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Fig. 13.32 Approximation to suboptimum receiver No. 2 for rectangular envelope case. 

As a first approximation, we might choose 

1 ws = - 
T+L 

(297a) 

1 
Ts = - 

B+W’ 
(297b) 

so that we have a system with diversity 

NRND = (T + L)(B + W)* (297~) 

In general, we leave the filter bandwidth, w$ and the correlation time, T,, 
as parameters. This receiver can be analyzed by using the techniques of 
Section 11.3.3. Once again, the calculations are complicated but feasible. 

When f(t) is a rectangular pulse, a good approximation to the receiver 
in Fig. 13.31 can be obtained as shown in Fig. 13.32. Here 

wm a 1 
min W,, - . [ 1 Ts 

ww 
This receiver is essentially that suggested by Kennedy and Lebow [38&t 

This completes our suboptimum receiver discussion. We now consider 
some other detection theory topics. 

13.3.5 Related Topics 

In this section we discuss three topics briefly. In Section 13.3.5.A we 
discuss equivalent channels. In Section 13.3.5.B we comment on Mary 

t This reference contains an excellent intuitive discussion of communication 
doubly-spread channels, and most engineers will find it worthwhile reading. 
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communication over doubly-spread channels. In Section 13.3.5.C we 
re-examine the reverberation problem of Section 13.2. 

13.3.5.A. Equivalent Channels and Systems. The idea of an equivalent 
channel is due to Kennedy f3’7] and is a generalization of the dual-channel 
ideas introduced in Section 12.3. Our motivation for developing duality 
theory was to simplify the design of systems and their analysis. Frequently 
it was easier to analyze the dual of the system instead of the actual system. 
The motivation for our discussion of equivalent systems is identical. In 
many cases, it is easier to analyze an equivalent system instead of the 
actual system. In addition, the ability to recognize equivalent systems aids 
our understanding of the general problem. 

The first definition is: 

Definition 1. Equivalent Processes. Consider the two processes fl(t) and 
Qt) defined over the interval [ Ti, TJ. If the eigenvalues of Y1( t) equal the 
eigenvalues of f&), the processes are equivalent on. [T,, TJ. 

For simplicity we now restrict our attention to a simple binary detection 
problem. The complex envelopes of the received waveforms on the two 
hypotheses are 

r”(t) = s’(t) + W), Ti < t < T,:H,, - - (299) 

f(t) = G(t) Ti < t < T$: Hoe - B (3w 

The additive noise i+(t) is a sample function from a zero-mean complex. 
white Gaussian noise process with spectral height No. The signal i(t) 
is a sample function from a zero-mean complex Gaussian process with 
covariance function &(t, u). From our earlier results we know that the 
performance of the system is completely characterized by the eigenvalues 
of &(t, u). Notice that the receiver depends on both the eigenfunctions 
and eigenvalues, but the eigenfunctions do not affect the p&hnmce. 
This observation suggests the following definition. 

Definition 2. Equivalent Detection Problems. All simple binary detection 
problems in which the j(t) are equivalent processes are equivalent. 

This definition is a generalization of Definition 5 on page 426. 
The next idea of interest is that of equivdent channel. The covariance 

function of the signal process at the output of a doubly-spread channel is 



Related Topics 523 

Now consider the covariance function at the output of a second channel, 

We can now define equivalent channels. 

Definition 3. Equivalent Channels. Channel No. 2 is equivalent to Channel 
No. 1, if, for every f&t) with finite energy, there exists a signal $&) with 
finite energy such that the eigenvalues of &t, u) are equal to the eigen- 
values of Qt, u). 

The utility of this concept is that it is frequently easier to analyze an 
equivalent channel instead of the actual channel. 

Some typical equivalent channels are listed in Table 13.2. In columns 1 
and 3 we show the relationship between the two-channel scattering func- 
tions. Notice that sDR{ f, A} is an arbitrary scattering function. The com- 
plex envelope of the transmitted signal in system 1 is f(t). In column 4, we 
show the complex envelope that must be transmitted in system 2 to generate 
an equivalent output signal process. We have assumed an infinite observa- 
tion interval for simplicity. 

We study other equivalent channels and systems in the problems. Once 
again, we point out that it is a logical extension of the duality theory of 
Section 12.3 and is useful both as a labor-saving procedure and as an aid 
to understan ding the basic limitations on a system. 

13.3.5. B. Wary Communications over Doubly-Spread Channels. In 
Section 11.3.4 we discussed communication over Doppler-spread channels 
using M-orthogonal signals. Many of the results were based on the eigen- 
values of the output processes. All these results are also applicable to the 
doubly-spread channel model. In particular, the idea of an optimum 
eigenvalue distribution is valid. When we try to analyze the performance 
of a particular system, we must use the new techniques developed in this 
chapter. The modification of the binary results is straightforward. The 
reader should consult [37] for a complete discussion of the M-ary problem. 

13.3.5.C. Reverberation. In Section 13.2 we studied the problem of 
detecting a point target in the presence of doubly-spread interference. 
One problem of interest was the design of the optimum receiver and an 
analysis of its performance. The appropriate equations were (116)-( 121b), 
and we indicated that we would discuss their solution in this section. We 
see that all of our discussion in Section 13.3.2 is directly applicable to this 
problem. The difference is that we want to estimate the reverberation 
return, ii,(t), in one case, and the reflected signal process in the other. 
All of the techniques carry over directly. 
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13.3.6 Summary of Detection of Doubly-Spread Signals 

In this section we have studied the detection of doubly-spread targets 
and communication over doubly-spread channels. In the Section 13.3.1 
we formulated the model and specified the optimum receiver and its 
performance in terms of integral equations and differential equations. 
Because the problem was one of detecting complex Gaussian processes in 
complex Gaussian noise, the equations from Section 11.2.1 were directly 
applicable. The difficulty arose when we tried solve the integral equations 
that specified the optimum receiver. 

In Section 13.3.2 we developed several approximate models. The reason 
for developing these models is that they reduced the problem to a format 
that we had encountered previously and could analyze exactly. In partic- 
ular, we developed a tapped-delay line model, a general orthogonal 
series model, and an approximate differential-equation model. Each 
model had advantages and disadvantages, and the choice of which one to 
use depended on the particular situation. 

In Section 13.3.3 we studied a binary communication problem in detail. 
In addition to obtaining actual results of interest, it provided a concrete 
example of the techniques involved. Because of the relative simplicity of 
the binary symmetric problem, it is a useful tool for obtaining insight 
into more complicated problems. 

In Section 13.3.4, we studied the LEC problem. In this case the optimum 
receiver can be completely specified and its performance evaluated. The 
LEC receiver also suggested suboptimum receiver structures for other 
problems. 

In section 13.3.5, we discussed some related topics briefly. This completes 
our discussion of the general detection problem. 
consider the parameter estimation problem. 

