Chapter

12

FIR Filter Design: Frequency
Sampling Method

12.1 Introduction

In Chap. 11, the desired frequency response for an FIR filter was specified in
the continuous-frequency domain, and the discrete-time impulse response
coefficients were obtained via the Fourier series. We can modify this proce-
dure so that the desired frequency response is specified in the discrete-
frequency domain and then use the inverse discrete Fourier transform (DFT)
to obtain the corresponding discrete-time impulse response.

Example 121 Consider the case of a 2l-tap lowpass filter with a normalized cutoff
frequency of ., =38rn/7. The sampled magnitude response for positive frequencies is
shown in Fig. 12.1. The normalized cutoff frequency 4, falls midway between n =4 and
n =5, and the normalized folding frequency of 4 =n falls midway between n =10 and
n =11. (Note that 45/10.5 = 3/7.) We assume that H,(—n) = H,(n) and use the inverse
DFT to obtain the filter coefficients listed in Table 12.1. The actual continuous-frequency

Hqln)

1 2 3 4:5 e 7 8 9 10:1

Ay L

Figure 121 Desired discrete-frequency magnitude re-
sponse for a lowpass filter with 7, = 3=/7.

211

212 Chapter Twelve

TABLE 12.1 Coefficients for the 21-tap Filter
of Example 12.1

h[0] = h[20] = 0.037334
h[1] = A[19] = —0.021192
h[2] = h[1 8] —0.049873
h[3]=h[17] = 0.000000

h[4] = [16] = 0.059380
h5] = h[15] = 0.030376
(6] = h[14] = —0.066090

= h[13] = —0.085807

R[S] =h[12] = 0.070096

RI91=h[11] = 0.311490
R[10] = 0.428571

response of an FIR filter having these coefficients is shown in Figs. 12.2 and 12.3. Figure
12.2 is plotted against a linear ordinate, and dots are placed at points corresponding to
the discrete-frequencies specified in Fig. 12.1. Figure 12.3 is included to provide a
convenient baseline for comparison of subsequent plots that will have to be plotted
against decibel ordinates in order to show low stop-band levels.

The ripple performance in both the pass-band and stop-band responses can
be improved by specifying one or more transition-band samples at values
somewhere between the pass-band value of H,(m) =1 and the stop-band

frequency X\

Figure 12.2 Magnitude response for filter of Example
12.1.

FIR Filter Design: Frequency Sampling Method 213

magnitude (dB)

-80

-90]

N N L " " 2

[0} f.d L

2
frequency X\

Figure 12.3 Filter response for Example 12.1 plotted on deci-
bel scale.

value of H,(m) =0. Consider the case depicted in Fig. 12.4 where we have
modified the response of Fig. 12.1 by introducing a one-sample transition band
by setting H,(5) =0.5. The continuous-frequency response of this modified
filter is shown in Fig. 12.5, and the coefficients are listed in Table 12.2.

The peak stop-band ripple has been reduced by 13.3dB. An even greater
reduction can be obtained if the transition-band value is optimized rather
than just arbitrarily set halfway between the pass-band and the stop-band
levels. It is also possible to have more than one sample in the transition band.
The methods for optimizing transition-band values are iterative and involve
repeatedly computing sets of impulse response coefficients and the corre-
sponding frequency responses. Therefore, before moving on to specific opti-
mization approaches, we will examine some of the mathematical details and

Hg(n)

+ A & " g g n

1 2 3 4 5 6 7 8 9 10 11

Figure 124 Discrete-frequency magnitude response
with one transition-band sample midway between the
ideal pass-band and stop-band levels.

214 Chapter Twelve

-20

-40 }

-50 F

magnitude (dB)

-70 b

-80 |

0 r L4

2
frequency A

Figure 125 Continuous-frequency magnitude response corre-
sponding to the discrete-frequency response of Fig. 12.3.

TABLE 12.2 Coefficients for the 21-tap
Filter with a Single Transition-Band
Sample Value of 0.5

R[0] = A[20] = 0.002427
R[1]=A[19] = 0.008498
h[2] = h[18] = —0.010528
R3] = h[17] = —0.023810
h[4] = R[16] = 0.016477
R[5] = A{15] = 0.047773
R[6] = h[14] = —0.020587
R[7] = A[13] = —0.096403
R[8] = A[12} = 0.023009
R[9] =A[11] = 0.315048
h[10] = 0.476190

explore some ways for introducing some computational efficiency into the
process.

12.2 0Odd N versus Even N

Consider the desired response shown in Fig. 12.6 for the case of an odd-length
filter with no transition band. If we assume that the cutoff lies midway

FIR Filter Design: Frequency Sampling Method 215

A{n}
(np + Ye)F

Ay g

Figure 12.6 Desired frequency-sampled response for an
odd-length filter with no transition-band samples.

between n =n, and n = n, + 1 as shown, the cutoff frequency is 2nF (n, + %),
where F is the interval between frequency domain samples. For the nor-
malized case where T =1, we find F = 1/N, so the normalized cutoff is given
by

_n(2n, + 1)

Ay N

(12.1)
This equation allows us to compute the cutoff frequency when n, and N are
given. However, in most design situations we will need to start with known
(desired) values of N and 1, and then determine n,. We can solve (12.1) for
n,, but for an arbitrary value 1, the resulting value of n, might not be an
integer. Therefore, we write

= _Z 12.2
"> L o 2 (12.2)
where A,p denotes desired A, and |-| denotes the “floor” function that

truncates the fractional part from its argument. Equation (12.2) yields a
value for n, that guarantees that the cutoff will lie somewhere between n, and
n, + 1, but not necessarily at the midpoint. The difference A4 =|Ay = Ayp| is
an indication of how “good” the choices of n, and N are—the smaller AA is,
the better the choices are.

It is a common practice to assume that the cutoff frequency lies midway
between n = n, and n = n, + 1 as in the preceding analysis. If the continuous-
frequency amplitude response is a straight line between A(n) =1 at n=n,
and A(n) =0 at n =n, + 1, the value of the response midway between these
points will be 0.5. However, since A(n) is the amplitude response, the
attenuation at the assumed cutoff is 6 dB. For an attenuation of 3 dB, the
cutoff should be assigned to lie at a point which is 0.293 to the right of n, and
0.707 to the left of n, + 1.

216 Chapter Twelve

If we assume that the cutoff lies at n, +0.293, the cutoff frequency is
2nF(n, + 0.293) and the normalized cutoff is given by
_ 2n(n, +0.293)

(12.3)

The required number of samples in the (two-sided) pass band is 2n, + 1 where

Niyp
o = [2n

- 0.293J

For convenience we will denote the i, given by (12.1) as 4¢ and the i, given
by (12.3) as A,.

