Chapter

13

FIR Filter Design:
Remez Exchange Method

In general, an FIR approximation to an ideal lowpass filter will have an
amplitude response of the form shown in Fig. 13.1. This response differs from
the ideal lowpass response in three quantifiable ways:

1. The pass band has ripples that deviate from unity by +4,.

2. The stop band has ripples that deviate from zero by +4,. (Note that Fig.
13.1 shows an amplitude response rather than the usual magnitude re-
sponse, and therefore negative ordinates are possible.)

3. There is a transition band of finite nonzero width AF between the pass
band and stop band.

—= le— AF
1+8p

1- 8, ——

TN LN
. NS - NS N—

Figure 13.1 Typical amplitude response of an FIR approxi-
mation to an ideal lowpass filter.

245

246 Chapter Thirteen

The usual design goals are to, in some sense, minimize 0,, 0., and AF. As it
is generally not possible to simultaneously minimize for three different
variables, some compromise is unavoidable. Chebyshev approximation is one
approach to this design problem.

13.1 Chebyshev Approximation

In the Chebyshev approximation approach, the amplitude respoﬁse of a type
1 (that is, odd-length, even-symmetric) linear phase lowpass N-tap FIR filter
is formulated as a sum of r cosines:

r—1

A(f) =3 ¢, cos(2nkf) (13.1)
k=0

where r = (N 4+ 1)/2, and the coefficients c, are chosen so as to yield an A(f)
which is optimal in a sense that will be defined shortly.
For a lowpass filter the pass band B, and stop band B, are defined as

B,={F:0<F<F,} (13.2)
B,={F:F,<F <05} (13.3)

where F, and F, are, respectively, the edge frequencies for the pass band and
stop band. [Equation (13.2) is read as “B, is the set of all F such that F is
greater than or equal to zero and less than or equal to F,.] We can then
define a set # as the union of B, and B,:

F =B, UB, (13.4)

In other words, # is the set of all frequencies between 0 and 0.5 not including
the transition frequencies F: F, < F < F,. In mathematical terms, % is de-
scribed as a compact subset of [0, 0.5]. The desired response D(f) is the ideal
lowpass response given by

1 FeB,

0 FeB (13.5)

D(f)={

Thus we could define the optimal approach as the one that minimizes the
maximum error given by

max |D(f) — A(f)| (13.6)

However, the maximum error given by (13.6) treats pass-band error and

stop-band error as equally important. A more general approach is to include
a weighting function:

1

W(f) =<K

1 FeB,

FeB, (13.7)

FIR Filter Design: Remez Exchange Method 247

which allows stop-band errors to be given more importance than pass-band
errors or vice versa. Thus we define the maximum approximation error as

||E(f)}|=g139>5 W(f) - |D(f) — A() (13.8)

The crux of the Chebyshev approximation design approach is to identify the
coefficients ¢, for (13.1) that minimize |E(f)||.

Several examples of FIR design via Chebyshev approximation appear in the
early literature (Martin 1962; Tufts, Rorabacher, and Moses 1970; Tufts and
Francis 1970; Helms 1972; Herrman 1970; Hofstetter, Oppenheim, and Siegel
1971). However, the Chebyshev approximation method did not begin to enjoy
widespread use until it was shown that the Remez exchange algorithm could
be used to design linear phase FIR filters with the Chebyshev error criterion
(Parks and McClellan 1972). Use of the Remez exchange algorithm depends
upon an important mathematical result known as the alternation theorem.

Alternation theorem

The response A(f) given by Eq. (13.1) will be the unique, best-weighted
Chebyshev approximation to the desired response D(f) if and only if the error
function E(f) = W(f)[D(f) — A(f)] exhibits at least r + 1 extrema at frequen-
cies in #. (Note: Extrema is a generic term that includes both maxima and
minima.) The frequencies at which extrema occur are called extremal frequen-
cies. Let f, denote the nth extremal frequency such that

f1<f2<...<fn71<fn<fn+l<.'.<fr<fr+1

Then it can be proven (Cheyney 1966) that

E(f)=—E(f,,,) n=12...,r (13.9)
and |ECf,)| = max E(/) (13.10)

Together, (13.9) and (13.10) simply mean that the error is equal at all the
extremal frequencies. Equation (13.9) further indicates that maxima and
minima alternate (hence ‘“alternation’” theorem).

