Chapter

14

IR Filters

The general form for an infinite impulse response (IIR) filter’s output y[k] at
time k is given by

N M
yinl = Y aylk—nl+ > b,x[k—m] (14.1)

n=1

This equation indicates that the filter’s output is a linear combination of the
present input, the M previous inputs, and the N previous outputs. The
corresponding system function is given by

z%: 0 me o
H(z) = (14.2)

1-Y%_,a,z7"

where at least one of the a, is nonzero and at least one of the roots of the
denominator is not exactly cancelled by one of the roots of the numerator.
For a stable filter, all the poles of H(z2) must lie inside the unit circle, but the
zeros can lie anywhere in the z plane. It is usual for M, the number of zeros,
to be less than or equal to N, the number of poles. Whenever the number of
zeros exceeds the number of poles, the filter can be separated into an FIR
filter with M — N taps in cascade with an IIR filter with NV poles and N zeros.
Therefore, IIR design techniques are conventionally restricted to cases for
which M < N.

Except for the special case in which all poles lie on the unit circle (in the
z plane), it is not possible to design an IIR filter having exactly linear phase.
Therefore, unlike FIR design procedures that are concerned almost exclu-
sively with the magnitude response, IIR design procedures are concerned
with both the magnitude response and phase response.

271

272 Chapter Fourteen

14.1 Frequency Response of IIR Filters

The frequency response of an IIR filter can be computed from the coefficients
a, and b,, as

20 B exp(j2nmk/L)

H[k] (14.3)
Yk -4 @, exp(j2nk/L)
1 n=0
where o, =< —a,, O<n <N
0 N<n
B = b,, O<m=<M
™10 M<m

A C function that uses (14.3) to compute the response for an IIR filter is
provided in Listing 14.1.

14.2 I1IR Realizations

A direct realization of Eq. (14.1) is shown in Fig. 14.1 using the signal flow
graph notation introduced in Sec. 4.4. The structure shown is known as the
direct form I realization or direct form I structure for the IIR system repre-
sented by (14.1). Examination of the figure reveals that the system can be
viewed as two systems in cascade—the first system using x[k — M] through
x[k] to generate an intermediate signal that we will call w[k] and the second

b
k] - (K]
21 2
b a
x[k-1] ' ‘ y[k-1
z! 27!
b,
-] | : . d y[k-2]
I t
' '
| b " I I
k-] = ; ;
1 |
27! [G- 1
by o y[k-N+)
x[k-M]

2t
N

y{k - N]

Figure 14.1 Signal flow graph of direct form I realization
for an IIR system.

]

IR Filters

bo
vzt
a by
21 7t
az bs
1 1] 1
1 1 ' I
| I) !
! ! ! |
! Ou-t ! ! by-y !
PR
I b
1 '
!)
! !
i I
! ay_y !
21
an

Figure 14.2 Signal flow graph of Fig. 14.1 with cascade

order reversed.

x[k]

bo
21
9y by
2-1
a b2
1 ')
1 1 |
] 1 !
] | i
) Opg-y 1 by 1
z
On by
1 t
1 1
1 I
1]
1 ON—‘ '
2-1

aN

Figure 14.3 Signal flow graph of
direct form II realization for an
IIR system.

273

274 Chapter Fourteen

system using w[k] and y[k — N] through y{k — 1] to generate y[k]. Since these
two systems are LTI systems, the order of the cascade can be reversed to yield
the equivalent system shown in Fig. 14.2. Examination of this figure reveals
that the unit delays in parallel running down the center of the diagram can
be paired such that within a pair the two delays each take the same input
signal. This fact can be exploited to merge the two delay chains into a single
chain as shown in Fig. 14.3. The structure shown in this figure is known as
the direct form II realization of the 1IR system represented by (14.1).

14.3 Impulse Invariance

The basic idea behind the impulse-invariance approach is a very simple
one—the unit sample response of the digital filter is set equal to a sequence
of uniformly spaced samples from the impulse response of an analog filter:

h[n] = h,(nT) (14.4)

(An analog filter used in this context is usually refered to as a “prototype”
filter.) This approach is conceptually simple, but from a practical viewpoint,
evaluation of (14.4) is not a straightforward matter. By definition, for an
infinite impulse response filter, the sequence A[n] will be nonzero over an
infinite domain of n. Furthermore, based on the s-plane-to-z-plane mapping
discussed in Sec. 9.2, we can conclude that the imposition of (14.4) will not
result in a simple relationship between the frequency response corresponding
to h[n] and the frequency response corresponding to A,(t). In fact, this
relationship can be shown to be

H(e) =%k S H, <j A+ 2nk +T2”k> (14.5)

DTFT N
where h[n] «——— H(e/*)
FT
ho(t) — H,(jw)
Put simply, Eq. (14.5) indicates that H(e/*) will be an aliased version of
H_(jo). The only way the aliasing can be avoided is if H,(jo) is band limited

such that

H,(jo)=0 for |o|> % (14.6)
If (14.6) is satisfied, then

He") = 1 H, (j —) | < n (14.7)