Even N

Now let’s consider the response shown in Fig. 12.7 for the case of an
even-length filter with no transition band. If we assume that the cutoff lies
midway between n = n, and n = n, + 1, the cutoff frequency is 2rFn, and the
normalized cutoff is

2nn
de =2
" N

Solving for n, and using the floor function to ensure integer values, we obtain

e 1)

P 2n

If we assume that the cutoff lies at n, +0.293, the cutoff frequency is
2nF(n, — 0.207) and the normalized cutoff is

_ 2zn(n, —0.207)

A
N
Aln)
on

e o 8 o

> —o——0—o—+o n

l\p-
+ + A
Ay »

Figure 12.7 Desired frequency-sampled response for an
even-length filter with no transition-band samples.

FIR Filter Design: Frequency Sampling Method 217

The required number of samples in the (two-sided) pass band 2n, where

Ni
n, = [Z;D +0.207 J

If processing constraints or other implementation considerations place an
upper limit N_,, on the total number of taps that can be used in a particular
situation, it might be smart to choose between N = N, and N = (N, — 1)
based upon which value of N yields A, that is closer to Ayp.

Example 122 For N_,, =21 and g, = %%, determine whether N = 21 or N = 20 would

be the better choice based on values of Al.

solution For N =20,

ny= |2GHDL | (%0,

2n 7
1 __27r(4)_2_n
2 5
37 2n n
R R b
For N =21,
21[(3n/7)} 1
m- | HGE 3| —a1-4
9 3=m
=TT
3n 3n
=|=-=|=0
Al 7 7l

For this contrived case, N =21 is not only the better choice—it is the best choice,
yielding Ad =0.

Example 123 For N,_,, =21 and 4,, = %%, determine whether N = 21 or N = 20 would

be the better choice based on values of Al

solution For N =20,

L20[(2n 15)]
n,= | ———

+ 0.207J =14.209|=4
27

_ 2n(4-0.207)

=1.1916
20 !

4s

Al = l 2—57:— - 1.1916‘ = 0.065

218 Chapter Twelve

For N =21,

{21[(2n/5)]
n,= | ———

— 0.293J =13.907|=3
2n

27(3.293
Ay = —”(—ﬁ-—) =0.9853

Al = l 2%[- 0.9853‘ =0.2714

Since 0.065 < 0.2714, the better choice appears to be N = 20.

12.3 Design Formulas

The inverse DFT can be used as it was in Example 12.1 to obtain the
impulse response coefficients A(n) from a desired frequency response that
has been specified at uniformly spaced discrete frequencies. However, for
the special case of FIR filters with constant group delay, the inverse DFT
can be modified to take advantage of symmetry conditions. Back in Sec. 8.2,
the DTFT was adapted to the four specific types of constant-group-delay
FIR filters to obtain the dedicated formulas for H(w) and A(w) that
were summarized in Table 10.1. For the discrete-frequency case, the DFT
can be similarly adapted to obtain the explicit formulas for A(k) given in
Table 12.3. (The entries in the table are for the normalized case where
T =1.) After some trigonometric manipulation, we can arrive at the corre-
sponding inverse relations or design formulas listed in Table 12.4. These
formulas are implemented by the C function fsDesign() provided in Listing
12.1.

TABLE 12.3 Discrete-Frequency Amplitude Response of FIR Filters with Constant Group Delay

Type

1 M-1 _ M
hin] symmetric h{M]+ S 2h[n] cos[MN—”&} =M1+ 3 2h[M —n) cos<27;$n>
n=0

N Odd = n=1
2 w2t 2n(M —n)k| N2 [N onkln — (1/2
h[n] symmetric Y 2h[n) cos[u}= ¥ 2h|:——n] cos{ rk[n — (1/)]}
N even h=0 N n=1 2 N
3 M1 M
2n(M — n)k 2nk
h{n] antisymmetric Y. 2h[n] sin[gn(r)]= Y. 2h[M —n] sin(T n>
N odd n=0 N ne1 N

: Rt (M —nk| N2 N 2nk(n — (1/2
h[n] antisymmetric Y 2hn) sin[u:l -y Zh[——n] sin{ nk(n —(1/)]}
N even n=0 N A=l 2 N

FIR Filter Design: Frequency Sampling Method 219

TABLE 12.4 Formulas for Frequency Sampling Design of FIR Filters with Constant Group Delay

Type h{nln=0,1,2,..., N—1
1 M
1 2 — M)k
h[n] symmetric — {A(O) + Y 24A(k) cos[L(n“):,}
N odd N = N
2 _
1 LERE 2n(n — M)k
h[n] symmetric l {A(O) + Y 24(k) COSI:M]}
N even N ko1 N
3 M _
h[n] antisymmetric l{ Z 2A(k) sin[wil}
N odd N = N
4 1 WD - 2n(M — n)k
h[n] antisymmetric — {A <y) sin[e(M —n)] + Y 24(k) sin[_:l}
N even N 2 k=1 N

12.4 Frequency Sampling Design with
Transition-Band Samples

As mentioned in the introduction to this chapter, the inclusion of one or
more samples in a transition band can greatly improve the performance of
filters designed via the frequency sampling method. In Sec. 12.1, some im-
provement was obtained by simply placing one transition-band sample
halfway between the pass band’s unity amplitude and the stop band’s zero
value. However, even more improvement can be obtained if the value of this
single transition-band sample is “optimized.” Before proceeding, we need to
first decide just what constitutes an “optimal” value for this sample—we
could seek the sample that minimizes pass-band ripple, minimizes stop-band
ripple, or minimizes some function that depends upon both stop-band and
pass-band ripple. The most commonly used approach is to optimize the
transition-band value so as to minimize the peak stop-band ripple.

For any given set of desired amplitude response samples, determination of
the peak stop-band ripple entails the following steps:

1. From the specified set of desired amplitude response samples H,;, compute
the corresponding set of impulse response coeflicients A4 using the C
function fsDesign() presented in Sec. 12.3.

2. From the impulse response coefficients generated in step 1, compute a fine-
grained discrete-frequency approximation to the continuous-frequency
amplitude response using the C function cgdFirResponse() presented in
Sec. 10.3.

3. Search the amplitude response generated in step 2 to find the peak value
in the stop band. This search can be accomplished using the C function
findSbPeak() given in Listing 12.2.

