Chapter

11

Fourier Series Method
of FIR Filter Design

11.1 Basis of the Fourier Series Method

This Fourier series method of FIR filter design is based on the fact that the
frequency response of a digital filter is periodic and is therefore representable
as a Fourier series. A desired “target’ frequency response is selected and
expanded as a Fourier series. This expansion is truncated to a finite number
of terms that are then used as the filter coefficients or tap weights. The
resulting filter has a frequency response that approximates the original
desired target response. '

Algorithm 11.1 Designing FIR filters via the
Fourier series method

step 1. Specify a desired frequency response H,(4).

step 2. Specify the desired number of filter taps N.

step 3. Compute the filter coefficients h[n] for n =0,1,2,..., N —1 using
1
hi{n] = o J H,(M)[cos(mi) +j sin(mi)] di (11.1)
2n

where m =n — (N — 1)/2.

[Simplifications of (11.1) are presented below for the cases in which H, is
the magnitude response of ideal lowpass, highpass, bandpass, or bandstop
filters.]

step 4. Using the techniques presented in Secs. 10.2 and 10.3, compute the
actual frequency response of the resulting filter. If the performance is not
adequate, change N or H,;(4) and go back to step 3.
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Figure 11.1 Desired frequency response for Example 11.1.

Example 11.1 Use the Fourier series method to design a 21-tap FIR filter that approxi-
mates the amplitude response of an ideal lowpass filter with a cutoff frequency of 2 kHz
assuming a sampling frequency of 5 kHz.

solution The normalized cutoff is A = 27 /5. The desired frequency response is depicted in
Fig. 11.1. Using Eq. (11.1), we can immediately write

1 2n/6 1 2n/5
h[n] =— J cos(mA)dA +j— sin(m4d) dA
2 J_pups 27 J_ous
Since the second integrand is an odd function and the limits of integration are symmetric
about zero, the second integral equals zero. Therefore,

sin(mA) [2*/5

T =

i= —2n/5
__sin(2mn [5)

mn

(11.2)

where m =n — 10.
L’Hospital’s rule can be used to evaluate (11.2) for the case of m =0 (that is, n = 10):

(d/dm) sin(2m=n /5)
(d/dm)m=n

_ (27 /5) cos(2mn [5)
7

h[10] =

m =0

m=0

2
=-=04
5

Evaluation of (11.2) for m #0 is straightforward. The values of h[n] are listed in Table
11.1, and the corresponding magnitude response is shown in Figs. 11.2 and 11.3. Usually,
the pass-band ripples are more pronounced when the vertical axis is in linear units such
as numeric magnitude or percentage of peak magnitude as in Fig. 11.2. On the other
hand, details of the stop-band response are usually more clearly displayed when the
vertical axis is in decibels as in Fig. 11.3.

Properties of the Fourier series method

1. Filters designed using Algorithm 11.1 will exhibit the linear phase prop-
erty discussed in Sec. 10.3, provided that the target frequency response
H,(2) is either symmetric or antisymmetric.
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TABLE 11.1 Impulse Response Coefficients for
the 21-tap Lowpass Filter of Example 11.1

R{0] = R[20] = 0.000000
R[1] = h[19] = —0.033637
Rh[2) = h[18] = —0.023387
h[3] = A[17] = 0.026728
h[4] = h[16] = 0.050455
h[5] =h[15}= 0.000000
h[6] = h[14] = —0.075683
R[7] = h[13] = —0.062366
R[8] = h[12] = 0.093549
R[9] = A[11]= 0.302731

R[10] = 0.400000

2. As a consequence of the Gibbs phenomenon, the frequency response of
filters designed with Algorithm 11.1 will contain undershoots and over-
shoots at the band edges as exhibited by the responses shown in Figs. 11.2
and 11.3. As long as the number of filter taps remains finite, these
disturbances cannot be eliminated by increasing the number of taps.

frequency X

Figure 1.2 Magnitude response (as a percentage of peak) ob-
tained from the 21-tap lowpass filter of Example 11.1.
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Figure 11.3 Magnitude response (in decibels) obtained from the 21-tap
lowpass filter of Example 11.1.

Windowing techniques to reduce the effects of the Gibbs phenomena will
be presented later in this chapter.

Result 11.1 FIR approximation for ideal lowpass filter. The impulse response co-
efficients for an FIR approximation to the ideal lowpass amplitude response
shown in Fig. 11.4 are given by
_sin(mlu) n=01..., N-1

nn m=n-—(N-1)/2

For odd-length filters, the coefficient at n = (/N — 1)/2 is obtained by applica-
tion of L’Hospital’s rule to yield

N-1] iy
h| —[=—
-
The coefficients given by Result 11.1 can be computed using the C function
idealLowpass( ), which is provided in Listing 11.1.

Result 11.2 FIR approximation for ideal highpass filter. The impulse response co-
efficients for an FIR approximation to the ideal highpass amplitude response
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Figure 11.4 Frequency response of ideal lowpass digital filter.

shown in Fig. 11.5 are given by

1-—- %L m=20
h =
(2] =9 _sinemi,) o
mmn

where m =n — (N — 1)/2.
The coefficients given by Result 11.2 can be computed using the C function
idealHighpass( ), which is provided in Listing 11.2.

Example 11.2 Use Result 11.2 to design a 2l-tap FIR filter that approximates the
amplitude response of an ideal highpass filter with a normalized cutoff frequency of
Ay = 3n/5.

solution The coefficients h(n) are listed in Table 11.2, and the resulting frequency re-
sponse is shown in Figs. 11.6 and 11.7.

