry, business, financial engineering, etc. For instance, the neural-network-
based approaches developed and the methodologies used have efficiently solved 
the fundamental problems of time series analysis, forecasting, and prediction using 
collected observation data and the problems of on-line modelling and control of 
dynamic systems using sensor data.  

Generally speaking, the practical use of neural networks has been recognized 
mainly because of such distinguished features as  

general nonlinear mapping between a subset of the past time series values 
and the future time series values  
the capability of capturing essential functional relationships among the 
data, which is valuable when such relationships are not a priori known or 
are very difficult to describe mathematically and/or when the collected 
observation data are corrupted by noise  
universal function approximation capability that enables modelling of 
arbitrary nonlinear continuous functions to any degree of accuracy  
capability of learning and generalization from examples using the data-
driven self-adaptive approach. 

3.2 Basic Network Architectures 

The model of the basic element of a neural network i.e. the neuron, as still used 
today was originally worked out by Widrow and Hoff (1960). They considered the 
perceptron as an adaptive element bearing a resemblance to the neuron (Figure 
3.1). A neuron, as the fundamental building block of a neural information 
processing system, is made up of (see Figure 3.1) 

a cell body with an inherent nucleus
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dendrites that feed the external signals to the cell body  
axons that carry the signals out of the cell to other cell bodies 

This configuration was translated in terms of analogue computational technology 
as shown in Figure 3.1, where  

the core part of the element, called a perceptron, contains a summing 
element  and a nonlinear element NL 
the multiple signal inputs ix  are connected via adjustable weighting 

elements iw  with the core part of the element  

the signal output(s) dy

An additional perceptron input 0,w  called the bias, is understood as a threshold 

(switching) element. 

Figure 3.1. Symbolic representation of neuron and perceptron 

The output signal is defined as 

0 0
1

n

i i
i

y f w x w

and the bias follows the relationship  

T
0 0w x w

meaning that the perceptron fires, i.e. it is activated and produces an output signal 
when this condition is met, otherwise not. 

Our attention should now be shifted to the question of what nonlinear function 
should be implemented in the core part of the perceptron as its activation function.
The early attempt of Block (1962) to select the binary step function for this 
purpose was later modified in favour of a sigmoid activation function (Figure 3.2). 

1
( )

1 exp( )
f x

x
.
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Figure 3.2. Sigmoid activation function 

The perceptron basically learns through a training process, based on a set of 
collected data. During the training, the perceptron adjusts its interconnection 
weights according to the data presented at its input. For adjusting the perceptron 
weights, Widrow and Hoff (1960) originally proposed using the delta rule, i.e. the 
recursive gradient-type of learning algorithm (the so-called -LMC Algorithm)
that adds to the current weight value w(k) a compensation term (k)x(k), to build 
the next weight value 

w(k + 1) = w(k) + (k)x(k),

where is a proportionality term, (k) is the error at the adjusting step k, and x(k)
the value of the input signal at the current step k.

Although rather simple, the delta learning rule has, in the majority of cases, 
demonstrated a high efficiency and a high convergence speed in perceptron 
training. Even so, a single perceptron alone cannot learn enough to be capable of 
solving more complex problems because it’s radius of computational action is 
rather restricted by the simplicity of it’s structure. This was demonstrated in an 
example of a perceptron as a pattern classifier. Owing to it’s restricted structural 
capabilities the perceptron can only solve the linearly separable problems. It is 
thus far away from being a general-purpose processing device. But, the 
fundamental erroneous belief of Minsky was that even multiple perceptron layer 
devices cannot build a universal general-purpose processing machine. This was 
disproved by building the multilayer perceptrons (MLPs) that, in addition to the 
perceptron input layer and output layer, also include so-called hidden layers
inserted between the input and the output layer to form a cascaded network 
structure with extended connectionist capabilities (see Section 3.3.1). The term 
hidden layer was selected for the intermediate layer because this layer is only 
accessible through the input and/or the output layer but not directly. In practice, 
one hidden layer is usually sufficient to build the network with the extended 
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computational capabilities for solving the majority of practical problems. Only in 
some rare cases some additional hidden layers could be needed. This also holds in 
time series analysis and forecasting applications.  

Accidentally, the concept of the perceptron emerged at that time when the 
difficulties in solving complex intelligent problems using classical computing 
automata of John von Neumann had grown to be insurmountable. It was realized 
that, for solving such problems, massive, highly parallel, distributed data 
processing systems are required. Building of such highly sophisticated 
computational systems was already put on the agenda of some leading research 
institutions. However, discovery of the perceptron as a simple computing element 
that can easily be mutually interconnected with other perceptrons to build huge 
computing networks was viewed as a more promising way for development of the 
massive parallel computational systems needed at that time. Minsky and Papert 
(1969) expected that the use of more complex, MLP configurations could help in 
building the future intelligent, general-purpose computers with learning and 
cognition capability. This was very soon proven using perceptrons as the basic 
elements of ADALINE (A) in single-layer perceptrons to build a multi-layer 
MADALINE architecture (see Figure 3.3). 

Figure 3.3. ADALINE-based MADALINE 

In 1950, Rosenblatt used a single perceptron layer for optical character 
recognition. It was a multiple input structure fully connected to the perceptron 

layer with adjustable multiplicative constants iw  called weights. The input signals, 

before being forwarded to the processing elements (i.e. perceptrons) of the single 
network layer, are multiplied by the corresponding values of the weighting 
elements. The outputs of the processing units build a set of signals that determine 
the number of pattern classes that can be distinguished in the input data sets by the 
linear separation capability of perceptron layer. For weight adjustment Rosenblatt 
used the delta rule.  
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3.3 Networks Used for Forecasting  

Hu (1964) was the first to demonstrate - on a practical weather forecasting example 
- the general forecasting capability of neural networks. Werbos (1974) later 
experimented with the neural networks as tools for time series forecasting, based 
on observational data. However, apart from some isolated attempts to solve the 
forecasting problems using the then still poorly developed neural networks 
technology, the research work in practical application of neural networks had 
generally undergone a long period of stagnation. The stagnation was broken and 
the work on neural network applications enthusiastically resumed after the 
backpropagation training algorithm was formulated by Rumelhart et al. (1986). 
Experimenting with the backpropagation-trained neural networks, Werbos (1989, 
1990) also concluded that the networks even outperform the statistical forecasting 
methods, such as regression analysis and the Box-Jenkins forecasting approach.
Lapedes and Farber (1988) also successfully used neural networks for modelling 
and prediction of nonlinear time series.  

In the following, typical neural networks used for forecasting and prediction 
purposes will be described.  

3.3.1 Multilayer Perceptron Networks 

Although in the meantime the variety of proposed neural network structures has 
grown, the multilayered perceptron has remained the prevailing one and also the 
most widespread network structure. This particularly holds for the three-layer 
network structure in which the input layer and the output layer are directly 
interconnected with the intermediate single hidden layer. The inherent capability 
of the three-layer network structure to carry out any arbitrary input-output mapping 
highly qualifies the multilayer perceptron networks for efficient time series 
forecasting. When trained on examples of observation data, the networks can learn 
the characteristic features “hidden” in the examples of the collected data and even 
generalize the knowledge learnt, which will be discussed later in detail.  

The multilayer perceptron, because of its cascaded structure, performs the 
input-output mapping of nonlinearities. For instance, the input-output mapping of a 
one hidden layer perceptron network can generally be written as 

0 .T
ih h iy f w f f xw

Relying on the Stone-Weierstrass theorem, which states that any arbitrary function 
can be approximated with a given accuracy by a sufficiently large-order 
polynomial, Cybenko (1989) and Hornik et al. (1989) proved that a single hidden 
layer neural network is a universal approximator because it can approximate an 
arbitrary continuous function with the desired accuracy provided that the number 
of perceptrons in it is high enough. This network capability is general, i.e. it does 
not depend on the shape of the perceptron activation function if it is nonlinear. 
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Figure 3.4 Multilayer perceptron architecture 

Rumelhart and McClelland (1986, MIT book) suggested for multilayer neural 
networks the backpropagation learning rule. This has also widely been accepted. 
Later, various accelerated versions of the rule have been elaborated that speed up 
the learning process. In the meantime, the multilayer perceptron networks trained 
to learn using backpropagation algorithm are simply called backpropagation 
networks.

The learning capability of backpropagation networks is mainly due to the 
internal mapping of the characteristic signal features in the process of network 
training onto the hidden layer. The mappings stored in this layer during the training 
phase of the network can be automatically retrieved during it’s application phase 
for further processing. Although the features-capturing capability of the network 
can be extended enormously when a second hidden layer is added, the additional 
training and computational time required in this case, however, advises the 
network user not to do this, if it is not absolutely required by the complexity of the 
problem to be solved.  

Training of backpropagation networks (without internal feedback) is a process 
of supervised learning, relying on the error-correction learning method in which 
the desired, i.e. a given, output pattern is expected to be matched by the final 
output pattern of the network within a specified accuracy. This is to be achieved by 
adjusting the network weights according to a parameter tuning algorithm, 
traditionally performed by a backpropagation algorithm that is considered as a 
generalization of the delta rule. 

3.3.2 Radial Basis Function Networks 

The idea of function approximation using localized basis functions is the result of 
the research work done by Bashkirov et al. (1964) and by Aizerman, Braverman 
and Rozenoer (1964) on the potential function approach to pattern recognition. 
Moody and Darken (1989) used this idea to implement a fast learning neural 
network structure with locally tuned processing units. Similarly, Broomhead and 
Lowe (1988) have described an approach to local functional approximation based 
on adaptive function interpolation. This has found a remarkable resonance within 
the researchers working on function approximation using radial basis functions,
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that is considered to be the birth of a new category of neural networks, named 
radial basis function networks.

The new category of networks was enthusiastically welcomed by the neural 
network society because the new networks have demonstrated the improved 
capability of solving pattern separation and classification problems. 
Backpropagation networks, in spite of their universal approximation capability, fail 
to be reliable pattern classifiers. This is because during the training phase 
multilayer perceptron networks build strictly separating hyperplanes that exactly 
classify the given examples, so that the new, unknown examples are randomly 
classified. This is a consequence of using the sigmoidal function as the network 
activation function with its resemblance to the unit step function, which is a global 
function. Also, the sigmoidal function, since it belongs to the set of monotonic
basis functions, has a slowly decaying behaviour in a large area of it’s arguments. 
Therefore, the networks using this kind of activation function can reach a very 
good overall approximation quality in the large area of arguments; however, they 
cannot exactly reproduce the function values at the given points. For this one needs 
locally restricted basis functions, such as a Gaussian function, bell-shaped
function, wavelets or the B-spline functions.

The locally restricted functions can be centred with the exact values at some 
selected argument values. The function values around these selected argument 
positions can decay relatively fast, controlled by the approximation algorithm. 
Powel (1988) suggested that the locally restricted basis functions should generally 
have the form 

1
( )

n

i i
i

F x w x x ,

where ix x is a set of nonlinear functions relying on the Euclidean distance 

ix x . Moody and Darken (1989) selected for their radial basis function networks 

the exponential activation function  

2

2
expi

i

i ix c
F ,

which is similar to the Gaussian density function centred at .ic  The function spread 

i  around the centre determines the ratio of the function decay with its distance 

from the centre. 
The common configuration of an RBF network firmly consists of three layers 

(Figure 3.5): the input layer, the hidden layer, and the output layer. In the neurons 
of hidden layer the activation functions are placed. The input layer of the network 
is directly connected with the hidden layer of the network, so that only the 
connections between the hidden layer and the output layer are weighted. As a 
consequence, the training procedure here is entirely different from that in the 
backpropagation networks. The most important issue here is the selection for each 
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neuron in the hidden layer the centre ic  and the spread around the centre i ; this is 

mostly done using the k-means clustering algorithm, which is capable of 
determining the optimal position of centres. In addition, the value of the spread 
parameter i should be selected small enough in order to restrict the basis 

function spreading, but also large enough to enable a smooth network output 
through the joint effect with the neighbouring functions.  

The network training process mainly includes two training phases: 

initialization of RBF centres, for instance using unsupervised clustering 
methods (Moody and Darken, 1989), linear vector quantization
(Schwenker et al, 1994), or decision trees (Kubat, 1998) 
output weight training of the RBF using an adaptive algorithm to estimate 
its appropriate values. 

Figure 3.5. Configuration of an RBF network 

In some cases, it is recommended to add a third training phase (Schwenker et al.
2001) in which the entire network architecture is adjusted using an optimization 
method. 

3.3.3 Recurrent Networks 

Research in the area of sequential and time-varying patterns recognition has 
created the need for time-dependent nonlinear input-output mapping using neural 
networks. To achieve this extended network capability, the time dimension has to 
be introduced into the network topology, for instance by introducing short-term
memory features, that would enable network to perform time-dependent mappings. 
Elman (1990) proposed a kind of globally feedforward, locally recurrent network 
using the context nodes as the principal processing elements of the network. Such 
nodes have also been the principal processing elements of the network proposed by 
Jordan (1986) for providing the networks with the dynamic memory. Both Jordan 
and Elman networks belong to the category of simple recurrent networks.
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An Elman network (Figure 3.6) is a four-layer network made out of input 
layer, hidden layer, output layer and the context layer, the nodes of which are the 
one-step delay elements embedded into the local feedback paths. In the network, 
the neighbouring layers are interconnected by adjustable weights.  

Originally, Elman proposed his simple recurrent network for speech processing. 
Nevertheless, owing to its eminent dynamic characteristics the network was widely 
accepted for systems identification and control (Sastry et al., 1994). This was 
followed by applications in function approximation and in time series prediction. 

Figure 3.6. Configuration of the Elman network 

Independently, Hopfield (1982) reported to the US National Academy of 
Sciences about neural networks with emergent collective computational abilities. 
In his report, Hopfield (1984) presented the neurons with graded response and their 
collective computational properties. He also presented some applications in 
neurobiology and described an electric circuit that closely reflected the dynamic 
behaviour of neurons, which is known as the Hopfield network (see Figure 3.7).  

The Hopfield network is a single-layer fully interconnected recurrent network 

with a symmetric weight matrix having the elements jiij ww  and zero diagonal 

elements. As shown in Figure 3.7, the output of each neuron is fed back via a delay 
unit to the inputs of all neurons of the layer, except to its own input. This provides 
the network with some auto-associative capabilities: the network can store by 
learning, following the Hebbian law or the delta rule, a number of prototype 
patterns called fixed-point attractors in the locations determined by the weight 
matrix. The patterns stored can then be retrieved by associative recalls. On request 
to recall any of patterns stored, the network repeatedly feeds the output signals 
back to the neuron inputs until it reaches its stable state.

The recall capability of recurrent networks of retaining the past events and of 
using them in further computations is the advantage that the feedforward networks 
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do not have. This capability enables the networks to generate time-variable outputs 
in response to the static inputs.

Because of incorporating internal feedback loops, the critical issue of recurrent 
networks is their stability, determined by the time behaviour of the network energy 
function. For a binary Hopfield net with a symmetric weights matrix this function 
is defined as 

1 12

n n

ij i j
i j

i
E w x x .

Figure 3.7. Configuration of a Hopfield network 

In the case of a stable network this function must decrease with time and ultimately 
reach its minimum, or it’s value remains constant. The minima reached are usually 
local minima because there are a number of states corresponding to fixed-point 
actuators or stored patterns to which the network must converge. Each finally 
reached state of the network has its associated energy defined above.  

For the generalized form of binary Hopfield network, in which the sigmoid 
function  

1
( )

1 x
f x

e

is used, the changes in time are continuously described following the equation 

j j
ji i j

i j

du u
w y U

dt D
,
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where  is a constant positive value, iy  is the output value of the unit i, jD  is the 

factor controlling the sigmoid decay resistance, and jU  is the external input to the 

unit j. The resulting energy function in this case is defined by 

1

2 ij i j i i
i j i

E w u u u U

Network stability, as proven by Hopfield (1982), is generally guaranteed by the 
symmetric network structure. 

For the training of recurrent networks, Rumelhart et al. (1986) proposed a 
general framework similar to that used for training feedforward networks, called 
backpropagation through time. The algorithm is obtained by unfolding the 
temporal operation of the network into a layered feedforward growing with each 
time step. This, however, is not always satisfactory. Williams and Zipser (1988) 
presented a learning algorithm for continuously running fully connected recurrent 
neural networks (Figure 3.9) that adjusts the network weights in real time, i.e.
during the operational phase of the network. The proposed learning algorithm is 
known as a real-time recurrent learning algorithm.

There are two basic learning paradigms for recurrent networks: 

fixed-point learning, through which the network reaches the prescribed 
steady state in which a static input pattern should be stored 
trajectory learning, through which a network learns to follow a trajectory 
or a sequence of samples over time, which is valuable for temporal pattern 
recognition, multistep prediction, and systems control.

For trajectory learning, both the backpropagation through time and the real-
time recurrent learning are appropriate. From the mathematical point of view, 
using the backpropagation through time we turn the recurrent network - by 
unfolding the temporal operation - into a layered feedforward network, the 
structure of which at every time step grows by one layer.  

Almeida (1987) and Pineda (1987) have presented a method to train the 
recurrent networks of any architecture by backpropagation. Under the assumption 
that the network outputs strictly depend only on present and not on the past input 
values, Almeida derived the generalized backpropagation rule for this type of 
network, and addressed the problem of network stability using the energy function 
formulated by Hopfield (1982). Pineda (1987), however, directly addressed the 
problem of generalization of the backpropagation training algorithm and it’s 
extension to recurrent neural networks. Hertz et al. (1991), based on the results of 
this work, have worked out a backpropagation algorithm for networks, the 
activation function of which obeys the evolutionary law

( )i
i ij j i

j

dv
v g w v x

dt
,
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that was formulated by Cohen and Grossberg (1983). In the above equation, is the 

time constant and ix  is the external input to the unit i. Solving this equation and 

defining the network equilibrium state for the unit k of the network 

k kj j k
j

h w v x ,

the network should relax and ultimately reach the value .ky  Thereafter, the weights 

are updated using the gradient descent method by 

 ( )lk l k kw v g h y ,

where  and l kv h  are the equilibrium values of unit l and the equilibrium net input 

to the unit k respectively, and ky  is the equilibrium value of the matrix inverse 

unit.

Figure 3.8. Fully connected recurrent neural network 

A particular type of recurrent networks that do not obey the restrictions of the 
Hopfield networks are the dynamic recurrent networks, proposed for
representation of systems whose internal state changes with time. They are 
particularly appropriate for modelling of nonlinear dynamic systems, generally 
defined by the state-space equations

X(k+1) = f(x(k), u(k))
Y(k) = Cx(k).
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3.3.4 Counterpropagation Networks 

A counterpropagation network, as proposed by Hecht-Nielsen (1987a, 1988), is a 
combination of a Kohonen’s self-organizing map of Grossberg’s learning. The 
combination of two neuro-concepts provides the new network with properties that 
are not available in either one of them. For instance, the network can for a given set 
of input-output vector pairs 1 1 2 2( , ),( , ),..., ( , )n nx y x y x y  learn the functional 

relationship y = f(x) between the input vector x = 1 2( , ,..., )nx x x  and the output vector 

y = 1 2( , ,..., ).ny y y  If the inverse of the function f(x) exists, then the network can also 

generate the inverse functional relationship 

x = 1( )f y .

When adequately trained, the counterpropagation network can serve as a bi-
directional associative memory, useful for pattern mapping and classification, 
analysis of statistical data, data compression and, above all, for function 
approximation. 

Figure 3.9. Configuration of a counterpropagation network

The overall configuration of a counterpropagation network is presented in 
Figure 3.9. It is a three-layer network configuration that includes the input layer, 
the Kohonen competitive layer as hidden layer, and the Grossberg output layer.
The hidden layer performs the key mapping operations in a competitive winner-
takes-all fashion. As a consequence, each given particular input vector 

1 2( , ,..., )p p npx x x  activates only a single neuron in the Kohonen layer, leaving all 

other neurons of the layer inactive (see Figure 3.10). Once the competition process 
is terminated, a set of weights connecting the activated neuron with the neurons of 
the output layer defines the output of the activated neuron (say p) as the sum of 
products 
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where n is the number of input layer neurons connected with the activated neuron. 
Using the set of weights learnt and stored, the network is capable of recognizing 
the pattern once learnt and the patterns in its neighbourhoods because similar 
inputs will activate the same Kohonen neuron. 

After locating the Kohonen neuron, we turn to the Grossberg layer, i.e. the 
output layer of the network, and train it. To produce the desired mapping of the 
pattern at the network output using the output of the activated Kohonen neuron, all 
we need is to connect this neuron with each neuron in the Grossberg layer using 
the corresponding weights. As a result, a star connection between the Kohonen 
neuron and the network output, known as Grossberg’s outstar, builds the output 
vector 1 2( , ,..., ),p p mpy y y  as shown in Figure 3.10. 

Figure 3.10. Outstar of counterpropagation network 

The input vectors of a counterpropagation network should generally be 
normalized, i.e. they should satisfy the relation  

1x .

The normalization can be carried out by decreasing or increasing the vector length 
to be on the unit sphere using the relation 

x
x

x
.

The question that remains is how to initialize the weight vectors before the network 
training starts. The preference of taking the randomized weight vectors has not 
always given reliable learning results. It has in some cases even created serious 
solution problems. The way out was found in using the convex combination 
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method by taking for all the weight vectors the same value 1/ n , where n is the 
dimension of weight vectors. 

3.3.5 Probabilistic Neural Networks 

The idea of probabilistic neural networks was born in the late 1980s at Lockheed 
Palo Alto Research Centre, where the problem of special patterns classification 
into submarine/non-submarine classes was to be solved. Specht (1988) suggested 
using a newly elaborated special kind of neural network, the probabilistic neural 
networks. To solve the classification problem, the new type of network had to 
operate in parallel with a polynomial ADALINE (Specht, 1990). 

Figure 3.11. Architecture of a probability network 

Supposing that 1 2, ,..., mP P P are the a priori probabilities for the vector x to belong to 

a corresponding category, and denoting by iL  the merit of classification loss for the 

category i, the Bayesian decision rules ,i i iPL p  for i = 1, 2,…, m, can help determine 

the largest product value. In case that, say, i i iPL p j j jP L p holds, the input vector x

is assigned to the category i. In this case the decision boundary for the above 
decision, that can be a nonlinear decision surface of arbitrary complexity, is 
defined by 

j j j
i

i i

P L p
p

L P
.

The structure of probabilistic networks is similar to that of backpropagation 
networks, but the two types of network have different activation functions. In 
probabilistic networks the sigmoid function is replaced by a class of exponential 
functions (Specht, 1988). Also, the probabilistic networks require only a single 
training pass, in order that - with the growing number of training examples - the 
decision surfaces finally reach the Bayes-optimal decision boundaries (Specht, 
1990). This is achieved by modelling the well-known Bayesian classifier that 
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follows the strategy of minimization of the expected classification risk. The 
strategy can be explained in terms of an n-dimensional input vector x belonging to 
one of m possible classes with the probability density functions

1 2( ), ( ),..., ( )mp x p x p x .

The architecture of a probabilistic network, shown in Figure 3.11, consists of an 
input layer followed by three computational layers. It has a striking similarity with 
a multilayer perceptron network. The network is capable of discriminating two 
pattern categories represented through the positive and negative output signals. To 
extend the network capability of multiplying discrimination, additional network 
outputs and the corresponding number of summation units are required.  

The input layer of a probabilistic network is simply a distribution layer that 
provides the normalized input signal values to all classifying networks that make 
up a multiple classes classifier. The subsequent layer consists of a number of 
pattern units, fully connected to the input layer through adjustable weights that 
correspond to the number of categories to be classified. Each pattern unit forms the 
product of the input vector x with the weight vector w. The product value, before 
being led to the corresponding summation unit, undergoes the initial nonlinear 
operation 

2

( 1)

( )
ixw

iF xw e .

However, since both the input pattern and the weighting vectors are normalized 
to the unit length, the last relation is to be rewritten as  

2

1

2

( )

2( )

n

j ij
j

x w

iF xw e .

The summation units finally add the signals coming from the pattern units 
corresponding to the category selected for the current training pattern.  

3.4 Network Training Methods 

We now turn our attention to some training aspects of neural networks, particularly 
to the aspects of training process acceleration and training process results. Our 
primary interests are the supervised learning algorithms, the most frequently used 
in real applications, such as the backpropagation training algorithm, also known 
as the generalized delta rule.

The backpropagation algorithm was initially developed by Paul Werbos in 
1971 but it remained almost unknown until it was “rediscovered” by Parker in 
1982. The algorithm, however, became widely popular after being clearly 
formulated by Rumelhart et al. (1986), which was a triggering moment for 
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intensive use of multilayer perceptron networks in many simulated engineering 
applications. The real-life application had at that time to be “postponed” due to the 
lack of a suitable neuro-technology. In the 1990s Rumelhart put much effort into 
popularizing the training algorithm among the neural network scientific 
community. Presently, the backpropagation algorithm is also used (in slightly 
modified form) for training of other categories of neural networks.  

In the following, we will confine our discussion mainly to multilayer 
perceptron networks. As mentioned earlier, this kind of networks, based on given 
training samples or input-output patterns, implements nonlinear mapping of 
functions that is applicable to function approximation, pattern classification, signal 
analysis, etc. In the process of training, the network learns through adaptation of 
synaptic weights in such a way that the discrepancy between the given pattern and 
the corresponding actual pattern at network output is minimized. Because the 
synaptic adaptation mostly follows the gradient descent law of parameter tuning, 
the backpropagation training algorithm is considered as the search algorithm of 
unconstrained minimization of a suitably constructed error function at network 
output. 

In order to illustrate the basic concept of the backpropagation algorithm, let us 
consider its application to the training of a single neuron located in the output layer 
of a multilayer perceptron (see Figure 3.12). In addition, let us suppose that as the 
nonlinear activation function the hyperbolic tangent function  

1 exp
tanh( )

1 exp

j

j j

j

u
y f u u

u
  (3.1) 

is chosen, where 

1

n

j i i j
i

u w x , 0.  (3.2) 

Furthermore, xi is the ith input with corresponding interconnecting weight wi to the 
neuron and j is the bias input to the same neuron. Typically, all neurons in a 
particular layer of the multilayer perceptron have the same activation function. The 
aim of the learning algorithm is to minimize the instantaneous squared error 
function of the network output 

2 2
0.5 0.5j j j jS d y e , (3.3) 

defined as the square of the difference ( )j jd y  between the desired output signal 

and the actual output signal of the network, by modifying the synaptic weights .iw

The minimization process in parameter tuning steps iw  is based on the steepest 

descent gradient rule  
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where  is a positive learning parameter determining the speed of convergence to 

the minimum. 

Figure 3.12. Backpropagation training implementation for a single neuron 

Now, taking into account that from (3.3) follows: 

,j j j j je d y d f u  (3.5) 

where 

0

n

j i i
i

u w x .

By applying the chain rule

j j
i

j i

S e
w

e w
 (3.6) 

to Equation (3.5) we get 

j j j
i j j

i j i

e e u
w e e

w u w
 (3.7) 

This can further be transformed to  
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j i j j i j i
j
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u

where j can be expressed as 

.j
j j j

j

S
e f u

u
 (3.8) 

The derivation jf u  of the selected activation function (3.1) is  

221 tanh 1
j

j j j
j

f u
f u u y

u
, (3.9) 

and the corresponding weight updates (3.7)  

21i j j iw e y x , (3.10) 

with 0 .

Note that the weight update stabilizes if jy  approaches –1 or +1, since the 

partial derivative j jy u , equal to 21 jy , reaches its maximum for 0jy

and its minima for 1 . However, if the sigmoidal activation function is used and if 
it is unipolar, described by 

1
,

1 exp
j j

j

y f u
y

 (3.11) 

then

1 .
j

j j j
j

f u
f u y y

u
 (3.12) 

Therefore, the weight increment takes the form 

1i j j j iw e y y x . (3.13) 
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It should also be noted that in this case the partial derivative j jy u  reaches its 

maximum for 0.5jy  and, since 0 1,jy  it approaches its minimum as the 

output jy  approaches the value zero or the value one. 

The synaptic weights are usually changed incrementally and the neuron 
gradually converges to a set of weights which solve the specific problem. 
Therefore, the implementation of the backpropagation algorithm requires an 
accurate realization of the sigmoid activation function and of its derivative.  

The backpropagation algorithm described can also be extended to train 
multilayer perceptron networks. 

3.4.1 Accelerated Backpropagation Algorithm 

The backpropagation algorithm generally suffers from a relatively slow 
convergence and with the possibility of being trapped at a local minimum. Also, it 
can be accompanied by possible oscillation around the located minimum value. 
This may restrict its practical application in many cases. Therefore, such unwanted 
drawbacks of the algorithm have to be removed, or at least reduced. For instance, 
the speed of algorithm convergence can be accelerated: 

by selection of the best initial weights instead of taking the ones that are 
generated at random  
through adequate preprocessing of training data, e.g. by employing the 
feature extraction algorithms or some data projection methods 
by improving the optimization algorithm to be used. 

Numerous heuristic optimization algorithms have been proposed for speed 
acceleration; unfortunately, they are generally computationally involved and time 
exhausting. In the following, only two of the most efficient are briefly reviewed: 

adaptation of learning rate 
using a momentum term. 

It is usually assumed that the learning rate of the algorithm is fixed and uniform for 
all weights during the training iterations. In order to prevent parasitic oscillations 
and to ensure the convergence to the global minimum, the learning rate must be 
kept as small as possible. However, a very small value of learning rate slows down 
the convergence speed of algorithm considerably. On the other hand, a large value 
of the learning rate results in an unstable learning process. Therefore, the learning 
rate has to be optimally set between the two extreme values of learning rate, e.g. by 
using the adaptive learning rate, and in this way the training time can be 
considerably reduced. Similarly, the speed up of convergence can be achieved by 
extending the training algorithm by a momentum term (Kröse and Smagt, 1996). 
In this case the learning rate can be kept at each iteration step as large as possible 
within the admitted values, while maintaining the learning process stable. 

One of the simplest heuristic approaches of learning rate tuning is to increase 
the learning rate slightly (typically by 5%) in an iteration step if the new value of 
the output error (sum squared error) function S is smaller than the previous 
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iteration step. On the other hand, if the new value of the error function exceeds the 
value of the previous one, then the learning rate should be decreased by 
approximately 30%, and in the latter case the new weight updates and the error 
function are discarded, i.e. in this case we set weight update as 

1 0,ijw k

and that leads to weights in (k + 1)th iteration as identical as (k - 1)th, i.e.

1 1 )ij ijw k w k .

After starting with a small learning rate, the approach will behave as follows: 

1

1
0

1

, 1 ,

, 1 ,

, otherwise

k k

k k

k k

a for S w k S w k

b for S w k k S w k  (3.14) 

with a = 1.05, b = 0.7 and k0 = 1.04 being typical values (Vogl et al. 1988; 
Cichocki and Unbehauen, 1993). 

In some training applications not all the training patterns are available before 
the learning starts. In such situations an on-line approach has to be used. 
Schmidhuber (1989) proposed the simple global updates of the learning rate for 
each training pattern as  

,pk
ij

ij

S
w k

w
 (3.15) 

with  

max

0

2

2

min , ,pk

p

S S

S
 (3.16) 

where the index max  indicates the maximum learning rate (typically max = 20) 

and 0S  is a small offset error function (typically 00.01 0.1S ).

Various suggestions have been made for practical use of both adaptable 
learning rate and the momentum term, with the best known being the conjugate 
gradient algorithm (Johansson et al., 1992). Alternatively, the second-order 
derivative-based Levenberg-Marquardt algorithm (Hagan and Menhaj, 1994), 
proposed for accelerated minimization of the cost function, is preferably used for 
accelerated neural networks training. The key idea of the algorithm is to use a 
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search vector Pk to calculate the parameter value 1,kW  based on a current value 

kW as

1k k k kpW W , (3.17) 

where k is a scalar value. The search vector Pk is to be chosen so that the relation 

1k kV VW W holds, where V W  is the performance index of the network, 

generally a sum square error function. 
Now, considering the Taylor series expansion of 1kV W  at point kW

1 .k kk k

T
k k k kPV V VWW W V PW  (3.18) 

it is obvious that, in order for the cost function V to decrease and for a positive 
value of ,k  the second term of (3.18) must be negative. This will be the case if 

the steepest descent condition 

1k k k kW W W  (3.19) 

is met. However, the steepest descent method, as discussed earlier, when used in its 
original form, exhibits some drawbacks that need to be eliminated for its practical 
use. To overcome this, the approximation of the objective function in the 
immediate neighbourhood of a strong minimum by a quadratic function with 
positive definite Hessian matrix or by using Newton’s method for pursuing the 
minimization problem is preferred.  

Let us now consider the Taylor series expansion  

1
21

2
T

k k k
k k

T T
k kV VW W WV W V WW W  (3.20) 

where 2
kV W  is the Hessian matrix and .kk kW P  If the gradient of the 

truncated Taylor series expansion (3.20) is taken with respect to kW  and set to 
zero (since we are looking for the minimum of the cost function), it follows that  

12
k k kV VW W W . (3.21) 

This reduces the Newton method to  

12
1k k k kV W V WW W . (3.22) 
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Direct practical use of this method, however, is hampered by the need for 
Hessian matrix calculation, whose elements are the second derivatives of the 
performance index with respect to the parameter vector. To overcome this obstacle, 
the first and the second derivatives of the performance index  

2

1
( )

N
T

i k kk k
i

V W w ee e w w  (3.23) 

are built and expressed as 

T
k k kV w w e wJ  (3.24) 

and

2 2

1

N
T

ik k k k i k
i

V w J w J w w e we , (3.25) 

where J(wk) is the Jacobian matrix and 

k ke w T Y w , (3.26) 

with the target vector T and the actual output of the neural network Y(wk).
The Gauss-Newton modification of the method assumes that the second term in 

the right-hand side expression of (3.25) is zero. Therefore, applying the former 
assumption (3.22) yields the Gauss-Newton method as 

1

1
T T

k k k k k kJ eW W J w w J w w , (3.27) 

An additional difficulty appears here with when the Hessian matrix is not 
positive definite, i.e. its inverse does not exist. In this case the modification of the 
Hessian matrix  

2
kG V Iw  (3.28) 

should be considered. Suppose that the eigen-values and the eigen-vectors of 
2

kV W  are the sets i  and iz  respectively. Multiplying both sides of 

(3.28) by zi we have  

2
i i i i ik iG V Iwz z z z z  (3.29) 

i iiGz z  (3.30) 
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Therefore, the eigen-values and eigen-vectors of G are i  and iz

respectively. G can be made positive definite by increasing  until 0i  for 
all i.

Therefore, the Levenberg-Marquardt modification to Gauss-Newton method is 

1

1
T T

k k k k k kJ I eW W J w w J w w  (3.31) 

whereby the parameter µ is multiplied by some factor  whenever a step would 
result in an increased value of ( )kV w . When a step reduces this value, µ is divided 

by . Notice that when µ is large the algorithm becomes steepest descent with the 
step size approximately 1/ .  On the other hand, for small µ the algorithm becomes 

Gauss-Newtonian. 
Obviously, the calculation of the Jacobian matrix is the key step in applying 

this algorithm. At first, all the adjustable parameters of the network should be 
arranged in one column vector .kw  For a neural network mapping problem the 

terms in the Jacobian matrix can be computed by simple modification to the 
backpropagation algorithm (Hagan and Menhaj, 1994). In the standard 
backpropagation version, partial derivatives of the performance function with 
respect to the adjustable parameters are needed, while in Levenberg-Marquardt 
algorithm the derivative of the error is needed for the Jacobian matrix. This means 
that the Jacobian matrix can be calculated using the sensitivity term of the 
performance index derived in the standard backpropagation algorithm with one 
modification at the final layer, i.e. by dropping the error term (Hagan and Menhaj, 
1994). The Jacobian matrix computation for a neuro-fuzzy network is described in 
Chapter 6.

The algorithm described above can easily be extended to train the multilayer 
perceptron networks.  

3.5 Forecasting Methodology  

Forecasting methodology is generally understood as a collection of approaches, 
methods, and tools for collection of time series data to be used for forecast or 
prediction of future values of the time series, based on past values. The forecasting 
methodology includes the following operational steps:  

data preparation for forecasting, i.e. acquisition, preprocessing, 
normalization, and structuring of data, determination of training and test 
data sets, and the like 
network architecture determination, i.e. selection of the type of network to 
be used for forecasting, determination of number of network input and 
output nodes, number of layers, the number of neurons within the layers, 
determination of interconnections between the neurons, selection of neuron 
activation functions, etc.



104 Computational Intelligence in Time Series Forecasting 

design of network training strategy, i.e. selection of training algorithm, 
performance index, and the training monitoring approach 
overall evaluation of forecasting results using fresh observation data sets. 

3.5.1 Data Preparation for Forecasting 

Data used for analysis and forecasting of time series are generally collected by 
observations or by measurements. In engineering, of major interest is the analysis 
of data obtained by sampling of corresponding sensor signals and forecasting their 
future behaviour. Therefore, our attention will be primarily focused on forecasting 
of experimental data taken from sensing elements placed within the experimental 
setups or within the plant automation devices. Here, depending on the nature of 
signals provided by sensors, two main critical issues are: 

the number of data needed for representative characterization of the 
observed signal in view of its linearity, stationarity, drift, etc.
the sampling period required for recording the entire frequency spectrum of 
the sampled signal, but that will still considerably limit the noise frequency 
spectrum. 

In practice, the preprocessing of acquired data, because of the presence of noise, 
drift, and sensor inaccuracy, represents a trial-and-error procedure. In the 
preprocessing phase it should also be made clear whether data filtering, smoothing, 
etc. are needed, or whether mathematical transformation of data will facilitate the 
learning process of the network within its training and/or reduce the network 
training time. 

Data normalization is a process of final data preparation for their direct use for 
network training. It includes the normalization of preprocessed data from their 
natural range to the network’s operating range, so that the normalized data are 
strictly shaped to meet the requirements of the network input layer and are adapted 
to the nonlinearities of the neurons, so that their outputs should not cross the 
saturation limits.  

In practice, the simplest normalization 

max

i
ni

x
x

x

and the linear normalization 

min

max min

i
ni

x x
x

x x

are most frequently used. Moreover, instead of linear normalization, nonlinear 
scaling or logarithmic scaling of input signals is used to moderate the possible 
nonlinearity problems during the network training. For instance, logarithmic 
transformation can squeeze the scale in the region of large data values, and 
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exponential scaling can expand the scale in the region of small data values, etc. But 
by far the most critical data preparation issue here is the risk of possible loss of 
critical information present within the acquired data.  

Structuring of data is needed when preparing the mutually related input and 
output data pairs to be used in supervised learning and/or when preparing 
multivariate data in general. In the case of training the networks for forecasting 

purposes, the next value 1tx  of the univariate time series is related to the past 

values of the time series up to the present value .tx In the next training step the 

value 2tx  is related to the past values of the time series up to the value 1,tx etc.

Before structuring the data of a multivariate time series for training of a 
network forecaster, the fact should be recalled that this kind of time series is a set 
of simultaneously built multiple time series with the values of each individual time 
series being related to the corresponding values of other time series. This is 
because the multivariate time series are built by simultaneous observation of two or 
more processes, so that the resulting observation across all the individual 
samplings at a certain time builds an observation vector 

1 2[ ...... ]i i i inx x x x .

Thus, the resulting multiple time series in fact represents a set of observation 

vectors ix , i = 1, 2, …, m, building up the observation matrix 

11 12 1

21 22 2

1 2

.....

.....

... ... ... ...

....

n

n

m m mn

x x x

x x x
X

x x x

,

in which the time series of individual processes are represented through the 
corresponding matrix columns. 

A training set is used to teach the network to behave as a forecaster and the test
set is used, after the training, to test its forecasting capability. Both data sets are to 
be built from the entire collected data set. Unfortunately, no selection guide is 
available for splitting the prepared data set into two subsets. The recommendations 
range from a 90% to 10% ratio, up to a 50% to 50% ratio. Haykin (1995) 
advocated that the numbers of patterns N in the training set required to classify the 
test examples with an error of  should approximately be 

W
N ,

where W is the number of weights in the network.  
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Yet, whatever ratio is selected, attention should be paid to ensuring that the 
training data set is large enough to cover all the dominant characteristic features 
required for reliable network training as a forecaster. The remaining data set can 
then be used for testing the trained network on the data samples never used in the 
training. For this reason, it is recommended that the non-training data set should be 
large enough to enable building of not only the test data set but also the validation 
data set to be used in the overall network evaluation.  

3.5.2 Determination of Network Architecture  

This is the core task in building the neural network structure optimally adapted to 
the specific problem the network should optimally solve. In our case it would be 
the optimal predictor or the optimal forecaster. This task, although being very 
challenging, is also the most difficult to execute because it requires from the 
designer much skill and practical experience. Since being a nontrivial task with a 
multiplicity of possible solutions, there are opinions that this work is more a kind 
of art than an expert’s routine. The issues addressed in the following present the 
activities to be carried out when developing the network architecture. They include 
the

determination of input nodes required 
determination of output nodes 
selection of number of hidden layers 
selection of hidden neurons 
determination of node interconnection pattern 
selection of activity function of neurons. 

Determination of the required number of input nodes is a relatively easy task, 
because it depends predominantly on the number of independent variables 
presented in the data set prepared. As a rule, each independent variable should be 
represented by its own input node. In the case of input data prepared for 
forecasting, the number of input nodes is directly determined by the number of 
lagged values to be used for forecasting of the next value  

x(t+1) = f [x(t), x(t-1), x(t-2), … , x(t-n)], 

as represented in Figure 3.13. 
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Figure 3.13. Number of input neurons for one-step-ahead forecasting

In practice, the single-step-ahead forecaster is most frequently selected because 
it is relatively simple and guarantees the most accurate forecasting results. 
Otherwise, when building a multistep predictor, the determination of the required 
number of input nodes is a trade-off process in the sense that (following the general 
inclination) this number should be selected as small as possible but so that it still 
guarantees good forecasting results, and as large as needed for the extraction of all 
relevant characteristic features and the autocorrelation structure embedded in the 
training data. To solve this problem optimally, some experimental runs could be of 
considerable use. 

The number of output nodes, again, is also a problem-oriented task. In the one-
step-ahead forecasting it is apparent that only one output node is sufficient as the 
forecasting node. Correspondingly, in the case of multistep-ahead forecasting, the 
number of output nodes should correspond to the forecasting horizon, i.e. to the 
number of forecasts to be simultaneously presented at the network output. 
Alternatively, a single output node can be used and all the future forecasts required 
determined in the iterative steps.  

In most forecasting applications, only one hidden layer is used, although some 
aberrations are exceptionally needed. The sufficiency of a single layer is covered 
by the Kolmogorov’s superposition theorem, which states that any continuous 
function f(x) – which can also be an n-dimensional vector function 1 2( , ,..., )nf x x x  – 

defined on a closed n-dimensional cube, say [0,1]n , can be represented as 

1 2( , ,..., )nf x x x =
2 1

1 1
( ( ))

n n

i ji j
i j

x ,

where i  and ji  are continuous, single-variable functions. The functions i

depend on the function to be approximated f and the functions ji  are 

monotonously increasing functions fixed for a given n.
The theorem, as originally formulated by Kolmogorov, is an existence theorem 

that does not suggest any particular function to be used for approximation of a 
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given mapping, so that its relevancy to neural networks was not directly evident. 
There were even opposite views to the relevance: one opposing the relevancy 
(Girosi and Poggio.1989) and another in favour of it. However, it was the 
refinement of the theorem by Sprecher (1965) that motivated Hecht-Nielsen 
(1987b) to point out this reliance. He also proposed that the kth processing 
elements of the hidden layer should have the activation function  

1
( )

n
k

k i
i

z x k k ,

where the real constant and the monotonously increasing real continuous function 
depend on n, but are independent of f. Furthermore, the rational constant  should 

satisfy the conditions of the Sprecher theorem 0 <  < , > 0. The activation 
function of the output layer units should be 

2 1

1
( )

n

j j k
k

y g z ,

where jg  are the real and continuous functions depending on and .

Consequently, as it was shown (Hecht-Nielsen, 1987b), the Kolmogorov’s theorem 
can be implemented exactly by a three-layer feedforward neural network having n
input elements in the input layer, (2n+1) processing elements in the hidden layer, 
and m processing elements in the output layer. This confirms the statement that 
even a single hidden-layer network is sufficient to reveal all the characteristic 
features present on the input nodes of the network. Introducing additional hidden 
layers increases the feature extraction capability of the network at the cost of the 
significantly extended training and operational time of the forecaster.  

Lippmann (1987), in his celebrated paper on neurocomputing, stated clearly 
that a three-layer perceptron can form arbitrarily complex decision regions and can 
separate meshed classes, which means that no more than three network layers are 
needed in perceptron-like feedforward nets. This particularly holds for the 
networks with one output, as required for one-step-ahead forecasting. Cybenko 
(1989), finally underlined that the networks never need more than two hidden 
layers to solve most complex problems. Also, the investigation of neural network 
capabilities related to their internal structure has proven that two-hidden-layer 
networks are more prone to fall into bad local minima. DeVilliers and Barnard 
(1992) even pointed out that both the one- and two-hidden-layer networks perform 
similarly in all other respects. This can be understood from the comparison of 
complexity degree of two investigated networks measured by the Vapmik-
Chervonenkis dimension, as was done by Baum and Hausler (1989). 

We now turn to the problem of the number of hidden neurons placed within 
the hidden layer. To determine the optimal number of hidden neurons there is no 
straight-forward methodology, but some rules of thumb and some suggestions how 
to do this have been proposed. For instance, in single-hidden-layer networks, it is 
recommended to take the number of hidden-layer neurons in the neighbourhood of 
75% of the number of network inputs, or say between 0.5 and 3 times the number 
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of network inputs. The geometric pyramid rule, on the other hand, suggests 
assigning  

h i oN N N ,

hidden neurons to a single hidden layer, where iN  is the number of network 

inputs, oN  the number of its outputs, and  is multiplication factor the value of 

which, depending on the complexity of the problem to be solved, should be 
selected in the range 0.5 <  <2. Baum and Haussler (1989) suggested the number 
of neurons in the hidden layer be determined as 

tr tol
h

dp o

N E
N

N N
,

where trN  is the number of training examples, tolE  is the error tolerance, dpN  is the 

number of data points per training example, and oN  is the number of output 

neurons. 
Anyhow, the determination of the optimal number of hidden neurons involves 

trial-and-error experimentation: starting with a number of neurons within the layer 
to be decided – based on final accuracy of each learning process – to increase or 
decrease the number of hidden neurons and to start a new learning process. In this 
way the redundant hidden neurons can be deleted and the neurons needed for 
optimal performance of the layer added. Here, both starting with a relatively large 
or small number of neurons is possible, but starting with a large number of neurons 
bears the risk of long-time computation and of getting trapped in local minima.  

Khorasani and Weng (1994) have presented an approach to structural 
adaptation of feedforward neural networks by neuron pruning, i.e. by addition and 
deletion of hidden neurons based on the activity status of individual neurons during 
the learning, measured by the variance of the neuron output signal and by the 
strength of the backpropagated error. This is a proper indication of neuron activity 
that helps decide which low-activity redundant neurons are to be deleted.  

There is also a reliable way to determine the number of hidden neurons using 
the Akaike’s information criterion (AIC), originally defined as 

 AIC = (-2) ln(Maximum likelihood) + 2(number of adjusted parameters). 

The criterion statistically evaluates the goodness of a model by combining the 
evaluated mean squares error for training data and the number of parameters to be 
estimated. Seen otherwise, AIC combines a measure of fit and the penalty term to 
account for model complexity. Its potential application suitability for neural 
networks model building was recognized by Kurita (1990) and Fogel (1991), who 
reformulated the original form of the criterion (for statistically independent, 
normally distributed output errors with zero mean and with constant variance) as 
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2AIC ln( ) 2Nk K ,

where N is the number of training data, k is the number of output units of the 
network, 2  is the maximum likelihood estimate of the mean square error for 
training data and K is the number of model parameters.  

The application principle of the AIC is that, if two models have the same mean 
square error for a training data set, then the smaller sized model should be selected. 
Alternatively, from a set of possible models, the model with the smallest value of 
AIC is to be selected (Ishikawa and Moriyama, 1996; Anders and Korn, 1999). 
This, however, requests a set of models to be built and their parameter estimated 
before this application principle is used.  

Unfortunately, direct application of the AIC to neural networks is rather 
circumstantial. It is, however, facilitated when using the network information 
criterion (NIC) of Stone (1977) 

11 tr[ ]
NIC ln ( )

BA
L w

T T
,

which is a generalization of the AIC. The first term in the above expression 
represents the estimated maximum logarithmic likelihood. The matrices A and B
are defined as 

2[ ln ]

[ ln ln ].
t

t t

A E L

B E L L

If the classes of models investigated include the true model, then it holds 
asymptotically that A = B and  

1[ ] [ ] ,tr BA tr I K

where K is, again, the number of model parameters. In this case the NIC takes the 
form 

1
NIC ln ( )

K
L w

T T
.

This is similar to the AIC, which in this transcription becomes 

2 2
AIC ln ( )

K
L w

T T
.
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Murata et al. (1994) used this generalization to determine the number of hidden 
units required to mimic the system based on input-output examples only. Attention 
was paid to avoiding possible network overfitting by taking a small number of 
redundant hidden neurons. A large number of hidden layer neurons could, for the 
given training example, deliver better learning results but, due to the increased 
network complexity, for some fresh examples could deliver worse results.  

What the interconnections of network nodes concerns, full interconnection is
recommended for initial network configuration, in which the output of each neuron 
of a layer is connected with the input of each neuron of the subsequent layer. 
However, in some applications, deviations from full interconnection have also been 
successful. 

For activation function selection, there is generally no rich choice left. For 
backpropagation networks, mostly the 

sigmoid function  

1

1 e x
y

is selected as an activation function in numerous applications, including 
time series forecasting. But in some applications the  

hyperbolic tangent function 

e e

e e

x x

x x
y ,

has also been used successfully, for instance when solving the problems 
that rely on learning of deviations from average behaviour (Klimasauskas, 
1991)

step and ramp function are some additional alternatives favourable for 
processing binary variables.

In any case, to avoid functional destruction of the neuron, the function selected 
should be limited at its output, usually between the values –1 and +1. Although 
there are no guidelines for selecting the activation functions in individual network 
layers and for distributing them within the layers, it is still best to build 
homogeneous individual layers and for the hidden neurons possibly to use the 
sigmoid activation function. But still, some researchers have successfully used the 
hyperbolic tangent as an activation function of hidden-layer neurons. Very seldom 
heterogeneous network layers have been used. For time series forecasting, the 
general experience has shown that for output neurons the linear activation function 
delivers the best results. Some theoretical evidence for this has also been given 
(Rumelhart et al., 1986). It was shown that only for forecasting of time series with 
trend, output neurons with a nonlinear activation function are required. 
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3.5.3 Network Training Strategy 

Network training is a process in which the network learns to recognize the patterns 
inherent to the training signals. In network training for time series forecasting all 
relevant characteristic features embedded in the training data that reflect the 
autocorrelation structure of the time series should be revealed and learnt. The 
training is usually carried out in off-line mode using an unconstrained nonlinear 
minimization algorithm, most frequently a gradient descent method, for tuning the 
interconnection weights of the network. The objective is to achieve the optimal 
network behaviour across the training set.  

Network learning can generally be executed in supervised mode (Hopfield 
model) or in unsupervised mode (Kohonen model). For supervised learning the 
network is provided by data examples that include the desired output. For 
unsupervised learning the desired output values are not required because the 
network finds the adequate output values itself.  

The objective of training is to find the set of most suitable values of 
interconnecting weights through their tuning during the network training. By doing 
so, the network should still attain the highest generalization attribute. This, 
however, can be aggravated if, instead of the global minimum, only a local 
minimum has been found. So, particular precautions should be provided to avoid 
pitting into one of the local minima. Such and similar issues seriously affect the 
training success, so that some careful considerations are required when preparing 
the experiment design for network training. This includes some decisions to be 
made concerning the network initialization for training, selection of the appropriate 
training algorithm, monitoring the training process using an appropriate 
performance index, formulation of training stopping criteria, etc.

Network initialization is a decision that is to be made before the weights tuning 
process starts. This is a difficult decision, because the training speed and the total 
training time required are strongly influenced by this decision. To circumvent this, 
various suggestions have been made, the most popular being that, in order to 
prevent neuron saturation and other unpleasant phenomena, some small, randomly 
distributed parameter values should initially be taken. However, setting all weights 
initially at the same small value should be avoided because it could possibly 
hamper the tuning process to start and/or to learn. This definitely does not hold for 
unsupervised training, like it holds for training of a Kohonen layer of a 
counterpropagation network, where the competition process take place. Here, the 
unique value 1/ N  is initially taken for all weights, N being the number of 
network inputs. This is required because by starting the competition process it is 
advantageous that all competitors have the same initial parameter values for every 
training run. 

Hebb (1949) has proposed the simplest training algorithm for neural networks, 
known as the Hebb learning rule. A neurophysiologist himself, he enunciated the 
learning principle of natural neurons: if two interconnected neurons at the same 
time fire, then the strength (weight) of the synapse connecting them increases. 
Extended to artificial neural networks, this principle states that the common weight 
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ijw  connecting the output of the perceptron i and the input of the perceptron j will 

increase by an amount 

ij j iw x y ,

where jx  is the output of the perceptron j, iy the output of the perceptron i, and  is 

a measure controlling the learning step size (Figure 3.14). Accordingly, the 
Hebbian learning updating the weights, or the Hebbian learning rule, can be 
expressed as 

 ( 1) ( ) ( ) ( )ij ij j iw t w t x t y t .

Figure 3.14. Interconnected perceptrons 

Figure 3.15. Multiple interconnected perceptron 

The rule can be generalized and applied to a multiple-input perceptron as  

( 1) ( ) Tw t w t x wx ,

where the relation 

1

n
T T

j j
j

y w x w x x w

is taken into account (Figure 3.15). 
Nevertheless, the direct application of the Hebbian rule bears the risk of an 

endless increase of weight values, which could saturate the output neurons. As a 
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remedy, an increase in the normalization of weights at every iteration step is 
necessary. Oja (1982) proposed using for this the normalization relationship 

2

( ) ( ) ( )
( 1)

[ ( ) ( ) ( )]

i
i

i i
i

w t x t y t
w t

w t x t y t
,

derived through modification of the Hebbian rule itself. The modification 
normalizes the weight vector size to the value 1 by decreasing the values of all 
other weight vectors if one of its components increases, in this way keeping the 
total length of the vector constant. 

The above rule modification can, for a small value of and after power 
expansion, be approximated as 

 ( 1) ( ) ( )[ ( ) ( )]i i i iw t w t y t x y t w t ,

which is known as Oja’s rule.  
Yet, the fact that the application of the Hebbian rule is considerably limited to 

single-layer neural networks, the original version of the backpropagation 
algorithm is favoured for training of multilayer networks. The training is 
performed off-line in a supervisory learning mode, which is convenient because, in 
practice, a large number of data are available that have to be processed prior to 
their application for training. Besides, for forecasting purposes the pairs of related 
input and output data also have to be built and processed. Finally, the supervisory 
mode of learning facilitates the implementation of monitoring of training 
performance and the determination of the training stopping point.  

When applying the backpropagation algorithm, which is a typical gradient 
steepest descent method, decisions have to be made concerning the  

learning rate, i.e. the step size or the magnitude of weight updating  
momentum, which is required for escaping the trapping in local minima.

An appropriate selection of learning rate is particularly important because the 
steepest descent method suffers from slow convergence and weak robustness. 
Convergence acceleration by taking a larger learning rate bears the danger of 
network oscillatory behaviour around the minimum. To avoid this, and still to take 
a larger learning rate, addition of a momentum parameter was recommended 
(Rumelhart et al., 1986). By doing this, the original learning step according to the 
delta rule 

 ( 1) ( ) ( ) ( )p pw t w t t x t

is extended by the momentum term to result in 

 ( 1) ( ) ( ) ( ) [ ( ) ( 1)]ij ij i j ij ijw t w t t x t w t w t ,



 Neural Networks Approach 115 

where  is the momentum constant, with the value 0.5 <  < 0.9. The added term 
represents the memorized value of the last increment so that the next weight 
change keeps approximately the same direction as the last one. This stabilizes the 
learning convergence. 

An alternative way for speeding up and stabilizing the convergence was found 
in adaptive step size implementation. Silva and Almeida (1990) recommend the 
following weight update strategy 

( ) ( 1) ( ) ( )ij ij ij ijw t w t t C t ,

where ( ) ( )ij t C t  are the gradient components of individual iteration steps 

1

( )
( )

N

ij
ij

J
C t

w
,

with N as the number of training set samples. In the above updating relation, ( )ij t

is taken as 

1( ) ( 1)ij ijt c t     if       ( ) ( 1) 0ij ijC t C t

1

1
( 1)ij ij t

c
       if      ( ) ( 1) 0ij ijC t C t ,

where 1c  is a positive constant. 

To circumvent the problem of avoiding the numerous flat and steep regions of 
the error surface Yu et al. (1995) advocated the dynamic learning rate to be 
imbedded into the backpropagation algorithm, based on information delivered by 
the first and the second derivatives of the objective function with respect to the 
learning rate. The clue to the proposed strategy is that it avoids the calculation of 
the values of the second derivative in weight space, using the information collected 
from the training instead. To bypass the calculation of the pseudo-inverse Hessian 
matrix that is inherent in second-order optimization methods, the conjugate 
gradient method is used. 

The overwhelming number of upgraded learning algorithms are mainly focused 
on learning velocity increase and search stability improvement by adding a term 
containing the derivatives in weight space. But, some improvements of both 
objectives, namely of learning velocity and of convergence stabilization, are also 
achievable by manipulating the parameters of the neuron transfer function. Such an 
updating proposal was made for supervised pattern learning that adaptively 
manipulates the learning rate by updating neuron internal nonlinearity (Zhou et al.,
1991). Using some simulated data sets, it was shown that the updating law 
proposed increases the learning speed and is very suitable for identification of 
nonlinear dynamic systems. 
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3.5.4 Training, Stopping and Evaluation  

Originally, the simple principle was accepted that the network should be trained 
until it has learnt it’s task. This is certainly difficult to find out, because there is no 
direct approach how to do this. The general statement that a high enough number 
of iterations, or training steps, is good enough, in the sense that the network has 
learnt well enough to be a qualified expert in a specific domain, say in forecasting, 
does not hold. Thus far, at least theoretically, reaching the global minimum of the 
objective function is accepted as the training efficiency merit, so that by 
approaching this minimum the error function will steadily decrease until the 
minimum has been reached. Finding out that there is no further decrease of the 
error function would then be an indication to stop the training process.  