220 Chapter Twelve

In general, we will need five parameters to specify the location of the stop
band(s) so that findSbPeak() “knows’ where to search. The first parameter
specifies the band configuration—lowpass, highpass, bandpass, or bandstop.
The other parameters are indices of the first and last samples in the filter’s
pass bands and stop bands. Lowpass and highpass filters need only two
parameters n; and n,, but bandpass and bandstop filters need four: n,, n,, ns,
and n,. The specific meaning of these parameters for each of the basic filter
configurations is shown in Fig. 12.8. For easier argument passing, find-
SbPeak() has been designed to expect the filter configuration specified in a
single input array bandConfig[] as follows:

bandConfig[0] = 1 for lowpass, 2 for highpass,
3 for bandpass, 4 for bandstop

bandConfig[1] = n,
bandConfig[2] = n,
bandConfig[3] = n,
bandConfig[4] = n,
bandConfig[5] = number of taps in filter

To see how this information is used, consider the lowpass case where n, is the
index of the first stop-band sample in the desired response H,[n]. The goal is
to find the peak stop-band value in the filter’s continuous-frequency magnitude
response. The computer must compute samples of a discrete-frequency approx-
imation to this continuous-frequency response. This approximation should not
be confused with the desired response H, [n], which is also a discrete-frequency
magnitude response. The latter contains only N samples, where N is the
number of taps in the filter. The approximation to the continuous-frequency
response must contain a much larger number of points. The number of samples
in the (one-sided) approximation to the continuous response is supplied to
findSbPeak() as the integer argument numPts. For the examples in this
chapter, values for numPts ranging from 120 to 480 have been used. In
searching for the peak of a lowpass response, findSbPeak() directs its
attention to samples n, and beyond in the discrete-frequency approximation
to the continuous-frequency amplitude response where

2Ln,
=%
and L = number of samples in the (one-sided) approximation to the continu-
ous response (that is, numPts)
N = number of taps in the filter
n, =index of first sample in the desired (positive-frequency) stop band

FIR Filter Design: Frequency Sampling Method 221

(a) °

™ n2

(b) .

] ne

(c) * e

M n2 n3 Ne

@) P .

M n2 n3 Na

Figure 12.8 Parameters for specifying band configurations: (a)
lowpass, (b) highpass, (c) bandpass, and (d) bandstop.

For highpass, bandpass, and bandstop filters, the search is limited to the stop
band in a similar fashion.

The approach for finding the peak, as outlined in steps 1 through 3 above,
contains some ‘“fat” that could be eliminated to gain speed at the expense of
clarity and modularity. For example, computing the entire amplitude re-
sponse is not necessary, since only the stop-band values are of interest to the
optimization procedure. Also, for any given filter, consecutive peaks in the
response will be separated by a number of samples that remains more or less
constant—this fact could be exploited to compute and examine only those
portions of the response falling within areas where stop-band ripple peaks
can be expected.

Optimization

In subsequent discussions, T, will be used to denote the value of the single
transition-band sample. One simple approach for optimizing the value of T,

222 Chapter Twelve

is to just start with T, =1 and keep decreasing by some fixed increment,
evaluating the peak stop-band ripple after each decrease. At first, the ripple
will decrease each time 7', is decreased, but once the optimal value is passed,
the ripple will increase as we continue to decrease T,. Therefore, once the
peak ripple starts to increase, we should decrease the size of the increment
and begin increasing instead of decreasing T,. Once peak ripple again stops
decreasing and starts increasing, we again decrease the increment and
reverse the direction. Eventually, T, should converge to the optimum value.
A slightly more sophisticated strategy for finding the optimum value of T, is
provided by the so-called golden section search (Press et al. 1986). This
method is based on the fact that the minimum of a function f(x) is known to
be “bracketed” by a triplet of points a < b < ¢ provided that f(b) < f(a) and
f(b) < f(c). Once an initial bracket is established, the span of the bracket can
be methodically decreased until the three points a, b, and ¢ converge on the
abscissa of the minimum. The name “golden section” comes from the fact
that the most efficient search results when the middle point of the bracket is
a fraction distance 0.61803 from one endpoint and 0.38197 from the other. A
C function goldenSearch(), provided in Listing 12.3, performs a golden
section search for our specific application. This function calls fsDesign(),
cgdFirResponse(), normalizeResponse(), findSbPeak(), and set-
Trans(). All of these have been discussed previously, with the exception of
setTrans(), which is provided in Listing 12.4. For the single-sample case
this function is extremely simple, but we shall maintain it as a separate
function to facilitate anticipated extensions for the case of multiple samples
in the transition band that will be treated in Secs. 12.5 and 12.6. The inputs
accepted by goldenSearch are as follows:

firType: 1 for N odd, h[n] symmetric; 2 for N even, h[n] symmetric; 3 for N
odd, A[n] antisymmetric; 4 for N even, h{n] antisymmetric

numTaps: The number of taps in the desired FIR filter

Hd[]: The positive-frequency samples of the desired magnitude response
tol: The tolerance used to terminate the golden section search

numFreqPts: The number of samples in the (one-sided) discrete-frequency
approximation to the filter’s continuous-frequency response

bandConfig]]: An array containing filter configuration information as
explained above for findSbPeak()

The function provides two outputs—the peak stop-band value of the magni-
tude response is provided as the function’s return value, and the correspond-
ing abscissa (frequency) is written into *fmin.

Example 12.4 For a 21-tap lowpass filter, find the value for the transition-band sample
H,[5] such that the peak stop-band ripple is minimized.

FIR Filter Design: Frequency Sampling Method 223

-30 F

-40 }

-50 }

-60 F

mognitude (dB)

-70 F

-80 }

frequency X

Figure 12.9 Magnitude response of 21-tap filter from Example
12.4.

solution The optimal value for H,[5] is 0.400147, and the corresponding amplitude re-
sponse is shown in Fig. 12.9. The filter coefficients are listed in Table 12.5. Compared to
the case where H,[5] = 0.5, the peak stop-band ripple has been reduced by 11.2 dB.

12.5 Optimization with Two Transition-Band Samples

The optimization problem gets a bit more difficult when there are two or more
samples in the transition band. Let’s walk through the case of a type 1

TABLE 12.5 Coefficients for the Filter
of Example 12.4

R[O] = h[20] = 0.009532
R[1]=h[19] = 0.002454
h{2] = h[18] = —0.018536
R3] = h[17] = —0.018963
R[4] = h[16] = 0.025209
R[5] =h[15] = 0.044232
h[6] = h[14] = —0.029849
R[7] = h[13] = —0.094246
R{8]=h[12] = 0.032593
R[9]=h[11] = 0.314324
h[10] = 0.466498

224 Chapter Twelve

lowpass filter with 21 taps having a desired response specified by

1.0 0<|n|<4
_ Hy |n|=5
Hd[n]_ HA \n|=6
00 7<|n|<10

The values of H, and Hj will be optimized to produce the filter having the
smallest peak stop-band ripple.