In the next we 

13.4 PARAMETER ESTIMATION FOR DOUBLY-SPREAD TARGETS 

In this section we consider the problem of estimating the parameters 
of a doubly-spread target. The model of interest is a straightforward 
extension of the model of the detection problem in Section 13.1. The 
complex envelope of the received waveform is 

r”(t) = s’(t, A) + i+(t), Ti < t < Tt, - (303) 

where Z(t, A), given A, is a sample function of a zero-mean complex 
Gaussian process whose covariance function is 

&t, u :A) = E, 
s 

=)(t - A).&-& - u, kA)f*(u - 1) dL. (304) 
-a3 
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The additive noise IF(~) is a sample function of a white Gaussian noise 
process. The vector parameter A is either a nonrandom unknown vector 
or a value of a random vector that we want to estimate. We consider 
only the nonrandom unknown parameter problem in the text. Typical 
parameters of interest are the amplitude of the scattering function or the 
mean range and mean Doppler of a doubly-spread target. 

To find the maximum likelihood estimate of A, we construct the likeli- 
hood function and choose the value of A at which it is maximum. Because 
the expression for the likelihood function can be derived by a straight- 
forward modification of the analysis in Chapter 6 and Section 11.4, we 
can just state the pertinent results. 

0 

I,(A) = L 
N, ss 

r”*(t)&.& u:A)F(u) dt du 

Ti 

E,(A) = - -!- 
s 

Tf * 

N, Ti 
&(t :A) dt. (307) 

The filter h”,(t, u : A) is specified by the equation 

N,h,(t, u : A) + 
s 

Tf_ 
h,(t, x:A)&(x, u:A) dx = &(t, CA), 

Ti 

T i t, 21 < Tf. (308) 

The function &(t : A) is the realizable minimum mean-square error in 
estimating $@:A), assuming that A is known. Notice that I,(A) is usually a 
function of A and cannot be neglected. 

A second realization for I,(A) is obtained by factoring h”,(t, U: A) as 

s Tr i;,(t, u : A) = hCM’*(x, t : A)i;[s’(x, u : A) &, T’i < t, u < Tf. (309) 

Then 
Ti 

l,(A) = -!- 
Tf 

s Is 

2 

dx 
No Ti 

Tfhc~l(z, t :A)r”(t) dt . WV 
Ti 

This is the familiar filter-squarer-integrator realization. 
A third realization is 

I,(A) = -!- s Tf 
No Ti 

(2 Re [F*(t)$t:A)] - &(t:A)12) dt, , 



Estimation under LEC Conditions 527 

where &.@:A) is the realizable minimum mean-square estimate of J( t : A), 
assuming that A is known. This is the optimum realizable filter realization. 

We see that these real .ization s are analogous to the realization s en- 
countered in the detection problem. Now we must find the realization for a 
set of values of A that span the range of possible parameter values. In the 
general case, we must use one of the approximate target models (e.g., a 
tapped delay-line model or a general orthogonal series model) developed 
in Section 13.2 to find the receiver. The computations are much more 
lengthy, because we must do them for many values of A, but there are no 
new concepts involved. 

In the following sections we consider a special case in which a more 
direct solution can be obtained. This is the low-energy-coherence (LEC) 
case, which we have encountered previously in Section 13.3.4. 

There are four sections. In Section 13.4.1, we give the results for the gen- 
era1 parameter estimation problem under the LEC condition. In Section 
13.4.2, we consider the problem of estimating the amplitude of an otherwise 
known scattering function. In Section 13.4.3, we consider the problem 
of estimating the mean range and mean Doppler of a doubly-spread target. 
Finally, in Section 13.4.4, we summarize our results. 

13.4.1 Estimation under LEC Conditions 

The basic derivation is identical with that 
simply state the results. The LEC condition is 

in Chapter 6, and so we 

(312a) 

for all A in the parameter space and i. The Ii(A) are the eigenvalues of 
&t, u: A). Under these restrictions, 

Tr 
w ?*(t)E& u:A)r(u) dt &J 

Ti 
Tf 

l&t, u:A)12 dt du. (312b) 

Ti 
This result is analogous to (7.136). 

For simplicity, we assume that Ti = - 00 and Tf = 00 in the remainder 
of our discussion. Observe that f(t) has unit energy, so that s(t : A) is a 
nonstationary process whose energy has a finite expected value. Specifically, 

E 
cs 

O” Id(t:A)12 dt 
-co 

&{f, 1:A) elf d2. 
---a3 

(313a) 
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Thus, the infinite observation interval does not lead to a singular problem, 
as it would if s’(t:A) were stationary. Substituting (304) into (312b) gives 

The last two terms are bias terms, which can be written in a simpler 
manner. We can write the second term in (313b) as 

zc,fl(A) = - Et 
f 

* dl 
No -cm 

DR(O, A:A) 
s 

O” If(t - ;t)l” dt 
-VI Et * - - -- s N, -co 

dA &,,(o, 1: A) = - ‘2 . 
ml 

W) 

Here, &(A) is the average received energy written as a function of the 
unknown parameter A. 

To simplify the third term, we use the two-frequency correlation 
function I& (7, CA). Recall from (21) that 

&(T, A: A) = 
s 

O” &-&, v : A}ejZRV’ dv. 
-co 

(315) 

Using (315) in the last term of (313b) and performing a little manipulation, 
we find that the third term can be written as 00 1$](A) = - Et2 

2N02 ss dx &I @@, Y} I&--&, !wq12, (316) 
-00 

where 0{*, l } is the ambiguity function of f(t). We denote the sum of the 
last two terms in (313b) as IB(A). Thus, 

I&) = - ‘- - g 
s s 

mdz 
2N, 4N02 --oo 

O” dy 0(x, y} &,,{x, y:A}12. (317) 
--oo 

The last step is to find a simpler realization of the first term in (313b). 
The procedure here is identical with that in Section 13.3.4. We factor 
&20 - u, 2: A), using the relation 

RD,ct - u, L:A) = s * -CIA1 
KDR *(x - t, A: A)EF;(z - u, I:A) dx. (318) 

-00 
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Since the time interval is infinite and &&, A: A) is stationary, we can 
find a realizable (with respect to T) &&! (7, il : A) by spectrum factorization. 
In the frequency domain 

Substituting (318) into (313b) and denoting the first term by I,(A), we have 

(320) 
. Combining (320) and (317) gives an expression for I(A), which is 

For each value of A we can realize rR(A) approximately by sampling in ;3. 
and replacing the integral in A by a sum. We then add [‘(A) to obtain an 
approximate likelihood function. This realization is an obvious modifica- 
tion of the structure in Fig. 13.30. Notice that we must carry out this 
calculation for a set of values of A, so that the entire procedure is quite 
tedious. 