13.2 Strategy of the Remez Exchange Method

The alternation theorem given in the previous section tells us how to
recognize an optimal set of ¢, for Eq. (13.1) when we have one, but it does not
tell us how to go about obtaining such c¢,. The Remez exchange algorithm
provides an approach for finding the FIR filter corresponding to the optimal
¢, as follows:

1. Make an initial guess of the r + 1 extremal frequencies.

2. Compute the error function corresponding to the candidate set of extremal
frequencies (see Sec. 13.3).

248 Chapter Thirteen

3. Search to find the extrema (and therefore the extremal frequencies) of the
error function (see Sec. 13.4).

4. Adopt the extremal frequencies found in step 3 as the new set of candidate
extremal frequencies and return to step 2.

5. Repeat steps 2, 3, and 4 until the extremal frequencies have converged (see

Sec. 13.4).

6. Use the final set of extremal frequencies to compute P(f) and the corre-
sponding impulse response coefficients for the filter (see Sec. 13.5).

The error function mentioned in step 2 is computed as

E(f) = W(H)ID(f) — A(f)] (13.11)

where D(f) is given by Eq. (13.5) and W(f) is given by (13.7). Although Eq.
(13.1) gives the form of A(f), some other means must be used to evaluate A(f)
since the coeflicients ¢, are unknown. We can obtain A(f) from the extremal

frequencies F, using

Ye fOI‘f=F0,F1,...,Fr_1
Sioh—t (13.12)
X — X .
5 otherwise
r—1 k
Z:’;‘:ox—xk

The parameters needed for evaluation of (13.12) are given by

r—1 1
Bk:iUOxk_xi
itk
po= DCF,) — (—1)* =2
* * W(F,)
ZZ:oakD(Fk)
5=Zr (-l)kak
"7 W(F,)
—_ - 1
ak_i=0xk—xi
itk
x = cos(2nf)

x;, = cos(2nF},)

FIR Filter Design: Remez Exchange Method 249

If estimates of the extremal frequencies rather than their “true” values are
used in the evaluation of A(f), the resulting error function E(f) will exhibit
extrema at frequencies that are different from the original estimates. If the
frequencies of these newly observed extrema are then used in a subsequent
evaluation of A(f), th new E(f) will exhibit extrema at frequencies that are
closer to the true extremal frequencies. If this process is performed repeatedly,
the observed extremal frequencies will eventually converge to the true
extremal frequencies, which can then be used to obtain A(f) and the filter’s
impulse response.

Although A(f) is defined over continuous frequency, computer evaluation
of A(f) must necessarily be limited to a finite number of discrete frequencies—
therefore, A(f) is evaluated over a closely spaced set or dense grid of
frequencies. The convergence of the observed extremal frequencies will be
limited by the granularity of this dense grid, but it has been empirically
determined that an average grid density of 16 to 20 frequencies per extremum
will be adequate for most designs. Since the maximization of E(f) is only
conducted over f e #, it is not necessary to evaluate A(f) at all within the
transition band (except for possibly at the very end, just to see what sort of
transition-band response the final filter design actually provides). The fre-
quency interval between consecutive points should be approximately the same
in both the pass band and stop band. Furthermore, the grid should be
constructed in such a way that frequency points are provided at f=0,f=F,,
f=F,, and f =0.5. An integrated procedure for defining the dense grid and
making the initial (equispaced) guesses for the candidate extremal frequencies
is provided in Algorithm 13.1.

Algorithm 13.1 Constructing the dense-frequency grid

step1. Compute the number of candidate extremal frequencies to be placed in
the pass band as

rF, J
= |—2—— 05
" [0.5+F,, _F,
step2. Determine the candidate extremal frequencies within the pass band as
kF
ka=gl‘J k—_—1,2,...,mp

‘D
step3. Compute the number of candidate extremal frequencies to be placed in
the stop band as
m,=r+1-—m,
stepd. Determine the candidate extremal frequencies within the stop band as
4 k(0.5 —F,)

F,=F
k s ms—l

k=0,1,...,m,—1

252 Chapter Thirteen

step 6. For each frequency f; in the dense grid, use A(f;) from step 5 to
compute E(f;) as

E(f;) = W(ILD(f;) — A(f)]

For computer evaluation, the error function is calculated by remezEr-
ror(), which makes use of computeRemezA(). These two functions are
provided in Listings 13.4 and 13.5, respectively. The function computeRe-
mezA() could have been made an integral part of remezError() and
designed to automatically generate A() and E() for all frequencies within
the dense grid. However, a function in this form would not be useable for
generating the uniformly spaced samples of the final A() that are needed to
conveniently obtain the impulse response of the filter.

13.4 Selecting Candidate Extremal Frequencies

Once Eq. (13.11) has been evaluated, the values of E(f;) must be checked in
order to determine what the values of F, should be for the next iteration of
the optimization algorithm. Based upon the particular frequencies being
checked, the testing can be divided into the five different variations that are
described in the paragraphs below. A C function, remezSearch(), which
performs this testing is provided in Listing 13.6.