1. Letting Hz; =1 and using a stopping tolerance of 0.01 in the single-
sample goldenSearch() function from Sec. 12.4, we find that the peak
stop-band ripple is minimized for H, = 0.398227. Thus we have defined one
point in the H,-Hjy plane; specifically (H,4, = 0.398227, Hp, = 1.0).

2. We define a second point in the plane by setting Hy =0.97 and once
again searching for the optimum H , value that minimizes the peak stop-band
ripple. This yields a second point at (0.376941, 0.97).

3. The two points (0.398227,1) and (0.376941,0.97) can then be used to
define a line in the H,-Hy plane as shown in Fig. 12.10. Our ultimate goal
is to determine the ordered pair (H,, Hg) that minimizes the peak stop-
band ripple of the filter. In the vicinity of (H,,, 1), the line shown in Fig.
12.10 is the “best” path along which to search and is therefore called the
line of steepest descent. On the way to achieving our ultimate goal, a
useful intermediate goal is to find the point along the line at which the
filter’s stop-band ripple is minimized. In order to use the single-sample
search procedure from Sec. 12.4 to search along this line, we can define
positions on the line in terms of their projections onto the H, axis. To
evaluate the filter response for a given value of H,, we need to have Hpg
expressed as a function of H,. The slope of the line is easily determined from
points 1 and 2 as

1—-0.97
= = 1.4093
™ = 0.398227 — 0.376941
Hg
0.2 + Figure 1210 Line of steepest de-
scent plotted in the H,-Hy plane.

04 0.2 03 0.4 05 Ha

FIR Filter Design: Frequency Sampling Method 225

Thus we can write
Hy; =1.4093H, + b (12.4)

where b is the Hy intercept. We can then solve for b by substituting the
values for H,, Hy at point 1 into (12.4) to obtain

b=Hz —1.4093H,
=1 - 1.4093(0.398227) = 0.438779
Thus the line of steepest descent is defined in the H,-Hj plane as
Hy, =1.4093H, + 0.438779 (12.5)

The nature of the filter design problem requires that 0 < H, <1 and 0 <
Hg < 1. Furthermore, examination of (12.5) indicates that Hzy < H, for all
values of H, between zero and unity. Thus, the fact that Hz must not exceed
unity can be used to further restrict the values of H,. We find that H; =1 for
H, =0.39823. Therefore, the search along the line is limited to values of H,
such that 0 < H, < 0.39823. The point along the line (12.5) at which the peak
stop-band ripple i1s minimized is found to be (0.099248, 0.57863). The peak
stop-band ripple at this point is —66.47 dB.

4. The ripple performance of —66.47 is respectable, but it is not the best
that we can do. The straight line shown in Fig. 12.10 is in fact just an
extrapolation from points 1 and 2. Generally, the actual path of steepest
descent will not be a straight line and will diverge farther from the extrapo-
lated line as the distance from point 1 increases. Thus when we find the
optimum point (labeled as point 3) lying along the straight line, we really
have not found the optimum point in general. One way to deal with this
situation is to hold Hgy constant at the value corresponding to point 3 and
then find the optimal value of H,—without constraining H, to lie on the
line. This results in point 4 as shown in Fig. 12.11. (Figure 12.11 uses a
different scale than does Fig. 12.10 so that fine details can be more clearly
shown.) The coordinates of point 4 are (0.98301, 0.57863).

5. We now perturb Hy by taking 97 percent of the value corresponding
to point 4 [that is, Hg = (0.97)(0.57863) = 0.561271]. Searching for the value
of H, that minimizes the peak stop-band ripple, we obtain point 5 at
(0.085145, 0.561271).

6. The two points (0.099248, 0.57863) and (0.085145, 0.561271) can then be
used to define the new line of steepest descent shown in Fig. 12.11. Using
the approach discussed above in 3, we then find the point along the line at
which the peak stop-band ripple is minimized. This point is found to be
(0.098592, 0.579014), and the corresponding peak ripple is —69.680885 dB.

7. We can continue this process of defining lines of steepest descent and
optimizing along the line until the change in peak stop-band ripple from one
iteration to the next is smaller than some preset limit. Typically, the opti-

226 Chapter Twelve

0.580 { H
B
0.575
0.570
0.565 1
Figure 1211 Second line of
0.560 Ha steepest descent.

0.085 0.090 0.095 0.010

mization is terminated when the peak ripple changes by less than 0.1dB
between iterations. Using this criterion, the present design converges after
the fourth line of steepest descent is searched to find the point (H 4=
0.098403, Hz = 0.579376) where the peak stop-band ripple is —71.08 dB.

Programming considerations

Optimizing the value of H,, with Hj expressed as a function of H,, requires
some changes to the way in which the function findSbPeak() interfaces to
the function goldenSearch(). In the single-sample-transition case, the
search was conducted with H, as the independent variable supplied (in the
appropriate location of Hd[]) to findSbPeak(). For the two-sample-transi-
tion case, the software has been designed to conduct the search in terms of
the displacement p measured along an arbitrary line. (This approach is more
general than it needs to be for the two-sample case, but doing things this way
makes extension to three or more samples relatively easy—see Sec. 12.6 for
details.) The function findSbPeak() “expects” to have the H, and Hj
values “plugged into” the appropriate locations in the array Hd[]. The
function goldenSearch2() given in Listing 12.5 has been modified to include
a call to setTransition() before each call to findSbPeak(). The function
setTransition(), shown in Listing 12.6, accepts p as an input and resolves it
into the H, and Hyz components needed by findSbPeak() for computation of
the impulse response and the subsequent estimation of the continuous-
frequency amplitude response. The line along which p is being measured is
specified to setTransition() via the origins|] and slopes[] arrays. The
values of H, and Hjy corresponding to p =0 are passed in origins|[1] and
origins[2], respectively. The changes in H, and Hy corresponding to Ap =1
are passed in slopes[1] and slopes[2], respectively. Setting slopes[1} =1 and
origins[1] =0 is the correct way to specify H, =p. (Note that if we set
slopes[1] =1, origins[1] =0, slopes[2] =0 and origins[2] =0, the single-
sample case can be handled as a special case of the two-sample case, since

FIR Filter Design: Frequency Sampling Method 227

these values are equivalent to setting H, = p and Hz = 0.) The iterations of
the optimization strategy are mechanized by the function optimize2() given
in Listing 12.7. After each call to goldenSearch2(), the function opti-
mize2() uses the function dumpRectComps() (shown in Listing 12.8) to
print the H, and Hj projections of the value returned by goldenSearch2().

