Chapter

10

FIR Filter Fundamentals

Digital filters are usually classified by the duration of their impulse response,
which can be either finite or infinite. The methods for designing and imple-
menting these two filter classes differ considerably. Finite impulse response
(FIR) filters are digital filters whose response to a unit impulse (unit sample
function) is finite in duration. This is in contrast to infinite impulse response
(IIR) filters whose response to a unit impulse (unit sample function) is
infinite in duration. FIR and TIR filters each have advantages and disadvan-
tages, and neither is best in all situations. FIR filters can be implemented
using either recursive or nonrecursive techniques, but usually nonrecursive
techniques are used.

10.1 Introduction to FIR Filters

The general form for a linear time-invariant FIR system’s output yfk] at time
k i1s given by

N-1

ylkl = Y hinlx[k —n] (10.1)
n=20

where h[n] is the system’s inpulse response. As Eq. (10.1) indicates, the

output is a linear combination of the present input and the N previous

inputs. The remainder of this chapter is devoted to Eslsic properties and

realization issues for FIR filters. Specific design approaches for selecting the

coefficients b,, are covered in Chaps. 11, 12, and 13.
FIR advantages

FIR filters have the following advantages:

m FIR filters can easily be designed to have constant phase delay and/or
constant group delay.

161

162 Chapter Ten

s FIR filters implemented with nonrecursive techniques will always be stable
and free from the limit-cycle oscillations that can plague IIR designs.

s Round-off noise (which is due to finite precision arithmetic performed in
the digital processor) can be made relatively small for nonrecursive imple-
mentations.

s FIR filters can also be implemented using recursive techniques if this is
desired.

FIR disadvantages

Despite their advantages, FIR filters still exhibit some significant disadvan-

tages:

® An FIR filter’s impulse response duration, although finite, may have to be
very long to obtain sharp cutoff characteristics.

m The design of FIR filters to meet specific performance objectives is gener-
ally more difficult than the design of IIR filters for similar applications.

10.2 Evaluating the Frequency Response of FIR Filters

A digital filter’s impulse response k[n] is related to the frequency response
H(e’*) via the DTFT:

He®= Y hin]e—m (10.2)

For an FIR filter, k[n] is nonzero only for 0 < n < N. Therefore, the limits of
the summation can be changed to yield

N-1

H(*)y= 3 h[n]e /™ (10.3)
n=90

Equation (10.3) can be evaluated directly at any desired value of 4.

We now take note of the fact that A = w7 and that the value of continuous-
radian frequency w,, corresponding to the discrete-frequency index m is given
by

w,, = 2rmF (10.4)

Substituting 2zmFT for i, and H{m] for H(e’*) in (10.2) yields the discrete
Fourier transform:

N-1
H[m] = Y h[n] exp(—2njnmFT) (10.5)
n=0
Thus, the DTFT can be evaluated at a set of discrete frequencies w = w,,,
0 < m < N, by using the DFT, which in turn may be evaluated in a computa-
tionally efficient fashion using one of the various FFT algorithms.

FIR Filter Fundamentals 163

10.3 Linear Phase FIR Filters

As discussed in Sec. 2.8, constant group delay is a desirable property for
filters to have since nonconstant group delay will cause envelope distortion
in modulated-carrier signals and pulse-shape distortion in base-band digital
signals. A filter’s frequency response H(e’”) can be expressed in terms of
amplitude response A(w) and phase response f(w) as

H(e’”) = A(w) /%
If a filter has a linear phase response of the form
Hw) = —aw —n<w<n (10.6)

it will have both constant phase delay 7, and constant group delay 7,,. In fact,
in this case 7, = 1, = «. It can be shown (for example, Rabiner and Gold 1975)
that for « =0, the impulse response is an impulse of arbitrary strength:

c n=0
h =
(=] {o n#0
For nonzero a, it can be shown that Eq. (10.6) is satisfied if and only if
o= N-t (10.7a)
2
h{n] = h[N -1 —n] 0<n<N-1 (10.75)