Testing E(f) for =0

If E0) >0 and E(0) > E(f,), then a ripple peak (local maximum) exists at
f=0. (Note that f, denotes the first frequency within the “dense grid” after
f=0, and due to the way we have defined the frequency spacing with the
grid, we know that f, = I,.) Even if a peak or valley exists at f =0, it may be
a superfluous extremum not needed for the next iteration. If a ripple peak
does exist at f =0, and |E(0)| = |p|, then the maximum is not superfluous and
f=/f,=0 should be used as the first-candidate extremal frequency—in other
words, set F, = f, = 0. Similarly, if E(0) <0 and E(0) < E(f,), a ripple trough
(ripple valley, local minimum) exists at f = 0. If |E(0)| = |p|, this minimum is
not superfluous and we should set F,=f,=0.

Testing E(f) within the pass band and the stop band

The following discussion applies to testing of E(f) for all values of f; for
which f, <f; <f, or for which f, <f; <0.5. A ripple peak exists at f; if

E(f;)>E(f,_,) and E(f)>E(f,,,) and E(f;)>0 (13.13)

Equation (13.13) can be rewritten as (13.14) for frequencies in the pass band
and as (13.15) for frequencies within the stop band:

E(f)>E(f—1,) and E(f)>E(f;+1) and E(f)>0 (13.14)
E(f)>E(f,—1) and E(f)>E(f,+1) and E(f;)>0 (1315

FIR Filter Design: Remez Exchange Method 253

A ripple trough exists at f; if
E(f;) <E(f; ,) and E(f)) <E(f;.,) and E(f) <0 (13.16)

Equation (13.16) can be rewritten as (13.17) for frequencies in the pass band
and as (13.18) for frequencies within the stop band:

E(f)<E(f,~1) and E(f;)<E(fi+1) and E(f)<0 (13.17)
E(f)<E(f—1) and E(f;)<E(f,+1) and E(f)<0 (13.18)

If either (13.13) or (13.16) is satisfied, f = f; should be selected as a candidate
extremal frequency—that is, set F, =f, where k is the index of the next
extremal frequency due to be specified.

Testing of E(f) at the pass-band and stop-band edges

There is some disagreement within the literature regarding the testing of the
pass-band and stop-band edge frequencies f, and f,. Some authors (such as
Antoniou 1982) indicate the following testing strategy for f, and f,:

If E(f,) >0 and E(f,) > E(f, — I,), then a ripple peak (local maximum) is deemed
to exist at f = f, regardless of how E(f) behaves in the transition band which lies
immediately to the right of f=f,. If a ripple peak does exist at f=f,, and if
|E(f,)| = |p|, then the maximum is not superfluous and f = f» should be selected as
a candidate extremal frequency—i.e., set F, = f, where k is the index of the next
extremal frequency due to be specified. Similarly, if E(f,) <0 and E(f,) <
E(f, —L,), a ripple trough exists at f=/,. If |[E(f,)| = |p|, this minimum is not
superfluous and we should set F, =f, where k is the index of the next extremal
frequency due to be specified. If E(f,) >0 and E(f,) > E(f, + L), then a ripple
peak is deemed to exist at f = £, regardless of how E(f) behaves in the transition
band which lies immediately to the left of f=/f,. If a ripple peak does exist at
f=f,, and if |[E(f,)| = |p|, then the maximum is not superfluous and f =f, should
be selected as a candidate extremal frequency—i.e., set F, =f, where k is the
index of the next extremal frequency due to be specified. Similarly, if E(f,) <0
and E(f,) <E(f, + L,), a ripple trough exists at f=/f,. If |E(f,)| 2 |p|, this mini-
mum is not superfluous and we should set F, = fs, where k is the index of the
next extremal frequency due to be specified.

Other authors (such as Parks and Burrus 1987) indicate that f, and f, are
always extremal frequencies. In my experience the testing indicated by
Antoniou is always satisfied, so f, and f, are always selected as extremal
frequencies. I have opted to eliminate this testing both to reduce execution
time and to avoid the danger of having small numerical inaccuracies cause
one of these points to erroneously fail the test and thereby be rejected.

Testing of E(f) for f=0.5

If E(0.5) >0 and E(0.5) > E(0.5 — I,), then a ripple peak exists at f =0.5. If a
ripple peak does exist at f = 0.5, and if |E(0)| > |p|, then the maximum is not

254 Chapter Thirteen

superfluous and f=f, = 0.5 should be used as the final candidate extremal
frequency. Similarly, if E(0.5) <0 and E(0.5) < E(0.5— IL,), a ripple trough

(ripple valley, local minimum) exists at f = 0.5. If |E(0)| > |p|, this minimum is
not superfluous.