Example 12.5 Complete the design of the 21-tap filter that was started at the beginning
of this section.

solution As mentioned previously, when goldenSearch2() is used with a stopping
tolerance of 0.01, the example design converges after four lines of steepest descent have
been searched. Each line involves 3 points—2 points to define the line plus 1 point at
which the ripple is minimized. The coordinates and peak stop-band ripple levels for the
12 points of the example design are listed in Table 12.6. Each of these points required 8
iterations of goldenSearch2(). The impulse response coefficients for the filter corre-
sponding to the transition-band values of H, = 0.098403 and H, = 0.579376 are listed in
Table 12.7. The corresponding magnitude response is plotted in Fig. 12.12.

TABLE 12.6 Points Generated in the Optimization Procedure
for Example 12.5

Iteration H, Hy, Stop-band peak, dB
1 0.398227 1.0 —42.22
2 0.376941 0.97 —42.76
3 0.099248 0.578630 —66.47
4 0.098301 0.578630 —69.93
5 0.085145 0.5661271 —65.87
6 0.098592 0.579014 —69.68
7 0.098301 0.579014 —71.05
8 0.085145 0.561643 —65.20
9 0.098473 0.579241 —70.89

10 0.098301 0.579241 —171.02
11 0.085145 0.561864 —64.61
12 0.098403 0.579376 —71.08

TABLE 12.7 Impulse Response Coefficients for
the Filter of Example 12.5

R[O} = h[20] = 0.002798
R{1]=h[19] = 0.004783
Rh{2] = h[18] = —0.006541
(3] = R[17] = —0.018285
h[4] = h[16] = 0.007862
R[5] = h[15] = 0.042175
Rh[6] = h[14] = —0.007896
R[7) = h[13] = —0.092308
R{8] =h[12] = 0.007530
R[9]=h[11] = 0.313553
R[10] = 0.492659

228 Chapter Twelve

magnitude (dB)
o
[}

-80 F

-90 }

n

frequency X

Figure 12.12 Magnitude response for Example 12.5.

Careful examination of the values in Table 12.6 reveals several anomalies.
Points 1, 2, 4, 5, 7, 8, 10, and 11 define lines of steepest descent; and points 3,
6,9, and 12 are the corresponding optimal points along these lines. The ripple
performance of the “optimal” point 6 i1s —69.68 while the performance at
point 4 is —69.93. These two points lie on the same line, and the performance
at point 4 is better than the performance at point 6. A similar situation
occurs with points 7 and 9. Such behavior indicates that the stopping
criterion for goldenSearch2() is not stringent enough, thereby allowing the
search to stop before the best point on the line is found.

Example 12.6 Redesign the filter of Example 12.5 using tol = 0.001 instead of tol = 0.01.

solution The number of iterations required for each point increases from 8 to 14, but the
design procedure terminates after only two lines of steepest descent. The coordinates and
peak stop-band ripple levels for the six points of this design are listed in Table 12.8. The
impulse response coefficients are listed in Table 12.9.

TABLE 12.8 Points Generated in the Optimization Procedure
for Example 12.6

Iteration H, Hy Stop-band peak, dB
1 0.399133 1.0 —42.24
2 0.377674 0.97 —42.73
3 0.100240 0.582148 —170.46
4 0.100220 0.582148 —70.34
5 0.087517 0.564683 —65.10
6 0.100425 0.582429 —170.39

FIR Filter Design: Frequency Sampling Method 229

TABLE 12.9 Impulse Response Coefficients tor
the Filter of Example 12.6

hl[0] = A[20] = 0.002636
h[1] =h[19] = 0.004775
h[2] = h[18] = —0.006170
h[3] = R[17] = —0.018170
h{4] = h[16] = 0.007275
h[5] =h[15] = 0.042024
h[6] = h[14] = —0.007122
h[7] = h[13] = ~0.092186
h(8}=h[12] = 0.006629
A[9]=h[11] = 0.313507
h[10} = 0.493605

Comparison of Tables 12.6 and 12.8 reveals that performance obtained in
Example 12.6 is 0.7 dB worse than the performance obtained in Example 12.5.
Furthermore, within Example 12.6, the performance at point 3 is slightly
better than the performance at point 6. Possible strategies for combatting
these numeric effects would be to use a “tweaking factor” larger than 97
percent, or to have the tweaking factor approach unity with successive
iterations.

12.6 Optimization with Three Transition-Band Samples

Just as the two-transition-sample case was more complicated than the single-
sample case, the three-sample case is significantly more complicated than the
two-sample case. Let’s consider the case of a type 1 lowpass filter having a
desired response as shown in Fig. 12.13. (The following discussion assumes
that the three variables H,, Hg, and H are each assigned to one of the axes
in a three-dimensional rectilinear coordinate system.)

1. Consider points along the line defined by H. =1, Hg =1. (Note: Ho =1
defines a plane parallel to the H, -Hy plane, and Hyz =1 defines a plane that
intersects the H, = 1 plane in a line which is parallel to the H, axis.) Use a
single-variable search strategy (such as the golden section search) to locate
the point along this line for which the peak stop-band ripple is minimized.
Denote the value of H, at this point as H,;.

2. Consider points along the line defined by H,=1,Hz=1—¢ Use a
single-variable search strategy to locate the point along this line for which
the peak stop-band ripple is minimized. Denote the value of H, at this point
as H,,.

3. The points (H,,, 1) and (H,,, 1 — ¢) define a line in the H, -Hyg plane as
shown in Fig. 12.10 for the two-sample case. [Actually the points and the line

230 Chapter Twelve

Figure 1213 Desired response
for a 21-tap type 1 filter with
three samples in the transition
band.

are in the plane defined by Hy =1, and their projections onto the H,-Hyg
plane are shown by Fig. 12.10. However, since the planes are parallel,
everything looks the same regardless of whether we plot the points in the
H_ =1 plane or their projections in the H, -Hpy (that is, H. = 0) plane.] In the
vicinity of (H,,, 1), this line is the “best” path along which to search and is
therefore called the line of steepest descent. Search along line to find the point
at which the peak stop-band ripple is minimized. Denote the values of H, and
Hjy at this point as H,; and Hpg;, respectively. As noted previously, the true
path of steepest descent is in fact curved, and the straight line just searched
is merely an extrapolation based on the two points (H,,, 1) and (H,,, 1 —¢).
Thus the point (H 43, Hg;) is not a true minimum. However, this point can be
taken as a starting point for a second round of steps 1, 2, and 3 which will
yield a refined estimate of the minimum’s location. This refined estimate can
in turn be used as a starting point for a third round of steps 1, 2, and 3. This
cycle of steps 1, 2, and 3 is repeated until the peak ripple at (H,,, Hgz,)
changes by less than some predetermined amount (say, 0.1 dB).