Within the constraints imposed by (10.7), the possible filters are usually
separated into two types. Type 1 filters satisfy (10.7) with N odd, and type 2
filters satisfy (10.7) with N even. For type 1 filters, the axis of symmetry for
h[n] lies at n = (N —1)/2 as shown in Fig. 10.1. For type 2 filters, the axis
of symmetry lies midway between n =N/2 and n =(N — 2)/2 as shown in
Fig. 10.2.

h{n)

| | i

h(n)

N-2

2 2
Figure 10.1 Impulse response for a Figure 10.2 Impulse response for
type 1 linear phase FIR filter showing a type 2 linear phase FIR filter
even symmetry about n = (N —1)/2. showing even symmetry about

the abscissa midway between
n=(N-2)/2 and n = N/2.

164 Chapter Ten

Filters can have constant group delay without having constant phase delay
if the phase response is a straight line that does not pass through the origin.
Such a phase response is defined as

Ow)=p +aw (10.8)

The phase response of a filter will satisfy (10.8) if

o =Z—V2;1 (10.9a)
B=+= (10.9b)
2
h[n] = —h[N — 1 —n] 0<n<N-1 (10.9¢)

An impulse response satisfying (10.9¢) is said to be odd symmetric, or antisym-
metric. Within the constraints imposed by (10.9), the possible filters can be
separated into two types that are commonly referred to as type 3 and type 4
linear phase filters despite the fact that the phase response is not truly linear.
[The phase response is a straight line, but it does not pass through the origin,
and consequently 6(w, + w,) does not equal &w,) + 6(w,).] Type 3 filters
satisfy (10.9) with N odd, and type 4 filters satisfy (10.9) with N even. For type
3 filters, the axis of antisymmetry for h[n] lies at n = (N — 1)/2 as shown in
Fig. 10.3. When n = (N — 1)/2, with N even, Eq. (10.9¢) gives

{50

Therefore, A[(N —1)/2] must always equal zero in type 3 filters. For type 4
filters, the axis of antisymmetry lies midway between n = N/2 and
n = (N —2)/2 as shown in Fig. 10.4.

h(n) h{n)

P|Z eees

N4 N-1

2 2
Figure 10.3 Impulse response for a Figure 10.4 Impulse response for
type 3 linear phase FIR filter showing a type 4 linear phase FIR filter
odd symmetry about n = (N — 1)/2. showing odd symmetry about the

abscissa midway between n =
(N —2)/2 and n = N/2.

FIR Filter Fundamentals 165

The discrete-time Fourier transform (DTFT) can be used directly to obtain
the frequency response of any FIR filter. However, for the special case of
linear phase FIR filters, the symmetry and “realness” properties of the im-
pulse response can be used to modify the general DTFT to obtain dedicated
formulas having reduced computational burdens.

The frequency response H(e’*T) and amplitude response A(e’*T) are listed
in Table 10.1 for the four types of linear phase FIR filters. The properties of
these four types are summarized in Table 10.2. A C function, cgdFirRe-
sponse(), which implements the equations of Table 10.1 is provided in
Listing 10.1. The function normalizeResponse() in Listing 10.2 can be used
to normalize the response so that the peak pass-band value is at 0 dB.

At first glance, the fact that A(w) is periodic with a period of 4n for type 2
and type 4 filters seems to contradict the fundamental relationship between
sampling rate and folding frequency that was established in Chap. 7. The
difficulty lies in how we have defined A(w). The frequency response H(w) is in
fact periodic in 2n for all four types as we would expect. Both Re[H(w)] and
Im[H(w)] are periodic in 2z, but factors of —1 are allocated between A(w) and
O(w) differently over the intervals (0, 2n) and (27, 47) so that 8(w) can be made
linear [and A(w) can be made analytic].

