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Detection of Gaussian Signals 
in White Gaussian Noise 

In this chapter we consider the problem of detecting a sample function 
from a Gaussian random process in the presence of additive white Gaussian 
noise. This problem is a special case of the general Gaussian problem 
described in Chapter 1. It is characterized by the property that on both 
hypotheses, the received waveform contains an additive noise component 
w(t), which is a sample function from a zero-mean white Gaussian process 
with spectral height N,/2. When HI is true, the received waveform also 
contains a signal s(t), which is a sample function from a Gaussian random 
process whose mean and covariance function are known. Thus, 

and 
W) = 40 + W), T, < t < T,:H, _ __ (1) 

r(t) = w(t), Ti < t < Tf: Ho. - - Go 

The signal process has a mean value function m(t), 

Ebwl = m(t,, Ti < t < T,, - - (3) 

and a covariance function &(t, u), 

E[s(O - m(O>(s(u> - m(u))] A K,(t, u), Ti < t, u < Tf. - _ (4) 

Both m(t) and K,(t, U) are known. We assume that the signal process has a 
finite mean-square value and is statistically independent of the additive 
noise. Thus, the covariance function of r(t) on HI is 

E[(r(t) - m(t))(r(u) - m(u)) 1 H,] a K,(t, 21) = K,(t, u) + : s(t - u), 
Ti 5 t, u 5 Tf. (5) 
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Optimum Receiver Derivation 9 

We refer to r(t) as a conditionally Gaussian random process. The term 
“conditionally Gaussian” is used because r(t), given HI is true, and r(t), 
given Ho is tru e, are the two Gaussian proces ses in the model . 

We obse rve that the mean value fu nction can be viewed as a deter- 
ministic component in the input. When we want to emphasize this we 
write 

r(t) = m(t) + NO - m(t)] + w 

= 40 + s&t> + w, Ti < t < T,:H,. _ _ 0 

(The subscript R denotes the random component of the signal process.) 
Now the waveform on HI consists of a known signal corrupted by two 
independent zero-mean Gaussian processes. If K,(t, U) is identically zero, 
the problem degenerates into the known signal in white noise problem of 
Chapter I-4. As we proceed, we shall find that all of the results in Chapter 
I-4 except for the random phase case in Section I-4.4.1 can be viewed as 
special cases of various problems in Chapters 2 and 3. 

In Section 2.1, we derive the optimum receiver and discuss various 
procedures for implementing it. In Section 2.2, we analyze the performance 
of the optimum receiver. Finally, in Section 2.3, we summarize our results. 

Most of the original work on the detection of Gaussian signals is due to 
Price [l]-[4] and Middleton [ 17]-[20]. Other references are cited at various 
points in the Chapter. 

2.1 OPTIMUM RECEIVERS 

Our approach to designing the optimum receiver is analogous to the 
approach in the deterministic signal case (see pages 1-250-I-253). The 
essential steps are the following: 

1. We expand r(t) in a series 
process as coordinate fu nctions. 

using 
!IYhe no 

the eigenfunct ions of the signal 
se term w(t) is white, and so the 

coefficients of the expansion will be conditionally uncorrelated on both 
hypotheses. Because the input r(t) is Gaussian on both hypotheses, the 
coefficients are conditionally statistically independent. 

2. We truncate the expansion at the Kth term and denote the first K 
coefficients by the vector r. The waveform corresponding to the sum of the 
first K terms in the series is r,,-(t). 

3. We then construct the likelihood ratio, 

f&--(t)) = A(R) = PTIHSR 1 HI) 
Pq,,(R / Ho) ’ 

and manipulate it into a form so that we can let K 

(7) 

m. 
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4. We denote the limit of A(+&)) as A@(t)). The test consists of com- 
paring the likelihood ratio with a threshold q, 

As before, the threshold q is determined by the costs and a-priori prob- 
abilities in a Baves test and the desired PF in a Neyman-Pearson test. 

We now carry out these steps in detail and then investigate the properties 
of the resulting tests. 

The orthonormal functions for the series expansion are the eigen- 
functions of the integral equationt 

(9) 

We shall assume that the orthonormal functions form a complete set. 
This will occur naturally if K,(t, U) is positive-definite. If K,(t, U) is 
only non-negative-definite, we augment the set to make it complete. 

The coefficients in the series expansion are 

s 
Tf r* A 2- r(t)4i(t) dt* (10) 

Ti 

The K-term approximation is 

rK(t) = 5 ri+i(t), Ti < t < Tf - _ 
i=l 

and 
r(t) = 1.i.m. rIc(t), Ti < t < T’. - _ (12) 

K-+cD 

The statistical properties of the coefficients on the two hypotheses follow 
easily. 

E[ri ( H,] = E w(t)$i(t) dt 1 = 0. (13) 

[s 0 s Tr 
E[ri 1 HI] = E s(t>+i(t> dt + W(t)#i(t) dt 

Ti Ti 1 
s 
Tf = m(t)$i(t) dt A mi. 

Ti 
(15) 

t Series expansions were developed in detail in Chapter I-3. 
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Notice that (15) implies that the mi are the coefficients of an orthogonal 
expansion of the mean-value function; that is, 

m(t) = 2 m&t), q _< t < Tf. (16) 
i=l 

The covariance between coefficients is 

EK ri - mi)(rj - mj) 1 HI] = (17) 

where 3Lis is the ith eigenvalue of (9). The superscript s emphasizes that it 
is an eigenvalue of the signal process, s(t). 

Under both hypotheses, the coefficients ri are statistically independent 
Gaussian random variables. The probability density of r is just the 
product of the densities of the coefficients. Thus, 

A( 

- - . (18) 

Multiplying out each term in the exponent, canceling common factors, 
taking the logarithm, and rearranging the results, we have 

In A(R) = -!- 
No ig(jill JiN,/2)Ril ‘ig(lt :No/2)m,K, 

1 

Ais + No/2 (19) 

The final step is to obtain closed form expressions for the various terms 
when K - 00. To do this, we need the inverse kernel that was first intro- 
duced in Chapter I-4 [see (I-4.152)]. The covariance function of the entire 
input r(t> on H1 is K,(t, u). The corresponding inverse kernel is defined by 
the relation 

s Tf 
K,(t, tr)Ql(u, x) dtr = s(t - z), 

Ti 
In terms of eigenfunctions and eigenvalues, 
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We also saw in Chapter I-4 (I-4.162) that we could write Q,(t, U) as a sum 
of an impulse component and a well-behaved function, 

Q1(t, u) = + (s(t - u) - w, a, Ti < t, u < T’, (22) 
0 

where the function h,(t, u) satisfies the integral equation 

NO 

2 s 

Tf 

- h,(t, u) + h,(t, W&, 4 dx = K,(t, u), 
Ti 

Ti < t, u < Tf. - - 

The endpoint values of h,(t, u) are defined as a limit of the open-interval 
values because we assume that h,(t, u) is continuous. (Recall the discussion 
on page I-296.) We also recall that we could write the solution to (23) in 
terms of eigenfunctions and eigenvalues. 

h,(t, zr) = 2 
A 

’ 
i=ll; +‘N,,2 

+iCtJ+iCu)9 Ti < t, u < Tf. - - (24) 

We now rewrite the first three terms in (19) by using (10) and (15) to 
obtain 

T’ f 

In A(rK( t)) = j+ o //r(t)[$l( 3Lis :iN,/2) 5Utjdi(u)] r(u) dt du 
Ti 

Ti 

Ti 

lK 
=l ( 

21; -- 
2 i=l n ‘+7 0 1 

(25) 

We now let K -+ a in (25) and use (21) and (24) to evaluate the first three 
terms in (25). The result is 

Tf Tf 

In l&r(t)) = + r(t)h,(t, u)r(u) dt du + m(tjQl(t, U)Y(U) dt du 
0 

Tt Ti Tr 
-8 m(t)Ql(t, u)m(u) dt du - - 

Ti 
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We can further simplify the second and third terms on the right side of (26) 
by recalling the definition of g(u) in (I-4.168), 

Notice that m(t) plays the role of the known signal [which was denoted by 
s(t) in Chapter I-41. We also observe that the third and fourth term are 
not functions of r(t) and may be absorbed in the threshold. Thus, the 
likelihood ratio test (LRT) is, 

Tf 

1 

N, SC 

Tr HI 
r(t)h,(t, up(u) dt dl4 + 

s &Mu) du 5 Y*, 
Tci 

T 
i Ho 

where 

s 
Tf y* a In 7 + 4 gl(u)m(u) du + + 2 In 

Ti i=l 

(28) 

(29) 

If we are using a Bayes test, we must evaluate the infinite sum on the right 
side in order to set the threshold. On page 22 we develop a convenient 
closed-form expression for this sum. For the Neyman-Pearson test we 
adjust y* directly to obtain the desired P, so that the exact value of the 
sum is not needed as long as we know the sum converges. The convergence 
follows easily. 

O” 21; 2 Tf 

<Y+=- 
i=l () s N, Ti 

K,(t, t) dt. (30) 

The integral is just the expected value of the energy in the process, which 
was assumed to be finite. 