Result 11.3 FIR approximation for ideal bandpass filter. The impulse response co-
efficients for an FIR approximation to the ideal bandpass amplitude response
shown in Fig. 11.8 are given by

Ay — A
_U_n_é m=0
hln] = 1
— [sin(miy) —sin(mi,)l  m#0
where m =n — (N —1)/2.
Hd(ej)‘)
-"rr AL o] AL ’I' A
“2wen, am-A

Figure 11.5 Frequency response of ideal highpass digital filter.
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TABLE 11.2 Impulse Response Coefficients for
the 21-tap Highpass Filter of Example 11.2

h[0] = A[20) =  0.000000
R[1] = h[19] = 0.033637
(2] = h[18] = —0.023387
R3] = A[17] = —0.026728
h[4] = h[16] = 0.050455
R[5] = A[15] =  0.000000
R[6] = h[14] = —0.075683
R[7] =h{13]= 0.062366
h{8)] = h[12] = 0.093549
R[9] = A[11] = —0.302731

R[10] =  0.400000

The coefficients given by Result 11.3 can be computed using the C function
idealBandpass( ), which is provided in Listing 11.3.

Example 11.3 Use Result 11.3 to design a 2l-tap FIR filter that approximates the
amplitude response of an ideal bandpass filter with a pass band that extends from
AL =2r[5 to Ay, = 3n/5.

frequency X

Figure 11.6 Magnitude response (as a percentage of peak) ob-
tained from the 21-tap highpass filter of Example 11.2.
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Figure 11.7 Magnitude response (in decibels) obtained from 21-tap
highpass filter of Example 11.2.

solution The coefficients A(n) are listed in Table 11.3, and the resulting frequency re-
sponse is shown in Fig. 11.9.

Result 11.4 FIR approximation for ideal bandstop filter. The impulse response co-
efficients for an FIR approximation to the ideal bandstop amplitude response
shown in Fig. 11.10 are given by

— A
Bl =4 4§
— [sin(mi,) —sin(miy)] m#0
T
where m =n — (N — 1)/2.
Hgtel™)
-;r Ay AL AL Ay 1Ir X

Figure 11.8 Frequency response of ideal bandpass digital filter.
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TABLE 11.3 Impuise Response Coefficients for
the 21-tap Bandpass Filter of Example 11.3

R[O] = R[20] =  0.000000
R[1] = A[19] =  0.000000
R[2] =h[18] = 0.046774
R[3] =A[17] = 0.000000
R[4] = A[16] = —0.100910
R[5] =A[15] = 0.000000
h6] =h[14] = 0.151365
h{7) =h[13]= 0.000000
R(8] = A[12] = —0.187098
R[9] =A[11]= 0.000000

R[10] =  0.200000

The coefficients given by Result 11.4 can be computed using the C function
idealBandstop( ), which is provided in Listing 11.4.

Example 11.4 Use Result 11.4 to design a 31-tap FIR filter that approximates the
amplitude response of an ideal bandstop filter with a stop band that extends from
Ap =215 to Ay = 3n/5.

magnitude (dB)

-80 | i
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Figure 11.9 Magnitude response (in decibels) obtained from the 21-tap
bandpass filter of Example 11.3.
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Figure 11.10 Frequency response of ideal bandstop digital filter.

TABLE 11.4 Impulse Response Coefficients for
the 31-tap Bandstop Filter of Example 11.4

h[0] = A[
h[1] = h[29] = —0.043247
R[2] = h[28] = 0.000000
R[3] =h[27] = 0.031183
h[4] = h[26] = 0.000000
R[5] = h[25] = 0.000000
h[6] = h[24] = 0.000000
R[] = h[23] = —0.046774
h[8] = h[22] = 0.000000
h[9] = A[21] = 0.100910
R[10] = A[20] = 0.000000
R[11] = A[19] = —0.151365
h[12] = A[18] = 0.000000
R[13] = A[17] = 0.187098
h[14] = R[16] = 0.000000
h[15]= 0.800000

30] = 0.000000

solution The coefficients A(n) are listed in Table 11.4, and the resulting frequency re-
sponse is shown in Figs. 11.11 and 11.12.

11.2 Rectangular Window

As shown in the previous section, filters designed via the Fourier series
method will, as a consequence of the Gibbs phenomenon, have frequency
responses that contain overshoots and ripple. One way to reduce these effects
involves multiplying the filter’s impulse response by a window that “tapers
off” the impulse response instead of abruptly truncating it to a finite number
of terms. The basic idea of windowing is very straightforward, and most of
the effort in this area is directed toward finding “good” window functions. A
discussion of just what constitutes a good window function will be easier if
we first develop a windowing viewpoint of truncation.
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Figure 11.11 Magnitude response (as a percentage of peak) ob-

tained from 31-tap bandstop filter of Example 11.4.
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Figure 11.12 Magnitude response (in decibels) obtained from 31-tap

bandstop filter of Example 11.4.
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w(t)

Figure 11.13 Rectangular win-
dow.

I
2 2

Truncating a filter’s impulse response can be thought of as multiplying the
infinite-length impulse response by a rectangular window such as the one
shown in Fig. 11.13. This window has a value of unity for all values of ¢ at
which the impulse response is to be preserved, and a value of zero for all
values of t at which the impulse response is to be eliminated:

T
t < —
wi) = 1< (11.3)
0  otherwise '
The rectangular window’s Fourier transform is given by
T sin ft
W(f)=—— (11.4)
nft

The magnitude of (11.4) is plotted in Fig. 11.14. The peaks of the first through
ninth sidelobes are attenuated by 13.3, 17.8, 20.8, 23.0, 24.7, 26.2, 27.4, 28.5, and
29.5 dB, respectively. The data for Fig. 11.14 was generated using the C
function contRectangularResponse( ) provided in Listing 11.5.