In practice, to find the global minimum, network training can require a number 
of repeated training trials with various initial weight values. After each training run 
the training results have to be evaluated and compared with the results achieved in 
the previous runs, this in order to select the best run. Some researchers have here 
centred their attention on the problem of a priori determination of a maximum 
number of training runs required for the training. Iyer and Rhinehart (2000) have 
developed an analytical procedure for determining the desirable lower number of 
training runs, sufficient - within a certain level of confidence - that the best one is 
within them. The procedure is based on the weakest-link-in-the-chain analysis 
described by Bethea and Rhinehart (1991).  

The authors use the cumulative distribution function for the weakest link in a 
set of N training, with runs starting with the random initial weight values 

 ( ) 1 [1 ( )]N
w xF a F a .

This, rearranged as  

1

( ) 1 [1 ( )]N
x wF a F a ,

represents the probability that any single optimization has an error value .x a
The two relations, simultaneously taken, define the required number of random 
starts as 

ln[1 ( )]

ln[1 ( )]
w

x

F a
N

F a
.

For example, if, at the confidence of 99% level, the best of random starts should 
result in one of the best 20% values for the sum of squared errors, then the required 
number of random starts will be 

ln(1 0.99)
20

ln(1 20)
N .
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A more recent approach to solving the problems of appropriate training termination 
departs from some stopping criteria. For instance, based on the automated stopping 
criterion of Natarajan and Rhinehart (1997), Iyer and Rhinehart (2000) take as the 
stopping criterion the performance-to-cost ratio of the network. Assuming that the 
entire cost of a validation set consisting of N  data points is C CN , where C is 

the cost of single data points, and assuming that the cost of training and test data 
sets are CNt and cCN  respectively, then the corresponding performance-to-cost 

ratio is 

1

( )ce t cE C N N N
,

where ceE  is the cumulative error on the test set for a trained network. Setting this 

result in relation to the total costs for training termination has reached the 
minimum RMS error without the validation cost will become 

1

( )T CC N N
,

so their ratio  

T C

t c

N N

N N N
,

with 

ceE
.

However, even when using the predetermined number of training steps, there will 
generally be no guarantee that the network parameters will be adequately tuned. 
The optimal stopping strategy is to stop training after the network has learnt all 
about the problem class it has to solve. This happens when the training stopping is 
effected at the point where the network has reached the maximal generalization.
For the practising expert, this means that the stopping should be triggered exactly 
at the point where the network output error has reached its minimal value, This is 
known as early stopping. If the training is continued beyond this point, then the 
result could be the network overtraining or network overfitting.
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Figure 3.16. Early stopping of training 

But still, the dilemma remains: in order to stop the training process, how do we 
realize that the network has learnt all the required knowledge from the training data 
and has reached its maximum generalization? Then, from learning theory we know 
that after reaching the point of maximum generalization, the network – although 
learning more and more from the training set - will start impairing the related test 
set performance (Figure 3.16) due to its overtraining (Vapnik, 1995). To prevent 
this, the method of early stopping with cross-validation has been suggested by 
Prechelt (1998).

Cross-validation is a traditional statistical procedure for random partitioning of 
collected data into a training set and a test set, and for further partitioning of the 
training set into the estimation set and the validation set. It is obvious that, if only 
a restricted data set is available, the partition of the entire set reduces the size of the 
training set. This, again, makes the location of the early stopping point difficult. 
For managing this problem, a predicate or a stopping criterion should be found 
that can indicate when to stop the training.  

Prechelt (1998), using the error function (or the objective function) E, training 
error Etr (as the average error per example across the training set), and the test and 
validation errors Et and Ev respectively, has defined three possible stopping 
criteria:

Stop as soon as the generalization loss exceeds a threshold value , i.e.
when ( )lossg t , where the error function ( )lossg t  is based on the lowest 

validation set error optE  and the validation error vE .

Stop as soon as the quotient  

( )

( )
loss

tr

g t

P t
,

where )(tPtr is the training progress defined by  
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tr
tr

tr

( )
( ) 1000

min ( )

t
t

t
t

E t
P t

k E t
,

with 1,t t k  and the training strip length k.

Stop when the generalization error increased in  successive strips. 

Prechelt (1998), in order to interrogate the validity of the criteria, conducted 1296 
training runs, producing 18144 stopping criteria. In the experiments, 270 of the 
records from 125 different runs reached automatically the 3000 epoch limit without 
using stopping criteria.  

We will now consider the problem of network overtraining or network 
overfitting in more detail. Both the problem of overfitting and the opposite 
problem of underfitting arise as a consequence of improper training stopping. 
Therefore, both of them should be prevented because each of them lowers the 
generalization capability of the trained network. For example, if a network to be 
trained is less complex than the task to be learnt, then the network - after being 
trained - can suffer from underfitting and can, therefore, poorly identify the 
features within a large training data set. On the contrary, a too complex network 
can, after being trained, suffer from overfitting and can, therefore, extract the 
features within the training set along with the superposed noise. As a consequence, 
a complex network can produce predictions that are not acceptable.  

Network complexity is primarily related to the number of weights. The term is 
used in connection with the model selection for prediction in the sense that the 
prediction accuracy of a network determines its complexity. This is the starting 
point of network model selection: how many and of what size of weights (and how 
many hidden units) should the model have in order to implement the wanted 
prediction accuracy without (or at least with a low) overfitting?  

From the statistical point of view, the underfitting and overfitting are related to 
the statistical bias and the statistical variance they produce. They strongly 
influence the generalization capability of the trained network as follows:  

the statistical bias is related to the degree of target function fitting and 
restricts the network complexity, but does not care about the trained 
network generalization 
statistical variance, which is the deviation of network learning efficiency 
within the set of training data, cares about the generalisation of the trained 
network. 

For instance, underfitting produces a very high bias at network outputs, whereas 
overfitting produces a large variance. The difficulty of their simultaneous reduction 
or their balancing in the process of learning, which is essential for achieving the 
highest possible degree of generalization, is known as the bias-variance dilemma.
The dilemma is to be understood as follows: the bias of a neural network with a 
high fitting performance across the given training set of data is very low, but its 
variance is very high. By reducing the variance the network data fitting 
performance of the network will decrease. As a consequence, a trade-off between 
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the low bias and the low variance is necessary, as demonstrated in Figure 3.17 on 
the example of polynomial curve fitting of a set of given data points. 

Figure 3.17. Polynomial curve fitting of data 

A polynomial of degree n can exactly fit a set of (n + 1) data points, say 
training samples. If the degree of the polynomial is lower, then the fitting will not 
be exact because the polynomial (as a regression curve A) cannot pass through all 
data points (Figure 3.17). The fitting will be erroneous and will suffer from bias 
error, formulated as the minimized value of the mean square error. In the opposite 
case, if the degree of the polynomial is higher than the degree required for exact 
fitting of the given training data set, the excess number of it’s degrees will lead to 
oscillations because of missing constraints (curve B in Figure 3.17). The 
polynomial approximation will, therefore, suffer from variance error.
Consequently, a polynomial of the optimal degree should be chosen for data fitting 
that will provide a low bias error as well as a low variance error, in order to resolve 
the bias-variance dilemma.

Translated in terms of neural network training, polynomial fitting is seen as an 
optimal nonlinear regression problem (German et al., 1992). This means that, in 
order to fit a given data set optimally using neural network, we need a 
corresponding model implemented as a structured neural network with a number of 
interconnected neurons in hidden layer. If the size of the selected network (or the 
order of its model) is too low, then the network will not be able to fit the data 
optimally and the data fitting will be accompanied by a bias error that will 
gradually decrease with increasing network size until it reaches its minimal value. 
Increasing the network size beyond this point, the network will also start learning 
the noise present in the training data, because there will be more internal 
parameters than are required to fit the given data. With this, also the variance error 
of the network will increase. The cross-point of the bias and the variance error 
curve will guarantee the lowest bias error and the lowest variance error for fitting 
the given data set. The corresponding network size (i.e. the corresponding number 
of neurons) will solve the given data fitting problem optimally. At this point the 
network training should be stopped, which is known as early stopping or stopping
with cross-validation. The network trained in this way will guarantee the best
generalization.

For probabilistic consideration of polynomial fitting, the expected value of the 
minimum square error across the set of training data  
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2{[ ( ) ( )] }D DMSE E p x f x

is taken, where the training points are represented by the function f(x) and the 
fitting polynomial or the actual network output by p(x). Expanding the DMSE

formally as  

2{[ ( ) { ( )} { ( )} ( )] }D D D DMSE E p x E p x E p x f x

and rearranging its expansion as 

2 2{[ ( ) { ( )}] } { { ( )} ( )] }D D D D DMSE E p x E p x E E p x f x ,

one gets the sum of the statistical variance 

2{[ ( ) { ( )}] }D D DVAR E p x E p x

and the statistical bias 

2{ { ( )} ( )] }D D DBIAS E E p x f x .

In summary, the optimal network size is essential for optimal problem solving 
because a relatively small network will not be able to fit the given data accurately 
and thus will not be able to learn the most important features incorporated in the 
data. For this reason, the network size should be increased. On the other hand, 
because a large-sized network tends to learn not only the characteristic features of 
the given data, but also the accompanying noise and other non-relevant 
components’ idiosyncrasies hidden in the data, its size should be reduced. In both 
cases, a network size reduction and/or an increase in optimal network size should 
be found that ensures the optimal network performance. In practice, this is usually 
achieved by balanced network growing and/or by network pruning.

Network growing is a process of successive addition of new neurons and their 
related interconnections to the initial small-sized network until the optimal network 
performance is reached. This is a common way of designing optimal-sized radial 
basis function networks.  

Network pruning, again, is a process of successive elimination of less relevant 
interconnections between the neurons within the large-sized network until the 
further elimination essentially worsens the network performance. A survey of 
algorithms to be used for network pruning was given by Reed (1993), who 
distinguished two major pruning methods: 

sensitivity calculation methods, based on the sensitivity of the error 
function of the trained network with respect to the removal of individual 
weight connections as the indication of their pruning  
penalty term methods, based on modification of the error function of a 
trained network by a penalty term. 
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Mozer and Smolensky (1988) used  as a measure of relevancy, defined as the 
difference between the error after removing a unit and the error before removing a 
unit. Karinin (1990), however, considers the error sensitivity with respect to 
removal of individual connections and removes the low-sensitivity connections. Le 
Cun et al. (1990), again, proposed the optimal brain damage procedure under the 
condition that the Hessian matrix H is diagonal and estimated the saliency of the 
weights and the second derivative of the error with respect to the weights. Hassibi 
et al. (1992) removed the diagonallity restriction of the Hessian matrix and 
considered the general case of an arbitrary form of Hessian matrix, which they 
termed the optimal brain surgeon. Both approaches are based on consideration of 
sensitivity of weights perturbation on the error function E using the Taylor series 
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w

is the corresponding Hessian matrix.  
Now, knowing that for a network trained to the local minimum in error, the 

partial derivative  

0
E

w

holds. Neglecting all higher order terms in the corresponding Taylor series and 
eliminating a specific weight, say ,ijw  measures should be undertaken to minimize 

the increase in error ,E  taking into account the condition of weight elimination 
as given by 

 0ij ijw w .

The condition of weight elimination in vectorial form is given by 

0T
ij ije w w ,
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where T
ije  is the unit vector in the weight space and ijw  is the weight connecting 

the ith input of the jth hidden unit. 
To solve the minimization problem, we form the corresponding Lagrangian 

1
( )

2
T T

ij ijL w H w e w w ,

where  is the Lagrange multiplier. The derivative of the Lagrangian with respect 
to w  and the equation  

 0T
ij ije w w ,

define the optimal weight change  

1
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ij
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w
w H e

H
.

Correspondingly, the related optimal value of Lagrangian L for the weight ijw  is 

2

1

1
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w
L

H
,

where 1[ ]ijH  is the ith element of the inverse Hessian matrix H. The ijL  value of 

the Lagrangian determined in this way represents the increase of mean square error 

caused by the removal of the weight ijw , known as saliency of the weight ijw . It 

is obvious that, because the saliency depends on the square value of ,ijw  the small 

values of weights have a low influence on the mean square error. However, 
because the saliency is inversely proportional to 1[ ]ijH , small values of 1[ ]ijH

can also have a strong influence on the mean square error.  
Although pruning methods, such as optimal brain damage, and optimal brain 

surgeon, rely on the weight ranking with respect to saliency, i.e. on changes in 
training error caused by pruning an individual weight, there is still an essential 
difference between them: the optimal brain damage procedure does not require 
retraining of the network after removing a weight element, whereas the optimal 
brain surgeon procedure requires this. 

The disadvantage of both methods is that, if no stopping criterion is built, the 
removal of the least significant weights can lead to network overfitting. As an 
efficient stopping criterion, the calculation of the test error using Akaike’s (1970) 
final prediction error (FPE) estimation and its modification is used to cover the 
estimation of average generalization error in regularized networks (Moody, 1991). 
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In practice, to apply the above procedures, the second derivative (Buntine and 
Weigend, 1994) of the inverse of Hessian matrix (Hassibi et al.,1992) has to be 
calculated anew for every weight to be eliminated. Stahlberger and Riedmiller 
(1996) proposed a fast network pruning method, called Uni-OBS, that still relies on 
the optimal brain surgeon procedure but it requires only a single calculation of the 
inverse Hessian matrix to eliminate a group of weights. This certainly simplifies 
the calculation of net pruning. For accelerated calculations of matrix 
multiplication, some fast computational algorithms are required or some algebraic 
transformations that also accelerate the calculation process. An amendment of the 
Uni-OBS method, called G-OBS (generalised optimal brain surgeon), can 
simultaneously eliminate, say m, weights in one step with slight increase in error 
given as 

1

2
TE w H w ,

The related elimination condition is given by 

( )T
mw w S ,

mS  being the selection matrix that determines the m weights to be removed 

simultaneously. Using the above weights elimination conditions and the 
corresponding Lagrange method, we get for the resulting error the relation 

1 1( )T Tw H S S HS S w

and

11
( )

2
T T TE w S S HS S w .

For acceleration of the pruning process, Levin et al. (1994) proposed a method for 
elimination of excess weights. 

Another way was followed by Jollife (1986). To improve the network 
generalization capability, he used the method of principal component analysis.
This is a valuable mathematical tool for reducing a system’s dimensionality by 
eliminating it’s redundant variables. This method transforms the variables to a 
basis in which the system covariance is diagonal and the projection is in the low 
variance directions. To detect the variables that have a low significant influence on 
the error function, a salience measure is used, which demonstrates the 
relationships between the proposed methods and the optimal damage and optimal 
surgeon procedures of network pruning. The pruning consists in removing the
eigen-nodes with low saliency to reduce the effective number of network 
parameters. In contrast to the optimal brain damage and optimal brain surgeon 
procedures, which reduce the rank by eliminating actual weights, the proposed 
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method reduces the rank of weights in each layer by deletion of the smallest salient 
eigen-nodes. Finally, the proposed method does not require network training.  

A network pruning approach is preferably used in designing networks with a 
high generalization capability, i.e. networks that are not only good enough to solve 
the prediction or classification problems present in the training set, but also some 
similar problems using some fresh, never seen and not previously known training 
sets of data. This is achieved through a trade-off between the intention that the 
trained network should be capable of learning a broad spectrum of similar problem 
categories, which would require a large-sized network, and the requirement that the 
network should be as simple as possible, in order to avoid the overtraining.

In practical application of a trained network, there is a fundamental 
recommendation, i.e. where several trained networks have approximately the same 
final performances, the structurally simplest network should be selected as the best 
generalized one. This recommendation reflects Occam’s razor philosophy, which 
recommends that a scientific model should favour simplicity.  

Many training strategies have been interrogated for network simplification at 
lower training cost. Such strategies have been discovered within the framework of 
minimization of the error function extended by a penalty term. To this category of 
strategies belong:  

the weight decay approach (Hinton, 1989), a subset of regularization 
approaches based on minimization of the weight tuning rule augmented by 
a complexity penalty term 

  ( 1)ij i j ijw t x w

that penalizes the large weight values. 

the weight elimination approach (Weigend et al., 1991), based on 
minimization of network training cost function to which a term is added 
that accounts for the number of parameters: 

2 2

( )
( 1)

[1 ( )]
ij

ij i i
ij

w t
w t x

w t
,

where  represents the weight decay constant, i  is the local error, jx  is 

the local activation, and  is the learning rate.  

In contrast to weight decay, which shrinks large values of weights more than small 
ones, the weight elimination shrinks predominantly the small weight values and is 
to a certain degree similar to the pruning process. Hansen and Rasmussen (1994) 
have demonstrated that network pruning may result when the weight decay 
parameter is determined by data. The added term punishes the large weight values 
and forces them to obtain small absolute values and simultaneously retains the 
other values unchanged. This, however, is favourable in preventing worsening of 
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the network generalization capability. Therefore, care should be taken in selecting 
the decay constant , because an inappropriate value can deteriorate the 
generalization capability of the weight decay process. As a remedy, Weigend et al.
(1991) recommend updating the  value on-line during the network training in 
iterative steps.  

Adding the penalty function in the weight decay and optimizing the augmented 
performance index corresponds to the regularization method in which the penalty 
term is added to the cost function to act as a restriction to the subsequent 
optimization problem. In approximation theory, the added term penalizes the 
curvature of the original solution, seeking for a smoother solution of the 
optimization problem.  

The regularization method is generally used to solve ill-posed problems. In the 
theory of learning, the problems of learning smooth mappings from examples are 
mostly ill-posed problems. For their solution Tikhonov (1963) proposed 
optimization of the cost function I extended by a term J, which also represents a 
cost function. Thus, the resulting cost function to be optimized becomes 

Ires = I + J,

where represents the regularization parameter, which determines the degree of 
regularization in the sense of balancing the degree of smoothness of the solution 
and its closeness to the training data. The regularization helps in stabilizing the 
solution of the ill-posed problem because the added term, representing the penalty 
to the original optimization problem, smoothens the cost function (Morozov, 
1984). 

The regularization approach determines the so-called Tikhonov functional  

22

1
( ) ( ( ))

n

res i i
i

I f y f x Pf ,

the first term of which represents the closeness to the data, and in the second term f

is the input-output function, P is a linear differential constraint operator, and 
2
 is 

a norm on the function space to which Pf belongs. This operator also embodies the 

a priori knowledge about the problem solution.  

To solve the regularization problem we proceed with the minimization of 
extended cost function Ires, using the resulting partial derivatives with respect to f in 
order to build the Euler-Lagrange equation 

1

1ˆ ( ) ( ( )) ( ),
n

i i
i

PPf x y f x x x

in which the operator P and its adjoint operator P̂  build the differential operator 
ˆ .PP  Therefore, the above Euler-Lagrange equation is a partial difference equation. 

Its solution can, therefore, be expressed as the integral transformation of the right-
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hand side of the equation, with the kernel defined by Green’s function of the 

differential operator P̂P

ˆ ( , ) ( )i iPPG x x x x .

Bearing in mind the definition of Green’s function and taking into account the 
presence of the delta function on the right-hand side of the equation, the integral 
transformation will generate a discrete sum of terms, so that the function f can be 
defined as 

1

1
( ) ( ( )) ( , )

n

i i i
i

f x y f x G x x ,

where G(x,xi) is Green’s function centred at xi. The last equation represents the 
solution of the regularization problem as a linear combination of n Green’s 
functions with the expansion centre xi and expansion coefficients (yi f(xi)).
Consequently, the solution of the regularization problem lies in the n-dimensional 
subspace of the space of smooth functions, with the n Green’s functions as its basis 
(Poggio and Girosi, 1990). Furthermore, the basis function depends on stabilizer P,
that represents the a priori knowledge of the problem domain as a kind of 
constraint.

Introducing the definition of the expansion weights as 

( )i i
i

y f x
w ,

the above solution equation becomes 

1
( ) ( , )

n

i i
i

f x w G x x .

Now, to determine the expansion weights iw , the last two equations have to be 

written in matrix form as 

1
( )w y f

and

f Gw

which result in  
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w1

f(x)

x1

x2

xn

w2

wn

:
:

:
:

:
:

G

G

G

:
:

 ( ) .G I w y

Here, I represents the n-dimensional identity matrix and G is the corresponding 
Green’s matrix

1 1 1 2 1

2 1 2 1 2

1 2

( , ) ( , ) ... ( , )

( , ) ( , ) ... ( , )

... ...

( , ) ( , ) ... ( , )

n

n

n n n n

G x x G x x G x x

G x x G x x G x x
G

G x x G x x G x x

,

which is a symmetric matrix with the property 

 ( , ) ( , )i j j iG x x G x x

because the identity matrix I is also symmetric. 
From the solution equation  

1
( ) ( , )

n

i i
i

f x w G x x

the corresponding regularization network (Figure 3.18) can be structured. The 
input layer of the network has an equivalent number of units to the dimension of 
the input vector, i.e. to the number of independent variables of the problem to be 
solved. The subsequent hidden layer, fully connected with the input layer with the 
fixed value weights, has the same number of nonlinear units as the number of data 
points and the activation function in the form of a Green’s function with the output 

( , ).iG x x  It does not participate in the training process. Finally, the output layer, 

also fully connected to the hidden layer, contains one or more linear units with the 

weights iw that correspond to the unknown coefficients of the above solution 

equation.

Figure 3.18. Regularization network 
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Obviously, the structure of the regularization network is mainly determined by the 
problem to be solved, with the exception of the weights between the input layer 
and the hidden layer, which are fixed. The main attributes of the network are: 

the regularization network is an optimal network because it minimizes the 
performance index that defines the proximity of the elaborated solution to 
the real solution defined by the training data 
the regularization network represents the best approximator (Girosi and 
Poggio, 1990) in the sense that for a given function there always exists a 
number of coefficients that approximate the given function better than any 
other set of coefficients and – by properly defining the stabilizer – 
guarantee that the regularization network has the desirable degree of 
smoothness 
the regularization network is a universal approximator that, given a 
sufficiently large number of hidden neurons, can approximate any 
continuous multivariate function arbitrarily well on a compact domain, a 
property that is based on the classical Weierstrass theorem.
when it is used for simplification of linear networks, particularly of basis 
function networks, this corresponds to the ridge regression method.

The above objectives can, at least in principle, be reached by “extensive” 
network training. Although this might lead to network overfitting, this can be 
prevented by training stopping with cross-validation and by network structure 
reduction, for which various approaches have been suggested. 

3.6 Forecasting Using Neural Networks

Unlike the traditional approaches to time series analysis and forecasting, neural 
networks need a reduced quantity of information to forecast the future time series 
data. Based on the available time series data, network internal parameters are tuned 
using an appropriate tuning algorithm. This can, if necessary, also include the 
modification of the initially chosen network architecture to better match the 
architecture required by the problem at hand. The related issues have been 
discussed extensively in this chapter, so that our attention will be focused on the 
comparison of the traditional approach to time series forecasting and on the 
approach using neural networks. This will be followed by pointing out the benefits 
of forecasting by merging both kinds of approaches and by building a nonlinear 
combination of forecasts. Finally, some issues related to the forecasting of 
multivariable time series using neural networks will be presented. 

3.6.1 Neural Networks versus Traditional Forecasting 

Comparison of forecasting performance of traditional statistical methods and of 
neuro forecasters has, since the early 1990s, attracted the attention of many 
researchers. Their reports have, however, been inconsistent because they were 
based on experimental investigations using various network configurations with 
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various performance quality. Added to this came that the experiments used 
different time series data. For instance, forecasting collected linear data using 
nonlinear mapping of neural networks cannot give better results than the 
forecasting using linear statistical algorithms. In the reverse case, when dealing 
with considerably nonlinear time series data, forecasting using nonlinear neural 
networks could definitely deliver better results than the traditional algorithms. 
Consequently, when dealing with mixed linear/nonlinear time series data a 
combination of the traditional and the neural approach could be optimal.  

Lapedes and Farber (1988) were the first to report that simple neural networks 
can outperform traditional methods by up to many orders of magnitude. This was 
radically investigated by Sharda and Patil (1990) on a set of 75 different time series 
with the objective to compare the forecasting accuracy of the Box-Jenkins method 
and of a neuro forecaster. Using a subset of 14 time series of Sharda and Patil, 
Tang et al. (1991) extended the comparative analysis to some additional aspects 
and identified a number of facts that make neural networks or traditional 
approaches deliver better forecasting results. They found by experiments that, 
generally: 

for time series with long memory, both approaches deliver similar results 
for time series with short memory, neural networks outperform the 
traditional Box-Jenkins approach in some experiments by more than 100%  
for time series of various complexity, the optimally tuned neural network 
topologies are of higher efficiency than the corresponding traditional 
algorithms.  

As typical examples for experimental study  

international airline passenger data  
domestic car sales data in the US and  
foreign car sales data in the US 

were used.  
For experiments, the most typical traditional forecasting approach, the ARMA 

model of Box-Jenkins approach  

 ( ) ( )(1 ) (1 ) ( ) ( )L L D d L
p p t q Q tB B B B y B B a

was used with the autoregressive operator ,  moving-average operator ,  and the 

back shift operator B. In the model equation, at, yt, and  represent the white 
noise, the time series data, and a constant value respectively.  

To simplify matters, in all experiments with neuro forecasters, one-hidden-layer 
networks and networks without a hidden layer were used alternatively. The 
experimental results showed that hidden-layer networks have a better forecasting 
performance. 

Hill et al. (1996) compared six traditional methods with the neuro forecaster on 
111 different time series and found that neuro forecasters are significantly better 
than the statistical methods taken into consideration. However, Foster et al. (1992) 
came to the opposite conclusion. After extensive analysis of forecasting accuracy 
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of neuro and traditional forecasters, they concluded that linear regression and the 
simple average of the exponential smoothing method are superior to a neuro
forecaster. Denton (1995), again, demonstrated that, under standard statistical 
conditions, there is only a slight difference in prediction accuracy between the 
regression models and neural models. Some additional results of comparative 
analysis have been communicated by Nelson et al. (1994), Gorr et al. (1994), 
Srinivasan et al. (1994), and Hann and Streurer (1996). 

3.6.2. Combining Neural Networks and Traditional Approaches 

Application of hybrid, i.e. combined neural networks and traditional approaches, to 
time series forecasting was a challenging attempt to increase forecasting accuracy 
beyond the limits that either one of the two approaches used alone would be able to 
reach. In the following, we will consider the advantages of combining the neural 
and ARIMA model approach in time series forecasting. Voort et al. (1996) used 
for this combination the Kohonen self-organizing map as the neural network part 
for short-term traffic-flow forecasting. Sue et al. (1997) used this type of hybrid 
combination to forecast a time series of reliability data and showed that the hybrid 
model produced better forecasts than either the ARIMA model or the neural 
network by itself could produce. Tseng et al. (2002) investigated the combination 
of a seasonal time series model SARIMA and a backpropagation network, resulting 
in a SARIMABP hybrid combination. They found that the combination 
outperforms the SARIMA model used alone and the backpropagation model with 
the de-seasonalized or differentiated data.  

For experimental purposes, the time series , 1, 2,3,..., ,iz i k  is generated by a 

SARIMA (p, d, q)(P, D, Q) process with mean µ and modeled by  

 ( ) ( )(1 ) (1 ) ( ) ( ) ( )S d S D S
t tB B B B z B B a ,

where S is the periodicity, d and D are the number of regular and seasonal 
differences respectively, B is the polynomial degree, and at is the estimated 
residual at time t. The experimental results show that the SARIMABP method 
benefits from the forecasting capability of the SARIMA and from the capability of 
backpropagation to reduce the residuals further, which guarantees a lower 
forecasting error. As forecasting accuracy evaluation criteria, the mean square error 
(MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) 
have been used.  

For a real-life application example, time series data of the total production 
revenues of the Taiwanese machinery industry were taken for various periods of 
time. For instance, a five-year data set has been used as the input of the ARIMA 

12(0,1,1)(1,1,1)  model  

12 12 12(1 0.309 )(1 )(1 ) (1 0.7159 )t tB B B z B a

and for a three-year data set as the input of the ARIMA 12(0,1,1)(0,1,0)  model 



132 Computational Intelligence in Time Series Forecasting 

12(1 )(1 ) (1 0.88126 )t tB B z B a .

In both cases the experiments were carried out with two, three, and seven neurons 
in the network hidden layer. 

Hybrid ARIMA-neural network methodology was also the subject of an 
experimental study by Zhang (2003), whose objective was to identify whether the 
given time series data were generated by a linear or a nonlinear process. This is 
essential for making a decision on whether, in a given case, the use of a linear (i.e.
the traditional) or a nonlinear (i.e. a neural network) approach will be more 
appropriate. Here, the combined approach could ease the problem solution. After 
all, because real-world time series are seldom purely linear or nonlinear, it is 
favourable to use a hybrid approach. 

In experimental practice, the assumption is made that a time series to be 
processed is composed of a linear autocorrelation structure tL  and a nonlinear 

component tN :

t t tz L N .

The linear component of the time series can be processed using an ARIMA model, 
and the residuals  

t t te z L ,

containing only the nonlinear relationships, can be processed by neural networks. 
This can be done using a residual model, e.g.

1 2( , , ..., )t t t t n te f e e e ,

which corresponds to a neural network with n input nodes and the nonlinearity 
function (.).f  In the above residual model, t  represents the random error. The 

benefits of the proposed hybrid methodology approach have been confirmed on 
three real-life examples from different application areas. 

A remarkable contribution was reported by Wedding and Chios (1996), who 
combined the Box-Jenkins model and an RBF network.  

3.6.3 Nonlinear Combination of Forecasts Using Neural Networks 

Because a large number of time series forecasting methods are available, it makes 
sense for the application expert to select the best one among them in each 
particular case. Thus, it becomes interesting to combine a group of forecast 
methods and to examine the forecasting accuracy of the combination. The issue 
was discussed in Section 2.8.6 from the traditional point of view. It was shown that 
the best forecasting results are achievable when the combination of traditional 
forecasting methods is nonlinear. In the meantime, various combination techniques 
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have been suggested and examined using different intelligent technologies, 
primarily with neural networks. 

In engineering practice, choosing the “best” forecasting method means 
choosing a method that is the best in the given circumstances. For instance 
(McNees, 1985), experience has shown that no forecasting model retains its 
accuracy for all values of variables all the time. Also, it has been experimentally 
proven that if for a forecasting method the short run is good, then there is no 
guarantee that the long run will also be good. Therefore, it is worthwhile seeking 
for an adequate combination for each application situation. This is because the 
combination of methods incorporates different cognition capabilities and can, in a 
specific case, produce better forecasts than either of methods within the 
combination itself. Moreover, experimental investigations confirm (Winkler and 
Markridakis, 1983) that the resulting accuracy of combined forecasts increases 
with the increase in the number of forecasting methods involved. Mahmoud (1984) 
also came to a similar conclusion, that the accuracy of the combined forecast 
improves as more methods are included in the combination.  

In forecasting non-stationary, non-seasonal time series one can evaluate the 
forecast values subsequently generated by a Box-Jenkins ARMA or ARIMA 
model, Holt-Winter’s exponential smoothing, extrapolation of trend curve, Kalman 
filtering, etc. and mutually compare the results achieved. Out of the possible 
forecasting methods the analyst may prefer to use his own favourite methods that 
will produce different forecasts of a given time series. Moreover, using a particular 
method (say, ARMA/ARIMA) different analysts may come up with a different 
order of the models required for forecasting and, again, with different forecast 
results. Therefore, forecast models developed using different methods and by 
different analysts will rarely be identical. This may be very confusing to someone 
who wants to take a decision on the basis of various forecasts suggested by various 
analysts.

From the above, it follows that it is inadvisable to prefer one particular 
forecasting method over another, because no single forecasting method will in 
every situation produce forecasts of the same accuracy. Rather, it is more advisable 
to take a combination of a few forecasts generated by different methods. This was 
even clearly formulated by Bates and Granger (1969). 

A number of advanced approaches have been suggested for nonlinear 
combination of forecasts using neural networks (Shi and Liu, 1993; Harald and 
Kamastra, 1997). The problem is defined here starting with the availability of k
different forecasts f1, f2, f3, ..., fk, of some random variable z, that should be 
combined into a single forecast fc. The straight away step would be to form a linear 
combination of forecasts  

( ) ( )c i if z w f z

where wi is the assigned weight of ith forecast fi.
The simplest approach to determine the weights wi of the combination would be 

to take equal weights for each term. This has proven to be relatively robust and 
accurate. But still, in practice, the linear combination of forecasts is not likely to be 
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the optimal combination like the nonlinear combinations are. This can be 
demonstrated on the following example. 

Suppose that k different forecast models are available and the ith individual 
forecast has an information set {Ii : Ic, Ii}, where Ic is the common part of 
information used by all k models and Ii is the specific information for the ith 
forecast only. Denoting the ith forecast by fi = Fi(Ii), we can express the linear 
combination of forecasts as  

Fc = wiFi(Ii),

where wi is the weight of the ith forecast. On the other hand, every individual 
forecasting model can also be regarded as a subsystem for information processing, 
while the combination model fc = Fc(I1, I2, ..., Ik) is regarded as such a system. It 
follows that the integration of forecasts is more than their sum, i.e. the performance 
of the integrated system is more than the sum of its subsystems. So, the 
trustworthiness of the linear forecast combination is quite questionable. More trust 
should be paid to a nonlinear interrelation between the individual forecasts, such as 

fc = F1(I1), F2(I2), F3(I3), ..., Fk(Ik)

where is a nonlinear function. While the given information is processed by 
individual forecasting models, it is likely that parts of the entire information can be 
lost, which means that, say, the information set Ii is not being used efficiently. 
Furthermore, different forecasts may have different parts of information lost. This 
is why it is preferable that as many different forecasts as possible should be present 
in the combination, even when the individual forecasts depend on the same set of 
information. 

As a forecasting example (Palit and Popovic, 2000), a 2-6-6-1 feedforward 
network, i.e. a network with two inputs, and two hidden layers with each layer 
containing six neurons and one output, is used, as shown in Figure 3.19b. The 
network is trained using the Levenberg-Marquardt algorithm, which guarantees 
much faster learning speed than the standard backpropagation method, and hence 
requires less training time. The algorithm also uses the gradient descent method, 
based on Jacobian matrix, according to which the update is  

1

( ) ( ) ( ) ( )TTw w J w I w e xJ J

or

1

( 1) ( ) ( )

( 1) ( ) ( ) ( ) ( ) ( )TT

w k w k w k

w k w k w J w I w e wJ J

where J(w) is the Jacobian matrix with respect to network-adjustable parameters w
(all weights and the biases) of dimension (q×Np), and q being the number of 
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training sets, Np being the number of adjustable parameters in the network, and I is 
the identity matrix of dimension ( )p pN N .

Table 3.1. Nonlinear combination of two forecasts of a temperature series using an artificial 
neural network (ANN: Neural networks combined forecast; BJ: Box-Jenkins forecast, HW: 
Holt-Winters exponential smoothing)

The parameter is multiplied by some factor inc whenever an iteration step 
increases the network performance index (i.e. sum squared error) and it is divided 
by dec whenever a step reduces the network performance index. Usually the factor 

inc = dec and in our case it is selected as 10. 

Figure 3.19(a). The combination of forecasts using a 2-2-6-1 artificial neural network 

Serial

No.

Forecast Data sets from HBXIO 

matrix

SSE RMSE 

1. BJ 151 to 224 (column-1) 0.4516 0.112 

2 HW 151 to 224 (column-2) 0.3174 0.0933 

3 ANN (2-6-6-1) 1 to 150 (training)    

4 ANN (2-6-6-1) 151 to 224 0.1306 0.0594 

5 ANN (2-2-6-1) 151 to 224 0.2425 0.0810 
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Figure 3.19(b). The combination of forecasts using a 2-6-6-1 artificial neural network 

In our practical example, the first 150 input-output samples were used to train 
the network. Thereafter, the values of the interconnecting weights and biases are 
saved for network performance testing using the remaining 151 to 224 samples of 
data. From the experimental results shown in Figure 3.19(a) and Figure 3.19(b) and 
Table 3.1, it is obvious that the network output very closely matches the actual 
time series, indicating that a nonlinear combination of the forecasts is better than 
the individual forecasts. 

3.6.4 Forecasting of Multivariate Time Series  

Chakraborty et al. (1992) conducted experimental investigations on forecasting of 
multivariate time series using neural networks. They focused their attention on the 
statement that, in the case of substantial cross-correlation of individual variables of 
multivariable time series data, the forecasting accuracy of each variable can be 
improved when simultaneously changing the values of other variables within the 
time series is taken into account. This has been observed in multivariate statistical 
analysis when, based on observation data, identifying the interdependencies of 
variables involved in a multivariate system. To prove this, Chakraborty et al.
(1992) analyzed the one-step and multistep prediction behaviour of a trivariate 
time series 1 2 3[ , , ]t t t tx x x x  in the interval of t = 1–100 samplings using  

separate modelling of each component of the multivariable time series, 
interpreted as mutually independent univariate time series  
combined modelling, by simultaneous consideration of all three variables  
statistical modelling, using the statistical model developed by Tiao and 
Tsay (1989). 
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The analysis of separate modelling was carried out using alternatively 2-2-1, 4-4-1, 
6-6-1, and 8-8-1 networks and by evaluating the results for each time series 
component using the mean square error as the performance indicator. The analysis 
has shown that a combined modelling approach is superior to separate modelling, 
and that both of them are superior to statistical modelling. In addition, the 
experiments with the 2-2-1 backpropagation networks have delivered, in one-step 
and multistep cases, the best forecasting accuracy, which shows that the 4-4-1 and 
6-6-1 networks are oversized for this purpose. 

The experimental investigations presented above deliver forecasting results that 
depend considerably on the art of experiment design used for this purpose. For this 
reason the results are not coherent and are sensitive to the application field. We are 
still short of a general theoretical formulation of this phenomenon, but some 
encouraging trials have been made in this direction (reported by Yang, 2000), 
related to methods of combining forecasting procedures for forecasting continuous 
random univariate time series.  
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4

Fuzzy Logic Approach  

4.1 Introduction 

The term “fuzzy” was introduced by Zadeh (1965) in his paper on fuzzy sets, 
where a new mathematical discipline, fuzzy logic, based on the theory of fuzzy 
sets, was presented. The proposed logic was aimed at supporting of presentation 
and consideration of inexact or imprecise concepts by fuzzy sets. The imprecision 
is to be understood as grouping of set members into classes, the boundaries of 
which are not sharply defined. It was expected that the theory of fuzzy sets should 
become a novel methodology suitable enough to help formulate and solve complex 
problems in engineering and science that are difficult to handle using “precise” 
crisp logic, such as binary logic, where the variables can be either true or false.
The theory of fuzzy sets allows the concept of partial belongingness of an object or 
a variable in a fuzzy set and, therefore, allows a gradual transition from a full 
membership to a totally non-membership. Thereby, in fuzzy logic an object or a 
variable within a domain may partially belong to several fuzzy sets in the same 
domain simultaneously and, thus, it provides a framework for a multivalued logic.
This is essential for capturing the vagueness in a natural linguistic description of 
any system. Moreover, the underlying fuzzy logic incorporates a variety of rules 
with the premises containing fuzzy propositions generally defined using linguistic
terms, such as low and high (temperature, pressure, flow, frequency, voltage, etc.), 
old, older, very old (person, engine, sensor, measured value, etc.). The related 
linguistic rules are of the IF-THEN art. 

The linguistic rules enable the use of both numerical information represented 
by numerical values, obtained from the various sensors, or given as set point 
values, and linguistic information represented by words such as high, medium, 
low, or fast, moderate or slow, etc., obtained from an experienced plant operator or 
a human expert. They replace the traditional approach to modelling of dynamic 
systems based on differential equations, and the like, that is unsuccessful in 
modelling of nonlinear and complex systems. Moreover, traditionally modeled 
engineering systems cannot directly integrate human expert’s linguistic knowledge.  
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It has frequently been reported that the design approaches of fuzzy-logic-based 
systems have been found to be very robust when embedded in control and signal-
processing systems. However, the development of fuzzy logic systems, based on 
human expert’s knowledge, is not an easy attempt, primarily because it is very 
difficult to extract the complete and consistent human expert’s knowledge correctly 
by interviewing him or her.  

The objective of this chapter is to develop some suitable fuzzy logic systems 
capable of efficiently modelling time series data and forecasting their values. 
Because the efficient functioning of fuzzy logic systems depends primarily on 
fuzzy rules used for modelling, and because the automated generation of such rules 
is rather difficult, various data-driven algorithms for automated rule generation are 
presented. 

4.2 Fuzzy Sets and Membership Functions 

The membership function is the key idea introduced in fuzzy set theory to measure 
the degree to which the fuzzy set elements meet the specific properties, i.e. to 
measure the degree of belongingness of an element in a specific fuzzy set. 
Consequently, the propositions used need not be true or false, but can be to any 
degree partially true. 

Using a membership function µ, we can define a fuzzy set F on a universe of 
discourse U as 

: 0,1F x U ,

which is nothing but a mapping from the universe of discourse U into the unit 
interval [0, 1] and F x  represents the extent (degree/grade) to which x belongs 

to fuzzy set F. The concept of membership functions allows any element within the 
universe of discourse to have partial membership to a specific fuzzy set and also to 
have partial membership to other fuzzy sets. In order to demonstrate the idea of 
membership functions, two examples are given, one each for a crisp set and a fuzzy 
set.

Let C be a crisp set and x be any element of the set C such that ,x X  where X
is the universe of discourse (domain), then the degree of membership of x in crisp 
set C will be 1 and 0 respectively if the element x belongs to C completely (full 
member) or it does not belong to it at all. Mathematically, this is stated as 

1; if
0; ifC

x Cx
x C

Let us now consider that F be a fuzzy set and x be any element of the fuzzy set F
such that ,x X  where X is the universe of discourse (domain), then the degree of 
membership of x in fuzzy set F will be 1 and 0 respectively if the element x
belongs to F completely (full member) or it does not belong to it at all. However, if 
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x belongs to F partially, then the degree of membership of x in fuzzy set F can have 
any intermediate value, such as 0.5, 0.9, etc., within 0 and 1. Mathematically, this 
is stated as 

1, if   (completely)

0,1 , if (partially)

0, if totally non-member
F

x F

x x F

x F

Figure 4.1. (a) Crisp (ordinary) set; (b) fuzzy set 

Figure 4.1(a) shows an example of two crisp sets, “short” and “tall”, where it is 
shown that even if the height of a person is 1.7999 m then that person definitely 
belongs to the “short” category only. This is because the crisp set “short” includes 
heights up to 1.8 m. In contrast, if the height of the same person had been just 
1.8011 m, as per the same Figure 4.1(a), then the person would belong to the 
category “tall”, as in this case the height is 0.0001 m greater than 1.801 m and that 
categorizes the person into the crisp set “tall”. This is obviously quite impractical.  

Similarly, Figure 4.1(b) shows the example of two fuzzy sets, “short” and 
“tall”, where it is shown that if the height of a person is less than or equal to 1.5 m, 
then the person belongs to the category “short”, whereas if the height is say 1.8 m 
then the person belongs to the category “short” with a degree of membership 0.5 
and at the same time the person is considered as “tall” with a degree of 
membership equal to 0.5. 

In order to explain the importance of fuzzy sets or membership functions, 
Boyle’s law, as a practical example, is considered, that states that the pressure (P)
of a given mass of gas varies inversely proportional to the volume (V) of the gas, 
provided the gas temperature (T) remains constant. 

Using the fuzzy linguistic rules, Boyle’s law can be stated as: 

Rule-1: IF pressure is high and temperature is constant THEN volume is 
low

Rule-2: IF pressure is medium and temperature is constant THEN volume is 
medium

Rule-3: IF pressure is low and temperature is constant THEN volume is 
high.

Height

1.8m

Short Tall

D
eg
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The same fact can be written mathematically as PV = constant.
The above three IF-THEN rules are sufficient to model Boyle’s observations 

and is in fact very similar to the way we understand a system or describe our 
observations and experience about any system in day-to-day life. In the above three 
rules, pressure, temperature and volume are the linguistic variables, whereas (fuzzy
sets) high, medium, low, etc. are the linguistic terms or linguistic labels, generally 
represented by triangular or trapezoidal or even by Gaussian membership 
functions (fuzzy sets).

For example, in the above rules, say 0.9 to 1.5 bar represents high pressure, 0.4 
to 1.0 bar represents medium pressure and 0 to 0.5 bar represents low pressure, etc.
Note that, here, instead of exact and specific values of pressure we used a range to 
specify high, low and medium, and also note that ranges are partially overlapping. 

So, from the above example it is clear that fuzzy logic (IF-THEN linguistic 
rules) is a very convenient mathematical tool to describe our observations or 
experiences about any system for system modelling with the application of fuzzy 
sets.

4.3 Fuzzy Logic Systems 

Fuzzy logic systems have a direct relationship with fuzzy concepts, such as fuzzy 
sets, linguistic variables, and fuzzy logic. Fuzzy systems are unique in the sense 
that they can simultaneously process numerical data and linguistic knowledge. 
From the mathematical point of view, a fuzzy logic system is a nonlinear mapping 
of an input feature (data) vector into a scalar output. 

Figure 4.2.  Block diagram of a fuzzy logic system 

The block diagram of a fuzzy logic system is shown in Figure 4.2. From the figure 
it is seen that the fuzzy logic system takes the crisp input value (X) and this is then 
fuzzified (converted into corresponding membership grade in the input fuzzy sets), 
thereafter, it is fed to the fuzzy inference engine. Using the stored IF-THEN fuzzy 
rules from the rule base the inference engine produces a fuzzy output that 
undergoes further defuzzification to result in crisp output (Y).

In artificial intelligence, fuzzy logic systems were first styled as fuzzy rule 
systems and fuzzy expert systems.

Fuzzy sets can be involved in a fuzzy logic system in a number of ways:  

in system description  

DefuzzifierFuzzifier
Fuzzy

inference
engine

Fuzzy
rule base

Crisp
input

X

Crisp
output

Y
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in specification of system parameters  
in representation of input, output and system states. 

When involved in system description, fuzzy sets appear as linguistic terms or 
labels to represent the state of the linguistic variable in the fuzzy rule. An 
illustration of the first case can be presented considering once again Boyle’s 
observations, which are described by three IF-THEN rules, as stated in the Section 
4.2. In fact, any system can be described by a collection of such types of IF-THEN 
linguistic rules, also known as fuzzy rules. The fuzzy logic systems are actually a 
rule-based system and usually defined using the IF-THEN rules. The general form 
of such an IF-THEN rule is: IF antecedent propositions THEN consequent 
propositions. The example of fuzzy (antecedent) propositions can be “Pressure is 
High” or even “x is A”. Here, the term “High” is a linguistic term or label, also 
called a fuzzy term, represented by a fuzzy set (membership function) on the 
universe of discourse (UD) of the linguistic variable “Pressure”. Similarly, fuzzy 
set A is a representative of a linguistic label/term. Sometimes linguistic hedges 
(modifier) are used to modify the linguistic label/fuzzy set without redefining the 
fuzzy set completely. An example of the latter can be “very A” or “more or less A,” 
etc.

When involved in specification of system parameters, fuzzy sets may appear as 
fuzzy numbers. Similarly, as an example of the second case, let us consider a 
system that can be described by algebraic or differential equations in which the 
parameters are approximate (fuzzy) numbers instead of exact real numbers. For 
instance, a linear system of the form y f x , where x is the input to the system 

and y is the corresponding output from the system, can be represented by a linear 

equation, but one with fuzzy numbers such as 2 3y x , where the numbers 2

and 3  (with tilde symbol) represent the fuzzy numbers approximately 2 and 
approximately 3 respectively.  

Finally, fuzzy sets may appear as the only means to express human perceptions 
or even noisy or uncertain data or information that have to be used as system input, 
output, and system state. As an illustration of the latter, consider the input of a 
system that can be noisy data (reading from unreliable sensors/transducers), or 
even human perceptions such as hot, warm, comfortable, uncomfortable, beautiful, 
and tasty, etc. Fuzzy-logic-based system can process such types of information by 
defining their suitable ranges and criteria with fuzzy sets. 

A fuzzy inference system is the core part of a fuzzy logic system. In practice, 
the following fuzzy inference systems have most frequently been employed and 
have most frequently been the subject of theoretical study: 

Mamdani type fuzzy inference systems  
Takagi-Sugeno type fuzzy inference systems  
Relational (Pedrycz) fuzzy logic systems. 
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4.3.1 Mamdani Type of Fuzzy Logic Systems 

Mamdani (1977) proposed the first fuzzy inference system with the objective to 
control a combination of a steam engine and a boiler, based on a set of linguistic 
control rules built as the extracted knowledge of a human expert. 

When applied to Boyle’s law, as described in Section 4.2, the following fuzzy 
linguistic rules can be written:  

Rule-1: IF the pressure is HIGH and the temperature is CONSTANT, THEN 
the Volume is LOW. 

Rule-2: IF pressure is MEDIUM and the temperature is CONSTANT, THEN 
the volume is MEDIUM. 

Rule-3: IF the pressure is LOW and the temperature is CONSTANT, THEN 
the volume is HIGH. 

These rules are known as Mamdani-type fuzzy rules (first introduced and used by 
Mamdani in 1977). The main features of such rules are that both the IF 
(antecedents) parts and the THEN (consequents) parts of the rules are fuzzy 
(imprecise) in nature. That is, fuzzy sets are used here in order to describe both the 
input and the output variables of the system.  

As another example of the Mamdani-type fuzzy rules, consider a single input–
single output system that describes the relationship between the heater current and 
the temperature trend as follows: 

IF the heater current is HIGH, THEN the temperature rise is FAST 
IF the heater current is MEDIUM, THEN the temperature rise is 
MODERATE 
IF the heater current is LOW, THEN the temperature rise is SLOW. 

Note that in the above Mamdani-type fuzzy rules the heater current and 
temperature rise are the two linguistic variables (input and output of the system 
respectively), whereas HIGH, MEDIUM, and LOW are the three fuzzy sets, 
represented by suitable (triangular/Gaussian) membership functions and provide 
the means to express the states of the linguistic input variables. Similarly, FAST, 
MODERATE, and SLOW are the three output fuzzy sets – also represented by 
suitable membership functions – representative of the states of linguistic output 
variables of the systems. 

4.3.2 Takagi-Sugeno Type of Fuzzy Logic Systems 

With Takagi-Sugeno (TS) type fuzzy rules the IF (antecedent) part is fuzzy in 
nature, whereas the THEN (consequent) part is a crisp function of an antecedent 
variable (as a rule, a linear equation) rather than a fuzzy proposition. The example 
presented above for Boyle’s law could be written correspondingly as: 

Rule-1: IF P is LOW and T is CONSTANT, THEN V = a1P + b1T + c1

Rule-2: IF P is HIGH and T is CONSTANT, THEN V = a2P + b2T + c2

Rule-3: IF P is MEDIUM and T is CONSTANT, THEN V = a3P + b3T + c3.
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where al, bl, and cl parameters with l = 1, 2, 3 corresponding to Rule-1, Rule-2, and 
Rule-3 are constants.

As another example, we again take a single input–single output system and 
present it using Takagi-Sugeno rules: 

IF heaterCurrent is HIGH, 
THEN temperatureRise = aH(heaterCurrent) + bH

IF heaterCurrent is MEDIUM, 
THEN temperatureRise = aM(heaterCurrent) + bM

IF heaterCurrent is LOW, 
THEN temperatureRise = aL(heaterCurrent) + bL

Using similar kinds of rules, many real systems can be described and modeled very 
accurately, where each rule represents a local linear model of the system. Also, 
these types of rule enable the system output variables (real valued/crisp valued) to 
be very easily inferred, which is an advantage of the presentation. 

Note that in the above rules if the first constant parameters are all set to zero 
(i.e. aH = 0, aM = 0, aL = 0), then the rule’s consequents are singleton fuzzy sets. 
Similarly, with Mamdani-type fuzzy rules if the consequent fuzzy sets are 
singleton type (a real value) then they are identical to the Takagi-Sugeno type 
fuzzy rules with singleton consequents (i.e. when aH = 0, aM = 0, aL = 0). 

4.3.3 Relational Fuzzy Logic System of Pedrycz 

In relational fuzzy logic systems, similar to Mamdani-type fuzzy logic system, 
both the IF (antecedent) parts as well as the THEN (consequent) parts are fuzzy. 
However, there is a slight difference in the rule’s representation: in this case, one 
particular antecedent proposition is allowed to be associated with several different 
consequent propositions via a fuzzy relation (Pedrycz, 1984). This can be 
explained, again, on the above single input–single output system, which is 
described now by the following rules: 

IF heater current is HIGH, 
THEN temperature rise is  SLOW (0.0),  MODERATE (0.1),  FAST (0.9) 
IF heater current is MEDIUM, 
THEN temperature rise is  SLOW (0.1),  MODERATE (0.95), FAST (0.0) 
IF the heater current is LOW, 
THEN temperature rise is  SLOW (1.0),  MODERATE (0.1),  FAST (0.0). 

In the first relational fuzzy rule the consequent fuzzy set FAST (0.9) represents the 
output variable (temperature rise) belonging partially to the fuzzy set FAST with 
degree of affiliation (also called degree of membership) equal to 0.9. Similarly 
SLOW (0.0) and MODERATE (0.1) represent respectively that the same output 
variable does not belong to fuzzy set SLOW at all (as the degree of membership in 
SLOW is 0.0), whereas the same output belongs a little to fuzzy set MODERATE 
(partially with degree of membership 0.1). Following the same argument, one can 
see that in the third rule SLOW (1.0) indicates that the output variable (temperature 
rise) belongs fully to fuzzy set SLOW (as the degree of membership in SLOW is 
1.0), whereas it (output) simultaneously belongs to the fuzzy set MODERATE 
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partially with degree of membership equal to 0.1, but it does not belong to the 
fuzzy set FAST at all. It is important to note that in any of the above rules the 
summation of degree of membership of output variable in the consequent fuzzy 
sets need not always be 1.0. From the above three rules it is easy to understand that 
relational fuzzy rule can be regarded as a generalization of the Mamdani-type 
fuzzy rules. 

4.4 Inferencing the Fuzzy Logic System 

Inferencing refers to the process of generating the output fuzzy set when the fuzzy 
rules and the input set are given. Usually, inferencing of Mamdani-type linguistic 
fuzzy rules and relational (Pedrycz) fuzzy rules produces an output fuzzy set that is 
not directly compatible with a real-world signal (such as a control signal for an 
actuator within the range 4 to 20 mA) as it is fuzzy in nature. If a crisp (numerical) 
output value is required, which is directly compatible with a real-world signal, then 
the output fuzzy set must be defuzzified. Defuzzification is a transformation 
process that translates the output fuzzy set into a single numerical value 
representative of that fuzzy set. For this purpose, preferably the centre of gravity 
(COG) method is used.  

Given a fuzzy set F represented in the point-wise form as  

1 1 2 2, , ,F F F p pF x x x x x x ,

the COG method helps in computing the x coordinate of the centre of gravity of the 
fuzzy set F as follows: 

1

1

p

i iF
i

p

iF
i

x x
x

x

In contrast, fuzzification translates a crisp value into a corresponding fuzzy 
value (degree of membership). If the computed degree of membership of the crisp 
input in a fuzzy set F is exactly 1 or close to 1 or greater than some threshold value 
the input (crisp) is considered to be equivalent to that fuzzy set F.

4.4.1 Inferencing a Mamdani-type Fuzzy Model 

Inferencing the Mamdani type of fuzzy model basically consists of four steps. For 
a single-input single-output model, however, if an input fuzzy set is given instead 
of a crisp input value, then the procedure is slightly altered, as shown below. Given 
the rule base, for instance with M fuzzy rules, as  
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R1: IF x is 1
1G , THEN  y is 1

1F
R2: IF x is 2

1G , THEN  y is 2
1F

:    :    :      : 
RM: IF x is 1

MG ,  THEN  y is 1
MF

Now, if x is 1
1G , is given as the input fuzzy set and 1 1

1 1G G , then the objective is 
to determine the corresponding output fuzzy set through the Mamdani rule 
inferencing mechanism. The procedure is as follows. 

Each fuzzy rule above can be regarded as a fuzzy relation: 

: 0,1lR X Y

computed as 

11
,l llR G FX Y I x y ,

where the operator I can be either a fuzzy implication or a conjunction operator 
such as a t-norm. It is to be noted that .,.I  is computed on the Cartesian product 

space X Y , i.e. for all possible pairs of x and y from the domain, using the 
Mamdani implication 

1 11 1
, min ,l ll l

G GF FI x y x y .

Once the fuzzy relation ( lR ) is computed for each rule l = 1, 2, 3, ..., M, the fuzzy 
relation R for the entire rule base is computed taking the element-wise maximum 
of all ( lR ) i.e. R is the union of all ( lR ), for l = 1, 2, 3, ..., M. From this fuzzy 
relation the output fuzzy set is computed directly by applying a max-min 
composition and written as 

11

l l
out RF G .

Using the minimum t-norm operator, the max-min composition is obtained as 

yxxy RGYXXF l
out

,,minmax
1
11 ,

The final result of this max-min composition is nothing but the desired output 
fuzzy set. The COG of the output fuzzy set gives the equivalent crisp output (y
coordinates).  

The procedure described above can be circumvented by the following few 
steps:
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Step 1: compute the degree of fulfilment of each rule by 

1
1 1

, 1max l
l

X G Gx x l M ,

where  is the min operator. For a crisp input 0 ,x x  which is equivalent 

to a singleton fuzzy set, i.e.

1
1

01, for  ;G x x x

and for all other points 

1
1

0 , 0.Gx x x

So the degree of fulfilment of the lth rule is reduced to 

1
0l

l

G x .

Step 2: compute the each rule consequent set as given by 

11
l

ll FF

Step 3: aggregate all consequent fuzzy sets as shown by 

1 2
1 1 1 1

1

M
l M

aggr
l

F F F F F

Step 4: defuzzify the aggregated fuzzy set aggrF using the COG method. 

The inferencing mechanism of the Mamdani type of fuzzy logic system can easily 
be explained on an n-input single-output system described by M numbers of 
Mamdani-type fuzzy rules  

R1: IF x1 is 1
1G  and… and xn is 1

nG , THEN  y is 1
1F

R2: IF x1 is 2
1G  and… and xn is 2

nG , THEN  y is 2
1F

:    :     :      : :      : 
RM: IF x1 is 1

MG  and… and xn is M
nG , THEN  y is 1

MF .