Rejecting superfluous candidate frequencies

The Remez algorithm requires that only r + 1 extremal frequencies be used in
each iteration. However, when the search procedures just described are used,
it is possible to wind up with more than r + 1 candidate frequencies. This
situation can be very easily remedied by retaining only the r + 1 frequencies
F, for which |E(F,)| is the largest. The retained frequencies are renumbered
from 0 to r before proceeding. An alternative approach is to reject the
frequency corresponding to the smaller of \E(FO)\ and |E(F,)|, regardless of
how these two values compare to the absolute errors at the other extrema.
Since there is only one solution for a given set of filter specifications, both
approaches should lead to the same result. However, one approach may lead

to a faster solution or be less prone to numeric difficulties. This would be a
good area for a small research effort.

Deciding when to stop

There are two schools of thought on deciding when to stop the exchange
algorithm. The original criterion (Parks and McClellan 1972) examines
the extremal frequencies and stops the algorithm when they do not change
from one iteration to the next. This criterion is implemented in the C
function remezStop() provided in Listing 13.7. This approach has worked
well for me, but it does have a potential flaw. Suppose that one of the true
extremal frequencies for a particular filter lies at f = F, and due to the way

the dense grid has been defined, F; lies midway between two grid frequencies
such that

FT=fn +2fn+1

It is conceivable that on successive iterations, the observed extremal fre-
quency could alternate between f; and f,,, and therefore never allow the
stopping criteria to be satisfied.

A different criterion, advocated by Antoniou (1982), uses values of the
error function rather then the locations of the extremal frequencies. In
theory, when the Remez algorithm is working correctly, each successive
iteration will produce continually improving estimates of the correct ex-
tremal frequencies, and the values of |E(F,)| will become exactly equal for all
values of k. However, due to the finite resolution of the frequency grid as well
as finite precision arithmetic, the estimates may in fact never converge to
exact equality. One remedy is to stop when the largest |E(F,)| and the

FIR Filter Design: Remez Exchange Method 255

smallest |E(F})| differ by some reasonably small amount. The difference as a
fraction of the largest |E(F,)| is given by

_ max|E(F},)| — min|E(F})|

B max|E(F},)|

Typically, the iterations are stopped when @ < 0.01. This second stopping
criterion is implemented in the C function remezStop2() provided in List-
ing 13.8.

13.5 Obtaining the Impulse Response

Back in Sec. 13.2, the final step in the Remez exchange design strategy
consisted of using the final set of extremal frequencies to obtain the filter’s
impulse response. This can be accomplished by using Eq. (13.10) to obtain
P(f) from the set of extremal frequencies and then performing an inverse
DFT on P(f) to obtain the corresponding impulse response. An alternative
approach involves deriving a dedicated inversion formula similar to the
dedicated formulas presented in Sec. 12.3. For the case of the type 1 filter that
has been considered thus far, the required inversion formula is

hin] = h{—n] = [A(O) +;;12A<;k>cos<2,;€n>]

This formula is implemented via the fsDesign() function (from Chap. 12),
which 1s called by the C function remezFinish() provided in Listing 13.9.
Although the filter’s final frequency response could be obtained using calls to
computRemezA(), I have found it more convenient to use cgdFirRe-
sponse() from Chap. 10, since this function produces output in a form that
is directly compatible with my plotting software.

13.6 Using the Remez Exchange Method

All of the constituent functions of the Remez method that have been pre-
sented in previous sections are called in the proper sequence by the function
remez(), which is presented in Listing 13.10. This function accepts the
inputs listed in Table 13.1 and produces two outputs—extFreq[], which is a
vector containing the final estimates, and h{], which is a vector containing
the FIR filter coefficients.

Deciding on the filter length

To use the Remez exchange method, the designer must specify N, f,, f,, and
the ratio §,/d,. The algorithm will provide the filter having the smallest
values of |5,] and |§,| that can be achieved under these constraints. However,
in many applications, the values specified are f,, f;, 6,, and J, with the

256 Chapter Thirteen

TABLE 13.1 Input Parameters for remez() Function

Mathematical symbol C variable Definition
N nn Filter length
r r Number of approximating functions
L gridDensity Average density of frequency grid (in grid points
per extremal frequency) (must be an integer)
K kk Ripple ratio 8,/d,
fp freqP Pass-band edge frequency
fs freqS Stop-band edge frequency

designer left free to set N as required. Faced with such a situation, the
designer can use f,, f,, and K =4§,/d, as dictated by the application and
design filters for increasing values of N until the 4, and 4, specifications are
satisfied. An approximation of the required number of taps can be obtained
by one of the formulas given below. For filters having pass bands of “moder-
ate” width, the approximate number of taps required is given by