We now have the receiver structure specified. The performance analysis 
for the general case is difficult. The Cramer-Rao bound gives a bound on 
the variance of any unbiased estimate. For a singZe parameter, we differen- 
tiate (312b) to obtain 

Var [a - - A] > ao No2 . (322) 

dt du 1 [a&t, u : &]/&I I2 

-00 

For multiple parameters, we modify (7.155) to obtain the elements in the 
information matrix as 

Tr 

.&,(A) = L Re 
NO2 u 

dt du 
a&t, WA) aiTF(t, %A) 

. VW aA i dA 
Ti 

i 
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Substituting (304) into (323) gives the &(A) for the doubly-spread target. 
Using (316), we can write &(A) compactly as 

&(A) = Fg Re 
O” a&.+, y :A) 

u aA e{xy Y> 
a&{x9 YIA}d x . 

0 i 
aA 

dy 
(324) 

i -a3 

The principal results of this section are the expressions in (321) and 
(324). They specify the optimum receiver and the performance bound, 
respectively. We next consider two typical estimation problems. 

13.4.2 Amplitude Estimation 

In this section we consider the problem of estimating the amplitude of 
an otherwise known scattering function$ We assume that 

&,(t - u, k/4) = A&&t - u, A), WI 

where &(t - u, A) is normalized such that 

(326) 

Thus, 

(327) 

The covariance function of the received signal process is 

K&t, u:A) = E,A c mf(t - fl)&& - u, A)f*(u - A) dl ii A&t, u). 
J -00 

(328) 

The parameter A is an unknown positive number. 
In this case, the likelihood function in (312b) has a single maximum, 

which is located at 

s a3 
?*(tj&(t, u)?(u) dt du - N, &(t, t) dt 

--a 
8, = -aI . 00 (329) 

l&t, u)12 dt du 

t This problem was solved originally by Price [39]. Our problem is actually a degen- 
erate case of the problem he considers. 
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Since Li, may be negative, the maximum likelihood estimate is 

4nl = max [0, ci,]. (330) 

We discussed the truncation problem in detail in Section 7.1.2. For 
simplicity we assume that the parameters are such that the truncation 
effect is negligible. Using (326), (328), and (315) in (329), we obtain 

It follows easily that 8, is unbiased. An approximate receiver realization 
is shown in Fig. 13.33. 

If we neglect the bias on dml, we can bound its normalized variance 

by J ;l, where Jn is obtained from (324) as 

O{r, v} I&(7, v}I” dr dv. (332) 

-03 

It is worthwhile observing that we can compute the variance of 8, exactly 
(see Problem 13.4.4). The result is identical with Jil, except for a term that 
can be neglected when the LEC condition holds. 

To illustrate the ideas involved, we consider an example. 

Example. We assume that the target has the doubly Gaussian scattering function in 
Fig. 13.4. Then 

--co<f,A<a (333) 

and 

R&T, v> = exp 
(21rB)~7~ (2vLj2v2 

- - - - 
2 

-GQ<<,V<oo, (334) 

To simplify the algebra, we assume that f(t) is a Gaussian pulse. 

f(t)= (--$)tiexp (-2)) -00 <t< co. (335) 

Then, from (10.28), 

T2 
~~ + T2(2.2rfj2 )3 , -00 <T,f< 00. (336) 
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I Typical tap 

Similar 
paths 

V 

Summer I 
-1 

NO 

Gain: 
-1 

dueb, u+‘&(T, u)l* 

)I 

-++ -od+ a”0 
x max b0, 01 

am1 

t- 

Fig. 13.33 Maximum likelihood estimator of the amplitude of a scattering function 
under LEC conditions. 

Substituting in (332), we have 

-co 
Integrating, we obtain 

+ v2((27Tj2 + 2(2nLj2) I) dr iiv. 

(337) 

W-9 

Looking at (338), we see that Jn will be maximized [and therefore the variance bound in 
(322) will be minimized] by some intermediate value of T. Specifically, the maximum 
occurs at 

T- 

J 

L. (339) 
27~B 
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Comparing (339) and (281), we see that if we let 

k = 2rB, (340) 

then this value of T corresponds to the point of minimum diversity in the output signal 
process. (Notice that B and k have different meanings in the two scattering functions.) 

Intuitively we would expect the minimum diversity point to be optimum, because of 
the original LEC assumption. This is because there is an optimum “energy per eigenvalue 
/NO” value in the general amplitude estimation problem (see Problem 13.4.8). The LEC 
condition in (311) means that we already have the energy distributed among too many 
eigenvalues. Thus we use the fewest eigenvalues possible. When the LEC condition does 
not hold, a curve of the form shown in Fig. 13.246 would be obtained. If  we use the 
value of Tin (339), then 

and 

Jn = 
( 1 
$ 2(1 + 4rBL)-l (341) 

0 

N2 
Var [Ciml - A] 2 

0 
; (1 + ~~TBL). (342) 

We see that the variance bound increases linearly with the BL product for BL > 1. 
This linear behavior with BL also depends on the LEC condition and does not hold in 
general. 

This completes our discussion of the amplitude estimation problem. 
We were able to obtain a closed-form sol .ution for B,, because Z(A) had a 
unique maximum. We now consider a different type of estimation problem. 

13.4.3 Estimation of Mean Range and Doppler 

In this subsection we consider the problem of estimating the mean 
range and mean Doppler of a doubly-spread target. A typical configura- 
tion in the T, f plane is shown in Fig. 13.34. We denote the mean range by 

Fig. 13.34 Target location in 7, f  plane. 
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Al, and the mean Doppler by AZ. The scattering function is denoted by 

where the scattering function on the right side of (343) is defined to have 
zero mean range and zero mean Doppler. Another function that will be 
useful is the two-frequency correlation function, which can be written as 

&,{T, v :A) = &,oRa{r, v} exp [-j2mA, + j2mA,]. (344) 

The purpose of (343) and (344) is to express the parametric dependence 
explicitly. 

The returned signal is given by (303). To find the maximum likelihood 
estimate of A, we first divide the 7, m plane into a set of range-Doppler 
cells. We denote the coordinates of the center of the ith cell as Ai. We next 
construct /(A,) for each cell and choose that value of Ai where I(AJ is 
maximum. 

First, we consider the general case and do not impose the LEC con- 
dition. Then, [(A,) is given by (305)-(307). As before, we let Ti = - cc and 
Tf = 00. Looking at (307), we see that &:A) does not depend on the 
mean range or Doppler, so that we do not need to compute I,(A). Thus, 

co 

l(Ai) = Ia = -!- 
No 

r”*(t)h,(t, u:Ai)T(u) dt du, (349 

where h (t, u:AJ is specified by (308) with A = Ai. For each cell we must 
solve (308) [or find one of the equivalent forms given in (309)-(31 l)]. 
Actually to carry out the solution, we would normally have to use one of 
the orthogonal series models in Section 13.3.2. 