The rectangular window’s response will serve primarily as a benchmark to
which the responses of other windows can be compared [Note: By omitting
further explanation, some texts such as Stanley (1975) imply that Eq. (11.4)
also applies to the discrete-time version of the rectangular window. However,
as we will discover below, the Fourier transforms of the continuous-time and
discrete-time windows differ significantly. A similar situation exists with
respect to the triangular window.]

Discrete-time window

Since FIR filter coefficients exist only for integer values of n or discrete
values of ¢t =nT, it is convenient to work with a window function that is
defined in terms of n rather than ¢. If the function defined by (11.3) is sampled
using N =2M + 1 samples with one sample at ¢ =0 and samples at nT for
n=+1, +2, ..., + M; the sampled window function becomes

{1 -M<n<M
wln] =

11.5
0 otherwise ( )
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Figure 11.14 Magnitude spectrum for a continuous-time rectangular window.

For an even number of samples, the rectangular window can be defined as
either

wn] =1 -M—-1)<n<M (11.6)
or win] =1 ~M<n<(M-1) (11.7)

The window specified by (11.6) will be centered around a point midway
between n =0 and n =1, and the window specified by (11.7) will be centered
around a point midway between n = —1 and n =0. In many applications
(especially in languages like C that use zero-origin indexing), it is convenient
to have w(n] defined for 0 < n < (N —1):

wln] =1 0<n<s(N-1) (11.8)

In order to emphasize the difference between windows such as (11.5), which
are defined over positive and negative frequencies, and windows such as
(11.8) which are defined over nonnegative frequencies, digital-signal process-
ing “borrows” terminology from the closely related field of time-series analy-
sis. Using this borrowed terminology, windows such as (11.5) are called lag
windows, and windows such as (11.8) are called data windows. Data windows
are also referred to as tapering windows and occasionally tapers or faders. To
avoid having to deal with windows centered around Y or ~%, many authors
state that N must be odd for lag windows. However, even-length data
windows are widely used for leakage reduction in FFT applications.
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Frequency windows and spectral windows

The discrete-time Fourier transform (DTFT) of the lag window (11.5) is given by

sin[nf(2M + 1)]
sin(rnf)

The form of (11.9) is closely related to the so-called Dirichlet kernel D, () which
is variously defined as

W(f) = (11.9)

al g _sin{[n + (1/2)10}
D, (6= o :Z,n cos kO = S0
(Priestley 1981)
D@2 ¥ exp(2njh) = S22+ Dl
k=-n sin(nx)
(Dym and McKean 1972)
Al _sin{[n +(1/2))x}
Dy(x) £ k;n cos(kx) ==, o)

(Weaver 1989)

The magnitude of (11.9) is plotted in Fig. 11.15 for N =11 and Fig. 11.16 for
N =21. As indicated by these two cases, when the number of points in the
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figure 11.15 Magnitude of the DTFT for an 11-point rectangular window.
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Figure 11.16 Magnitude of the DTFT for a 21-point rectangular window.

window increases, the width of the DTFT sidelobes decreases. The sidelobes
in Fig. 11.15 are attenuated by 13.0, 17.1, 19.3, 20.5, and 20.8 dB; and the
sidelobes in Fig. 11.16 are attenuated by 13.2, 17.6, 20.4, 22.3, 23.7, 24.8, 25.5,
26.1, and 26.3 dB. The data for these plots were generated using the C function
discRectangularResponse( ) provided in Listing 11.6.

The DTFT of the data window (11.8) is given by

sin(N=f)

W(f) = exp| —jrf(N — 1)] “sin(nf)

(11.10)
A function such as (11.9), which is the Fourier transform of a lag window, is
called a spectral window. A function such as (11.10), which is the Fourier
transform of a data window, is called a frequency window. The forms of (11.9) and
(11.10) differ from the form of (11.4) due to the aliasing that occurs when the
continuous-time window function is sampled to obtain a discrete-time window.

11.3 Triangular Window

A simple, but not particularly high-performance, window 1is the triangular
window shown in Fig. 11.17 and is defined by

2l¢]

w) =1-20 || <= (11.11)
T 2
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Figure 11.17 Triangular window.
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Window functions are almost always even symmetric, and it is customary
to show only the positive-time portion of the window as in Fig. 11.18.
The triangular window is sometimes called the Bartlett window after
M. S. Bartlett who described its use in a 1950 paper (Bartlett 1950). The
Fourier transform of Eq. (11.11) is given by

_ t[sin(nft/2) TP
W(f)—2[————(nﬁ/2) ] (11.12)

The magnitude of (11.12) is plotted in Fig. 11.19. The peaks of the first
through fourth sidelobes are attenuated by 26.5, 35.7, 41.6, and 46.0 dB,
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Figure 11.18 One-sided plot of a triangular window.



186 Chapter Eleven

(dB)

-20 |

-30

magnitude

-40

-50

-60 |

0.t 0.2 0.5 1.0 2 5 10

normalized frequency (fr)

Figure 11.19 Magnitude response of a continuous-time triangular window.

respectively. The data for Fig. 11.19 was generated using the C function
contTriangularResponse( ) provided in Listing 11.7.