The first term on the left side of (28) is a quadratic operation on r(t) 
and arises because the signal is random. If K,(t, u) is zero (i.e., the signal 
is deterministic), this term disappears. We denote the first term by iE. 
(The subscript R denotes random.) The second term on the left side is a 
linear operation on r(t) and arises because of the mean value m(t). When- 
ever the signal is a zero-mean process, this term disappears. We denote the 
second term by I Do (The subscript D denotes deterministic.) It is also 
convenient to denote the last two terms on the right side of (29) as 
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(-Zgl) and (-I%]). Th us, we have the definitions 

Tf 

1 u)r(u) dt du, 

Ti 

s 

Tf 
1 L+ g,(u)r(u) du, 

Ti 

1:” * -- - B 

g1 * 
T/ 

- -+ 

s 
g&i)m( u) du. T 

i 

In this notation, the LRT is 

(31) 

(32) 

(33) 

(34) 

The second term on the left side of (35) is generated physically by either 
a cross-correlation or a matched filter operation, as shown in Fig. 2.1. 
The impulse response of the matched filter in Fig. 2.lb is 

elsewhere. 
(36) 

We previously encountered these operations in the colored noise detection 
problem discussed in Section I-4.3. Thus, the only new component in the 
optimum receiver is a device to generate IR. In the next several paragraphs 
we develop a number of methods of generating I,. 

w 

Fig. 2.1 Generation of l’. 
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2.1.1 Canonical Realization No. 1: Estimator-Correlator 

We want to generate In, where 

1 
1 

It = - 
N, 

r(t) h,(t, zr>r(ti) dt dir, (37) 
Ti 

and h,(r, u) satisfies (23). An obvious realization is shown in Fig. 2.2~. 
Notice that h,(t, u) is an unrealizable filter. Therefore, in order actually to 
build it, we would have to allow a delay in the filter in the system in Fig. 
2.2~2. This is done by defining a new filter whose output is a delayed version 
of the output of h,(t, u), 

- T, 4, Ti + T < t < Tf + T, Ti < u < T’, - - - - 

elsewhere, 
(38) 

where 
T Li Tf - Ti (39) 

is the length of the observation interval. Adding a corresponding delay in 
the upper path and the integrator gives the system in Fig. 2.26. 

This realization has an interesting interpretation. We first assume that 
m(t) is zero and then recall that we have previously encountered (23) in the 

L-p-$ 
(a) Unrealizable filter 

40 T-second 
>- delay ’ 

, 

* hi tt, u) 

(b) Realization with delay 

Fig. 2.2 Generation of 1’. 
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lR 

Fig. 2.3 Estimator-correlator (zero-mean case). 

linear filter context. Specifically, if we had available a waveform 

and wanted to estimate s(t) using a minimum mean-square error (MMSE) 
or maximum a-posteriori probability (MAP) criterion, then, from 
(I-6.16), we know that the resulting estimate Z,(t) would be obtained by 

passing r(t) through h,(t, u). 

Vf 

w> = ? h,(t, u)r(uj du, Ti < t < Tl., - 7 
Ti 

(41) 

where h,(t, u) satisfies (23) and the subscript LI emphasizes that the estimate 
is unrealizable. Looking at Fig. 2.3, we see that the receiver is correlating 
r(t) with the MMSE estimate of s(t). For this reason, the realization in 
Fig. 2.3 is frequently referred to as an estimator-correlator receiver. This 
is an intuitively pleasing interpretation. (This result is due to Price [l]-[4].) 

Notice that the interpretation of the left side of (41) as the MMSE 
estimate 
receiver 

is only valid when r(t) is zero-mean. However, the output of the 
in Fig. 2.3 is I, for either the zero-mean or the non-zero-mean 

case. We also obtain an esti mator-correlator interpretation in the non- 
zero-mean case by a straightforward modification of the above discussion 
(see Problem 2.1.1). 

Up to this point all of the filters except the one in Fig. 2.B are un- 
realizable and are obtained by solving (23). The next configuration 
eliminates the unrealizability problem. 

2.1.2 Canonical Realization No. 2: Filter-Correlator Receiver 

The realization follows directly from (37). We see that because of the 
symmetry of the kernel h,(t, u), (37) can be rewritten as 

h,(t, u)r(u) du 1 dt. (42) 
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2 

No 

. 

4 Tf 
dt ’ 

Ti 
, A 

l 

-  h;Ctt 4 r  

*  

Realizable 
filter 

Fig. 2.4 Filter-correlator receiver. 

In this form, the inner integral represents a real&b/e operation. Thus, 
we can build the receiver using a realizable filter, 

hL(t, u) = 
L 
w, 4, t2 u, 
0, t < u, 

(43) 

This realization is shown in Fig. 2.4. Observe that the output of the 
realizable filter hi(t, u) is not the realizable MMSE estimate of s(t). The 
impulse response of the optimum realizable linear filter for estimating s(t) 
is Ii&, u) and its satisfies the equation 

N, h,,(t, 4 + 
2 s ’ h,,( t, x) K&z, 11) dx 

Ti 
= K,(t, u), 5 < 21 < t, (44) 

which is not the same filter specified by (23) plus (43). (This canonical 
realization is also due to Price [l].) The receiver in Fig. 2.4 is referred to 
as a filter-correlator receiver. We have included it for completeness. It is 
used infrequently in practice and we shall not use it in any subsequent 
discussions. 

2.1.3 Canonical Realization No. 3: Filter-Squarer-Integrator (FM) 
Receiver 

A third canonical form can be derived by factoring Iz,(t, u). We define 
hr(z, t) by the relation 

s Tf 
h,(t, u) = h,@, wq% 4 dx, 

Ti 
Ti < t, 21 < Tg - - (45) 

If we do not require that h,(x, t) be realizable, we can find an infinite 
number of solutions to (45). From (24), we recall that 

h(t, u) = 5 hi&(t)&), 
i=l 

Ti < t, u _< Tf, (46) 
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where 

We see that 

is a solution to (45) for any assignment of plus and minus signs in the 
series. 

Using (45) in (37), ZR becomes 

This can be realized by a cascade of an unrealizable filter, a square-law 
device, and an integrator as shown in Fig. 2.5. 

Alternatively, we can require that h,(t, U) be factored using realizable 
filters. In other words, we must find a solution h&, t) to (45) that is zero 
for t > x. Then, 

Tf 2 

I 
1 

R = - 
s [s 

dz 

N, Ti 
z hf&, t)r(O dt 9 

Ti 1 PO) 
and the resulting receiver is shown in Fig. 2.6. If the time interval is finite, 
a realizable solution to (45) is difficult to find for arbitrary signal processes. 
Later we shall encounter several special situations that lead to simple 
solutions. 

The integral equation (45) is a functional relationship somewhat analog- 
ous to the square-root relation. Thus, we refer to h&z, t) as thefunctional 
square root of h,(t, u). We shall only define functional square roots for 
symmetric two-variable functions that can be expanded as in (46) with 
non-negative coefficients. We frequently use the notation 

h;“21(z, t)h1’/21(z, u) dx. 

Any solution to (51) is called a functional square root. Notice that the 
solutions are not necessarily symmetric. 

Fig. 2.5 Filter-squarer receiver (unrealizable). 



Canonical Realizatiorz No. 4: Optimum Realizable Filter Receiver 19 

Fig. 2.6 Filter-squarer receiver (realizable). 

The difficulty with all of the configurations that we have derived up to 
this point is that to actually implement them we must solve (23). From 
our experience in Chapter I-4 we know that we can do this for certain 
classes of kernels and certain conditions on T, and Tr. We explore problems 
of this type in Chapter 4. On the other hand, in Section I-6.3 we saw that 
whenever the processes could be generated by exciting a linear finite- 
dimensional dynamic system with white noise, we had an effective 
procedure for solving (44). Fortunately, many of the processes (both 
nonstationary and stationary) that we encounter in practice have a 
finite-dimensional state representation. 

In order to exploit the effective computation procedures that we have 
developed, we now modify our results to obtain an expression for ZR in 
which the optimum realizable linear filter specified by (44) is the only 
filter that we must find. 

2.1.4 Canonical Realization No. 4: Optimum Realizable Filter 
Receiver 

The basic concept involved in this realization is that of generating 
the likelihood ratio in real time as the output of a nonlinear dynamic 
system.? The derivation is of interest because the basic technique is 
applicable to many problems. For notational simplicity, we let 7’i = 0 
and 9” = T in this section. Initially we shall assume that m(t) = 0 and 
consider only IR. 