In analyzing the performance, we must consider both global and local 
accuracy. To study the global accuracy problem we use the spread ambi- 
guity function that we defined in (11 .181). For doubly-spread targets the 
definition is 

x h”,(t, u:A)&(t - u, il:A,)f(u - a), (346) 

where A, corresponds to the actual mean range and mean Doppler of the 
target. To analyze the local accuracy, we use the Cramer-Rao bound. 
There is no conceptual difficulty in carrying out these analyses, but the 
calculations are involved. 



Estimation of Mean Range and Doppler 535 

When the LEC condition is satisfied, the solution is appreciably simpler. 
From (320), the likelihood function is 

The spread ambiguity function under LEC conditions is 

x &,( t - u, 1, : A)f*(u - l,)f*( t - 2,) 

x &( t - u, A2 : AJf(u - I,) 

co E,2 -- - 
No2 ss dx dy&(Z, y:A}6{x, Y]&R{% Y :A,}. 

-Go 

Notice that 
2 

&j(A) = 
a8 nDB,LEc@a9 4 

aAi aAaj A--A ’ a 
(349) 

which is identical with (324). To evaluate the Cram&Rao bound, we 
use (344) in (324) to obtain 

W) 

and 

,&,(A) = - g- 
No2 ss 

(~~T)~Tv~{T, u} &,R,,{~, u}l” d7 dv, 

-al 

00 

(351) 

J2,,(A) = E,2 
No2 

(271.~)~6{~, u} &,,Ro{~, u}l” dT du. (352) 
-a3 

As we would expect, the error performance depends on both the signal 
ambiguity function and the target-scattering function. Some typical 
situations are analyzed in the problems. 
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13.4.4 Summary 

In this section we studied parameter estimation for doubly-spread 
targets. We first formulated the general estimation problem and developed 
the expressions for the likelihood ratio. The resulting receiver was closely 
related to those encountered earlier in the detection problem. 

In the remainder of the section, we emphasized the low-energy-coherence 
case. In Section 13.4.1 we developed the expressions for the likelihood 
function and the Cramer-Rao bound under the LEC assumption. In 
Section 13.4.2 we found an explicit solution for the estimate of the ampli- 
tude of the scattering function. A simple example illustrated the effect of 
the pulse length and the BL product. In Section 13.4.3, we studied the 
problem of estimating the mean range and Doppler of a doubly-spread 
target. This problem is a generalization of the range-Doppler estimation 
problem that we studied in Chapter 10. 

Our goal in this section was to illustrate some of the important issues 
in the estimation problem. Because of the similarity to the detection 
problem, a detailed discussion was not necessary. 

13.5 SUMMARY OF DOUBLY-SPREAD TARGETS AND CHANNELS 

In this chapter we have studied targets and channels that are spread in 
both range and Doppler. The complex envelope of the signal returned 
from the target is 

a0 
j(t) = J E, / f( - t - a)& t, a> da. (353) 

--al 
The target reflection process is a sample function of zero-mean complex 
Gaussian random processes, which can be characterized in two ways : 

1. By a scattering function &,{J, 3L) or an equivalent form such as 
&&, 4, iTo&, v}, or &-&-9 v-j* 

2. By a distributed state-variable description in which the state equa- 
tions are ordinary differential equations containing the spatial variable 
1 as a parameter and i(t) is related to the state vector by a modulation 
functional. 

After formulating the model and discussing its general characteristics, we 
looked at three areas in which we encounter doubly-spread targets. 

In Section 13.2 we discussed the problem of resolution in a dense 
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environment. Here, the desired signal was a nonfluctuating point target 
and the interference was a doubly-spread environment. We examined 
both conventional and optimum receivers and compared their perform- 
ance. We found that when a conventional matched filter was used, the 
spread interference entered through a double convolution of the signal 
ambiguity function and the target-scattering function. As in the discrete 
resolution problem, examples indicated that proper signal design is 
frequently more important than optimum receiver design. 

In Section 13.3 we discussed the problem of detecting the return from a 
doubly-spread target and the problem of digital communication over a 
doubly-spread channel. After formulating the general problem, we 
developed several approximate target/channel models using orthogonal 
series expansions. The purpose of these models was to reduce the problem 
to a form that we could analyze. The tapped-delay line model was the 
easiest to implement, but the general orthogonal series model offered 
some computation advantages. We next studied the binary communication 
problem. For underspread channels we found signals that enabled us 
to approach the performance bound for any system. For overspread 
channels we could only approach the bound for large &/No with the 
simple signals we considered. To verify our intuitive argument, we 
carried out a detailed performance analysis for a particular system. The 
effect of the signal parameters and the scattering function parameters on 
the performance of a binary communication system was studied. Finally, 
we indicated the extensions to several related problems. 

In Section 13.4 we studied the problem of estimating the parameters 
of a doubly-spread target. We first formulated the general estimation 
problem and noted its similarity to the detection problem in Section 13.3. 
We then restricted our attention to the LEC case. Two particular problems, 
amplitude estimation and mean range and Doppler estimation, were 
studied in detail. 

There are two important problems which we have not considered that 
should be mentioned. The first is the problem of measuring the instan- 
taneous behavior of $(t, A). We encountered this issue in the estimator- 
correlator receiver but did not discuss it fully. The second problem is that 
of measuring (or estimating) the scattering function of the target or 
channel. We did not discuss this problem at all. An adequate discussion 
of these problems would take us too far afield; the interested reader should 
consult the references (e.g., [39]-[52] and [66]-[69]). 

This completes our discussion of doubly-spread targets and channels. 
In the next chapter we summarize our discussion of the radar-sonar 
problem. 
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13.6 PROBLEMS 

P. 13.1 Target Models 

Problem 13.1.1. Read the discussion in the Appendix of [5]. Verify that the scattering 
function of a rough rotating sphere is as shown in Fig. 13.2. 
Problem 13.1.2. Consider the target shown in Fig. P.13.1. The antenna pattern is 
constant over the target dimensions. The discs are perpendicular to the axis of propaga- 
tion (assume plane wave propagation). The carrier is at fc cps. The dimensions x0, yO, 
do, and dI are in meters. The rates of rotation, go andgI, are in revolutions per second. 

Fig. P.13.1 

The reflectivity of disc 0 is uniform and equals p. per m2. The reflectivities of the two 
disc l’s are constant, p1 per m 2. These reflectivities are along the p-axis. Assume y. > x0. 
The target geometry is symmetric about the xx plane. 

Compute the scattering function of the target as a function of CL Sketch your result. 
Problem 13.1.3. The quantities oR2, Q 2 and PDR are defined in terms of S~DR, {f, A}. , 
Find equivalent expreSSiOnS for them in terms of &$f$ v>, ~?DR(+T, v>, and .KDR(T, il). 
Problem 13.1.4. Assume that 

&R tf, ;I> = 2 BL sexp[-$$I, -m<f<a, --00<;3.<00. 