Discrete-time triangular window

If the function defined by (11.11) is sampled using N = 2M + 1 samples with
7 = 2MT, one sample at ¢t =0, and samples at nT for n=+1, £2,..., £ M,
the sampled window function becomes the lag window defined by

2
wln] =1 —J—;} —-M<n<<M (11.13)

for the normalized case of T = 1. This equation can be expressed in terms of
the total number of samples N by substituting (N —1)/2 for M to obtain

2| -—WN-1_ _N-1

winl=1-573 2 2

(11.14)

In some texts (such as Marple 1987 and Kay 1988), Eq. (11.14) is given as
the definition of the discrete-time triangular window. However, evaluation of
this equation reveals that w[n] =0 for n = + [(N — 1)/2]. This means that the
two endpoints do not contribute to the window contents and that the window
length is effectively reduced to N — 2 samples. In order to maintain a total of



Fourier Series Method of FIR Filter Design 187

N nonzero samples, many authors substitute (N +2) for N in Eq. (11.14) to
obtain

B |2n| -(N-1)_ _N-1
w[n]-l——N+1 5 <n< 7 (11.15)
N odd

For an even number of samples, the window values can be obtained by
substituting (n + %) for n in Eq. (11.15) to obtain a window that is symmetri-
cal about a line midway between n = —1 and n =0. (The equals sign in the
box below is in quotes because n can assume only integer values; neverthe-

less, n “=" —%, is a convenient shorthand way of saying “midway between
n=—1and n=0.")

l2n+1 —N N
2

<n<™_1 11.16
N+1 g " (11.16)

wlnl=1-—

? —“1

N even, center at n “= 5

Alternatively, we could substitute (n — %) for n in Eq. (11.15) to obtain a
window symmetric about a line midway between n =0 and n =1:

win] = 1 |2n — 1] —N+1< N (11.17)
nl=1-— <n < )
N+1 2 n 2
N even, center atn“=”§

An expression for the triangular data window can be obtained by substitut-
ing [n — (N — 1)/2] for n in Eq. (11.15) or by substituting (n — N/2) for n in Eq.
(11.16) to yield

|2n — N + 1|

0<n<N-1 11.18
N+1 " (11.18)

wnl=1-

Section 11.4 will present several C functions for generating various forms of
the discrete-time triangular window.

Frequency and spectral windows

The spectral window obtained from the DTFT of the lag window (11.14) is
given by

(11.19a)

W(f) = % |:sin(M1rf)j|2

sin(rnf)
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_ z sin[(N/4)0] )2
or _ W) = N {———-—————Sin[( 12)8] } (11.19%)
where M = E
2
2nf
0=
fs

The form of (11.19) is closely related to the Fejer kernel F,(-), which, like the
Dirichlet kernel presented in Sec. 11.3, has some variety in its definition:

» sin*(nnx)

F.@) = n sin*(nx)
(Priestley 1981)

F (02 sin%(nf/2)

2rn sin%(0/2)
(Dym and McKean 1972)
The magnitude of (11.19) for N =11 and N = 21 is plotted in Fig. 11.20. The

data for these plots were obtained using the C function discTriangularRe-
sponse( ) provided in Listing 11.8.

mognitude  (dB)

frequency X

Figure 11.20 Magnitude of the DTFT for (@) an 1l-point triangular
window and (b) a 21-point triangular window.
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11.4 Window Software

As we saw in the previous section, a window function can come in a nhumber
of different varieties—odd-length lag window, even-length lag window cen-
tered on n =Y, and so on. As was done for the triangular window, an explicit
function for each variety can be derived. However, the task of designing and
coding computer programs to generate window coefficients can be simplified
somewhat if we view the different varieties from a slightly different perspec-
tive. Despite the apparent variety of specific formats, there are really only
two basic forms that need to be generated—one form for odd-length windows
and one form for even-length windows. All of the specific varieties can be
generated as simply horizontal translations of these two forms. Furthermore,
since all the windows considered in this book are symmetric, we need to
generate the coefficients for only half of each window. An odd-length lag
window is probably the most “natural” of the discrete-time windows. Con-
sider the triangular window shown in Fig. 11.21, which has sample values
indicated at t = +nTforn =0,1, 2, .... Because of symmetry, we will require
our program to generate the (IV+1)/2 coefficients corresponding
to t=0,T,2T, 3T,...,(N—1)T/2 and place them in locations 0 through
(N —1)/2 of an array called window|[ ]. These coefficients can be obtained
using Eq. (11.15). Next we consider the triangular window shown in Fig.
11.22. This window has been shifted so that its axis of symmetry lies at
t = — T/2. The sample values indicated in the figure can be obtained from Eq.
(11.i6). The sample values for either the even-length case of Fig. 11.22 or the
odd-length case of Fig. 11.21 can be obtained from the combined formula

2)x|

wn]=1—-——

[n] N+1
h n for N odd

where x =
n+%  for N even
wit)
+ + + +- + + 4 + + + t
-6T -5T -4T -3T -2T -T T 2T 3T 4T 5T 6T

Figure 11.2¢ Triangular window sampled to produce an odd-length lag
window.
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wi(t)
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Figure 11.22 Triangular window shifted and sampled to produce an

even-length lag window with axis of symmetry midway between
n=-—1and n=0.

The C function, triangularWindow( ), provided in Listing 11.9, uses this
formula to generate coefficients for both odd- and even-length triangular
windows. For N odd, the value returned in window[0] lies on the full
window’s axis of symmetry and is the value of the continuous-time window at
t =0. For N even, the value returned in window[0] lies one-half sample-time
to the right of the full window’s axis of symmetry and is the value of the
continuous-time window at t = T/2.