Clearly, I, is a function of the length of the observation interval T. 
To emphasize this, we can write 

I,(T( r(u), 0 < u 5 T) a ZR(T). (52) 

More generally, we could define a likelihood function for any value of 
time t. 

lR(t 1 w), 0 5 24 5 t) a MO, (53) 

where In(O) = 0. We can write ZR(T) as 

s 
T dlR(t) dt I,(T) = - Ti (t) dt 

0 
dt =oR ’ 

s 

t The original derivation of (66) was done by Schweppe [5]. The technique is a modifica- 
tion of the linear filter derivation in [6]. 
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Now we want to find an easy method for generating in(t). Replacing T by 
t in (31), we have 

MO 
1 BP - 

s s No O 
k r(r) h, h1(7, u : t>r(u), 

0 

where /&(T, u: t) satisfies the integral equation 

NO 
t 

z 
hl(7, l-4 :t) + 

s 
h,(T, 2 : t)K,(x, 21 j dx = KJT, u), 0 2 r, u 5 t. (56) 

0 

[Observe that the solution to (56) depends on t. We emphasize this with 
the notation & 0: t).] Differentiating (55), we obtain 

i 0 R = 

+ 
t 

s 
ahl(;tz’ : tj r(u) du . (57) 

0 

We see that the first two terms in (57) depend on h,(t, u: t). For this case, 
(56) reduces to 

NO - h,(t, u : t) + 
2 s 

thl(t, 2: t)K&, u) dx = K,( t, u), 0 ,< u < t. (58)f- 
0 

We know from our previous work in Chapter I-6 that 

or 
s 

t 

$(t) = h,(t, u : tjr(u) dzr 
0 

s 

t 

$(t) = h&i, t : t)r(u) du. 
0 

(5% 

(60) 

[The subscript r means that the operation in (59) can be implemented 
with a realizable filter.] The result in (60) follows from the symmetry of 
the solution to (56). Using (59) and (60) in (57) gives 

i,(t) = $[2r(t)$(t) +[d$du r(r) ahl(;tu’t) r(u)]. (61) 

In Problem I-4.3.3, we proved that 

i3h1(q u : t) 

at 
= -h&q t: t)h,(t, u: t), 0 < 7, 21 < t. - (62) 

Because the result is the key step, we include the proof (from [7]). 

t Notice that h,(t, u: t) = h,,(t,u) [compare (44) and (58)]. 
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Proof of (62). Differentiating (56) gives 

No ahl(r, u: t) 

r 

t ahl(r, 2: t) 

2 at + - at KS@, u) dz + h,(r, t: t)K,(t,u) = 0, 0 5 7, u 5 t. 
*O 

(63) 

NOW replace K,(t, u) with the left side of (58) and rearrange terms. This gives 

No ahl(r, u: t) 
-- - - 

2 at + h,(r, t:t&(t, u:t) + h,(7, t : t)h,(t, x: t) 

x KS@, 4 dz, 0 rs 7, u 5 t. (64) 

We see that the terms in braces play the role of an eigenfunction with an eigenvalue of 
(-No/2). However, KS@, u) is non-negative definite, and so it cannot have a negative 
eigenvalue. Thus, the term in braces must be identically zero in order for (64) to hold. 
This is the desired result. 

Substituting (62) into (61) and using (59, we obtain the desired result, 

Then 

i 0 R [2r(t)$(t) - q(t)]. (65) 

- ir2(t)] dt. wM= 

Before looking at the optimum receiver configuration and some 
examples, it is appropriate to digress briefly and demonstrate an algorithm 
for computing the infinite sum z:, In (1 + 2;ii”lN,) that is needed to 
evaluate the bias in the Bayes test. We do this now because the derivation 
is analogous to the one we just completed. Two notational comments are 
necessary : 

1. The eigenvalues in the sum depend on the length of the interval. 
We emphasize this with the notation AiS( 

2. The eigenfunctions also depend on the length of the interval, and 
so we use the notation +&: T). 

This notation was used previously in Chapter I-3 (page I-204). 

t A result equivalent to that in (66) was derived independently by Stratonovich and 
Sosulin [21]-[24]. The integral in (66) is a stochastic integral, and some care must be used 
when one is dealing with arbitrary (not necessarily Gaussian) random processes. For 
Gaussian processes it can be interpreted as a Stratonovich integral and used rigorously 
[25]. For arbitrary processes an Ito integral formulation is preferable [26]-[28]. Interested 
readers should consult these references or [29]-[30]. For our purposes, it is adequate to 
treat (66) as an ordinary integral and manipulate it using the normal rules of calculus 



22 2. I Optinrunl Receivers 

We write 
aI 

lx’ ( i=l 
n 1 + ki.:(T)) =~“&[~ zln (1 + $1:(t))]. (67) 

Performing the indicated differentiation, we have 

d 2 O” 
= - 2 

[dAi”(t)]/dt 

dt N, i=l 1 + (2/N,)ii;( t) l 

In Chapter I-3 (page I-3.163), we proved that 

(68) 

dili”( t) 
- - n,“(t)g(t: t), - 

dt 

and we showed that (I-3.154), 

h1(t, t: t) = 2 Ai”( t) 
id i:(t) + NJ2 

$i”(f : 0, (70) 

where h,(t, t : t) is the optimum MMSE realizable linear filter specified by 
(58). From (I-3.155), (44), and (58), the minimum mean-square realizable 
estimation error &&) is 

Thus 

&3,(t) = T h,(t, t: t) a : h,,(t, t)* (71) 

From (33), 

Tho,(t, t) dt = -?- 
s N, O 

“&+(t) dt. (72) 

p = -4 
IS ZIn (1 +z) = -$r[lJs(t)dt. / (73) 

i=l 

We see that whenever we use Canonical Realization No. 4, we obtain the 
first bias term needed for the Bayes test as a by-product. The second bias 
term [see (34)] is due to the mean, and its computation will be discussed 
shortly. A block diagram of Realization No. 4 for generating ZR and Z&+J 
is shown in Fig. 2.7. 

Before leaving our discussion of the bias term, some additional comments 
are in order. The infinite sum of the left side of (72) will appear in several 
different contexts, so that an efficient procedure for evaluating it is 
important. It can also be written as the logarithm of the Fredholm 
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1 

1 

No 
dt - I, + I;’ 

0 
c 

Optimum 
1 

+- realizable - = z Squarer v zp, w 

filter w . 

Fig. 2.7 Optimum realizable filter realization (Canonical Realization No. 4). 

determinant [8], 

Now, unless we can find &(2/N,) effectively, we have not made any 
progress. One procedure is to evaluate Ep,(t) and use the integral expres- 
sion on the right side of (73). A second procedure for evaluating &(*) 
is a by-product of our solution procedure for Fredholm equations for 
certain signal processes (see the Appendix in Part II). A third procedure 
is to use the relation 

(7% 

where h,(t, t 1 x) is the solution to (23) when i&/2 equals x. Notice that this 
is the optimum unrealizable filter. This result is derived in Problem 2.1.2. 
The choice of which procedure to use depends on the specific problem. 

Up to this point in our discussion we have not made any detailed 
assumptions about the signal process. We now look at Realization No. 4 
for signal processes that can be generated by exciting a finite-dimensional 
linear system with white noise. We refer to the corresponding receiver 
as Realization No. 4s (“S” denotes “state”). 

2.1.5 Canonical Realization No. 4s: State-variable Realization 

The class of signal processes of interest was described in detail in 
Section I-6.3 (see pages 1-516-I-538). The process is described by a state 
equation, 

jr(t) = F(t)x(t) + G(t)u(t), W) 
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where F(t) and 
tion equation, 

G(t) are possibly time-varying matrices, and by an observa- 

s(t) = w)x(o 9 (77) 

where C(t) is the modulation matrix. The input, u(t), is a sample function 
from a zero-mean vector white noise process, 

E[u(t)u*(T)] = Q d(t - T), (78) 
and the initial conditions are 

E [x(0)xT(O)] Li 

From Section I-6.3.2 we know that the 
s(t) is given by the equations 

(79) 

PO- (80) 

MMSE realizable estimate of 

s”,(t) = ww 9 VW 
i(t) = F(t)S(t) + &(t)CT(t) + [r(t) - C(t)s(t)]. 

0 
(82) 

The matrix g&t) is the error covariance matrix of x(t) - S(t). 

&J(t) 5 E[(x(t) - 3(t))(xT( t) - izT(t))]. 

It satisfies the nonlinear matrix differential equations, 

(83) 

ht> = F(t)b(f) + b@)FT(t) - &#C*(t) jf C(t)&@) + G(t)QGT( t)- 
0 

The mean-square error in estimating s(t) is 
(84) 

h&) = w%wT(t). (85) 
Notice that g&t) is the error covariance matrix for the state vector and 
&+(t) is the scalar mean-square error in estimating s(t). Both (84) and (85) 
can be computed either before r(t) is received or simultaneously with the 
computation of Sk(t). 

The system needed to generate lR and &I follows easily and is shown in 
Fig. 2.8. The state equation describing lR is obtained from (63, 

where L$(t) is defined by (81)-(84) and 

lB ii I,(T). (87) 
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The important feature of this realization is that there are 1-20 integral 
equations to solve. The likelihood ratio is generated as the output of a 
dynamic system. We now consider a simple example to illustrate the 
application of these ideas. 