N:1+—2010g./6161~13 (13.19)
146(fs _fp)

For filters with very narrow pass bands, (13.19) can be modified to be

0.22 — (20 log 6,)/27
(fs _fp)

For filters with very wide pass bands, the required number of taps is
approximated by

N =

(13.20)

0.22 — (20 log 8,)/27
(fq - fp)

Example 13.1 Suppose we wish to design a lowpass filter with a maximum pass-band
ripple of 4, =0.025 and a minimum stop-band attenuation of 60dB or §,=0.001. The
normalized cutoff frequencies for the pass band and stop band are, respectively, f, = 0.215
and f, = 0.315. Using (13.19) to approximate the required filter length N, we obtain

N=1+ —20 log./(0.001)(0.025) — 13

14.6(0.315 — 0.215)

N:

(13.21)

=236

The next larger odd length would be N =25. If we run remez() with the following
inputs:

nn =25 r=13 gridDensity = 16
kk = 25.0 freqP =0.215 freqS =0.315

FIR Filter Design: Remez Exchange Method 257

TABLE 13.3 Coefficients for 25-tap FIR

TABLE 13.2 Extremal Frequencies for Filter of Example 13.1
Example 13.1
h[0] = h{24] = —0.004069
k fe h{1] = h[23] = —0.010367
0 0.000000 h[2] = h{22] = —0.001802
1 0.042232 h[3] = h[21] = 0.015235
2 0.084464 _ _
3 0.196696 h[4] = h[20] = 0.003214
4 0.165089 h[5] = h[19] = —0.027572
5 0.199643 hl6] = h[18] = —0.005119
6 0.215000 _ _
7 0.315000 A[7] = h[17] = 0.049465
8 0.322708 h[8] =h[16] = 0.007009
9 0.343906 h{9] = h[15] = —0.096992
10 0.372813 R[10] = A[14] = —0.008320
11 0.407500
12 0.447969 h[11)=h[13] = 0.315158
13 0.500000 h{12] = 0.508810

we obtain the extremal frequencies listed in Table 13.2 and the filter coefficients listed in
Table 13.3. The frequency response of the filter is shown in Figs. 13.2 and 13.3. The actual
pass-band and stop-band ripple values of 0.0195 and 0.000780 are significantly better than
the specified values of 0.025 and 0.001.

Example 13.2 The ripple performance of the 25-tap filter designed in Example 13.1
exhibits a certain amount of overachievement, and the estimate of the minimum number

[o] s L4
2
frequency X

Figure 13.2 Magnitude response (as a fraction of peak) for
the filter of Example 13.1.

258 Chapter Thirteen

-20 |

-30 |

-50}

-60 }

mognitude (dB)

-80 |

90

frequency X

Figure 13.3 Magnitude response (in decibels) for the filter of
Example 13.1.

of taps was closer to 23 than 25. Therefore, it would be natural for us to ask if we could
in fact achieve the desired performance with a 23-tap filter. If we rerun remez() with
nn =23, we obtain the extremal frequencies and filter coefficients listed in Tables 13.4
and 13.5. The frequency response of this filter is shown in Figs. 13.4 and 13.5. The
pass-band ripple is approximately 0.034, and the stop-band ripple is approximately
0.00138—therefore, we conclude that a 23-tap filter does not satisfy the specified require-
ments.

TABLE 13.5 Coefficients for 23-tap FIR

TABLE 13.4 Extremal Frequencies for Filter of Example 13.2

Example 13.2
b f h[0] = A[22] = —0.000992
: h{1]=h[21] = 0.007452
0 0.000000 h[2] = h[20] = 0.018648
1 0.051510 _ _
2 0.103021 h[3]=h[19] = 0.002873
3 0.152292 h[4] = h[18] = —0.026493
4 0.194844 h{5] = h[17] = —0.003625
5 0.215000 _ _
6 0.315000 h[6] = h{16] = 0.048469
7 0.324635 A[7} = h[15] = 0.005314
8 0.349688 h[8] = h[14] = —0.096281
9 0.382448 h[9] = h[13] = —0.006601
10 0.419062
11 0.459531 h[10] = A[12] = —0.314911

12 0.500000 h{11] = 0.507077

FIR Filter Design: Remez Exchange Method 259

0.9

0.8 r

0.6
05 |
0.4
0.3
Q.21

O.t

s

o] T L4
2

frequency X

Figure 13.4 Magnitude response (as a fraction of peak)
for the filter of Example 13.2.

magnitude (dB)

frequency X

Figure 13.5 Magnitude response (in decibels) for the filter of
Example 13.2.