Listing 12.1

/******3***********‘**K*"***“***t**/

fsDesign()

/¥ */
/¥ Listing 12.1 */
/¥ */
/¥ {sDesign() X/
/¥ X/
JERRERRREERESERRRERRRE AR RRRRREEARR
int fsfesign(int N,

int firType,

real R[],

real h(1)
{
int n,k, status;
real x, N;

M= (N-1,0)7/2.0;
status = @;
switch {firType) {
case |
i f{N%2) {
for{n=8; n<N; n++) {
hin] = A[E];

FIR Filter Design: Frequency Sampling Method

x = THOPI * {n-M)/N;

for{k=1; k<
hin] =
}

hin] = hnl/N;

}

=M; k++)

}
else

{status = 1;}
break;

case 2:
i f(Nx2)
{status = 2;}
else {
for{n=@; n<N; n++) {
hinl = A[8];

!
1

hinl + 2.8%R[k]*cos{x*k);

x = TUO_PI * {n-M)/N;

for(k=1; k<=(H/2-1); k++) {
hinl = hln] + 2.8*Alk]1*cos{x*k};

}
hin] = hinl/N;
}

231

232 Chapter Tweive

}
break ;
S X/
case 3:
i fINE2) {
forin=8; n<N; n++) {
hin] = &
x = TUO_PT * (M-n)/N;
forik=1; k<=N; k++) {
h{n] = hin] + 2.8*A[k]¥*sin{x¥k};
}
hin] = hinl/N;
}
1
else
{status = 3;}
break ;
/e e Y,
case 4
i f(N%2)
{status = 4;}
else {
for{n=8; n<N; n++) {
hin] = BIN/2]*sin{PI¥(N-n)};
% = THO_PL * (n-M)/N;
for{k=1; k<=(N/2-1); k++} {
hin] = hlnl + 2.8*ALk]*sin{x*k);
}
hinl = hlnl/H;
}
}
break;
}

return{status);

}

FIR Filter Design: Frequency Sampling Method 233

Listing 12.2 findSbPeak()

/#ttt**t*#t#t**‘#t*t#*****tttt*t#**/

/* */
/* Listing 12.2 */
/¥ */
/% findSbPeak{) x/
/* */

fﬂ****************t***‘t***t*t*#***/

real findSbPeak{ int bandConfigl],
int numPts,
real H[1)

{

real peak;

int n, nBeg, nEnd, index{fPeak;

int filterType;

filterType=bandConfigle];

switch {filterType) {
case |: /* lowpass */
nBeg = 2*numPts*bandConfig[2]/bandCenfig{5];
nEnd = numPts-1;

break;
case 2: /* highpass */
case 3; /* bandpass */
nBeg = B;
nEnd = 2*numPts*bandConfigl!]/bandConfig(5];
break;
case 4: /* bandstop */

nBeg = 2*nunPts*bandConfigl2]/bandConfig(5];
nEnd = Z*numPts*bandConfig[3]/bandConfigl5];
break;

}

peak = -9999.8;
for(n=nBeg; n<nEnd; n++) {
if(H[n}>peak) {
peak=H[n];
index(fPeak = n;
}
3
if{filterType == 4) { /* bandpass has second stopband */
nBeg = 2*numPts*bandConfigl4]/bandConfig[8];
nEnd = nuaPts;
for{n=nBeg; n<nEnd; n++) {
i f(H[n]>peak} {

234 Chapter Twelve

peak=H[n];
index(fPeak = n;

}

}

}
return(peak);

}

Listing 12.3 goldenSearch()

/**t***t#***l*‘##*tt****tt*****t**t/

/* */
/¥ Listing 12.3 */
/* */
/* goldenSearch() */
/* */

ft*****t*t********************tt‘**/

real goldenSearch{ int firType,
int numbTaps,
real Hd[],
real tol,
int nuafreqgPts,
int bandConfigl],
real *fmin)
il
3
real x8, x!, x2, x3, xain, f@, f1, {2, {3, oldimin;
real leftlrd, rightlrd, aidOrd, midAbsc, x, xb;
real delta;
static real hh[1881, H{61@];
int n;
logical dbScale;
FILE *logPtr;

printf("in goldenSearch\n"});
logPtr = fopen{“search.log”,”v"

dbScale = TRUE;

setTrans(bundlonfig, 8, Hd);

fsDesign{ numbTaps, firType, Hd, hh);

cgdF irResponse(firType,nunbTaps, hh, dbScale, numFreqPts,H);
noraalizeResponse{dbScale, nurFregPts,H);

leftOrd = findSbPeak(bandConfig,numFreaPts H};
printf("leftOrd = £f\n", leftlrd);

FIR Filter Design: Frequency Sampling Method

setTrans{ bandlonfig, 1.8, Hd);

fsDesign{ numbTaps, firType, Hd, hh);

cgdf irResponse{firType,nusbTaps, hh, dbScale, numFreqPts, H);
normal izeResponse{dbScale, numFreqPts,H);

rightOrd = findSbPeak{bandConfig,nusfFregPts,H);
printf({"rightOrd = Xf\n",rightOrd};

pause{pauseEnabled);

if(leftOrd < rightOrd) {

midfAbsc=1.0;

forf;;) {
printf{"checkpoint 3\n");
midAbsc = GOLD3 * midAbsc;
setTrans{ bandConfig, midAbsc, Hd);
fsbesign{ numbTaps, firType, Hd, hh);
cgdf irResponse{firType,nunbTaps, hh, dbScale, nuafregPts,H);
normalizeResponse(dbScale,nunFreqPts, H);
mid0rd = findSbPeak(bandConfig,nunfreqPts H);
printf("midlrd = $f\n",midOrd)};
ifimidOrd < leftOrd) break;