For a given set of rules and inputs xi, with 1,2, , ;i n  (also called the training 
sample), the objective is to determine the crisp output value which is the 
defuzzified value of the output fuzzy set. The inferencing of such a rule-based 
fuzzy system proceeds as follows. 
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Step 1: compute the degree of fulfilment of each rule for any given input 
set (crisp) by  

1 2
1 2l l l

n

l
nG G Gx x x ,

where  is the min or product operator 

Step 2: compute the each rule consequent set as given by  

11
l

ll FF

Step 3: aggregate all consequent fuzzy sets as shown by 

1 2
1 1 1 1

1

M
l M

aggr
l

F F F F F

Step 4: defuzzify the aggregated fuzzy set aggrF using the COG method. 

The defuzzified value of the aggregated fuzzy set is the crisp output value from the 
Mamdani-type fuzzy model in response to the given input value. In Step 3 the 
aggregation is the union (standard/Zadeh’s union) of the consequent fuzzy sets. 

4.4.2 Inferencing a Takagi-Sugeno type Fuzzy Model 

The inference formula of the Takagi-Sugeno model is only a two-step procedure, 
based on a weighted average defuzzifier. In the first step the degree of fulfilment, 
or firing strength (also called the degree of activation), of each rule is computed 
using the product operator. In the second step, the final output value of the system 
is calculated using the weighted average defuzzifier. This can, for the inference 
process of a Takagi-Sugeno type fuzzy logic system consisting of M rules, be 
presented as 

R1: IF x1 is 1
1G  and … and xn is 1

nG  THEN 1 1 1 1
0 1 1 n nTSy x x

R2: IF x1 is 2
1G  and … and xn is 2

nG  THEN 2 2 2 2
0 1 1 n nTSy x x

: :  : :  : 
RM: IF x1 is 1

MG  and … and xn is M
nG  THEN 

0 1 1
M M M M

n nTSy x x

The degree of fulfilment is now calculated using the product operator, as was 
done when the set of Takagi-Sugeno rules with antecedent fuzzy sets and 
parameters are known for a given set of inputs 
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1 2
1 2

1
l l l l

i n

nl
i n

i G G G Gx x x x ; 1, 2, , .l M

The output value of the system is then given by 

0 1 1
1 1

0

1 1

M Ml l l l l l
n nTS

l l
M Ml l

l l

y x x
y

Alternatively, the final output of the system is represented by the normalized 
degree of fulfilment (normalized degree of activation) as  

0 1 10
1 1

;
M Ml l l l l l

n nTS
l l

y y x x

where 
1

Ml l l

l
 is the normalized degree of fulfilment (activation). 

4.4.3 Inferencing a (Pedrycz) Relational Fuzzy Model 

The inference process of a relational (Pedrycz) fuzzy model  

R1: IF x1 is 1
1G … and xn is 1

nG , THEN y is 1 1 11 1 1
1 21 2, , , k kF F F

R2: IF x1 is 2
1G … and xn is 2

nG , THEN y is 2 2 22 2 2
1 21 2, , , k kF F F

: :     :      : :      : 
RM: IF x1 is 1

MG … and xn is M
nG , THEN y is 

1 21 2, , ,M M MM M M
k kF F F .

consists of the following three steps: 

Step 1: compute the degree of fulfilment of each fuzzy rule by 

1 2
1 2l l l

n

l
nG G Gx x x ,

where  is the minimum or product operator. 

Step 2: apply the max-min relational composition operator to compute the 
relational composition R , where 

1 2, , , M ,
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1
min , , 1,2, , .max

lj
lj

l M
j KR

1 2, , , K

with l
j M k

R , a relational matrix of size M k , M is the number of 

given fuzzy rules and k is the number of output fuzzy sets/membership 
functions that make the partitioning of the output domain or output 
universe of discourse.  

Step 3: defuzzify the consequent fuzzy set by COG method to compute the 
crisp output value 

0
1 1

k kjj j

j j
y y ,

where COG ,j l l
j jy F F jth output fuzzy set for the lth rule, and 

1,2, , .j k

To illustrate the above inference mechanism of a relational fuzzy model, let us 
again consider the n-input, single-output system described by the relational fuzzy 
rule- based model  

R1: IF x1 is 1
1G  and… and xn is 1

nG ,
THEN y is HIGH (0.9), y is MEDIUM (0.1), y is LOW (0.0) 

R2: IF x1 is 2
1G  and… and xn is 2

nG ,
THEN  y is HIGH (0.1), y is MEDIUM (0.8), y is LOW (0.0) 

R3: IF x1 is 3
1G  and … and xn is 3

nG ,
THEN  y is HIGH (0.0), y is MEDIUM (0.7), y is LOW (0.2) 

If the antecedent’s fuzzy sets, i.e. l
iG  with 1, 2, , ;i n  1, 2, , ;l M and M = 3, 

are given, then for given values of input variables ; 1, 2, , ;i i nx  we first 

determine the output fuzzy set through the inferencing mechanism as stated in the 
above three steps. 

Now, the degree of fulfilment of the lth rule is computed using the product 
operator  

1 2
1 2

1
l l l l

i n

nl
i n

i G G G Gx x x x

Therefore,  

1 1 1 1
1 2

1
1 2

1 i n

n

i n
i G G G Gx x x x  = 0.5 (say).  
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Similarly, let the computed values of 2  and 3  for the second and the third 

rules, using a similar procedure, be 0.6 and 0.7 respectively. Therefore, the 

computed row vector will be 1 2 3, , 0.5,0.6,0.7 . Furthermore, for 

this example the relational matrix R is of size M k , where the number of rules 

M = 3 and the number of output fuzzy sets (e.g. HIGH, MEDIUM, and LOW) k =
3. The relational matrix is formulated using the degree of membership of each rule 
output in the output fuzzy set. Therefore,  

0.9 0.1 0.0

0.1 0.8 0.0

0.0 0.7 0.2

R ,

l
j

lj F yR  and  1, 2, , ; 1, 2, , .l M j k

Now applying the max-min relational composition, the output fuzzy set can be 
computed as follows: 

max min 0.5,0.9 ,min 0.6,0.1 ,min 0.7,0.00.9 0.1 0.0

0.5 0.6 0.7 0.1 0.8 0.0 max min 0.5,0.1 ,min 0.6,0.8 ,min 0.7,0.7

0.0 0.7 0.2 max min 0.5,0.0 ,min 0.6,0.0 ,min 0.7,0.2

T

.

This finally results in  0.5 0.7 0.2 .

Supposing now that the COGs of the output fuzzy sets are known, i.e. if the 
1 2 3COG ; 1,2, , ; and noting that ;l

j j j jj kF F F F are given respectively as 
1 2 330, 20 and 10,y y y  then the crisp output from the inference of the 

relational fuzzy-rule-based system will be  

0

0.5 30 0.7 20 0.2 10 31

0.5 0.7 0.2 1.4
y 22.142.

The various fuzzy inferencing mechanisms described in the Sections 4.4.1 to 4.4.3 
can similarly be applied to time series forecasting applications when the 
corresponding fuzzy model (fuzzy rules) of a given time series is available. 
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4.5 Automated Generation of Fuzzy Rule Base 

From the description of the various fuzzy logic systems it is well understood that 
the fuzzy inference system, i.e. the fuzzy inference engine requires a fuzzy rule 
base containing a complete set of well-consistent rules that model the system to be 
investigated. The automated generation of such a rule base, based on the time 
series data, and later its application to time series forecasting is our prime interest.  

4.5.1 The Rules Generation Algorithm 

The idea of data-driven automated rule generation, presented in this section, 
originates from Wang and Mendel (1992), who have proposed an adequate 
procedure for it’s practical implementation. In addition, we have proposed a few 
modifications of those described by Wang and Mendel (1992), based on scaled and 
normalized time series data, partitioned into multi-input single-output data sets. 

For example, for a two-input one-output fuzzy logic system using the Wang 
and Mendel’s approach the input-output partitioning would be 

1 1 1
1 2 1 2, , ; ; , ,k k kX X Y X X Y etc.

To generate the fuzzy rules automatically from these input-output partitioned data 
that represent the mapping of the input values to the respective output values, each 
X and Y domain will be divided into fuzzy regions and for each variable the 
universe of discourse (UD) obtained by considering the values [Min (X), Max (X)] 
or, [Min (Y), Max (Y)] of that variable. Thereafter, the UD is divided into a number 
of overlapping (fuzzy) regions and to each region a membership function, usually 
one of the triangular form, is assigned. This is followed by the fuzzification of 
crisp input-output values, in which a mapping of crisp input/output value from the 
domain into the unit interval is performed, and consequently for each membership 
function the corresponding label or the membership grade is obtained. Owing to 
overlapping of the fuzzy sets, more than one grade of membership may exist for 
each input or output value, out of which the fuzzy set with maximum grade is 
selected. The fuzzy input-output data pair, obtained for an individual input-output 
data set when connected through fuzzy logic operators, define the corresponding 
fuzzy rule. Here, however, conflict situations can arise when rules with the same 
antecedents, i.e. the same IF parts, but with different consequents (the THEN 
parts), are generated. To overcome this, to each conflicting rule a degree or a grade 
is assigned, for instance,

1 2A B CD Rule X X Y ,

for the given  

 Rule: IF (X1 = A) AND (X2 = B), THEN (Y = C).
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Thereafter, the combined rule base and the rule grade table (RGT) are built, but the 
conflicting rules with the maximum value of D(Rule) are selected, whereas the 
conflicting rules with the lower value of D(Rule) are all rejected. It is to be noted 
that besides the conflicting rules the redundant rules, that have both identical IF 
parts as well as THEN parts, are also generated by this rule generation algorithm. 

Since our final aim is to develop a fuzzy-logic-based predictor, or a fuzzy 
model that is capable of forecasting the future values of a given time series, in the 
following we will describe a fuzzy-rules generation algorithm based on a multi-
input single-output partitioning of the time series data.  

Given a time series X = {X1, X2, X3, ..., Xq}, at time points t = 1, 2, 3, . . . , q; our 
objective is to forecast the future values of this time series using a fuzzy-logic-
based predictor. For this forecasting problem, usually a set of known values of the 
time series up to a point in time, say t, is used to predict the future value of the time 
series at some point, say (t+L). The standard practice for this type of prediction is 
to create a mapping from D sample data points, sampled every d units in time, to a 
predicted future value of the time series at time point (t+L). Therefore, for each t,
the input data for the fuzzy logic predictor to be developed is a D-dimensional 
vector of the form:  

XI(t)=[X{t-(D-1)d}, X{t-(D-2)d}, ….., X{t}]

Following the conventional settings (for predicting the Mackey-Glass time series), 
D = 4 and d = L = 6 have been selected and, therefore, the input data of the fuzzy 
predictor is a four-dimensional vector, i.e.

XI(t)=[X(t-18), X(t-12),  X(t-6),  X(t)]. 

The output data of the fuzzy predictor is a scalar and corresponds to the trajectory 
prediction: 

XO(t)=[X(t+L)]

Therefore, for a four-input one-output fuzzy logic system the time series partition 
can be obtained as: 

 (X11, X12, X13, X14, Y1);  ….;  (Xk1, Xk2, Xk3, Xk4, Yk); etc.

which can be represented in XIO matrix (multi-input single output) form as  

11 12 13 14 1

1 2 3 4k k k k k

X X X X Y

XIO

X X X X Y

 (4.1) 

where, Xk1, Xk2, Xk3, Xk4 are input values and Yk as the corresponding output value 
for k = 1, 2, 3, ..., m. Note that XIO stands for the time series data 
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Xki

1 2, , , qX X X X  are represented in input and output form. The objective is to 

generate, from the above data set, the IF-THEN rules that will construct the rule 
base of a fuzzy predictor system. This is carried out in the following steps. 

Step 1: formation of fuzzy input and output regions

Suppose that the domain interval of Xki is [Xi_lo, Xi_hi] and that of (Yk) is [Ylo, Yhi],
where k = 1, 2, 3, ... , m; and i = 1, 2, 3, 4; corresponding to the four inputs 
respectively.

Figure 4.3(a). Division of input and output range in fuzzy regions 

Taking into account that all input values and the output value belong to the same 
time series X = {X1, X2, X3, ..., Xq}, for t = 1, 2, 3, ... , q, the domain intervals of all 
inputs and the output can be taken to be the same, say [Xlo , Xhi] or [Ylo , Yhi], for i = 
1, 2, 3, 4. Each domain interval can be divided into (2N + 1) fuzzy regions (see 
Figure 4.3(a) and 4.3(b)) like 

SN(Small N), ..., S2(Small 2), S1(Small 3), CE(Center), B1(Big 1), B2(Big 
2), ..., BN(Big N). 

Step 2: data fuzzification and rules generation

This includes the determination of the degrees of membership of Xk1, Xk2, Xk3, Xk4,
Yk in different fuzzy regions and assignment of a given Xk1, Xk2, Xk3, Xk4, Yk for k = 
1, 2, ... , m; to the region with the maximum degree. For example, for k = 1, Xk1 in 
Figure 4.3(a) has degree of membership 0.8 in S1, 0.2 in S2 and 0 degrees in all 
other regions. Similarly, for k = 1, Xk2 in Figure 4.3(a) has degree of membership 
0.6 in CE, 0.4 in S1 and 0 degrees elsewhere. Again, for k = 1, Xk1 in Figure 4.3(a) 
is considered to be S1 and Xk2 in Figure 4.3(a) is considered to be CE. 

Similarly, the fuzzy regions with maximum degree should be assigned to the 
Xk3, Xk4, Yk for k = 1. Now, the corresponding rules can be obtained from the input-
output data sets. According to Figure 4.3(a), for k = 1, Xk1, Xk2, Xk3, Xk4, and Yk give 
[X11 (0.8 in S1, max), X12 (0.6 in CE, max), X13 (0.8 in CE, max), X14 (0.8 in B1, 
max); Y1 (0.6 in B2, max)], and rule R1 is  
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Xki
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R1: IF X11 is S1 AND X12 is CE AND X13 is CE AND X14 is B1  THEN Y1 is B2. 

Note that in the above rule  X11, X12, X13, and X14 actually represent the first, 
second, third and fourth inputs respectively of the system, whereas Y1 represents 
the corresponding single output from the system. 

Figure 4.3(b). Division of input and output range in fuzzy regions 

Furthermore, according to Figure 4.3(b), this gives [X21 (0.6 in S1, max), X22 (0.8 in 
S1, max), X23 (0.8 in CE, max), X24 (0.6 in B1, max ); Y2 (0.8 in B2, max)], i.e. rule 
R2 is

R2: IF X21 is S1 AND X22 is S1 AND X23 is CE AND X24 is B1  THEN Y2 is B2. 

Note that, as in the previous rule, here also X21, X22, X23, and X24 actually represent 
the first, second, third and fourth inputs respectively to the system, and Y2

represents the corresponding single output from the system. 

Step 3: rules degree assignment

The large number of data pairs available generate a large number of rules, some of 
them being conflicting rules. To each rule the degree will be assigned and the 
conflicting rules with the highest degree retained. For example, the degree of the 
rule

Rule: IF x1 is A AND x2 is B AND x3 is C AND x4 is D, THEN y is E

 is as follows: 

 D(Rule) = A(x1). B (x2). C (x3). D (x4). E (y),

so that the rules R1 and R2 above have the degrees:

 D(Rule 1) = S1(X11). CE(X12). CE(X13). B1(X14). B2(Y1)

                 = (0.8).(0.6).(0.8).(0.8).(0.6) = 0.18432, 



 Fuzzy Logic Approach 161 

Xk1

S1 S2 CE B1 B2

Xk2

S1

S2

CE

B1

B2
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S1

S2

CE

S2

S2

S2

S2

S2 S2S2

B1

S2

 D(Rule 2) = S1(X21). S1(X22). CE(X23). B1(X24). B2(Y2)

                 = (0.6).(0.8).(0.8).(0.6).(0.8) = 0.18432 

respectively, and both are found to be same in this example. However, they are 
usually different for realistic time series data. 

Step 4: building of combined fuzzy rule base

A combined fuzzy rule base, built in the following way, is shown in Figure 4.3(c). 
It is a lookup table to be explained on the example of a two inputs [Xk1, Xk2], one 
output Y1 system for simplicity. Individual boxes are filled with fuzzy rules 
generated from input-output data, whereby the AND-rules fill only one box and the 
OR-rules fill all the boxes in the rows and/or columns corresponding to the regions 
of their IF parts. If there is more than one rule in one box, then the rule with the 
maximum degree is taken. For example, the rule 

Rule:  IF Xk1 is B1 OR Xk2 is B2 THEN Y1 is S2 

fills five boxes in the column of B1 and five boxes in the row of B2 with S2. The 
degrees of all the S2’s in these boxes are equal to the degree of the OR-rule, 
whereas the same rule with AND, instead of OR, fills only the intersection of 
column B1 and row B2 with S2 

Figure 4.3(c). Look-up table for fuzzy rule base 

The combined rule base of Figure 4.3(c) describes the following fuzzy rules: 

IF Xk1 is S2  AND Xk2 is S1 THEN Y1 is S1 
IF Xk1 is CE AND Xk2 is S2 THEN Y1 is B1 
IF Xk1 is S1  AND Xk2 is B1 THEN Y1 is CE 
IF Xk1 is S2 AND Xk2 is CE THEN Y1 is S1 
IF Xk1 is B1  OR   Xk2 is B2 THEN Y1 is S2 

It is to be noted that for a system with more than two inputs the above table would 
require a multidimensional space for its presentation.  
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4.5.2 Modifications Proposed for Automated Rules Generation  

The described rules generation algorithm requires much manual effort in handling 
the numerous data sets (say 500) and the large number of triangular membership 
functions (say 20 to 50). To reduce this, the modification of some of the 
operational steps and the use of Gaussian membership functions of the following 
form are proposed (Palit and Popovic, 1999): 

2 2( ; , ) exp ( 2)i j j i j jjf x c x c  (4.2) 

for simplification of computation of degree of membership for all values of Xi.
Dividing the domain interval [Xlo, Xhi] into (n-1) overlapping fuzzy regions, 

with 2 1n N , N is some integer value, and assigning to each region a Gaussian 
membership function, the mean C and the variance  will also have 2 1n N
values, such as C1 to Cn and 1 to n respectively. For ease of computer program 
implementation, the domain interval is divided into (n-1) equal regions such that 

1 ,loC X 2 1 2 ,hi loC C X X N 3 2 2 ,hi loC C X X N  ..., n hiC X  and 

1 ,n a 2 3 1 .n b  For forecasting of Mackey-Glass chaotic 

time series, for example, n = 17, a = 0.08, b = 0.04, and the domain interval [0.4, 
1.4] were selected. The fuzzy regions in this case are denoted by G1, G2, G3, ..., Gn,
etc. for convenience and G indicates the Gaussian membership functions (GMFs). 
For any input Xi within the domain interval the degree of membership 

jG i j iX f X  will be within [0, 1], for j = 1, 2, 3, ..., n. If i jX C  then 

1,
jG iX  whereas the degree of membership 

jG i j iX f X  will be zero 

only if iX  and for other values of Xi in the domain interval the degree of 

membership can assume any value between 0 to 1. The fuzzy rules can now be 
generated in the usual way.  

With the above modifications and after preprocessing the time series data, the 
automated fuzzy rules generation continues with fixing the domain interval as 

, min , maxlo hiX X X X  and with dividing the domain interval into (n-1) 

equal regions, where 2 1n N , and N is any suitable integer value such that each 
segment is of length 1hi loS X X n , on which the accuracy of the forecast 

depends. 
Now, the total number 2 1n N  of GMFs G1 to Gn, over the entire domain 

with 1 loC X , 2 1 ,C C S 3 2 1 3 1 ,C C S C S ..., 1 1 ,rC C r S  ..., 

1 1 ,n hiC C n S X  and 2 3 1n b , whereas 1 n a ,

are assigned with suitably selected values of a and b. The integer n and, hence, 
the C2 to Cn-1 and  values are chosen such that two consecutive membership 
functions partially overlap. The forecasting accuracy also depends greatly on the 
extent of overlapping. It has been observed that the overlaps that are too large or 
too narrow may deteriorate the forecasting accuracy of the time series. 
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In the next step, the crisp input and output values are fuzzified. For any input 
value Xki, or output value Yk, the f(Xki), or f(Yk), is calculated such that  

22

22

( ) ( ) exp ( 2 ,)

( ) ( ) exp ( 2)

ki ki ki jGj j

k k k jGj j

j

j

f cX X X

f cY Y Y
 (4.3)  

where i = 1, 2, 3, 4 (corresponding to the first, second, third and fourth inputs in 
our case), j = 1, 2, 3, ..., n (corresponding to G1 to Gn), k = 1, 2, 3, ..., m/2 (i.e.
corresponding to the kth row of the XIO matrix and m being the total number of 
rows in XIO matrix in Equation (4.1)), and 

jG kiX  is the degree of membership 

 of Xki in the jth Gaussian fuzzy set Gj. Hence, for any particular Xki (or Yk), i.e.

for input X11 (or output Y1), when i = k = 1, then 11jG X  will have n values 

(because j = 1, 2, ..., n) within the range [0, 1] and the same should be arranged in a 
column vector form of size 1n .

Similarly, the same procedure should be adopted for other inputs and output 
X12, X13, X14 and Y1, i.e.

jG kiX  should be computed for all i = 1, 2, 3, 4, and, 

thereafter, should also be arranged in 1n  column vector form. When such 

column vectors, each of size 1n  for all the inputs (X11, X12, X13, X14) and output 

(Y1), are arranged side by side sequentially, this results in a Mu-matrix of size 

max 1n i , i.e. of 5n  size for our four-inputs one-output system. Now, the 

maximum value of degree of membership from each column of the Mu-matrix is 
selected and the corresponding row number is recorded.  

For example, 
rG kiX  is to be found out such that 0 1

rG kiX  and 

max
r jG ki G kiX X , for all j = 1, 2, 3, ..., n, the integer value of r (1 r n)

should then be recorded, which is the key point of the automated rules generation 
algorithm. Once the r values are computed for all Xki and Yk , for i = 1, 2, 3, 4 and k
= 1, 2, 3, ..., m/2, they should be recorded. For instance, it may be the case that 

G3
(X11) = max( Gj(X11)) = 0.95, i.e. r = 3 implies G3

G5(X12) = max( Gj(X12)) = 0.80, i.e. r = 5 implies G5

G2(X13) = max( Gj(X13)) = 0.98, i.e. r = 2 implies G2

G6(X14) = max( Gj(X14)) = 0.90, i.e., r = 6 implies G6

G2(Y1)  = max( Gj (Y1))  = 0.97, i.e. r = 2 implies G2

In the next step, the fuzzy rules are built based on the values of r and degrees of 
membership. For instance, in the above example the degree of membership ( ) of 
X11 assumes a maximum value of 0.95 in G3 (because r = 3). Similarly, the degrees 
of membership ( ) of X12, X13, X14 and Y1 assume maximum values of 0.8 in G5
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(because r = 5), 0.98 in G2 (because r = 2), 0.9 in G6 (because r = 6), and 0.97 in 
G2 (because r = 2) respectively. Hence, the corresponding fuzzy rule R3 will be: 

R3: IF X11 is G3 AND X12 is G5 AND X13 is G2 AND X14 is G6  THEN Y1 is G2

The same fuzzy rule can also be written as [3  5  2  6  2  Drule FOP], where the 
numbers correspond to G3, G5, G2, G6, G2 of the rule respectively whereas, (Drule)
and FOP stand for the degree of the rule and fuzzy operator (AND) respectively. 
Drule = 1 if no degree of rule is specified or all rules have the same degree. If only 
the AND operator is used, then FOP has the value 1. Otherwise, for the OR 
operator the value 0 is used. Thus, for no degree of rule and for the AND operator 
the same rule is rewritten as [3  5  2  6  2  1  1]. The rules built in this way are used 
to build the rule list of the fuzzy system. If any two rules in the rule list create a 
conflict situation, the rule with the higher Drule value is taken and the other one is 
rejected from the rule list. For example, for the conflicting rules  

 [3  5  2  6  2]  and  [3  5  2  6  4] 

 Drule3 = G3(X11). G5(X12). G2(X13). G6(X14). G2(Y1)
             = (0.95).(0.80).(0.98).(0.90).(0.97) = 0.65 (say), 

 Drule4 = G3(X21). G5(X22). G2(X23). G6(X24). G4(Y2)
            = (0.90).(0.50).(0.80).(0.60).(0.70) = 0.15 (say), 

so that because Drule3 > Drule4 the rule3 is selected and the second one rejected. 
However, for redundant (duplicate rules) rules from a list of several such rules any 
one is selected. Rules generated in this way are actually Mamdani-type fuzzy rules 
and the complete procedure of such automated rule generation is summarized in 
Algorithm 4.1. 

However, a small modification in the final stage will also generate fuzzy 
relational rules (fuzzy relational model/Pedrycz model), i.e. to generate the fuzzy 
relational rule, the r values from the Mu-matrix are recorded for all four inputs as 
mentioned earlier and these generate as usual the antecedent part of the fuzzy 
relational rule. Now, the consequent part of the fuzzy relational rule is generated 
from the complete last column (fifth column) of the Mu-matrix that contains the 
degree of membership of output Yk in the G1 to Gn fuzzy sets. Note that for the 
last column of the Mu-matrix we do not record the r value for the output Y,
whereas the entire column is recorded for rule generation. Therefore, the 
corresponding fuzzy relational rule can be written as  

R5: IF Xk1 is G3 AND Xk2 is G5 AND Xk3 is G2 AND Xk4 is G6

 THEN  Yk is G1 (µG1
(Yk)),  Yk is G2 (µG2

(Yk)), ..., Yk is Gn (µGn
(Yk)).

Similarly, the antecedent part of the Takagi-Sugeno fuzzy rule is also generated in 
the same way, whereas the linear consequent parameters of the TS rules are 
generated by least squares error (LSE) estimation as described in Section 4.5.3. 
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Algorithm 4.1. Automated rules generation algorithm for time series prediction

Given the time series X = {X1, X2, X3,…, Xq} for t = {1, 2, 3, …., q}, the 
Mamdani-type fuzzy rules are generated as follows: 

Step 1.  Partition the time series data into MISO form  
XI(t) = [X{t-(D-1)d}, X{t-(D-2)d}, …., X{t-d}, X{t}]  
XO(t) = [X(t+L)],  
For four-inputs system D = 4, and select sampling interval d = 6, and 
lead time of forecast L = 6. 
Step 2.  Divide the domain interval [Xlo, Xhi]
into (n-1) = 2N  overlapping fuzzy regions.  
Xlo = min(X),  Xhi = max(X). 
Assign to each region a GMF and  
denote them as G1, G2, …., Gn.
Step 3.  Compute S = (Xhi - Xlo)/2N, so that the  
mean parameters of GMFs are: 
C1= Xlo,  C2 = C1 + S, ..., Cr = C1 + (r-1)S, ..., 
Cn = C1 + (n-1)S = Xhi . 
and variance parameters of GMFs are: 
Sigma_G1 = Sigma_Gn = Sigma1 ,  
Sigma_G2 = Sigma_G3 =, ..., = Sigma_G(n-1) =Sigma2.
Select two suitable values for Sigma1, Sigma2, so that 
two adjacent fuzzy regions partially overlap. 
Step 4.  Fuzzify all the crisp inputs and output. 
For any input Xki or output Yk compute the degree of membership in 
all Gaussian regions. 
0 < µGj

(Xki) = fj(Xki) = exp(-0.5.(Xki-Cj)
2/(Sigma_Gj)

2)  1. 
Say, for i = 1, k = 1, and for  j = 1, 2, 3, ..., n. 
Step 5.  Arrange all degrees of membership in an (n×1) column 
vector.  
Similarly, compute the degree of membership for i= 2, 3, 4 and  
for Yk, etc., when k = 1, and  j =1,2, 3, …,n; etc.  
Arrange them all in a column vector form of size (n×1). 
When all such column vectors each of size (n×1) are arranged side by 
side sequentially they result in a Mu-matrix of size {n×(imax+1)}. For 
four-inputs and one-output system the Mu-matrix is of size (n×5). 
Step 6.  Select the maximum value of degree of membership from each 
column and record the corresponding row number i.e. integer value of 
r, such that 0 <µGr

(Xki) = max(µGj
(Xki))  1,  j = 1, 2, 3, …, n and  1  r 

 n. 
Note the value of r from each column of the Mu-matrix, such that  
1  r = integer   n. This is the key step of the automated rule 
generation algorithm. Now create the fuzzy rule based on the r values 
and the corresponding degree of membership. 
Step 7.  Create the rule list and solve the rule conflict problems (if 
any) using the degree of rule. Also remove the redundant rule from the 
rule list (if any).
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Once the fuzzy rule base with well-consistent and non-redundant rules is 
determined, the final step is to check the quality of the rule base generated. For this 
purpose, the first 50% data from the remaining data sets (XIO matrix) are used as 
validation data and, thereafter, by applying the Mamdani rules inferencing 
mechanism described above, the corresponding crisp output values for the given 
input data sets are determined. The crisp values generated are then compared with 
the desired output data and, consequently, the SSE or RMSE values are computed 
for these validation data sets. If the computed values of SSE or RMSE are less than 
the acceptable limit, then the rule base generated is considered as final and is 
stored for the forecasting test. Otherwise, with finer or coarser partitioning of 
universes of discourse of inputs and outputs and adopting a similar procedure, a 
new rule base is built. 

Alternatively, after the rule generation, in the final step the defuzzification 
strategy recommended by (Wang and Mendel, 1992), usually the center of area 
strategy, can be selected and, consequently, the output control Y for given inputs 
(Xk1, Xk2, Xk3 ,Xk4) is determined by computing the degree of fulfilment of rule or, 
degree O of the output control corresponding to (Xk1, Xk2, Xk3, Xk4) as:  

µ l
Ol = µI l

1 (Xk1). µI l
2 (Xk2). µI l

3 (Xk3). µI l
4 (Xk4). (4.4)

where Ol denotes the output region of rule l, and I l
i represents the input region for 

ith component of the rule l. For example, 

µB2= µS1(X11). µCE(X12). µCE(X13). µB1(X14). (4.5) 

represents the degree of fulfilment of the Rule-1. The crisp output value y is then 
determined using the center average defuzzification formula 

1 1

M Ml l l
l l

l l
y y O O  (4.6) 

where yl is the center value of region Ol and M represents the number of fuzzy 
rules in the combined fuzzy rule base. 

4.5.3 Estimation of Takagi-Sugeno Rule’s Consequent Parameters 

Using Wang and Mendel’s approach, or it’s proposed modifications, the 
antecedent’s fuzzy sets of the Takagi-Sugeno rules similar to Mamdani rules can 
be determined easily. Once the IF parts (antecedents) of the Takagi-Sugeno type of 
fuzzy rules are determined, the linear rule’s consequent parameters of the Takagi-
Sugeno rule can be estimated by applying the least squares error (LSE) technique. 

In order to describe the LSE method for rule’s consequent parameter 
estimation, Takagi-Sugeno type of fuzzy rules of a multi-input single-output 
system are once again considered: 

R1: IF x1 is G
1

1 and ..... and xn is G
1

n
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THEN 1 1 1 1
0 1 1 n nTS x xy

R2: IF x1 is G
2

1 and ..... and xn is G
2

n

THEN 2 2 2 2
0 1 1 n nTS x xy

         : :    :  : : 

RM: IF x1 is G
M

1 and ..... and xn is G
M

n

THEN 0 1 1
M M M M

n nTS x xy

Therefore, for a given set of inputs the corresponding Takagi-Sugeno inference 
will be  

1 1 2 2

1
0 1 2

1

M l l M M
Ts Ts Ts Tsl

M Ml

l

y y y y
y  (4.7) 

where 
l
 is the degree of fulfilment or firing strength of the lth rule, which is 

computed for the n-(multiple) input system using the product operator as 

1 2
1 2

1
.l l l l

i n

nl
i n

i G G G Gx x x x  (4.8) 

Therefore,  

1 1 2 2
0

M M
TS TS TSy y y y , (4.9) 

where the normalized degree of fulfilment for lth rule is 

1 2

1

l l
l

M Ml

l

, (4.10) 

or the corresponding Takagi-Sugeno inference for sth training sample will be  

1 1 1 1
0 1 1_ _0 ns n ss s x xy

       2 2 2 2
0 1 1_ _ ......ns n ss x x  (4.11) 

       0 1 1_ _ .M M M M
ns n ss x x

Now, by appending 1 along with n inputs in XIes, which takes care of 0
l  from the 

rule consequent, the sth extended training sample is given as (4.12)  
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1_ 2 _ _1, , , ,s s s n sXIe x x x   (4.12) 

and the consequent’s parameters as  

0

0 1, , ,

l

Tl l l l
n

l
n

,  (4.13) 

then in the matrix form the corresponding Takagi-Sugeno inference, for 1 through 
N extended training samples, can be written as 

1 2 1
1 1 11 1 101

1 2 2
02 2 2 22 2 2

1 2
0

M

M

MM
N N N NN N N

XIe XIe XIey

y XIe XIe XIe

y XIe XIe XIe

 (4.14) 

 where the corresponding vectors and matrices are of the dimensions  

1, 1 , 1 1.Y N XIe N n M n M

It is, therefore  

Y XIe , (4.15) 

or, 

T T
XIe XIe XIe Y ,

or finally 

1
TTXIe XIe XIe Y . (4.16) 

Note that in this case the dimension of 

1 1 1 1M n N N M n .

For instance, when the rule base has M = 7 rules and the system has n = 4 inputs, 
the resulting dimension is  
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7 4 1 1 7 4 1 1 35 1N N .

and the resulting column vector   

1 1 1
0 1 0 1, , , ; ; , , ,

TM M M
n n .

So, it is to be noted that once the parameters of antecedent fuzzy sets (using the 
Wang-Mendel’s approach, or its modification, or by fuzzy clustering) are 
determined, which are required for computation of degree of fulfilment of each 
rule for a given set of (N training samples) inputs, the linear TS rule’s consequent 
parameters can be determined easily by LSE technique as described above. 

4.6 Forecasting Time Series Using the Fuzzy Logic Approach 

In the forecasting examples described below, the shifted values X(t + L) are the 
predicted values based on sampled past values of a time series up to the point t, i.e.
[X{t-(D-1)d}, X{t-(D-2)d}, ..., X(t-d), X(t)]. Therefore, the predictor to be 
implemented should map from D sample data points, sampled at every d time 
units, as its input values to the predicted value as its output. Depending on the 
availability of the time series data and on its complexity, the D, d, and L values are 
selected. In our case D = 4 and d = L = 6 have been selected, corresponding to a 
four-inputs system, and to a sampling interval of six time units.  

Hence, for each t > 18, the input data represent a four dimensional vector and 
the output data a scalar value 

 XI(t) = [X(t-18), X(t-12), X(t-6), X(t)]
 XO(t) = [X(t+6)]. 

Supposing that there are m input-output data sets, we generally use the first m/2 
input-output data values (training samples) for fuzzy rule generation and the 
remaining m/2 input data sets for verification of forecasting accuracy with the 
fuzzy logic approach. 

4.6.1 Forecasting Chaotic Time Series: An Example 

As an example, forecasting of a chaotic time series is considered in this section. 
The chaotic series are generated from deterministic nonlinear systems that are 
sufficiently complicated as they appear to be random, however, because of the 
underlying nonlinear deterministic maps that generate the series, chaotic time 
series are not random time series (Wang and Mendel, 1992). The chaotic series, for 
our experiment, is obtained by solving the Mackey-Glass differential equation 
(Junhong, 1997; MATLAB, 1998). Lapedes and Farber (1987) also used 
feedforward neural networks for the prediction of the same chaotic time series and 
reported that the neural network gave the best predictions in comparison with  
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Figure 4.4(a). Input and output domains partitioning by 17 GMFs for rule generation 

Figure 4.4(b). Forecasting chaotic series with fuzzy predictor with n = 27 GMFs 
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Figure 4.4(c). Forecasting chaotic series with fuzzy predictor with n = 27 GMFs 

Figure 4.4(d). Forecasting chaotic series with fuzzy predictor with n = 37 GMFs 
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Figure 4.4(e). Forecasting chaotic series with fuzzy predictor with n = 51 GMFs 

Table 4.1. Forecasting performance comparisons for various fuzzy predictors with 500 to 
1000 input data sets (evaluation data) for Mackey-Glass chaotic series 

Sl. No. No. of GMFs SSE RMSE 

1. 17 0.1252 0.0224, 

2. 27 0.0389 0.0125 

3. 37 0.0255 0.0101 

4. 51 0.0164 0.0081 

conventional approaches, like the linear predictive method and Gabor polynomial 
method, etc. Here, we apply the fuzzy predictor to forecast the future values of 
Mackey-Glass chaotic time series data that were directly obtained from MATLAB 
version 5.2 as “mgdata.dat” (MATLAB, 1998). 

From the numerical data of the chaotic series, a fuzzy logic system capable of 
forecasting the future values of the above time series was developed. For this 
purpose, neglecting the first 100 transient data points of the chaotic series, with the 
remaining data 1000 rows of the XIO matrix have been built, out of which the first 
500 rows (training data) are used for rules generation and the remaining 500 rows 
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(validation data) are used for verification of forecasting accuracy, and for all four 
inputs and for the output the domain interval [Xlo, Xhi]  [0.4, 1.4] have been 
selected. Four different fuzzy logic systems with 17, 27, 37, and 51 Gaussian 
membership functions (GMFs) have been investigated. 

For the fuzzy predictor, the Mamdani-type fuzzy rules were initially generated 
using the first 500 rows (training data) of the XIO matrix; thereafter, redundant and 
conflicting rules were removed from the rule list. For that purpose, only c1 = 0.4 
and cn = 1.4 were selected and the values c2, c3,..., cn-1 were calculated for equal 
divisions of all (n-1) intervals. For the first system, i.e. with n = 17 GMFs, a = 
0.08 and b = 0.04 were selected. Similarly, a = 0.08 and b = 0.02 were selected 
for the second and third systems (with n = 27 and 37 GMFs), whereas a = b =
0.02 were selected for the fourth (with n = 51 GMFs) fuzzy predictor. Figure 4.4(a) 
shows the partitioning of universes of discourse for the first input and output of the 
predictor with the n = 17 GMFs, and Figure 4.4(b) through Figure 4.4(e) show the 
results of forecasting, along with the forecasting errors, for the investigated 
systems. Note that, because of good prediction accuracy, forecasted series can 
hardly be distinguished from the original chaotic series except for Figure 4.4(b).  

The performance functions like SSE (0.5ET.E), with E as a column vector of 
errors and T indicating transposition of the E vector, and RMSE indicating the 
efficiency of the individual fuzzy system investigated, are also computed and listed 
in Table 4.1 for mutual comparison. The results from the Table 4.1 confirm the 
high suitability of the proposed approach, based on automatically generated fuzzy 
rules for forecasting of Mackey-Glass chaotic time series. From Table 4.1 it also 
follows that, when the number of GMFs is increased from 17 to 51, the forecasting 
accuracy is significantly increased. 

4.7 Rules Generation by Clustering  

Automated data driven rule generation, as described above, works considerably 
well for nonlinear time series modelling and forecasting. However, the fuzzy rule 
base generated in this way is generally very large, because each set of input-output 
pair generates a fuzzy rule. This is true even after the removal of redundant and 
conflicting rules from the rule base generated. For instance, using the first 500 
input-output data sets of Mackey-Glass chaotic time series and using 27 number of 
GMFs, which are used for partitioning of input and output universes of discourse, 
the generated fuzzy rules, after the removal of conflicting and redundant rules, are 
still of the order of 350. This definitely imposes a large amount of computational 
load for fuzzy inferencing. To avoid this, an alternative approach, based on a fuzzy 
clustering algorithm was proposed that, for instance, uses only a few fuzzy rules 
for nonlinear time series modelling and forecasting. 

4.7.1 Fuzzy Clustering Algorithms for Rules Generation 

Clustering algorithms are mathematical tools useful in identifying the natural 
groupings of data, based on common similarities, from a large data set to produce a 
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concise representation of a system’s behaviour. Most clustering algorithms are 
unsupervised and do not rely on assumptions common to statistical classification 
methods, such as the statistical data distribution. They are, therefore, very 
appropriate for situations where little a priori knowledge exists. The data 
classification capability of clustering algorithms has been widely exploited in 
pattern recognition, image processing, and nonlinear system modelling. In what 
follows, we will introduce the reader to the clustering theory and present some 
fuzzy clustering algorithms, based on the c-means functional. For an in-depth 
treatment of fuzzy clustering, readers may refer to the classical monograph by Jain 
and Dube (1988); for an overview of different clustering algorithms, refer to 
Bezdek and Pal (1992), Babuška (1996), and Setnes (2000). 

4.7.1.1 Elements of Clustering Theory 
Clustering techniques essentially try to group data samples in feature space and 
they form the basis of many classification and system modelling algorithms. They 
are applied to data that could be numerical (quantitative), qualitative (categorical), 
or a mixture of both. Our attention here will be focused on clustering of 
quantitative data, which might be observations of some physical process, such as 
time series data. It will be supposed that each observation consists of n variables, 
grouped into an n-dimensional column vector  

1 2, , , ,
T n

s s s ns sZ Z ZZ Z .

A set of N observations is described by  

1,2, ,sZ s NZ ,

and is represented by n N pattern matrix Z:

11 12 1

21 22 2

1 2

N

N

n n nN

z z z

z z z
Z

z z z

.

The rows and columns of the pattern matrix, in pattern recognition terminology, 
are respectively called features (or attributes) and patterns (or objects). The 
pattern matrix Z is also called the data matrix, and in control engineering, for 
example, each row of a data matrix may represent one of the process variables like
pressure, temperature, flow, etc., whereas the columns may indicate the time point 
of sampling. 

Clusters are usually defined as groups of objects mutually more similar within 
the same groups than with the members of other clusters (Bezdek,1981; Jain and 
Dube, 1988), whereby the term “similarity” should be understood as mathematical 
similarity, measured in some well-defined sense. In metric spaces, similarity is 
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often defined by means of a distance norm that is measured among the data vectors 
themselves, or as a distance from a data vector to some prototypical object or 
center of the cluster. The cluster centers are usually not known beforehand and are, 
therefore, determined simultaneously by the clustering algorithm while partitioning 
the data. The prototypes may be a vector of the same dimension as the data objects, 
and they can also be defined as geometrical objects, such as linear or nonlinear 
subspaces or functions. Data can reveal clusters of different geometrical shapes, 
sizes, and densities, such as spherical, ellipsoid, or as linear and nonlinear 
subspaces of data space. 

Various clustering algorithms have been proposed in the literature, and these 
can be classified according to whether the clusters – seen as subsets of the entire 
data set - are fuzzy or crisp. Clustering algorithms, based on classical set theory, 
classify the individual objects according to their belonging or not belonging to a 
cluster, which is known as hard clustering. Here, the partitioning of data is such 
that any particular object can be a member of only one particular subset of data or 
of a particular cluster. 

Fuzzy clustering algorithms, however, allow the objects to belong to several 
clusters simultaneously, but with different degrees of membership, which in many 
situations is more natural than hard clustering. For instance, in this case the objects 
on the boundaries between several clusters are not forced to belong fully to one of 
the classes, but rather are assigned membership degrees between 0 and 1, 
indicating their partial membership.  

On the other hand, the discrete nature of hard partitioning also causes 
difficulties with algorithms based on analytic functionals, since these functionals 
are not differentiable. Clustering algorithms may use an objective function to 
measure the desirability of partitions. Nonlinear optimization algorithms are used 
to search for local optima of the objective function. The concept of fuzzy partition 
is essential for cluster analysis, and consequently also for the identification 
techniques based on fuzzy clustering. 

4.7.1.2 Hard Partition  
A hard partition can be considered as a group of subsets formulated in terms of 
classical sets. The objective of hard clustering is to partition the given data set 

1 2{ , , , }NZ z z z  into c clusters, also called groups or classes. We initially 

assume that the number of clusters, i.e. c is known a priori, based on some prior 
knowledge about the dynamics of the system that generated the data set Z. Using 
classical sets, a hard partition of Z can be defined as a family of subsets 

1gA g c  with the following properties (Bezdek, 1981): 

1
,

0, 1 ,

0 , 1 .

c

g
g

g h

g

A Z

A A g h c

A Z g c

  (4.17) 
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The first of the above equations implies that the union of all subsets Ag contains 
all the data. The second and third equations respectively suggest that the 
intersection of the subsets must be a void set, i.e. subsets are disjoint, and none of 
the subsets is empty or contains all the data contained in Z. In terms of membership 
functions, a partition can be conveniently represented by the partition matrix: 

g s c N
U .

That is, the gth row of this partition matrix contains the values of the membership 
function g  of the gth subset Ag of Z. Therefore, it can be represented as 

11 12 1

21 22 2

1 2

N

N

c c cN c N

U  (4.18) 

It follows from the above equation that the elements of the U partition matrix must 
satisfy the following conditions: 

{0,1}, 1 ;1 ;gs g c s N  (4.19a) 

1
1, 1 ;

c

gs
g

s N   (4.19b) 

1
0 , 1 .

N

gs
s

N g c  (4.19c) 

The space of all possible hard partition matrices for Z, called the hard partitioning 
space (Bezdek, 1981), is thus defined by 

1 1
0,1 , , ; 1, ;0 , .

c N
c N

hc gs gs gs
g s

M U g s s N g

In the following, let us illustrate the hard partitioning concept by an example with 
the given data set 1 2{ , , , }NZ z z z , where N = 10. Suppose that the given data 

set is hard partitioned into three clusters A1, A2 and A3. The partition matrix U in 
this case may look like: 

1,1,1,0,0,0,0,0,0,0

0, 0, 0,1,1,1,0,0,0,0

0, 0, 0,0,0,0,1,1,1,1

U
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From the U matrix it is seen that the elements z1, z2, and z3 possibly belong to 
cluster A1 (as the first three entries in the first row are 1), and z4, z5, and z6 belong 
to cluster A2, whereas the remaining data elements z7 to z10 belong to cluster A3.
Here, note that the sum of each column of the partition matrix U is always 1. 

4.7.1.3 Fuzzy Partition 
A fuzzy partition can be considered as a generalization of the hard partition and 
this follows directly by allowing gs  to attain any real values within [0,1] 

(Babuška, 1996). Similar to hard partitioning the conditions for a fuzzy partition 
matrix are described by Ruspini (1970): 

0,1 , 1 ;1 ;gs g c s N  (4.20a) 

1
1, 1 ;

c

gs
g

s N  (4.20b) 

1
0 , 1 .

N

gs
s

N g c  (4.20c) 

Similar to hard partitioning, the gth row of the partition matrix U contains the 
values of the membership function g  of the gth subset Ag of Z. The fuzzy 

partitioning space for Z is the set  

1 1
0,1 , , ; 1, ;0 , .

c N
c N

fc gs gs gs
g s

M U g s s N g

Let us now illustrate the fuzzy partitioning concept by an example with the same 
data set 1 2{ , , , }NZ z z z , where N = 10, as used in the hard partitioning example. 

Suppose that the given data set is fuzzy partitioned into three clusters A1, A2 and A3.
The partition matrix U in this case may look like 

0.82, 0.90, 0.96, 0.20, 0.10, 0.02, 0.03, 0.05, 0.1, 0.02

0.05, 0.06, 0.02, 0.75, 0.85, 0.90, 0.17, 0.25, 0.3, 0.08

0.13, 0.04, 0.02, 0.05, 0.05, 0.08, 0.80, 0.70, 0.6, 0.90

U .

Here, the elements in the first row of the matrix correspond to the degrees of 
membership of the elements z1, z2, ..., z10 respectively in the cluster or subset A1.
Similarly, entries in the second row and third row of the U matrix represent the 
degrees of membership of the data elements z1, z2, ..., z10 in the clusters A2 and A3

respectively. In addition, the entries in the U matrix are not restricted to 0 and 1 but 
can take any real value within 0 and 1. Moreover, the sum of each column of the U
matrix is also equal to 1 in this case. If this restriction is relaxed, i.e. the sum of 
degrees of membership of any particular data element in the various clusters need 
not be 1, then we have possibilistic partition, a special case of fuzzy partition and 
very useful in identifying outliers. Outliers are data points that are neither a 
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member of any cluster nor are they in the boundary of any cluster, but they are far 
apart from any cluster. These can be easily detected from the partition matrix of a 
possibilistic partition, as the member element of a particular cluster will have 
degree of membership 1.0 and the boundary points of two clusters may have a 
degree of membership close to 0.5 for both the two clusters, whereas outliers may 
have degree of membership as low as 0.01 in all clusters, indicating that the said 
data point (probably noise) is far off from all clusters. 

4.7.2 Fuzzy c-means Clustering 
The fuzzy c-means clustering algorithm is one of the most popular clustering 
algorithms used for data-driven automated fuzzy rules generation. The 
minimization of the c-means functional (4.21) represents a nonlinear optimization 
problem that can efficiently be solved using genetic algorithms; here, however the 
method chosen is a simple Picard iteration through the first-order conditions for 
stationary points of (4.21), known as the fuzzy c-means (FCM) algorithm.  

The stationary points of the objective function (4.21) can be found by adjoining 
the constraint (4.20b) to J by means of Lagrange multipliers 

2

1 1 1 1
; , , 1 ,

c N N cm

gsA s gs
g s s g

gsJ Z U V D  (4.21)  

and by setting the gradients of J with respect to U, V and  to zero. It can be proven 
that if 2 0, , and 1,gsA g s mD  then , n c

fcU V M  may minimisz (4.21) 

only if 

2 1

1

1
,1 ;1 ;gs c m

gsA hsA
h

g c s N
D D

 (4.22a)  

and

1

1

; 1 .

mN

s
s

g mN

s

gs

gs

Z
v g c  (4.22b) 

It is to be noted that this solution also satisfies the remaining constraints (4.20a) 
and (4.20c). Equations (4.22a) and (4.22b) are first-order necessary conditions for 
stationary points of the functional (4.21). The FCM algorithm iterates through 
Equations (4.22a) and (4.22b). Sufficiency of (4.21) and the convergence of the 
FCM algorithm is reported by Bezdek (1980). Also, note that Equation (4.22b) 
gives Vg as the weighted mean of the data items that belong to a cluster, where the 
weights are the membership degrees in the clusters. This being the reason why the 
algorithm is called “fuzzy c-means.” The FCM algorithm is described next. 
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4.7.2.1 Fuzzy c-means Algorithm 
Given the data set 1 2, , , NZ Z Z Z , select the number of clusters 1 ,c N  the 

weighting exponent (also called fuzziness exponent) m > 1, the termination 
tolerance 0 and the norm-inducing matrix A. Initialize the partition matrix 
randomly, such that  

0l
fcU M .

Repeat for iterations l = 1, 2, 3, .... 

Step 1: compute the cluster prototypes or cluster centres (means) 

1

1

1

1
; 1 .

m
N

s
sl

g m
N

s

l
gs

l
gs

Z
g cv

Step 2: compute the distances: 

2 , 1 ;1 ;
T

l
gsA gs

l
s gZ A Z g c s Nv vD

Step 3: update the partition matrix  

 if 0,gsAD  for all g = 1, 2, 3, ...., c.

2 1

1

1
, 1 ;1l

gs c m

gsA hsA
h

g c s N
D D

,

else,

1
0 and 0,1 , with 1

cl ll
gs gs gs

g

until 

1 .l lU U

Listed below are a few general remarks on the fuzzy c-means algorithm. 
1. The “if and else” branch at step 3 takes care of singularity that occurs in 

fuzzy c-means when the distance term 0gsAD  for some Zs and certain 
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cluster prototypes vg. In such case, the membership degree cannot be 
computed at all and, therefore, zero is assigned to that gs  and the 

memberships are distributed arbitrarily among other clusters subject to the 
constraint that the sum of the degree of membership in each column of the 
U partition matrix must be one. 

2. The fuzzy c-means algorithm converges to a local minimum of the c-means 
functional. Therefore, different initialization may lead to different results. 

3. While steps 1 and 2 are straightforward, step 3 is a bit more complicated, as 
a singularity in the fuzzy c-means occurs when distance 0gsAD  for some 

Zs and one or more vg, though it is very rare in practice. 

4. In the above iterative optimization scheme used by fuzzy c-means loops 
through the estimates,  

  U(l-1) v(l) U(l)

and terminates as soon as  

  U(l) - U(l-1) < .

Alternatively, the algorithm can be initialized with v(0), loop through 

1 ,l l lv vU

and terminate when  

1l lv v .

The error norm (termination tolerance) in the termination criterion is 
usually chosen as  

l l
gs gs

gs
absMax .

Different results may be obtained with the same values of termination 
tolerance, since the termination criterion used in the algorithm requires that 
more parameters become close to one another. 

4.7.2.1.1 Parameters of Fuzzy c-means Algorithm 
The following parameters must be specified before the fuzzy c-means algorithm is 
executed: the number of clusters c, the fuzziness exponent m, the termination 
tolerance and norm-inducing matrix A. Moreover, the fuzzy partition matrix U
must be initialized. The choices for these parameters are now described next. 
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Number of clusters 
The total number of clusters c is the most important parameter, as the remaining 
parameters have little influence on the resulting partition: when clustering real data 
without any prior information about the structures in the data, one usually has to 
make assumptions about the number of underlying clusters. The clustering 
algorithm chosen then searches for c clusters regardless of whether they are really 
present in the data or not. Two main approaches to determining the appropriate 
number of clusters in the data can be distinguished: 

A. Validity measures  
Validity measures are scalar indices that assess the goodness of the partition 
obtained. Clustering algorithms generally aim at locating well-separated and 
compact clusters. When the number of clusters is chosen equal to the number of 
groups that are actually present in the data, it is expected that the clustering 
algorithm will identify them correctly. When this is not the case, misclassifications 
appear, and the clusters are not likely to be well-separated and compact. Hence, 
most cluster validity measures are open to interpretation and can be formulated in 
different ways. Consequently, many validity measures have been introduced in the 
literature (Bezdek, 1981; Gath and Geva, 1989; Pal and Bezdek, 1995). For the 
FCM algorithm, the Xie-Beni index (Xie and Beni, 1991) 

2

1 1

2
min

; ,

c N
m
gs s g

g s

s g
g h

Z v
Z U V

c Z v
 (4.23) 

has been found to perform well in practice. This index can be interpreted as the 
ratio of the total within-group variance and the separation of the cluster centers. 
The best partition minimizes the value of ; ,Z U V .

B. Iterative merging 
In the iterative cluster merging, one starts with a sufficiently large number of 
clusters and successively by merging clusters, that are similar (compatible) with 
respect to some well-defined criteria (Krishnapuram and Freg, 1992; Kaymak and 
Babuška, 1995), the number of clusters is reduced. One can also adopt the opposite 
approach, i.e. start with a small number of clusters and iteratively insert clusters in 
the region where the data points have a low degree of membership in the existing 
clusters (Gath and Geva, 1989). 

Fuzziness parameter 
The fuzziness exponent or weighting exponent m is a rather important parameter 
that is to be selected properly as well. This is because it significantly influences the 
fuzziness of the resulting partition. As m approaches to one, the partition becomes 
hard partition ( gs {0,1}) and vg are ordinary means of the clusters. On the other 

hand, as m , the partition becomes completely fuzzy ( gs  = 1/c) and the 
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cluster means are all equal to the mean of Z. These limit properties of fuzzy c-
means functionals are independent of optimization method used (Pal and Bezdek, 
1995). Usually, m is selected as 2. 

Termination criterion  
The FCM algorithm stops iterating when the norm of the difference between U in 
two successive iterations is smaller than the termination tolerance parameter. The 
usual choice of a termination tolerance is 0.001. The termination tolerance of 0.01 
also works well in most cases, while it drastically reduces the computing times. 

Norm-inducing matrix  
The shape of the clusters is dependent on the choice of the norm-inducing matrix A
in the distance measure. A common choice of the norm-inducing matrix A is the 
identity matrix I, which gives the standard Euclidean norm: 

2
T

gs s gs g vvD ZZ .

Another choice of the norm-inducing matrix A is a diagonal matrix that 
accounts for different variances in the directions of the coordinate axes of Z:

2
1

2
2

2

0 0

0 0

0 0 n

A

This matrix induces a diagonal norm on n . Finally, A can be defined as the 

inverse of the covariance matrix of Z: A = R -1, with 
1

1
.

N T

s s
s

R Z Z Z Z
N

Here, Z  denotes the mean of the data. In this case A induces the Mahalanobis 
norm on n . The norm influences the clustering criterion by changing the 
measure of dissimilarity. The Euclidean norm induces hyperspherical clusters 
(hyperspheres are surfaces of constant memberships). Both the diagonal and the 
Mahalanobis norm generate hyperellipsoidal clusters. With the diagonal norm, the 
axes of the hyperellipsoids are parallel to the coordinate axes, while with the 
Mahalanobis norm the orientation of the hyperellipsoids is arbitrary. A common 
limitation of clustering algorithms based on a fixed distance norm is that it forces 
the objective function to prefer clusters of a certain shape even if they are not 
present in the data.  

Initial partition matrix  
The partition matrix is usually initialized at random, such that fcU M . A simple 

approach to obtain such U is to initialize the cluster centers vg at random and 
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compute the corresponding U by computing the distance and, thereafter, using the 
last step of FCM algorithm. 

4.7.3 Gustafson - Kessel Algorithm 

In order to detect clusters of different geometrical shapes in one data set, the 
standard FCM clustering algorithm is extended by employing an adaptive distance 
norm (Gustafson and Kessel, 1979). In this case, each cluster has it’s own norm-
inducing matrix Ag, which yields the following inner-product norm: 

2 , 1 ;1 ;
g

T

ggsA g ss gZ v vD A Z g c s N  (4.24a) 

The matrices Ag are used as optimization variables in the c-means functional, thus 
allowing each cluster to adapt the distance norm to the local topological structure 
of the data. The objective functional of the Gustafson-Kessel algorithm is defined 
by: 

2

1 1
; , ,

g

c N m

gsAg
g s

gs DJ Z U V A  (4.24b) 

This objective function cannot be directly minimized with respect to Ag, since it is 
linear in Ag. To obtain a feasible solution, Ag must be constrained in some way. The 
usual way of accomplishing this is to constrain the determinant of Ag:

det , 0, .g g gA g  (4.24c) 

Allowing the matrix Ag to vary, with it’s determinant fixed, corresponds to 
optimizing the cluster’s shape while it’s volume remains constant. By using the 
Lagrange-multiplier method, the following expression for Ag is obtained 
(Gustafson and Kessel, 1979): 

1/ 1
det

n

g ggg FFA  (4.24d) 

where Fg is the fuzzy covariance matrix of the gth cluster given by  

1

1

; 1 .

mN T

g gs s
s

g mN

s

gs

gs

Z Zv v
F g c  (4.24e) 

Note that the substitution of Equations (4.24d) and (4.24e) into (4.24a) gives a 
generalized squared Mahalanobis distance norm, where the covariance is weighted 
by the membership degrees in U. The Gustafson-Kessel algorithm is given in next 
section. The Gustafson-Kessel algorithm is computationally more expensive than 
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FCM, since the inverse and the determinant of the cluster covariance matrix must 
be calculated in each iteration. 