13.7 Extension of the Basic Method

So far we have considered use of the Remez exchange method for odd-length,
linear phase FIR filters having even-symmetric impulse responses (that is,
type 1 filters). The Remez method was originally adapted specifically for the

260 Chapter Thirteen

design of type 1 filters (Parks and McClellan 1972). However, in a subsequent
paper, Parks and McClellan (1973) noted that the amplitude response of any
constant group-delay FIR filter can be expressed as

A(f) = Q(f) P(f)

r—1

where P(f) =). ¢, cos(2nkf)
k=0

1 h[n}] symmetric, N odd
Qf)=4 €08 nf h[n] symmetric, N even

sin 2znf h[n] antisymmetric, N odd

sin nf h[n] antisymmetric, N even

Recall that the error E(f) was defined as

E(f) = W(HID(f) — A(f)] (13.22)
If we substitute @(f)P(f) and factor out Q(f), we obtain

D(f)
Q(f)

We can then define a new weighting function W() = W(H)Q(f) and a new
desired response D() =D(f)/Q(f), and thereby obtain

E(f) = W(HID(f) - P(f)] (13.23)

Equation (13.23) is of the same form as (13.22) with W(f) substituted for
W(f), D(f) substituted for D(f), and P(f) substituted for A(f). Therefore, the
procedures developed in previous sections can _be used to solve for P(f)
provided that W(f) 1s used in place of W(f) and D(f) is used in place of D(f).
Once this P(f) is obtained, we can multiply by the appropriate Q(f) to obtain
A(f). The appropriate formula from Table 12.2 can then be used to obtain the
impulse response coefficients h[n].

E(f) = W(f) Q(f)[P(f)]

FIR Filter Design: Remez Exchange Method 261

Listing 13.1 gridFreq()

/***t********t*#**t*t***t*tt*******/

/* */
/¥ Lisitng 13.1 */
/* */
/* gridfFreq() */
/* */

f******t**********t******t*lt*t****/

real gridFreql real gridParam{],
int gl)
{
real work;
static real incF, incS, freqP, fregS;
stotic int r, gridlensity, mF, aS, gP;

ifigridParan[@] == 1.6} {
gridParan{8] = 0.8;
freqP = gridParam{1];
fregS = gridParam[2];
r = gridParam{3];
gridlensity = gridParam[4];
work = (8.5 + freqP - fregS)/r;
mP = floor(0.5 + fregP/work);
gridParan(3] = wP;
gP = aP ¥ gridDensity;
gridParan(?] = gF;
wS = pr +1 - aP;
gridParan{6] = nS;
incP = freqP / gP;
incS = (8.5-freqS) / ({mS-1) * gridDenaity);
}
else {
work = (gl<=gP) 7 {gl*incP) : {freqS+(gl-{gP+1)}*incS);
}

return{work};

}

262 Chapter Thirteen

Listing 13.2 desLpfResp()

/lt*‘*t*t!*#lll*****l****tt*#tlt#tl/

/* */
/¥ Listing 13.2 */
/* %/
/% deslpfResp() x/
/* %/

/***#tttl‘*ttt***ttttt*#t*t********/

real desLpfResp(real freqP, real freg)
{

real result;

result = 6.8;

if(freq <= freqP) result = 1.0;
return(resuit);

}

Listing 13.3 weightLp()

/#t!*ttt‘*‘*tt***t*ttt##t#t#*t**tl*/

/* */
/¥ Listing 13.3 */
/* */
/% weightlp() x/
/* */

/***l*#t***tt**ﬁ*t*tt*tt#t****#***t/

real weightlp{ real kk, real freqP, real freq)
{

real result;

result = 1.8;
if{freq <= fregP) result = 1.8/kk;
return{result);

}

FIR Filter Design: Remez Exchange Method 263

Listing 13.4 remezError()

/l*#l*lt**tltt**!*tt*******t***‘l**ﬁ

/¥ */
/% Listing 13.4 x/
/¥ */
/¥ remezError{) x/
/¥ */

/*t**lttt***‘Kt**************‘*****f

void remezError{ real gridPoran[]

int gridiax,
int r,
real kk,
real fregF,
int iFF[],
real eel]}

{

int j;

real freg,og;

aa = computeRemezA{ gridParanm, gridiax, r, kk,
: fregP, iFF, 1, 8.8);

for(j=@; j<=gridiax; j++) {
freq = gridFreq{gridParan,j);
aa = computefemezA{ gridParam,
gridiax, r, kk, fregP,
iFF, 8,freq);
ee[j] = weightlp(kk, freqP, freq) *
(desLpfResp{freqF, freq) - aa);
}
return;