Generating and storing a complete lag window would be conceptually
straightforward if C allowed the use of negative indices for arrays. Although
it is not possible to define an array that takes negative indices, it is possible
to give the appearance of negative indices by using the special structure
called WWWW, which is defined by the following code fragment:

typedef struct{
real left(256];
real right{256];
} timeRecord:
union timeRec{
real full[b12];
timeRecord half;
} WWWW!
# define LAG_WINDOW WWWW half.right
# define DATA_WINDOW WWWW full

Use of this special structure is one way to permit negative index values for
an array. The array WWWW_half.right can take a negative index because
of the space reserved by the left[ ] array within the structure half of type
timeRecord. The macro LAG_WINDOW is defined to facilitate easier
reference to WWWW . half.right. For example, the C statement

LAG_WINDOW([b5]=0.73b;

will place the value 0.735 into location 5 of the array WWWW.half.right
(which, owing to the union, is also location 261 of the array WWWW.full or
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DATA_WINDOW). The statements

LAG_WINDOW([-1]=0.25;
LAG_WINDOW([-256]=0.5;

will place the value 0.25 into location 255 and the value 0.5 into location 0 of
the array WWWW half.left.

The C function makeLagWindow( ), provided in Listing 11.10, takes a
half window as generated by triangularWindow( ) (or similar functions for
other window shapes to be presented in subsequent sections) and converts it
into a full lag window. For the output array, the call of this function should
use the array WWWW.half.right or its defined alias LAG_WINDOW:

makeLagWindow( numbTaps. window, center, LAG_WINDOW);

If N is odd, the full window will be placed in locations —(N — 1)/2 through
(N —1)/2 of the “array” LAG_-WINDOWTJ ]. If N is even and center is
negative, the full window will be placed in locations —N/2 through (N/2) — 1
of LAG-WINDOWT] ]. If N is even and center is positive, the full window
will be placed in locations —(N/2) + 1 through N/2 of LAG_WINDOW] ].

The C function makeDataWindow( ), provided in Listing 11.11, takes a
half window as generated by triangularWindow( ) (or similar functions)
and converts it into a full data window. For the output array, the call of this
function should use the array WWWW.full or its defined alias DATA_WIN-
DOW—

makeDataWindow( numbTaps, window, DATA_WINDOW);

If N is odd, the input value window[0] will lie on the axis of symmetry of the
output in DATA_WINDOW]/ ]. If N is even, the input value window[0] will
appear in two consecutive locations in the center of the output window, and
the axis of symmetry will lie between these two locations.

11.5 Applying Windows to Fourier Series Filters

Conceptually, a tapering window such as the triangular window is applied to
the input of an FIR approximation to an ideal filter. However, since multipli-
cation is associative, a much more computationally efficient implementation
can be had by multiplying the window coefficients and the original filter
coefficients to arrive at a modified set of filter coefficients. The impulse
response coeflicients produced by the C functions of Sec. 11.1 are generated in
a data window format {that is, h[n] is defined for 0 < n < N —1}. Therefore
the window coefficients should also be put into a data window format before
multiplying them with the ideal filter coefficients of Sec. 11.1.
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TABLE 11.5 Coefficients for a 21-tap Lowpass Filter

{h[n] are the original coefficients; w[n] are triangular
window coeflicients}

n hin] wln) wln] - hln]
0, 20 0.000000 0.000000 0.000000
1,19 —0.033637 0.090909 —0.006116
2,18 —0.023387 0.181818 —0.006378
3,17 0.026728 0.272727 0.009719
4, 16 0.050455 0.363636 0.022934
5,15 0.000000 0.454545 0.000000
6, 14 —0.075683 0.545455 —0.048162
7,13 —0.062366 0.636364 —0.045357
8,12 0.093549 0.727273 0.076540
9,11 0.302731 0.909091 0.275210

10 0.400000 1.00 0.400000

Example 11.5 Apply a triangular window to the 21-tap lowpass filter of Example 11.1.

solution Table 11.5 lists the original values of the filter coefficients, the corresponding
discrete-time window coefficients, and the final values of the filter coefficients after the
windowing has been applied. The frequency response of the windowed filter is shown in
Figs. 11.23 and 11.24. The response looks pretty good when plotted against a linear axis

frequency X\

Figure 11.23 Magnitude response (as a percentage of peak) for a
triangular-windowed 21-tap lowpass filter.
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Figure 11.24 Magnitude response (in decibels) for a triangular-
windowed 21-tap lowpass filter.

as in Fig. 11.23, but the poor stop-band performance is readily apparent when the
response is plotted on a decibel scale as in Fig. 11.24.

11.6 von Hann Window

The continuous-time von Hann window function shown in Fig. 11.25 is

defined by

2nt
w(t) =0.5+ 0.5 cos Tn lt] < (11.20)

T
2
The corresponding frequency response, shown in Fig. 11.26, is given by

W(f) = 0.541 sinc(nfr) + 0.237 sinc[nt(f — 1)] + 0.237 sinc[nt(f + 7)] (11.21)

The first sidelobe of this response is 31.4 dB below the main lobe, and the
main lobe is twice as wide as the main lobe of the rectangular window.
References to the von Hann window as the “hanning” window are wide-
spread throughout the signal processing literature. This is unfortunate for
two reasons. First, the window gets its name from Julius von Hann, not some
nondescript Mr. Hanning. Second, the term hanning is easily (and often)
confused with Hamming. Oppenheim and Schafer (1975) insinuate that the
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Figure 11.25 The von Hann window.
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Figure 11.26 Magnitude response of the von Hann window.
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incorrect use of hanning is due to Blackman and Tukey (1958). This window
is ocassionally called a raised-cosine window.