4.7.3.1 Gustafson-Kessel Clustering Algorithm 
Given the data set 1 2, , , NZ Z Z Z , select the number of clusters 1 ,c N  the 

weighting exponent or fuzziness exponent parameter m > 1, the termination 
tolerance 0  and the cluster volumes g . Initialize the partition matrix 

randomly, such that  

0l
fcU M .

Repeat for iterations  l = 1, 2, 3, ... 

Step 1  compute the cluster prototypes or cluster centres (means) 
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1

1

1
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s
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l
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Step 2  compute the cluster covariance matrices 

( ) ( )
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Step 3  compute the distances 

1/ 12 det ,
g

T
n l

gggsA s

l
gs ggZ Fv vD F Z

  1 ;1 ;g c s N

Step 4  update the partition matrix: 

 for 1 s N

 if 0 for all 1, 2, , ;gsAD g c
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2 1

1

1
,1 ;1 ;

g g

l
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A A

else

1
0 and 0,1 , with 1

cl ll
gs gs gs

g
.

until 

1 .l lU U

4.7.3.1.1 Parameters of Gustafson-Kessel Algorithm 
The same parameters must be specified beforehand in the Gustafson-Kessel (GK) 
clustering algorithm as for the fuzzy c-means algorithm (except for the norm-
inducing matrix A, which is automatically adapted): the number of clusters c, the 
fuzziness exponent m, and the termination tolerance parameters. Additional 
parameters are the cluster volumes g . Without any prior knowledge, the cluster 

volumes is simply fixed at 1 for each cluster. Due to this constraint, the Gustafson-
Kessel algorithm can only find clusters of approximately equal volumes. This is a 
drawback of this setting. 

4.7.3.1.2 Interpretation of Cluster Covariance Matrix 
The cluster covariance matrix provides important information about the shape and 
orientation of the cluster. The ratio of the lengths of the cluster’s hyperellipsoids 
axes is given by the ratio of the square roots of the eigenvalues of the covariance 
matrix. The directions of the axes are given by the eigenvectors of covariance 
matrix. The Gustafson-Kessel algorithm can be used to detect clusters along linear 
subspaces of the data space. These clusters are represented by flat hyperellipsoids,
which can be regarded as hyperplanes. The eigenvector corresponding to the 
smallest eigenvalue determines the normal to the hyperplane, and can be used to 
compute optimal local linear models from the covariance matrix. 

4.7.4 Identification of Antecedent Parameters by Fuzzy Clustering 

Using the given data, the identification of antecedent parameters of the Takagi-
Sugeno model is usually done in two steps. In the first step, the antecedent fuzzy 
sets of the rules are determined. This can be done manually, from knowledge of the 
process, by interviewing the human experts, or by some data-driven technique, 
such as a neuro-fuzzy technique, or by the fuzzy clustering method described 
earlier, which produces a partitioning of the antecedent (input) space. Once the 
fuzzy antecedent parameters are determined, the LSE estimate described earlier is 
then applied in order to determine the consequent parameters of the Takagi-Sugeno 
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rules. After obtaining both the antecedents fuzzy sets and rule’s consequent 
parameters, the corresponding fuzzy rule base can be built easily. When 
observations have been obtained from a system or a process, an input matrix X and 
an output vector y can be constructed as follows: 

1 2 1 2, , , , , , ,
s s

T T

N NX x x x y y y y

where Ns is the number of training data samples available for fuzzy identification. 
Now, for correct selection of input and output variables, the unknown nonlinear 
function y f X  can be learnt from the data samples by means of regression 

techniques. The variables 1 2, , ,
T n

nx x x x and y  are called the 

regressor and regressand respectively. In order to determine the antecedent fuzzy 
sets of the Takagi-Sugeno rules, Babuška and Verbruggen (1995) proposed to 
apply either of the fuzzy clustering methods mentioned above in the Cartesian 
product space of X y  in order to partition the training data into characteristic 

regions, where the system’s behaviours are approximated by a local linear model 
(rules). The pattern matrix Z to be clustered is formed by X and y as follows: 

,TZ X y

Given the data Z and the number of clusters c, the fuzzy clustering algorithm can 
be applied to obtain the partitions of Z into c fuzzy clusters. A fuzzy partition can 
be represented as a sc N  matrix U, whose entries are 0,1gs  as described 

earlier. For the computation of the fuzzy partition matrix and the corresponding 
cluster prototypes (centers) GK clustering algorithm is usually applied, as it applies 
adaptive distance norms in order to detect clusters of different geometrical shapes, 
unlike the popular fuzzy c-means algorithm, which always identifies spherical-
shape clusters in the data because of it’s fixed distance norm. Because each cluster 
has it’s own distance norm, induced by the fuzzy covariance matrix, that allows to 
adapt the local structures of the data. This evidently makes Gustafson-Kessel 
clustering superior for identifying subspaces of data (hyperplanes) that can be 
effectively modeled by the rules in the Takagi-Sugeno model. 

Each cluster represents a certain operating region of the system, and the number 
of cluster centers or clusters c sought in the data equals the number of fuzzy rules 
implemented. Often, this number is not known a priori; thus, the optimum number 
of clusters is determined using suitable cluster validity measures. 

The membership functions of the fuzzy sets in the premise of rules are obtained 
from the fuzzy partition matrix U, whose (g,s)th element 0,1gs  is the 

membership degree of the input-output combination in the sth column of Z in 
cluster or data group g. To obtain the one-dimensional fuzzy set Ggj, the 
multidimensional fuzzy sets defined point-wise in the gth row of the partition 
matrix U are projected onto the space of input variables xj:
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1proj ,n
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where “proj” is the point-wise projection operator (Kruse et al., 1994). The point-
wise fuzzy sets Ggj are typically non-convex. However, the core and the 
corresponding left and right parts of the set can be recognized.  

Figure 4.5. Parametric function fitting (solid line) to obtain one-dimensional antecedent 
fuzzy sets from point-wise projection (dots) of rows of fuzzy partition matrix  

To obtain convex (unimodal) fuzzy sets, for the computation of 
gjG jx  for any 

value of xj, the fuzzy sets are approximated by fitting suitable parametric 
membership functions (say, Gaussian type) to the point-wise projection (Babuška, 
1996) as illustrated in Figure 4.5. After determination of the antecedent fuzzy sets, 
the LSE estimate is applied, as usual, to determine the rule consequent parameters. 

4.7.5 Modelling of a Nonlinear Plant  

In order to demonstrate the efficiency of the clustering-based fuzzy model, the 
second-order nonlinear plant (4.25) that was studied by Wang and Yen (1999) and 
Roubos and Setnes (2001) is considered here. 

1 , 2y k g y k y k u k ,

with,

2 2

1 2 1 0.5
1 , 2

1 1 2

y k y k y k
g y k y k

y k y k
 (4.25) 

The goal is to approximate the nonlinear component g(y(k-1), y(k-2)) of the 
plant with the fuzzy model. For this experiment, 400 data points were available, of 
which 200 samples of identification data were obtained with a random input signal 
u(k) uniformly distributed in [-1.5, 1.5], followed by 200 samples of evaluation 
data obtained by using a sinusoidal input signal.  
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Table 4.2(a). Cluster centers (V) generated by Gustafson-Kessel algorithm 

v1 for input u, or 
X1

v2 for input y, or 
X2

v3 for output g

-0.4099

-0.8820

1.1066

1.0024

-0.8681

-0.1326

0.2146

-0.3636

-0.0055

Table 4.2(b). Variance parameters of GMFs determined from fitting the projected data 

Serial number of 
antecedent GMFs 

For input u, or X1 For input y, or X2

First GMF 

Second GMF 

Third GMF 

2.1398

1.0178

0.9319

1.5698

1.6112

2.4221

Table 4.2(c). Consequents’ parameters of Takagi-Sugeno rules 

Theta0 Theta1 Theta2 

-0.4706

 0.5056 

-0.1839

0.0750

0.1282

0.4057

-0.0765

 0.1685 

 0.3783 

Here, we apply the Gustafson-Kessel clustering algorithm to construct the 
desired fuzzy model using the first two columns of the XIO = [u, y , g] matrix as the 
input data and the third column as desired output data, i.e. the data (pattern) matrix 
here is constructed as Z = [XIO]T. The first 200 (training) samples (rows of XIO 
matrix) were used for fuzzy rules generation by applying the Gustafson-Kessel 
clustering algorithm using the following parameter settings: number of clusters c = 
3, fuzziness exponent m = 2 and termination tolerance = 0.001. Accordingly, three 
clusters with cluster centers V = [v1, v2, v3] and partition matrix U of size 3 200
were obtained. Projecting the first two rows of the U matrix on to the input 
dimension and, thereafter, by fitting the Gaussian function of the form 

2 2exp 4 log(2) ( ) / ,iy x v three antecedent fuzzy membership functions for each 

input were obtained (Figure 4.6(a)).  
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Figure 4.6(a). GMFs (three antecedent fuzzy sets) for input u (top) and input y (bottom).

Figure 4.6(b). Actual output and fuzzy model predicted output with training data (top), 

Thereafter, using the antecedent fuzzy sets and LSE estimation on the training 
data Takagi-Sugeno-type fuzzy rules’ consequents were determined. Finally, the 
efficiency of the model was tested by applying the generated fuzzy rules on the 
evaluation data. The simulation results achieved are illustrated in Table 4.2(a) to 
Table 4.2(e) and in Figure 4.6(a) to Figure 4.6(c). 
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Figure 4.6(c). Performance of the Gustafson-Kessel clustering-based fuzzy model with 
evaluation data (top) and prediction error (bottom) 

Table 4.2(d). Simulation results for nonlinear plant modelling 

With training data With evaluation data 

SSE(train) = 0.3973 

MSE(train) = 0.0040 

SSE(eval.) = 0.1215 

MSE(eval.) = 0.0012 

It is to be noted that the fuzzy model generated used only three Takagi-Sugeno 
fuzzy rules and six antecedent fuzzy sets (for two inputs), which are much less than 
that generated by the Wang-Mendel method or its modified approach. 

4.8 Fuzzy Model as Nonlinear Forecasts Combiner 

The need to combine forecasts of a time series has been well understood for a long 
time. It has already been mentioned in Chapter 3 that not just any arbitrary 
combination of forecasts is decisive in providing an improved forecast, but it is 
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essential that it is a nonlinear combination of various forecasts of a given time 
series. The latter has been reconfirmed by many studies, which have revealed that 
only the nonlinearity provides the combination with the guarantee to produce better 
forecasts than either of the combination components separately. This is mainly 
because, here, we have a kind of synergic effect.  

In this section we describe an application example where a fuzzy model has 
been used as a nonlinear forecasts combiner. For this purpose, we consider once 
again the temperature series discussed in Chapter 3, along with its two forecasted 
series. The temperature series selected is a non-stationary, non-seasonal time 
series. Moreover, the original temperature series with 226 observations was 
obtained from a chemical process by temporarily disconnecting the controllers 
from the pilot plant involved and recording the subsequent temperature fluctuation 
every minute (Box and Jenkins, 1976).  

The two separate forecasts of the selected temperature time series were made, 
one by applying the Box-Jenkins ARMA/ARIMA method (Box and Jenkins, 1976) 
and the other by applying Holt’s exponential smoothing technique (Chatfield, 
1980). In order to utilize the fuzzy model as a nonlinear forecasts combiner, here, 
we used both the forecasted series as two inputs to the fuzzy model to be 
developed, and the original temperature series as the desired output from the fuzzy 
model. The two forecasted series and the original time series have been rearranged 
as the first, second and the third columns respectively of a HBXIO matrix. 
Thereafter, the first 150 rows from the HBXIO matrix were used as training data 
and the remaining rows, i.e. 151 to 224 rows of HBXIO matrix were used as test 
samples to evaluate the efficiency of the combination approach described (Palit 
and Popovic, 2000). It is to be noted that by applying conventional forecasting 
methods on the original temperature series we obtained only 224 data points in 
both cases.  

Using the modified and automated rule-generation algorithm, Mamdani-type 
fuzzy rules were generated from the training data based on the implemented n = 21 
GMFs, and fixing Xlo = 18, Xhi = 28, 0.4,a and 0.2.b  Care has been taken 
to make the rule base somewhat compact by eliminating the conflicting rules and 
unnecessary redundant rules. Thereafter, a nonlinear combination of forecasts with 
the fuzzy model was generated, based on the above rule base and utilizing only the 
input data from the validation data sets (see Figure 4.7(b)). Finally, the 
performance of the approach was measured by computing performance indices, 
such as SSE, RMSE etc., for the validation data set as illustrated in Table 4.3. 
From Table 4.3 it can be seen that the SSE and RMSE achieved with the proposed 
fuzzy model is much better than the individual forecast generated either by the 
Box-Jenkins method or by Holt’s exponential smoothing technique. The reported 
result obviously confirms the high suitability of the fuzzy logic approach as a 
nonlinear forecasts combiner. 
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Figure 4.7(a). Nonlinear combination of forecasts using fuzzy model (with training data). 
Dots: fuzzy model output; solid line: desired output (upper part), prediction error (bottom) 

Figure 4.7(b). Nonlinear combination of two forecasts using fuzzy model (with test data). 
Dots: fuzzy model output; solid line: desired output (upper part), prediction error (bottom) 
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Table 4.3. Performance of the fuzzy model generated as nonlinear forecasts combiner 

Sl.
No.

Forecasts  Data from 
HBXIO matrix 

SSE / RMSE 

1. Box and Jenkins 151–224 
(column-1)

SSE = 0.4516 

RMSE = 0.112 

2. Holt’s method 151–224 
(column-2)

SSE = 0.3174 

RMSE = 0.0933 

3. Fuzzy model 

(Mamdani), 21 GMFs 

1– 150 

(training data) 

SSE = 0.5155 

RMSE = 0.0832 

4. Fuzzy model 

(Mamdani), 21 GMFs 

151–224

(validation data) 

SSE = 0.1680 

RMSE = 0.0678 

4.9 Concluding Remarks 

In this chapter, various fuzzy models, such as the Mamdani model, the Takagi-
Sugeno model and the relational fuzzy model, along with their corresponding 
inferencing mechanisms have been described. As the fuzzy inferencing mechanism 
relies on a well-consistent set of fuzzy rules, in order to generate the proper output 
in response to an unknown input set from the universe of discourse, various rule-
generation algorithms based on Wang and Mendel’s approach, or it’s modification, 
and fuzzy clustering have also been presented in the chapter. The effectiveness of 
the fuzzy models generated has been tested on two application examples, namely 
the forecasting of chaotic time series and nonlinear plant modelling. In addition, a 
fuzzy model has also been applied as a nonlinear forecasts combiner. It is 
important to note that the primary objective of using a fuzzy model is to achieve an 
inspectable or interpretable model, unlike the black-box model of neural networks. 
However, it should be emphasized here that the fuzzy modelling approach 
described in this chapter rather primarily focuses on the function approximation 
accuracy than the inspectability of the model and, in fact, none of the methods 
presented in the chapter can guarantee model transparency issues. Therefore, the 
fuzzy model generated is eventually nothing but a replica of a neural-networks-like 
model, and needs to be treated further as discussed in Chapter 7, where the primary 
attention is paid to the improvement of model transparency.  
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5

Evolutionary Computation 

5.1 Introduction 

The study of evolutionary behaviour of biological processes has produced a 
constructive impact on development of a new intelligent computational approach 
for solving complex optimization problems in mathematics, natural sciences, 
engineering and in real-life in general. The algorithms developed under the 
common term of evolutionary computation are mainly based on selection of a 
population as a possible initial solution of a given problem. Through stepwise 
processing of initial population using evolutionary operators, such as crossover,
recombination, selection, and mutation, the fitness of the initial population 
steadily improves. Following this evolutionary concept, various computational 
algorithms have been elaborated, such as genetic algorithms, genetic
programming, evolutionary strategies, and evolutionary programming, that are 
capable of solving complex problems, where the traditional mathematical methods 
cannot be applied easily. Depending on the nature of the problem in hand, the most 
adequate algorithm is to be selected.  

The primary application area of evolutionary algorithms that we are interested 
in concerns the forecasting of time series data, but also evolving neural networks 
and fuzzy logic systems. It will be shown that the synergetic effects of 
combinations of different computational technologies – the neural networks, fuzzy 
logic, and evolutionary computation – help in designing the improved intelligent 
systems and also help in improving the accuracy and the convergence speed of 
evolutionary algorithms themselves. This will be discussed in Part 3 of the book, 
which is dedicated to the hybrid computational technologies. 

It is well known that evolutionary computation is a category of algorithms, 
based on Darwin’s idea of evolution of living creatures. According to this idea, 
every living creature has a single predecessor that has to adapt steadily to the 
changing environment in the attempt to survive. According to Darwin, the idea of 
adaptation is strongly connected with the principle of natural selection, because the 
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creatures that adapt best to the changed environment will be selected by nature to 
survive. 

5.1.1 The Mechanisms of Evolution 

The subject of evolutionary theory is actually the genetic evolution of individuals 
within a population. The population stores multiple solutions of the given problem, 
with each solution being a member of this population. 

Associated with each member is its fitness, which is simply a measure of how 
well this solution solves the problem. Throughout the search for the optimal 
solution, a survival of the fittest procedure is used, which means that a solution 
with a high fitness is chosen over one with a lower fitness. The main difference 
between individual evolutionary algorithms is the way in which new solutions (or 
offspring) are generated from the existing members. There are two possible ways: 
two solutions are mated to form two new solutions or each member of the 
population generates an offspring by mutation.

Genetic operators are operators (or mechanisms) that produce a change in the 
genetic code of genes. The most common of them is mutation in its various forms 
causing various effects like:  

Deletion, i.e. a part of the code is deleted. Deletions in genes usually cause 
genetic disaster.  
Duplication, i.e. a part of the code is actually duplicated. Again, this also 
causes some major problems. 
Cross-over, i.e. the physical exchange of parts of a gene for parts of 
another gene. This is more commonly known as the exchange of genetic 
material and, much like mutation, promotes variation in an individual. In 
fact, this is the principle way in which children often get a combination of 
genes from both parents.  
Reproduction, i.e. the most important genetic operation described below.  

In nature, there are two types of reproduction: asexual reproduction and sexual 
reproduction. Asexual reproduction is actually the splitting of a single individual 
into two new individuals, e.g. as with bacteria. In sexual reproduction, two 
individuals of the same species, the male and the female, produce an offspring. 
The key difference between these two types of reproduction is that sexual 
reproduction includes the exchange of genetic material of both parents, whereas 
asexual does not, because the daughter cells, produced by splitting into two new 
cells, are genetically identical with the original cells of the mother. Hence, in 
sexual reproduction the offspring is a combination of its parents, having some traits 
from its father and some from its mother, and even some traits that are the 
combination of traits from both mother and father.  

5.1.2 Evolutionary Algorithms 

The study of evolutionary behaviour of biological processes has produced a 
qualitatively new background knowledge and a constructive impact on 
development of new intelligent computational approaches to solving complex 
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optimization problems, valuable in mathematics, natural sciences, and engineering. 
The earliest attempts to map Darwin’s ideas on to real-life problems was made by 
John Holland and David Goldberg, who modeled many such problems. They 
developed classifier systems, which are the predecessors of evolutionary systems.
Thereafter, accelerated work on evolutionary methods across the world was started.  

The algorithms developed under the common term of evolutionary computation 
generally start with the selection of an initial population as a possible initial set of 
the problem solution. This is followed by stepwise iterative changing of the 
selected population by random selection and use – in each iteration step – of 
evolutionary operators like crossover, recombination, selection, and mutation in 
order to improve the fitness of initial individual population members. Although 
simple in principle, the evolutionary concept of computation has proven to be very 
efficient in solving complex application problems that are not easily solvable using 
traditional mathematical approaches.  

In the meantime, depending on the nature of the problem to be solved, adequate 
evolutionary algorithms have been developed, such as  

genetic algorithms (Holland, 1975), related to direct modelling of genetic 
evolutionary processes 
genetic programming (Koza, 1992 and 1994), an extension of genetic 
algorithms in which the population individuals are replaced by programs
evolutionary strategies (1973), which model the evolution of evolution by 
tuning the strategic parameters that control the changes in the evolutionary 
process
evolutionary programming (Fogel et al., 1966), based on simulation of 
adaptive behaviour of the evolution process 
differential evolution (Storn and Price 1995, 1996), a population-based 
search strategy for optimizing real-valued, multi-modal objective functions.

As shown in this chapter, evolutionary algorithms are a special category of random 
search algorithms. In contrast to traditional search algorithms like gradient 
methods, which become impractical with the growing size of the search space, 
evolutionary algorithms, because they are based on the population concept and are 
operating with the genetic terms and operators, retain more or less the same size of 
population over the generations and remain mathematically well manageable. 

5.2 Genetic Algorithms 

Genetic algorithms (GAs) are gradient free, parallel, robust search and 
optimization techniques based on the laws of natural selection and genetics. The 
GAs have confirmed their application power in solving practical problems which 
are generally ill-defined, complex, and with multimodal objective functions. This 
optimization technique is similar to its associated algorithms, such as simulated
annealing and other guided random techniques. GAs employ random search 
algorithms aimed at directed location of the global optimum of the solution. The 
algorithms are superior to the “gradient descent” methods that are not immune 



198 Computational Intelligence in Time Series Forecasting 

against being trapped in local minima. On the other hand, GAs differ from pure 
random search algorithms in that they, from the very beginning, search for the 
relatively “prospective” regions in the search space. 

Typically, GAs are characterized by the following features: 

genetic representation, i.e. encoding of the feasible solutions of given 
optimization problems 
a population of encoded solutions 
a fitness function that evaluates the optimality or quality of each solution 
genetic operators that generate a new population from the existing 
population 
control parameters. 

A typical execution of a GA involves the following steps: 

Random generation of an initial population X(t): = (x1, x2,  . . . , xN) with N
individuals at t = 0. 
Computation of fitness F(xj) of each individual xj in the current population 
X(t).
Checking whether the termination condition is met. 

1. If YES, then pick up the best individual, i.e. the one with the highest 
fitness value and stop the search process. 

2. If NO, then create new population X(t+1) with N new individuals, 
applying the reproduction, mutation and crossover genetic operators, 
from the current population X(t) and start the new iteration step with a 
fitness computation. 

In the recent past, GAs have been used, along with other evolutionary 
algorithms, to train neural networks (Harrald and Kamastra, 1997) and neuro-fuzzy 
networks (Palit and Popovic, 2000), as well as for the design of fuzzy-rule-based 
systems through fuzzy clustering (Klawonn, 1998), for identification, modeling 
and classification (Roubos and Setnes, 2001), etc. In the following, the application 
of binary-coded GA in training neuro-fuzzy networks is presented. The simple 
two-step approach that combines fuzzy clustering for initial modeling and a real-
coded GA for fine-tuning and optimization of the fuzzy rule base can be found in 
detail in Panchariya et al., (2004).  

The structure of the GA implemented for the neuro-fuzzy network training is 
shown in Figure 5.1, in which P(C), P(M), and P(R) stand for operators of the 
adaptive genetic algorithm (AGA) as described in Chapter 9. 

5.2.1 Genetic Operators 

In what follows, a short description of individual GA operators is given. 
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5.2.1.1 Selection 
Individuals or chromosomes are selected from the mating pool, based on a roulette
wheel (RW) selection procedure. This selection emulates the survival-of-the-fittest 
mechanism in nature. It is expected that a fitter chromosome will give rise to a 
higher number of offspring and thus will have a higher chance of surviving in the 
subsequent generation. There are many ways to achieve effective selection, 
including ranking, tournament, and proportionate schemes (Tang et al., 1996), but 
the key assumption is to give preference to fitter individuals. The RW selection 
procedure commonly used to implement the proportionate scheme can be described 
as follows. 

Sum the fitness of all population members, termed total fitness Fs.
Generate a random number r between 0 and 1 and multiply this by the total 
fitness, i.e.

 0 < r <1      and    0 < rFs < Fs  (5.1a) 

Pick up the ith population member whose fitness added to the sum of the 
fitness of the preceding population members is greater than or equal to rFs,

as expressed by

1

1

i

s i j
j

r f fF , popi N   (5.1b) 

5.2.1.2 Reproduction 
In the reproduction process, once an individual is selected, this is simply 
reproduced (copied) into the next generation’s population if a certain test condition 
is satisfied. For example, the individual j selected from the mating pool is simply 
copied into the next generation if a random number generated is greater than the 
probability of reproduction (a small number less than 1). If a new individual is 
generated through reproduction then the population counter is incremented by 1 
starting with a 0 value. Using the reproduction operator, only 20% of the total 
population is created for the next generation. 

5.2.1.3 Mutation 
Mutation is an operator that introduces variations into the chromosomes. The 
variation can be global or local. The operation occurs occasionally (usually with 
small probability P(M)) but randomly alters the value of the string position. In the 
mutation process, any particular bit location of an individual is changed to 1 if it 
was 0, or vice versa. Once an individual is selected, then the particular bit of the 
same chromosome is simply mutated if a certain condition is satisfied, i.e. if it 
passes the probability test condition. For example, the bit location 1 of an 
individual j will undergo mutation if a random number generated is greater than 
probability of mutation (a very small number less than 1). Otherwise, that 
particular bit remains unaffected. The same process is continued from bit location 
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1 to the last bit of the same individual. Since the probability of mutation is 
generally very low, only a very few bits may undergo mutation of an individual.  

If a new individual is generated through mutation then the population counter is 
incremented by 1, starting with pop0.2 N , where popN is the total number of the 

population in a particular generation. Otherwise the population counter remains the 
same. Using the mutation operator, only 30% of the population, in our case, is 
created for next generation (see Figure 5.1). 

Figure 5.1. Structure of the GA implemented for neuro-fuzzy network training 

Npop-counter = 0

Npopcounter = Npop ?

Generation = 0

Generate the initial
population randomly

Calculate the fitness of the
chromosomes

Terminate the GA run ?
Output the

best
chromosome

Chromosome selection for Genetic operation with probability
P(C), P(M), P(R)  for crossover, mutation, reproduction resp.

Select two
chromosomes

through RW

Select one
chromosome
through RW

Select one
chromosome
through RW

Produce two new
offspring through

crossover

Produce one new
offspring through

mutation

Produce one new
offspring through

reproduction

Inset two new
offspring into new

population

Inset the new
offspring into new

population

Inset the new
offspring into new

population

Npop-counter = ++2 Npop-counter = ++1 Npop-counter = ++1

Genr = Genr+1

Yes

No

Yes

No



 Evolutionary Computation 201 

5.2.1.4 Crossover 
Crossover is a recombination operator that combines subparts of two parent 
chromosomes to produce offspring that contain some parts of both parents’ genetic 
material. A crossover probability term P(C) is set to determine the operation rate. 
Many GA practitioners consider the crossover operator to be the determining factor 
that distinguishes the GA from all other optimization algorithms.  

The power of a GA arises from crossover, which causes a structured, yet 
randomized exchange of genetic materials between solutions, with the possibility 
that “good” solutions can generate the “better” ones. In the crossover process, two 
individuals called parent 1 and parent 2 are required. A crossover operation 
between parent 1 and parent 2 takes place with respect to a particular bit location 
(called the crossover point) selected randomly and the portions of the 
chromosomes beyond this point are exchanged to form offspring. Hence, a 
crossover generates two new individuals of the next generation.  

In our experiment, the best individual or chromosome from all generations is 
always selected as parent 1. Parent 2 is selected through the RW selection 
procedure from the mating pool. The crossover operation between two individuals 
takes place if a certain condition is satisfied. For example, two individuals undergo 
a crossover operation if a random number generated is greater than the probability
of crossover (a small number). Otherwise, both individuals remain unaffected. If 
two new individuals are generated through crossover, then the population counter 
is incremented by 2, starting with pop0.5 N . Otherwise the population counter 

remains the same. In our case, using the crossover operator, only 50% of the 
population is created for the next generation (see Figure 5.1). 

5.2.2 Auxiliary Genetic Operators 

In addition to the above standard genetic operators, the following operators are 
also used in the GA experiment. 

5.2.2.1 Fitness Windowing or Scaling 
Regulation of the number of copies of superfit or extraordinary individuals is 
especially important in small-population GAs. At the beginning of the GA runs it is 
common to have a few extraordinary individuals in a population of mediocre 
colleagues. However, if left to the normal proportionate selection rule, say to the 
RW, the extraordinary individuals would take over a significant proportion of the 
finite population in a single generation, and this is undesirable, as it leads to 
premature convergence. This is because without the fitness scaling during the 
matured run of the GA most of the individuals may converge and maintain a small 
diversity, giving rise to a small difference between their fitness value even though 
the GA run may not have located the desired global optimum. Therefore, the 
crossover operation in this case produces new offspring practically without much 
improvement in their fitness value during the matured run of the GA. Only the 
mutation operator tries to maintain a small diversity and explores the new region 
randomly. As a remedy for this premature convergence, fitness scaling or fitness 
windowing can generally be applied. This prevents any super-fit individual from 
always taking over and suppressing the lower fitness individual during the RW 
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selection. Hence, scaling involves a readjustment of fitness values to sustain a 
steady selective pressure in the population and to prevent the premature 
convergence of the populations.  

Various techniques are available for fitness scaling or fitness windowing. Let 
us assume that the objective value of the worst chromosome in the population is fw,
and that each chromosome can be assigned a fitness value proportional to the cost 
difference between the chromosome i and the worst chromosome w, i.e.

i f i wk f fV k  (5.2) 

where fi is the objective value or raw fitness of ith chromosome, fw is the raw 
fitness of the worst chromosome, k and kf are two constants. If a maximization 
problem is encountered, then a positive sign is adopted in Equation (5.2), whereas 
for the minimization problem negative sign is adopted. In our experiment we set 
the value of k = 10 and kf = 2. 

Alternatively, the fitness scaling can be implemented using linear scaling, i.e.
the linear relationship between f and V 

i ia bfV  (5.3) 

where f is the raw fitness and V the corresponding scaled fitness. The coefficients a
and b may be chosen in a number of ways; however, in all cases, the average 
scaled fitness is equal to the average raw fitness, i.e. Vavg = favg.

In the following example we use Vmax = Cmult fmax, select Cmult = 2, and Vmin = 
fmin. Towards the end of a GA run, this choice of Cmult stretches the raw fitness 
significantly. In turn, this may cause difficulty in applying the above linear 
relationship, when we cannot scale to the desired multiple Cmult; in this case, 
scaling is performed still keeping Vavg = favg and then stretching the fitness until the 
minimum value maps to zero, i.e. fmin = 0. The entire scaling procedure is 
performed in three routines, namely pre-scale, scale, and scale-pop. This includes 
calculation of fmax, fmin, favg, etc.

Now, we check the following relation (Goldberg,1989):  

mult multmin avg max 1f f fC C . (5.4) 

If the last relationship holds, then the calculation of a and b will be  

mult avg max avg1a f f fC   (5.5) 

avg1b a f .  (5.6) 

Otherwise, if relationship (5.4) does not hold then calculation of a and b will be 
as follows: 



 Evolutionary Computation 203 

01001000 01111000 11001100 010011

01001000 01111000

Chromosome

Genes from chromosome

0 1 0 0 1  Gene elements

01100101

GA Binary Coding

2.5673 0.1492 1.4352 0.1191370.12

2.5673 0.1492

Chromosome

 Gene / elements

GA Real Coding

avg avg mina f f f  (5.7) 

avg1b a f  (5.8) 

Once the values of a and b are calculated, the scaling is done as per Equation 
(5.3). In order to avoid the division by zero situation, when the denominator of 
(5.5) and (5.7) are close to zero during the matured run of the GA, a very small 
constant (k1) of the order of k1 = 0.0001 can be added to their denominators. 

5.2.3 Real-coded Genetic Algorithms 

Genetic algorithms, being gradient-free and parallel optimization algorithms, have 
immense advantages over the conventional search methods. 

Figure 5.2.  Coding in genetic algorithms 

Genetic algorithms, like other parallel optimization algorithms, use a 
performance criterion for evaluation and a population of possible solutions to 
search for a global optimum (Michalewicz, 1994). In each search step, the 
algorithms select the prosperous solutions and manipulate them using appropriate 
genetic operators to achieve new, and possibly better solutions. The manipulations 
are carried out on chromosomes in which the parameters of possible solutions are 
encoded. In each generation of the GA, the new population replaces the solutions 
in the population that are selected for deletion.  

The chromosomes can be represented or encoded either by binary values 
(Goldberg, 1989) or by real numbers (Michalewicz, 1994). The genetic algorithms 
with binary coded chromosomes, when applied to multidimensional, high-precision 
or continuous complex problems, are less efficient because, in such situations, the 
bit-strings can become very long. Furthermore, CPU time is lost for the conversion 
between the binary and real representation. Here, other alphabets, like real-coding, 
can favourably be applied to parameters’ or variables’ presentation in the 
continuous domain of values.  
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For instance, in real-coded GAs the parameters (such as mean and variance 
parameters of Gaussian membership functions, and singleton rule consequents in 
the training of a neuro-fuzzy network) or the variables appear directly in the 
chromosomes (see Figure 5.2) and are modified using special genetic operators. 
Various real-coded GAs were recently reviewed by Herrera et al. (1998). The main 
aspects of the proposed GA are discussed below, and implementation for compact, 
transparent and accurate fuzzy models is also summarized. 

5.2.3.1 Real Genetic Operators 
Two classical operators, simple arithmetic crossover and uniform mutation, and 
four special real-coded operators are used in this GA application. These operators 
have been successfully applied by Michalewicz (1998), Setnes and Roubos (1999), 
and Roubos and Setnes (2001).  

In the following, 0,1r  is a random number (uniform distribution), g = 0, 1, 2, 

..., G is the generation number, l = 1, 2, 3, …, Npop is the chromosome number in a 
generation, Sa and Sb are two chromosomes selected for operation, chrom1, 2, ,k L

is the position of an element in the chromosome, and maxmin,k kaa  and maxmin,k kbb

are the lower and upper bounds of the parameter encoded by the kth element of 
chromosomes Sa and Sb, respectively. 

5.2.3.1.1 Selection Function 
The purpose of the selection function is to create a steady evolutionary pressure; 
this, to some extent, favours the well-performing chromosome to have a higher 
chance of survival. The RW selection method is used to select cn  chromosomes for 

various genetic operations (Michalewicz, 1994). The chance of winning on a spin 

of the RW is given by 
pop

1

N

l l
l

f f , implying that the higher the ratio of fitness fl of 

the chromosome Sl is with respect to total fitness of all chromosomes in the 
population, then the larger is the chance that chromosome Sl will be selected 
through the RW. The fitness fl of the chromosome Sl is defined as  

2
1 , 1, 2, ,l l popf J l N ,

where Jl is the performance of the model encoded in chromosome lS  measured in 

terms of the mean-squared error (MSE): 

2

1

1
ˆ

sN

i i
is

J y y
N

,

where y is the desired output, ŷ  is the model output, and Ns is the number of 
training samples. Notice that because of the reciprocal form and square term in 
right-hand side of the fitness function, a small difference in MSE values will be 
greatly amplified, i.e. if the MSE difference between two chromosomes is 0.1 then 
the corresponding fitness difference will be 100. The inverse of the selection 
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function is used to select chromosomes for deletion, i.e. cn  old chromosomes are 

deleted and the population is refilled by cn  new chromosomes that are formed by 

selection. The best chromosome is always preserved in the population (elitist 
selection).

The probability that a selected chromosome will undergo a crossover operation 
is 95%, whereas the probability of mutation is selected as 5%. When a 
chromosome is selected for crossover (or mutation), one of the crossover (or 
mutation) operators described below is applied with equal probability. 

5.2.3.1.2 Crossover Operators for Real-coded Genetic Algorithms 
For crossover operations, the chromosomes are selected in pairs (sa, sb):

Simple arithmetic crossover, in which g
as  and g

bs  are crossed over at the kth 

position such that the resulting two offspring are:  

chrom

1
1 1, , , , ,g

k k La a a b bs  and 
chrom

1
1 1, , , , ,g

k k Lb b b a as ,

where k is selected randomly from {2, 3, ..., (Lchrom -1)}. 

Whole arithmetic crossover, in which a linear combination of g
as  and g

bs
results in  

1 1g g g
a a br rs s s   and  1 1g g g

b b ar rs s s .

Heuristic crossover, in which g
as  and g

bs  are combined such that  

1g g g g
a a b ars s s s   and  1g g g g

b b a brs s s s .

It is to be noted that the heuristic crossover described above is very similar to 
the trial vector of differential evolution of type one (DE1; see Section 5.5), except 
for r, which is a random number within 0 to 1 here, whereas in DE1 it is a constant 
within the same 0 to 1 range. 

5.2.3.1.3 Mutation Operators 
Similar to crossover, there are various mutation operators. However, for the 
mutation operation only one chromosome is selected through the RW. 

Uniform mutation, in which a randomly selected element ka ,

chrom1,2, , ,k L  is replaced by ka , which is a random number in the range 
min max,k ka a . The resulting chromosome is 

chrom

1
1, , , ,g

a k Ls a a a .

Multiple uniform mutation is a uniform mutation of n randomly selected 
elements, where n is selected at random and chrom1,2, ,n L .
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Gaussian mutation, in which all elements of a chromosome are mutated 
such that 

chrom

1
1, , , , ,g

a k Ls a a a  where k k kfa a  and kf  is a random 

number drawn from a Gaussian distribution with zero mean and an 

adaptive variance 
max min

3
k k

k

G g a a
G

. It can be seen that k

decreases as the generation counter g increases. Therefore, parameter 
tuning performed by a Gaussian mutation operator becomes finer as the 
generation counter g increases. 

5.2.4 Forecasting Example 

In this section we briefly describe a binary-coded GA that can be used to train a 
neuro-fuzzy system that will be considered once again in Chapter 6. For 
convenience we restrict our discussion to a Takagi-Sugeno-type neuro-fuzzy 
network, but with singleton rules consequent only, which has been used 
extensively by Wang (1994) for a variety of identification and modeling 
applications. Furthermore, the fuzzy logic system selected is based on GMFs, the 
product inference rule and a weighted-average defuzzifier. Mathematically, the 
Takagi-Sugeno-type fuzzy logic system selected can be written as  

1 1

M M
l l l

l l
y y , where  2 2

1
exp

n
l l l

i ii
i

x c

with 

   i = 1, 2, ..., n; and   l = 1, 2, ..., M.

Here, we assume that , 0 and ll l
i iiU y Vc , where Ui and V are the input and 

output universes of discourse respectively. 
The corresponding lth rule of the fuzzy logic system can be written as follows: 

Rl: If x1 is 1
lG and x2 is 2

lG and ... and xn is l
nG Then  y is y l

where xi with i = 1, 2, ..., n represent the n number of inputs to the system, l = 1, 2, 
..., M are the M number of fuzzy rules that construct the fuzzy system, l

iG  with i =
1, 2, ..., n and l = 1, 2, ..., M are the GMFs with corresponding mean and variance 
parameters  andl l

i ic respectively that partition the ith input domain, and yl

represents the (singleton) output from the lth rule. It will be shown in Chapter 6 
that a similar fuzzy system can be represented as a three-layer multi-input single-
output feedforward network form. Because of neuro implementation of fuzzy logic 
systems, the same feedforward network actually represents a Takagi-Sugeno-type 
neuro-fuzzy network.  

Given a set of N input-output training samples of the form ,p pX d , where the 

input pattern 1 2, ,...,p np p p
nX Ux x x  and the corresponding desired output 
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pd V  and with p = 1, 2, ..., N, the objective is to determine the fuzzy logic 
system described above such that the performance function of the network, i.e. sum 
square error (SSE) is minimized by optimal settings of the network’s free 
parameters ,l l

i ic  and yl. The SSE of the network is defined as 

2
T

1
0.5 0.5 .

N
p

p
S e E E

where, p p pe y d , represents the approximation error of the network and yp

represents the output y of the network due to the presentation of pth input pattern 
X

p
. We further assume that M, which corresponds to the number of implemented 

GMFs for the partitioning of the input domain and also the number of implemented 
fuzzy rules, is already given. Therefore, in order to train the network, i.e. for the 
optimal settings of the network’s free parameters, the binary-coded GA can be 
applied.

For this purpose all the free parameters of the network are encoded in a binary 
bit string or chromosome. For M fuzzy rules and n inputs to the system the total 
number of mean parameters plus variance parameters of the GMFs along with 
singleton rules’ consequents will be of size 2 1M n M . Therefore, for a 

network with n = 2 inputs and with M = 5 rules, each chromosome must encode 
2 5 2 5 1 25  parameter values.  

Now if each parameter (say mean parameter of the GMF) of the network is 
represented by Np bits, which include the first one bit as a sign bit, followed by Nc

characteristic bits and Nm mantissa bits, then Np = (1 + Nc + Nm) and in this case Np

= 12 bits is selected.  
Therefore, the entire bit length of each chromosome will be 

p2 1L M n M N  = 300 bits. For example, if a parameter l
ic  assumes a 

decimal value -2.4256, then the first digit (2) before the decimal point is known as 
the characteristic part and the remaining four digits (4256) after the decimal point 
represent the mantissa part. Therefore, in order to represent any decimal number 
within +3.99 to -3.99 we can use a 12-bit binary number, where the first bit, say 0, 
will represent the “+ve” sign and 1 will represent the “-ve” sign, followed by the 
next two bits, which can represent only four decimal numbers 0, 1, 2 or 3, and the 
remaining nine bits represent the mantissa part.  

For instance, the 12-bit number (1111  1111  1111) can represent the parameter 
value (1*21+ 1*20 + 1*2-1 + 1*2-2 + ... + 1*2-9) = -3.9980, whereas the 12-bit 
number (0111  1111  1111) represents the decimal number +3.9980. Similarly, any 
other combination of such 12 bits will represent any number between -3.9980 and 
+3.9980.  

Alternatively, the parameters within the above range can be encoded as 
equivalent binary numbers as follows. Suppose the number -2.55 or +2.55 has to be 
encoded into the equivalent 12-bit binary number, then just represent the -255 as 
(1000  1111  1111) and similarly +255 as (0000 1111 1111), neglecting the 
position of the decimal point during the encoding. However, during decoding 
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multiply all the decoded numbers by 0.01, which will once again set all the 
parameters with signs and decimal points. In the following example, however, the 
first kind of encoding was found to give better results. 

Therefore, for a chromosome (binary string) of total bit length L, the first 
M*n*Np bits represent the mean parameters (of the GMFs) in the order of each 
rule, and the next M*n*Np bits similarly represent the variance parameters of the 
GMFs; lastly, the remaining M*1*Np bits represent the M centres of fuzzy regions 
(singleton consequents). It is assumed that the total number of populations Npop (i.e.
total number of chromosomes in each generation) is fixed and is selected as 20 for 
our experiment.  

Hence, at the beginning of the GA run, Npop = 20 chromosomes or binary 
strings, each of length L bits, are generated randomly, which all represent the 
potential solutions of the network optimum parameter settings. Then the fitness of 
each chromosome is computed as the reciprocal of the SSE of the network for a 
given set of network training samples. Therefore, mathematically, the fitness is 
computed as 

 Fitness = (1/ SSE). 

In order to compute the fitness function of each chromosome, the binary data are 
decoded and rearranged into the corresponding parameter matrix of mean, variance 
and centres of fuzzy regions; the SSE, and hence the fitness, is computed for the 
above parameter values.  

Figure 5.3. Training of neuro-fuzzy network with binary-coded GA 

Once the fitness values are computed for all the chromosomes they are 
arranged in descending order. If the best fitness is greater than or equal to the 
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a

+

bc

LISP program chunk: a+b*c

desired fitness, then the corresponding chromosome is picked and, thereafter, is 
decoded into network parameter values. The network parameters generated are the 
final output of the GA run and a further GA run is not required (Figure 5.1). 
However, if the best fitness is less than the desired fitness, then the GA run is 
further continued as per Figure 5.1. Once the fitness values are all arranged in 
descending orders, the best 70% population are collected to form the mating pool 
in this example. Now, from the mating pool, the next-generation populations are 
created by applying the various genetic operations as described earlier in this 
chapter. 

In order to test the efficiency of the GA-based neuro-fuzzy network training the 
Mackey-Glass chaotic time series was considered. The network in this case, as 
usual, had four inputs and only five rules were implemented. As described above, 
only 20 populations were selected in each generation. It can be seen from the 
Figure 5.3 that in only a few generations the GA could improve the fitness function 
to 8.4149, which corresponds to SSE = 0.1188 or MSE = 0.0012. However, 
because of the very slow progress of the generation run, the GA run was 
terminated after only a few generations. If a higher fitness value (say, a few 
hundred) is required, then the GA run may have to be continued for several 
thousands of generations so that the network can correctly approximate the 
nonlinear chaotic time series model.  

5.3 Genetic Programming

Koza (1992) proposed an evolutionary algorithm for solving intelligent 
computational problems by automated generation of computer programs required 
for problem solution. He viewed the new algorithm as a model for machine 
learning in the space of programs and, therefore, named it genetic programming.

Figure 5.4. Example of a LISP program “a + b*c”

Instead of operating with individuals, genetic programming operates with the 
computer programs and uses computer languages, preferably functional 
programming languages, for its implementation. Functional programming 
languages are based on syntax suitable for presenting parse trees used in genetic 
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+

1 2 IF

> 3 4

Time 10

Tree structure for ( + 1 2 ( IF ( > Time 10 ) 3  4 ))

programming algorithms. This is due to the tree forms of LISP S-expressions 
which are equivalent to parse trees. For example, the LISP program chunk “a+b*c”
is presented as a parse tree in Figure 5.4.  

Koza gives a program example that presents the LISP expression  

 (+ 1 2 (IF (> TIME 10) 3 4)) 

as the corresponding tree structure (Figure 5.5). 

Figure 5.5. Tree structure of a LISP expression (+ 1 2 ( IF ( > TIME 10) 3 4))

Genetic programs run by executing program induction, i.e. they automatically 
learn within the search space what programs are required in order to improve the 
problem solution and in this way finally find the best one. The search space here is 
the space of all possible programs, including the user-defined function set 
(programming or arithmetic operations, mathematical, logic, and other domain-
specific functions) and the terminals set (containing variables and constants 
appropriate to the problem domain). While searching for the best solution, the 
genetic programming algorithm makes use of the statistical closure property of 
functions to accept as arguments the function return values of any other functions 
and the data from the terminal set. 

5.3.1 Initialization 

The first operational step of genetic programming is its initialization, which mainly 
includes generation of the initial population, i.e. of the random composition of the 
function and terminal sets. In fact, at this point a collection of random trees is 
generated representing the initial program configurations. Later, the trees will be 
the subject of specific successive handling by genetic operators (reproduction, 
crossover, etc.) They are generated by firm allocation of the function root node. 
Thereafter, the children are created and a recourse through the tree carried out 
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during which the functions and terminals are randomly picked from their sets, until 
all branches end in terminals. 

5.3.2 Execution of Algorithm 

Once the initial population is obtained, the execution of the kernel algorithm 
procedure starts with the execution of all programs of the initial population 
generated, assigning the fitness values according to the fitness measures. 
Thereafter, a new population of programs is created through  

reproduction of existing programs and by their copying into a new 
population 
crossover of new programs generated from existing programs by genetic 
recombination of their randomly chosen parts, and by executing the 
crossover operation on two recombined programs 
mutation of a randomly chosen part of the program created from an 
existing program.

After the run of genetic programming the best computer program in the population 
is, for the time being, considered as the best, or nearly best one for the problem 
solution. The program run can be finished or continued in order to check whether a 
still better program can be found. 

However, it should also be mentioned here that, like in genetic algorithms, the 
mutation operation is very sparingly used. 

5.3.3 Fitness Measure 

So far, we have not considered one of the most principal issues in genetic 
programming applications, i.e. the fitness measure. It is a tool that helps calculate 
how well the individual programs of the population contribute to the evolutionary 
progress of finding the problem solution. In practice, the fitness measure is 
determined subjectively, so that it is viewed as a more obscure action than as an 
exact definition. Also, formulation of the fitness measure is strongly problem 
dependent. For the majority of problems it is understood as the error delivered by 
the programs after their execution. This is true for every program run, so that it is 
expected that the initial programs will most probably produce the lowest fitness 
value, but some among them could have higher values than the rest of the 
population. This triggers the evolutionary process. The offspring population, after 
undergoing treatment through genetic operational steps, could replace the parent 
population and undergoes a fitness check that is the basis for the next evolutionary 
step. This continues until the best solution of the problem is found. 

5.3.4 Improved Genetic Versions 

Koza (1994) reported about a second, amended version of genetic programming 
capable of evolving multipart programs by integrating the reusable, parameterized 
subprograms into the main program. The subprograms are termed automatically 
defined functions. Each such program can contain function defining branches,
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which are capable of communicating with the automatically defined branches, and 
result-producing branches, and are also capable of calling the automatically 
defined functions. Koza (1994) has shown that genetic programming with 
automatically defined functions is scalable, enabling genetic programming to 
determine the size and the shape of the problem solution automatically (i.e. of the 
program tree).  

However, when multipart programs and automatically defined functions are 
integrated, the problem arises as to how to tailor the architecture of the evolved 
programs. This problem has been solved through dynamic evolutionary selection 
of the architecture of the overall program while running the genetic programming.  

5.3.5 Applications 

Application examples of genetic programming are numerous. Apart from abundant 
mathematical applications, such as applications in symbolic regression, many 
practical applications have been reported in engineering, particularly in pattern 
classification, vehicle control, robotics, etc. For the reader, of direct interest is 
genetic programming application in time series prediction (Santini and Tettamanzi, 
2001), where two problem solution strategies have mostly been applied:  

a neural network model has been optimally tuned by genetic programming 
(Zang et al., 1997) 
appropriate programs have been evolved using genetic programming for 
computing the future values of a given time series, given its last values 
(Yoshichra et al., 2000).

The first strategy belongs to the category of evolving neural networks using 
evolutionary computation in general, which will be treated in detail in Part 3 of the 
book. In the following, our attention will be focused on the strategy used by Santini 
and Tettamanzi (2001), mainly achieved by 

evolving the individuals made up of some different expressions, one for 
each prediction step 
developing of special crossover and mutation operators adapted to the 
generated individuals of population 
calculating the fitness based on given time series data. 

Mulloy et al. (1996) used the genetic programming approach in the prediction of 
chaotic time series.  

5.4 Evolutionary Strategies 

Evolutionary approaches that are very similar to genetic algorithms are the 
evolutionary strategies developed by Rechenberg and Schwefel (Rechenberg, 
1973) while working on the design of an optimal jet nozzle that produces the most 
powerful propulsion at the lowest fuel consumption. They came to the idea of 
developing a new solution concept that starts with commercially available jet 
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nozzles and, using a genetic evolution process, ends with finding the optimal 
nozzle shape. The solution concept used by them was termed evolutionary 
strategy.

Evolutionary strategy also relies on the mechanism of evolutionary 
computation, but it uses it in an original way. In contrast to genetic algorithms, 
which aim at solving discrete and integer optimization problems, the objectives of 
evolutionary strategies are more focused on solving the problems of continuous 
parameter optimization. The evolutionary strategy achieves this through the search 
from one population of solutions to another, rather than like genetic algorithms 
searching from individual to individual. Also, the evolutionary strategy uses 
selection, recombination, and mutation as separate genetic activities for generating 
a new solution (i.e. the new generation), which is actually the major difference 
with the genetic algorithms.  

The basic idea of evolution strategies relies on the hypothesis that, during 
biological evolution, the laws of heredity have been developed for rapid 
phylogenetic adaptation. This is actually a considerable improvement of the 
genetic algorithm concept, which traditionally does not consider the effects of 
genetic procedures on the phenotype. The presumption for coding the variables in 
the evolution strategy is the realization of a sufficiently strong causality effect (i.e.
that small changes in the cause must create small changes in the effect).  

The climax of the theory of evolution strategy is the discovery of an evolution 
window, stating that evolutionary progress takes place only within a very narrow 
band of the mutation step size. This fact indicates the need for a rule of self-
adaptation of the mutation step size. These genetic operators were taken straight 
from biological evolution and rely strongly on the principle of mutation. In the 
problem at hand, a mutation was simply a small change in the overall make-up of a 
jet nozzle.

In their experiments, Rechenberg and Schwefel tested the performance of the 
evolved jet nozzles after every mutation. After many repeated trial runs of this 
kind, they succeeded in producing a jet nozzle that was better than any of the jet 
nozzles at that time available on the market. It is remarkable that, for jet nozzle 
optimization, no mathematics dealing with fluid dynamics and propulsion was 
taken into account. For the experiments, some nozzles available on the market 
were taken and evolved further in order to produce, with every evolutionary step, a 
better problem solution.  

5.4.1 Applications to Real-world Problems 

Evolutionary strategies, instead of a step-by-step search for a single problem 
solution, from the very beginning deal with a set of potential problem solutions. 
The strategies start with a set of initial solutions and improve them through 
repeated evolutionary steps until the best solution has been found. After every step, 
the degree of improvement is evaluated using some fitness criteria. Before 
initiating the next evolutionary step, a decision is made as to what genetic 
operators should be selected. Two such operators are dominant here, i.e. mutation 
and crossover, whereby mutation is the most frequently used because it offers 
prospective changes in the problem solution. The crossover operator, however, 
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promotes the process of reproduction by mating two given solutions and producing 
a new one. It is expected that in this way good offspring are generated.  

To estimate how far the generated offspring are good, the selected fitness 
criteria are used. This process is repeated, producing better and better offspring by 
mating and mutation operations. Although the evolutionary strategies are valuable 
search concepts, they still have their limitations and drawbacks: in practical 
applications, many decisions have to be made in the selection of an initial solution 
set, the application of appropriate genetic operators at each evolutionary step, the 
definition of an adequate fitness function, etc.

5.5 Evolutionary Programming 

L.J. Fogel (Fogel et al., 1966), in his search for a new evolutionary method for 
developing artificial intelligence, elaborated a stochastic optimization methodology 
relying on genetic principles that was later formulated by D. Fogel (1994) as 
evolutionary programming. The new methodology differs substantially both from 
genetic algorithms and genetic programming in that it evolves behavioural models
rather than genetic models. Hence, the objective of evolutionary programming is to 
find a set of best behavioural models from a space of possible behavioural models. 

Like other evolutionary methods, evolutionary programming also relies on 
some repeated operational steps that are interrupted (before the next step 
commences) by the evaluation of the results achieved using a fitness function. But 
still, evolutionary programming is different from other genetic methods in that it 
uses a population of parents, each of them producing a single offspring through 
mutation, because in evolutionary programming no crossover operator is 
implemented.  

The algorithm of evolutionary programming can be outlined as follows: 

Generate randomly the initial generation as a set of initial problem 
solutions and calculate the fitness value of each individual of the 
population. 
For each individual (problem solution)  

generate a new solution set by copying the set and changing it 
genetically 
calculate the fitness of each individual/new solution 
Store the new solution and fitness.  

From the new generation select the solution with the largest fitness and 
delete the rest.  
If the best or nearly the best solution is found, stop the evolutionary 
process; otherwise continue. 

In practice, before the above search for the optimal solution runs, the population 
size and the number of iterations (i.e. number of generations) have to be fixed. 
Also, the mutation operator to be used for generation of the next solution is to be 
determined. This can be extended by integrating a randomly selected maturation
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operator procedure and eventually by applying the elitist strategy, which could 
amend the selection of parents for the next generation. 

5.5.1 Evolutionary Programming Mechanism 

In evolutionary programming, each offspring is generated from its parent by 
changing one or more alleles in the chromosome. In biological terms, this 
represents a mutation. Now, because the selection of a new parent is based on the 
fitness of the organism, the Darwinian procedure of “survival of the fittest” is 
applied. Therefore, the procedure listed above can be described as a living 
organism that produces one or more offspring through mutation. A survival-of-the-
fittest procedure helps in selecting the best parents for the next generation, so that 
the organism evolves by trying to maximize its fitness (i.e. trying to solve the given 
problem as best as possible).  

5.6 Differential Evolution 

Differential evolution is a population-based search strategy and an evolutionary 
algorithm that has recently proven to be a valuable method for optimizing real-
valued multi-modal objective functions (Storn and Price 1995, 1996). It is a 
parallel direct search method having good convergence properties and simplicity in 
implementation. The method utilizes Npop parameter vectors ,i GX as a population 

for each generation G, where pop 10,1, 2, ,i N . The number of parameter vectors, 

i.e. Npop, does not change during the optimization (minimization) process and the 
initial population is chosen randomly, unless a preliminary solution is available. 
Where a preliminary solution is available, then the remaining population of the 
starting generation is often generated by adding normally distributed random 
deviations to the nominal solution.  

The crucial idea behind the differential evolution is a new scheme for 
generating trial parameter vectors by adding the weighted difference vector 
between two population members to a third member. If the newly generated vector 
results in a lower objective function value (higher fitness) than the predetermined 
population member, then the resulting vector replaces the vector with which it was 
compared. The comparison vector can, but need not essentially, be part of the 
above generation process. In addition, the best parameter vector is evaluated for 
every generation G in order to keep track of the progress that is made during the 
minimization process. Extracting both distance and direction information from the 
population to generate random deviations results in an adaptive scheme that has 
excellent convergence properties (Storn and Price, 1995).  

There are several variants of differential evolution, with the two most 
promising variants being  

DE1, the first variant of differential evolution  
DE2, the second variant of differential evolution. 
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5.6.1 First Variant of Differential Evolution (DE1)  

The first variant of differential evolution works as follows: for each vector in 
generation G, i.e. , pop 1, ( 0, 1, 2, , )i GX i N , a trial vector ,v GX  is generated as 

1 3 2, , , ,v G a G a G a GX X K X X

with 1 2 3 pop 1, , 0,a a a N . The integers a1, a2 and a3 are mutually different from 

each other, and K > 0. 

Figure 5.6. First variant of differential evolution (DE1) 

Furthermore, the integers a1, a2 and a3 are chosen randomly from the interval 
[0, Npop-1] such that they are different from the running index i. The real constant 

factor K controls the amplification of the differential variation 
3 2, ,a G a GX X .

Figure 5.6 shows a two-dimensional example that illustrates the different vectors 
and generation of a trial vector which play an important role in DE1. 

In order to increase the potential diversity of the perturbed parameter vectors, 
crossover is introduced. The crossover operation generates the perturbed vector as 
follows:
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vector containing the parameters
xj , j = 0,1,2,…,D-1

is generated. The angle brackets 
D

 denote the modulo function with modulus D.