Example. In Fig. 2.9 we show a hypothetical communica tion system that illustrates many 
of the important features encountered in actual systems operating over fading channels. 
In Chapter 10, we shall develop models for fading channels and find that the models are 
generalizations of the system in this example. When H, is true, we transmit a deter- 
ministic signal f(t). When Ho is true, we transmit nothing. The channel affects the 
received signal in two ways. The transmitted signal is multiplied by a sample function 
of a Gaussian random process b(t). In many cases, this channel process will be stationary 
over the time intervals of interest. The output of the multiplicative part of the channel is 
corrupted by additive white Gaussian noise w(t), which is statistically independent 
b(t). Thus the received waveforms on the two hypotheses are 

of 

We assume that the channel process has a state representation 

40 = f (MO + w(t), 0 < t < T:H,, 

r(t) = w(t), O<t<T:H,. (88) 

W) = F(t)x(t) + G(t)u(t), (89) 
where u(t) satisfies (78) and 

b(t) = c,ww. (90) 

The signal process on H, is s(t), where 

Notice that, unless f (t) is constant over the interval [0, T], the process, s(t), will be 
nonstationary even though b(t) is stationary. Clearly, s(t) has the same state equation as 
b(t), (89). Combining (90) and (91) gives the observation equation, 

s(t) = f (W&)x(t) D W)xW. (92) 
We see that the transmitted signal f (t) appears only in the modulation matrix, C(t). 

It is instructive to draw the receiver for the simple case in which b(t) has a one- 
dimensional state equation with constant coefficients. We let 

F(t) = -kkb, (93) 
G(t) = 1, 

Q = 2kbob2, 

C,(t) = 1, 

(94) 

(95) 
(96) 

b 0) 

Input 

Fig. 2.9 A simple multiplicative channel. 
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and 

Then (82) and (84) reduce to 

d(t) = -k,W) + N p 2 E KJf(t)[r(t) - jV)Wl, 
0 

(98) 

ip(t > = -2&&(t) - ; f 2(t&2(t> + 2k,ab2, (99) 
0 

The resulting receiver structure is shown in Fig. 2.10. 

We shall encounter other examples of Canonical Realization No. 4S 
as we proceed. Before leaving this realization, it is worthwhile commenting 
on the generation of ZD, the component in the likelihood ratio that arises 
because of the mean value in the signal process. If the process has a finite 
state representation, it is usually easier to generate lD using the optimum 
realizable filter. The derivation is identical with that in (54)-(M). From 
(22) and (26)-(28) we have 

As before, 

s T db(O dt l,(T) = - 
dt 

9 
0 

and 

+ hl(~, t : t)h,(t, u : t)m(tr)r(T) dr du 1 . 

0 

(103) 

The resulting block diagram is shown in Fig. 2.11. The output of the bottom 
path is just a deterministic function, which we denote by K(t), 

s t K(t) * m(t) - - h,(t, u : t)m(tr) du, O<t<T. - (104) 
0 

Because K(t) does not depend on r(t), we can generate it before any data 
are received. This suggests the tw 0 equivalent realizations in Fig. 2.12. 

Notice that (101) (and therefore Figs. 2.11 and 2.12) does not require 
that the processes be state-representable. If the processes have a finite 
state, the optimum realizable linear filter can be derived easily using 
state-variable techniques. Using the state representation in (76)-(80) gives 



hl(t, u: t) 

Optimum 
realizable - 

filter 
hl(t, u:t) 

Fig. 2.11 Generation of I, using optimum realizable filters. 

2 - 
’ s 

T 10 

No 0 
dt 4 

z hl(t, u:t) 1 
. I 

>LK(T-~) 1 
No 

Matched filter 

Sample at 
= 

c tD 

+ hl(t, u:t) 1 

Fig. 2.12 Generation of l’. 
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the realization in Fig. 2.13a.t Notice that the state vector in Fig. 2.13a is 
not ji(t), because r(t) has a nonzero mean. We denote it by k(t). 

The block diagram in Fig. 2.13a can be simplified as shown in Fig. 
2.13b. We can also write ZD(t) in a canonical state-variable form: 

where K(t) is defined in Fig. 2.11 and gp(t) satisfies (84). 

L 

Fig. 2.13 State-variable realizations to generate ID. 

t As we would expect, the system in Fig. 3.12 is identical with that obtained using a 
whitening approach (e.g., Collins [9] or Problem 2.1.3). 
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Looking at (32) and (34), we see that their structure is identical. Thus, 
we can generate Zgl by driving the dynamic system in (105) with (-m(t)/2) 
instead of r(t). 

It is important to emphasize that the presence of m(t) does not affect the 
generation of Z,(t) in (86). The only difference is that 5,(t) and g(t) are no 
longer MMSE estimates, and so we denote them by &(t) and G(t), re- 
spectively. The complete set of equations for the non-zero-mean case may 
be summarized as follows: 

. 
1 (0 R = -!- E-q(t) + 2r(t)$(t)], 

No 

. 
1 (9 D =- 

( 
2 K(t)C(t) 
N, 

l,(t) + + K(t)r(t), 
0 

with initial conditions 

and 
G(O) = 0 (110) 

ID (0) = 0. uw 

The matrix g&t) is specified by (84). The biases are described in (73) and a 
modified version of (105). 

This completes our discussion of state-variable realizations of the 
optimum receiver for the Gaussian signal problem. We have emphasized 
structures based on realizable estimators. An alternative approach based 
on unrealizable estimator structures can also be developed (see Problem 
I-6.6.4 and Problem 2.1.4). Before discussing the performance of the 
optimum receiver, we briefly summarize our results concerning receiver 
structures. 

2.1.6 Summary : Receiver Structures 

In this section we derived the likelihood ratio test for the simple binary 
detection problem in which the received waveforms on the two hypotheses 
were 

r(t) = 40, Ti < t < T,:H,, - w 

40 = s(t) + w(t), Ti 5 t < T,:H,. - (112) 
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The result was the test 

1, + 1, 5 in q - ZgJ - lj$, 
Ho 

where the various terms were defined by (31)-(34). 

(113) 

We then looked at four receivers that could be used to implement the 
likelihood ratio test. The first three configurations were based on the 
optimum unrealizable filter and required the solution of a Fredholm 
integral equation (23). In Chapter 4 we shall consider problems where this 
equation can be easily solved. The fourth configuration was based on an 
optimum realizable filter. For this realization we had to solve (44). For a 
large class of processes, specifically those with a finite state representation, 
we have already developed an efficient technique for solving this problem 
(the Kalman-Bucy technique). It is important to re-emphasize that all of 
the receivers implement the likelihood ratio test and therefore must have 
identical error probabilities. By having alternative configurations available, 
we may choose the one easiest to imp1ement.T In the next section we 
investigate the performance of the likelihood ratio test. 

2.2 PERFORMANCE 

In this section we analyze the performance of the optimum receivers 
that we developed in Section 2.1. All of these receivers perform the test 
indicated in (35) as 

m 

where 

and 

Tr 

1 1 
n=- 

No 
r(t)h#, u)r(tl) dt du, 

Ti 

(115) 

(116) . 

t The reader may view the availability of alternative configurations as a mixed blessing, 
because it requires some mental bookkeeping to maintain the divisions between realiz- 
able and unrealizable filters, the zero-mean and non-zero-mean cases, and similar 
separations. The problems at the end of Chapter 4 will help in remembering the various 
divisions. 
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From (33) and (34), we recall that 

lb1 A 1 .Tf 
I,’ - - YJ- 

s 
gl(u>m(u) dll. 

Ti 
WV 

To compute P, and PF, we must find the probability that I will exceed 
y on J& and H,, respectively. These probabilities are 

and 

(121) 

The ZD component is a linear function of a Gaussian process, so that it is a 
Gaussian random variable whose mean and variance can be computed 
easily. However, I, is obtained by a nonlinear operation on r(t), and so 
its probability density is difficult to obtain. To illustrate the difficulty, we 
look at the first term in (25). Because this term corresponds to I, before 
we let K --+ co, we denote it by IRK, 

I< 
1 1 I- A - 2 

a* S 
IC - 

Noi=1 1; +'N,/2 
Ri2* (122) 

We see that IIF is a weighted sum of squared Gaussian random variables. 
The expression in (122) is familiar from our work on the general Gaussian 
problem, Section I-2.6. In fact, if the Ri were zero-mean, (122) would be 
identical with (I-2.420). At that point we observed that if the RiS were all 
equal, I,]< had a chi-square density with K degrees of freedom (e.g., 
I-2.406). On the other hand, for unequal 1is, we could write an expression 
for the probability density but it was intractable for large K. Because of 
the independence of the Ri, the characteristic function and moment- 
generating function of I& K followed easily (e.g., Problem I-4.4.2). Given 
the characteristic function, we could, in principle at least, find the prob- 
ability density by computing the Fourier transform numerically. In 
practice, we are usually interested in small error probabilities, and so we 
must know the tails of J+,&, 1 &) accurately. This requirement causes 
the amount of computation required for accurate numerical inversion to 
be prohibitive. This motivated our discussion of performance bounds 
and approximations in Section I-2.7. In this section we carry out an 
analogous discussion for the case in which K --+ GO. 
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We recall7 that the function (u&) played the central role in our dis- 
cussion. From (I-2.444), 

i%(s) ff. lrl W~(R)JR&)19 (123) 

[The subscript K is added to emphasize that we are dealing with K-term 
approximation to r(t).] Where Z(R) is the logarithm of the likelihood ratio 

w = In A(R) = In 
( 
J%IffliR I w 

Prlrr,(R ( Ho) 1 ’ 
(124) 

and ~1(RWO (s) is its moment-generating function, 

4 I(R)Jl&~ = w9”‘R’ 1 KJ9 
for real s. Using the definition of Z(R) in (124), 

(129 

00 
j&s) = In s s l l . O” b,IH1(H 1 wTP,IH&R 1 4ns dR* (126) -m -00 

We then developed upper bounds on pE‘ and P,,.$ 

PF I exp CP&> - q&&)1, 
pJt 5 exp [/+(s) + (1 - s)&&)], 

O<s<l, 
- - (127) 

where ,&is) = yI;:, the threshold in the LRT. By varying the parameter s, 
we could study threshold settings anywhere between E[Z I H1] and E[Z I Ho]. 
The definition of Z(R) in (124) guaranteed that am existed for 0 < s < 1. - - 

We now define a function ,u(s), 

If we can demonstrate that the limit exists, our bounds in (127) will still 
be valid. However, in order to be useful, the expression for ,u(s) must be 
in a form that is practical to evaluate. Thus, our first goal in this section 
is to find a convenient closed-form expression for (u(s). 