1. Find pDR{f, V>, RDR(T, V>, and gDR(7,1>. 
2. Calculate GR2, GD2, and PDR. 

Problem 13.1.5. Assume that 

s,,{f, A) = 2ob2 
27rBL(1 - ~~1% 

x exp 
L2(f - mD)2 - 2BLp(f - ??$)(il - mR) -k B2@ - mRj2 

- 
2B2L2(1 - p2) 1 . 
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1. Find P&f, v>, &,&, v>, and I&(7, A). 
2. Find the five quantities defined in (14)-(19). 

Problem 13.1.6. Assume that 

&R Cf, A> = 
4kob2 

L[(2vf)2 + k21 ’ 
-owf<*, o<a<Lh 

Find p&f, 4, &+, ~1, and &&, % 
Problem 13.1.7. Assume that 

0, elsewhere. 

Problem 13.1.8. Assume that 

&J&f, A> = 8 2/2ab2 sin2 (d/L) 

1 kU(2~flk)4 + 11 ’ 
--ao<f<a, ogI:L. 

1. Find p&f, v}, &&, v), and J&(7,1). 
2. Find oD2 and oR2. 

Problem 13.1.9. 

Problem 13.1.8. 
Consider the target process scattering function is given in 

1. Describe this process with a differential-equation model. 
2. Describe the received signal process Z(t) in terms of the results in part 1. 

Problem 13.1.10. We frequently use the doubly-Gaussian scattering function in Problem 
13.1.4. Construct a differential-equation model to represent it approximately. (Hint: 
Recall Case 2 on page I-505.) 
Problem 13.1.11. Assume that the scattering function is 

&Cf, 11 = 
48 

[( j2nf )2 + E,2(2)1[< j2nf I2 + i22(Ql ' 
-co<f<q O<ML. 

1. Sketch the scattering function for various allowable i#), i2(n), and a(n). 
2. Write out the differential equations that characterize this target. (Hint: Recall 

Example 2 in the Appendix, page 594.) 

P.13.2 Detection in Reverberation 

CONVENTIONAL RECEIVERS 

In Problem 13.2.1-13.2.9, we use the model in (69)-(72) and assume that a conven- 
tional receiver is used. 

Problem 13.2.1. The transmitted signal in given in (10.43). The scattering function is 

&,if, 21 = 
1 

27rBL(l - p2)s exp 
L2f” - 2BLpf;” + B2A2 

- l 2B2L2(1 -  p2) 1 
Find p,. [see (13.83)] as a function of E,, N,, B, L, p, and T. 
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Problem 13.2.2. Consider the reverberation model in (132). Assume that 

3(t) = +Zie-atu-,(t). 

Calculate pr as a function of E,, P,, fd, and a. 
Problem 13.2.3. Consider the reverberation model in (132). 

1. Verify that 

EtPc * 
PT =- 

s No -00 
sf2(f>df 

for a zero-velocity target. 
2. Choose ${,f} subject to the energy constant 

so that p,. is minimized. 
Problem 13.2.4. Consider the reverberation model in (132). 

1. Verify that 

E,P, co - 
PT =- 

s No -co 
q~f>Qcf-fd) df (P.1) 

for a target with Doppler shift fd. 
2. What type of constraints must be placed on f(t) in order to obtain a meaningful 

result when we try to minimize pr? 
3. Assume that we require 

s O” f2${f> df = a,,2. -00 (P.2) 

Minimize p,. subject to the constraint in (P.2) and an energy constraint. 
Problem 13.2.5. Assume that we have the constant-height reverberation scattering 
function shown in Fig. P.13.2. The signal is the pulse train shown in Fig. 10.9. 

1. Show how to choose T,, T,,, and n to minimize the effect of the reverberation. 
2. Calculate p,. (13.83) for t&e signal parameters that you selected. 

Fig. P.13.2 



Detection in Reverberation 541 

Problem 13.2.6. Consider the signal given in (10.145), which has 3N parameters to 
choose. Consider the scattering function in Fig. P.13.2. 

1. Write an expression for p,. (13.83) in terms of the signal parameters and B, L, and 
fr. Assume that LIT, is an integer for simplicity. 

2. Consider the special case of (10.145) in which co, = 0, and define 

Express pr in terms of a”. 
3. We want to minimize PrbY choosing G properly. Formulate the optimization prob- 

alejel 

lems and derive the necessary equations. 
Problem 13.2.7. Repeat parts 2 and 3 of Problem 13.2.6 for the following special cases: 

1. We require 

co, = 0, n--l ,..., N, 

a, = 1, n= l,...,N. 

2. We require 

en = 0, n l,...,N, = 

an = 1 or 0, n l,...,N. = 

Problem 13.2.8. We want to estimate the range and Doppler of a nonfluctuating point 
target in the presence of reverberation. The conventional receiver in Section 10.2 is used 

Derive a bound on the variance of the range and Doppler estimation errors. 
Problem 13.2.9 In Section 12.3 we developed duality theory. These ideas are also useful 
in reverberation problems. Assume that a conventional receiver is used. 

Derive the dual of the result in (83). 

OPTIMUM RECEIVERS 

Problem 13.2.10. Consider the model in (lOl)-(107). One procedure for solving (107) is 
to approximate the integrals with finite sums. Carry out the details of this procedure 
and obtain a matrix equation specifying g(ti), i = 1, . . . , N. Discuss how you selected 
the sampling interval and the resulting computational requirements. 
Problem 13.2.11. Consider the model in (lOl)-(107). The complex envelope of the 
transmitted signal is given by (10.25), and the scattering function is given by (13.333). 
Assume that Q = cz)& = 0. 

1. Find a series solution to (107) by using Mehler’s expansion (e.g., [53] or [54].) 
2. Evaluate A,. 

Problem 13.2.13. One 
model ,!?,,{f, A} as a 

procedure for obtaining an 
piecewise constant function 

approximate solution to (107) is to 
and then replace the each piecewise 

constant segment by an impulse that is located at the center of the segment with the 
same volume as the segment. This reduces the problem to that in Section 10.5. 
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1. Discuss how one selects the grid dimensions. 
2. Carry out the details of the procedure. Use (10.202) to write an explicit solution 

to the approximate problem. Identify the various matrices explicitly. 
3. The performance is given by (10.203). We would like to choose f(t) to maximize 

A*. What constraints are necessary? Carry out the optimization. 

Problem 13.2.14. Assume that &&t - u, 3L) can be factored as 

l&)$&t - u, 2) = l!&(t - u&,(n). 

1. Evaluate &(t, u) in (104) for this case. 
2. We want to approximate &(t, u) by a separable kernel. What functions would 

minimize the approximation error? Discuss other choices that might be more practical. 
Consider, for example, 

&&(a = f  ~~w~(~) 
i=l 

as a preliminary expansion. 