The starting index n in the above equation is a randomly chosen integer from the 
interval [0, D-1]. The integer L, which denotes the number of parameters that are 
going to be exchanged, is drawn from the interval [1, D]. The algorithm that 
determines L works according to the following lines of pseudo code, where rand()
is supposed to generate a random number within the interval [0, 1]: 

L = 0; 
do { 

   L = L+1; 
   } while (( rand() < CR) and ( L < D)); 

Hence, the probability 
1

Pr , 0.
v

L v CR v CR is taken from the interval [0, 

1] and constitutes a control variable in the design process. The random decisions 
for both n and L are always made afresh for each newly generated vector , 1u GX .

Figure 5.7. Crossover process in DE1 for D = 7, n = 2, L = 3 for new vector generation  

Note that, in Figure 5.7, since L = 3, three parameters are exchanged; they are 
numbered as (n = 2), (n+1 = 3), (n+L-1 = 4), because the modulo function (n and 
D) = 2, modulo function (n+1 and D) = 3 and modulo function (n+L-1 and D) = 4, 
for D = 7. 

To decide whether or not the newly generated vector should become a member 
of generation G+1, the new vector , 1u GX  is compared with ,i GX . If the newly 

generated vector yields a smaller objective value than ,i GX , then , 1i GX  is set to 

, 1u GX , otherwise the old vector ,i GX  is retained. 
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5.6.2 Second Variant of Differential Evolution (DE2) 

Basically the second variant of differential evolution also works in the same way as 
the first variant DE1, but it generates a new trial vector , 1v GX  according to 

3 2, 1 , , , , ,v G i G best G i G a G a GX X X X K X X ,

because 1, 1 , , , ,v G i G best G i GX X X X  introducing an additional 

control variable .

Figure 5.8. Second variant of differential evolution (DE2) 

The idea behind  is to provide a means to enhance the greediness of the 

scheme by incorporating the best vector from the current generation. In order to 
reduce the differential evolution control parameters, K  is usually set. This 

feature can be useful for non-critical objective functions. Figure 5.8 illustrates the 
trial vector generation process for the generation G+1, defined by the above 
equation. The construction of perturbed vector , 1u GX  through a crossover 

operation from trial vector , 1v GX  and randomly selected ,i GX  vector, as well as 

the decision process, are exactly same as the first variant of differential evolution. 
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Part III 

Hybrid Computational Technologies 



6

Neuro-fuzzy Approach 

6.1 Motivation for Technology Merging 

Contemporary intelligent technologies have various characteristic features that can 
be used to implement systems that mimic the behaviour of human beings. For 
example, expert systems are capable of reasoning about the facts and situations 
using the rules out of a specific domain, etc. The outstanding feature of neural 
networks is their capability of learning, which can help in building artificial 
systems for pattern recognition, classification, etc. Fuzzy logic systems, again, are 
capable of interpreting the imprecise data that can be helpful in making possible 
decisions. On the other hand, genetic algorithms provide implementation of 
random, parallel solution search procedures within a large search space. Therefore, 
in fact, the complementary features of individual categories of intelligent 
technologies make them ideal for isolated use in solving some specific problems, 
but not well suited for solving other kinds of intelligent problem. For example, the 
black-box modelling approach through neural networks is evidently well suited for 
process modelling or for intelligent control, but less suitable for decision making. 
On the other hand, the fuzzy logic systems can easily handle imprecise data, and 
explain their decisions in the context of the available facts in linguistic form; 
however, they cannot automatically acquire the linguistic rules to make those 
decisions. Such capabilities and restrictions of individual intelligent technologies 
have actually been a central driving force behind their fusion for creation of hybrid 
intelligent systems capable of solving many complex problems.  

The permanent growing interest in intelligent technology merging, particularly 
in merging of neural and fuzzy technology, the two technologies that complement 
each other (Bezdek, 1993), to create neuro-fuzzy or fuzzy-neural structures, has 
largely extended the capabilities of both technologies in hybrid intelligent systems. 
The advantages of neural networks in learning and adaptation and those of fuzzy 
logic systems in dealing with the issues of human-like reasoning on a linguistic 
level, transparency and interpretability of the generated model, and handling of 
uncertain or imprecise data, enable building of higher level intelligent systems. The 
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synergism of integrating neural networks with fuzzy logic technology into a hybrid 
functional system with low-level learning and high-level reasoning transforms the 
burden of the tedious design problems of the fuzzy logic decision systems to the 
learning of connectionist neural networks. In this way the approximation capability 
and the overall performance of the resulting system are enhanced.  

A number of different schemes and architectures of this hybrid system have 
been proposed, such as fuzzy-logic-based neurons (Pedrycz, 1995), fuzzy neurons 
(Gupta, 1994), neural networks with fuzzy weights (Buckley and Hayashi, 1994), 
neuro-fuzzy adaptive models (Brown and Harris, 1994), etc. The proposed 
architectures have been successful in solving various engineering and real-world 
problems, such as in applications like system identification and modelling, process 
control, systems diagnosis, cognitive simulation, classification, pattern recognition, 
image processing, engineering design, financial trading, signal processing, time 
series prediction and forecasting, etc.

6.2 Neuro-fuzzy Modelling 

There are several methods for implementing the neuro-fuzzy modelling technique. 
An early merging approach was to replace the input-output signals or the weights 
in neural networks by membership values of fuzzy sets, along with the application 
of fuzzy neurons (Mitra and Hayashi, 2000). Several authors have proposed an 
internal structure for fuzzy neurons (Gupta, 1994; Buckley and Hayashi, 1995), as 
presented in the following section. 

Figure 6.1. (a) Fuzzy-neural system (first model) 

In general, neuro-fuzzy hybridization is done in two ways (Mitra and Hayashi, 
2000):  

a neural network equipped with the capability of handling fuzzy 
information processing, termed a fuzzy-neural network (FNN)  

a fuzzy system augmented by neural networks to enhance some of its 
characteristics, like flexibility, speed, and adaptability, termed a neural-
fuzzy system (NFS).  

Neural networks with fuzzy neurons are also termed FNN, because they are also 
capable of processing fuzzy information. A neural-fuzzy system (NFS), on the 
other hand, is designed to realize the process of fuzzy reasoning, where the 
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connection weights of the network correspond to the parameters of fuzzy reasoning 
(Nauck et al., 1997). 

Gupta (1994) has presented two additional models for fuzzy neural systems. 
The first model (Figure 6.1(a)) consists of a fuzzy inference block, followed by a 
neural network block, consisting of a multilayer feedforward neural network, the 
input of which is fed by the inference block (Fuller, 1995). The neural network 
used can be adapted and adequately trained with training samples to yield the 
desired outputs.  

In the second model (Figure 6.1(b)), the neural network block drives the fuzzy 
inference system to generate the corresponding decisions. Hence, the first model 
takes linguistic inputs and generates the numerical outputs, whereas the second 
model takes numerical inputs and generates the linguistic outputs. 

Figure 6.1. (b) Fuzzy-neural system (second model) 

Alternatively, the second approach is to use fuzzy membership functions to pre-
process or post-process signals with neural networks as shown in Figure 6.2. A 
fuzzy inference system can encode an expert’s knowledge directly and easily using 
rules with linguistic labels (Kulkarni, 2001).  

Figure 6.2. Fuzzy-neural model with tuneable membership function

In practice, for optimal tuning of membership functions of the fuzzy logic part 
of a neuro-fuzzy system, a reliable skill is required. The incorporated neural 
network part of the same system can, using its learning capability, perform on-line 
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tuning of membership functions and gradually improve the performance of the 
entire hybrid system. This concept, which became very popular in engineering 
applications, was originally proposed and extended to multidimensional 
membership functions by Takagi and Hayashi (1991).  

Lin and Lee (1991) proposed a neural-network-based model for fuzzy logic 
control consisting of a feedforward neural network, the input nodes of which are 
fed by input signals and its output nodes delivering the output and decision signals. 
Nodes in the hidden layers of the system implement the membership functions and 
the fuzzy rules, making up a fuzzy inference system with distributed representation 
and learning algorithms of the neural network. Parameters representing 
membership functions are determined using any suitable network training 
algorithm. Pal and Mitra (1992) proposed a similar model in which inputs are fed 
to a preprocessor block, which performs the same functions as that in the above 
fuzzy inference system. The output of the preprocessor delivers the fuzzy 
membership function values. For each input variable term, linguistic labels such as
low, medium, and high are used. If input consists of n variables, then the 
preprocessor block yields m×n outputs, where m represents the number of term 
values used in the model. The output of the preprocessor block is then fed to a 
multilayer perceptron model that implements the inference engine. The model was 
successfully used for classifying vowels in English alphabets. Kulkarni (1998), 
again, developed a similar model and successfully used it for multi-spectral image 
analysis. Some authors have designed neuro-fuzzy systems incorporating some 
processing stages implemented with neural networks and some with a fuzzy 
inference system. In another design, a neural-network-based tree classifier was 
used. Finally, Kosko (1992) suggested some remarkable neuro-fuzzy models for 
fuzzy associative memory (FAM).  

Figure 6.3. ANFIS architecture with Takagi-Sugeno-type fuzzy model with two rules

The neuro-fuzzy model ANFIS (adaptive-network-based fuzzy inference system) 
of Jang (1993), presented in Figure 6.3, incorporates a five-layer network to 
implement a Takagi-Sugeno-type fuzzy system. The proposed model has a 
relatively complex architecture for a large number of inputs, and it can process a 
large number of fuzzy rules. It uses the least mean square training algorithm in the 
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forward computation to determine the linear consequents of the Takagi-Sugeno 
rules, while for the optimal tuning of an antecedent membership function 
backpropagation is used (Kim and Kim, 1997). 

The neuro-fuzzy model of Chak et al. (1998) can locate the fuzzy rules and 
optimize their membership functions by competitive learning and a Kalman filter 
algorithm. The key feature is that a high-dimensional fuzzy system can be 
implemented with fewer rules than that required by a conventional Sugeno-type 
model. This is because the input space partitions are unevenly distributed, thus 
enabling a real-time network implementation. 

The approach of Nie (1997) concerns the development of a multivariable fuzzy 
model from numerical data using a self-organizing counterpropagation network. 
Both supervised and unsupervised learning algorithms are used for network 
training. Knowledge can be extracted from the data in the form of a set of rules. 
This rule base is then utilized by a fuzzy reasoning model. The rule base of the 
system, which is supposed to be relatively simple, is updated on-line in an adaptive 
way (in terms of connection weights) in response to the incoming data.  

Cho and Wang (1996) developed an adaptive fuzzy system to extract the IF-
THEN rules from sampled data through learning using a radial basis functions 
network. Different types of consequent, such as constants, first-order linear 
functions, and fuzzy variables are modelled, thereby enabling the network to 
handle arbitrary fuzzy inference schemes. There is not an initial rule base, and 
neither does one need to specify in advance the number of rules required to be 
identified by the system. Fuzzy rules are generated (when needed) by employing 
basis function units. 

Wang and Mendel (1992a) described a fuzzy system by series of basis 
functions, which are algebraic superpositions of membership functions. Each such 
basis function corresponds to one fuzzy logic rule. An orthogonal least squares 
training algorithm is utilized to determine the significant fuzzy logic rules 
(structure learning) and associated parameters (parameter learning) from input-
output training pairs. Owing to the possibility of acquiring and interpreting the 
linguistic IF-THEN rules by human experts, the fuzzy basis function network 
provides a framework for combining both numerical and linguistic information in a 
uniform manner. 

Zhang and Morris (1999) used a recurrent neuro-fuzzy network to build long-
term prediction models for nonlinear processes. Process knowledge is initially used 
to partition the process operation into several local fuzzy operating regions and 
also to set up the initial fuzzification layer weights. Membership functions of fuzzy 
operating regions are refined through training, enabling the local models to learn. 
The global model output is obtained by centre-of-gravity defuzzification involving 
the local models. 

6.2.1 Fuzzy Neurons  

The perceptron or processing unit described in Chapter 3, which employs 
multiplication, addition, and the sigmoid activation function to produce the 
nonlinear output from the applied input, is generally known as a simple neural 
network. However, if their architectures are extended by adding other mathematical 
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operations, such as triangular-norm, a triangular-co-norm, etc., to combine the 
incoming signals to the neuron, the extended networks give rise to a hybrid neural 
network based on fuzzy arithmetic operations. The fuzzy neural network 
architecture is practically based on such a processing element known as fuzzy 
neuron (Fuller,1995). 

6.2.1.1 AND Fuzzy Neuron 

Consider a perceptron-like structure as shown in Figure 6.4 with n input neurons 
acting as fan out elements (i.e. having the same output values as their inputs) and 
with one output neuron. The outputs xi of the input-layer neurons are multiplied by 
the connecting weights wi and, thereafter, fed to the output-layer neuron. If, 
however, the input signals xi and the weights wi are combined by an S-norm, i.e.
the triangular-conorm 

, , 1,2, , .i ii S i np w x   (6.1) 

Figure 6.4. AND fuzzy neuron

and the input information pi is further aggregated by a T-norm, i.e. triangular 
norm, to yield the final output of the neuron as 

1 2 1 2

1 1 2 2

, , , , , ,

, , , , , , .

n n

n n

y AND Tp p p p p p

T S S Sw x w x w x
 (6.2) 

then the configuration in Figure 6.4 will represent the implementation of an AND 
fuzzy neuron under the condition that the T-norm represents a min operator and 
the S-norm represents a max operator. Then the min-max composition  

1 1min max , , ,max , .n ny w x w x  (6.3) 

can be realized by the AND fuzzy neuron. 
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6.2.1.2 OR Fuzzy Neuron 

If a similar configuration to Figure 6.4 is used, but the signals xi and the weights wi

are combined by a triangular-norm (T-norm)

, , 1, 2, , .i ii T i np w x   (6.4) 

Figure 6.5. OR fuzzy neuron

and, thereafter, the input information pi is further aggregated by a triangular 
conorm (t-conorm or s-norm) to yield the final output of the neuron as follows: 

1 2 1 2

1 1 2 2

, , , , , ,

, , , , , , .

n n

n n

y OR Sp p p p p p

S T T Tw x w x w x
 (6.5) 

So, if the t-norm or the T = min operator and the t-co norm or the s-norm S = max
operator, then the max-min composition can be realized by the OR fuzzy neuron as 
follows: 

1 1max min , , ,min , .n ny w x w x  (6.6) 

Both fuzzy neurons realize logic operations on the membership values. The role of 
the connections is to differentiate between particular levels of impact that the 
individual inputs might have on the result of aggregation. We note that: (i) the 
higher the value of wi the stronger is the impact of xi on the output y of an OR
neuron; (ii) the lower the value of wi the stronger is the impact of xi on the output y
of an AND neuron.

The range of the output value y for the AND neuron is computed by letting all xi

equal to zero or one. By virtue of the monotonic property of the triangular norms,
we obtain  

1, , ,1 ,ny T w w  (6.7) 
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and for the OR neuron one derives the boundaries as 

10, , , .ny S w w  (6.8) 

Similar to AND and OR fuzzy neurons, several other fuzzy neurons, such as 
implication-OR, Kwan and Cai’s fuzzy neuron, etc. have been proposed (Fuller, 
1995). 

6.3 Neuro-fuzzy System Selection for Forecasting 

The most common approach to numerical-data-driven neuro-fuzzy modelling is to 
use a Takagi-Sugeno-type fuzzy model along with differentiable operators and 
continuously differentiable membership functions (e.g. Gaussian function) for 
building the fuzzy inference mechanism, and the weighted average defuzzifier for 
defuzzification of output data. The corresponding output inference can then be 
represented in a multilayer feedforward network structure, such as the one depicted 
in Figure 6.6. In principle, the neuro-fuzzy network’s architecture (Figure 6.6) is 
identical to the architecture of ANFIS, as shown in Figure 6.3. 

Figure 6.6. Fuzzy system as a multi-input multi-output feedforward neural network 

The neuro-fuzzy model presented in Figure 6.6 is based on Gaussian 
membership functions. It uses Takagi-Sugeno-type fuzzy rules, product inference, 
and weighted average defuzzification. The nodes in the first layer calculate the 
degree of membership of the numerical input values in the antecedent fuzzy sets. 
The product nodes ( ) in the rectangular blocks (rounded corners) represent the 
antecedent conjunction operator and the output of this node is the corresponding 
degree of fulfilment ; 1, 2, 3, ,lz l M  or firing strength of the rule. The division 

nodes / , together with summation nodes (+), help implement the normalized 
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degree of fulfilment lz b  of the corresponding rule, which, after multiplication 

with the corresponding Takagi-Sugeno rule consequent l
my , is used as input to the 

summation block (+) at the final output layer. The output of this summation node is 
the final defuzzified output value, which, being crisp in nature, is directly 
compatible with the real world data. Once the fuzzy system of the above choice is 
represented as a feedforward network, the algorithm used for its training is less 
relevant.  

A similar fuzzy model with singleton rule consequents, trained with standard 
backpropagation algorithm, was used by Wang and Mendel (1992b) for 
identification of various nonlinear plants. 

Forecasting of time series is primarily based on numerical input-output data. To 
demonstrate this for neuro-fuzzy networks, a Takagi-Sugeno-type model, i.e. with 
linear rules consequent (and also a singleton model as a special case), is selected 
(Palit and Popovic, 1999; Palit and Babuška, 2001). Here, the number of 
membership functions to be implemented for fuzzy partitioning of input universes 
of discourse happens to be equal to the number of a priori selected fuzzy rules. To 
accelerate the convergence speed of the training algorithm and to avoid other 
inconveniences, the Levenberg-Marquardt training algorithm (described in the 
Section 6.4.2.3) or the adaptive genetic algorithm (AGA) can also be used.  

In Chapter 4 it was shown that in forecasting of various nonlinear time series 
the fuzzy logic approach with automatically generated fuzzy rules (Wang and 
Mendel, 1992c; Palit and Popovic, 1999) works reasonably well. However, it was 
emphasized that the performance of fuzzy logic systems depends greatly on a set of 
well-consistent fuzzy rules and on the number of fuzzy membership functions 
implemented, along with their extent of overlapping. Therefore, determination of 
the optimum overlapping values of adjacent membership functions is very 
important in the sense that overlapping values too large or too small may 
deteriorate the forecasting accuracy. In the absence of firm guiding rules for 
optimum selection of overlapping, this selection mechanism was rather seen more 
as an art than as a science, mainly relying on a trial-and-error approach. 
Alternatively, very time-consuming heuristic approaches, such as the evolutionary 
computation or the genetic algorithms (Setnes and Roubos, 2000), can be used for 
this purpose. 

Fuzzy logic systems encode numerical crisp values using linguistic labels, so it 
is difficult and time consuming to design and fine tune the membership functions 
related to such labels. However, neural networks’ learning ability can automate this 
process. The combination of both fuzzy logic and neural network implementations 
can thus facilitate development of hybrid  forecasters. 

As an example we will consider the neural-networks-like architecture of the 
neuro-fuzzy system (Figure 6.6) and the training algorithm selected will fine tune 
the randomly generated system parameters. The great advantage of this scheme is 
that, apart from the user-selected number of fuzzy rules to be implemented, all 
other fuzzy parameters are automatically set by the training algorithm, so that the 
user does not need to bother about the optimal settings of fuzzy region 
overlappings and the like. Therefore, the approach to be described here is often 
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referred to as an adaptive neuro-fuzzy approach and the related fuzzy logic system 
as an adaptive fuzzy logic system (Wang, 1994). 

6.4 Takagi-Sugeno-type Neuro-fuzzy Network 

In the recent years much attention has been paid to deriving an effective data-
driven neuro-fuzzy model because of its numerous advantages. For example, 
ANFIS-based (neuro-fuzzy) modelling was initially developed by Jang (1993) and 
Jang and Sun (1995), and later on widely applied in engineering. Similarly, 
singleton-rule-based and data-driven multi-input single output neuro-fuzzy 
modelling was initially developed by Wang and Mendel (1992b) and used for 
solving a variety of systems identification and control problems. A similar neuro-
fuzzy network, with an improved training algorithm, was later developed and 
applied by Palit and Popovic (1999, 2000a, 2002b) and Palit and Babuška (2001) 
for time series forecasting. Because of its advantages compared with ANFIS, at 
least as far as model accuracy and the training time are concerned, this similar 
model, but with multi-input and multi-output structure, will be used in this chapter 
as a neuro-fuzzy forecaster. The advantages of this approach, where an explicitly 
Takagi-Sugeno-type multi-input multi-output fuzzy model is used, will be 
demonstrated on simulation examples of benchmark problems. Furthermore, the 
type of network selected can be regarded as a generalization or upgraded version of 
both a singleton-consequent-type multi-input single-output neuro-fuzzy network 
and the Takagi-Sugeno-type multiple input single output neuro-fuzzy network of 
Palit and Babuška (2001).  

To avoid the fine tuning difficulties of initially chosen random membership 
functions, an efficient training algorithm for modelling of various nonlinear 
dynamics of multi-input multi-output systems is proposed that relies on a Takagi-
Sugeno-type neuro-fuzzy network. The algorithm is further used for training the 
neuro-fuzzy network with the available data of a nonlinear electrical load time 
series. Thereafter, the trained network is used as a neuro-fuzzy model to predict the 
future value of electrical load data. In order to verify its prediction capability with 
other standard methods, some benchmark problems, such as Mackey-Glass chaotic 
time series and second-order nonlinear plant modelling, are considered. 

Furthermore, the neuro-fuzzy approach described here attempts to exploit the 
merits of both neural-network and fuzzy-logic-based modelling techniques. For 
example, the fuzzy models are based on fuzzy IF-THEN rules and are, to a certain 
degree, transparent to interpretation and analysis, whereas the neural-networks-
based black-box model has a unique learning ability.  

In the following, the Takagi-Sugeno-type multiple-input multiple-output neuro-
fuzzy system is constructed by multilayer feedforward network representation of 
the fuzzy logic system, as described in Section 6.4.1, and its training algorithm is 
described in Section 6.4.2. Thereafter, some comparisons between the radial basis 
function network and the proposed neuro-fuzzy network are made, followed by 
similar comparisons of the training algorithm for neural networks and neuro-fuzzy 
networks. Neuro-fuzzy modelling and time series forecasting are subsequently 
described and then, finally, some engineering examples are presented. 
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6.4.1 Neural Network Representation of Fuzzy Logic Systems 

The fuzzy logic system considered here for constructing neuro-fuzzy structures is 
based on a Takagi-Sugeno-type fuzzy model with Gaussian membership functions. 
It uses product inference rules and a weighted-average defuzzifier defined as 

1 1
( ) ,

M Mlp l l
j j

l l
xf y z z  (6.9a) 

where  j = 1, 2, 3, ..., m; l = 1, 2, 3, ..., M;
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and  j = 1, 2, 3, ..., m; l = 1, 2, 3, ..., M;

l l
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with  i = 1, 2, 3, ..., n.

Here, we assume that 0,, l
ii

l
i Uc and Vy j

l
j , where VU ji and,  are the 

input and output universes of discourse respectively. The corresponding lth rule 
from the above fuzzy logic system can be written as  

Rl : If x1 is Gl
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Then   xxxy n
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l
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l

j
l
j
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j 2210 1
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where, xi with i = 1, 2, …, n; are the n system inputs, whereas fj, with j = 1, 2, …, 
m; are its m system outputs, and Gi

l, with i = 1, 2, …, n; and l = 1, 2, …, M; are the
Gaussian membership functions of the form (6.9c) with the corresponding mean 

and variance parameters and l l
i ic  respectively and with l

jy  as the output 

consequent of the lth rule.  
It is to be noted that the Gaussian membership functions (Gi

l) actually represent 
linguistic terms such as low, medium, high, etc. The rules (6.10), as specified 
above, are known as Takagi-Sugeno rules.  

In the fuzzy logic system (6.9a) – (6.9c) the Gaussian membership function is 
deliberately chosen because the same membership function is continuously 
differentiable at all points. This is an essential requirement to apply the gradient-
method-based training algorithm. Furthermore, it is also important to note that the 
fuzzy logic system (6.9a) – (6.9c) is capable of uniformly approximating any 
nonlinear function to any degree of accuracy over a universe of discourse nU
(Wang, 1994). 
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By carefully observing the functional forms (6.9a) – (6.9c), it can be seen that 
the above fuzzy logic system can be represented as a three-layer multi-input, multi-
output feedforward network as shown in Figure 6.6. Because of the neuro 
implementation of the Takagi-Sugeno type fuzzy logic system, Figure 6.6 actually 
represents a Takagi-Sugeno-type of multi-input, multi-output neuro-fuzzy network, 
where, instead of the connection weights and the biases as in backpropagation 

neural networks, we have the mean ( cl
i ) and the variance ( l

i ) parameters of 

Gaussian membership functions, along with ( 0 ,l l
j ij ), i.e. yl

j  from the rules 

consequent, as the equivalent adjustable parameters of the network.  
If the adjustable parameters of the neuro-fuzzy network are suitably selected, 

then the above fuzzy logic system can correctly approximate any nonlinear system 
based on given input–output data pairs.  

6.4.2 Training Algorithm for Neuro-fuzzy Network 

The fuzzy logic system, once represented as the equivalent multi-input, multi-
output feedforward network (Figure 6.6), can generally be trained using any 
suitable training algorithm, such as the standard backpropagation algorithm (Palit 
et al., 2002) that is generally used for neural networks training. However, because 
of its relatively slow speed of convergence, this algorithm needs to be further 
improved. Alternatively, a more efficient second-order training algorithm, such as 
the Levenberg-Marquardt algorithm described in the Section 6.4.2.3, can also be 
used.  

6.4.2.1 Backpropagation Training of Takagi-Sugeno-type Neuro-fuzzy Network 

Let a set of N input-output data pairs j
pp dx , , with p = 1, 2, 3, ..., N; and 

1 2, , ,p npp p
n Uxx x x , and 

p m
jjd V  is given. The objective is to 

determine a fuzzy logic system xf p
j  in the form of (6.9a) – (6.9c), such that the 

performance function S, defined as 
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j
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1
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is minimized, where Ej is the column vector of errors ( )
pp p

j j jdfe x , and p = 

1, 2, ..., N; for the jth output from the fuzzy logic system. In addition, we also 
assume that the number of fuzzy rules and also the number of membership 
functions (to be implemented) M are given. In this way the problem is reduced to 

the adjustment of yl
j , i.e. the parameters ( l

ij
l

j ,0 ) from the rules consequent and 
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the mean ( cl
i ) and variance ( l

i ) parameters of the Gaussian membership 
functions, so that the performance function (6.11a) is minimized. For convenience, 

we replace edxf p
jj

pp
j and,,  in the above definition of error by fj, dj, and ej

respectively, so that the individual error becomes jjj dfe .

We recall that the steepest descent rule used for training of neuro-fuzzy 
networks is based on the recursive expressions 
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where S is the performance function (6.11b) at the kth iteration step and 

0 , andl l l l
ij i ij k , k , k kc  are the free parameters of the network at the 

same iteration step, the starting values of which are, in general, randomly selected.  
In addition,  is the constant step size or learning rate (usually 1), i = 1, 

2, ..., n (with n as the number of inputs to the neuro-fuzzy network);  j = 1, 2, ..., m
(with m as the number of outputs from the neuro-fuzzy network); and l = 1, 2, 3, 
..., M (with M as the number of Gaussian membership functions selected, as well as 
the number of fuzzy rules to be implemented).  

From Figure 6.6, it is evident that the network output fj and hence the 
performance function Sj and, therefore, finally S depends on 0 andl l

j ij only 

through yj
l. Similarly, the network output fj and, thereby, the performance functions 

Sj and S depend on andl l
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Therefore, the corresponding chain rules  
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can finally be written as 
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Using the above results, the final update rules for the networks free parameters can 
be written as 
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where 
1

, with
M

l l l

l
b bh z z  and lh  is the normalized degree of fulfilment 

(firing strength) of lth rule.  
Equations (6.11a) – (6.16d) represent the backpropagation training algorithm

(BPA) for Takagi-Sugeno-type multi-input multi-output neuro-fuzzy networks or 
the equivalent fuzzy logic system of form (6.9a) – (6.9c ) with linear fuzzy rules 
consequent part as 

1 2 2 3 3
10

l
l l l

j j nj n
j

l l
j jy x x x x .

In the above Takagi-Sugeno-type fuzzy rules (linear) consequent, if the 
coefficients 0,l

ij  for  i = 1, 2, 3, ..., n; l =1, 2, 3, ..., M; and m = 1, then the 

equivalent neuro-fuzzy network is identical with the multi-input, single-output 
neuro-fuzzy network described by Wang and Mendel (1992b) and Palit and 
Popovic (1999 and 2000a). The resulting fuzzy logic system can be seen as a 
special case of both the Mamdani- and -Takagi-Sugeno-type systems, where the 

rule consequent is a singleton (constant number) fuzzy set. However, if ,0l
ij  for 

i = 1, 2, 3, ..., n; l= 1, 2, 3, …, M; and for m = 1, then the resulting fuzzy logic 
system is identical with Takagi-Sugeno type multi-input and single-output neuro-
fuzzy network, as described by Palit and Babuška (2001). 

It is generally known that the backpropagation algorithm based on steepest 
descent rule, in order to avoid the possible oscillations in the final phase of the 
training, uses a relatively low learning rate 1 . Therefore, the 

backpropagation training usually requires a large number of recursive steps or 
epochs. The acceleration of the training process with classical backpropagation, 
however, is achievable if the adaptive version of the learning rate or the 
momentum version of the steepest descent rule is used:  
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where, 

,11 kkk www  (6.17e) 

and w represents the networks free parameter vector in general. The momentum 
constant is usually less than one. Therefore, we can write mo < 1. 

6.4.2.2 Improved Backpropagation Training Algorithm 
To improve the training performance of the proposed neuro-fuzzy network, we 
have modified the momentum version of the backpropagation algorithm by adding 
to it the modified error index term/modified performance index term (6.18a), as 
proposed by Xiaosong et al. (1995).  
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and eavg is the average error. Thus, the new error index (new performance index) is 
finally defined as 

www SSS mnew ,  (6.19) 

where, S(w) is the unmodified performance index as defined in (6.11b ). From this, 
the corresponding gradient can be defined as  
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where the constant term (gama) < 1 has to be chosen appropriately.  

With the modified error index extension as per Equation (6.20c) we need only 
to add a new vector term eavgwe  with the original error vector we .

Theoretical justification of the improved training performance of the network by 
the use of a modified error index term has been described in Xiaosong et al.
(1995). 
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6.4.2.3 Levenberg-Marquardt Training Algorithm  
Training experiments with a neuro-fuzzy network using the momentum version of 
backpropagation algorithm, as well as its modified error index extension form, 
have shown that, with the first 200 training (four inputs- one output) data sets of a 
Mackey-Glass chaotic series, backpropagation algorithm usually requires several 
hundred epochs to bring the SSE value down to the desired error goal (see Palit 
and Popvic, 1999). This calls for an alternative, much faster training algorithm. 
Hence, to accelerate the convergence speed of neuro-fuzzy network training, the 
Levenberg-Marquardt algorithm (LMA) was proposed.  

Although being an approximation to Newton’s method, based on a Hessian 
matrix, the Levenberg-Marquardt algorithm can still implement the second-order 
training speed without direct computation of the Hessian matrix (Hagan and 
Menhaj, 1994). This is achieved in the following way.  

Suppose that a function V(w) is to be minimized with respect to the network’s 
free-parameter vector w using Newton’s method. The update of w to be used here 
is

www VV2 1  (6.21a) 

www kk 1  (6.21b) 

where wV2 is the Hessian matrix and wV  is the gradient of V(w). If the 

function V(w) is taken to be the sum squared error function, i.e.
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then the gradient wV  and the Hessian matrix )(2 wV  are generally defined 

using the Jacobian matrix J(w) as  
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where 
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and 1 2 pNw , w , ,ww  is the parameter vector of network. From (6.23c) it is 

seen that the dimension of the Jacobian matrix is (N  Np), N and Np being the 
number of training samples and the number of adjustable network parameters 
respectively. For the Gauss-Newton method the second term in (6.23b) is assumed 
to be zero, so that the update according to (6.21a) becomes 

wwwww eJJJ
TT 1 . (6.24a). 

The Levenberg-Marquardt modification of the Gauss-Newton method is 

wwwww eJIJJ
TT 1  (6.24b). 

in which I is the (Np Np) identity matrix and the parameter  is multiplied by 

some constant factor inc  whenever an iteration step increases the value of V(w),

and divided by dec  whenever a step reduces the value of V(w). Hence, the update 

according to (6.21b) is  

1
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Note that for large  the algorithm becomes the steepest descent gradient 

algorithm with step size 1 , whereas for small , i.e. 0,  it becomes the 

Gauss-Newton algorithm. Usually, .inc dec  However, in our program we have 

selected two different values for them. In order to get even faster convergence, a 
small momentum term mo = 0.098 was also added, so that the final update 
becomes 
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It is to be noted that the use of a momentum term is quite usual with the 
classical backpropagation algorithm, whereas this may appear to be unusual with 
the Levenberg-Marquardt algorithm. However, the latter is justified, as the use of a 
momentum term in the backpropagation algorithm is primarily to overcome the 
possible trap at local minima and also to prevent small oscillations during the 
training of the network; similarly, the use of a small momentum term, as 
experimentally verified through simulation, also helps to increase network training 
convergence with the Levenberg-Marquardt algorithm. Furthermore, similar to the 
backpropagation algorithm, here also the Levenberg-Marquardt algorithm was 
extended by adding a modified error index term, as proposed by Xiaosong et al.
(1995), to improve further the training convergence. Therefore, as per (6.20c), the 
corresponding new gradient can now be expressed or defined using a Jacobian 
matrix as  

eJS avg
T

new weweww , (6.25) 

where e(w)  represents the column vector of errors, and the constant factor 1
(for the Levenberg-Marquardt algorithm) has to be chosen appropriately. Equation 
(6.25) suggests that even with consideration of the modified error index extension 
of the original performance function the Jacobian matrix remains unaltered and, 
with the above modification, we need to add only a new error vector term 

avgee w  with the original error vector we  as we did with the back-

propagation algorithm.  

6.4.2.3.1 Computation of Jacobian Matrix 
We now describe a simplified technique to compute, layer by layer, the Jacobian 
matrix and the related parameters from the backpropagation results. Layer-wise or 
parameter-wise computation of the Jacobian matrix is permissible because, as 
stated in Equations (6.26a) and (6.26b), the final contents of the Hessian matrix 
remain unaltered even if the whole Jacobian is divided into smaller parts. 
Furthermore, this division of the Jacobian matrix helps to avoid computer memory 
shortage problem, which is likely to occur for large neural networks. 

From 

wJ

wJ
wJwJwJwJwV TTT

2

1
21

2 ,   (6.26a) 

it follows that  

2
1 1 2 2
T TV w w w w wJ J J J . (6.26b) 

Computation of the Jacobian matrix is in fact the most crucial step in implementing 
the Levenberg-Marquardt algorithm for neuro-fuzzy networks. For this purpose, 
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the results obtained in the Section 6.4.2.1 will be used, where the derivatives of the 
sum square error S with respect to the network’s adjustable parameters (free-

parameters) l
i0 and,,, cl

i
l
ij

l
j  for the fuzzy logic system (6.9a) – (6.9c) were 

already computed and listed in (6.15a) – (6.15e).  
Now, considering the singleton consequent part (constant term) of the rules and 

taking into account Equation (6.15a), we can rewrite the gradient SV l
j0 as 

jj
ll

j
l

j dfbzSV 00 , (6.27) 

where fj is the actual output vector from the jth output node of the Takagi-Sugeno-
type multiple input multiple output neuro-fuzzy network and dj is the 
corresponding desired output vector at the jth output node for a given set of input-
output training data. Taking into account Equation (6.27) and comparing it with 
(6.23a), where the gradient is expressed using the transpose of the Jacobian matrix 
multiplied by the network’s error vector, i.e.

,www eJV T   (6.28) 

where w is the free parameter of the network, the transpose of the Jacobian matrix 
l

j
TJ 0  and the Jacobian matrix l

jJ 0  for the free parameter l
j0  of the neuro-

fuzzy network can be defined by  

bzJ ll
j

T
0  (6.29a) 

bzJJ l Tl
j

T Tl
j 00 . (6.29b) 

This is because the prediction error at the jth output node of the Takagi-Sugeno-
type neuro-fuzzy network is 

.j jjfe d   (6.30) 

However, if we consider the normalized prediction error of the network at the jth 
output node, instead of the original prediction error at the jth output node, then by 

applying a similar technique, the transposition of the Jacobian matrix l
j

TJ 0  and 

the Jacobian matrix l
jJ 0  itself for the free parameter l

j0  will be  

zJ ll
j

T
0  (6.31a) 

zJJ l Tl
j

T Tl
j 00 , (6.31b) 
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this is because the normalized prediction error at the jth output node of the multi-
input multi-output neuro-fuzzy network is: 

bdfe jjj normalized . (6.32) 

In the above equation, zl  is a matrix of size NM  that contains the degree of 

fulfilment (firing strength) of each fuzzy rule computed for a given set of training 
samples, where M is the number of fuzzy rules (and also the number of Gaussian 
membership functions implemented for fuzzy partition of input universes of 
discourse) and N is the number of training samples (input-output data samples). 

Adopting a similar technique and taking into account Equation (6.28), the 
original prediction error (6.30) and Equation (6.15b), which computes the 

derivative of S with respect to l
ij , we can get the transposition of the Jacobian 

matrix and its further transposition, i.e. the Jacobian matrix itself, for the network’s 

free-parameter l
ij  using 

xbzJ i
ll

ij
T  (6.33a) 

.
T T

l
ij

lT l
iijJ bJ xz  (6.33b) 

Also, instead of the original prediction error, if here we consider the normalized 
prediction error of Equation (6.32) and, as usual, Equations (6.28) and (6.15b), 
then we can get the transposed Jacobian matrix and the Jacobian matrix itself for 

the same parameter l
ij  as  

xzJ i
ll

ij
T  (6.34a) 

T T
l
ij

lT l
iijJ J xz  (6.34b) 

Finally, to compute the Jacobian matrices and their transpositions for the 

remaining free parameters of the network, i.e. for parameters l
i

l
ic and, , we also 

use a similar technique, whereby Equation (6.15e), which computes the term A, has 
to be reorganized.  

Let us denote  

fyD jj
l

j . (6.35) 

Using Equations (6.30) and (6.35) we can rewrite (6.15e) as  
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mm

m

j
jj eDeDeDeDA 2211

1
 (6.36) 

Our objective is to find suitable terms Deqv and eeqv such that their product is 
equal to  

eqv 1 2eqv 1 2 m mA D e D e D e D e  (6.37) 

where the term eeqv is such that it contributes the same amount of sum squared 
error value S of equation (6.11b) as that can be obtained jointly by all the 

dfe jjj  from the multiple-input multiple-output network. Therefore, 

eqv

2 2 2
1 2

p p p p
me e e e , (6.38) 

where,  p = 1, 2, 3, …, N; corresponding to N training samples. This results in 

1

eqv eqvA eD  (6.39a) 

This can be written in matrix form using the pseudo inverse as 

1

eqv eqveqv eqv
T TA ED E E  (6.39b) 

where Eeqv is the equivalent error vector of size 1N  containing 
eqv

p
e  as its 

elements for all (N) training samples. Similarly, Deqv and A are matrices of size 
NM  and 1M  respectively. Once the matrix Deqv and the equivalent error 

vector Eeqv are known, we can replace matrix A with their product. Therefore, 

eqv eqvA D E  (6.40a) 

or, equivalently as, 

eqv eqvA eD  (6.40b) 

can be calculated. In the case of a multiple-input single-output neuro-fuzzy 
network, i.e. for m = 1 and eDA 11 , eqv 1D D  and eqv 1e e  hold. This means 

that, in this case, Equations (6.37) – (6.40b) need not be computed.  
However, for the multiple-input multiple-output case, where 2m , using 

(6.37) we can write Equations (6.15c) and (6.15d) as  
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2

eqv eqv 2l ll
i i i

l
iS bc e x cD z  (6.41a) 

32

eqv eqv 2l ll
i i i

l
iS be x cD z  (6.41b) 

Now, following the previous technique and realizing that eqv be  can be 

considered as the normalized equivalent error and, in addition, taking into account 
Equation (6.28) and comparing it respectively with (6.41a) and (6.41b), transposed 

Jacobian matrix and the Jacobians ,T l l
i iJJ c c  and ,T l l

i iJJ  for the 

network free parameters l
ic  and l

i  can be computed as: 

2

2T l ll
eqvi i i

l
iJ c x cD z  (6.42a) 

2
2

T
T

l
i

l lT ll
eqv ii i iJ c J c x cD z  (6.42b) 

32
2T l ll

eqvi i i
l
iJ x cD z  (6.42c) 

322
T

T
l
i

l lT ll
eqv ii i iJ J x cD z  (6.42d) 

The above equations describe the Jacobian matrices and their transpositions for the 
Takagi-Sugeno-type fuzzy logic systems with the adjustable free parameters l

ic
and l

i  when normalized (equivalent) error is considered.  
If, however, instead of normalized (equivalent) error only the equivalent error 

is considered, then the Jacobian matrices and their transpositions will be the same, 
except that in the right-hand sides of Equations (6.42a) – (6.42c) the term lz  has to 

be replaced by normalized degree of fulfilment of the lth rule ,bzh ll where 
M

l

lzb
1

 represents the sum of degree of fulfilment of all rules.  

It is to be noted that, while computing the Jacobian matrices, care has to be 
taken so that the dimensions of the Jacobians match correctly with NN p ,

where N is the number of training data sets and Np the number of adjustable 
parameters in the network’s layer considered. In all our simulation experiments 
with neuro-fuzzy networks the normalized prediction error has been considered for 
the computation of Jacobian matrices for the network’s free parameters 0

l
j  and 

l
ij , so that Equations (6.31a), (6.31b) and Equations (6.34a), (6.34b) delivered the 

corresponding transposed Jacobian matrices and their Jacobians respectively. In 
contrast, normalized equivalent error has been considered for the computation of 
transposed Jacobian matrices and their Jacobians respectively for the mean and 
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variance parameters l
ic  and l

i  of the Gaussian membership functions; therefore, 
Equations (6.42a) – (6.42c) delivered the corresponding transpositions of the 
Jacobian matrices and the Jacobian matrices themselves for the Takagi-Sugeno-
type multi-input, multi-output neuro-fuzzy network’s free parameter and gave the 
Levenberg-Marquardt algorithm better convergence in most experiments. 

6.4.2.4 Adaptive Learning Rate and Oscillation Control 
The proposed backpropagation training algorithm and the Levenberg-Marquardt 
training algorithm, both with the modified error index extension as performance 
function and with the added small momentum term, have proven to be very 
efficient, and faster in training the Takagi-Sugeno-type neuro-fuzzy networks than 
the standard back-propagation algorithm. But still, the performance function of the 
network (if left without any proper care) is not always guaranteed to reduce, in 
every epoch, towards the desired error goal. As a consequence, the training can 
proceed in the opposite direction, giving rise to a continuous increase of 
performance function or to its oscillation. This prolongs the training time or makes 
the training impossible. To avoid this, three sets of adjustable parameters are 
recommended to be stored for the backpropagation algorithm and two sets for the 
Levenberg-Marquardt algorithm. The stored sets are then used in the following 
way. 

In the case of the backpropagation algorithm, if two consecutive new sets of 
adjustable parameters reduce the network performance function, then in the 
following epochs the same sets are used and the learning rate in the next step is 
increased slightly by a factor of 1.1. In the opposite case, i.e. if the performance 
function with the new sets of parameters tends to increase beyond a given limit - 
say WF (wildness factor of oscillation) times the current value of the performance 
function – then the new sets are discarded and training proceeds with the old sets 
of adjustable parameters. Thereafter, a new direction of training is sought with the 
old sets of parameters and with lower values of the learning rate parameter, e.g. 0.8 
or 0.9 times the old learning rate.  

In the case of the Levenberg-Marquardt algorithm, if the following epoch 
reduces the value of the performance function, then the training proceeds with a 
new set of parameters and the  value is reduced by a preassigned factor 1 dec .

In the opposite case, i.e. if the next epoch tends to increase this performance value 
beyond the given limits (WF times of current value of performance function) or 
remains the same, then the  value is increased by another preassigned factor 

( inc ) but the new set of adjustable parameters is discarded and training proceeds 

with the old set of parameters. In this way, in every epoch the value of the 
performance function is either decreased steadily or at least maintained within the 
given limit values.  
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6.5 Comparison of Radial Basis Function Network and Neuro-
fuzzy Network 

There are considerable similarities, as well as dissimilarities, between the RBF-
type neural network and neuro-fuzzy network. In this section we present a few 
comparisons between them. 

A radial basis function network can be considered as a three-layer network 
consisting of an input layer, a hidden layer and an output layer (see Chapter 3 for 
details). The hidden layer performs the nonlinear transformation, so that the input 
space is mapped into a new space. The output layer then combines the outputs of 
the hidden layer linearly. The structure of an RBF network with an input vector 

nx  and output y  is shown in Chapter 3. The output from such a 

network can be written as 

1
,

N

ii
i

y w Rx x

where iw  are the weights and Ri(x) is the nonlinear activation function of the 

hidden-layer neurons. 
The fuzzy logic system considered in Equations (6.9a) – (6.9c) can be rewritten 

as 

1 1
( ) ,where

and 1, 2, 3, , 1, 2, 3, , .

M Mllp l l l
j j

l l
x hf y h z z

j m; l M

noting that, when using the definition of the radial basis function the normalized 
degree of fulfilment of the lth rule, i.e. l l

ih h x , is similar to an RBF. 

Therefore, the fuzzy logic system can also be represented as an RBF neural 
network model. However, the following points have to be carefully noted: 

Functions in the form of (6.9a) are just one kind of fuzzy logic system with 
a particular choice of fuzzy inference engine with product inference rules,
a fuzzifier, and a weighted-average defuzzifier. If another choice is made, 
such as the mean-of-maxima (MOM) defuzzifier, then the fuzzy logic 
system will be quite different from the RBF network. Therefore, an RBF 
network in fact is a special case of the fuzzy logic system. 

The membership functions of the fuzzy logic system can take various 
geometric forms (such as Gaussian, triangular, trapezoidal, bell-shaped, 
etc.). They can also be non-homogeneous (i.e. the membership functions 
that divide the input or output universe of discourse may not all be of the 
same functional form), whereas the RBF network takes a lesser number of 
functional forms, like a Gaussian function, and are usually homogeneous. 
This is due to the different justifications of the neuro-fuzzy network and 
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the RBF networks. The fuzzy logic systems are justified from the human 
reasoning point of view and, therefore, the membership functions can have 
any suitable form within the range [0, 1], appropriate to representing the 
knowledge of a human expert through IF-THEN rules. On the other hand, 
RBF networks are based on biological motivations. Therefore, it is difficult 
to justify the use of many different kinds of non-homogeneous basis 
functions in a single RBF network. 

One of the fundamental differences between a neuro-fuzzy network and an RBF 
network is that the former takes the linguistic information explicitly into 
consideration and makes use of it in a systematic manner, whereas the latter does 
not. Furthermore, while using the neuro-fuzzy network, besides the generated 
model accuracy we are also concerned about the transparency of the model, 
whereas for the RBF network, and also for other types of neural network, we are 
only concerned about the model accuracy (black-box modelling). 

6.6 Comparison of Neural Network and Neuro-fuzzy Network 
Training  

We would now like to compare the back-propagation training algorithms for the 
multi-layer perceptron networks and neuro-fuzzy networks described in this 
chapter. The training algorithms are similar in the following sense: 

Their basic operation, i.e. forward computation and backward training, is 
the same, and in order to minimize the sum squared error between the 
actual output and the desired output of the network, both of them use either 
the same gradient method or the second-derivative-based recursive 
algorithm, i.e. the approximate Hessian matrix. 

Both of them are universal approximators and, therefore, well qualified to 
solve any nonlinear mapping to any degree of accuracy within the universe 
of discourse. 

However, they differ distinctly in the following: 

The parameters (weights and biases) of the neural networks have no clear 
physical meaning or interpretation (black-box modelling), which makes the 
selection of their initial values difficult; thus, they are chosen rather 
randomly. On the other hand, the parameters of the neuro-fuzzy networks 
have clear physical meaning (membership functions), so that if the 
sufficient knowledge about the system to be modelled by the neuro-fuzzy 
networks is available, then a good initial parameter setting procedure can 
be developed. 

Besides numerical information, linguistic information can also be 
incorporated into neuro-fuzzy systems.  
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6.7 Modelling and Identification of Nonlinear Dynamics 

We would now like to illustrate the efficiency of the neuro-fuzzy approach 
proposed in Section 6.4.1 on some forecasting examples. 

6.7.1 Short-term Forecasting of Electrical Load  

This application concerns the forecasting the electrical load demand, based on a 
time series that predicts the values at time (t + L) using the available observation 
data up to the time point t. For modelling purposes the time series data X = {X1, X2,
X3, …, Xq} have been rearranged in input-output form XIO. The neuro-fuzzy 
predictor to be developed for time series modelling and forecasting is supposed to 
operate with four inputs (i.e. n = 4) and with three outputs (i.e. m = 3). Taking both 
the sampling interval and the lead time of forecast to be one time unit, then for 
each 4t  the input data have to be represented as a four-dimensional vector and 
the output data as a three-dimensional vector  

 XI = [X(t-3), X(t-2), X(t-1), X(t)],
 XO = [X(t+1), X(t+2), X(t+3)] 

Furthermore, in order to have sequential output in each row, the values of t should 
run as 4, 7, 10, 13, …, (q-3). The corresponding XIO matrix will then look like 
(6.43), in which the first four columns represent the four inputs of the network and 
the last three columns represent its output.  

1 2 4 63 5 7

4 6 8 1075 9

6 5 4 2 13

, , , , ,

, , , , ,
XIO

, , , , ,q q q q q qq

X X XX X X X

XX XX X X X

XX X X X X X

   (6.43) 

In the selected forecasting example, 1163 input-output data were generated, from 
which only the first 500 input-output data sets, i.e. the first 500 rows from the XIO 
matrix, were used for the multi-input multi-output neuro-fuzzy network training. 
The remaining 663 rows of the XIO matrix were used for verification of the 
forecasting results. The training and forecasting performances achieved with the 
neuro-fuzzy network are illustrated in Figures 6.7(a) – (d) and in Tables 6.1(a) and 
6.1(b) respectively.  
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Figure 6.7(a). Training performance of Takagi-Sugeno-type multi-input multi-output neuro-
fuzzy network with n = 4 inputs, m = 3 outputs, M = 15 fuzzy rules and 15 GMFs for short-
term forecasting of electrical load time series when trained with proposed backpropagation 
algorithm. Backpropagation algorithm training parameters:  = 0.0005,  = 0.5, mo = 0.5, 
maximum epoch = 300, training (pre-scaled) data = 1 to 500 rows of XIO matrix, initial SSE 
= 324.6016 (with random starting parameter), final SSE = 23.8580, data scaling factor = 
0.01. 

Figure 6.7(b). Forecasting performance of Takagi-Sugeno-type multi-input multi-output 
neuro-fuzzy network with n = 4 inputs, m = 3 outputs, M = 15 fuzzy rules and 15 GMFs for 
short-term forecasting of electrical load when trained with proposed backpropagation 
algorithm. Data 1 to 1500 correspond to training data and data 1501 to 3489 (i.e. row 501 to 
1163 from XIO matrix) represent the forecasting performance. 
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Figure 6.7(c). Training performance of the Takagi-Sugeno-type multi-input multi-output 
neuro-fuzzy network with n = 4 inputs, m = 3 outputs, M = 15 fuzzy rules and 15 GMFs for 
short-term forecasting of electrical load time series with the proposed Levenberg-Marquardt 
algorithm. Training parameters of Levenberg-Marquardt algorithm: 0.001 ,  = 0.1, mo
= 0.1, maximum epoch = 200, training (pre-scaled) data = 1 to 500 rows of XIO matrix, 
initial SSE = 868.9336 (with random starting parameter of neuro-fuzzy network), final SSE 
= 22.5777, data scaling factor = 0.01. 

Figure 6.7(d). Forecasting performance of the Takagi-Sugeno-type multi-input multi-output 
neuro-fuzzy network with n = 4 inputs, m = 3 outputs, M = 15 fuzzy rules and 15 GMFs for 
short-term forecasting of electrical load after the training with the proposed Levenberg-
Marquardt algorithm. Note that in both Figures 6.7(b) and 6.7(d) data from 1 to 1500 
correspond to training data and data from 1501 to 3489 represent the forecasting 
performance with validation data set. It is important to note that data within the time points 
2200 to 2510 are different from the training data. Still the Takagi-Sugeno-type multi-input  
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multi-output neuro-fuzzy network can predict this data region with reasonably high 
accuracy. 

Table 6.1(a). Training and forecasting performance of Takagi-Sugeno-type multi-input 
multi-output neuro-fuzzy network with proposed backpropagation algorithm for electrical 
load time series. 

Figure 6.7(a) and Table 6.1(a) demonstrate that the proposed backpropagation 
algorithm brings the sum squared error as the performance function smoothly from 
its initial value of 324.6016 down to 23.8580 in 300 epochs, whereas Figure 6.7(c) 
and Table 6.1(b) demonstrate the training performance with the proposed 
Levenberg-Marquardt algorithm. In the latter case the performance function is 
brought down to 22.5777 from its initial value of 868.9336 within just 200 epochs, 
indicating the much higher convergence speed of the proposed Levenberg-
Marquardt algorithm in comparison with the backpropagation algorithm. 
Furthermore, the sum square error plots in both Figure 6.7(a) and Figure 6.7(c) 
show that the training does not exhibit much oscillation. The results illustrated in 
Figure 6.7(b) and Figure 6.7(d) and also in Table 6.1(a) and Table 6.1(b) clearly 
show the excellent training and forecasting performance of the Takagi-Sugeno-
type multiple-input, multiple-output neuro-fuzzy network with the proposed 
training algorithms.  

Sl. No. Final SSE with pre-scaled data 
(scale factor = 0.001) 

Final SSE, MSE, RMSE  
with original (nonscaled) data 

1. SSE = 23.8580 

SSE1 = 3.0077,  
SSE2 = 7.2863,  
SSE3 = 13.5640 
(with training data 1 to 1500) 

(After training with 
backpropagation algorithm) 

SSE = 2.3858e+005 
(with training data 1 to 1500) 
MSE1 = 30.0772,  
MSE2 = 72.8630,   
MSE3 = 135.6401;  

RMSE1 = 5.4843,  
RMSE2 = 8.5360,  
RMSE3 = 11.6465 

2. SSE = 53.5633;  
SSE1 = 6.8169,  
SSE2 = 16.6395,  
SSE3 = 30.1069,  
(with training and validation 
data points 1 to 3489) 

SSE = 5.3563e+005 

(with training and validation data 
points 1 to 3489) 
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Table 6.1(b). Training and forecasting performance of Takagi-Sugeno-type multi-input 
multi-output neuro-fuzzy network with proposed Levenberg-Marquardt algorithm for 
electrical load time series. 

Sl. No. Final SSE with pre-scaled data 
(scale factor = 0.001) 

Final SSE, MSE, and RMSE with 
original (nonscaled) data 

1. SSE = 22.5777 

SSE1 = 2.6365  
SSE2 = 6.7828  
SSE3 = 13.1584 
(with training data 1 to 1500) 

(After training with Levenberg-
Marquardt algorithm) 

SSE = 2.2578e+005 

MSE1 = 26.3650 
MSE2= 67.8278 
MSE3= 131.5837  

RMSE1= 5.1347 
RMSE2= 8.2358 
RMSE3=11.471 

2. SSE = 42.3026  
SSE1 = 5.0096 
SSE2 = 11.7879 
SSE3 = 25.5051 
(with training and validation data 
points 1 to 3489) 

SSE = 4.2303e+005 

(with training and validation data 
points 1 to 3489) 

Note that in the Table 6.1(a) and Table 6.1(b) SSE1, SSE2, and SSE3 indicate the 
sum squared error values at the output nodes 1, 2 and 3 respectively of the Takagi-
Sugeno-type multi-input multi-output neuro-fuzzy network as formulated in 
(Equation 6.11a), and SSE indicates the cumulative sum of the sum square error 
values contributed by all three output nodes of the multi-input multi-output neuro-
fuzzy network as formulated in (Equation 6.11b). 

6.7.2 Prediction of Chaotic Time Series  

In the next application example the proposed neuro-fuzzy algorithm has been 
tested for modelling and forecasting the Mackey-Glass chaotic time series, 
generated by solving the Mackey-Glass time delay differential equation (6.44) 
(MATLAB, 1998).

100.2 1 0.1 ,dx dt x t t x tx  (6.44) 

for .0for,0and,17,2.10 ttxx

The equation describes the arterial CO2 concentration in the case of normal and 
abnormal respiration and belongs to a class of time-delayed differential equations 
that are capable of generating chaotic behaviour. It is a well-known benchmark 
problem in fuzzy logic and neural network research communities. Like in the 
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previous example for forecasting purposes the time series data X = {X1, X2, X3, …,
Xq} were rearranged in a multi-input single-output (XIO)-like structure. For 
modelling and forecasting of the given time series the respective neuro-fuzzy 
predictor that has to be developed is taken to have four inputs (n = 4) and one 
output (m = 1). In addition, both the sampling interval and the lead time of forecast 
is supposed to be six time units, so that for each t > 18 the input data represents a 
four-dimensional vector  

 XI(t-18) = [X(t-18), X(t-12), X(t-6), X(t)],

and the output data a scalar value 

 XO(t-18) = [X(t+6)]. 

In the forecasting example considered, using Equation (6.44) and neglecting the 
first 100 transient data from the chaotic series, in addition 1000 input-output data 
were generated for the XIO matrix. Out of 1000 generated input-output data, only 
the first 200 data sets were used for network training, and the remaining 800 data 
were used for verification of forecasting results.  

The training and forecasting performances achieved with the implemented 
neuro-fuzzy network and with stored seven fuzzy rules are illustrated in Figure 
6.8(a) and Figure 6.8(b) and listed in Table 6.2(a) and also compared with other 
standard models in Table 6.2(b). The items listed in serial numbers 1 to 12 of Table 
6.2(b) were taken from Kim and Kim (1997), whereas serial number 13 is taken 
from Park et al. (1999). The results clearly confirm excellent training and 
forecasting performance of the Takagi-Sugeno-type neuro-fuzzy network for 
Mackey-Glass chaotic time series.
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Figure 6.8(a). Training performance of Levenberg-Marquardt algorithm for Takagi-Sugeno-
type of multi-input single-output neuro-fuzzy network (using seven fuzzy rules and seven 
GMFs) with Mackey-Glass chaotic time series data. Parameters of Levenberg-Marquardt 
algorithm:  = 10,  = 0.001, mo = 0.098, WF = 1.01. 