The second useful set of results in Section I-2.7 was the approximate 
error expressions in (I-2.480) and (I-2.483), 

1 ep(s)-sp(s) 

pF-Jggij ’ 
s > 0, - 

and 

P E 
1 

“1 J27r(l - s)zji(s) 
e/ds)+(l-s)po 9 s < 1. - 

iw 

(130) 

t Our discussion assumes a thorough understanding of Section I-2.7, so that a review 
of that section may be appropriate at this point. 
$ Pr (E) bounds were also developed. Because they are more appropriate to the general 
binary problem in the next section, we shall review them then. 
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As we pointed out on page I-124, the exponents in these expressions were 
identical with the Chernoff bounds in (127), but the multiplicative factor 
was significant in many applications of interest to us. In order to derive 
(129) and (130), we used a central limit theorem argument. For the 
problems considered in Section I-2.7 (e.g., Examples 2, 3, and 3A on 
pages I-l 27-I-l 32)) it was easy to verify that the central limit theorem is 
applicable. However, for the case of interest in most of this chapter, the 
sum defining I, in (122) violates a necessary condition for the validity of 
the central limit theorem. Thus, we must use a new approach in order to 
find an approximate error expression. This is the second goal of this 
section. 

In addition to these two topics, we develop an alternative expression 
for computing ,u(s) and analyze a typical example in detail. Thus, there 
are four subsections : 

2.2.1. Closed-form expressions for p(s). 
2.2.2. Approximate error expressions. 
2.2.3. An alternative expression for p(s). 
2.2.4. Performance for a typical example. 

2.2.1 Closed-form Expression for p(s) 

We first evaluate ,u&) for finite K. Substituting (18) into (126) gives 

m 
s ([ 

I< 
rr --cn i=l 

1 

d27+@ + 1:) i 

1 K 

exp - - 2 
2 i=l 

(R mJ2 
(&lv,,2) 1 

K 1 ,I ( 
1 k’ Ri2 l-s 

X i=l $x(N,/2) exp - ; iz No/2 r I  

dR1 l ’ l dRK= (13’) 

Performing the integration, we have 

K 
pI&) = 8 ,[(l--s)ln(l+~)-ln(1+2(1-$‘b’)] 

i=l 

mi2 

N,/2(1 - s) + ;I$ ) ’ 
0 _< s < 1. (132) 

From our discussion on page 13, we know the first sum on the right side 
of (132) is well behaved as K -+ 00. The convergence of the second sum 
follows easily. 

IC IHi I< Tf 
2 

i=l (N,/2( 1 - s) + ii”) 
<c 

mi2 
< 

2(1 - s) 

-i=lN,/Z(I. - S) - No s 
m2(t) dt. (133) 

Ti 
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We now take the limit of (132) as K -+ GO. The first sum is due to the 
randomness in s(t), and so we denote it by ,u&). The second sum is due 
to the deterministic component in r(t), and so we denote it by p&). 

We now find a closed-form expression for the sums in (134) and We now find a closed-form expression for the sums in (134) and 
First we consider ,L+(s). Both of the sums in (134) are related to rea First we consider ,L+(s). Both of the sums in (134) are related to rea 
linear filtering errors. To illustrate this, we consider the linear fi linear filtering errors. To illustrate this, we consider the linear fi 
problem in which problem in which 

r(u) = s(u) + ~~~(U>, Ti < u < t, - _ 

l 
.l 

(135). 
izable 
tering 

(136) 
where s(u) is a zero-mean message process with covariance function 
K,(t, u) and the white noise has spectral height N,/2. Using our results in 
Chapter I-6, we can find the linear filter whose output is the MMSE 
point estimate of s(e) and evaluate the resulting mean-square error. We 
denote this error as fp(t 1 s(e), N,/2). (The reason for the seemingly 
awkward notation will be apparent in a moment.) Using (72), we can write 
the mean-square error in terms of a sum of eigenvalues. 

:ln (1 +z) =k/TT+I~(),$J dt. 
i=l 

Comparing (134) and (137) leads to the desired result. 

(137) 

Ii l (138) 
I 

Thus, to find pR(s), we must find the mean-square error for two realizable 
linear filtering problems. In the first, the signal is s(e) and the noise is 
white with spectral height N,/2. In the second, the signal is s(m) and the 
noise is white with spectral height N,/2(1 - s). An alternative expression 
for p&s) also follows easily. 
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Here the noise level is the same in both calculations, but the amplitude of 
the signal process is changed. These equations are the first key results in 
our performance analysis. Whenever we have a signal process such that we 
can calculate the realizable mean-square filtering error for the problem of 
estimating s(t) in the presence of white noise, then we can find p,(s). 

The next step is to find a convenient expression for ,u&). To evaluate 
the sum in (135), we recall the problem of detecting a known signal in 
colored noise, which we discussed in detail in Section I-4.3. The received 
waveforms on the two hypotheses are 

r(t) = 40 + nc(t> + 40, Ti < t < T,:H,, _ _ 
r(t) = n,(t) + w(t), Ti < t < Tf:HO. - B ( 140) 

By choosing the covariance function of n,(t) and 
can obtain the desired interpretation. Specifically, 

w(t) appropriately, we 
we let 

No E[w(t)w(li)] = - W 
- 2(1 - s) 

4, r: < t, 11 < Tf* - - (1~~) 

Then, from Chapter I-4 (page I-296) 
correlates r(t) with a function g( 
equationt 

m(t) = K,(t, 11) + 
No -6 

2U - 9 

we know that the optimum receiver 
1 ww - s)), which satisfies the 

(143) 

We also recall that we can write g(t 1 l ) explicitly in terms of the eigen- 
functions and eigenvalues of K,(t, u). Writing 

g l/1 ( 
substituting into ( 

where 

Ti < 21 5 Tf, 

143), and solving for the gi gives 

mi 
gi = 

A; + N,/2(1 - s) ’ 

s 

Tf 
mi A m(t) +iw 6-k 

Ti 

(144) 

(145) 

(146) 

t This notation is used to 
to K,(t, u). 

emphasize that g(t 1 0) depends on both NO and s, in addition 
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Substituting (145) and (146) into (135) and using Parseval’s theorem, 
we have 

(147) 

We observe that the integral in (147) is just d2 for the known signal in 
colored noise problem described in (140) [see (I-4.198)]. We shall en- 
counter several equivalent expressions for ~~(3) later. 

We denote the limit of the right side of (132) as K - co as p(s). Thus, 

p(s) = IURW + l%(s)* (148) 
Using (138) and (147) in (148) gives a closed-form expression for p(s). 
This enables us to evaluate the Chernoff bounds in (127) when K - 00. 
In the next section we develop approximate error expressions similar to 
those in (129) and (130). 

2.2.2 Approximate Error Expressions 

In order to derive an approximate error expression, we return to our 
derivation in Section I-2.7 (page I-123). After tilting the density and 
standardizing the tilted variable, we have the expression for pF given in 
(I-2.477). The result is 

pF = ePo-sib) 
s 

me-Sdii(a)~p 
!I 

(y) dy 9 
0 

(149) 

where Y is a zero-mean, unit-variance, random variable and we assume 
that p(s) equals JL Recall that 

xs - P(s) y- - , 
J 0 

(150) 
p s 

where 

P,,W = e ss-p(s)pl, H&X 1 Ho), (151) 

and / is the log likelihood ratio which can be written as 

I = 1, + I, + lg’ + w (152) 
[Notice that the threshold is y as defined in (&).] The quantity I is also 
the limit of the sum in (19) as K --+ co. If the weighted variables in the 
first sum in (19) were identically distributed, then, as K - 00, p,( Y) 
would approach a Gaussian density. An example of a case of this type 
was given in Example 2 on page I-127. In that problem, 

lis=os2, i- 1,2 ,..., AJ, (153) 

so that the weighting in the first term of (19) was uniform and the variables 
were identically distributed. In the model of this chapter, we assume that 
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s(t) has finite average power [see the sentence below (4)]. Thus 2: 1 AiS 
is finite. Whenever the sum of the variances of the component random 
variables is finite, the central limit theorem cannot hold (see [lo]). This 
means that we must use some other argument to get an approximate 
expression for P, and Pnl. 