Problem 13.2.15. In this problem we derive the optimum estimator equations in (116)- 
(121). 

1. The first step is to derive the generalization of (X-6.55). The linear operation is 

s t i(t, A) = i,(t, 7: h)?(r) dr. Ti (P.0 

We want to minimize the realizable MMSE error. Show that the optimum impulse 
response must satisfy 

E[Z(t, A)?*(u)] = 
s 

L 
h,(t, 7:;t)&(~, u) d7, Ti < u < t. (P.2) 

Ti 

2. Using (P.2) as a starting point, carry out an analysis parallel to that in Section 
6.3.2 to obtain (116)-(121). 

Problem 13.2.16. Consider the scattering function given in (53)-(63). Assume that 

elsewhere. 

Write out the optimum receiver equations (116)-(121) in detail for this case. 
Problem 13.2.17. Consider the model in (lOl)-(104) and assume that Td = ti!$ = 0. We 
use a receiver that computes 

s 

al 
Tm = ;*(t)?(t) dt 

-00 

and compares ITm12 with a threshold. The function c(t) is an arbitrary function that we 
want to choose. Do not confuse F(t) and?(t) in (106). The performance of this receiver 
is a monotonic function of Am, where 

[see (9.49)]. 
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1. Derive an expression for Ana. 

A 2. Find an equation that specifies the z(t) which maximizes Am. Call the solution 

3. In [32], this problem is studied from a different viewpoint. Stutt and Spafford 
define 

J = E[l~~~2 1 n”,.(t) only]. 
Prove that 

co 

J- 
Tss 

;*(t - A)f(t - 3’)RDR(t - u, A)J?“(u - a>‘;(~ - 2) dt du dA 
U 

-CO 

where e,,{*, l } is the cross-ambiguity function defined in (10.222). 
4. We want to minimize J subject to the constraints 

s 

co 
I;(t)12 dt = 1 

-CO 
and 

s 

aI 
f*(t);(t) dt = K, 

-CQ 
where 

a. Explain these constraints in the context of the result in part 1. 

b. Carry out the minimization using two Lagrange multipliers. Call the solution i2(t). 
c. Does 

&t) = &t) 
in general ? 

d. Verify that we can force 

i&t) = i&t) 

by choosing the two constraints appropriately. 

e. Read [32] and discuss why one might want to use i2(t) instead of &t). 
Comments: 

1. You should have solved part 2 by inspection, since &) must equal g”<t> in (106). 
2. The equation in part 3b is solved by a sampling approach in [32]. The same pro- 

cedures can be used to solve (106). 
Problem 13.2.18. Consider the model in Problem 13.2.17. 

1. Verify that Am can be written as 
2 

f(t);*(t) dt 
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2. We require i(t) to be of the form 

at) = $3(t) + c2f(t - T,), 

where Ts is a fixed constant and Z1 and $ are complex weightings. Choose & and ZS to 
maximize Am. Call these values i1 and i,. 

3. Now maximize A,&, &) as a function of T,. 
Problem 13.2.19. Consider the result in (P.l) in Problem 13.2.18. We would like to 
optimize f(t) and s*(t) jointly. We studied this problem for Doppler-spread reverbera- 
tion in Problem 11.2.14. Our procedure resulted in a set of nonlinear differential 
equations that we were unable to solve. The basic difficulty was that both the conven- 
tional and optimum receivers were related to f(t). 

We now try a new procedure. For simplicity we begin with Doppler-spread reverbera- 
tion, 

&-&f - u, 2) = K=(t - u) 6(A). 

We select an initial v(t) with unity 
following minimization : 

energy, which we denote as &(t). Now conduct the 

(i) Constrain 

(ii) Constrain 

and 

(iii) Constrain 

(iv) Minimize 

s 

T  
13(t>12dt = 1. 

0 

s 
m f 2 lp{,f}12 df = B2 

-CO 

3(O) =3(T) = 0. 

s 

T  

3(t)&) dt = K. 
0 

T  

J=N,+ 
ss 

~~(t)3W~& - u)~*(&(u) dt du, 

0 

subject to these constraints. 
1. Carry out the required minimization. Verify that the resulting equation is linear. 

Reduce the problems to a set of differential equations that specify the solution. Observe 
that these can be solved using Baggeroer’s algorithm [HI, [56]. Denote the solution as 
30 1t 

2. ‘Assume that&(t) is transmitted. Choose i?(t) to maximize Am. Denote the sohttion 
as iY2(t). Is there any difficulty in carrying out this procedure? 

3. Repeat part 1, using iY2(t). What is the difficulty with this procedure? 
4. Discuss the problems in extending this procedure to the doubly-spread case. 

Using the distributed state-variable model, derive a set of differential equations that 
specify the optimum signal as in part 1. 
Problem 13.2.20. The complex envelope of the transmitted signal is d?&t), where 

N 

3’( ) t *a - C( u”t - nT’.h (RI) 
n=l 
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with ii(t) defined as in (10.29). The desired target is located at the origin. Instead of 
correlating withf*(t), we correlate with 2*(t); 

N 
ii?(t) = 2 WnTsZ(t - nT,), 

n=l 

where Wn is an arbitrary complex number. Both f(t) and i?(t) are normalized to have 
unit energy. The receiver output is 

2 

zA - f(t)iz”(t) dt . 

1. Calculate A when the complex input is the signal plus complex white noise with 
spectral height No. 

2. Denote the complex weightings by the vector W. Choose W to maximize A. 
3. Calculate A for the case in which there is clutter that has a rectangular scattering 

function 

B, <flB,, L, rs A 5 L,, 

elsewhere. 
Write A in the form 

where 

A *tuw 

J%lN, -=fVt[NI+tC]ii” 

iiij = 1. 
Specify the other matrices. 

4. We want to choose W to maximize A. Carry out the maximization and find the 
equations specifying the optimum G. 
Comment: This problem and generalizations of it are studied in detail in [22], [24], and 
1341 
Pro&n 13.2.21. Consider the reverberation model in (132). From (136). 

where gGr{f } is specified by (124) and (132). We constrain the transmitted signal to be 
bandlimited with unit energy, 

$Ef> = 0, IfI2 w  
Find an equation specifying the optimum S'f{f } to maximize A,. 

Problem 13.2.22. Consider the reverberation model in (132). I f  the target is moving, then 

Repeat Problem 13.2.21 for this case. 
Problem 13.2.23. Consider the reverberation model in (132). Assume that 

3c 1 t = a$(t - iTpI, 
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where Z(e) is defined in (10.29)The desired target has a known velocity corresponding to 
a Doppler shift offd cps. 