}
}
else {
x =1.0;
for{;;) {
x = GOLD3 * x;
midAbsc = 1.8 - x;
print f{"checkpoint 4\n");
setTrans{ bandConfig, midAbsc, Hd);
fsDesign{ nuabTaps, firType, Hd, hh);
cgdF irResponse! f irType,nusbTaps, hh, dbScale, nuaFregPts H);
noraal i zeResponse{dbScale, nuaFreqPts,H);
pidOrd = findSbPeak(bandConfig,nusfreqPts,H};
printf("mid0rd = $f\n",mid0rd);
i f(midOrd < rightOrd) break;
}
}
xb = midAbsac:
/* __ */
x8 = 8.8;
x3 = 1.8;
x] = xb;

x2 = xb + GOLD3 * {1.8 - xb);
printf{"xB= %f, xi= &f, x2= %f, x3= ¥f\n",x0,x1,x2,x3};

setTrans{ bandConfig, x1, Hd);
fsDesign{ nuabTaps, firType, Hd, hh);
cgdf irResponse{firType,numbTaps, hh, dbScale, numFregPts,H);

235

236 Chapter Twelve

normalizeResponse{dbScale,nuaFreqPts,H);
f1 = findSbPeak{bandConfig,nunfregPts,H);

setTrons{ bandConfig, x2, Hd);

fshesign{ numbTaps, firType, Hd, hh);

cgdf irRespanse! firType ,numnbTaps, hh, dbScale, numFreqPts,H);
normalizeResponse(dbScale,numFreqPts, H);

f2 = findSbPeak{bandConfig,numnfregPts,H};

old¥min = 8.8;

for{n=1; n<=180; n++) {

if{f1<=f2) {
x3 = x2;
xZ = x1;
x1 = GOLO6 * x2 + GOLD3 * x8;
f3 = 12;
f2 = f1;
setTrans{ bandConfig, x!, Hd);
fsbesign{ numbTaps, firType, Hd, hh);
cgdfirResponse{firType,numbTaps, hh, dbScale, nunfFregPts,H);
noraal i zeAespanse(dbScale, nusFreqPts,H);
f1 = findSbPeak(bandConfig,numfreqPts,H);
printf("x8= %f, x1= %f, x2= ¥f, x3= Xf\n",x8,x1,x2,x3);
}

else {
x@ = x1;
xt = x2;
x2 = GOLD6 * x1 + GOLD3 * x3;
f8 = f1;
fl = f2;
setTrans{ bandConfig, x2, Hd);
fsDesign(numbTaps, firType, Hd, hh);
cqdf irResponse(firType,nunbTaps, hh, dbScale, numFreqPts,H);
normalizeAesponse{dbScale,nunFreqPts,H);
f2 = findSbPeak{bandConfig, numfregPts,H);
printf("xB= Xf, xi= $f, x2= &f, x3= $f\n",x6,x1,x2,x3);
}

delta = fabs{x3 - x@);
olddmin = xmin;
printf("at iter &d, delta = ¥f\n",n,delta);
printf{"tol = &f\n",tol);
if(delta <= tol) break;
}
if{(f1¢£2)
{xmin = xi;
*fmin=f1;}

FIR Filter Design: Frequency Sampling Method 237

else

{xmin = x2;

Xfain=f2;)
printf("miniaue of Xf at x = Xf\n", *fmin, xain);
fprintf{logFptr, "mininun of ¥f at x = ¥f\n", *fmin, xming;
return{xmin);

}

Listing 12.4 setTrans()

/#****‘******3t***l*##*t***t******‘/

/% x/
/¥ Listing 12.4 */
/% ¥/
/% setTrans() */
/* */

/*t***x*****ttt****#t*#t*#*#******#/

void setTrans{ int bandConfigl],
real x,
real Hd[1)

{

int nt, n2, n3, n4;

nl = bandConfigl1];
n2 =« bandConfigl2];
n3 = bandConfigl3};
n4 = bandConfig[4];

switch {(bandConfigl[81) {

case 1: /% lowpass */
Hdln2-1] = x;
break ;
case 2: /¥ highpass */
Hdlni+t] = x;
break;
case 3: /* bandpass */
Hd[nt+t] = x;
Hd[n4-1) = Hd[n1+1];
break;
case 4: /¥ bandstop */
Hd[n2-1] = x;
Hd[n3+1] = Hd[n2-1];
break;
}
return;

}

238 Chapter Twelve

Listing 12.5 goldenSearch2()

/lt**********l**t****tt************/

/* x/
/¥ Llisting 12.5 */
* *
/* goldenSearch2() */
* */

/*****t*t*tt*tt****t***t*t*tt******[

real goldenSearch2{ real rhollin,
real rhollax,
int firType,
int numbTaps,
real Hd[],
real tol,
int nuaFregPts,
real origins[],
real slopesa{],
int bandCenfig{l,
real *fmin)
{
real x8, x1, x2, x3, xmin, &, {1, f2, {3, cld¥min;
real leftOrd, rightlrd, midOrd, midRbec, x, xb;
real delta;
static real hh[188], H[618];
int n;
logical dbScale;

dbScale = TRUE;

setTransition{ origins, slopes, bandConfig, 8, Hd);
fsDesign(numbTaps, firType, Hd, hh);

cgdF irResponse{firType,numnbTaps, hh, dbScale, numFregPts, H);
normalizeResponse{dbScale,nuaFreqPts,H);

leftOrd = findSbPeak{bandConfig,nunfreqPts,H);

setTransition(origins, slopes, bandConfig, rholtax, Hd);
fsDesign(numbTaps, firType, Hd, hh};

cgdf irResponse(firType,numbTaps, hh, dbScale, numFregPts H);
norsalizeResponse(dbScale, nurFreqPts, H);

rightOrd = findSbPeak{bandConfig,numfregPts Hj;

if(leftOrd < rightOrd) {
aidAbsc=rholtax;
for(;;) {
midAbsc = GOLD3 * midfbsc;

FIR Filter Design: Frequency Sampling Method

setTransition{ origins, slopes, bandConfig, midRbsc, Hd};
fsliesign{ numbTaps, firType, Hd, hh};

cgdF irResponsel f irType, numbTaps, hh, dbScale, numFregPts,H;;
normal izeResponse{dbScale,nuaFreqfts H);

midird = findSbPeak{bandConfig,numFregPts, Hj;

ifimidlrd < leftOrd) break;

}

}

else {

x = rhollax;

for{;;) {
x = GOLD3 * x;
midRbsc = rhollax - x;
setTransition{ origins, slopes, bandConfig, midAbsc, Hd);
fsDesign{ numbTaps, firType, Hd, hh);
cgdfirResponse(firType,numbTaps, hh, dbScale, nuafregPts H);
normalizeResponse{dbScale,nunfregPts,H);
mid0rd = findShPeak{bandConfig,nunFreqPts, H);
if{middrd < rightOrd) break;
}