Discrete-time von Hann window

If the function defined by Eq. (11.20) is sampled using N = 2M + 1 samples
with one sample at ¢ =0 and samples at nT for n = +1, +2,..., + M, the
sampled window function becomes

wln] = 0.5 + 0.5 cos % _M<n<M (11.22)

for the normalized case of T =1. Evaluation of (11.22) reveals that w(n) =0
for n = + M. This means that the two endpoints do not contribute to the
window contents and that the window length is effectively reduced to N — 2
samples. In order to mantain a total of N nonzero samples, we must substitute
M +1 for M in Eq. (11.22) to yield

2nn
=(. . — —-M<n< 11.
wln] = 0.5 + 0.5 cos S+ 1) M<ns<M (11.23)

Equation (11.23) can now be recast in terms of N by substituting (N — 1)/2 for
M to obtain

—(N-1 —~1
wln] = 0.5+ 0.5 cos Iin—nl (A; ) <n< Nz (11.24)
n odd

For an even number of samples, the window values can be obtained by
substituting either (n + %) or n(—%) for n in Eq. (11.24) to obtain

n(2n + 1) -N N
=0. . <n<—-— .
w(n] 5+ 0.5 cos N1 2 n 5 1 (11.25)
[ ” _1
N even, center at n “= -
n(2n — 1) -~N N
=40. . <n<— .
wln] =0.5+ 0.5 cos N1 3 +1<n 3 (11.26)
[1 b2l 1
N even, center at n “= 2

The C function, hannWindow( ), provided in Listing 11.12, generates co-
efficients for the von Hann window.
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TABLE 11.6 Coefficients for a 21-tap Lowpass Filter

{h[n} are the original coefficients; w{n] are von Hann
window coefficients}

n h[n] win] win) - hfn]
0, 20 0.000000 0.000000 0.000000
1,19 —0.033637 0.024472 —0.000823
2,18 —0.023387 0.095492 —0.002233
3,17 0.026728 0.206107 0.005509
4,16 0.050455 0.345492 0.017432
5,15 0.000000 0.500000 0.000000
6, 14 -0.075683 0.654508 —0.049535
7,13 -0.062366 0.793893 —0.049512
8,12 0.093549 0.904508 0.084616
9,11 0.302731 0.975528 0.295323

10 0.400000 1.00 0.400000

Example 11.6 Apply a von Hann window to the 21-tap lowpass filter of Example 11.1.

solution Table 11.6 lists the original values of the filter coefficients, the corresponding
discrete-time window coefficients, and the final values of the filter coefficients after the
windowing has been applied. The frequency response of the windowed filter is shown in
Fig. 11.27.

(dB)

magnitude

frequency A

Figure 11.27 Magnitude response for a von Hann-windowed 21-tap
lowpass filter.
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11.7 Hamming Window

The continuous-time Hamming window function shown in Fig. 11.28 is
defined by

2nt
w(t) = 0.54 + 0.46 cos —  |¢] <

T
= 11.27
. 2 (11.27)

The Fourier transform of Eq. (11.27) is given by
W(f) = 0.541 sinc(nfr) + 0.237 sinc[rnt(f — 1)] + 0.237 sinc[rt(f + 1)) (11.28)

The magnitude of (11.28) is plotted in Fig. 11.29. The highest sidelobe of this
response 1s 42.6 dB below the main lobe, and the main lobe is twice as wide
as the main lobe of the rectangular window’s response. This window gets its
name from R. W. Hamming, a pioneer in the areas of numerical analysis and
signal processing, who opened his numerical analysis text (Hamming 1972)
with the now famous and oft-quoted pearl, “The purpose of computing is
insight, not numbers.”

Discrete-time Hamming windows

If the function defined by Eq. (11.27) is sampled using N =2M + 1 samples
with one sample at £ =0 and samples at nT for n= +1, +2,..., + M, the

i A 1 i i i i I I

0. 0.2 0.3 0.4 0.5

Figure 11.28 Hamming window.
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Figure 11.29 Magnitude response of the Hamming window.

sampled window function becomes the lag window defined by

2
wln] = 0.54 + 0.46 cos 2—”13 _M<n<M (11.29)

for the normalized case of T = 1. Equation (11.29) can be expressed in terms
of the total number of samples N by substituting (N — 1)/2 for M to obtain

2nn —(N-1) N-1
= <n< .
w([n] = 0.54 + 0.46 cos N_1 2 n 5 (11.30)
n odd

For an even number of samples, the window values can be obtained by
substituting n + % for n in Eq. (11.30) to obtain

n(2n + 1) —-N N
= (. . <n<—-—1 .
w(n] = 0.54 + 0.46 cos N1 5 n 2 (11.31)

-1
N even, center at n “=" -

The data window form can be obtained by substituting [n — (N — 1)/2] for n in



Fourier Series Method of FIR Fiiter Design 199

Eq. (11.30) or by substituting (n — N/2) for n in Eq. (11.31) to yield

2
w[n] = 0.54 — 0.46 cos mn

<n<N-— 11.
N_1 0<n 1 (11.32)

(Note the change in sign for the cosine term-——this is not a typographical
error.)

Example 11.7 Apply a Hamming window to the 21-tap lowpass filter of Example 11.1.

solution The windowed values of h[k] are listed in Table 11.7, and the corresponding
frequency response is shown in Fig. 11.30.

Computer generation of window coefficients

The C function hammingWindow( ), provided in Listing 11.13, generates
ordinates for the Hamming window. The output conventions for even and odd
N are as described in Sec. 11.4.