A logical approach is to expand py( Y) in an Edgeworth series. The 
first term in the expansion is a Gaussian density. The remaining terms 
take into account the non-Gaussian nature of the density. On the next 
few pages we carry out the details of the analysis. The major results are 
approximations to PF and PM, 

and 

O<s<l - - 

P yv 
1 

A92 J27l(l - s)2ji(s) 
epw+u-s)pw 9 O<S<l. - - 

We see that (154) and (155) are identical with (129) and (130). Thus, our 
derivation leads us to the same result as before. The important difference 
is that we get to (154) and (155) without using the central limit theorem. 

Derivation of Error Approximationsf The first term in the Edgeworth series is the 
Gaussian density, 

+(Y) A L- e-Y2/2. 
42 7r 

(156) 

The construction of the remaining terms in the series and the ordering of terms are 
discussed in detail on pages 221-231 of Cramk [ 121). The basic functions are 

We write 

+ 
[ 
5 q4y Y) + F p)(Y) 

. . 1 

7 This derivation was done originally in [l 11. 
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where 

(15% 

We see that all of the coefficients can be expressed in terms of ,u(s) and its derivatives. 
We now substitute (158) into the integral in (149). The result is a sum of integrals of the 
form 

where 

&(a) = 
s 

ow +fk)( Y)e-y d Y, (160) 

a A s(ji(s))*K (161) 

Repeated integration by parts gives an expression for I,(a) in terms of erfc*(a). 
The integrals are 

I,(a) = erfc, (a) ea2i2 (162) 
and 

r,(a) = aI&a) - +(k-lvo), k > 1. - (163) 

If we use just the first term in the series, 

p(s) - S&S) + 7) erfc, (&a) / (164) 

For large s(@(s)*A(> 2), we may use the approximation to erfc, (X) given in Fig. 2.10 
of Part I. 

1 
erfc, (X) rv - e 

1/%X 

--.m2, x2 2. (165) 

Then (164) reduces to 

PF 
-pg’, A ’ 

- 2/Gqi) 
eP(s)-sfi(s). (166) 

This, of course, is the same answer we obtained when the central limit theorem 
was valid. The second term in the approximation is obtained by using I3(a) from (163). 

1 
<s~@>31,(s~ p(s)) + 1/2y (1 w s2jqs>> 

. (167) 

T 1 
Now, 

r&qT), = 
In Problem I-2.2.15 on page I-137, we showed that 

(168) 

e--X2j2 < erfc, (X) < --&(I - -f-+ + $)ewX2i2. (169) 
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We can now place an upper bound on the magnitude of Pg’. 

y3 l 

= -7 l&q&) 

&w -/.a) 

73 l = -- I I Cl1 

2 sl/lu(s) 
p,*- 

Using (159), 
jJ3) (4 I@1 2 - I I P$l 

2s[jk(s)]2 *’ 

(170) 

(171) 

Thus, for any particular /Q), we can calculate a bound on the size of the second term 
in relation to a bound on the first term. By using more terms in the series in (169), we 
can obtain bounds on the other terms in (158). Notice that this is not a bound on the 
percentage error in PF, l it is just a bound on the magnitude of the successive terms. In 
most of our calculations we shall use just the first-order term Pk! We calculated P$l 
for a number of examples, and it was usually small compared to Pg! The 
bound on Ppl is computed for several typical systems in the problems. 

To derive an approximate expression for PM, we go through a similar argument. 
The starting point is (172), which is obtained from (I-2.465) by a change of variables. 

Pfif = e pw+w-s)p(s) 

s 

0 
e(l-s’z/Z~Yp,(~) dY. 

-al 
The first-term approximation is 

(172) 

PM ?p~l= 
[ [ 

(1 d2 . . 
exp P(S) + (1 - 4/i(s) + -+ P( ) s 11 erfc, [(1 - swjw, 

O<s<l. 

(173) 
Using the approximation in (165) gives 

N pylj A 
1 

PM *- 
d27r(l 

,Pw+a-s)fiw 9 O<s,<l. (174) 
- s)2;li(s) 

The higher-order terms are derived exactly as in the PF case. 

The results in (164), (166), (173), and (174), coupled with the closed- 
form expression for ,u(s) in (138) and (147), give us the ability to calculate 
the approximate performance of the optimum test in an efficient manner. 
A disadvantage of our approach is that for the general case we cannot 
bound the error in our approximation. Later, we shall obtain bounds for 
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some special cases and shall see that our first-order approximation is 
accurate in those cases. 

We now return to the problem of calculating ,u(s) and develop an 
alternative procedure. 

2.2.3 An Alternative Expression for p&)7 

The expressions in (138) and (139) depend on the realizable mean-square 
estimation error. If we are going to build the optimum receiver using a 
state-variabie realization, we will have l&t ) s(e), N,/2) available. On the 
other hand, there are many cases in which we want to compute the per- 
formance for a number of systems in order to select one to build. In this 
case we want an expression for ,u&) that requires the least amount of 
computation. Specifically, we would like to find an expression for ,u(s) 
that does not require the computation of Ep(t ( s(s), N,/2) at each point 
in [Ti, TJ. Whenever the random process has a finite-dimensional state 
representation, we can find a much simpler expression for ,u(s). The new 
expression is based on an alternative computation of the integralz 

Derivation. We use the state model in (76)-(80), 

3t) = JWMt) + G(t)u(t), (176) 

and the initial conditions 
s(t) = WMr), (177) 

E[x(T,)I = 0, (178) 

E[x(T~)x~( Ti)] = gp(Ti) 6 PO. (179) 

Recall that the error covariance matrix is 

&a(t) = E[(x(t) - X(t))(xT(t) - V(t))]. WV 
Using (177), 

Ep t 1 SC), 5 ( 1 2 
= C(t)gp(t)cqt). (181) 

We first recall several resul ts from Chapter I-6 and introduce some simplifying nota- 
tion. From Property 1 .6 on page I-545, we know that the variance equation (84) can be 
related to two simultaneous linear equations (I-6.335 or I-6.336), 

d 
iit i 
v#) F(t) i G(t)QGT(t)- 

, --------___-_-______-----.,____________________ I 8 
2 

0 0 
v,o > CT(t)N C(t) ; -FT(t) 

0 
I I I 

t This section may be omitted on the first reading. 
$ This derivation is due to Collins [l33. 
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The transition matrix of (182), T(t, T.), satisfies the differential equation 

L 

F(t) i G(t)QGT(t) 

; W(t, T&l = 
I _________________________I ----------_________-_ , I 

2 
I 8 W, T,), (183) 

CT(t)- C(t) 1 
No : 

-FT(t) 1 1 

with initial conditions T(T,, TJ = I. In addition, from (I-6.338), the error covariance 
matrix is given by 

&4t) = [T,,(t, T&(T,) i- Tl,(t, T,)lET,,(t, Q&<Ti) + T,,(t, TiW1. (184) 

The inverse of the second matrix always exists because it is the transition matrix of 
a linear dynamical system. For simplicity, we define two new matrices, 

Thus, 

and r,(t) and r2(t) satisfy 

r,(t) = T,,(t, T,>&4Ti> + T& Ti), 

r&l = T,,(t, T&(Ti) + T&t, Ti). 

L 

with initial conditions 

and 

tgt) = r,(t) r,l(t>, 

1 r F(t) ;G(t)QGT(t)l I I -----_--------------____I_--__----___---_---- I 
2 

I 
cqt)--f C(t) ; -FT(t) 

0 i 

ryTi) = I. 

(185) 

(186) 

9 (187) 

We now proceed with the derivation. Multiplying both sides of (181) by 2/N, and 
integrating gives 

Now recall that 

2 

s 

Tt 
=- 

N 
c(t)[r~(t)rz-l(t)IcT(t) dt. (190) 

0 Ti 

for any vector x. Thus, 
XTBX = Tr [xxTB] (190 
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Using (187) to eliminate I’,(t), we have 

s Tf = Tr 
Ti 
r Tf 

+ F*W2(t) r,l(t) dt ) 1 
1 s dt + 5 

Tr [FT(t)] dt 
Ti 

J -TX= [r2-‘(t) dr,Wl + 
s 

Tf = Tr [F(t)] dt. (193) 
Ti Ti 

From (9.31) of [14], 

s T, 
Tr [r2--l(t) dq(t)] = 

s 

Tt 
d[ln det r2(t)] 

Ti Ti 

= In det r,(r,> - In det rZ(T,) 

Thus, 
= In det r&Q. (194) 

1 k /~~p(tp(e),f$) dt = lndet r,(Tf) +L:r [F(t)]& / (195) 

which is the desired resu1t.t 

We see that we have to compute I’,(T,) at only one point rather than 
over an entire interval. This is particularly important when an analytic 
expression for &(T,) is available. If we have to find I’,(T,) by numerically 
integrating (187), there is no significant saving in computation. 