}

xb = midAbsc;

x8 = rhollin;

x3 = rhallax;

x! = xb;

x2 = xb + GOLD3 * {rhollax - xb);

setTransition{ origins, sliopes, bandConfig, x1, HdJ;
fsliesign{ numbTaps, firType, Hd, hh);

cgdF irResponse!firType,numbTaps, hh, dbScale, numFregPts H);
normal izeResponse{dbScale, nunFregPts, H);

f1 = findShPeak{bandConfig,numfreqPts H);

setTransition{ origins, slopes, bandConfig, x2, Hd);
fsbesign{ numbTaps, firType, Hd, hh);

cqdF irResponse{firType, nurbTaps, hh, dbScale, numFreqPts H);
normalizefesponseidhScale, numFregPts Hj;

f2 = findSbPeak{bandCenfig,nunfreqPts H);

old¥min = 8.8;

for{n=1; n<=108; n++) {
if{f1e=f2) {
x3 = x2;
x2 = x1;
x1 = GOLD6 * x2 + GOLD3 * x@;

239

240 Chapter Twelve

f3 = 2;
f2 = fi;
setTransition{ origins, slopes, bandConfig, x!, Hd);
fslesign{ numbTaps, firType, Hd, hh};
cgdf irResponse(firType,nunbTaps, hh, dbScale, numFreqPts,H);
norealizeResponse{dbScale, nunFreqPts, H);
ft = findSbPeak{bandConfig,nuaFreqPts,H);
}
else {
x@ = x1;
xl = x2;
x2 = GOLD6 * x! + GOLD3 * x3;
fa = f1;
f1 = {2;
setTransition{ origins, slopes, bandConfig, x2, Hd);
fshesign{ numbTaps, firType, Hd, hh);
cgdf irResponse{firType,numbTaps, hh, dbScale, numFregPts,H);
normal izeResponse{dbScale,nunfreqfts,H};
f2 = findSbPeak(bandConfig, numfregPts, H);
}

delta = fabs{x3 - x8);
olddmin = xmin;
if(delta <= tal} break;
}
ifif1<£2)
{xmin = x1;
*fain=f1;}
else
{xmin = xZ;
*fmin=f2;}
return{xmin);

}

Listing 12.6 setTransition()

/t*##t!*************#t**‘****t*****/

/¥ X/
/¥ Listing 12.6 ¥/
/* */
/* setTransition() x/
/* */

/*****!******************t*********/

void setTransition{ real origins[]
regl siopes[],
int bandConfigl],

FIR Filter Design: Frequency Sampling Method 241

real x,
real Hd[1)
{

int n, nnn, nl, n2, n3, n4;

nan = bandConfig{2] - bandConfigl1] - 1;
nt = bandConfigl1];
n2 = bandConfigl2};
n3 = bandConfig[3);
14 = bandConfigl4];

switch (bandConfig{@]) {
case 1: /¥ lowpass ¥/
for{ n=1; n<=nnn; n++) {
HdlnZ-n] = originsln] + x * stopes[n];
}
break ;
case 2: /* highpass */
for{ n=1; n<=nnn; n++){
Hd[n1+n] = origins[n] + x * slopes[n];
}
break ;
case 3: /* bandpass */
for(n=1; n<=nnn; n++) {
Hdlnl+n] = origins[n] + x * siopes[nl;
Hd[n4-n] = Hd[nt+n];
}
break;
case 4: /* bandstop */
for{ n=1; n<=nnpn; n++) {
Hdln2-n) = originsln]} + x * slopes(n];
Hd{n3+n] = Hd[n2-n];
}
break;
}

return;

}

242 Chapter Twelve

Listing 12.7 optimize2()

/*#**#lt****t**i***********#**i****/

/>
/¥ Listing 12.7
/*

/% optimize2()
/%

¥/
*/
*/
*/
x/

/‘t***lt****tt************t********[

vaid optimize2{ real

yBase,

int firType,
int numbTaps,

real
real

Hdl1,
gsTol,

int numfFregPts,
int bandConfigl]

real
real

{

tweakFactor,
rectConpal])

real r1, r2, r3, x1, x2, x3, y3, minFunclal;
real slopes[5], origins[5];

real oldlin, xMax;
for(;;)

/¥ do starting point for new steepest descent line */

stopes{t] = 1.8;
slopes[2] = 8.8;
origina[1] = 8.8;

origins{2] = yBase;

x! = goldenSearch2{ 8.8, 1.8,

firType,nunbTaps,Hd,gsTol,nurFreqPts,
origins,slopes,bandConfig,&ninFuncUol);

’J‘ _____________________________________ ‘/’
/* do perturbed point to get X/
/* slope for steepe=t descent line ¥/

origins{2]=yBase * tweakFactor;

x2 = goldenSearch2({

@.8, 1.8, firType numbTaps, Hd,
gsTol,numfregfts,origins,slopes,
bandConfig.&minFunclal);

/* define line of steepest descent X/

FIR Filter Design: Frequency Sampling Method

/* and find optimal point along line */

slopes[2] = yBase*{!-tweakFactor)/ix1-x2};
origins[2] = ybase - slopes[2] * x1;
xMax = {1.8 - origins[2])/slopes[2];

x3 = goldenSearch2{ 8.8, xMax, firType, numhTaps, hd,
gsTol,numfregPts,
arigins,slopes,bandConfig,&minfunclal);
y3=origins{2] + x3 * slopes[2];

¥ o e e */
/* if ripple at best point on current line is within specified */
/* tolerance of ripple at best point on previous line, x/
/¥ then stop; otherwise stay in loop and define a new line */
/¥ starting at the best point on line just completed. X

i f{abs{oldMin-minFuncilal}<8.81) break;
oldMin = minFuncVal;
yBase = y3;
}
rectComps{8] = x3;
rectComps{1] = origins[2] + x3 * slopes{2];
return;

}
Listing 12.8 dumpRectComps()

/****t*****t******t**lt****#*#*****/

/* */
/* Listing 12.8 */
/¥ X/
/* dumpRectComps() X/
/* */

f***ttttxttx**txtt*t*:***x*t****tt*;

void dumpRectComps{ real origins[],
real siopes(],
int numTransSamps,
real x)

{

real rectComp;

int n;

for{n=8; n<numTransSamps; n++)
{
rectlomp = origins[n+1] + x * slopes[n+1];
printf{"rectComp[&d]} = £f\n",n,rectComp);
}

return;

}

243