11.8 Dolph-Chebyshev Window

The Dolph-Chebyshev window is somewhat different from the other windows
in this chapter in that a closed-form expression for the time domain window
is not known. Instead, this window is defined as the inverse Fourier trans-
form of the sampled-frequency response which is given by

cos{N cos™ [ cos(nk/N)]}

Wk] = (—1)* cosh(N cosh™! f)

—(N—-1)<ksN-1 (11.33)

A sidelobe level of —80 dB is often claimed for this response, but in fact, Eq.
(11.33) defines a family of windows in which the minimum stop-band attenua-
tion is a factor of . A stop-band attenuation of 20x dB is obtained for a value

TABLE 11.7 Coefficients for a 21-tap
Hamming-Windowed Lowpass Filter

k hlk]
0, 20 0.000000
1,19 ~0.003448
2,18 —0.003926
3,17 0.007206
4,16 0.020074
5,15 0.000000
6, 14 —0.051627
7,13 —0.050540
8,12 0.085330
9,11 0.295915

10 0.400000
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magnitude (dB)

2
frequency XA

Figure 11.30 Magnitude response for a Hamming-windowed 21-tap
lowpass filter.

of B given by

1
B = cosh|:—]\—7 cosh1(10“)} (11.34)
Often, f > 1 and consequently, evaluation of (11.32) may entail taking the
inverse cosine of values with magnitudes greater than unity. In such cases,
the following formula can be used:

TC —
——tan

1 X
R <«/1—x2> <[ <1 (11.35)
In(x + /22— 1) x| =1

The Dolph-Chebyshev window takes its name from C. L. Dolph and Pafnuti
Chebyshev. The function W(k) is a normalized form of the function developed
by Dolph (1946) for specifying an antenna pattern optimized to achieve a
narrow main lobe while simultaneously restricting the sidelobe response.
Helms (1968) applied Dolph’s result to the analogous problem of optimizing a
filter response for a narrow transition band while simultaneously restricting
sidelobe response. The name of Chebyshev is associated with this window
because for integer values of z, the numerator of Eq. (11.33) is the zth order
Chebyshev polynomial:

1

T,(x) = cos(z cos™ ' x)
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Listing 11.1 idealLowpass( )

f****ltt*****t******!****t*t****t**/

A4 x/
/¥  Listing 11.1 */
/¥ x/
/¥ ideallowpass{) X/
/% 'y

j********l***tt******#*************/

veid ideallowpass( int numbTaps,

{

int n,nllax;
real mm;

reul lumbdall,
real hh[1)

printf{"in ideallowpass\n"};

for{ n=0; n<numbTaps; n++}

{

mw = 1 - (real){numbTaps-1)/2.8;

i finm==0)
{hhin}
else
{hh{n]
}

return;

}

lambdall/P1;}

sin{mm * laombdal)/{mm * PI}:}

Listing 11.2 idealHighpass( )

/****t**t***t‘ti*******l*****t*****/

/* *f
/¥ Listing 11.2 */
/* x4
/*  idealHighpass{) */
7* */

/tt**********‘#*****t*********t****;

void idealHighpass{ int numbTaps,

{
int n,nMax;
real um;

real lambdal,
real hh[])

printf{"in idealHighpass\n");

201
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for{ n=0; n<numbTaps; n++)

{
ne = n - (real){nunbTaps-1},2.0;
ifimm==@)
{hh{n] = 1.8 - lambdaL/PI;}
else
{hhin] = -sin{mm * lambdal}/{mm * FI1};}
}
return;

}

Listing 11.3 idealBandpass( )

/t************t***t****t******‘*t**/

/¥ */
/¥ Listing 11.3 */
If' x * 7/
/*  idealBandpassi() */
/¥ */

/‘**"#tt*i*t**t**********#*‘*****l’**/

void idealBandpass( int numbTaps,
real lambdal,
real lambdall,
real bh{l)

{

int n,nMax;

real am;

printf{"in idealBandpass\n"};

for{ n=8; n<numbTaps; n++)

{
wn = n - (real){numbTaps~1)/2.8;
if(mp==8)
{hhln]l = {lambdal - lambdal }/Fi;}
else
{bh{n] = {sin{mm * lambdal) - sin{mm * lasbdal))/{mm * PI};}
}
return;

}



Listing 11.4 idealBandstop( )

/**t*t**‘**#t***t#*****t#*t*******t/

/* */
/¥ Listing 11.4 x/
/¥ */
/%  idealBandstop() %/
/* */

/t**tttt**t***t*****t***ttt*******t/

int numbTaps,
real lambdal,
real lambdal,
real hh{}}

void idealBandstopi

{

int n,nflax;

real mm;

printf{"in idealBandstop\n

"y

N

for{ n=0; n<numbTaps; n++)

Fourier Series Method of FIR Filter Design

{sin{n * lambdal) - sin{am * lambdal)}/{mm * PI}:}

{
s = n - {real){numbTaps-1}/2.8;
i f{mm==0)
{hh{n] = 1.8 + (lambdal - lambdal)/P1;}
else
{hhin] =
}
return;

}

Listing 11.5 contRectangularResponse( )

/t*t*ttt*K*#*ttt***it#!#t*****xt****/

/¥ X/
/* Listing 11.5 x/
7* x/
/% contRectangulorResponse() X/
/* ¥/

/****t****tttt*t****!*********t***tt;

3define TINY 3.16e-5

real contRectangularfiesponse{ real freg, real tau, logical dbScale)

{

real x;

203
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x = sinc{Pl * freq * tau);
iftdbScale)
{
if(fabs{x) < TINY)
{x = -98.6;}
else
{x = 28.8%log18{fabs(x));}
}
returnix);