The expression in (195) is the desired result. In the next section we 
consider a simple example to illustrate the application of the result we have 
derived. 

2.2.4 Performance for a Typical System 

In this section we analyze the performance of the system described in 
the example of Section 2.1.5. It provides an immediate application of the 
performance results we have just developed. In Chapter 4, we shall 
consider the performance for a variety of problems. 

Example. We consider the system described in the example on page 26. We assume 
that the channel process b(t) is a stationary zero-mean Gaussian process with a spectrum 

w4 
2kab2 =-. 

w2 + k2 
(196) 

t This result was first obtained by Baggeroer as a by-product of his integral equation 
work [HI. See Siegert [16] for a related result. 
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We assume that the transmitted signal is a rectangular pulse, 

G -9 O<t<T, 
f() t = T 

0, elsewhere 

As we pointed out in our earlier discussion, this channel model has many of the char- 
acteristics of models of actual channels that we shall study in detail in Chapter 10. The 
optimum receiver is shown in Fig. 2.10. To illustrate the techniques involved, we cal- 
culate ,u(s) using both (138) and (195). [Notice that pD(s) is zero.] To use (138), we need 
the realizable mean-square filtering error. The result for this particular spectrum was 
derived in Example 1 on pages I-546-1-548. From (I-6.353), 

1 - [(l - a)/(1 + u)]e-2kat 
1 - [(l - oQ2/(1 + u)2]e-2kat ’ 

OStST, 

where 
(198) 

I?, 4 ab2Et (199) 

is the average received energy and 

J 4Er 
04 1+=. 

0 
(200) 

Integrating, we obtain 

We now derive (201) using the expression in (195). The necessary quantities are 

F(t) = -k, 

G(t)QGT(t) = 2kcrb2, 

C(t) = 1, 

PO = a,? (202) 

The transition matrix is given in (I-6.351) as 

T(T + Ti, Ti) = 9 (203) 

where 

Y J 4ab2Et 
=- l+kN=ku 0 
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From the definition in (185), 

rz(Tf) 
2n,2 k 

= Ny sinh (yT) + cash (yT) + - sinh (yT) 
0 Y 

1 - (a + 1)2&t - 1)2 l 

Using (202) and (205) in (195), we have 

~[F~EJ,(tls(.),~dt) =in~R,“,“~~~)~aT] -k(a+l)T, (206) 

which is identical with (201). To get the second term in (138), we define 

a* 1+ 
J 

4iQl - s) 
s- (207) 

k TN, 
and replace o! by TX, in (201). Then 

1 
p(s) = +-f in 

t 1 

[(l + CC)2e2kTa - (1 - cc)2]d, 4ET 1 1 -- - 
[(l + as)2e21’Tas - (1 - a,)2]a 1 [ No a - 1 - Cc, II ’ (208) 

We see that /c(s) (and therefore the error expression) is a function of two quantities. 
&/No, the average energy divided by the noise spectral height and the kT product, 
The 3-db-bandwidth of the spectrum is k radians per second, so that kT is a time- 
bandwidth product. 

To use the approximate error expressions in (154) and (155), we find $(s) and ,G’ (s) 
from (208). The simplest way to display the results is to fix PF and plot PM versus kT 
for various values of 2&/N,. We shall not carry out this calculation at this point. In 
Example 1 of Chapter 4, we study this problem again from a different viewpoint. At 
that time we plot a detailed set of performance curves (see Figs. 4.7--4.9 and Problem 
4.1.21). 

This example illustrates the application of our results to a typical 
problem of interest. Other interesting cases are developed in the problems. 
We now summarize the results of the Chapter. 

2.3 SUMMARY: SIMPLE BINARY DETECTlON 

In Sections 2.1 and 2.2 we considered in detail the problem of detecting 
a sample function of a Gaussian random process in the presence of additive 
white Gaussian noise. In Section 2.1 we derived the likelihood ratio test 
and discussed various receiver configurations that could be used to 
implement the test. The test is 

Wl 

I, + I, + Ziil + lE1 5 In 7, (209 
HO 



SU?tZ?WWY 47 

Tf 
1 1 

R=- 
N, 11 

r(t)h,(t, u)r(u) dt du, W) 
Ti 

The operation needed to generate ZR was a quadratic operation. The 
receiver structures illustrated different schemes for computing Zfi. The 
three receivers of most importance in practice are the following: 

1. The estimator-correlator receiver (Canonical Realization No. 1). 
2. The filter-squarer receiver (Canonical Realization No. 3). 
3. The optimum realizable filter receiver (Canonical Realizations 

Nos. 4 and 4s). 

The most practical realization will depend on the particular problem of 
interest. 

In Section 2.2 we considered the performance of the optimum receiver. 
In general, it was not possible to find the probability density of lR on the 
two hypotheses. By extending the techniques of Chapter I-2, we were 
able to find good approximations to the error probabilities. The key 
function in this analysis was p(s). 

The performance was related to ,u(s) through the Chernoff bounds, 

pF < &w-sciw - 9 
PM < ~Pw- (1-W(d - 9 O<s<l, - - (217) 
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where 
p(s) = y = In q. (218) 

An approximation to the performance was obtained by an Edgeworth 
series expansion, 

PY 
1 

lkr J277(1 - s)2jqs) 
e~(s)+(l-s)I’o 9 O<s<l. WV 

By varying s, we could obtain a segment of an approximate receiver 
operating characteristic. 

We see that both the receiver structure and performance are closely 
related to the optimum linear filtering results of Chapter I-6. This close 
connection is important because it means that all of our detailed studies 
of optimum linear filters are useful for the Gaussian detection problem. 

At this point, we have developed a set of important results but have 
not yet applied them to specific physical problems. We continue this 
development in Chapter 4, where we consider three important classes of 
physical problems and obtain specific results for a number of interesting 
examples. Many readers will find it helpful to study Section 4.1.1 before 
reading Chapter 3 in detail. 

2.4 PROl3LEMS 

P.2.1 Optimum Receivers 

Problem 2.1.1. Consider the model described by (l)-(6). Assume that m(t) is not zero. 
Derive an estimator-correlator receiver analogous to that in Fig. 2.3 for this case. 
Problem 2.1.2 Consider the function h,(t, t 1 z), which is specified by the equation 

s 

Tf 
zh,(t, u I 4 + h,(t, Y I 4K,(Y, 4 dY = K,(t, 4, Ti 5 t, u 5 Tf. 

Ti 
Verify that (75) is true. [Hint: Recall (I-3.154).] 
Problem 2.1.3. 

1. Consider the waveform 

r(7) = n,(7) + 44, Ti I 7 S t, 

where n,(T) can be generated as the output of a dynamic system, 

k(t) = WW + W>N, 

n,w = C(OxW, 
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driven by a statistically independent white noise u(t). Denote the MMSE realizable 
estimate of n,(7) as h,(7). Prove that the process 

is white. 
r,(t) A r(t) - A,(t) = r(t) - C(t)G(t) 

2. Use the result of part 1 to derive the receiver in Fig. 2.11 by inspection. 
Problem 2.1.4. Read Problem I-6.6.4 and the Appendix to Part II (sect. A.4-A.6). 
With this background derive a procedure for generating IR using unrealizable filters 
expressed in terms of vector-differential equations. For simplicity, assume zero means. 
Problem 2.1.5. The received waveforms on the two hypotheses are 

r(t) = SW + w(t), 0 5 t s T:H,, 

r(t) = w(t), O<t5 T:H,. 

The process w(t) is a sample function of a white Gaussian random process with spectral 
height N,/2. The process s(t) is a Wiener process that is statistically independent of w(t). 

s(0) = 0, 

E[s2(t)) = a2t. 

1. Find the likelihood ratio test. 
2. Draw a realization of the optimum receiver. Specify all components completely. 

Problem 2.1.6. The received waveforms on the two hypotheses are 

r(t) = s(t) + w(t), 0 ,< t g T:H,, 

r(t) = w(t), Or;tr;T:H,. 

The process w(t) is a sample function of a white Gaussian random process with spectral 
height N,/2. The signal s(t) is a sample function of a Gaussian random process and 
can be written as 

s(t) = at, 0 22 6 

where a is a zero-mean Gaussian random variable with variance cra2. Find the optimum 
receiver. Specify all components completely. 
Problem 2.1.7. Repeat Problem 2.1.6 for the case in which 

s(t) = at + b, 0 I t, 
where a and b are statistically independent, zero-mean Gaussian random variables with 
variances oa2 and ob2, respectively. 
Problem 2.1.8. 

1. Repeat Problem 2.1.7 for the case in which a and b are statistically independent 
Gaussian random variables with means m, and mb and variances acr2 and ob2, respectively. 