Table 6.2(a). Training and forecasting performance of Takagi-Sugeno-type of multi-input 
single-output neuro-fuzzy network (with M = 7 fuzzy rules) with proposed Levenberg-
Marquardt algorithm for Mackey-Glass chaotic time series (SSE = sum square error, MSE = 
mean square error, MAE = mean absolute error, RMSE = root mean square error) 

Sl. No. Input data SSE, MSE  
achieved

RMSE, MAE  
achieved

1. 1–200 

(Training in 95 epochs) 

SSE = 0.0026  

MSE = 2.5571e–005 

RMSE = 0.0051  

MAE = 0.0039  

2. 201–500 

(Forecasting) 

SSE = 0.0047  

MSE = 3.1120e–005 

RMSE = 0.0056  

MAE = 0.0043 

3. 501–1000 

(Forecasting) 

SSE = 0.0071 RMSE = 0.0053 

4. 201–1000 

(Forecasting) 

SSE = 0.0118 

MSE = 2.9427e–005 

RMSE = 0.0054  

MAE = 0.0042 

SSE = 2

1
0.5

N

r
r

e , MSE = 2

1

N

r
r

e N , RMSE = 2

1

N

r
r

e N , and MAE = 

1
,

N

r
r

abs e N  where er is the error due to rth data sample and N is the number of data 

samples.
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Figure 6.8(b). Performance of a Takagi-Sugeno-type multi-input single-output neuro-fuzzy 
network in forecasting the Mackey-Glass chaotic time series. Figure 6.8(a) and Figure 6.8(b) 
demonstrate the excellent training and forecasting performance of the Takagi-Sugeno-type 
multi-input single-output neuro-fuzzy network respectively for the Mackey-Glass chaotic 
time series. It is to be noted that the neuro-fuzzy network considered for this problem has 
only four inputs and one output and uses only seven Gaussian membership functions for 
(fuzzy) partitioning of input universes of discourse and seven fuzzy rules for neuro-fuzzy 
modelling. 

3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

0 .5

1

1 .5
s im fzTS .m : N e uro -fuzzy o utp ut vs . A c tua l

tim e

N
F

(g
r)

-A
ct

ua
l(b

l)

3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 9 0 0 1 0 0 0

-0 .2

-0 .1

0

0 .1

0 .2
s im fzTS .m : N e uro -fuzzy p re d ic tio n e rro r

tim e

N
F

 P
re

di
ct

io
n 

E
rr

or
 (r

ed
)



 Neuro-fuzzy Approach 257 

Table 6.2(b). Comparison of training and prediction performance of fuzzy and other model 
with selected Takagi-Sugeno-type multi-input single-output neuro-fuzzy network with 
proposed Levenberg-Marquardt training algorithm for Mackey-Glass chaotic time series. 

Sl. No. Method Training / 
forecasting with 
Input data 

RMSE
prediction error 

1. Kim and Kim 
 (coarse partition) 

500 0.050809 (5 partitions) 
0.044957 (7 partitions) 
0.038011 (9 partitions) 

2. Kim and Kim 
 (after fine tuning) 

500 0.049206 (5 partitions) 
0.042275 (7 partitions) 
0.037873 (9 partitions) 

3. Kim and Kim  
(genetic-fuzzy predictor  
ensemble) 

500 0.026431 

4. Lee and Kim 500 0.0816 
5. Wang (product operator) 500 0.0907 
6. Min operator 500 0.0904 
7. Jang (ANFIS) 500 0.0070 (16 rules) 
8. Auto regression model 500 0.19 
9. Cascade correlation neural 

network 
500 0.06 

10. Backpropagation neural 
network 

500 0.02 

11. Sixth-order polynomial 500 0.04 
12. Linear prediction model 500 0.55 
13. FPNN (quadratic polynomial 

fuzzy inference) 
500 0.0012 (16 rules) 

14. Takagi-Sugeno-type multi-
input single-output neuro-
fuzzy network (proposed 
work) 

500 (forecasting) 0.0053 (7 rules,  
7 GMFs,  
non-optimized) 

RMSE = 2

1

N

r
r

e N , er is the error due to rth training sample and N is the number 

of training / predicted data samples. 
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6.7.3 Modelling and Prediction of Wang Data  

This example deals with the modelling of a second-order nonlinear plant 

)())2(),1(()( kukykygky  (6.45a) 

studied by Wang and Yen (1998, 1999a, and 1999b) and by Setnes and Roubos 
(2000 and 2001), with 

2 2

( 1) ( 2)( ( 1) 0.5)
( ( 1), ( 2))

1 ( 1) ( 2)

y k y k y k
g y k y k

k ky y
 (6.45b) 

The goal is to approximate the nonlinear component ))2(),1(( kykyg of the 

plant with a suitable fuzzy model. Wang and Yen (1999) generated 400 simulated 
data points from the plant model (6.45a) and (6.45b). 200 samples of identification 
data were obtained with a random input signal u(k) uniformly distributed in [-1.5, 
1.5], followed by 200 samples of evaluation data obtained by using a sinusoid 
input signal ( ) sin 2 25 ,u k k  as shown in Figure 6.9(a). This example was also 

used by Setnes and Roubos (2000 and 2001) and a comparison with the results of 
Wang and Yen (1998, 1999a, and 1999b) was made. Here, we also apply the 
proposed Takagi-Sugeno-type neuro-fuzzy modelling scheme on the original 
Wang-data and show the results for linear rules consequents and compare the 
results with others described in the above references. 

In order to apply the Takagi-Sugeno-type neuro-fuzzy modelling scheme the 
original Wang data (which is available to us in the form of an XIO matrix of size 
400 × 3 that contains the first two columns as inputs and the third column as the 
desired output) was scaled and normalized down to the range [0, 1] for 
convenience. In the following, since our objective is to approximate the nonlinear 
component ))2(),1(( kykyg  of the plant, the same is treated as the desired 

output from the neuro-fuzzy network, whereas u(k) and y(k) have been considered 
as two inputs to the neuro-fuzzy network. The scaling and normalization were 
performed separately on each column of the XIO matrix, i.e. XIO , ,u y g , and 

the three column vectors 1 2, , ,
T

Nu u u u , 1 2, , ,
T

Ny y y y and 

1 2, , , ,
T

Ng g g g  each contains N data points. The scaled and normalized vector

nsc 0

min0 max

1 min 2 min min( ), ( ), ,( ) ,

) )( (

T

lo

lohi

Nu K u u u u u u u

K u uu u
 (6.46) 

is then computed where umax and umin are the maximum and minimum values of the 
u vector, and uhi = 1 and ulo = 0 are the desired highest and lowest values of the 
scaled or normalized unsc vector.

Once the scaling/normalization is performed, the scaled/normalized data are fed 
to the neuro-fuzzy network with n = 2 inputs and m = 1 output for training. Once 
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the network is trained, its final parameter values are stored and the network is used 
for prediction. In this experiment, the first 200 data samples were used for training 
and the remaining 200 data samples were used for evaluation. The training 
performance of the network is illustrated in Figure 6.9(b) and also listed in Table 
6.3(a). It is also illustrated that using only M = 10 fuzzy rules (first model) and also 
10 Gaussian membership functions implemented for fuzzy partition of the input 
universe of discourse the proposed training algorithm could bring the network 
performance index (SSE) down to 3.0836 × 10–4 or equivalently MSE to 3.0836 × 
10–6 from their initial values 45.338 in only 999 epochs. This is equivalent to 
achieving an actual SSE = 0.0012 or an actual MSE = 1.1866 × 10–5 when 
computed back on the original data.  

Figure 6.9(a). Plot of first input u(k) (top), output g(k) (middle) and second input y(k)
(bottom) of non-scaled Wang data (second-order nonlinear plant). 

The corresponding evaluation performance of the trained network, as shown in 
Figure 6.9(c) and also listed in Table 6.3(a), illustrates that using the scaled or 
normalized evaluation data set from 201 to 400, the SSE value of 5.5319 × 10–4, or 
equivalently MSE value of 5.5319 × 10–6, were obtained. The above results further 
correspond to an actual SSE value of 0.0021, or equivalently to an actual MSE 
value of 2.1268 × 10–5, which were computed back on the original evaluation data 
set. Evidently, the evaluation performance (actual MSE value), reported in Table 
6.3(b), is at least 10 times better than that achieved by Setnes and Roubos (2000), 
Roubos and Setnes (2001) and much better than that achieved by Yen and Wang 
(1998, 1999a, 1999b). 
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Table 6.3(a). Training (999 epochs) and evaluation performance of Takagi-Sugeno-type 
multi-input single-output neuro-fuzzy network with proposed Levenberg-Marquardt 
algorithm for Wang data (second-order nonlinear plant data). Tuning parameter values of 
Levenberg-Marquardt algorithm for first model, i.e. M = 10, GMFs* = 10:  = 10,  = 
0.01, mo = 0.098, WF = 1.05; for second model, i.e. M = 5, GMFs* = 5:  = 10,  = 0.01, 
mo = 0.098, WF = 1.05 

Sl. No. Input data SSE & MSE 
(with pre-scaled and 
 non-scaled actual data)  

RMSE & MAE  
(with pre-scaled and 
 non-scaled actual data) 

1 1–200 
Training data  

(first model)

SSE_train = 3.0836e–004 
MSE_train = 3.0836e–006 

Equivalently actual  
SSE_train = 0.0012  
MSE_ train= 1.1866e–005  

RMSE_train = 0.0018  
MAE_train = 0.0012  

Equivalently actual  
RMSE_train = 0.0034  
MAE_train = 0.0024  

2 201–400 
Evaluation data  

(first model)

SSE_test = 5.5319e–004  
MSE_test =  5.5319e–006  

Equivalently actual 
SSE_test = 0.0021, 
MSE_test = 2.1268e–005 

RMSE_test = 0.0024  
MAE_test = 0.0015  

Equivalently actual 
RMSE_test = 0.0046  
MAE_test = 0.0030  

3 1–200 
Training data 

(second model)

SSE_train = 0.0135  
MSE_train = 1.3491e–004  

Equivalently actual  
SSE_train = 0.0519  
MSE_train = 5.1866e–004  

RMSE_train = 0.0116 
MAE_train = 0.0087 

Equivalently actual 
RMSE_train = 0.0228  
MAE_train = 0.0170 

4 201–400 
Evaluation data 

(second model)

SSE_test = 0.0203  
MSE_test = 2.0289e–004  

Equivalently actual  
SSE_test = 0.0780  
MSE_test = 7.8002e–004 

RMSE_test = 0.0142  
MAE_test = 0.0104  

Equivalently actual  
RMSE_test = 0.0279  
MAE_test = 0.0204  

GMFs* = Gaussian membership functions 

The same experiment was also carried out for M = 5 (second model), which 
exhibited the following training performance with the first 1 to 200 normalized and 
scaled training data: SSE and MSE values of 0.0135 and 1.3491×10–4 respectively, 
which correspond to the actual SSE and MSE values of 0.0519 and 5.1866×10–4

respectively. In addition, as listed below, the testing or evaluation performance of 
the Wang data with 201 to 400 rows, for five fuzzy rules and five Gaussian 
membership functions has produced SSE and MSE values of 0.0203 and 
2.0289×10–4 respectively. These results further correspond to actual SSE and MSE 
values of 0.0780 and 7.8002×10–4 respectively, which are computed back from 
original (non-scaled) evaluation data.  
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Figure 6.9(b). Performance of Takagi-Sugeno-type multi-input single-output neuro-fuzzy 
network with M = 10 rules (first model) for normalized Wang data when trained with 
proposed Levenberg-Marquardt algorithm. 

Figure 6.9(c). Prediction performance of Takagi-Sugeno-type multi-input single-output 
neuro-fuzzy network with M = 10 rules (first model) for non-scaled Wang data after training 
with proposed Levenberg-Marquardt algorithm. 
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Figure 6.9(d). Performance of Takagi-Sugeno-type multi-input single-output neuro-fuzzy 
network with M = 5 rules (second model) and five GMFs for normalized Wang data when 
trained with proposed Levenberg-Marquardt algorithm. 

Figure 6.9(e). Prediction performance of Takagi-Sugeno-type multi-input single-output 
neuro-fuzzy network with M = 5 rules (second model) for non-scaled Wang data after 
training with proposed Levenberg-Marquardt algorithm. 
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Figure 6.9(f). Finally tuned five Gaussian membership functions plot for fuzzy partition of 
input u (scaled/normalized) universe of discourse for Wang data. X-axis (input universe of 
discourse, scaled/normalized), Y-axis (degree of membership). 

Figure 6.9(g). Finally tuned five Gaussian membership functions plot for fuzzy partition of 
input y (scaled/normalized) universe of discourse for Wang data. X-axis (input universe of 
discourse – scaled/normalized), Y-axis (degree of membership). Note that fuzzy membership 
functions in Figure 6.9(f) and Figure 6.9(g) are largely overlapping. Accuracy and 
transparency of the model are expected to be further improved if the similar fuzzy sets (for 
e.g. G4 and G3 in Figure 6.9(f) and in Figure 6.9(g) G3 and G5 are highly similar fuzzy 
sets) are merged and further fine-tuned using genetic algorithm or evolutionary computation. 
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Table 6.3(b). Comparison of training and evaluation performances of other fuzzy model and 
Takagi-Sugeno-type multi-input single-output neuro-fuzzy networks trained with the 
proposed Levenberg-Marquardt algorithm for Wang data (second-order nonlinear plant 
data) 

Method No. of rules No. of fuzzy 
sets

Rules  
conseq. 

MSE
training 

MSE
eval. 

Wang and  
 Yen (1999) 

40  (initial) 
28 (optimized) 

40 Gauss. (2D) 
28 Gauss. (2D) 

Singleton 
Singleton 

3.3e–4 
3.3e–4 

6.9e–4 
6.0e–4 

Yen and  
Wang (1998) 

36 (initial) 
23 (optimized) 
36 (initial) 
24 (optimized) 

12 B-splines 
12 B-splines 
12 B-splines 
12 B-splines 

Singleton 
Singleton 
Linear 
Linear 

2.8e–5 
3.2e–5 
1.9e–6 
2.0e–6 

5.1e–3 
1.9e–3 
2.9e–3 
6.4e–3 

Yen and  
Wang (1999) 

25 (initial) 
20 (optimized) 

25 Gauss. (2D) 
20 Gauss. (2D) 

Singleton 
Singleton 

2.3e–4 
6.8e–4 

4.1e–4 
2.4e–4 

Setnes and  
Roubos 
(2000) 

7 (initial) 
7 (optimized) 
5 (initial) 
5 (optimized) 
4 (optimized) 

14 Triangular 
14 Triangular 
10 Triangular 
  8 Triangular 
  4 Triangular 

Singleton 
Singleton 
Linear 
Linear 
Linear 

1.6e–2 
3.0e–3 
5.8e–3 
7.5e–4 
1.2e–3 

1.2e–3 
4.9e–4 
2.5e–3 
3.5e–4 
4.7e–4 

Roubos and  
Setnes (2001) 

5 (initial) 
5 (optimized) 
5 (optimized) 

10 Triangular 
10 Triangular 
  5 Triangular 

Linear 
Linear 
Linear 

4.9e–3 
1.4e–3 
8.3e–4 

2.9e–3 
5.9e–4 
3.5e–4 

Proposed 
neuro-fuzzy 
TS model 

10 (initial,  
non-optimized) 
5 (initial,  
non-optimized) 

10 Gaussian  
  5 Gaussian 

Linear 
Linear 

1.1866e–5 
5.1866e–4

2.1268e–5 
7.8003e–4 

The plots of the finally tuned GMFs that made the fuzzy partitions of universes 
of discourse of normalized input u(k) and input y(k) are shown in Figures 6.3(f) 
and 6.3(g) respectively. The figures also show that there is further scope for 
improving the accuracy, transparency and interpretability of neuro-fuzzy model 
obtained through similarity measures and genetic-algorithm-based optimizations. 
These issues, namely model transparency and interpretability, will be the main 
subject of discussion in Chapter 7. The results obtained in this example also, in 
general, summarize the excellent prediction performance of Takagi-Sugeno-type 
multi-input single-output neuro-fuzzy networks when trained with the proposed 
Levenberg-Marquardt Algorithm.  

6.8 Other Engineering Application Examples  

In the following, some engineering application examples are given in which the 
systematic neuro-fuzzy modelling approach has been used to solve the problem of  

material property prediction  
pyrometer reading correction in temperature measurement of wafers, based 
on prediction of wafer emissivity changes in a rapid thermal processing 
system, such as chemical vapour deposition and rapid thermal oxidation  



 Neuro-fuzzy Approach 265 

monitoring of tool wear. 

6.8.1 Application of Neuro-fuzzy Modelling to Material Property Prediction 

Chen and Linkens (2001) have proposed a systematic neuro-fuzzy modelling 
framework with application to mechanical property prediction in hot-rolled steel. 
Their methodology includes three main phases: 

the initial fuzzy model, which consists of generation of fuzzy rules by a 
self-organizing network  
the second phase, which includes the selection of important input variables 
on the basis of the initial fuzzy model and also the assessment of the 
optimum number of fuzzy rules (hidden neurons in the RBF network) and 
the corresponding receptive fields determination via the fuzzy c-means 
clustering algorithm  
third phase, dedicated to the model optimization, including parameter 
learning and structure simplification on the basis of backpropagation 
learning and the similarity analysis of fuzzy membership functions.  

Thereafter, the neuro-fuzzy model developed is used to predict the tensile stress, 
yield stress, and the like in materials engineering. 

In materials engineering, property prediction models for materials are important 
for design and development. This has for many years been an important subject of 
research for steel. Much of this work has concentrated on the generation of 
structure - property relationships based on linear regression models (Pickering, 
1978), (Hodgson, 1996), developed only for some specific class of steels and 
specific processing routes. Recently, some improved, neural-networks-based 
models have been developed for prediction of mechanical properties of hot-rolled 
steels (Hodgson, 1996), (Chen et al., 1998), and (Bakshi and Chatterjee, 1998). 
Using complex nonlinear mapping, the models provide more accurate prediction 
than traditional linear regression models. But the drawback here is that the 
development of these kinds of model is usually highly problem specific and time 
consuming, so that the development of a fast, efficient, and systematic data-driven 
modelling framework for material property prediction is still needed. 

The problem of modelling of hot-rolled metal materials can be broadly stated as 
follows. Given a certain material which undergoes a specified set of manufacturing 
processes, what are the final properties of this material? Typical final properties, in 
which metallurgical engineers are interested, are the mechanical properties such as, 
tensile strength (TS), yield stress, elongation, etc. Chen et al. (2001) have 
developed a neuro-fuzzy model for the prediction of the composition-
microstructure-property relations of a wide range of hot-rolled steels. More than 
600 experimental data from carbon-manganese (C-Mn) steels and niobium micro-
alloyed steels have been used to train and test the neuro-fuzzy model, which relates 
the chemical compositions and microstructure with the mechanical properties. 

In the experimental data set, they have considered 13 chemical compositions, 
two microstructure variables, and measured tensile stress values, which 
corresponds to a system with 15 possible input variables and with one output 
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variable. Several performance indices (RMSE and MAE), and the correlation 
coefficient between the measured and the model predicted tensile stress were used 
to evaluate the performance of the fuzzy models developed. Property prediction 
results for different types of steel are summarized below. 

6.8.1.1 Property Prediction for C-Mn Steels 
Using the proposed input selection paradigm, five inputs (the carbon, silicon, 
manganese, nitrogen contents and the ferrite grain size D–1/2 (mm–1/2), were 
selected from the 15 possible input variables. Three hundred and fifty-eight 
industrial data were used, with 50% of them for training and the remaining 50% for 
model testing. After partition validation and parameter learning, the final fuzzy 
models of the Mamdani type consisting of six rules were obtained. The rule-based 
fuzzy model was represented by six fuzzy rules. From the fuzzy model generated, 
Chen et al. (2001) used linguistic hedges to derive the corresponding linguistic 
model.  

The fuzzy model with linguistic hedges finally generated used six Mamdani-
type fuzzy rules, such as one described below: 

Rule-1: IF Carbon is large and Silicon is medium and Manganese is large and 
Nitrogen is medium and D–1/2 is more or less medium, THEN Tensile 
Stress is large 

Using the above model, Chen et al. (2001) obtained good prediction results that 
gave RMSE = 12.44 and 16.85 and MAE = 9.46 and 13.15 for model training and 
testing respectively.  

According to their simulation result, the out-of-10% error-band prediction 
patterns for the testing data is 2.2%. It was claimed that the fuzzy model generated 
gave good prediction and generalization capability.

6.8.1.2 Property Prediction for C-Mn-Nb Steels  
In another experiment of Chen et al. (2001), for property prediction for C-Mn-Nb 
steels, more than 600 measured data, including the previously used 358 C-Mn data, 
were used to build the fuzzy model. Three hundred and fifteen data were selected 
for training and the remaining 314 data were used for testing. Using their proposed 
fuzzy modelling approach, six out of 15 variables were selected as the inputs (C, 
Si, Mn, N, Nb, D –1/2) with tensile stress as output. A six-rule fuzzy model was 
developed after structure identification and parameter training. The property 
prediction resulted in RMSE = 15.48 and 19.74 and MAE = 12.11 and 14.46 for 
training and testing, respectively. Furthermore, the out-of-10% error-band patterns 
for the testing data were found to be only 3%. 

6.8.2 Correction of Pyrometer Reading 

As a second engineering application, we describe here the prediction capability of 
a self-constructing neural-fuzzy inference network (SONFIN) proposed by Lai 
and Lin (1999) for pyrometer reading correction in wafer temperature 
measurement, based on emissivity changes. The motivation for this was that, 
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because of several distinct advantages of rapid thermal processing (RTP) over 
other batch processing, such as significant reduction in thermal budget and better 
control over the processing environment, rapid thermal processing has been 
extensively used in high-density integrated circuit manufacturing on single wafers.  

Wafer temperature measurement and control are two critical issues here. 
Currently, a single-wavelength pyrometer is used as a non-contact temperature 
sensor. However, for applications where the characteristics of the surface change 
with the time, the wafer emissivity also varies simultaneously. This can lead to 
temperature errors in excess of 50 degree Celsius in a few seconds. Various 
methods were suggested to overcome this problem, such as use of a dual-
wavelength pyrometer, model-based emissivity correction, etc. A global 
mathematical model for the rapid thermal process, which includes the temperature 
sensor along with a control loop and lamp system, was developed and simulated by 
Lai and Lin (1999). In the same model, emissivity changes during oxidation are 
calculated according to reflections, refraction within thin dielectric films on a 
silicon substrate. The oxide thickness as a function of oxidation time at various 
temperatures, is simulated by a linear parabolic model. Using the basic heat 
transfer law, a pyrometer model to simulate the temperature sensor in the rapid 
thermal process is derived and, thereafter, a neural-fuzzy network is used to learn 
and predict the variations of oxidation growth rate of the film under different 
process temperatures. Based on this neural-fuzzy prediction and an already 
available optical model the emissivity of the wafer can be correctly computed. 

Figure 6.10. Block diagram of the neural-fuzzy method to predict wafer emissivity variation 
and to correct the pyrometer readings 

Another neural-fuzzy network was used by Lai and Lin (1999) to control the 
temperature of an RTP system by using the inverse model of the RTP system to 
achieve two control objectives: trajectory following and temperature uniformity on 
the wafer. Figure 6.10 shows the block diagram of the neural-fuzzy method to 
predict wafer emissivity variation and to correct the pyrometer readings. The 
previous corrected temperature value Tc(k) and the current processing time k are 
used as the inputs of the neural-fuzzy network to predict the current film thickness, 
which is further used to compute the emissivity of the wafer ew´(k+1) according to 
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wafer optical model. The converter is then used to correct the pyrometer reading 
value Tp(k+1) to Tc(k+1).

The neural-fuzzy network used for this purpose was the SONFIN, which has a 
fuzzy rule-based network possessing neural learning ability. Compared with other 
existing neural-fuzzy networks, a major characteristic of this network is that no 
preassignment and design of fuzzy rules are required. The rules are constructed 
automatically during the training process. Besides, SONFIN can overcome both the 
difficulty of finding a number of proper rules for the fuzzy logic controllers and the 
overtuned and slow convergence phenomena of backpropagation neural networks. 
SONFIN can also optimally determine the consequent of fuzzy IF-THEN rules 
during its structure learning phase, and it also outperforms the pure neural 
networks greatly, both in learning speed and accuracy. 

6.8.3 Application for Tool Wear Monitoring 

In automated manufacturing systems, such as flexible manufacturing systems, one 
of the most important issues is the detection of tool wear during the cutting process 
to avoid poor quality in the product or even damage to the workpiece or the 
machine. It will be shown that a neuro-fuzzy model, based on a prediction 
technique, can be applied for monitoring tool wear in the drilling process.  

The alternating direction of the cutting force leads to vibrations of the machine 
structure. These vibrations will change owing to the tool wear conditions. Despite 
the relatively harsh environment in the proximity of the cutting zone, the vibrations 
can be measured conveniently by accelerometers at a comparably affordable price. 
Neural networks have, for a long time, been used for classification of various 
signals. However, because of many limitations, including the slow training 
performance of neural networks, alternatively a neural network with fuzzy 
inference has been used because of its much faster learning ability. The latter is 
nothing but a neuro-fuzzy type of hybrid learning network. Using such a network a 
new drill condition monitoring method is described, as proposed by Li et al.
(2000). The method is based on spectral analysis of the vibration signal. The 
results are used to generate a set of indices for monitoring, utilizing the fact that 
the frequency distribution of vibration changes as the tool wears. The nonlinear 
relationship between the tool wear condition and these monitoring indices is 
modelled using a hybrid neuro-fuzzy network. The hybrid network selected in this 
case has five inputs and five outputs. The inputs to the network are the monitoring 
indices based on the vibration signal of the drilling process. It is to be noted that 
the mean value of each frequency band can be used to characterize the different 
tool conditions. The monitoring indices selected as network inputs are summarized 
in Table 6.4(a). The content of the Table 6.4(a) is read follows: 

 x1 = the r.m.s value of the signal in the frequency band [0, 300] Hz. 

Unlike the inputs of the network, the tool wear condition of the network was 
divided into five states represented by five fuzzy membership functions (MF), 
namely initial wear, normal wear, acceptable wear, severe wear and failure. Based 
on the flank wear of the tool, these conditions are summarized in the Table 6.4(b). 
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Table 6.4(a). Summary of monitoring indices selected as network inputs

Input 
terminal of 
network 

Input 
representation 

RMS value of the signal  
in the frequency band

1 x1 [0, 300] Hz. 
2 x2 [300, 600] Hz 
3 x3 [600, 1000] Hz 
4 x4 [1000, 1500] Hz 
5 x5 [1500, 2500] Hz 

Table 6.4(b). Summary of the conditions for various flank wear 

Output terminal 
of the network 

Fuzzy 
MF

Tool condition Flank wear 

y1 1 Initial wear 0 < wear < 0.1 mm 
y2 2 Normal wear 0.05 < wear < 0.3 mm 
y3 3 Acceptable wear 0.25 < wear <0.5 mm 
y4 4 Severe wear 0.45< wear <0.6 mm 
y5 5 Failure wear > 0.6 mm 

Figure 6.11. Fuzzy neural net topology (left), fuzzy membership functions of drilling 
conditions (right)  

The fuzzy membership functions of drilling conditions based on experimental 
data and the observed system behaviour are set for output indices of the hybrid 
network, and are shown in the Figure 6.11. The reason for choosing a trapezoidal 
membership function is that it is difficult to quantify what exact percentage of tool 
wear corresponds to a certain linguistic variable. In order to improve the training 
speed of the hybrid network, the tool wear conditions are coded as follows: initial 
(1,0,0,0,0); normal (0,1,0,0,0); acceptable (0,0,1,0,0); severe (0,0,0,1,0); and failure 
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(0,0,0,0,1). If the tool condition is acceptable, then the output values of the hybrid 
network are (0,0,1,0,0). 

Once the hybrid neuro-fuzzy network has learnt the above nonlinear mapping 
from a given set of training examples consisting of (x, y) values, thereafter, for a 
new set of monitoring indices (i.e. related to the frequency band of the vibration), 
obtained from the drilling process through accelerometer, charge amplifier, and the 
signal processing unit, the network will generate or predict a set of y values. The 
maximum of yi, namely J, is converted to 1, and the others are converted to 0. For 
instance, if J = max{yi i =1, 2, 3, …, 5) = y2 = 0.8, the predicted output of the 
hybrid network is (0,1,0,0,0). This prediction indicates that the tool wear condition 
belongs to the normal category. Exploiting the prediction capability of the hybrid 
network and adopting similar methodologies one can monitor the tool wear in an 
automated manufacturing system. 

6.9 Concluding Remarks 

In this chapter a hybrid neuro-fuzzy modelling frame work is proposed. An 
accelerated training algorithm, based on either the backpropagation or Levenberg-
Marquardt algorithm and in combination with a modified error index extension, 
has also been developed for training Takagi-Sugeno-type multi-input multi-output 
or multi-input single-output neuro-fuzzy networks. The increased speed of training 
convergence was experimentally confirmed on some examples of modelling and 
forecasting of time series. It was observed that the addition of a small modified 
error index term to the original performance function improves the convergence 
speed of both standard backpropagation and the Levenberg-Marquardt algorithm 
significantly.  

The trained neuro-fuzzy network itself is found to be powerful for modelling 
and prediction of dynamics of various nonlinear phenomena. However, the fuzzy 
rules generated through neuro-fuzzy training are occasionally found to be not 
transparent enough, in the sense that a clear interpretation of all the tuned fuzzy 
sets is not possible. This is due to the fact that the membership functions, finally 
tuned through neuro-fuzzy network training, are frequently very similar to each 
other or they greatly overlap each other, giving rise to a difficult situation to 
interpret. To solve this problem and to improve the interpretability of fuzzy rules, 
set-theoretical similarity measures should be computed for each pair of fuzzy sets 
and highly similar fuzzy sets should be merged together into a single set (Setnes, 
Babuška, Kaymark, 1998) as discussed in detail in Chapter 7. Furthermore, the 
tuned membership functions building a universal fuzzy set within the universe of 
discourse should be removed because they do not contribute anything to the rule 
base. Also, because the parameters of the Gaussian membership functions are 
unconstrained, it is probable that the fuzzy partition occasionally may not look like 
the usual fuzzy partition. In such cases, the interpretation of a trained neuro-fuzzy 
system may also not be possible.  

An additional issue is the determination of the optimum number of fuzzy rules 
and hence, also the determination of optimum number of membership functions. 
This is essential, because an unnecessarily larger rule base may overfit the noisy 
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data and thereby worsen the prediction ability. For determination of the optimum 
number of rules and of membership functions, genetic algorithms or, in general, 
evolutionary computation, should preferably be used as a proper support tool.

It should finally be underlined that, after the completion of backpropagation or 
Levenberg-Marquardt training, if the final (linear/singleton) rules consequent 
parameters are determined by applying the least squares error estimator using only 
the tuned GMF parameters of the network, then the accuracy of the model could 
occasionally be increased further. Furthermore, the simulation results have shown 
that the Levenberg-Marquardt algorithm, based on Jacobian matrices computed 
using normalized prediction error or normalized equivalent error (Section 
6.4.2.3.1), though computationally very heavy, often leads to a better training 
performance and to a faster convergence when applied to the Takagi-Sugeno type 
of neuro-fuzzy networks. In the experiments investigated here, the proposed 
training algorithms (modified backpropagation/Levenberg-Marquardt algorithm) 
proved to be efficient enough for neuro-fuzzy modelling and for prediction of 
electrical load time series, chaotic time series, etc. Furthermore, some recently 
published additional engineering examples confirm the versatility and possible 
other applications of neuro-fuzzy networks in different fields of engineering.  
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7

Transparent Fuzzy/Neuro-fuzzy Modelling  

7.1 Introduction 

Fuzzy logic is a methodology widely applied in model building of dynamic 
systems for implementation of advanced control systems. Fuzzy models are 
developed using the universal approximation capability of fuzzy logic systems. 
Such models differ from other types of model built using non-symbolic 
methodology, mainly because they can represent knowledge in a transparent 
manner using fuzzy IF-THEN rules which are understandable to the human expert 
who can directly operate on them. This provides the direct man-machine 
communication.  

Fuzzy models are generally built by extracting and encoding expert knowledge 
into the IF-THEN rules with the linguistic arguments, in this way generating a 
transparent knowledge appropriate for its easy inspection, modification, and 
maintenance by human experts. However, the process of knowledge acquisition 
and building of adequate IF-THEN rules are not trivial tasks, because the experts 
are not always available and their knowledge is often incomplete, episodic and 
time varying. This was the motivation for switching model building approach from 
the seminal ideas of knowledge acquisition described above to a data-driven 
approach. Unfortunately, many of newly developed algorithms for data-driven 
fuzzy modelling aim at good numerical approximation and pay little attention to 
the transparency and computational load of the resulting rule base. In this chapter 
we will therefore present a rule base simplification method that can be used - along 
with arbitrary fuzzy modelling methods - for obtaining transparent and compact 
fuzzy models from data. The efficiency of the approach will be demonstrated on 
the example of nonlinear plant modelling and prediction of its future output value. 
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7.2 Model Transparency and Compactness 

Fuzzy models are often referred to as white-box models, in contrast to the neural-
networks-based models which are considered as black-box models. This is because 
fuzzy models are, to some extent, transparent to interpretation and analysis, 
implying that the model’s output can be justified through developed IF-THEN 
linguistic rules. However, the transparency of a fuzzy model cannot be achieved 
automatically, unless some special measure is taken a priori. This is especially, 
true for the automated data-driven fuzzy modelling technique, where the fuzzy 
models generated are not at all or to a restricted degree transparent to 
interpretation. 

A system can be described by a few fuzzy rules using distinct, i.e. non-
overlapping, interpretable fuzzy sets. It can, of course, also be described by a few 
fuzzy rules, but with a large number of highly overlapping fuzzy sets that hardly 
allow for any interpretation. Alternatively, if a system is described by a large 
number of rules but with a few (or many) distinct and non-overlapping fuzzy sets, 
then the fuzzy models generated in such a case could also be unclear or close to 
non-interpretable because of the large number of rules. This situation can occur 
practically when the fuzzy rules are generated using the Wang and Mendel (1992a) 
approach, or by its modification as proposed by Palit and Popovic (1999a), 
presented in Chapter 4. In both rule-generation approaches a large number of 
input-output data pairs (or training samples) generate a large number of rules, even 
though fuzzy domains are partitioned by large (or small) numbers of distinct and 
non-overlapping /partially overlapping fuzzy sets such as Small(N), Small(N-1), ..., 
Small(1), Centre (CE), Big(1), ..., Big(N), etc. The reason for loss of 
interpretability in the above case is mainly because the large number of rules fire 
simultaneously for an unknown input condition (within the fuzzy domain) to infer 
the corresponding output decision. Therefore, the corresponding output decision 
cannot be easily justified by human reasoning. 

Yet, in contrast to the above case when a fuzzy model is developed using expert 
knowledge, the model designer usually takes care that neither the number of rules 
nor the fuzzy sets, which are used to partition the domains, are large at all, besides 
maintaining the proper distinguishability of applied fuzzy sets for domain partition. 
On the other hand, when automated data-driven techniques are applied to build 
fuzzy models from data, a certain degree of redundancy, and thus unnecessary 
complexity, cannot be avoided. 

In the following, we present a rule base simplification and reduction method 
proposed by Setnes et al. (1998a and 1998b) and Setnes (2001) that seeks to 
simplify an already available rule base by reducing redundant information present 
in the form of similar fuzzy sets. Similar fuzzy sets are overlapping fuzzy sets that 
describe almost the same region in the domain of some model variable. In such 
cases, the model uses more fuzzy sets than necessary, since these fuzzy sets 
represent more or less the same concept. We intend to use the concept of set 
theoretic similarity measure, as extensively used by Setnes et al. (1998a, 1998b), 
that helps to identify the similar fuzzy sets, and to replace these similar fuzzy sets 
by a common fuzzy set representative of those original fuzzy sets. If the 
redundancy in the model is very high, then merging the similar fuzzy sets might 
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result in identical rules that can be subsequently removed from the rule base, 
leading to a reduction of the number of rules too. Also, the number of dimensions 
(features) in the model’s premise can be reduced in the case of partition similarity.  

In the rule base simplification method presented here, initially the set-theoretic 
similarity between two fuzzy sets is defined, based on which the similarity between 
the same sets can be numerically calculated. If the calculated similarity measure is 
larger than a threshold value (say 0.7) predefined by the fuzzy model designer, 
then the similar fuzzy sets are merged together, resulting in a unique fuzzy set 
representative of both fuzzy sets. By selecting different values of similarity 
threshold from the same initial (non-transparent/non-interpretable) rule base, 
several final (transparent/interpretable) fuzzy models can be generated in which the 
degree of acceptability of the final model is a trade-off between the three model 
competitive issues: modelling accuracy, transparency, and compactness.  

Setnes et al.(1998a, 1998b) have pointed out that several methods have been 
proposed for optimizing the size of the rule base. However, the fuzzy set-theoretic 
similarity-based rule base simplification method differs from other fuzzy rule base 
reduction methods mainly in the way that its main objective is to reduce the 
number of fuzzy sets used in the model and not the number of rules. Furthermore, 
the method can favourably be combined with any data-driven modelling tools, such 
as fuzzy clustering, or even the neuro-fuzzy approach of Palit and Babuška (2001) 
and genetic algorithms in order to obtain a tool for transparent, yet reasonably 
accurate and compact fuzzy modelling (Setnes and Roubos, 2000; Roubos and 
Setnes, 2001). 

In what follows, we will briefly discuss the transparent modelling procedure 
followed by a general data-driven modelling scheme in which fuzzy set-theoretic 
similarity-driven simplification is included. The concepts of similarity and 
redundancy to be described here are illustrated through a similarity-driven rule 
base simplification method, applied to the example of forecasting a nonlinear time 
series using a fuzzy model. 

7.3 Fuzzy Modelling with Enhanced Transparency 

In the fuzzy modelling scheme presented below, our objective is to achieve a good 
approximation accuracy and model transparency in a data-driven fuzzy modelling 
approach. In order to make the model transparent and computationally more 
efficient, an initial fuzzy model is extracted from observation data. In order to 
remove the unnecessary redundancy in the knowledge learnt from the data, the 
principle of set-theoretic similarity-driven fuzzy rule base simplification will be 
used. 

7.3.1 Redundancy in Numerical Data-driven Modelling 

In the recent past a variety of numerical data-driven fuzzy modelling tools have 
been developed for automated building of data-driven models (Roubos et al., 2001; 
Setnes, 2001). Usually, when building a fuzzy model, the model premise space is 
partitioned by means of fuzzy sets. However, rule-based models obtained from 
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numerical data can contain unnecessary redundancy in the form of highly 
overlapping and compatible membership functions. Also, when modelling 
approaches such as fuzzy clusterings are applied, this redundancy is predominant 
because the rules defined in the multidimensional premise are overlapping in one 
or more dimensions. As a result, more membership functions will be required to 
describe the same concept adequately in the final rule base. 

Another common fuzzy modelling approach, such as neuro-fuzzy approach 
proposed by (Wang and Mendel, 1992), and it’s modification by (Palit and 
Popovi , 1999b), and (Palit and Babuška, 2001), is based on parameter adaptation. 
In this approach, an initial partition of the input space is usually given by randomly 
generated fuzzy sets or by a number of equidistant symmetrical fuzzy sets defined 
for all the premise variables of the system. This partition can be seen as a uniform 
grid in the premise space. Thereafter, the parameters of the membership functions 
are adapted using the steepest descent method (backpropagation algorithm) (Wang 
and Mendel, 1992b; Palit and Popovi , 1999b) or by it’s superior form, such as 
Levenberg-Marquradt algorithms (Palit and Popovi , 1999b), (Palit and Babuška, 
2001). An undesired effect of adaptation is that antecedent Gaussian fuzzy sets can 
move closer to each other and may end up in overlapping positions. Also, some 
sets may grow to cover the whole space (universal fuzzy set), or diminish to non-
influential singletons. As illustrated in Figure 7.1, an initially transparent fuzzy 
model may become unreadable after parameter adaptation. 

Figure 7.1. Fuzzy sets before adaptation (left) and after adaptation (right) 

Undesired redundancy in the form of similarity between fuzzy sets can manifest 
itself in three different ways: 

Similarity of a particular fuzzy set A with other fuzzy sets in the model. 
Similarity of a fuzzy set A to the universal fuzzy set U: 1, .A x x X

Similarity of a fuzzy set A to a singleton fuzzy set such that, 

01, ;A x if x x and 00, , .A x x x x X

As similar fuzzy sets represent compatible concepts in the rule base, a model with 
many similar fuzzy sets becomes redundant, unnecessarily complex and 
computationally less efficient. Linguistic interpretation of such a model is also 
difficult, as it is not trivial to assign qualitatively meaningful labels to highly 
similar fuzzy sets. As an illustration of the latter, consider the Figure 7.1 (right), 
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where it can be seen that the first two triangular fuzzy sets after adaptation become 
highly overlapping and they approximately represent the same concept. 
Consequently, assigning them any meaningful label, such as low or medium, is no 
longer appropriate. Furthermore, some of the fuzzy sets extracted from numerical 
data may be similar to the universal set U. Such fuzzy sets are irrelevant because, 
for all the elements within the universe of discourse, they have degree of 
membership approximately equal to 1, which fails to categorize the data. The 
opposite effect is similarity to a singleton fuzzy set (see Figure 7.1 (right)). In this 
case, a particular data point has degree of membership equal to 1 and for all other 
data points it gives zero degrees of membership. If a rule has one or more such 
fuzzy sets in it’s premise, then it may never fire, and thus the rule does not 
contribute to the output model. However, it should be noted that such a rule may 
represent an exception in the overall model behaviour and, therefore, deserves a 
special care as it’s removal may force one to neglect the exceptionality in the 
model behaviour. 

7.3.2 Compact and Transparent Modelling Scheme 

We will now turn our attention to the application problem of similarity-driven 
simplification to enhance the transparency and compactness of a fuzzy rule base. In 
order to reduce the redundancy of fuzzy models obtained from data, this 
simplification can naturally be combined with a data-driven modelling tool, which 
results in a transparent fuzzy model scheme. This is the approach followed in 
nonlinear time series modelling for the purpose of forecasting it’s future values. As 
such, a data-driven modelling tool, either of the fuzzy clustering or the neuro-fuzzy 
method, can be considered. However, other methods, such as Wang and Mendel’s 
(1992a) approach, or it’s modification by Palit and Popovic (1999a) for rule base 
generation or fuzzy modelling, can also be considered. Setnes et al. (1998a) 
considered a similarity-driven simplification in combination with fuzzy-neural 
networks, and Setnes and Roubos (2000), and Roubos and Setnes (2001) 
considered the genetic-fuzzy approach for second-order nonlinear plant modelling 
using Wang data (Wang and Yen, 1999), the principal steps of which for a 
transparent modelling scheme are described below. 

Step 1: Model Structure Selection 

The relevant input and output variables that are used for fuzzy model 
building are determined. Here, the structure selection for dynamic systems 
means translation of the identification problem into the equivalent 
regression problem that can be solved in a static manner (Babuška, 1996). 
Frequently, a reasonable choice of model structure can be made by the 
user, based on prior knowledge about the process. For the time series 
forecasting problem considered in this chapter, four input variables and one 
output variable are considered, so that the input data is a vector of size 
1 4  and output is a scalar. 

Step 2: Data Clustering  
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The fuzzy clustering is usually used to discover the substructures in the 
product space of the available observations, where each cluster defines a 
fuzzy region in which the system can be approximated locally by a 
corresponding submodel. The location and the parameters of the submodels 
are derived from the clusters of the data. By applying cluster validity 
measures (Bezdek and Pal, 1998; Gath and Geva, 1989) such as Xie-
Beni’s index (Xie and Beni, 1991) or compatible cluster merging 
(Kaymak and Babuška, 1995); (Setnes and Kaymak, 1998) and (Setnes, 
1999), an appropriate number of clusters can be found. Alternatively, Yao 
et al. (2000) have proposed an entropy-based simple fuzzy clustering 
algorithm where the number of clusters is automatically determined by the 
clustering algorithm itself. In the recent publications of Panchariya et al.
(2003a, 2003b, 2004a, 2004b) a distance-based simple clustering algorithm 
has been developed that uses an almost similar idea for the determination 
of the number of clusters. 

Step 3: Initial Fuzzy Model 

For a rule-based fuzzy model derived from the fuzzy partition matrix and 
the cluster prototypes, the rules themselves, the membership functions, and 
other model parameters, such as rules consequent parameters, are 
automatically extracted. The extraction procedure used depends on the type 
of fuzzy model to be built. In our case, fuzzy models of the type Takagi-
Sugeno are considered. 

Step 4: Similarity Based Simplification 

In order to upgrade or improve the transparency and the computational 
issues, the initial fuzzy model is simplified in this step. By selecting an 
acceptable degree of similarity (redundancy) between the fuzzy sets in the 
model, it is possible to generate models with varying degrees of complexity 
for different purposes. Thereafter, depending upon the needs, an 
appropriate model can be selected for validation. 

Step 5: Model Evaluation 

The ultimate version of the fuzzy model built undergoes an evaluation 
process that is decisive for its final acceptance for the given purpose. In 
addition to the numerical model validation by simulation, the interpretation 
of the fuzzy model plays an important role in the process of model 
validation. This includes the analysis of the input space coverage by the 
rules. If the rule base generated is found to be incomplete, i.e. if no rule is 
available involving an antecedent fuzzy set, then some additional rule is to 
be provided to complete the rule base. Such, an interpretation is made 
easier by the simplification in step 4. 

Very often, the number of rules, and hence the number of clusters, are not known a
priori. From the function approximation point of view creation, of too many 
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clusters does not necessarily pose any problem. However, for the inspection of the 
resulting model this means higher complexity, less transparency, and possibly 
wrong conclusions about the characteristics of the system. 

Figure 7.2. Flow chart of transparent fuzzy modelling scheme 

Furthermore, in the modelling approach proposed in Figure 7.2, the aggregation 
of similar fuzzy sets to a certain degree will correct for bias introduced by having 
too many clusters, making the modelling less sensitive to the determination of the 
correct number of clusters. 

7.4 Similarity Between Fuzzy Sets 

The definition of similarity concept between the fuzzy sets depends on their 
context. The concept of similarity has been defined, in our case, as the degree to 
which the fuzzy sets are equal. For instance, the fuzzy sets F1 (slow) and F2 (fast) 
in Figure 7.3(a) have exactly the same (triangular) shape, but clearly represent two 
distinct concepts, because they are representatives of slow and fast speeds 
respectively. 

Figure 7.3(a). Dissimilar fuzzy sets   Figure 7.3(b). Similar fuzzy sets 
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This means that they have a zero degree of equality and are, therefore, 
considered dissimilar. On the other hand, the two fuzzy sets F3 and F4 in Figure 
7.3(b), although different in shape, have a high degree of similarity or resemblance. 
They represent compatible concepts (low temperature) and are considered largely 
similar. 

7.4.1 Similarity Measure 

In the method presented here, two fuzzy sets are considered similar if the two 
overlapping membership functions assign approximately the same values of 
membership grade to the elements in their universe of discourse. So, the similarity 
here is the degree to which they can be considered as equal. Equality is a crisp set 
in the classical definition.  

Let us now consider two fuzzy sets F1 and F2 with the membership functions 

1F x  and 
2F x  respectively. Then, it holds that the fuzzy sets F1 and F2 on X

are equal if 
1 2F Fx x  and x X , where X is the universe of discourse. 

Applying this concept of equality to the fuzzy sets in Figure 7.3, we get that 

1 2F F  and 3 4 ,F F  because in both cases their membership functions are 
different. However, F3 and F4 can be said to have high degree of equality, and 
hence are similar.  

As the fuzzy sets allow for gradual transition between full membership and 
total non-membership, therefore, the similarity measure S should capture a gradual 
transition between equality and non-equality 

1 2,s S F F , 0,1s , (7.1) 

The similarity measure is a function of assigning a similarity value “s” to the pair 
of fuzzy sets (F1, F2) that indicates the degree to which F1 and F2 are equal. 

7.4.2 Similarity-based Rule Base Simplification 

For the purpose of rule base simplification, the fuzzy sets in a rule base that 
represent a more-or-less compatible concept should be detected by a similarity 
measure. Therefore, the fuzzy sets, representatives of a compatible concept, should 
be assigned a high similarity value, whereas more distinct sets should be assigned a 
lower similarity value. Furthermore, for a correct comparison of similarity values, 
the similarity measure in any case should be independent of the scaling of the 
domain on which fuzzy sets are defined. As a consequence, this eliminates the 
necessity of normalization of the domains. 

Now, let F1 and F2 be two fuzzy sets on X with the membership functions 

1F x  and 
2F x  respectively. If the four criteria, as listed below, are satisfied 

by the similarity measure, then it can be used as a suitable candidate for an 
automated rule base simplification scheme. 

1. Two overlapping fuzzy sets should have a similarity value s > 0: 
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1 21 2, 0 , 0.F FS F F x X x x

According to this criterion, two overlapping fuzzy sets F1 and F2 should be 
assigned a non-zero degree of similarity and should not be regarded as a 
totally non-equal. 

2. Only two equal fuzzy sets should have a similarity value s =1: 

1 21 2, 1 , .F FS F F x x x X

This criterion assures that the equality is a special case of similarity, in the 
same way as the crisp sets can be considered as a special case of fuzzy sets. 

3. Non-overlapping fuzzy sets should be totally non-equal, i.e. s = 0: 

1 21 2, 0 0, .F FS F F x x x X

This assures that dissimilar (non-overlapping) fuzzy sets are excluded from 
the set of similar fuzzy sets. Various degrees of similarity between distinct 
fuzzy sets are related to the distance between them, and can be quantified 
by a distance measure. 

4. Similarity between two fuzzy sets should not be influenced by scaling or 
shifting the domain on which they are defined: 

1 1

2 2

1 2 1 2, , , ,

, , , 0.

F F

F F

S F F S F F l kx x

l kx x k l k

This criterion is required for a fair comparison of similarities in the rule 
base, as a similarity measure that satisfies this criterion is not influenced by 
the numerical values of the domain variables. 

Many methods have been proposed to assess the similarity or compatibility of 
fuzzy concepts. A comparative analysis of different measures using human 
subjects was reported by Zwick et al.(1987) and the mathematical relations 
between the various measures were studied by Cross (1993). Later, Setnes (1995) 
investigated the usefulness of various measures for fuzzy modelling.  

According to the taxonomy presented by Cross (1993), the compatibility 
measures can be divided into three broad classes: set-theoretical, logic-based, and 
distance-based measures. Zwick et al. (1987) and Setnes (1995) used the term 
similarity measures as a general description for methods of comparing fuzzy sets. 
Unlike in the taxonomy by Cross, the term similarity is not reserved for a subclass 
of measures, and all measures are divided into two main groups: 

geometric similarity measures  
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set-theoretic similarity measures. 

Compared with the classification of Cross, the geometric similarity measures are 
the same as the distance-based compatibility measures, and the set-theoretical 
similarity measure holds for both the set-theoretic and the logic-based 
compatibility measures. 

The theoretical analysis of similarity has been dominated by the geometric 
models. These models represent fuzzy sets as points in a metric space and the 
similarity between the sets is regarded as an inverse of their distance in this metric 
space. 

Denoting now the distance between the fuzzy sets F1 and F2 as D(F1, F2), the 
similarity of F1 and F2 can be written as  

1 2
1 2

1
, .

1 ,
S F F

D F F
 (7.2) 

Examples of geometric similarity measures are the generalizations of Hausdorff 
distance to fuzzy sets (Zwick et al., 1987). Another example is similarity 
transformed from the well-known Minkowski class of distance functions:

1

1 2
1 21

, , 1
r

r

rn
i iF Fi

D F F x x r

The above sum of terms holds when the fuzzy sets F1 and F2 are defined on 
discrete universe of discourse 1,2, ,iX x i n , whereas for continuous 

universes the summation is replaced by integration.  
As argued by Zwick et al. (1987), geometric similarity measures are best suited 

for measuring similarity (or dissimilarity) among distinct fuzzy sets, while the set-
theoretical measures are most suitable for capturing the similarity among 
overlapping fuzzy sets. Setnes and Cross (1997) found that geometric measures are 
quite suitable for ranking of fuzzy numbers. The geometric similarity measures 
represent similarity as the proximity of fuzzy sets, and not as a measure of equality. 
The interpretation of similarity as “approximate equality” can be better represented 
by set-theoretic operations like union and intersection. They also have an 
advantage over geometrical measures, in that they are not affected by scaling and 
ordering of the domain (Setnes, 1995). For the similarity-driven simplification, we 
will use the fuzzy Jaccard index, which is based on the set-theoretical operations 
of intersection and union, in order to determine the similarity between fuzzy sets. 

Considering the two fuzzy sets F1 and F2 defined on the discrete domain X by 
their membership functions, the Jaccard index of similarity is defined as 

1 2

1 2

1 2
1 2

1 2

min ,
,

max ,

F i F i

F i F i

x xF F
S F F

F F x x
, (7.3) 
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where the cardinality is given by  

1 1
1

n

F i F i
i

x x .

The fuzzy Jaccard index complies with the four criteria described above, and 
reflects the idea of gradual transition from equal to completely non-equal fuzzy 
sets with S(F1, F2) = 0. This similarity is also used by Chao et al. (1996) for 
training the structure of fuzzy artificial neural networks. 

The similarity measure values for Gaussian fuzzy sets with a varying degrees of 
overlap are shown in Figure 7.4. Figure 7.4(b) shows that degree of similarity 
between the first Gaussian fuzzy set (GMF) and itself is 1.0, whereas it’s degree of 
similarity with the second fuzzy set from Figure 7.4(a) is only 0.4889, and with the  

Figure 7.4. Gaussian fuzzy sets and varying degree of similarity 

third Gaussian fuzzy set it is 0.2295, and so on. The list of degrees of similarity 
between the first Gaussian fuzzy set and the fourth set and others are given as 
follows: 0.1001, 0.0394, 0.0134, 0.0038, 0.0009, 0.0002, 0.0000. 

7.5 Simplification of Rule Base 

As discussed in Section 7.2, the automated approaches to fuzzy modelling 
frequently introduce redundancy in terms of several similar fuzzy sets that describe 
almost the same region in the domain of some model variable. These similarity 
measures can be used to quantify the similarity between fuzzy sets in the rule base. 
Two or more similar such fuzzy sets can be merged to create a new set to be stored 
in the rule base as the representative of the merged sets. In this way, the overall 
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number of fuzzy sets needed to construct the model decreases, which obviously 
simplifies the rule base. The simplification, however, also results when two or 
more rules are equal. Here, only one of the equal rules is to be stored in the rule 
base. Hence, in the approach presented here, there is a difference between rule 
base simplification, where the primary objective is to simplify the rules by 
merging similar fuzzy sets that represent almost the similar concept and rule base 
reduction, which may follow automatically as a result of rule base simplification. 
Figure 7.5 illustrates the idea of merging similar fuzzy sets, showing both rule base 
simplification and rule base reduction. 

Figure 7.5(a). Similarity-driven rule simplification (A1, A2, A3 are compatible fuzzy sets in 
Rules 1, 2 and 3; similarly B2 and B3 are compatible). Note that fuzzy set B1 is close to the 
universal fuzzy set in Rule 1. 

Figure 7.5(b). Similarity-driven rule simplification and rule reduction (after merging 
compatible fuzzy sets A1, A2 and A3 in Figure 7.5(a) to give common fuzzy set Ac, and 
similarly merging compatible fuzzy sets B2 and B3 in Figure 7.5(a) in Rule 2 and Rule 3 to 
give common fuzzy set Bc).
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In time series modelling or in data-driven identification of dynamic systems, 
when the similarity of the partitioning as a whole of two or more inputs occurs, 
another type of redundancy may be encountered. For instance, as illustrated in 
Figure 7.6, when delayed samples of the same variables are used as input, say x(k)
and x(k-1), they may have a highly similar influence in the model’s premise. In this 
case, the degree of firing of the various rules can be determined by one such input 
only, which reduces the dimensionality (feature) of the rule base premise. 

7.5.1 Merging Similar Fuzzy Sets 

In general, when two fuzzy sets are considered to be similar, the rule base can be 
simplified by 

replacing A by B
replacing B by A, or
replacing both A and B by a new fuzzy set C.

When the rule base represents a system model, two important aspects of the 
simplified rule base are to be considered: the model accuracy and it’s coverage of 
the premise space. Here, owing to the rule base simplification, the uncovered 
regions should not occur in the premise space. Assuming that the model’s accuracy 
is measured by the sum of squared errors J, the effect of replacing A and B by C
should be as small as possible with respect to J. Finding the fuzzy set C best suited 
to replace A and B becomes a question of evaluating J. Considering the 
nonlinearity of fuzzy models and the possible interplay between the rule 
antecedents and the rule consequents, optimizing the fuzzy set C based on J
becomes a computationally intensive search problem. In general, if the model is 
more sensitive to changes in A than to the changes in B, then the fuzzy set A should 
replace the fuzzy set B, or the common fuzzy set C should resemble A more than B.
In particular cases, some additional aspects like model granularity (number of 
linguistic terms per variable), interpretability or physical relevance may be 
important. 

For a better understanding of merging fuzzy sets, we define a trapezoidal fuzzy 
set A using parametric membership functions  

1 2 3 4 1 2 3 4; , , , ;A x a a a a a a a a ,

1 4

1 2 3 4 2 3

0, for , or

; , , , 1, for 

and 0,1
A

A A

x a x a

x a a a a a x a

x x

 (7.4) 

One way to merge the fuzzy sets is to take the support of A B  as the support of 
the new fuzzy set C. This guarantees preservation of the coverage of the whole 
premise space when C replaces A and B in the premise of the rule base. The kernel 
(cardinality) of C is given by aggregating the parameters describing the kernels of 
A and B. Thus, merging A and B, defined by 1 2 3 4; , , ,A x a a a a  and 
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1 2 3 4; , , ,B x b b b b  respectively, gives a fuzzy set C defined by 1 2 3 4; , , , ,C x c c c c

where 

1 1 1

3 2 3 2 3

min , ,

1 ,

c a b

c a b

2 1 2 1 2

4 4 4

1 ,

max , .

c a b

c a b
 (7.5) 

From the above description one can see that for 2 3a a  and 2 3b b , trapezoidal 

fuzzy sets A and B reduce to two triangular fuzzy sets and for 2 3c c  fuzzy set C
represents the final triangular fuzzy set obtained by merging two triangular fuzzy 
sets A and B. Following the same discussion, one can also merge two similar 
Gaussian fuzzy sets 1 2 and G G  represented by the corresponding membership 
function as 

2 2; , exp , 1, 2.
iG i i i ix c x c i

Merging of these two fuzzy sets 1 2and G G  will result in a new fuzzy set 3G

represented also by a Gaussian membership function with mean and variance 
parameters respectively as  

3 1 1 1 2 3 2 1 2 21 , 1c c c .