}

Listing 13.5 computeRemezA()

/t*t#*t**tttiit***tt**t***#t***tt**/

/¥ */
/¥ Listing 13.5 */
/% x/
/* computeRemezR() ¥/
/¥ *f

j#*#tttl***#***lt***#**tt#**‘******/

real computeRemezR(real gridParasm{],
int gridfax,

264 Chapter Thirteen

int r,

real kk,

real freqP,
int iFF[],
int initfFlag,

real contfFreq)
{
static int i, j, k, sign:
static real freg, denom, numer, alpha, delta;
static real abslleita, xCont, term;
static real x[58], beta[5€], gamma[5&];
real ag;

iflinitFlag) {
for(j=8; j<=r; j++) {
freq = gridFreq{gridParanm, iFF[j]};
x[j) = cos(THO_FI * freq);
}

/¥ compute delta */
denom = 8.8;
numer = §.8;
sign = -1;
for{ k=8; k<=r; k++) {
sign = -sign;
alpha = 1.8;
for{ i=8; i<={r-1}; i++) {
i f(i==k} continue;
alpha = alpha / {x[k] - x[i]);
}

betalk] = alpha;
if{ k 1= r) alpha = alpha/{x{k]) - x[rl};
freq = gridFreq{gridParan, iFF(k]};
numer = numer + alpha * deslLpfResp{fregP, freq);
denos = denom + sign*{alpha/
weightlplkk, freqP, freq));
}
delta = numer/denom;
absDelta = fabsidelta);

sign = -1;
for{ k=8; k<=r-1; k++) {
sign = -sign;
freq = gridFreq{gridParam, iFF{k])};
gammalk] = deslpfResp{freqf, freq) - sign * delta /
weightlp(kk, freqP, freq);
}

FIR Filter Design: Remez Exchange Method 265

}
else {
xCont = cos{TUO_PI * contFreq);
numer = @.8;
denom = 8.0,
for{ k=8; k<r; k++} {
term = xCont - x[k];
i f{fabs{term)<t, Ge-7) {
aa = gammalk];
goto done;
}
else {
term = betalk]/{xCont - x[k]);
denom += term;
nurer += gammalk]¥tern;

}

}
aa = numer/denon;
}
done:
return(aa);

}

Listing 13.6 remezSearch()

/**#**t**!tttl‘********#***********/

/¥ x/
/¥ Listing 13.6 */
/* x/
/* remezSearch() b
X* *f

/**#**t!****tt************#***#*t**f

void remezSearch{real eel],
real abslelta,
int gP,
int iFF[],
int gridiax,
int r,
real gridParan(]}

266 Chapter Thirteen

int i,j,k,extras,index0fSmallest;
real smallestUal;

k=@,

/* test for extremum at f=@ X/

if{ { (eel@)>8.8) 8R (eel@1ee[1]) & (fabs(ee[B))>=ahsDelta)) {!
{ (ee[81<0.0) R (eel@)<eel1]) 88 (fabs{ee[®))>=absDelta))) {
iFF[k]=6;
k##j

}

/¥ search for extrema in passband */
for(j=1; j<gP; j++) {
ifC ((eeljlr=eelj-1]) && (ee[jloee[j+1]) 8& (eelj1>0.8)) ||
((eeljl<=eelj-1]) && (ee[jl<ee[j+1]) && {ee[j1<8.8))) {

iFF(K] = j;
k++;
}
1
/¥ pick up an extremal frequency at passhand edge */
iFF{k]=gP;
k++1

/¥ pick up an extremal frequency ot stopband edge */
j=gPe1;
iFF{k])=j;

k++;
/* search for extrema in stopbond */
for(j=gP+2; j<gridiax; j++) {

if{ { (eeljlr=ee[j-1]) & {ee[jlreelj+1]) &R (eelj]>8.@)) ||
(feeljlc=eelj-1]) 8& {eeljlceelj+1]) RR {(ee[[1¢0.8))) {

iFF{k] = j;
k++;
1
}
/¥ test for extremum at f=0.5 *;
j = gridhax;

if({ (ee[j18.8) 8& {eeljloeelj-1]) && (fabs(eelj])>=absBelta)) I
({ee[j]<8.8) 8& (eeljl<eelj-1]) 8& (fabs{ee[j]l)>=absDelta))) {
iFF{k]=gridfax;

k4+;