2. Consider four special cases of part 1: 
(i) m, = 0, 
(ii) mb = 0, 
(iii) oa2 = 0, 
(iv) ob2 = 0. 

Verify that the receiver for each of these special cases reduces to the correct structure. 
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Problem 2.1.9. Consider the model in Problem 2.1.6. Assume that s(t) is a piecewise 
constant waveform, 

b 1' 0 < t 5 T,, 

b 2' To < t 5 2T,, 
b 

s(t) = 3’ 
2T, < t I 3T,, 

l 

b , ,  (n - 1)T, < t < nTo, 

The bi are statistically independent, zero-mean Gaussian random variables with 
variances equal to cTb 2. Find the optimum receiver. 
Problem 2.1.10. Consider the model in Problem 2.1.6. Assume 

where the ai are statistically independent random variables with variances oi2. Find the 
optimum receiver. 
Problem 2.1.11. Re-examine Problems 2.1.6 through 2.1.10. If you implemented the 
optimum receiver using Canonical Realization No. 4S, go back and find an easier 
procedure. 
Problem 2.1.12 Consider the model in Problem 2.15 Assume that s(t) is a segment of a 
stationary zero-mean Gaussian process with an nth-order Butterworth spectrum 

2nP sin (r/2n) 
S,(w:n) =- 

k (w/k)2” + 1 ’ 
n =1,2,.... 

1. Review the state representation for these processes in Example 2 on page I-548 
Make certain that you understand the choice of initial conditions. 

2. Draw a block diagram of the optimum receiver. 
Problem 2.1.13. From (31), we have 

T/ 
1 

In =- 
NO 

r(t)h(t, u)r(u) dt du. 

One possible factoring of h(t, U) was given in (45). An alternative factoring is 

1. Explain the physical significance of this operation. Remember that our model 
assumes that r(t) is only observed over the interval [Ti, T’]. 

2. Give an example in which the factoring indicated in (P.l) is easier than that in the 
text. 
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Problem 2.1.14. Consider the expression for IR in (31). We want to decompose h,(t, u) 
in terms of two new functions, k,(T,, 2) and k,(z, t), that satisfy the equation 

h,(t, 4 = s Tt k,(Tf, 4k,(z, t)k,(z, u) dz, Ti 
1. Draw a block diagram of the optimum receiver in terms of these new functions. 
2. Give an example in which this realization would be easier to find than Canonical 

Realization No. 3. 
3. Discuss the decomposition 

h,(t, 4 = s k,(T,, z)k,(z, Ok,@, 4 dz, 
iIT 

Problem 2.1.15. From (86) and (87), 

1 T 
In 

=- 

s No 0 
[2r(& (t) - ^s2(t)] dt. W) 

Consider the case in which 

k) + q+(t) = b,r(t), ost 
and 

9(O) = 0. u-9 

1. Implement the optimum receiver in the form shown in Fig. P.2.1. Specify the time- 
invariant filter completely. 

2. Discuss the case in which 

i(t) + a$(t) + a&t) = b,r(t). 

Suggest some possible modifications to the structure in Fig. P.2.1. 

Optimum 
realizable 

linear 
filter 

. 1 
G(t) 

2-- Squarer . Time-invariant 
filter 

> 
c . 

Sample 

CL 
1R 

Fig. P.2.1 

3. Extend your discussion to the general case in which the estimate i(t) is described 
by an nth-order differential equation with constant coefficients. 
Problem 2.1.16. On both hypotheses there is a sample function of a zero-mean Gaussian 
white noise process with spectral height No/2. On H,, the signal is equally likely to be a 
sample function from any one of M zero-mean Gaussian processes. We denote the 
covariance function of the ith process as KJt, u), i = 1, . . . , M. Thus, 

1 
r(t) = s&t) -I- w(t), Ti 5 t 5 Tf, with probability M : H,, i = 1, . . . , M. 

r(t) = w(t), Ti r; t 5 Tf:Ho. 

Find the optimum Bayes receiver to decide which hypothesis is true. 
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Problem 2.1.17. Consider the vector version of the simple binary detection problem 
The received waveforms on the two hypotheses are 

r(t) = s(t) + w(t), Ti S t S r,:H,, 
= w(t), Ti < t s Tf: H,,, 

(P 1 . 

where s(t) and w(t) are sample functions of zero-mean, statistically independent, N- 
dimensional, vector Gaussian processes with covariance matrices 

K,(t, 4 ii EbWsT(u)l (P.2) 
and 

K,(t, u) ki E[w(t)wT(u)] = 2 N”6(t - u)I. (P.3) 

1. Derive the optimum receiver for this problem. (Hint: Review Sections I-3.7 
and I-4.5.) 

2. Derive the equations specifying the four canonical realizations. Draw a block 
diagram of the four realizations. 

3. Consider the special case in which 

K&t, u) = K,(t, u)I. (P-4) 

Explain what the condition in (P.4) means. Give a physical situation that would lead 
this condition. Simplify the optimum 

4. Consider the special case in which 
receiver in part 1. 

Repeat part 3. 

-1 1 . . . 1- 

1 1 1 

1 1 

(P.5) 

Problem 2.1.18. Consider the model in Problem 2.1.17. The covariance of w(t) is 

K&t, u) = N 6(t - u)I, 

where N is a nonsingular matrix. 
1. Repeat parts 1 and 2 of Problem 2.1.17. (Hint: Review Problem I-4.5.2 on page 

I-408 .) 
2. Why do we assume that N is nonsingular? 
3. Consider the special case in which 

K,(t, u) = K,(t, u)I 

and N is diagonal. Simplify the results in part 1. 
Problem 2.1.19. Consider the model in Problem 2.1.17. Assume 

E[s(t)] = m(t). 

All of the other assumptions in Problem 2.1.17 are still valid. Repeat Problem 2.1.17 
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Problem 2.1.20. In Section 2.1.5 we considered a simple multiplicative channel. A more 
realistic channel model is the Rayleigh channel model that we encountered previously 
in Section I-4.4.2 and Chapter 11-8. We shall study it in detail in Chapter 10. 

On H, we transmit a bandpass signal, 

St(t) a 1/2p f (t) cos cu,t, 

where f (t) is a slowly varying function (the envelope of the signal). The received signal 

r(t) = 1/G b,(t)f(t) cos co,t + d2P b&If(t) sin co,t + w(t), Ti s t I; T,:H,. 

The channel processes b,(t) and b&t) are statistically independent, zero-mean Gaussian 
processes whose covariance functions are K&, u). The additive noise w(t) is a sample 
function of a statistically independent, zero-mean Gaussian process with spectral height 
N,/2. The channel processes vary slowly compared to cr),. On HO, only white noise is 
present. 

1. Derive the optimum receiver for this model of the Rayleigh channel. 
2. Draw a filter-squarer realization for the optimum receiver. 
3. Draw a state-variable realization of the optimum receiver. Assume that 

s&d 
2kob2 =-• 

u2 + k2 

Problem 2.1.21. The model for a Rician channel is the same as that in Problem 2.1.19, 
except that 

W,(t)1 = m 

instead of zero. Repeat Problem 2.1.19 for this case. 

P.2.2. Performance 

Problem 2.2.1. Consider the problem of evaluating ,u~(s), which is given by (135) or 
(147). Assume that s(t) has a finite-dimensional state representation. Define 

Find a finite-dimensional dynamic system whose output is p&, T). 

Problem 2.2.2. Consider the model in the example in Section 2.2.4. Assume that 

E[b(t)] = m 

instead of zero. Evaluate 
I-320 and I-390.1 

p=(s) for this problem. [Hint: If you use (147), review pages 

Problem 2.2.3. 

1. Consider the model in Problem 2.1 S. Evaluate ,u(s) for this system. 
2. Define 

Simplify the expression in part 1 for the case in which yT >> 1. 
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Problem 2.2.4 (continuation). Use the expression for ,u(s) in part 2 of Problem 2.2.3. 
Evaluate pgl and p&l [see (167)]. Compare their magnitude with that of pi1 and @,‘$l. 
Problem 2.2.5. Consider the model in Problem 2.15. Assume that 

40 = s(t) + m(t) + w(t), O_<t<T, 

r(t) = w(t), O<t<T, 

where m(t) is a deterministic function. The processes s(t) and w(t) are as described in 
Problem 2.1.5. Evaluate am for this model. 
Problem 2.2.6. 

1. Evaluate p(s) for the system in Problem 2.1.6. 
2. Plot the result as a function of s. 
3. Find PF and PD. 

Problem 2.2.7. Evaluate /d(s) for the system in Problem 2.1.7. 

Problem 2.2.8. Evaluate p(s) for the system in Problem 2.18. 
Problem 2.2.9. 

1. Evaluate ,u(s) for the system in Problem 2.1.9. 
2. Evaluate PF and PI>. 

Problem 2.2.10. Consider the system in Problem 2.1.17. 
1. Assume that (P.4) in part 3 is valid. Find ,I@) for this special case. 
2. Assume that (P.5) in part 4 is valid. Find p(s) for this special case. 
3. Derive an expression for ,u(s) for the general case. 

Problem 2.2.11. Consider the system in Problem 2.1.19. Find an expression for /co(s) for 
this system. 

Problem 2.2.12. Find (u(s) for the Rayleigh channel model in Problem 2.1.20. 
Problem 2.2.13. Find /d(s) for the Rician channel model in Problem 2.1.21. 
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