The parameters 1  and 2  [0,1] determine which of the fuzzy sets 1 2, orG G  has 

the most influence on the cardinality of 3G . Similarly, in the case of trapezoidal or 

triangular fuzzy sets the parameters 1  and 2  [0,1] determine which of the 
fuzzy sets A or B has the most influence on the cardinality (kernel) of C.

Figure 7.6. Merging of two fuzzy sets, trapezoidal (left) and triangular (right) 
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In the following, we will suppose that 1 = 2 = 0.5. This averaging of the 
kernel gives a trade-off between the contributions of the rules in which the fuzzy 
sets occur. Figure 7.6 illustrates this method for merging the two fuzzy sets A and 
B in order to create the fuzzy set C.

7.5.2 Removing Irrelevant Fuzzy Sets 

If the rule base contains irrelevant fuzzy sets, i.e. if a fuzzy set in the premise of a 
rule has a membership function 1, ,x x X  then it is similar to the universal 

fuzzy set U and can be removed. The similarity of a fuzzy set A to the universal 
fuzzy set is to be quantified by S(A,U). An example of a fuzzy set quite similar to 
the universal fuzzy set is illustrated in the Figure 7.7, where the fuzzy set B1 that is 
highly similar to a universal fuzzy set can be removed and only A1 is required in 
the premise of rule R1 for distinguishing the associated region in the premise space. 

Figure 7.7. Irrelevant set (B1) in the rule base and non-similar i iA B  domain partition  

If the rule base premise consists of all antecedents fuzzy sets similar to the 
universal set only, then the corresponding rule can be removed from the rule base. 
The activation of such rules is more or less constant for all inputs within the 
domain, and the contribution to the output can often be accounted for by re-
estimating the consequents of the other rules. The opposite situation may also 
occur. During parameter adaptation of the fuzzy model, the support of one or more 
fuzzy sets may become so narrow that they can be almost like fuzzy singletons (see 
fuzzy set A3 in rule R3 of Figure 7.7), prohibiting the rule from firing. Singleton-
like fuzzy sets have extremely low similarity to the universal fuzzy set, i.e. S(A, U)
= 0. Rules with such singleton fuzzy sets in their premise are also candidates to be 
removed from the rule base. In general, one must be careful, as the rules with 
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singleton fuzzy sets may represent exceptions. Interaction from the user is typically 
needed in such cases to handle such situations. Since our interest is to develop an 
automated simplification method, these types of rule reduction are not considered 
here. 

7.5.3 Removing Redundant Inputs 

Figure 7.7 shows a non-similar partitioning of two input-domains. However, in 
systems identification and time series modelling, highly similar partitioning of two 
or more inputs can sometimes occur. An assessment of the similarity Spq between 
the partitions of a pair of inputs (xp, xq) can be obtained by measuring the similarity 
S(Alp, Alq) between all corresponding pairs of fuzzy sets l = 1, 2, ..., M, and taking 
the minimum occurring similarity for each pair of inputs as the partition similarity: 

, , 1, 2,..., .minpq lp lq
l

S S A A l M  (7.6) 

If the partition similarity Spq is above an acceptable threshold value predefined by 
the user, then one of the two inputs, xp or xq, can be removed from the model’s 
premise part. Depending upon the model type and it’s performance, e.g. in a 
Takagi-Sugeno fuzzy model, it might still be necessary to keep all variables in the 
consequent part of the rule base. 

7.5.4 Merging Rules 

Given a Mamdani-type fuzzy model with k identical rules, if 2k , then the rule 
base simplification will result in the removal of k-1 rules, and thereby reducing rule 
base. However, if only the premises of the rules (antecedent fuzzy sets) are equal, 
but not the consequents, then this may indicate a rule conflict situation in the rule 
base and that has to be solved by assigning a degree to each conflict rule (Wang 
and Mendel, 1992). In the following, only the fuzzy models of Takagi-Sugeno type 
are considered. 

As in the case of Takagi-Sugeno models, the rule-consequents are not fuzzy; 
therefore, the similarity concept is applied here only in the premise (antecedents) 
part of the rules. When the premise parts of 2k  Takagi-Sugeno rules are equal, 
these rules are removed and replaced by one general rule Rg. This general rule has 
the same premise part as the rules that it replaces. However, the consequent 
parameters of the general rule are re-estimated taking into account the total 
influence of all the k-rules in fuzzy inferencing that it replaces. This can be done by 
weighting RG with k and letting it’s consequent be an average of the consequents of 
all the k-rules with equal premise parts.  

Let Q be a set of indices 1,2, ,l M  of the k rules Rl with equal premise 

parts. These rules are replaced by a single rule Rg with weight k and consequent 
parameters  
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1 k
g l

l Qk
 (7.7) 

where l  is a vector of the consequents parameters of rule Rl as described in 
Chapter 4. The output of the Takagi-Sugeno model can now be calculated as 

,

,

l l g g

l l Q

l g

l l Q

y y
y

k
  (7.8) 

For the Takagi-Sugeno model, a substitution of the k-rules with equal common 
parts by one general rule Rg yields the same input-output mapping. In the above 
equation, it is assumed that all rules in the initial rule base have a weight 1lw . A 
similar expression can be derived for any rule weights. 

Another approach is to re-estimate the consequent parameters in the reduced 
rule base using the training data with the help of the least squares error technique 
as described in Chapter 4. This requires more computations, but it usually gives a 
numerically more accurate result than the averaging in the above equation, since it 
enables the consequents to adapt to the new rule base. However, re-estimation of 
all rules consequents is the preferred approach using the training samples relying 
on the least squares error approach. 

7.6 Rule Base Simplification Algorithms 

Based on the discussions above, an algorithm is now presented for rule base 
simplification in Takagi-Sugeno models. The same procedure, carried out in three 
operational steps, can also be used for Mamdani-type fuzzy models. 

Simplification, achieved by merging similar fuzzy sets and by removing 
fuzzy sets similar to the universal set.  
Dimensionality reduction, achieved by removing redundant (similar) 
premise partitions.  
Rules reduction, achieved by merging rules whose premise parts have 
become equal as a result of the two previous steps. 

The approach uses the Jaccard similarity measure (7.3) for determining the 
similarity between the fuzzy sets in the rule base and requires three threshold 
values within [0,1], namely the  for merging fuzzy sets that are mutually similar, 

 for removing fuzzy sets similar to the universal fuzzy sets, and  for removing 

the redundant input partitions. The values of  and  should be relatively high to 

ensure that the model’s performance will not be deteriorated. As pointed out by 
Setnes (2000), in many applications the values of  = 0.8 and  = 0.8 have given 

good results and are used as defaults in the algorithm, but the selection of a suitable 
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threshold ,  which represents the degree to which the user allows for equality 
between the two fuzzy sets used in the model, depends on the application. The 
lower the value of ,  the more fuzzy sets are combined, thereby decreasing the 
term set of the model. In general, one can expect the numerical accuracy of the 
model to decrease as the  value decreases.  

However, this need not always be the case. If the model is highly redundant or 
overdetermined, then the numerical accuracy may improve as a result of merging 
the fuzzy sets and thereby possible reduction in rule base. As a general practice, 
one may carry out the trial with several values of  for a particular application 
with the training samples, and the  value that gives the best result with the 
validation data set for a particular application should be finally selected. For 
instance, in order to explain the operation of a particular system, e.g. operator’s 
training or expert’s validation, a comprehensible linguistic description is important. 
In such cases, it is reasonable to trade some accuracy for extra transparency and 
readability. Consequently, this implies the use of a lower value of  so that more 
fuzzy sets can be found to meet this similarity threshold, and which can, in turn, be 
merged. In contrast to this, an application that aims at prediction or simulation 
(function approximation) means that one can probably select much higher values 
of ,  as in this case accuracy is more important. To obtain rules sufficiently 
distinguishable to describe the system qualitatively, a  value around 2/3 has been 
found to give good results in the various experiments of Setnes (2000). Since this 
part of the simulation requires no additional data acquisition or computationally 
expensive optimization, the effect of different thresholds can be easily investigated. 

The simplification part of the algorithm can be performed in two ways: 

by iterative merging  
using similarity relations.  

The main difference lies in the computational effort, and the sensitivity to changes 
in the threshold .  Iterative merging requires more computations than similarity 
relations, but it is more transparent to user interaction. Both approaches are 
presented below. 

7.6.1 Iterative Merging  

The algorithm is illustrated in Figure 7.8 and summarized in Algorithm 7.1. The 
algorithm starts by iteratively merging similar fuzzy sets. In each iteration, the 
similarities between all pairs of fuzzy sets for each variable are considered, and the 
pair of fuzzy sets having the highest similarity S >  is merged to create a new 
fuzzy set. Then, the rule base is updated by substituting this new fuzzy set for the 
fuzzy sets merged to create it. The algorithm then again evaluates the similarities in 
the updated rule base. This continues until there are no more fuzzy sets for which S
> . Then the fuzzy sets that have similarity S >  to the universal fuzzy set are 
removed. Thereafter, the rule base premise is checked for redundant inputs. If 
present, such inputs are removed. The rule base is then checked for rules with 
equal premise parts. Such rules are merged as discussed in Section 7.5.4. Finally, 
the rule consequents are re-estimated. 
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Algorithm 7.1. Algorithm of iterative merging 

Given a rule base 1,2, , . ,lR R l M with lth rule as Rl: If x1 is Gl
1 and, ..., and xn

is Gl
n then yl = f(x1, ..., xn), where Gl

i, with inputs i = 1, 2,..., n, are fuzzy sets with 
membership functions : 0,1 ,

lGi
ix  select three thresholds , , 0,1 .

Repeat for inputs i =1, 2, ..., n 

Step 1: Selection of the most similar fuzzy sets 

, 1,...,

max, ,p qL l l m
i i i i i i

p q
p q M

G G G G G GS S

Step 2: Merging of Selected fuzzy sets 

, , , :

( ), , set

l m l m L
i i i i i

C L l L l C
i i i i i i

If S G G G G G

MergeG G G G G G

Until: ,l m
i iS G G .

Step 3: Removal of fuzzy sets similar to universal set 
for i = 1, 2, ...., n
     for l = 1, 2, ..., M

, ,l l l
i i ii i iS U U UG G G

If , ,  l
i iS UG remove Gl

i from the antecedent of rule Rl.

end 
end 
where 1, .

iU i ix x

Step 4: Removal of redundant inputs 
for j = 1, 2, ...., n-1
      for k = 1, 2, ....., n

         Sjk= minl , , 1,2, , ;l l
j kS l MG G

      If ,jkS  remove xj from the premise. 

      end 
end 

Step 5: Merging of rules with equal premise parts 
for l = 1, 2, ...., M-1
     for m = 1, 2, ...., M
         if , ,l m

i i iG G Merge (Rl, R
m
).

    end 
end 

Step 6: Re-estimation of TS rule consequents by LSE method 
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Figure 7.8. Flow chart for transparent fuzzy modelling through iterative merging 

7.6.2 Similarity Relations 

In this approach all similar fuzzy sets per input are merged in one operation. The 
fuzzy compatibility relation i ilmC c  of size M M is calculated for each input i

= 1, 2, ..., n. The elements of compatibility relation ,ilm l i m iC S A x A x  are 

obtained by the Jaccard similarity index (7.3). It is to be noted that the Jaccard 
similarity measure is not transitive. Thus, it follows that Ci is reflexive and 
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symmetric, but not transitive. In order to obtain a transitive similarity relation Si,
the max-min transitive closure CTi, of Ci is calculated (Klir and Yuan, 1995): 

max .i i i iC C C T C

If ,i iC C  set ,i iC C  and go to previous step. 

Stop: ,Ti iC C  set .i TiS C

Here, the t-norm used is the min-operator and “oT” is the sup-t composition. The 
lmth element of the fuzzy similarity relation i ilmS s , of size M M , gives the 

transitive similarity between the concepts represented by the fuzzy sets Ali and Ami.
The merging of similar fuzzy sets takes place by applying a threshold 0,1  to 

the similarity relation. Therefore, the similar fuzzy sets are merged, when their 
similarities are greater than a threshold , to produce a fuzzy set representing 
generalization of the individual concepts represented by the similar fuzzy sets. 
Thereafter, updated rule base is checked for any fuzzy set which is similar to the 
universal fuzzy set. The approach is illustrated in Algorithm 7.2 and Example 7.1. 

Algorithm 7.2. Algorithm of similarity relations 

Given a fuzzy rule base 1,2, , ,lR R l M with the lth rule Rl: If x1 is Gl
1 and, ..., 

and xn is Gl
n Then yl = f(x1, ..., xn), where Gl

i, i = 1, 2,..., n, are fuzzy sets with 

membership functions : 0,1 ,l
i

iG
x  select , 0,1 .

Repeat for inputs i =1, 2, ..., n; 

Step 1. Calculate similarity relation: 

; , 1, 2, , ;i ilmC c l m M

,i ilm TiS s C

where the elements of the M M  fuzzy compatibility relation Ci are given by  

,l m
ilm i ic S x xG G .

Step 2. Aggregate similar fuzzy sets 

for l =1,2, ..., M 

, 1,2, ,

,

l m
i i ilm

l l
i i

S m MG G

MergeG G

end 

Step 3 to Step-6. The steps 3-6 are same as in iterative merging algorithm. 
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Example 7.1  

Five triangular fuzzy sets 1 2 5, , ,F F F  shown in Figure 7.9(a) are used to partition 
the universe of x. Applying the Jaccard similarity index (7.3) a compatibility 
relation C and the corresponding similarity relation S i.e., the max-min transitive 
closure of C are given as follows: 

1.0 0.09 0.06 0.05 0.0

0.09 1.0 0.73 0.59 0.06

0.06 0.73 1.0 0.73 0.06

0.05 0.73 0.59 1.0 0.09

0.0 0.06 0.06 0.09 1.0

C ,   and   

1.0 0.09 0.09 0.09 0.09

0.09 1.0 0.73 0.73 0.09

0.09 0.73 1.0 0.73 0.09

0.09 0.73 0.73 1.0 0.09

0.09 0.09 0.09 0.09 1.0

TS C .

Applying a threshold 2 3  to the similarity relation, we identify a set of similar 
fuzzy sets 2 3 4, , ,l lmF F S l m F F F . The linguistic terms (labels) represented 

by the three fuzzy sets 2 3 4, ,F F F  are merged to create a generalized concept 
moderate represented by fuzzy set Fc. The resulting fuzzy partition is depicted in 
Figure 7.9(b). 

Figure 7.9(a).  Fuzzy sets (initial partition)        Figure 7.9(b). After merging of fuzzy sets 

7.7 Model Competitive Issues: Accuracy versus Complexity 

The advantage of transparent representation of the fuzzy model is paid at the cost 
of reduced numerical accuracy of fuzzy models compared with that of, say, a 
neural-networks-based model, when both models have approximately the same 
number of parameters. The reason is that the complexity of fuzzy models grows 
with the dimension of input and output spaces, which, as shown by Barron (1993), 
is not the case with neural networks. Therefore, for high-order and for 
multivariable systems a neural-network-based model might be easier to obtain and 
may provide a more compact representation than a fuzzy model. However, fuzzy 
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F1 Fc F5
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models are less prone to overfitting, and provide better control over the 
interpolation and extrapolation properties of the mapping obtained.  

In order to deal effectively with multivariable complex systems, hybrid 
approaches should be applied which can use the available prior knowledge about 
the system, and allow for decomposition of a large problem into a number of 
simpler subproblems. Furthermore, if different fuzzy models of the same type (say, 
of Mamdani and Takagi-Sugeno type) are only considered, then the accuracy, 
transparency, or complexity and compactness of the generated model may also, 
based on the various factors, vary. In addition, for a set of fuzzy models of the 
same type (Mamdani) representative of an identical process and even with identical 
model inputs and output(s) besides their identical domain representation for all 
input and output variables, the accuracy, transparency and compactness of these 
models, generated by the same or a different data-driven automated approach, may 
be totally different. This is particularly because the model accuracy, transparency, 
and compactness are influenced by many factors like 

Number of antecedent (or consequent) fuzzy sets assigned to each variable. 
Coverage of the antecedent (consequent) fuzzy sets. 
Number of fuzzy rules.  
Fuzzification/defuzzification or inference mechanism 

The first factor suggests that the accuracy of the model may generally increase if 
the input universes (and also output universes for a Mamdani model) are fine 
partitioned using a large number of membership functions or antecedent (also 
consequents) fuzzy sets. In fact, it was observed in Chapter 4 that when the input 
and output universes of discourse are partitioned by 27 Gaussian membership 
functions instead of an initially chosen 17 Gaussian membership functions, the 
accuracy of the generated fuzzy chaotic time series forecaster model has 
significantly increased. 

Coverage means that each domain element is assigned at least one fuzzy set 
with (non-zero) membership degree, i.e.

, , .
iGx X i x

So, coverage actually insists on there being a certain amount of overlapping 
between the adjacent fuzzy set, so that entire universe of discourse is well covered 
by the input/antecedent (output/consequent) fuzzy sets (see Figure 7.10). Optimum 
selection of this coverage (small) value can result in both an accurate and a 
transparent model. However, large coverage may result in indistinguishable fuzzy 
sets, creating a model that is completely non-transparent. It is also observed that 
the accuracy of the model may generally increase if the number of rules are such 
that all possible combinations of inputs (antecedents) and output fuzzy sets are 
covered by at least one rule (for a Mamdani model).  

Suppose that for a two-input and one-output system the first input and second 
input universes are partitioned respectively by antecedent fuzzy sets such as (low,
medium and high) and (slow, moderate and fast). In this case at least (32 = 9) nine 
fuzzy rules are required to take into account all possible combinations of 
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antecedent fuzzy sets, such as (low, small), (low, moderate), (low, fast), ..., and 
(high, fast) of the two input variables. However, for a multivariable system with a 
large number of input and output variables and with a reasonably large number of 
antecedent fuzzy sets this is not feasible, as it will explode the fuzzy rule base, 
making the model non-transparent, computationally very expensive, and non-
compact. 

Figure 7.10. Transparent partitioning of domain by distinguishable fuzzy sets 

Accuracy of the model, of course, depends on the type of fuzzification 
(singleton or non-singleton) and of defuzzification (mean of maxima or centre of 
gravity) method, as well as of the inference mechanism used. For inferencing a 
Mamdani-type fuzzy model one can select the product/min operator for degree of 
firing of rule computation with Mamdani’s inferencing mechanism. Similarly, for 
relational matrix computation (which is used in min-max compositional rule of 
inference), Mamdani implication (min operator), or the alternative Larsen 
implication (product operator), can be used (see Chapter 4). The different choices 
of all those possibilities result in different accuracy of the model even though the 
model type (Mamdani), number of inputs and outputs, and their partitioning fuzzy 
sets numbers and types of membership function (Gaussian/triangular) may be the 
same. 

However, assuming that for the identical type of model and using identical 
fuzzification, defuzzification, and inferencing mechanisms we obtain fuzzy model 
1, which is the most accurate, model 2, which is the most transparent and model 3, 
which is the most compact, the question that arises now is which model is to be 
selected for a particular situation. There is no unique answer to this question, 
because each model has it’s own advantage for a particular application, but is less 

1.0

Not easily distinguishable sets

x

Mu(x)

Not moderate number of sets

x

Mu(x)
1.0

Bad coverage, subnormal set

x

Mu(x)
1.0

Transparent partitioning  of UD

x

Mu(x)
1.0



 Transparent Fuzzy/Neuro-fuzzy Modelling 299 

advantageous for another one. In what follows, a few suggestions are given for 
selecting the fuzzy model for some applications. 

An extremely complex but very accurate model (high level of similarity 
acceptable) can be useful for off-line simulation (function approximation) or 
prediction application, because in this case accuracy is more important than model 
transparency and compactness. On the other hand, in order to explain the operation 
of a particular system, i.e. for operator training, operator interaction, expert 
validation, and to understand the basic concepts of the system a transparent model 
with a comprehensible linguistic description (where a little similarity is accepted) 
is needed. In such cases, it is reasonable to trade some accuracy for extra 
transparency and better readability of the fuzzy model. Consequently, this actually 
implies the use of a lower value of similarity threshold so that more fuzzy sets can 
be found to meet this similarity threshold, which in turn can be merged to result in 
fewer fuzzy sets. A model with fewer fuzzy sets and fewer rules is also 
computationally less-expensive. Thereby, computationally less-expensive models 
are more suitable for applications like model predictive control, memory-expensive 
implementations, and fast, on-line model adaptation.  

7.8 Application Examples 

In order to illustrate the similarity-based rule simplification algorithm presented in 
this chapter, the second-order nonlinear plant model (Wang and Yen, 1999) that 
was modelled using the neuro-fuzzy approach in Chapter 6, is once again 
considered here.  

Table 7.1. Performance comparison of fuzzy model after neuro-fuzzy network training and 
similar fuzzy sets merging 

Training data Evaluation data No. of rules and no. 
of fuzzy sets 

SSE =  0.0090 

MSE = 8.972e -05 

SSE = 0.0069 

MSE = 6.856e -05 

Rules = 5 

GMFs/input  = 5 

MSE (after merging)  

=   0.0093 

MSE (after merging)  

=  0.0147 

Rules = 2 

GMFs/input = 2 

The neuro-fuzzy trained model generated has five Takagi-Sugeno-type fuzzy 
rules and the antecedent fuzzy sets generated for first input (u) and second input (y)
respectively are shown in Figure 7.11(c) and Figure 7.11(d). From Figure 7.11(c) 
and Figure 7.11(d) it is seen that the antecedent fuzzy sets are not interpretable, as 
they largely overlap each other. However, the accuracy of this fuzzy model is very 
high, as the MSE value with the training and validation data are respectively 
8.9720e -05 and 6.8560e -05 (see Table 7.1). 

In order to improve the model transparency, similar fuzzy sets are merged 
together and the corresponding final interpretable fuzzy sets are shown in Figure 
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7.11(e). After merging of similar fuzzy sets, the number of fuzzy sets and rules are 
reduced to two. Thereafter, the Takagi-Sugeno rule’s consequents are recalculated. 

Figure 7.11(a). Neuro-fuzzy network training  Figure 7.11(b). Neuro-fuzzy prediction 

Figure 7.11(c).  Fuzzy membership functions for input domain (u) partition after neuro-
fuzzy training. 

This resulted in the final fuzzy model, which is very much transparent to 
interpretation. However, the accuracy of the model is greatly hampered as the MSE 
values achieved with training and validation data sets are now respectively 0.0093
and 0.0147. Therefore, to improve the model accuracy while retaining its 
transparency the fuzzy sets have to be further tuned using genetic-algorithm-based 
constrained optimization, as described by Setnes and Roubos (2000), Roubos and 
Setnes (2001) and Panchariya et al. (2004b). By this way one can generate a 
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Figure 7.11(d). Fuzzy membership functions for second input (y) domain partition after 
neuro-fuzzy training. 

Figure 7.11(e). Fuzzy sets after merging the similar fuzzy sets for first input. 
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7.9 Concluding Remarks 

In this chapter a similarity-driven rule base simplification method is presented. 
This rule base simplification method serves two practical purposes: increase in 
model transparency and decrease in computational cost. Furthermore, this method 
can be combined with any data-driven automated fuzzy modelling procedure 
together with genetic-algorithm-based fuzzy set tuning procedure to generate a 
transparent yet accurate and compact fuzzy model. However, the efficiency of the 
approach depends largely on three threshold parameter values which are currently 
set by trial and error. Genetic algorithms or evolutionary computations, in general, 
can possibly also be used here as a proper support tool to determine the optimum 
values of these three threshold parameters. 
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8

Evolving Neural and Fuzzy Systems 

8.1 Introduction 

One of the main application fields of evolutionary computation, especially of 
genetic algorithms and evolutionary programming, has for a long time been the 
design or evolving of intelligent computational structures, such as neural networks, 
fuzzy logic systems, neuro-fuzzy systems and of their combination to implement 
intelligent controllers. In the following, evolving of neural networks and fuzzy 
logic systems using evolutionary algorithms will be presented. 

8.1.1 Evolving Neural Networks 

In evolving of neural networks for specific applications, the user is faced with the 
following two key issues: 

what network architecture (i.e. how many hidden layers, number of 
neurons in each layer, and what interconnections between them) should be 
selected as the most adequate  
what specific weight values should the interconnecting elements have for 
optimal network performance. 

No standard guidelines are available for resolving the above selection problems, at 
best only some recommendations and some hints could be found in some 
publications. In this chapter we will take a closer look at these selection difficulties 
and we will describe some approaches that have been used successfully in evolving 
of optimally design neural networks. 

In the past, most very frequently a trial-and-error approach has been used in 
developing the neural network structures, which have afterwards been optimized 
by simulation or by some optimization methodologies. For the process of network 
development, two basic approaches have been used. 
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Constructive approach, an approach that starts with a minimal network 
architecture and continues by its stepwise growth through adding new 
neurons and new interconnection links between the neurons, under 
permanent evaluation of network performance, until the optimal network 
structure has been achieved. 
Destructive approach, which starts with a “large enough” architecture and 
continues by its stepwise reduction of size through removal of some 
individual neurons and the related links between them, under continuous 
evaluation of network performance, until the optimal network structure has 
been achieved. 

Both approaches, however consider, through incremental changes of network 
structure, only a limited (neighbouring) topological space, instead of considering 
the entire search space of possible network structures. This deficiency definitely 
restricts the overall possible optimal network structure that could be developed.  

In the last decade or so, a way out of network development, by arbitrarily 
adding and deleting of neurons and connecting weights, has been found in using 
some more systematic evolutionary approaches. During this period of time, 
researchers have succeeded in elaborating evolutionary methods capable of 
covering most of the basic requirements in developing, training, and application of 
neural networks. Using the new methods the following network evolving issues 
have been supported: 

evolving optimal interconnection weights 
evolving global network architecture 
evolving pure network architecture 
evolving activation function 
evolutionary network training. 

This is the main subject of the paragraphs that follow. 

8.1.1.1 Evolving Connection Weights 
Traditionally, optimal values of interconnection weights have from the very 
beginning been determined through network training, usually by using a gradient-
based parameter-tuning algorithm, like the backpropagation algorithm. Yet, the 
substantial risk of all gradient-based algorithms to be trapped in a local minimum 
was a good enough reason to avoid their use in optimization problems and to look 
for gradient-free search algorithms.  

Jurick (1988) suggested that the network training process to be understood - 
within the frame of the given network architecture and the objectives of learning 
task - as an evolutionary process through which the optimal values of connection 
weights can be determined. Montana and Davis (1989) decided to take the genetic 
algorithms, instead of backpropagation algorithm, in searching the optimal weights 
values. Using the new search strategy, they were able to find the global optimal 
values of connection weights, without gradient implications. The results achieved 
have been confirmed by Kitano (1990), who also accelerated the network training 
convergence using an improved version of the genetic approach. 
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In 1990s, the awareness was spread out among the experts that the evolutionary 
algorithms could, in the future, become the most efficient tools for neural networks 
training, so that since that time the evolutionary approaches have been very 
successfully used in training of backpropagation neural networks (Johnson and 
Frenzel, 1992; Porto et al., 1995; Schwefel, 1995), and later in training of recurrent 
neural networks (Angeline et al., 1994; McDonnell and Waagen, 1994). 

Surprisingly, although the evolutionary approaches, while based on extensive 
computations are generally slower than the gradient methods, it was reported by 
some investigators that in network training the evolutionary algorithms have been 
considerably faster than the gradient methods (Prados, 1992; Porto et al., 1995; 
Sexton et al., 1998). 

McInerney and Dhawan (1993) pursued an alternative way of network training 
by combining two different search algorithms for network training, namely the 
backpropagation and the genetic algorithms. They in this way created two 
alternative hybrid training algorithms:

algorithms that use genetic programming to bring the search process close 
to the global optimum and then the backpropagation algorithm has to locate 
it more exactly  
an algorithm that first finds (based on backpropagation search) “all” local 
minima and then leaves the task for the genetic algorithm to find the 
smallest one as the global minimum. 

In both algorithms the backpropagation algorithm is used because it is relatively 
fast, but it suffers with the inherent troubles associated with gradient methods 
being prematurely trapped in local minima. Genetic algorithms, although being 
relatively slow, are used because they are robust in finding the global optimum. 
Their combination, as expected, profits from the advantage of one algorithm and 
from the possibility of counterbalancing the disadvantages of the other. In addition, 
in the evolutionary algorithms, unlike in the gradient-based training algorithms, the 
error function, i.e. the fitness function, does not require any differentiation and 
even need not be continuous. 

The joint application of genetic algorithms and gradient methods has been the 
subject of extensive research in the 1990s (Kinnebrock, 1994; Zhang et al., 1995; 
Yang et al., 1996; Yan et al., 1997).  

Nevertheless, in practical applications of genetic algorithms the encoding of 
weight values in chromosomes has proven to be the most crucial problem 
(Balakrishnan and Honavar, 1995; Curran and O’Riordan, 2003). However, further 
research in this area has borne a great number of possible solutions that can be 
classified into two categories: 

direct encoding approaches, in which all parameters that define the neural 
network (i.e. weight values, number of nodes, connectivities, etc.) or some 
of them are encoded in gene code 
indirect encoding approaches, which represent a neural network in terms 
of assembly instructions or of recipes.

Direct encoding approaches facilitate the reverse operation of decoding that 
consists of back-transformation of genotypes into phenotypes. The best illustration 
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for direct encoding represents the connection matrix that exactly specifies the 
architecture of the network to be evolved. For direct encoding the following 
approaches have been recommended: 

connectionist encoding  
node-based encoding 
layer-based encoding 
S-expressions based encoding. 

Indirect encoding needs much more work in styling the phenotypes adequately, 
because here, in encoding of phenotypes, the rewrite rules and construction rules 
are also applied recursively. For indirect encoding the following approaches are 
recommended: 

matrix re-writing  
edge encoding 
cellular encoding 
growth encoding  

Figure 8.1. Binary representation of parameter values 

Figure 8.1 shows the transparency and the simplicity of binary representation of 
a neural network, whose architecture is given and whose connection weights are 
represented as a 4-bits binary chain. Binary representation enables a direct acting 
of crossover and mutation operators on the coding structure. But still, the serious 
drawback of binary coding is that the total length of the concatenated strings 
grows steadily with the number of interconnections to be considered. This, 
increasingly slows down the computational speed of the genetic algorithm. The 
total length of concatenated strings grows even more if the higher computational 
accuracy is required, because in this case more bits need to be represented in 
binary. This can be mastered by using the real numbers for connection weight 
representation, so that each individual in the evolving population becomes a real 
vector. However, new circumstances are faced here, since it is difficult to use 
directly the binary-encoded crossover and mutation operators. A better way to 
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evolve the real vectors is to use the evolutionary strategies or evolutionary 
programming (Fogel et al., 1990; Yao, 1993) rather than genetic algorithms. 

8.1.1.2 Evolving the Network Architecture  
The first action in evolving the network architecture is to lay down the network 
topological structure, i.e. the proper number of nodes, the interconnection pattern 
of the nodes, the activation function to be assigned to each node, etc. This activity, 
if properly carried out, is very promising in leading, through the process of 
evolution, to a final network architecture, optimally shaped for the given problem 
to be solved. 

The adequacy of the selected topology generally depends on the network task. 
For example, if the network to be evolved is to be used for identification of 
nonlinear interdependencies between the collected data of a time series and to 
process them, then it must be a multilayer network because a single-layer network 
is not capable of doing this. Similarly, if the network has to be able to discover and 
to handle the temporal dependencies in the environment, then it must be a 
recurrent network because the feed-forward networks are not capable of doing 
this.  

A further important decision to be made when evolving neural networks is to 
select the appropriate initial network topology size. For example, if the selected 
network topology size is too small, then the evolved network might fail to learn the 
desired input-output mapping. In contrast, if it is too large, then the generalization 
capability of the network will be very poor (Sietsma and Dow, 1991).  

All this indicates that, for adequate selection of initial network topology, much 
expert knowledge and practical experience is needed, because here also we are 
short of a well-paved way for systematic topology selection. Therefore, for the less 
experienced network developer, the only way left is to select different initial 
network topologies and, using a trial-and-error strategy, to find the most 
appropriate one. 

The next critical issue of an evolving neural network architecture is the 
decision to be made about the encoding strategy to be used. Encoding strategies 
help in transforming the network structure into specific representations, called 
genotypes, on which the evolutionary operators (mainly mutation and 
recombination) act during the process of network evolution. Both the selected 
genotypes and the evolutionary operators to be used belong to the crucial issues to 
be resolved before the evolving process is initiated. This is needed because the 
application success of a neural network in solving the problem for which it is 
evolved depends predominantly on the selected genotypic representation and on 
the evolutionary operations.  

For genotypic representation, two alternative encoding strategies are available: 

direct encoding strategies, in which all architectural aspects of the network 
are encoded by direct transformation of genotypes to phenotypes, for 
instance through building a connection matrix 
indirect encoding strategies, in which grammatical or morphological 
encoding is used, based on a compressed description of the network to be 
evolved.  
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For evolving the network architecture, there are also two alternative approaches 
available: 

evolving the pure network architecture, without interconnecting weights, 
which presumes that weight values are to be determined through network 
training 
simultaneous evolution of both architecture and weights.  

8.1.1.3 Evolving the Pure Network Architecture 
Evolving a genuine network architecture requires a decision about the degree to 
what extent the genotypes (i.e. the chromosomes) should bear the detailed 
information related to the targeted network architecture. This depends on the 
representation scheme to be used. Should it be a direct representation that includes 
all the details of every node, or should it be an indirect representation in which 
only some dominant nodes are represented by some details like the number of 
hidden layers and the number of neurons in the layers? 

Figure 8.2. Example of low level encoding 

If the genotypes should not contain any statements about the connecting 
weights, then a random set of initial weight values can be taken. In this case the 
risk exists that the weight values finally determined could be noise spoiled. This is 
because the fitness values of genotypes will be represented by fitness values of 
phenotypes, which could be due to the randomization of initial values of training 
runs (Angeline et al., 1994). To reduce this noise the use of one-to-one mapping 
between the genotypes and phenotypes is recommended ( McDonnel et al., 1994). 

Otherwise, when using the direct encoding scheme in evolving the pure 
network architecture, each network connection is represented by a binary string of 
a specified length. Once accepted for representation, the strings should be 
concatenated to build corresponding chromosomes. The set of chromosomes 
belonging to the same network can then form the connectivity matrix that itself 
depicts the network architecture in terms of network interconnection pattern. This 
is shown in Figure 8.2. The matrix, again, could also be interpreted in the inverse 
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direction in the sense that, given the desired structure of the network to be evolved, 
the corresponding connectivity matrix can be generated and translated into the 
corresponding binary string. 

A direct encoding strategy, although transparent and easy to implement, still 
suffers from the scalability problem, which hampers its application in evolving 
complex network configurations, because in this case a large connectivity matrix 
and much computing time for network evolution are required. In addition, the 
potential difficulty of direct encoding strategy is the permutation problem that 
disturbs the evolution of proper network architecture.  

Indirect encoding strategies are especially popular because they help in 
reducing the length of genotypic representation of architectures; this is achieved, 
however, at the cost of a reduced feasible search space. In this kind of strategy, 
only some characteristics of the architecture (i.e. those to be evolved) are binary 
encoded, which enables a more compact, modular overall network description.  

Because being based on a restricted initial information, the indirect decoding 
strategies obviously pursue the principle of a growing network, termed 
grammatical encoding. Their major advantage is that they favour the modular 
design of network structure. Much of pioneer work in this area was done by Kitano 
(1990), particularly in defining the matrix rewriting encoding strategy. This 
strategy, however, was soon abandoned for the reason that it failed to deliver better 
results than the direct encoding strategies. 

8.1.1.4 Evolving Complete Network  
We now come to the most challenging design task in which the network topology 
along with the interconnection weights are simultaneously evolved. The 
advantages of such a design approach are, however, accompanied by the 
difficulties in finding an adequate representation of genotypes. In the past, apart 
from the direct binary encoding that is also applicable here, two additional 
encoding strategies have been in use: 

parameterized encoding, in which (instead of a connectivity matrix) the 
compact network description is stored in terms of number of layers, 
number of neurons within the layers, number of connections between the 
layers, etc.
grammar encoding (Vonk et al., 1995), particularly matrix grammar 
encoding (Kitano, 1990). 

In a parameterized encoding network the parameters can be freely encoded. Some 
recommendations on this issue have been elaborated by Harp et al. (1990).  

Grammar encoding roots in the research achievements of Lindenmayer (1968) 
in the area of encoding strategies. Using the biological principle of information 
exchange between the cells, Lindenmayer has introduced the so-called L-systems.
To implement this, he defined a special grammar with the parallel representation of 
production rules that Boers and Kuiper (1992) later used to evolve neural 
networks. The benefits of grammatical encoding are the identification possibility of 
network building blocks and the general reusability of development rules. Kitano 
(1990) used the productions as the grammar rewriting rules to develop his matrix 
rewriting encoding strategy.  
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Gruau (1994) represented neural networks as grammar trees, called cellular 
encoding, which is similar to the edge encoding strategy.  

In the graph grammar encoding, the network is understood as a lattice made 
up of functions and terminals. Each node of the lattice, which is seen as a function 
(neurons) or a terminal (input variables), is provided with the information 
concerning the connections to other nodes, the weights of the connections, bias, 
etc.

An entirely different indirect encoding strategy was proposed for encoding the 
developmental rules that are to be optimized instead of direct optimization of the 
network architecture. The development rules are similar to the IF-THEN rules used 
in production systems, written in recursive form. 

Some interesting findings in evolving the learning rules have been reported. 
Chalmers (1990) was the first to report on automatic evolving of the delta learning 
rule, and Harp and Samad (1991) reported on evolving the rules that can learn and 
adapt the network training parameters, such as training speed and network training 
accuracy.  

However, the inherent problem of encoding neural networks in gene code is 
still the well-known permutation problem, created by the fact that different 
genotypes can produce equivalent networks, because the fitness and the network 
function could produce the permutation of hidden nodes. This is evident from 
Figure 8.3, which represents the differently encoded network shown in Figure 8.1. 
Both networks are topologically equivalent (Tettamanzi and Tomassini, 2001).  

Figure 8.3. Differently encoded network presented in Figure 8.1 

The permutation problem considerably decreases the suitability of the genetic 
algorithm as a training tool for feedforward networks.  

8.1.1.5 Evolving the Activation Function 
So far, we have ignored the evolving issue of the neuron activation function, 
assuming silently that it is given in advance by the network expert, preferably as a 
sigmoidal function. This is indeed not always the case, but it is assumed for 
simplicity that the activation functions of all neurons in a layer or in the entire 
network are equally shaped. The first trial to evolve both the activation functions, 
placed in nodes as a node transfer function, and the network architecture was done 
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by Stork et al. (1990). A series of improvements followed, the most interesting of 
them being the achievement of Hwang et al. (1997) in evolving the network 
topology, connection weights, and the node transfer function simultaneously.  

8.1.1.6 Application Examples 
Evolved neural networks have found a wide application in time series forecasting, 
because the network evolutionary process has contributed the network structure 
and the network parameters (connecting weights, activation functions, hidden 
nodes, etc.) that are optimal. The only difficulty that accompanies the application 
of such networks is the selection of the optimal initial population that will 
guarantee the shortest search time. To reduce it’s influence on the problem at hand, 
Prudencio and Ludermir (2001) have advocated using the case initialized genetic 
algorithm (Louis and Johnson, 1999), based on experience in optimizing the 
solution of some similar problems. The solution concept was applied to the 
problem of river flow prediction, where the time series models NARX (Nonlinear 
Auto-Regressive model with eXogenous variables and the NARMAX (Nonlinear 
Auto-Regressive Moving Average model with eXogenous variables) have been 
employed. In the models, the following parameters have been optimized: length of 
time window, length of context layer, and the number of hidden layers. The 
network was trained with the Levenberg-Marquardt method (Marquardt, 1963). 
The objective of the case study was to forecast the monthly river flow of a 
hydrographic reservoir, based on 144 available flow values acquired within a 
period of 12 years. During the experiments, about 20 neural network architectures 
were developed in order to find the best one. The software system developed, 
although tailored for forecasting purposes, is suitable for application in other 
problem classes.  

8.1.2 Evolving Fuzzy Logic Systems 

In evolving fuzzy logic systems, two principal decisions should be made:  

selection of the fuzzy rule base that could be considered as the most 
promising one to solve optimally the given problem and the selection of 
strategy for their genetic encoding 
definition of membership function parameters. 

Optimal definition of membership functions to be used in the process of systems 
evolution is also a crucial problem here that, to be well-solved, needs much skill 
and computational efforts. This is because the performance of the system to be 
developed is very sensitive to the shapes of the membership functions. The early 
proposals on how to manage these problems (Shao, 1988) did not bring a 
significant success in performance improvement, until it was recognized that for 
solving this problem the optimal parameter tuning of membership function shape 
should be used, for instance by being carried out using an evolutionary algorithm. 
Tettamanzi (1995) has proven that the integration of evolutionary algorithms and 
fuzzy logic could cover the following application fields: 
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optimum search capabilities of evolutionary algorithms can help design and 
optimally tune the parameters of fuzzy logic systems 
during the evolutionary processes the rule base of the fuzzy system could 
be used to automatically tune the algorithm parameters in order to avoid its 
premature convergence and other undesired behaviour of the search 
process 
the fuzziness can be embedded into the algorithms for internal calculations 
of fitness function, etc.

The work on the design of fuzzy logic systems using evolutionary computation was 
effectively initiated in early 1990s and was made public by the reports of Thrift 
(1991) and Karr (1991) on the use of genetic algorithms in synthesis of fuzzy logic 
controllers. This was later extended to the synthesis of a model-reference adaptive 
controller (Hwang and Thompson, 1994). In the early considerations of the 
evolving procedures, triangular membership functions were preferred because their 
encoding within the chromosome as finite-length bit strings was relatively simple. 
This kind of membership functions is parameterized by the left and the right base 
and by the distance from the previous centre point. For evolving purposes, the 
same triangular form for all membership functions and the same number of 
membership functions for each variable were taken.  

Some researchers (Hwang and Thompson, 1994) encoded all the rules and the 
fixed membership functions into the chromosome. Under this condition, the 
evolving process, however, did not evolve an optimal fuzzy system, because the 
shape of the membership functions is strongly related to the character of the rules. 
As a consequence, both the rules and the membership functions have to be evolved 
simultaneously. Homaifar and McCormick (1995) solved the problem of 
simultaneous tuning of the membership functions and evolving the rule set by 
encoding all the rules and the base length of each triangular membership function 
into chromosomes. 

Thrift (1991) pleaded for building the fuzzy rule base in tabular form by 
assigning to each input variable a number of partition domains, say n, that are to be 
specified in detail. This, however, was not applicable, because in this way a huge 
number of detailed data are generated that cannot be stored in a transparent form. 
The idea of Thrift, of representing the generated data in matrix form, was 
acceptable only for small fuzzy systems, say for systems with two input variables 
for which an n n matrix is to be built. However, for a system with a higher 
number of input variables an ...n n n  dimensional matrix has to be built.  

To avoid the super-dimensionality problem, Lee and Takagi (1993a) 
recommended numerating the rules instead of tabulating them. They also encoded 
the membership functions and the rule set into the chromosomes, but they took 
another route to encoding the triangular membership function by restricting the 
adjacent membership functions from fully overlapping and by some additional 
restrictions. This considerably reduced the total number of membership functions 
required. Further reduction is still possible by grouping the given rules into 
relevant (needed) and non-relevant ones, and by encoding only the relevant rules. 
This enables fuzzy systems of higher dimensionality to be evolved. 

While considering the Takagi-Sugeno model, in which the consequent part is 



 Evolving Neural and Fuzzy Systems 315 

made up of a linear combination of the input values, Lee and Takagi (1993b) found 
it more advantageous to encode both the membership and the fitness functions in 
chromosomes. To each rule with N input variables and n membership functions in 
the genotype they assigned a gene to encode the N+1 weights in a linear 
combination of the input variables for the rule concerned. The drawback of the 
encoding approach is that Nn  combinations have to be encoded. 

Tettamanzi (1995) implemented his fuzzy control evolving system on a WARP 
fuzzy processor capable of supporting up to 256 rules with up to four antecedent 
clauses and one consequent clause, as well as antecedent membership functions of 
arbitrary shapes. To define the appropriate fitness function he used the concept of 
competition, defined later (Tettamanzi, 1994). The concept registers the number of 
competitions c undergone by an individual, the number of its wins w, and the 
number of successes s. Using this statistical data the membership function of 
fitness for a given individual is defined as 
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as a normalization factor, in which a = w + s and b = c - s.
Recently, a new evolutionary road to fuzzy systems design was paved by Shi et 

al. (1999), who, along with the membership function shapes and the fuzzy rule set, 
also encoded the membership function type and the number of rules inside the set. 
Two types of membership function have been considered: linear and nonlinear 
(Gaussian, triangle and their combination). Each membership function was 
completely defined by its start point, its end point, and the function type.  

In order to make the evolving process easier, the fitness function, which 
measures the performance of the system, was carefully defined. Depending on the 
application, the fitness functions taken are 
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For control of crossover and mutation as the most critical parameters, an 
adaptive tuning approach, made up of eight fuzzy rules, was integrated into the 
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genetic algorithm. The completed evolutionary fuzzy system was written in C++ 
code and was compiled with the Borland C++4.5 compiler. The benefits of the 
developed system have been demonstrated on examples of iris data classification, 
but the system could be successful for a large range of similar problems.  

Several researchers have focused their attention on integration of fuzzy logic 
and evolutionary approaches in optimal tuning of the parameters of a fuzzy logic 
controller by adapting the fuzzy membership functions by learning the IF-THEN 
rules (Varsek et al. 1993; Mohammadian and Stonier, 1994; Herrera et al. 1995). 
For instance, Zeng and He (1994) evolved a fuzzy controller with a self-learning 
feature for approaching the optimality conditions of the given control task. 
Thereafter, the integrated genetic algorithm took over the initiative to tune the 
controller parameters optimally. The modified fuzzy controller was successfully 
applied to control an unstable nonlinear system that demonstrated high accuracy 
and robustness of the evolved fuzzy controller. 

Wong and Chen (2000) elaborated a genetic-algorithm-based approach to fuzzy 
systems construction directly from collected input-output data. The basic idea of 
the approach is that each individual in the population determines the number of 
fuzzy rules and that the consequent part of the evolved fuzzy system is determined 
by a recursive least-squares method. The effectiveness of the approach was 
demonstrated on construction of some nonlinear systems. 

In the recent past, some reports have been published on evolving and/or tuning 
a fuzzy controller implemented using neural networks. Kim et al. (1995) 
introduced a genetic-algorithm-based computationally aided design methodology 
for rapid prototyping of control systems. As an example, they designed a fuzzy net 
controller (FNC), with the intention to use genetic algorithms for optimizing the 
fuzzy membership functions capable of meeting various operational specifications. 
Seng et al. (1999) described a genetic-algorithm-based strategy for simultaneously 
tuning the parameters of a fuzzy logic controller implemented on an RBF network, 
named NFLC (neuro-fuzzy logic controller). Belarbi and Titel (2000) presented an 
alternative approach to designing all parameters of fuzzy logic controllers (i.e. the 
parameters of the membership functions of both the input and the output variables, 
and the rule base) using genetic algorithms. The fuzzy logic controller designed 
was implemented in neuro-technology. The application of binary-coded genetic 
algorithm was reported by Palit and Popovic (2000) in order to train a fixed 
structure neuro-fuzzy network that used the singleton type of rules consequent. 
Thereafter, the genetic-algorithm-trained neuro-fuzzy network was applied to 
forecast the future values of a chaotic time series. In addition to the above 
applications Setnes and Roubos (2000), Roubos and Setnes (2001) also applied the 
a genetic-algorithm-based fuzzy logic system for identification and modeling of a 
nonlinear plant. In their method, a real-coded genetic algorithm was mainly used to 
fine tune the fuzzy antecedent memberships (triangular) that were obtained by 
similarity-based fuzzy set merging. It was reported that the genetic-algorithm-
tuned fuzzy model was transparent, accurate but compact. Similar applications of 
real-coded genetic algorithms were reported by Panchariya et al. (2003, 2004) for 
improving the fuzzy model transparency. In the last case, using a distance 
(entropy)-based fuzzy clustering algorithm, an initial Takagi-Sugeno fuzzy model 
with high accuracy was obtained. However, the initial fuzzy model was not 
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compact and transparent. In order to improve the model transparency, and also the 
accuracy, antecedent (Gaussian) fuzzy sets were consequently merged (as 
described in Chapter 7) and thereafter real-coded genetic algorithms were applied. 
Finally, the evolved fuzzy model of Panchariya et al. (2003, 2004) was also, in this 
case, applied for nonlinear plant modeling and reported to have much better 
accuracy than that reported by contemporary literature on the same benchmark 
problem.  
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9

Adaptive Genetic Algorithms 

9.1 Introduction 

The genetic algorithms, or in general the various evolutionary computations, have 
been introduced to the reader in Chapter 5 along with their important 
implementation aspects. Genetic algorithms (GAs) are often described as a 
gradient-free, robust search and optimization technique, where the search direction, 
unlike a gradient-based optimization method, is not biased towards a local 
optimum, but, at the same time, GAs can also be applied to an ill defined complex 
problem for optimization. However, the above advantages of GAs may be totally 
jeopardized because of the extremely long run time required for a complex 
optimization problem. Furthermore, even at the end of an extremely large number 
of generations the solution obtained from the GA run may be completely 
unacceptable. This being the main motivation why GA researchers are constantly 
trying to improve GAs in order to obtain an acceptable solution within a reasonable 
number of generations of a GA run. With the above objectives in mind, the present 
chapter furnishes a few important possibilities, collected from various publications, 
for the improvement of a standard GA run. 

The most typical features of genetic algorithms (GAs) are: 

genetic representation or encoding of data to be optimized 
initial population of encoded data 
control parameters of the algorithm 
fitness function. 

In practical applications, the adequate selection of GA features substantially 
influences its performance; and, vice versa, the non-adequate selection of GA 
features might lead to nonacceptable problem solutions. To prevent the latter 
situation, this was a challenging task of researchers in the 1980s, who tried to 
implement various practical concepts to facilitate the feature selection process. In 
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association with the concepts of adaptive control of dynamic systems, the idea was 
widely accepted to work on adaptive GAs by incorporating the parameter 
adaptation mechanism in conventional GAs. Different researchers have 
concentrated their efforts on implementing genetic algorithms with different 
parameters tuned. Herrera and Lozano (1996) later classified the proposed adaptive 
GA systems as systems with 

adaptive parameter setting 
adaptive genetic operators 
adaptive operator selection  
adaptive representation 
adaptive fitness function. 

In practical realizations of adaptive GA approaches it should first be decided at 
what algorithm level the adaptation should work (Smith and Fogarty, 1997), i.e.
should it be at the 

population level, at which the global GA parameters of all individuals of 
the population are on-line adapted 
individual level, at which the strategy parameters, usually mutation and 
crossover, are adapted only in some elected population individuals in order 
to effectuate only elected individuals 
component level, at which the strategic parameters of some components or 
of some genes of population individuals are locally varied?  

9.2 Genetic Algorithms Parameters to Be Adapted 

Adaptive versions of genetic algorithms are particularly needed because, in the 
process of the evolutionary search, the algorithm should converge to the global 
optimum with a high speed of convergence, so that the global optimum value is 
found in the minimum number of steps, i.e. it should be finished after a minimum 
number of generations treated. This is usually achievable by on-line adapting of the 
control parameters of the algorithm, such as the probability of crossover, 
mutation, or of reproduction. Several empirical and theoretical studies devoted to 
identifying the optimal mode of parameter settings for genetic algorithms (DeJong, 
1985; Grefenstette, 1986; Hesser and Manner, 1990) have resulted in the following 
general assessments: 

Crossover. This parameter controls the rate at which the solutions are 
subjected to crossover effects. When its value is increased, new solutions 
are more rapidly introduced into the population. Through this, the search 
process can become so fast that it can be disrupted. 
Mutation. This parameter restores the genetic material and transforms the 
GA – when its value is increased too much - into a purely random search 
algorithm, whereas, a small value of the mutation parameter is required to 
prevent the premature convergence of the GA to a suboptimal solution.  
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Reproduction. This parameter determines the rate at which the old solution 
will be copied into the new population. When its value is increased the 
chance of survival of a solution in the subsequent generation will also be 
increased. This subsequently increases the number of “super-fit” 
individuals in the next generation, which is not always desirable.  

Apart from the above genetic parameters and their probabilities, two additional 
parameters can be used for GA adaptation: 

Population size. This GA parameter can be adapted to the problem to be 
solved. During the search process, the proper population size is the most 
critical factor that strongly influences the convergence speed of the search 
process, in the sense that too small a population size speeds up the search 
convergence and leads eventually to a premature solution. On the contrary, 
a very large population size could stretch the search process ad infinitum
(Baker, 1985). 
Fitness function. As a performance index, this helps in carrying out the 
selection process optimally and has to be defined adequately with respect 
to the problem to be solved.

9.3 Probabilistic Control of Genetic Algorithms Parameters 

In the early 1980s it was a general view that the on-line adjustment of crossover 
probability, or crossover rate, can be favourable for optimal progress in the search 
process, because it can help in avoiding the premature end of the search process 
through the higher loss of the alleles. Using the entropy measure over the entire 
population, Wilson (1986) was able to quantify the benefit of crossover 
adjustment. To compensate for this, the value of mutation probability should be 
increased. This indicates that, when the GA parameters are adaptively tuned, the 
following two tendencies have to be balanced out: 

convergence to the solution optimum, after the region that contains the 
solution optimum or nearly the optimum has been traced 
searching for new regions of the solution space in order to find a real global 
optimum.  

This illustrates that the genetic algorithm operates by a permanent balancing 
between the best result that can be achieved and searching for the possibility to 
achieve some better results. For monitoring the status of the balance the 
exploitation-to-exploration relation (EER) has been introduced to serve as a 
diversity measure of the search process. In the above case, the balance between the 
values of the crossover probability p(c) and the mutation probability p(m) should 
be kept at an optimal level. In practice, moderate values of crossover probability 
(0.5 < p(c) < 1.0) and small balancing values of the mutation probability (0.001 < 
p(m) < 0.05) are commonly used.  

Li et al. (1992) proposed an EER-based dynamic GA, capable of balancing 
ideally the GA behaviour by adjusting the crossover and mutation probabilities, by 
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which the EER is defined. They used two diversity functions for adjustment 
purposes. 

The dynamic GA presented by Li et al. operates in the following three stages: 

in the initial stage, in which the diversity measures follow the initial 
conditions and the initial parameter values of GA 
in the search stage, in which the dynamic GA varies its parameters to 
enable a broad search and improved exploitation
in the refinement stage, in which the balance is adapted to manage the 
search process more efficiently, while the best chromosome is already 
close to the optimum problem solution in the search space. 

Srinivas and Patnaik (1994) also used the manipulation of crossover and mutation 
probabilities to retain the population diversity and still to support the convergence 
capability of the algorithm. In order to vary the crossover, mutation and 
reproduction probabilities, i.e. to vary p(c), p(m) and p(r) adaptively with the 
objective of preventing the premature convergence of the GA to a local optimum, 
they first tried to identify whether the GA is converging to a local or to a global 
optimum at all. For this, they recommended the observation of the relation between 
the average fitness value avgf  across the population and the maximum fitness value 

maxf within the population (i.e. the fitness of the best chromosome in the 

population). The value of the difference max avg( )f f  is likely to be less for a 

population that has converged to an optimum solution than that of the population 
scattered in the solution space. The same property has been observed in 
experiments with the GA. This is obvious, because convergence of the GA means 
that the majority of the population has a similar high fitness value. This 
alternatively implies that the average fitness of the population is high and is most 
possibly close to the maximum fitness of the population. Therefore, this justifies 
the difference max avgf f  being used here as the measure of convergence of the 

GA.  
Usually in the adaptive GA experiments, the probability values p(c), p(m), and 

p(r) are varied, depending on the difference value max avgf f , i.e. on search 

results (Palit and Popovic, 2000). Since the probability values of p(c) and p(m)
have to be increased (in order to bring more genetic diversity into the population) 
when the GA converges to the local optimum, i.e. when the difference max avgf f

decreases, both p(c) and p(m) have to be varied inversely with max avg( ).f f

Therefore, the same expression can be written mathematically as follows: 

rep max avg( )p r f fk   (9.1) 

mu max avg( )p m f fk   (9.2) 

cross max avg( )p c f fk   (9.3) 
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where the numerators rep mu cross, andk k k  in the right-hand side expressions are 

some constants of the (respective) variations. 
From the above expressions it is evident that all three probabilities do not 

depend on the fitness of any particular solution and have the same value for all 
solutions of the populations. Consequently, solutions both with high and with low 
fitness values are subjected to the same level of reproduction, mutation, and 
crossover. Also, when the population converges to an optimal global or local 
solution, the increase of p(c) and p(m) may eventually cause disruption of the near-
optimal solutions. Therefore, the population will neither converge to a local 
optimum nor converge to the global optimum. Therefore, though we may prevent 
the GA from getting stuck at a local optimum solution, the performance of the GA 
– in terms of generations required for convergence will be very large - will 
certainly deteriorate.  

To overcome this problem, we need to preserve the “good” solutions of the 
population by using some higher value of p(r) and lower values of p(c) and p(m)
for higher fitness solutions and some higher values of p(c) and p(m) for lower 
fitness solutions. This is because high fitness values support the convergence speed 
of the GA, whereas low fitness solutions prevent the GA from getting stuck at local 
optima.  

Thereby, the value of p(m) should not only depend on max avg( )f f  but also on 

the fitness value of the solution. Similarly, the p(c) value should not only depend 
on the difference max avg( )f f  but also on the fitness of the two parent solutions. 

Furthermore, if the value of the difference max avg( )f f  can identify whether the 

GA is converging or not, then the difference avg min( )f f  will possibly also 

identify the convergence of the GA because, in our experiment (Palit and Popovic, 
2000), all the populations for subsequent generations are selected from the mating 
pool that consists of the best 50% populations of the current generation. Therefore, 
by using both of them as a measure of GA convergence, the adaptive values of the 
control parameter of the GAs are set as follows. For 

selrep avgf f

it is

selrep avg
1rep 1repbias

max avg

( )
f f

p r k k
f f

  (9.4) 

and for 

selrep avgf f

it is
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2rep( )p r k  (9.5) 

where selrepf  represents the fitness value of the chromosome (individual) selected 

by the roulette wheel selection mechanism for further genetic (reproduction) 
operation. The values of other constant terms in the right-hand side expression, e.g.