1. Draw a block diagram of the optimum receiver and evaluate its performance. 
2. Now assume that we generate two random variables, ” 

s T, 
?(t);*(t) dt, 

0 

s Tp+Ts F(t)G*(t TP 
Derive a formula for the optimum operations on 
of the resulting receiver. 

3. Consider the receiver shown in Fig. P.13.3. 
range. Analyze the performance of this receiver 
Compare the results in parts 1, 2, and 3. 

- T,) dt. 

F1 and F2. Evaluate the performance 

The target is assumed to be at zero- 
as a function of E,, No, P,, and fd. 

Fig. P.13.3 

4. Read Steinberg’s discussion of MT1 (moving target indication) radars [57]. 
Compare his model and results with our model. Other interesting discussions of MT1 
systems are given in [ SS]-[60]. 

P.13.3 Detection of Doubly-Spread Targets 

DETECTION MODELS 

Problem 13.3.1. Consider the binary detection problem in which the complex envelopes 
of the received waveforms on the two hypotheses are 

F(t) = Z,(t) + w>, -co < t < WITI, 

F(t) = q)(t) + w, -- < t < WHO, 
where Z,(t), Z’#), and i+(t) are statistically independent complex Gaussian random 
processes with covariance functions. 

&,(t, u) = Et 
s 

m f(t - A)KDR o(t - u, A)f*(u - A) dA, , -a 

Go &,(t, u) = Et f(t - A>& I(t - u, A)f*(u - A) dil, 
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and 
g;(t, u) = NO&t - u). 

Derive the equations specifying the optimum receiver. 
Problem 13.3.2. Consider the model in Problem 13.3.1. Assume 

Derive the equations specifying the optimum receiver. 
Problem 13.3.3. The complex envelopes of the received waveforms on the two hypotheses 
are 

--a <t < m:Hl, 

-- < t < wHO. 

The process &t, 1) is characterized in (4). The random variable & is a complex Gaussian 
variable (E(1612) = 20,~) and is statistically independent of 6(t, 1). 

Derive the equations specifying the optimum receiver. 
Problem 13.3.4. Consider the statement below (176) regarding the statistical inde- 
pendence of the tap gain processes. Investigate the issue quantitatively. 
Problem 13.3.5. Consider the scattering function in Problem 13.1.6. Assume that we 
approximate it with the tapped-delay line in Fig. 13.18. 

1. Specify the spectrum of the tap gain processes. 
2. Find the cross-correlation (or cross-spectrum) of tap gain processes as a function 

of w,. 
3. Assume that we use three taps and that the tap gain processes are statistically 

independent. Write out the state equations specifying the model. 
4. Draw a block diagram of the optimum receiver for the detection model in (142)- 

(152). Write an expression for F(S). 
Problem 13.3.6 [61]. Assume that the transmitted signal is time-limited; that is, 

f(t) = 0, ItI >-T 
2’ 

Develop the dual of the tapped-delay line model. 
Problem 13.3.7. In the Doppler-spread case the SPLOT condition enabled us to obtain 
answers reasonably easily. Consider the doubly-spread problem in which f(t) is a time- 
limited rectangular pulse [0, T] and S “DR{f, A} is range-limited [0, L]. The observation 
interval is [- m, 001. 

1. Is the output signal process stationary? 
2. Is any time segment of the output signal process stationary? 
3. Consider the following procedure: 
(i) Analyze the SPLOT problem for the observation interval [L, T]. 
(ii) Analyze the SPLOT problem for the observation interval [O, L + T]. 
a. Will the performance 

actual system ? 
of the system in (i) underbound performance 
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b. Will the 
actual svstem ? 

performance of the system in (ii) overbound performance 

c. For what ranges of parameter values would this procedure be useful? 
Problem 13.3.8. The scattering function is 

&&f, a = 
4ka,2[1 - cos (2d/L)] 

L[(hf J2 + k21 ’ 
--GO<f<q O<il<L. 

We expand the channel using the general orthogonal signal model in (196)-(217). The 
transmit ted signal is a rectangular pulse [0, T]. The orthogonal functions are 

972(t) = J;cosf;), Ol;;lr;L, 

v&) = 

and so forth. 

&in(T), O<QL, 

Evaluate the various quantities needed to specify the model completely. Be careful 
about the intervals. 
Problem 13.3.9. Prove that the tapped-delay line model is a special case of the general 
orthogonal signal model. 
Problem 13.3.10. The scattering function is 

8kOb2 (1 - (2 I Q/L) 
s,J$f, a = - L (Gf I2 + k2) ’ --co<f<q pi < L/2. 

Repeat Problem 13.3.8. 
Problem 13.3.11. Consider the model in (224)-(228). Show that a direct orthogonal series 
expansion leads back to the model in Section 13.3.2.B. 
Problem 13.3.12. Consider the expression for c,,(t) in (233). 

1. Derive a set of differential equations that the iii(t) must satisfy. 
2. Compare the result in part 1 with that in Problem 13.3.11. Identify the impulsive 

term in (229). 
Problem 13.3.13. Consider the 
is correct. [Hint: Recall (47) .] 

decomposition in (229). Verify that the results in (230) 

BINARY COMMUNICATION 

Problem 13.3.14 [38]. Assume that 
B = 1 kcps 

and 
L = 250 psec. 

The power-to-noise ratio at the receiver is 

PR 

N, 
= 5 x lo5 (57 db). 

We require a probability of error of 10p3. 
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1. Show that the maximum achievable rate using a binary system with the above 
parameters in 15,000 bits/set. 

2. Design a simple system that achieves this rate. 
Problem 13.3.15. Consider the scattering function in Fig. 13.1.6 and assume that 

kL = 10. 

Design signals for a binary system to communicate effectively over this channel. 
Problem 13.3.16. Consider the model in (254)-(264) and (279). 

1. Find the terms in (277) for the case when K = 3. 
2. Repeat part 1 for K = 5. 

LEC CONDITIONS 

Comment: The next three problems develop some simple tests to verify the LEC 
condition. 
Problem 13.3.17 [5]. 

1. Prove that 
00 

&n,x I Et max I S(t)12 
s 

Wax &If, 11) d. (P.1) 
t --Co f 

2. Consider the special case in which f(t) is a constant. Prove that 

Tm,, < max ${f}. - 
f 

Problem 13.3.18 [5]. Derive the dual of the bound in (P.l) of Problem 13.3.17. Specif- 
ically, prove that 

co 
n,,, < wax IRf II21 * - 

s 
(max S&f, JH df- (P.0 

f --co A 

Problem 13.3.19 [5]. Prove that 

Problem 13.3.20. In this problem 

1. Prove that 

develop lower bounds 

Lx ’ - Z(t)&(t, u)?(u) dt du 

for any z(t) such that 

s Tf 
li(t)12 dt = 1. 