TABLE 10.1 Frequency Response Formulas for Linear Phase FIR Filters

h(nT) symmetry N H(e’7) Ae’~T)
(N —1)/2
Even 0dd e —Jo(N =TIz fA(gjwT) Y a cos wkT
k=0
. . Niz
Even Even e ~JOW —DT12 p(gioT) Y. by cos[w(k —¥)T)
k=1
) (N=1)2
0Odd 0Odd e N = DT(2—n/2] A(giwT) Z a, sin wkT
k=1
_ _ N2
Odd Even e oW —DT2—n/2] A(gioT) Y b, sin[w(k — %)T]
k=1

S I G R (Y

TABLE 10.2 Properties of FIR Filters Having Constant Group Delay

Type
1 2 3 4
Length, N 0dd Even 0dd Even
Symmetry about w =0 Even Even Odd 0Odd
Symmetry about v == Even 0Odd Odd Even

Periodicity 2n 4n 2n 4

166 Chapter Ten

Some of the properties listed in Table 10.2 have an impact on which types
can be used in particular applications. As a consequence of odd symmetry
about w =0, types 3 and 4 always have A(0) =0 and should therefore not be
used for lowpass or bandstop filters. As a consequence of their odd symmetry
about o = 7, types 2 and 3 always have A(n) =0 and should therefore not be
used for highpass or bandstop filters. Within the bounds of these restrictions,
the choice between an odd-length or even-length filter is often made so that
the desired transition frequency falls as close as possible to the midpoint
between two sampled frequencies. The phase response of types 3 and 4
includes a constant component of 90° in addition to the linear component.
Therefore, these types are suited for use as differentiators and Hilbert
transformers (see Rabiner and Gold 1975).

FIR Filter Fundamentals

Listing 10.1 cgdFirResponse()

j!tt*#*‘*t*****tt*t*t**t*******t**t/

/* ¥/
/* Listing 18,1 */
T .
/* cadFirResponse() */
/* *

/ll******t*********#***t*****t***#*/

void cgdFirResponse{ int firType,
int numbTaps,
real hhll,
logical dbScale,
int number0fPaints,
real Hd[1)

{

int index, L, u;

real lumbde, work;

printf{"in symfirResponse\n”);*/

for{ L=8; L<=number0fFaints-1; L++}
{
lambda = L ¥ P] / (real) numberQfPoints;
switch {firType) {
case 1: /% symmetric and odd */
work = hh[{nushTaps-1)}/2];
for{ n=1; n<=({numbTaps-1},2); n++) {
index = {numbTaps-1}/2 - n;
work = work + 2.8 * hhlindex] * cos{n*lambda);
}
break;
case 2: /* symmetric and even */
work = 8.8;
for{ n=1; n<=(nuabTaps/2); n++) {
index = numbTaps/2-n;
work = work + 2.0 * hh[index] * cos{{n-8.5)*lambda);
)
break;
case 3: /% antisymmetric and odd */
work = 8.0;
for{ n=1; n<={{numbTaps-1)/2); n++) {
index = {numbTaps-1)/2 - n;
work = work + 2,8 ¥ hh{index] * sin{n*{ambda);
}
break ;
case 4: /* symmetric and even ¥/
work = 0,0;

167

168 Chapter Ten

for{ n=1; n<={numbTaps/2); n++} {
index = numbTaps/2-n;
work = work + 2.8 * hhlindex] * sin{{n-0.5)*lambda);

}
break ;
}
i fidbScale)
{Hd[L] = 28.8 * log!@{fabs{work));}
else

{Hd[L] = fabs{work);}
PfO{LE18)) printf("%3d\r",numberlfPoints-L);
}

return;

)

Listing 10.2 normalizeResponse()

/****#tt***tt*#**t**t*******t*****#/

/¥ ¥/
/% Listing 108.2 */
/% ¥/
/* normalizeResponse() x/
/% X/

/****tt**t***t*t***************t*#tf

void normalizeResponse{ logical dbScele,
int numPts,
real H[])

{

int n;

real biggest;

if{dbScale}

i
§

biggest = -108.8;

for{ n=8; n<=numPts-1; n++)
{if{H[n)>biggest) biggest = H[n];}

for{ n=8; n<=numPts-1; n++)
{H[n] = Hlnl-biggest;)

}

else

{

biggest = 8.8;

for{ n=8; n<=nurPts-1; n++)

FIR Fiiter Fundamentals 169

{if(H[n]>biggest) higgest = Hlnl;)
for{ n=8; n<=numPts-1; n++)

{H[n] = H{nl/biggest;}
}

return;

}