1rep 0.9,k 2rep 0,k and 1repbias 0.1,k  have been selected in the adaptive GA 

experiment (Palit and Popovic, 2000). Note that, in (9.4), when the best individual 
with highest fitness maxf  is selected by the roulette wheel, i.e. selrep maxf f , the 

probability of reproduction p(r) = 1 and that for an average individual avgf  is 

only 0.1 (set by the bias term in (9.4)). On the other hand, the sub-average 
individual cannot be reproduced at all, as per (9.5), since p(r) = 0. 

Similarly, for the adaptive probability of mutation, i.e. for p(m), the following 
mathematical expressions were used. If 

selmu avgf f

then 

max selmu
1mu 1mubias

max avg

( )
f f

p m k k
f f

. (9.6) 

Otherwise, when 

selmu avgf f

then, 

avg selmu
2mu 2mubias

avg min

( )
f f

p m k k
f f

, (9.7) 

where the following values for the constant terms have been selected: 1mu 0.01k ,

2mu 0.09,k 1mubias 0.005,k and 2mubias 0.005.k  Here, as per (9.6), the best 
individual will undergo the lowest mutation (since p(m) = 0.005), whereas the 
average individual will undergo a moderate level of mutation (since p(m) = 0.015). 
On the other hand, the worst chromosome, as per (9.7), will have the highest 
possibility of mutation (since p(m) = 0.095). 

Furthermore, for the crossover probability p(c) the following relations hold. If 

selcross2 avgf f
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then, 

selcross2 avg
1cross 1crossbias

max avg

( )
f f

p c k k
f f

 (9.8) 

elseif, 

selcross2 avgf f

It is 

selcross min
2cross crossbias

avg min

( )
f f

p c k k
f f

 (9.9) 

with 1cross 0.5,k 2cross 0.2,k 1crossbias 0.5,k  and 2crossbias 0.3.k  Here, selcross2f

corresponds to the fitness of parent 2 and the same is only selected through roulette 
wheel, since parent 1 is always the best individual selected of all generations for 
the crossover operation. This is because, when the crossover is performed between 
the best individual of all generations and worst individual of current generation, the 
possibility of generating better individuals is generally low, hence, as per (9.9), the 
probability of crossover for such a case is low (set by 2crossbias 0.3k ).

9.4 Adaptation of Population Size 

Genetic algorithm starts with an initial population that is randomly generated so 
that it - as far as possible - uniformly represents the entire search space. This 
assumes that the knowledge about the search space and the problem to be solved is 
a priori available. This also helps – using an efficient heuristics – drive the initial 
population in the direction of the most promising problem solution. 

The initial population size potentially defines the size of the search space to be 
considered and it directly influences the convergence speed and the achievable 
solution accuracy. This is closely related to the problem of premature convergence 
of the search process and to the problem of search crashes. Therefore, it is 
advisable to adapt the population size steadily while executing the search process. 
Baker (1985) was the first to show how this could be done. He noticed that the 
chromosomes that produce a large number of offspring during the process of 
crossover and mutation contribute considerably to the acceleration of convergence 
speed. Owing to the limited population size, this forces the rest of the population to 
produce a reduced number of offspring, even it prevents some chromosomes from 
contributing any offspring at all. This causes a rapid decrease in the population 
diversity, which leads to premature convergence of the search process. In order to 
monitor this phenomenon, Baker introduced the percent involvement as a measure 
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that indicates the percentage of a generation contributing the offspring for the next 
generation. Based on this measure he could control a dynamic population size by 
adding or deleting additional population chromosomes in order to balance out the 
contribution percentages over the entire current population.  

Entirely different approaches to resolving the premature convergence problem 
have been proposed by Arabas et al. (1994) and by Kubota and Fukuda (1997), 
based on the concepts of age of chromosome and of age structure of population
respectively. In the age of chromosome concept, the number of generations that a 
chromosome has survived is taken as an indicator that replaces the plain selection 
mechanism. The concept assigns to every created chromosome its lifetime, which 
determines the age at which the chromosome will die. The lifetime length is 
calculated by taking into account the minimum, average, and the maximum fitness 
values within the current population and the minimum and maximum fitness values 
in the past generations. The chromosomes with the outstanding fitness values get a 
longer lifetime assigned.  

The concept of age structure of population maintains the genetic diversity of 
the population by deleting the aged individuals. This mimics nature by removing 
individuals from the population by reaching the lethal age. Defining the natural life 
cycle as the time interval between the birth of parents and the birth of offspring, 
there are two conceptual possibilities to be used 

the parents and the children may not simultaneously live as long as the 
parents live (AGA algorithm) 
both the parents and the children may coexists for a period of time (ASGA 
algorithm), which is the most natural case. 

In the aged genetic algorithm concept, each individual is characterized by its 
age and its lethal age as parameters. As soon as an individual is born it is assigned 
a lethal age and the zero value of its age parameter. Thereafter, its parents die 
immediately. The remaining individuals increase their age parameter value by one 
in every generation. Starting with an initial generation in which all individuals 
have a zero-value age parameter, an age operator manages the aging and dying 
process.  

The effect of the proposed genetic algorithm with age structure was tested on a 
simulated knapsack problem. The simulation results have shown that the new 
concept can prevent individuals with a large fitness value from overrunning the 
population and maintain a considerable genetic diversity in the population. The 
introduced age concept also helps in solving optimization problems with a 
relatively small population size. There are, however, some unpleasant effects that 
accompany the age concept application (Knappmeier, 2003): 

there is an increased possibility of weak individuals surviving as long as 
their lethal time is not expired 
there is an enlarged possibility for strong individuals to die formally earlier, 
i.e. before they become bad, when their lethal time has expired.  
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9.5 Fuzzy Logic Controlled Genetic Algoithms 

A number of scientists, after experimenting with probabilistic approaches for 
improving GA performance, were not satisfied because, by pursuing this research 
track, much vague and ill-structured knowledge and some highly exhaustive 
computational procedures have to be used. They, therefore, started searching for 
more comfortable and more efficient alternatives for solving this problem. To 
escape from the probabilistic concepts and to by-pass the long-lasting calculations 
they selected fuzzy logic as a possible tool for on-line adaptation of GA parameters 
and for GA resources management. Lee and Takagi (1993) took this route in their 
study and worked out a dynamically controlled genetic algorithm using a fuzzy 
logic technique. Soon thereafter, Arnone et al. (1994) reported on fuzzy 
government of a genetic population, and Bergmann et al. (1994) published their 
experience with GA parameter adjustment using fuzzy control rules.  

Dynamically controlled genetic algorithm is an algorithm that uses a fuzzy 
knowledge-based system to control the GA parameters dynamically, mostly the 
crossover, mutation rate, and the population size. In fact, it is a typical rule-based 
expert system the inputs of which can be a combination made up of a genetic 
algorithm and performance measures, such as the ratio of average to best fitness, 
current population size or the mutation rate. The rules stored in the system reason 
about the state of the measure values and recommend adequate actions. The 
authors give a rule example: an increase in the present population causes the 
sensitivity to mutation rate to decrease, along with the best mutation rate to use. 
This can be programmed as follows: 

IF the ratio of average fitness-to-best fitness is HIGH 
        THEN    population size should INCREASE 

IF   the ratio of worst fitness-to-average fitness is LOW
       THEN    population size should DECREASE 
 IF   mutation is SMALL and population is SMALL 
      THEN    population size should INCREASE  

The system developed was validated through a simulation example of an inverted 
pendulum control, where it has shown much better behavioural results in pendulum 
control than a GA with fixed parameters.  

Government of the genetic population is a concept coined by Arnone et al.
(1994) for describing the process of on-line tuning GA parameters using a fuzzy 
knowledge base. The concept is based on a fuzzy government module  whose 
inputs are statistical data periodically collected from the genetic algorithm and 
whose outputs are the control parameters of the GA. In the concept, a facility is 
embedded for monitoring the evolutionary process in order to avoid its possible 
undesired behaviour. 

Herrera and Lozano (1996) summarized the steps in building adaptive GAs 
using fuzzy logic controllers as follows: 
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define some firm measures related to the GA behaviour, its setting 
parameters, and operators, e.g. example the diversity indices, maximum, 
average, and minimum fitness values, as system inputs 
define as system outputs the values of control parameters or of their 
changes 
define the database as a collection of membership functions and the 
boundary values of input and output variables 
build the rule base in which the fuzzy rules describe the relations between 
the input and output variables. 

The statistical data generated by the genetic algorithm concern the genotypes of 
individuals of a population as well as the phenotypes related to the fitness and 
other properties of individual performance for the problem to be solved. Two 
typical examples for the above statistics are the 

genotypic diversity measure, representing the variations of similarity 
within the genetic material (like chromosomes, alleles, etc.)
phenotypic diversity measure, which mainly concerns the fitness of 
chromosomes. 

9.6 Concluding Remarks 

In this chapter, three possibilities of adaptive versions of genetic algorithms are 
presented, the first of which dynamically controls the basic tuning parameters, such 
as probability of crossover, mutation and reproduction etc., based on the on-line 
measurement of GA convergence. Other methods control mainly the population 
size, based either on the concept of the age of the chromosome, the age structure of 
the population, or by application of the average-fitness -to- best-fitness ratio, 
worst-fitness -to- best-fitness ratio, besides the mutation- and crossover-rates-based 
fuzzy IF-THEN rules. The efficiencies of the various methods are demonstrated on 
application examples that can be found in the corresponding publications list.  
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Part IV 

Recent Developments 



10

State of the Art and Development Trend 

10.1 Introduction 

In the previous chapters we have presented the main issues of computational 
intelligence that, in our opinion, are of outstanding interest to practising engineers 
in the industry. The issues presented, to our knowledge, also make up the main part 
of syllabus of postgraduate courses on fuzzy logic, neural networks, computational 
intelligence, and soft computing in computer science and engineering.  

In the last decade, some additional issues have become of growing interest, 
such as support vector machines, wavelet neural networks and fractally 
configured neural networks, which will be presented below. However, there are 
some advanced issues like stochastic machines, neurodynamics, and 
neurodynamic programming that have been left out of scope of the book because 
they are, in our belief, primarily of interest to informatics scientists and 
mathematicians. 

The new development trends in computational intelligence are multiple. In the 
following, some development trends that, in our opinion, are the most promising 
for applications in engineering will be presented. 

In the area of neuro-technology, the progress and the expectations in the area of 
bioinformatics and neuroinformatics are tremendous (Chen et al., 2003). The 
advances have prevalently been possible due to the availability of sophisticated 
computer facilities for collection and management of tremendous amounts of 
complex experimental data, required for analyzing of brain infrastructure (see the 
Proceedings of the IEEE, special issues on bioinformatics, November 2002 and 
December 2002). The foremost research goal here is to understand the synaptic 
communication pathway of neurons and of supporting cellular elements. The 
pivotal achievements thus far are the understandings of how the computational 
processes in the living cells are performed by interaction of molecules and how the 
stochastic biochemical networks are built. Although the research work for the time 
being is predominantly carried out by biologists and bioneurologists, there is still 
expectation that, at a certain point in development, it will attract the attention of 
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engineers. Here, it should be recalled that the learning rule of Hebb, himself a 
neurophysiologist, was formulated after his study of the learning principle of 
neurons. 

A modest step in this direction is the special issue of Control Systems 
Magazine, August 1994, devoted to biological networks and cell regulation. 

In the area of fuzzy logic technology, the intensive research trend towards 
knowledge extraction from data or data understanding using rule-based systems 
(Duch et al., 2004) is remarkable. The beginning of this research has roots in the 
achievements in image interpretation using the methods of artificial intelligence. 
The aim behind this was to explain the meaning of the images from the collected 
data, mainly using  

perceptual knowledge, which supports interpretation in terms of lines, 
patterns, areas, etc.
semantic knowledge, which enables the use of some abstract concepts like 
the object shapes, the relationships between the objects, etc.
functional knowledge, i.e. the problem-oriented knowledge that finds out 
the best image interpretation by conducting intelligently the inference 
process. 

Thus far, the rule-based data understanding approach has chiefly been used for 
data-based medical diagnostics, like for diagnosis of cancer and diabetes diseases 
(Setiono, 2000; Mertz and Murphy, 1993). However, it is highly possible that the 
approach can also find application in the production industry for material analysis, 
product quality inspection, and for production performance identification. What is 
interesting from our point of view is that rule-based data understanding can help to 
elucidate more inherent knowledge from the time series to be analyzed in this way 
than using the approaches described in previous chapters. 

In the area of genetic algorithms, the trend toward development of new, more 
advanced search algorithms is noteworthy. The most prominent example represents 
the development trend in particle swarm optimization, invented by Kennedy and 
Eberhart (1995), i.e. by a social psychologist and an electrical engineer. It is a 
population-based search approach placed somewhere between genetic algorithms 
and evolutionary programming because it works in the following way: 

Each particle (representing a potential problem solution) keeps track of its 
coordinates in the problem space related with the best solution, called 
pbest, based on the fitness obtained thus far. By evaluation of pbest values 
across the particle’s population the global best temporary solution, called 
gbest, is found and the parameter’s adjustments are performed. This, in 
principle, corresponds to the crossover operation of GAs. 

Like evolutionary programming, the particle swarm concept also relies on 
the stochastic processes within the population. 

The advantage of the particle swarm algorithm, compared with both of its 
precursors, i.e. with genetic algorithms and evolutionary programming, lies in the 
programming simplicity, which is due to the simplicity of its underlying concept. 
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Usually, a few computer program lines are needed to define the algorithm and the 
search objectives.

Initialization of the particle swarm algorithm starts with the random generation 
of particles that at this stage represent the potential problem solutions. Through the 
search for a final optimal problem solution the initial solutions will be improved by 
updating the values of each particle generation, and this will be performed without 
using the evolutionary operators such as crossover and mutation. During the search 
process, the particles fly through the solution space towards the current pbest, 
changing their velocity after each evaluation step.  

It is interesting to add that the concept of particle swarm optimization was 
worked out by its inventors through the observation of bird flocking and fish 
schooling behaviour, and in the attempt to simulate birds seeking food through 
social cooperation of neighbouring birds.  

Presently, the main application of particle swarm optimization is in solving the 
constrained optimization problems, such as optimization of nonlinear functions 
(Hu and Eberhart 2002a), multiobjective optimization (Hu and Eberhart, 2002b), 
dynamic tracking, etc. He et al. (1998) have even shown a way how to extract the 
rules from fuzzy-neural networks using the particle swarm optimization approach. 
In the meantime, the term swarm engineering was also coined (Kazadi, 2000), 
dealing with the multi-agent systems.

Finally, some useful information about the development trends in this area of 
research can be found in the special issue on particle swarm optimization, IEEE 
Transactions on Evolutionary Computation (June, 2004). 

10.2 Support Vector Machines 

Over the last decade or so, increased attention has been paid to support vector 
machines, based on the computational approach termed the principle of structural 
risk minimization, formulated by Vapnik (1992). This principle is of fundamental 
relevance to statistical learning theory and represents an innovative methodology 
for development of neural networks (Vapnik, 1998 and 1995) for applications in 
function approximation, regression estimation, and signal processing (Vapnik et
al., 1996). The applications are also extended to include pattern recognition 
(Burges, 1998), and time series forecasting (Cao, 2003) and prediction (Muller et
al., 1997).  

Originally, support vector machines were designed for solving pattern 
recognition problems by determining a hyperplane that separates positive and 
negative examples, by optimization of the separation margin between them. This is 
generally based on the method of structural risk minimization and the theory of 
statistical learning, where the error rate of learning of test data is limited by the 
training error rate and by the Vapnik-Chervonenkis dimension (Vapnik and 
Chervonenkis, 1968). 

The fundamental concept of a support vector machine relies on Cover’s 
theorem (Cover, 1965), which states that the mapping of an input vector x into a 
sufficiently high-dimensional space, called a feature space, using a nonlinear 
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mapping function (x) could more probably be linearly separable than in the low-

dimensional input space of the vector (see Figure 10.1). 

Figure 10.1. Nonlinear mapping from input space into feature space 

In the high-dimensional feature space, if the data are nonlinearly separable in 
the low-dimensional data space, then linear separability of features could be 
achieved by constructing a hyperplane as a linear discriminant. In this way, a data 
classifier can be built, as illustrated by the following example. 

Let a set of labelled training patterns ( , )i ix y be available, with i = 1, 2, …, N,

where ix  is an n-dimensional pattern vector and iy  is the desired output 

corresponding to the input pattern vector ix , the values of which belong to the 

linearly separable classes A with iy = -1 and B with iy = +1. The postulated 

separability condition implies that there exists an n-dimensional weight vector w
and a scalar b such that 

0T
iw x b    for    iy =  -1, (10.1) 

0T
iw x b    for    iy = +1, (10.2) 

whereby the parametric equation 

0T
iw x b  (10.3) 

defines the n-dimensional separating hyperplane. The data point nearest to the 
hyperplane is called the margin of separation. The objective is to determine a 
specific hyperplane that maximizes this margin between the two classes, called the 
optimal hyperplane optH , defined by the parametric equation for optH  in the 

feature space 

0 0 0T
iw x b  (10.4) 
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as shown in Figure 10.1. From all the possible hyperplanes separating the two 
classes, optH is at equal distance between the data points that are nearest to the 

boundary between the two classes. Such data points, satisfying one of the 
following conditions 

0 0 1T
iw x b ,  for 1iy

0 0 1T
iw x b ,  for 1iy ,

are called support vectors (see Figure 10.1).  

Figure 10.2. Structure of a kernel-based machine 

Nonlinear mapping from the input space 1 2[ , ,..., ]Nx x x x  to the higher 

dimensional feature space is carried out using the kernel function family

1 2( ) [ ( ), ( ),..., ( )]Nk x k x k x k x

which helps in defining the linear discriminant function 

1

( ) 0
N

i i
i

w k x b  (10.5) 

in the feature space, where iw , i = 1, 2, …, N, are parameters of the discrimination 

function. Assuming that 0 0 ( ) 1b w k x , then Equation (10.5) can be rewritten in 

the more compact form  

0

( ) 0
N

i i i
i

w k x  (10.6) 

which is equivalent to the vector form 
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 ( ) 0Tw k x . (10.7) 

Equation (10.6), as shown in Figure 10.2, can be used directly for implementation 
of a kernel-based machine (Principe et al., 1999). 

In the following, we will seek for the optimal separating hyperplane (Haykin, 
1999) using the set of training data samples ( , )i ix y  and the constraint  

( ) 1T
i iy w x b ,  i = 1, 2, …, N. This is achieved by optimal selection of the value 

of b and by determination of the optimal value of w by minimizing the cost 
function

1
( )

2
TJ w w w . (10.8) 

Using for this purpose the method of Lagrange multipliers, we have to minimize 
the Lagrangian function 

1

1
( , , ) [ ( ) 1]

2

N
T T

i i i
i

J w b w w y w x b  (10.9) 

with respect to w and b and to maximize with respect to  by solving the equations  

( , , )
0

J w b

b
 (10.10) 

and

( , , )
0

J w b

w
. (10.11) 

As a result, the values of the weight vector w  are found as 

1

N

i i i
i

w y x  (10.12) 

under the condition that 

1
0

N

i i
i

y , (10.13) 

holds. Taking into consideration the nonlinearly transformed value of ix , i.e.

( )ik x , the optimal value of w  found above becomes  
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1

( )
N

i i i
i

w y k x , (10.14) 

where the transformed value ( )ik x  represents the feature vector corresponding to 

the input vector ix .

After replacing the last Equation by equation (10.7), the separating surface in 
the feature space is found as  

1

( ) ( ) 0
N

T
i i i

i

y k x k x , (10.15) 

or as 

1

( , ) 0
N

i i i
i

y K x x , (10.16) 

where 

( , ) ( ) ( ) ( ) ( )T T
i i iK x x k x k x k x k x  (10.17) 

is the inner product kernel, which is a symmetric function, i.e.

 ( , ) ( , )i iK x x K x x . (10.18) 

Figure 10.3. Basic architecture of a support vector machine 

In practice, kernels of various shapes have been used:  

 polynomial kernels  ( , ) [( , ) 1]T n
i iK x x x x
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 RBF kernels   

2

22( , )
ix x

iK x x e

sigmoid kernels ( , ) tanh[ ( , ) ].T
i iK x x c x x

The condition for a selected kernel to be acceptable as an inner product kernel 
and to be useful for building a support vector machine is defined by Mercer’s 
theorem, which states that the proposed kernel function must be a symmetric 
function, as defined by Equation (10.17). Furthermore, an inner product kernel to 
be used in building the basic architecture of the support vector machine shown in 
Figure 10.3 must be expandable in the series  

1

( , ) ( ) ( )i i i i i
i

K x x k x k x ,  (10.19) 

where i  are eigenvalues and ( )ik x are the eigenfunctions of the expansion. 

10.2.1 Data-dependent Representation 

Auflauf and Biehl (1989), using a data-dependent representation, have worked out 
a simple and fast convergent sequential algorithm for finding the optimal 
parameters of a discriminant function with the largest margin. The algorithm that 
they called adatron considers the discriminant function in terms of 

0

( ) sgn( )
N

T
i i

i

f x x x b ,  (10.20) 

where N is the number of samples and i the multipliers of individual samples that 

should be selected so that the quadratic form 

1 1 1

1
( ) ,

2

N N N

i i j i j i j
i i j

J d d x x , (10.21) 

is optimized subject to the constraint 

1

0
N

i i
i

d , (10.22) 

for 0i , i = 1, 2, …, N, where .,.  represents the inner product of ix and jx .
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In order to understand the building of a machine using the adatron algorithm, 
the discriminant function, relying on N data samples ix  and the corresponding 

weight multipliers iw , should be written as 

1

( )
N

T T
i i

i

f x x w b x x b , (10.23) 

and the machine output function as 

 ( ) sgn[ ( )]y x f x . (10.24) 

Figure 10.4. Adatron-algorithm-based perceptron 

Equations (10.23) and (10.24) define the structure of a data-dependent machine, 
shown in Figure 10.4, in accordance with a perceptron with b = +1 as its bias input.  

The idea of adatron was born during the search for a perceptron with optimal 
stability. Among the best iterative computational proposals for the design of such a 
perceptron, the adatron algorithm has proven to be the best one, since it 
theoretically promises – if the problem solution exists – to deliver an optimal 
solution with an exponential speed of convergence. The adatron algorithm is a 
kernel-based on-line algorithm for a learning perceptron under the premise that it 
operates in a feature space in which it is supposed that a maximal margin 
hyperplane exists. 

10.2.2 Machine Implementation

After presenting the support vector machines concept and the aspects of its 
implementation, we would now like to summarise some essential issues and give a 
typical example of a support vector machine based on the RBF function as its 
kernel function (Figure 10.5). In doing this, we would first like to remind that the 
decision methodology of a support vector machine is based on implementation of 
the following two successive steps: 

mapping the training points by a nonlinear function  to a sufficiently high-
dimensional feature space in which the training points are linearly 
separable 
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determination of the optimal separation hyperplane that maximizes the 
margin, i.e. the distance to the points. 

We also recall that the adatron algorithm is capable of maximizing the margin. 
This can be used to implement a kernel-based machine. In the specific case of an 
RBF kernel of Gaussian style, the discriminant function ( )f x , represented by 

Equation (10.23), takes the form 

2

22

0

( )
ix xN

i
i

f x e b , (10.25) 

which can be implemented as shown in Figure 10.5.  

Figure 10.5. Architecture of an RBF-based support vector machine 

This implementation effectively represents the structure of an RBF-based 
support vector machine in which the Gaussian activation functions are centred at 
sampled values, and the multipliers i  play the role of interconnecting weights. 

10.2.3 Applications 

In engineering, support vector machines have found useful applications in 
nonlinear regression estimation and in time series forecasting and prediction.  

Nonlinear regression estimation addresses the problem of estimating a 
function given by a set of data ( , )i dix y , i= 1, 2, …, N, generated by an unknown 

function to be estimated, where ix  are the sampled values of data set and diy  are 

the desired values to be estimated using the approximating function 

0

( , ) ( )
N

i i
i

f x a a x b .

In the above function, the functions ( )i x  are called features and ia  are 

coefficients to be estimated from given data by minimizing the functional 
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2

1

1
( ) ( , )

N

i i a
i

J w y f x a a
N

,

where  is a constant. 
Mukherjee et al. (1997) experimentally investigated the performances of a 

support vector machine in nonlinear regression estimation of the database of a 
chaotic time series, and compared the results with those achieved with other 
techniques, such as with polynomial and rational approximations, radial basis 
functions, and with neural networks. They reported that the support vector machine  
performs better than any of the techniques taken for comparison. Cao and Tay 
(2001) concentrated their research on application of support vector machines in 
financial time series forecasting using the S&P daily index as the data set. They 
showed that, compared with neural networks, support vector machines performed 
better because of their better generalization capabilities. 

10.3 Wavelet Networks 

10.3.1 Wavelet Theory 

The origin of the wavelet concept lies at the begin of the last century, as an 
extension of the Fourier transform. The real application of the new concept, 
however, began many decades later, sometime in the 1980s. It was soon realized 
that the wavelet concept, as a unified framework of various methodologies, could 
provide an efficient tool for signal processing, speech and image compression, etc.
Moreover, wavelets became very popular in statistical time series analysis (Nasin 
and Sachs, 1999). Of more advanced use is the wavelet transform (WT) in analysis 
of non-stationary processes.  

Presently, various types of wavelet transform are in use, such as the continuous, 
discrete, and discrete-time wavelet transform, which are appropriate for various 
applications. For instance, the continuous wavelet transformation 

1
( , ) ( )x

t
T a x t h dt

aa

is seen as an alternative to the short-time Fourier transform  

02( , ) ( ) ( ) j f tT f x t h t e dt

and to the Gabor transform. Evidently, the wavelet transform is a kind of signal 
decomposition in a family of basis functions called wavelets, whereby wavelets of 
a family are obtained from a prototype wavelet or mother wavelet as
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,

1
( )

t
t ,

whereby  is a fixed time-frequency function meeting the restrictions  

1
( ) 1t t

and

1
( ) 1 ,   

where ( )  represents the Fourier transform of ( )t  and  meets the condition 

 > 0. 

10.3.2 Wavelet Neural Networks 

The wavelet decomposition approach, formulated at the end of 1980s, became a 
powerful tool for function approximation, and it was also applicable to time series 
analysis. Based on this decomposition, some structural representations of wavelet 
neural networks have been developed. In the first half of the 1990s, a number of 
publications reported on the synthesis and applications of wavelet neural networks 
(Zang and Benveniste, 1992; Pati and Krishnaprasad, 1993; Zhang et al., 1995). 
The initial idea of Zang and Benveniste (1992) was to depict the wavelet neural 
network as an approximator of continuous functions using the universal 
approximation capability of wavelet decomposition.  

Figure 10.6. Wavelet network as a function approximator 

Hence, they proposed a neural network structure described by the 
decomposition algorithm 
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1
( ) [ ( )] *

N

i i i i
i

g x w D R x t g ,

where the iD  values are diagonal matrices built from dilation vectors and iR , i =

1, 2, …, N, are some rotation matrices. The redundant parameters *g  are 

introduced to deal with non-zero-mean functions, because the wavelet ( )x  is a 

zero-mean function. The network’s equivalent structure is shown in Figure 10.6. 
Rao and Kumthekar (1994) worked out the structure of recurrent wavelet networks 
using the equivalence between the  

statement of Cybenko (1989) that, if (.)  is a continuous discriminating 

function, then finite sums of the form 

1

( ) ( )
N

T
i i i

i

f x w a x b

are dense in the space of continuous functions, so that any continuous 
function f(.) may be approximated by a weighted sum of (.) functions 

analogous results of wavelet theory, which state that arbitrary functions can 
be written as a weighted sum of dilated and translated wavelets 

1/ 2

1

( ) det ( )
N

i i i i
i

f x w D D x i .

A more transparent wavelet network representation was proposed by Chen et 
al. (1999). In this network, the wavelets are used as activation functions in the 
network’s hidden layer, replacing the sigmoid functions, whereby the wavelet 
shape and the wavelet parameters are adaptively determined to deliver the optimal 
value of an energy function. In analogy with the input-output mapping of a one 
hidden-layer perceptron, generally written as (see Chapter 3)  

1

( )
N

T
o h h i i

i

y f w f f w x ,

Chen et al. (1999) proposed a similar wavelet neural network structure  

0 0( ) ( )n m
i j ij ab k jk ky t w w x t

for i = 1, 2, …, N, where kx  and iy  are the input and the output vectors 

respectively, and jkw  are the connecting weights between the output unit i and the 
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hidden unit j. In the last equation, the factors aj and bj represent the dilation and the 
translation coefficients of the wavelet in the hidden layer respectively. Similarly, 

jkw  represents the connecting weight between the hidden unit j and the input unit 

k. Relying on the above representation of neural networks, Cybenko (1989) and 
Hornik et al. (1989) proved – using the Stone-Weierstrass theorem – that any 
arbitrary function can be approximated with a given accuracy, thus designating the 
single hidden-layer neural network as a universal approximator.

The proposed wavelet neural network is trained using the backpropagation 
algorithm with the cost function 

1 1

1

2

P N
p p

i i
p i

E d y ,

where d is the desired network output of pth input pattern. Furthermore, P
represents the sum of input sample and m, n, and N the sum of input, hidden, and 
output nodes respectively. 

Pati and Krishnaprasad (1993) developed an alternative structure of 
feedforward network, based on the discrete affine wavelet transform. This is 
possible because the sigmoid activation function can be viewed as being composed 
of affine wavelet decompositions of mappings.  

Zhang et al. (1995) described a wavelet neural network structure similar to that 
of a radial basis function network in which the radial basis functions are replaced 
by orthonormal scaling functions that are not necessarily radially symmetric. The 
wavelets used for network implementation are functions whose translations and 
dilations build an orthonormal basis of L2(R), which encompasses all square 
integrable functions of R, with the mother wavelet of the form 

/ 2
, ( ) 2 (2 ).m m

m n t t n

The objective of the proposed network is that, given a training data set 

, ( )N i iT t f t ,

where i =1, 2, …, N, the optimal estimate of f(t) could be found using 

, ,( ) , ( )M k M k
k

f t f t .

For a given set of M and k, the wavelet network implements the mapping 

,( ) ( )
K

k M k
k K

g t c t
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which can be used to approximate f(t) when the weights kc  are properly chosen. 

Mukherjee and Nayer (1996) proposed a methodology for automatic generation 
of RBF networks based on the integral wavelet transform. In fact, they concentrate 
on automated construction of a generalized radial basis function network. To 
solve the problem considered, there is a general question to be answered: Can a 
multivariate function f(x) be represented by the sums and products of univariate 
functions? The answer is to be found in approximation theory, which for this 
purpose recommends minimizing the cost functional 

2
( , ) ( ) ( , )H F W x f x F W x dx

with respect to W. In order to make the approximation problem well posed,
regularization techniques have to be used by introducing smoothness constraints 
into the approximation problem, so that the extended cost functional becomes 

2

1

( , ) [ ( ) ( , )]
N

i i
i

H F W x f x F W x +
2

( , )PF W x .

Solving this problem (for details see Chapter 3), the approximation function for the 
generalized radial basis network is defined by 

1

( , ) ( ; )
n

j j
j

F W x c G x z ,

where jz , j = 1, 2, …, n, are the centres of the new basis functions, which can be 

computed - along with the coefficients in the last equation – by minimizing the cost 
functional 

2

1

( , ) [ ( , ) ( )]
N

i i
i

H F W x F W x f x .

Based on the results of Zang (1997) in the use of wavelet network in non-
parametric estimation, Li and Chen (2002) proposed a robust wavelet network,
based on the theory of robust regression.

10.3.3 Applications 

As mentioned earlier, wavelets have been widely used in various application fields 
of engineering. Some remarkable achievements have been reported in the 
Proceedings of the IEEE, special issue on wavelets, in April 1996. A state-of-the 
art report on wavelet applications in signal processing was compiled by Rioul and 
Vetterly (1991). Also, Li et al. (2000) have presented a real-life application of the 
wavelet transform in manufacturing for tool wear condition monitoring and tool 



350 Computational Intelligence in Time Series Forecasting 

breakage, based on measurements of spindle and feed motor currents. For 
decomposition of power inputs to the spindle and to the feed motor servos, both 
continuous and discrete wavelet transforms were used, and for detection of tool 
wear state a fuzzy classification method was developed relying on mathematical 
models of relationships between the current signals and the cutting parameters in 
the various tool wear states.  

Recently, the results of wavelet application in time series forecasting and 
prediction have been published. Zhang et al. (2001) used wavelet decomposition 
for multi-resolution forecasting of financial time series. For this purpose, the time 
series was decomposed into an invariant scale-related representation and the 
individual wavelet series modelled by a separate multilayer perceptron. In order to 
build the overall time series forecast, the individual forecasts are recombined by a 
linear reconstruction property of the inverse transform with the chosen 
autocorrelation shell representation. Also, for time series preprocessing, a 
combined Bayesian and wavelet-based approach was used. Wavelet decomposition 
was also used by Soltani (2002) for nonlinear time series prediction. To produce 
improved prediction values, he used a combination of wavelet decomposition (as a 
filtering step) and neural networks. The most difficult problems to be solved here 
are the selection of an appropriate model order and the determination of optimal 
estimator complexity. Chen et al. (1999), again, used the multiresolution learning
capability of a feedforward wavelet neural network described above for single- and 
multi-step predictions of chaotic time series and for systems modelling. Finally, in 
his Ph.D. thesis, Lotric (2000) used wavelet-based smoothing in time series 
prediction with neural networks and applied it to process quality control. 

10.4 Fractally Configured Neural Networks 

Engineering, information science, and mathematics have learnt much from biology 
and physiology. Examples are the creation of genetic and evolutionary searches, 
the discovery of Hebbian learning, reinforcement learning, associative memories, 
etc. From the complexity points of view, all arts of learning are categorized as 
elementary learning processes used for recognition and classification of patterns 
from given data. With the progress of time, the attention was shifted towards 
higher level learning processes or cognitive functions, which are based on a set of 
elementary learning processes. As a tool for solving problems involved in higher 
level processes that, for instance, conventional neural networks cannot solve, 
fractally configured neural networks (or simply fractal networks) have been 
proposed. The primary reason for this was because the higher cognitive functions, 
such as consciousness, are basically hierarchically organized complex systems that 
cannot be modelled by a simple neural network, but rather they need several sub-
networks (Takeshi and Akifumi, 1999).  

In general systems theory, various concepts have been elaborated for modelling 
of hierarchically organized modular systems, among them the concept of partially 
bounded open systems, in which the system itself and it’s modules interact with 
their environment through their inputs and outputs. In the same way, the modules 
interact with each other at each hierarchical level as well as with the modules at a 
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higher hierarchical level, so that they can be seen as partial open systems 
themselves. This interaction creates new, more complex open systems having a 
“higher order” intelligent behaviour, which is analogous with the capabilities of 
biological modules building higher level systems (multi-cellular organisms) out of 
lower level modules (cells) that, within the higher level system, behave as partially 
bounded open systems with mutual interaction.  

The core issue, however, is: How should the modules interact mutually? This is 
the issue that was irrelevant for general systems theory. Furthermore, the question 
also arises as to what internal models should be embedded in individual modules. 
At least now, contemporary intelligent technology, particularly neuro-technology,
is called for help. For instance, in analogy with the modules of biological systems, 
modules made up of neural networks should be structured as kinds of nested 
networks made up of networks that themselves build the individual modules 
capable of mutual communication. This indicates that the overall hierarchically 
organized modular system should have some fractal structure.  

The operational principle of fractally configured neural networks is as follows. 
The modules at the lowest hierarchical level primarily have a sensing function. 
While interacting with the environment, the basic function is to collect the input 
data and to learn their characteristic features. The modules thereafter interact with 
modules of the next higher hierarchical level by sending the results of learning to 
them. The higher level modules receive from more than one lower level module the 
information learnt and perform a “higher level abstraction” that is forwarded to 
higher level modules, etc. This procedure is repeated until the central module of 
the system receives the combined information needed for final recognition and 
interpretation of the environment situation.  

Following this operational principle, the entire neural network to be built 
becomes fractally configured. The problem now is what types of neural network 
should be used for system implementation. Because the modules should transfer 
the learning results towards to higher level modules, the feed-forward networks 
could be appropriate for this function. These types of network, however, do not 
have the storage capacity that, for example, the recurrent networks have. They can 
also perform self-organized learning, but, again, cannot be easily organized 
hierarchically. For this purpose, Morita (1993) proposed using what he called non-
monotone neural networks, capable of “abstracting” the input signals and of 
building the associative memory.

Finally, the structure of the hierarchically organized modular neural network 
was worked out as shown in Figure 10.7, in which the sensory level, recognition 
level, abstraction (generalization) level, and the final interpretation and decision 
level are chained hierarchically. This depicts the cerebral cortex hierarchy made 
up of sensory cortices, association cortices, frontal association cortices, and the 
central motor cortex on the top of the hierarchy. From the figure it is evident that 
the fractal neural networks are tree-structured neural networks made up of 
hierarchically distributed sub-network clusters.  

All the modules presented in Figure 10.7 are made up of non-monotone neural 
networks, the simplified structure of which is shown in Figure 10.8. In fact, the 
internal neural networks of modules consist of non-monotone networks, 
represented as circles. The non-monotone networks themselves consist of a number 
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of pairs of inhibitory neurons and excitatory neurons, so that they are structured 
as multi-input, multi-output neurons.  

Figure 10.7. Hierarchically organized modular neural network 

Figure 10.8. Simplified structure of a non-monotone neural network 

It should finally be mentioned that although the discovery of fractally based 
neural networks was introduced in the late 1980s, the subsequent work on their 
implementation and application was rather dilatory. 

10.5 Fuzzy Clustering

In Chapter 4 we have already described various fuzzy clustering algorithms, such 
as the fuzzy c-means algorithm that relies on fixed distance norm and the 
Gustafsson-Kessel algorithm that takes into account the adaptive version of 
distance norms for various geometrical shapes of clusters. Here, two other fuzzy 
clustering algorithms will be described, one that relies on the neural self-organizing 
network of Kohonen and the other is an entropy-based method.  

Once the data clustering algorithm is applied in the product space of X and y,
where a regression matrix 1 2[ , ,..., ]T

NX x x x  and the corresponding output vector 

1 2[ , ,..., ]T
Ny y y y  are constructed from a given set of time series data, the 

identification of a nonlinear time series model is simply a two-step procedure. 
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Decision Level

Abstraction
Level

Recognition
Level

Sensory
Level

NNN

NNN

NNN



 State of the Art and Development Trends 353 

From the generated fuzzy partition matrix ,g s c N
U  that contains the 

membership degrees of the data object sz Z , s = 1, 2, ..., N, and ,TZ X y , in 

the cluster group g = 1, 2, ..., c, the one-dimensional antecedent fuzzy sets are 
constructed from the point-wise projection of the rows of matrix U. Thereafter, the 
Takagi-Sugeno (TS) rule’s consequents are estimated from the training data, using 
the antecedent fuzzy sets, by the least squares error method. After validating the 
time series model with the validation data, the future values of the time series can 
be predicted easily by applying the generated Takagi-Sugeno rules. 

10.5.1 Fuzzy Clustering Using Kohonen Networks 

A Kohonen network is a self-organizing neural network, usually trained in 
unsupervised competitive mode. It is very well suited for data clustering. The 
network is closely related to the c-means clustering algorithm (Huntsburger and 
Ajjimarangsee, 1989). This was demonstrated by Bezdek et al. (1992) in their 
proposal of a data clustering algorithm that was based upon the Kohonen networks. 

The ideas from the fuzzy c-means (FCM) algorithm are basically integrated 
into the learning rate and weight-updating strategies of the Kohonen-type 
networks, while implementing the fuzzy Kohonen clustering network (FKCN). The 
new algorithm can be viewed as a Kohonen-type fuzzy c-means (FCM) algorithm.  

A Kohonen network (Kohonen, 1982) basically performs on some specific 
heuristic procedures, the termination of which does not represent the optimization 
of any model. In this kind of network, the final weight vectors depend on the input 
sequence. As a consequence, different initial conditions usually lead to different 
results.

Bezdek et al. (1992) introduced a new class of networks called FKCNs. In 
FKCNs, fuzzy membership values of output categories are incorporated into 
learning rates. In addition, FKCNs are self-organizing networks, since the size of 
the update neighbourhood is automatically adjusted during the learning process. 
Also, FKCNs usually terminate in such a way that the FCM objective function is 
approximately minimized. An FKCN is non-sequential and, therefore, it is 
independent of the sequence of feed of the input data. 

The learning algorithm of an FKCN can be described as follows. 

A data set that consists of observations of n measured variables (e.g. pressure, 
temperature, flow, etc. of a process) grouped into n-dimensional column vectors 

1 2, , , ,
T

s s s nsz z z z  ,n
sz  and a set of N such observations (e.g. at time 

instants 1, 2, ..., N etc.) can be denoted as Z = {zs | s = 1, 2, ..., N} and represented 
by the n N  matrix ,rs n N

Z z  where the rows and columns are indicated 

respectively by r = 1, 2, ..., n and s = 1, 2, ..., N. The rows and columns of this Z
matrix are called features (attributes) and patterns (objects) respectively. For a 
given data set Z, c fuzzy clusters (groups) : 0,1g Z  are fuzzy partitions of 

data Z in the c N  values of gs g sz , with 1 g c  and 1 s N , that satisfy 
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the three conditions (see Section 4.7.1.3). Here, gs g sz  represents the degree 

of membership of data object zs in the cluster group g. Based on the above 
representation of data and membership degree, the following steps implement the 
FKCN algorithm. 

Step 1:  

Initialize the constants c, m and , where c represents the number of 
clusters sought in the data, m is the fuzziness exponent and  is the 
termination tolerance, such that  

1

1

0

c N

m

Initialize the cluster centre vectors  

0 1,0 2,0 ,0 ,0, , , , n
c gV v v v v

where ,0gv  represents the prototype vector for cluster group g.

Select the fuzziness exponent m > 1, and m is usually set to 2. Select also 
Tmax, the number of maximum allowed iterations. 

Repeat for iteration  t = 1, 2, 3, ..., Tmax;

Step 2:  

Compute all learning rates using 

m

gs gs , where 

12 1

1
, 1 , 1 ,

m

c s g

gs
h s h

z v
g c h c

z v

where  is the learning rate,  are the membership values and c is the 
number of clusters. 

Step 3:  

Update the weight vectors with  

1 1

1 1
N N

g g gs s g gs
s s

v t v t z v t
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where t is the iteration number. 

Step 4:  

Test for the terminating condition, i.e. calculate

2
1t g gE v t v t ,

if tE  or, maxt T

then   stop 
else   go to step 2. 

It is to be noted that very often a termination tolerance  = 0.001 is selected, even 
though  = 0.01 works well in most cases. In the above algorithm, the weight 
vector vg of the winning unit is closest to the input vector zs. During the learning, 
the weight vector corresponding to the winning unit is adjusted so as to move 
further closer to the input vector. Most importantly, for a fixed value of m, the 
FKCN updates the weight vectors, using the conditions that are necessary for FCM 
and, in fact, with a fixed value of fuzziness exponent m, Bezdek et al. (1992)
showed that the FKCN is equivalent to the fuzzy c-means clustering algorithm. 
However, particularly for m = 1, the FKCN behaves as a hard c-means clustering. 
As an illustration, they used an FKCN for clustering of iris data. 

10.5.2 Entropy-based Fuzzy Clustering 

The fuzzy c-means clustering methods, proposed by Bezdek (1974), and it’s 
variant, the Gustafson-Kessel clustering algorithms (Babuška, 2002), based on an 
adaptive distance metric, although being very popular and powerful, both had to 
undergo some modifications (Yuan et al., 1995; Medasani et al., 1995; Babuška et
al., 2002), particularly the improvement of their performance and the reduction of 
their computational complexities.  

One of the most important issues here is the determination of the number and 
initial location of cluster centres. In the original versions of both the above 
approaches the initial locations are selected randomly. Setnes and Kaymak (1998) 
in their extended version of both approaches have advocated selecting a large 
number of clusters initially and by compatible cluster merging reducing their 
number. Babuška (1996) and Setnes (2000) have suggested using a cluster validity 
measure, such as Xie and Benie’s index, to select the optimum number of clusters. 
Yager and Filev (1994) and Chiu (1994) proposed methods that automatically 
determine the number of clusters and locations of cluster centres. Chiu’s method is 
a modification of Yager and Filev’s mountain method, in which the potential of 
each data point is determined based on it’s distance from other data. A data point is 
considered to have a high potential if it has many data points nearby and the data 
point having the highest potential is selected as the first cluster centre. Thereafter, 
the potentials of all other data points are recalculated according to their distance 
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from the selected cluster centre. This procedure is repeated until no data point has 
it’s potential above a threshold. This method requires values of three parameters:  

the radius beyond which data points have little influence on the calculation 
of the potential 
the amount of potential to be subtracted from each data point as a revision 
after a cluster centre is determined  
the threshold that potential uses to stop selecting cluster centres.  

Although these methods are simple and effective, they are computationally heavy 
because, after determining each cluster centre, the potential values of all other data 
points have to be revised. The problem of recalculating the potential values is 
aggravated with an increase in the number of cluster centres, because the values of 
all three of the above parameters vary considerably from one data set to another. 

In order to overcome the above difficulties, Yao et al. (2000) proposed using 
the entropy measure instead of the potential measure, and in this way one avoids 
any revision after finding a cluster centre. The entropy at each data point is 
calculated based on a similarity measure. Note that the similarity measure here 
indicates the similarity between the data points and not between the fuzzy sets as 
described in Chapter 7. Data points in the middle of the clusters will have lower 
entropy than other data points. In other words, they have a better chance of being 
selected as cluster centres. The data point having the lowest entropy is chosen as 
the first cluster centre. Data points having similarity with this cluster centre less 
than a threshold are removed from being considered as cluster centres in the rest of 
the iterations. The rationale here is that the data points having high similarity with 
the chosen cluster centre should belong to the same cluster with a high probability, 
and are not likely to be centres of any other clusters. This is repeated until there are 
no data points left. An advantage of this method compared with other methods is 
its lower computational complexity. This is because, in this method, the calculation 
of entropy values is done only once. Also, the method requires a fewer number of 
parameters and the parameters assume values within a narrow range. In the 
following, an entropy measure for fuzzy clustering is introduced and a fuzzy 
clustering algorithm, based on entropy measure, is presented. 

10.5.2.1 Entropy Measure for Cluster Estimation 
Consider a set of N data points in an M-dimensional hyperspace, where each data 
point zs, i = 1, 2, …, N, is represented by a vector of M components (zs1, zs2, …, 
zsM). The values of each dimension are normalized in the range [0.0, 1.0]. Let us 
now assume that there are several clusters (groups) in the data. Now, for a data 
point to be a cluster centre, the ideal situation is when it is close to the data points 
in the same cluster centre and away from the data points in other clusters. This 
situation restricts the data points in the border of the cluster from becoming cluster 
centres.

10.5.2.1.1 The Entropy Measure 
Yao et al. (2000) postulate that the data set has an orderly configuration if it has 
distinct clusters, and a disorderly configuration or chaotic configuration 
otherwise. From entropy theory (Fast, 1962) it is known that entropy (or 
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probability) is lower for orderly configurations and higher for disorderly 
configurations. Therefore, if we try to visualize the complete data set from an 
individual data point, then an orderly configuration means that for most of the 
individual data points there are some data points close to it (i.e. they probably 
belong to the same cluster) and others away from it. In a similar reasoning, a 
disorderly configuration means that most of the data points are scattered randomly. 
So, if the entropy is evaluated at each data point then the data point with minimum 
entropy is a good candidate for the cluster centre. This may not be valid if the data 
have outliers, in which case they should be removed first before determining the 
cluster centres. The next section addresses this issue more. 

The entropy measure between two data points can assume any value within the 
range [0, 1]. It shows very low values (close to zero) for very close data points, and 
very high values (close to unity) for those data points separated by the distance 
close to the mean distance of all pairs of data points. The similarity measure S is 
based on distance, and assumes a very small value (close to zero) for very close 
pairs of data points that probably fall on the same cluster, and a very large value 
(close to unity) for very distant pairs of data points that probably fall into different 
clusters. Entropy at one data point with respect to another data point is defined as 

2 2log 1 log 1E S S S S . (10.26) 

From the above expression it can be seen that entropy assumes the maximum value 
of 1.0 when the similarity S = 0.5 and the minimum value of 0.0 when S = 0.0 or 
1.0 (Klir and Folger, 1988). The total entropy value at a data point zi with respect 
to all other data points is defined as 

2 2log 1 log 1 ,
j i

ij ij ij ij
j Z

E S S S S  (10.27) 

where Sij is the similarity between the data points zi and zj, normalized to [0.0, 1.0]. 
It is defined as 

,ijD
ijS e  (10.28) 

where Dij is the distance between the data points zi and zj. If we represent the 
similarity against the distance graphically, then the representative curve will have a 
greater curvature for a larger value of .  The experiments with various values of 

 suggest that it should be robust for all kinds of data sets. Yao et al. (2000) 
proposed calculating the  value automatically by assigning a similarity of 0.5 in 
Equation (10.28) when the distance between two data points is mean distance of all 
pairs of data points. This produced a good result, as confirmed in various 
experiments (Yao et al., 2000). Mathematically, this can be expressed as  
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log 0.5e

D
, (10.29) 

where D  is the mean distance among the pairs of data points in a hyperspace. 
Hence,  is determined by the data and can be calculated automatically. 

10.5.2.2 Fuzzy Clustering Based on Entropy Measure 
In order to determine the first cluster centre, the entropy at each data point is 
evaluated. The data point that has the lowest entropy value is selected as a potential 
cluster centre. Thereafter, this first cluster centre and all the data points that have 
similarity with it greater than a threshold value of  are removed, so that they are 

ignored as possible subsequent cluster centres in the next iterations. The procedure 
is continued with the search for the next cluster, which is selected as the point with 
the minimal entropy value among the remaining data points and, again, this cluster 
centre and the associated data points having similarity greater than are similarly 

removed. This process is repeated until no data points are left.  
The parameter  can be viewed as a threshold of similarity value or as 

association value among the data points in the same clusters. It assumes a value 
within the range (0.0, 1.0), whereby the value of = 0.7 is quite robust, as shown 

experimentally in Yao et al. (2000). In the algorithm described below, T is the 
input data with N data points, each of which has M dimensions. 

Algorithm 10.1. Entropy-based fuzzy clustering: EFC(T) 

Step 1: calculate the entropy for each zi in T for i = 1, 2,…, N. 
Step 2: choose ziMin that has lowest entropy 
Step 3: remove ziMin and all the data points that have similarity greater
than  with the cluster centre ziMin from the data set T. 

Step 4: continue step 2 to 3 till T is not empty. 

If the data set has outliers that are very distant from the rest of the data, then the 
EFC algorithm described may select these data points for the cluster centres 
because the entropy value for these data points will also be very low. To overcome 
this problem, a new parameter  is introduced in Yao et al. (2000) that acts as a 

threshold between potential clusters and the outliers. Before selecting a data point 
as cluster centre the number of data points are counted that have similarity greater 
than  with that cluster centre. If the number of counts is less than the value of ,

then that data point is unfit to be a cluster centre and should be rejected from the 
data set, so that it is not considered further for the next iteration. In the work of 
Yao et al. (2000) = 0.05N is selected as the threshold for outliers detection. The 

selection of  and, therefore, the corresponding removal of outliers also prevent 

the data overfitting.  
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10.5.2.3 Fuzzy Model Identification Using Entropy-based Fuzzy Clustering 
In this section, entropy-based fuzzy clustering (EFC) will be presented to construct 
a fuzzy model for predicting values of output variables. The fuzzy modelling 
approach presented here is proposed by Yao et al. (2000) and differs slightly from 
the other modelling approach described in Chapter 4 and elsewhere in the book. 

In the EFC-modelling approach Takagi-Sugeno-type rules with singleton 
consequents are considered. A fuzzy rule is based on a fuzzy partition of the input 
space. In each fuzzy subspace one input-output relation is formed. For a data point 
with an unknown value of output variable the values of input variables of the data 
point are applied to all rules and each rule gives a value by fuzzy reasoning. The 
predicted output value is then obtained by aggregation of all the values given by 
the rules. 

Consider now a set of c cluster centres (v1*, v2*, ..., vc*) in M-dimensional 
hyperspace that is generated by the EFC algorithm. Now, suppose that the last L
dimensions of a kth cluster centre (vk*) are output dimensions, whereas the first 
(M-L) dimensions are input dimensions. Then, each cluster centre vk* can be 
decomposed into two vectors: xk* in (M-L)-dimensional input space and yk* in L-
dimensional output space. Then, a fuzzy model is a collection of c rules of the form 

Rule k:  IF X is close to xk*  THEN  Y is close to yk*,

where X is the input vector consisting of (M-L) input variables [xs1, xs2, ..., xs(M-L)]
and Y is the output vector consisting of L output variables [ys1, ys2, ..., ysL] of a data 
point zs, with s = 1, 2, ..., N, training (input-output) samples. The membership 
function, representing the degree to which rule k is satisfied, is given as 

2
exp *k k kx x ,

where x is the input vector, X = x, and k  is automatically calculated from the 

data. In the above, the symbol ||.|| denotes the Euclidean distance. The output 
vector, Y = y, is calculated as  

1

1

*
c

k k
k

c

k
k

y
y .

We can now write a fuzzy rule in a more specific form as 

IF  x1 is Ak1 and x2 is Ak2 and … and x(M-L) is Ak(M-L)  THEN   Y is y,  
for  k = 1, 2,…, c. 

where xj is the jth input variable and Akj is given by  
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2
exp *kj k j kjA x x ,

where xkj* is the jth element of kth cluster centre vk* and the “and” operator is 
implemented by multiplication.  

The parameter k  is crucial for the fuzzy model to perform well. It’s initial 

value can be estimated from 

min

log 0.5

0.5
e

k D

For each cluster centre we find its closest cluster centre and calculate the distance 
Dmin between these two cluster centres. This formula implies that, in the fuzzy set 
around a cluster centre, if there is a data point midway between the cluster and its 
closest neighbouring cluster centre then the membership value of this data point 
belonging to the fuzzy set should be 0.5. This estimation is further verified and 
confirmed with the experimental evidence by Yao et al. (2000). 
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Robust wavelet network, 349 
Roulette wheel selection, 199 
Rule base 

reduction, 286 
redundancy, 279 
simplification, 285 
simplification algorithms, 291ff 

Rule grade table, 158 
Rules

degree assignment, 160
generation, 157 

algorithm, 157ff 
by clustering, 173ff 

Salience measure, 124 
Saliency of the weights, 122, 123 
Sample autocorrelation function, 44 
SARIMABP model, 131 
Scalability problem, 311  
Search vector, 101 
Seasonality, 19, 21 
Selection, 7, 195, 199 

function, 204ff 
procedure, 199ff 

Self-organising map, 92 
Self-organising networks, 79 
Semantic knowledge, 336 

Sensitivity calculation method, 121 
Sensory cortices, 351 
Sensory level, 351 
Separate modelling approach, 136 
Separating hyperplanes, 86 
S-expressions based encoding, 308 
Short-term forecasting, 249ff 
Short-term memory feature, 87 
Sigmoid activation function, 81, 82, 

99, 111 
Sigmoid kernels, 342 
Similar fuzzy sets, 281 
Similarity 

measure, 276, 282 
of fuzzy sets, 281 
relations,
294ff 

Similarity-based rule base 
      simplification, 282ff 
Similarity-based simplification, 280 
Similarity-driven simplification, 277 
Simplification of rule base, 285ff 
Simulated annealing, 197 
Singleton, 278 
Smoothness degree, 126 
S-norm, 228 
Soft computing, 3ff  
Soma, 81 
Spectral Analysis, 39 
Spectral expansion technique, 41 
Spread parameter, 87 
Sprecher theorem, 108 
State-space

equations, 91 
modelling, 36 
models, 38 

Stationarity, 18 
Stationary model, 19 
Statistical bias, 119 
Statistical learning theory, 337 
Statistical modelling approach, 136 
Statistical variance, 119 
Step function, 111 
Stochastic biochemical networks, 

335 
Stochastic difference equation, 36 
Stochastic machines, 335 
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Stopping 
criterion, 117, 118, 123 
with cross-validation, 120 

Structural risk minimisation, 337 
Structuring of data, 105 
Summation unit, 95  
Supervised learning, 85 

algorithms, 95 
Supervised mode, 4, 112 
Supervisory mode, 4 
Support vector machines, 335, 337ff 
Support vectors, 338 
Survival of the fittest principle, 196, 

215 
Swarm engineering, 337 
Synaptic weights, 96 

Takagi-Sugeno fuzzy model, 232 
Takagi-Sugeno fuzzy system, 148 
Takagi-Sugeno inference system, 

153ff 
Technology merging, 223 
Test set, 118 
Theory of belief, 6 
Tikhonov functional, 126 
Time domain 

approach, 18 
models, 37 

Time series 
analysis, 17, 25ff
classification, 22ff 
modelling, 26 
models, 26 

T-norm, 151, 228 
Tool wear monitoring, 68, 268ff 
Traditional problem definition, 18ff 
Training

algorithm for neuro-fuzzy 
network, 234 

efficiency merit, 116 
set of data, 105 
stopping and evaluation, 116ff 
strip length, 119 

Trajectory learning, 90 

Transfer function models, 37 
Translation coefficients, 348 
Transparent fuzzy modelling 

scheme, 279 
Transparent modelling scheme, 279 
Transparent partitioning, 298 
Trend, 18, 20
Trend cycle, 21
Triangular-conorm, 228, 229 

Uncertain information, 6, 
Unconstrained minimisation, 96 
Underfitting problem, 119 
Univariate forecasts, 50 
Univariate time series, 23 
Universal approximator, 84, 129, 

348 
Universal fuzzy set, 278 
Universe of discourse, 144 
Unsupervised clustering, 87 
Unsupervised mode, 4, 112 

Validation set of data, 106, 118 
Vapnik-Chervonenkis dimension, 

108, 337 

Wavelet neural networks, 335, 346ff 
Wavelet theory, 345ff 
Wavelet transform, 345 
Wavelets, 86 
Wavelets networks, 345ff 
Weakest-link-in-the-chain analysis, 

116 
Weierstrass theorem, 129  
Weight decay approach, 125 
Weight elimination approach, 125 
White-box models, 276 
Wildness factor, 246 
Winner-takes-all fashion, 92  
World’s decomposition, 23  

Xie-Benie’s index, 181, 280, 355 

Yule-Walker equation, 44, 47 