/* find and remove superfluous extremal frequencies */

if{ kor+1) {
extras = k - (r+1);
for(i=1; i<=extras; i++) {

smallestUal = fabs(ee[iFF[81]);

index0fSmallest = @;
for(j=1; j< k; j+*+) {

FIR Filter Design: Remez Exchange Method

if(faba{ee[iFF{j1]) >= smallestUal) continue;
smallestUal = fabsiee[ifF[j1]);

index0fSmallest = j;

}

ke

for{j=indexOfSmatlest; j<k; j++} iFF[j] = iFF[j+1];

}
}

return;

}

Listing 13.7 remezStop()

/t**#**l’*#*#**********#*****t!*****/

/%

/¥ Listing 13.7
/*

/¥ remezStop{)
/*

/t‘*t******t**#*#*#**#t***tt**t***

int remezStop(int iFF[],
int r)

{

static int oldIFF[56];

int j,result;

result = 1;

for(j=~@; j<=r; je+) {
PFCIFFL)] 1= oldIFFLj]) result
oldIFFLj] = iFF[j1;
}

return{result);

}

*/
*/
*/
*/
*/
*/

267

268 Chapter Thirteen

Listing 13.8 remezStop2()

/tl**t**#**tt*tt*t*****tt*!t**tt*tt/

/¥ */
/* Listing 13.8 %/
’* */
/* remezStop2() */
/* x/

/t*#t*tt****!****#****#**tt*tt**t*t/

int remezStop2{ real eel],
int iFF[],
int r)
{
real higgestUal, smallestUal,qq;
int j,result;

result = §;

biggestlal = fabs{ee[iFF[8]])

smallestUal = fabs(ee[iFF[@]]);

for(j=1; j<=r; j++) {
if(fabs{ee[iFF[§]]) < smallestUal) smallestUal = fabs(eeliFF[{]1);
if(fabs{ee[iFF[j]]) > biggestUal) biggestVal = fabs{eeliFF{j1]};
}

qg = (biggestlal - smallestUal)/biggestUal;

i fiqg<@.81) result=1;

return{result);

}

Listing 13.9 remezFinish()

/**t****#**t*****t******t**t***t**l/

/¥ Y,
/* Listing 13.9 x/
/¥ x/
/¥ remezFinish() X/
/* */

/******t‘*t*t****#*#*********t***‘tj

veid remezFinish{real extFreg],

int nn,

int r,
real fregP,
real kk,
real aall,
real h{])

FIR Filter Design: Remez Exchange Method

int k,n, gridiax, iFF[13;
real freq,sum;
static reat gridParam{1];

for{k=8; k<r; k++) {
freq = {real) k/ {real) nn;
aalk] = computeRemezf(gridParam, gridiax, r, kk,
freqP, iFF, 8, freq);
!
fsDesign{ nn, 1, aa, hj;
return;

}

Listing 13.10 remez()

/****#*********#***t********l*t****/

/¥ */
/* Listing 13.1€ */
% Y,
/% remez() */
/* */

/tt#*#*3***tttt**##*****#*‘**t****lf

void remez{ int nn,
int r,
int gridDensity,
real kk,
real fregP,
real freqS,
real extfreqll,
real h{])
{
int m, gridilax, j, of, gP, aS;
real absDeltao, freqg;
static real gridParan[1@];
static int iFF[50];
static real ee[1824];

/¥ set up freguency grid X/
gridfaran[8] = 1.8;

gridParam{1] = fregP;

gridParar(2] = freqS;

gridParam{3] = r;

gridParam[4] = gridDensity;

freq = gridFreq{gridParam,8);

269

270 Chapter Thirteen

aP = gridParas{5];

nS = gridParan[6];

gP = gridParas[?];

freqP = fregqP + (freqP/(2.8*gP));
gridiax = 1 + gridDensity*{mP+m5-1);

/* make initial guess of extremal frequencies */
for(j=8; j<mP; j++) iFF[}] = (j+1}* gridbensity;

for(f=8; j<nS; j++) iFF{j+aP} = gP + 1 + | * gridDensity;

/¥ find optimal locations for extremal frequencies */
for{m=1;m<=20;m++) {
remezError(gridParam, gridiax, r, kk, freqP, iFF, ee);
remezSearch{ ee, absDelta, gP, iFF, gridfax, r, gridParam);

remezStop2iee, iFF,r);
i firemezStop{iFF,r)) break;
}

for(j=8; j<=r; j++) {

extFreqlj] = gridfreq{gridParam, iFF[j]);

}
remezFinish{ extFreq, nn, r, freqP,kk, ee, h);
return;

}