}

Listing 11.6 discRectangularResponse( )

/t#t**t#t**#*tlt#****tttt*ttttttt**t/

/¥ x/
/% Listing 11.6 */
/¥ Y,
/*  discRectangularResponse() x/
/% L

/#***#t*t*#ttt****‘**t*k#***#t*t***#/

real discRectangularResponse( real freq,

int M,

togical normalizedAmplitude)
{

real result;

if(freq == 8.0)
{ result = (real) (2¥N+1);}
else
{ result = fobs{sin{PI * freq * (2*%M+1))/ sin( PI * freq));}

if( normalizedfmplitude ) result = result / {(real) (2%N+1);
return{result};

}
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Listing 11.7 contTriangularResponse( )

/**t*#******tltltttttt**l#*#*#t**‘*/

/* x/
/¥ Listing 11.7 */
/¥ */
/¥ contTriaongularResponse() %/
7% X/

/t*t*tt*i##t#t*tt*t‘t*!ilttt#t*t*tt/

real contTriangularResponse( real freqg,
real tou,
logical dbScate)

{

real ampl, x;

ampB = @.5 ¥ tou;

x = Pl ¥ freq * taou / 2.0;

x = 8.5 % tau * sincSqrd{x);

i f(dbScale)
{
i f(fabsi{x/ompB) < TINY)
{x = -98.0;}
else

{x = 20.8%log!8(fabs{x/ampB)); }
}

return{x);

}

Listing 11.8 discTriangularResponse( )

/**********8&K*****#ttttt#*tt**#t**/

/* */
/* Listing 11.8 */
/% *f
/*  discTriangularResponse() */
/* x/

/*#*#*tt**tt**#*tt*ttt*t**t*t**t*t*/

real discTriangularResponse( real freq,

int M,

logical normalizedfmplitude)
{

real result;
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if({freq == 8.8)
{ result = (real) N;}
else
{ result = (sin(PI * freq * M) * sin(PI * freq * M)) /
(N * sin( PI * freq) * sin( Pl * freg));
}

if( normalizedAmplitude ) result = result / (real) N;
return{resutt);

}

Listing 11.9 triangularWindow( )

/**tttlt*#*t**t****tttttttttt****#t’

/* *f
/% Listing 11.9 x/
/% X/
/% triongularllindow{) */
/% */

/!t**ttt#*#*t&t*#tt**i***tt*tt****t/

void triongularllindow{ int N, real window[])
{

real offset;

int n;

offset = {real) (1-(N%2));

for(n=8; n<(N/2.B); n++)
{
window[n] = 1.8 - (2.0%n + of fset )/(N+1.0);
}

return;

}

Listing 11.10 makelLagWindow( )

JERRERXRAERAEERRRRXKRERRE KRR ERRRR KKK /

/* */
/% Listing 11.18 */
/* */
/%  mokelogllindow() */
/¥ x/

/*ttt*lt*ttt#t*****t*t*tt*t**t*t**t;

void mokeLaglindow{ int N,
reol windouw[],
int center,
real outlindou[])
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{

int n,M;

PfINE2) {
N=(N-1)/2;
for(n=8; n<=M; n++) {
outlindow[n] = window{n];
outlindow[-n] = outlindowln};
}
}
else {
N=(N-2)/2;
if{center == negative) {
for( n=8; n<=M; n++) {
outdindow[n] = window{n];
outWindow[-(1+n)] = window(n];
}
}
else |
for( n=8; n<=M; n++) {
outlindow[n+1] = window[n];
outdindow[-n] = window{n];

}
}

return;

}

Listing 11.11 makeDataWindow( )

/#t*#t***t*****t*#*K*t*it*t*t****##/

/* 7
/¥ Listing 11.1 x/
/t */
/¥  makeDatalindow() */
/¥ */

j*t*tt*t***t**t***#*t*********t*#*t/

void mokeDatallindow( int N,
real window(],
real outlindow(])

int n,MN;
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if(Ng2) {
M={N-1)/2;
for{n=8; n<=M; n++) {
outdindouw{n] = window{M-r];
outlindow{M+n] = window{n);
}
}
else {
M=(N-2)/2;
for{n=6; n<=M; n++) {
outWindow(n] = window[M-n]};
outWindow[l+n+1] = windowln];
}
}
return;

}

Listing 11.12 hannWindow( )

/**t*t***t#*tt************t******t*/

/% x/
/¥  Listing 11.12 */
/¥ X/
/¥  hannllindoe() %/
/* */

/#*****ltt****t*******l#***t**t*#**/

void hannlindow{ int N, real window[])

{

logical odd;
int n;

odd = N¥2;

for{n=8; n<(N/2.8); n++)
{
ifi odd}
{window[n] = 8.5 + @.5 * cos{THO_PI*n/iH-1)};}
else
{window[n] = @.5 + B.5 * cos{TUO_PI * (2%n+1)/(2.0%(N-1))};}
}

return;

}
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Listing 11.13 hammingWindow( )

/t**t*tt*!***#t****t******t*‘t***#*/

™ ¥
/*  Listing 11.13 */
Al */
/*  hasminglindow(} */
™ ¥

/t*****tt‘*t**t******t***t***t****#f

vaid hamminglindow{ int N, real window[])
{

logical odd;

int n;

odd = H&2Z;

forin=8; n<{N/2.6); n++j

{
ifi odd)

{window[n] = .54 + €.46 * cos{THO_PI*n/{N-1}};}
else

{fwindow[n] = 8.54 + #.46 *

cos{TUO_P] * (2¥n+1)/(2.@%(N-1)));}
}
return;

}