Ti 
2. Assume that Ti = - 00 and Tf = 00. Prove 

(P.0 

(P.2) 

(P.3) 

3. Give an example of an S -&f, A} in which (P.3) is satisfied with equality. 
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Problem 13.3.21. Consider the model in Section 13.3.4.A. 
1. Derive (292). 
2. Derive (293)-(295). 

Problem 13.3.22. Consider the signal in (10.44a) and the scattering function in Problem 
13.1.5 with mR = ?ng = 0. Evaluate fi(s) in (295). 
Problem 13.3.23. Consider a binary communication system operating under LEC 
conditions and using a rectangular pulse. Assume that T is fixed. 

1. Prove that 

+ b, 

where P,/N, is the received power-to-noise level ratio. Find a and b. 
2. Compare this result with (239). 

Problem 13.3.24. Consider the suboptimum receiver in (296). Set up the equations 
necessary to analyze its performance. 
Problem 13.3.25. Consider the suboptimum receiver in Fig. 13.31. Set up the equations 
necessary to analyze its performance. 
Problem 13.3.26. Consider the suboptimum receiver in Fig. 13.32. 

1. Set up the equations necessary to analyze its performance. 
2. Discuss the utility of the SPLOT approach suggested in Problem 13.3.7 for this 

particular problem. 
Problem 13.3.27. Consider the equivalent channel definition on page 523. Verify that the 
relations in Table 13.2 are correct. 
Problem 13.3.28. Consider the channel whose scattering function is shown in Fig. P.13.4. 
The height is 2ob2/BL in the shaded rectangle and zero elsewhere. Assume that 

BL = 0.01. 

f  

Fig. P.13.4 

Design a binary communication system that will operate over this channel with 

j&(# h/ -0.149. 

Specify both the transmitted signal and the optimum receiver. 
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Problem 13.3.29. Consider the degenerate scattering function 

S&J; A> = 2 T8{f-fi} d{n - &}. 
i=l 

P.1) 

1. Assume that N = 2. Prove that all channels with this scattering function are 
equivalent. 

2. Is this result true for N 2 3? 
Problem 13.3.30 [38]. Consider the system in Problem 13.3.15. We require a bit error 
rate of 10T3. 

1. Show that by using a system with four orthogonal signals we can achieve a rate of 
25,000 bits/set. (Hint: Use the results of Problem 5.1.4.) 

2. Design a system to achieve this rate. 

Problem 13.3.31 [ 3 71. Prove that all channels scattering functions have the form 

,&R(f, il:a,k,c) = SDR akA 
1 - kc Cf + --f'al - -;I- 

are equivalent for any values of c, k, and a. 

P.13.4 Parameter Estimation 

Problem 13.4.1. 
1. Derive the expression for ZR(A) in (306). 
2. Derive an expression for the elements of the information matrix J. DO not assume 

LEC conditions. 
Problem 13.4.2. Derive the expression for Z$$A) given in (3 17). 
Problem 13.4.3. Assume that the LEC condition is valid. Derive the result in (324). 
Problem 13.4.4. Consider the amplitude estimation problem in Section 13.4.2. 

1. Verify that a ,̂ [defined in (331)] is unbiased under all conditions (i.e., the LEC 
condition is not required). 

2. Find an exact expression for 

3. Verifv that 
b, a E[(b, - A)2]. 

J 

when the LEC condition holds. 
ho 

a J-l(A) 

Problem 13.4.5. Express the result in (332) in an alternative form that contains &{f, 2) 
instead of RDR(7, v>. 
Comment: Notice that the LEC assumption is not made in Problems 13.4.6-13.4.8. 
Problem 13.4.6. Consider the degenerate case of the amplitude estimation problem in 
which &, A) has a finite number of equal eigenvalues. Thus, 

&(t, u: A) = Ail, $ &t)+), -- <t,u< 00. 
i=l 

1. Find the receiver to generate d, and timl. 
2. Evaluate t,-0 and J(A). Verify that 8, is an efficient unbiased estimate. 
3. Constrain 

AN& = &. 
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Treat N as a continuous variable that is greater than or equal to 1. Find the value of N 
that minimizes &,,. Notice that the answer depends on A, the unknown parameter. How 
would you use this result in an actual system? (Hint: Is ldO sensitive to the exact choice 
of N?) Plot &, as a function of N. 
Problem 13.4.7. Consider the general amplitude estimation problem. Assume that 

&(t, u: A) = A&(t, u), --<t,u<oo. 

1. Express the Cramer-Rao bound of the variance of any unbiased estimate of A 
in terms of the eigenvalues of g3(t, u). 

2. Constrain 

s 

00 
A &(t, t) dt = E,. 

--co 

Find the eigenvalue distribution that minimizes the value of the bound in part 1. 
Compare your result with that in part 3 of Problem 13.4.6. 

3. Interpret the result in part 2 in the context of estimating the amplitude of an 
otherwise known scattering function. Notice that this gives a bound on the variance of 
an unbiased estimate of the amplitude that does not depend on the scattering function. 
Problem 13.4.8. Assume that 

&(f, AA) = f@&f, & 
where &(f, A> is known. We know that 

aJ 

A& AE, =- 
No No u 

&(f, A} df dl. = 20, 

-00 

and want to estimate A more exactly. 
1. Assume that 

L = 10 
and 

BL = 0.001. 

Design a signal f(t) that will result in an unbiased estimate whose variance is close to 
that in part 3 of Problem 13.4.7. Draw a block diagram of the optimum receiver. 

2. Repeat part 1 for the case in which 

and 
B = 10 

BL = 0.001. 

Problem 13.4.9. Consider the generalization of the example on page 531, in which the 
Gaussian pulse has a linear FM [see (10.44a)l and the scattering function has a skewed 
Gaussian shape. 

The LEC condition is assumed. 
1. Show that this can be reduced to an equivalent problem with a nonskewed Gaus- 

sian scattering function. 



References 553 

2. Evaluate the bound in (332). 
3. What linear sweep rate minimizes the variance bound? 

Problem 13.4.10. Consider the problem of estimating the scale of range axis under LEC 
conditions, 

where && 0) is known. 
1. Derive a lower bound on the variance of an unbiased estimate [62]. 
2. Consider the special case in which f(t) is given by (335) and $,&f, A} satisfies 

(333). Evaluate the bound in part 1. 
3. Choose T to minimize the bound. 

Problem 13.4.11. Consider the problem of estimating the frequency scale under LEC 
conditions, 

where s,l,l{., l } is known. 
1. Repeat Problem 13.4.10. 
2. Solve this problem by using duality theory and the results of Problem 13.4.10. 

Problem 13.4.12. Consider the generalization of the two previous problems in which 

a&r, v: A) = A~f$&,~,(f+, A,vl. 

1. Derive an expression for the element in the bound matrix, J(A) [62]. 
2. Evaluate the terms for the case in part 2 of Problem 13.4.10. 
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