IR Filters 275

For a practical analog filter, Eq. (14.6) will never be satisfied exactly, but the
impulse-invariance method can be used to advantage with responses that are
nonzero but negligible beyond some frequency.
The transfer function of the analog prototype filter can be expressed in the
form of a partial-fraction expansion as
N
Ho)= Y b

k=18 — 8

(14.8)

where the s, are the poles of H,(s) and the A, are given by
Ak = [(S - sk)Ha (S)] Is =38y

Based on transform pair 8 from Table 2.2, the impulse response can then be
written as

h(t) = f A, e+t u(t) (14.9)
k=1

The unit-sample response of the digital filter is then formed by sampling the
prototype filter's impulse response to obtain

N
hinl = 5 Ap(e™")" u(t) (14.10)
k=1
The corresponding system function for the digital filter H(2) is obtained as
the z transform of (14.10):
N A
H@) =) o

_ 14.11
k=11‘esk Z ()

Based on the foregoing, we can state the following algorithm for impulse-
invariant design of an IIR filter.

Algorithm 14.1 Impulse-invariant design of HR filters

step 1. Obtain the transfer function H,(s) for the desired analog prototype
filter. (The material provided in Chaps. 3 through 6 will prove useful here.)

step2. Fork=1,2,..., N, determine the poles s, of H,(s) and compute the
coefficients A, using

Ak = [(S - sk)Ha (S)] Is =3 (14~12)

step 3. Using the coefficients A, obtained in step 2, generate the digital
filter system function H(z) as
N Ak

H@) = 2 T expei Tr

(14.13)

1

where 7T is the sampling interval of the digital filter.

276 Chapter Fourteen

step 4. The result obtained in step 3 will be a sum of fractions. Obtain a
common denominator, and express H(z) as a ratio of polynomials in z ! in
the form

YA o bz
HZz) =————— (14.14)

1-YV_ 1a,2 %

step5. Use the g, and b, obtained in step 4 to realize the filter in any of the
structures given in Sec. 14.1.

Example 14.1 Use the technique of impulse invariance to derive a lowpass IIR digital
filter from a second-order Butterworth analog filter with a 3-dB cutoff frequency of
3 KHz. The sampling rate for the digital filter is 30,000 samples per second.

solution From Sec. 3.1 we obtain the normalized-transfer function for a second-order
Butterworth filter as

1

Hi) = —
© = o6 — 5

3n . . 3=m
where sl=cosT+1 sin —

4
=2/
RN

51 . . bmn
SZ=COSI+1 Sll’l?
3n ., . 3=

=cos — —j sin —

4 4

SN
= i

The specified cutoff frequency of f =3000 yields @, = 6000n, and the denormalized re-
sponse (see Sec. 2.9) is given by

2
c

(s — w8,)(5 — w,.5y)

w

H,(s)=

w2

Tlst 0.(/2/2) = jo (/2Dls + w.(/2/2) + jo,(/2/2)]
The partial-fraction expansion of H,(s) is given by
A, " A,
s+ 0.(/2/2) — jo,(/2/2) s+ 0,(/2/2) +jo.(/2/2)

H,(s) =

—j\/2
2w,

a4, 02

2
2w,

where A, =

IIR Filters 277

Using these values for A, and A, plus the fact that
_6000r =

?* =30,000 5

we obtain from Eq. (14.13) the discrete system function H(z) as
—i\/2/(20,) N INEICED)
1-— exp(nnﬁ—i-j il >2'1 1 —exp<—18/§—j

2
10 10

B 2.06797 x 10~z 1
T 1-—1.158045z ! + 0.41124072 2

H(z) =

n/2\ _,
10)?

Programming considerations

step 1. Butterworth, Chebyshev, and Bessel filters are “all-pole” filters—
their transfer functions have no finite zeros. Closed-form expressions are
available for the poles of Butterworth [Eq. (3.2)] and Chebyshev [Eq. (4.4)]
filters. The poles of Bessel filters can be readily obtained by finding the roots
of the denominator polynomial as discussed in Chap. 6. The transfer function
for an elliptical filter has both poles and zeros. The poles are readily
available by using the quadratic formula to find the denominator roots for
each factor in Eq. (5.22). The zeros + ja\/;i are obtained by inspection of Eq.
(5.22). The software for performing the impulse-invariance transformation is
therefore designed to accept H,(s) specified as an array of poles and an array
of zeros.

step 2. Evaluation of A, for step 2 of the algorithm is straightforward. The
coefficients A, can be written as A, = N,,/D,, where the numerator N, is
obtained as

M
H, H (Pr — qn) M+#0

Ny, = m=1
H, M=0

and q,, is the mth zero of H,(s), p, is the kth pole of H,(s), and M is the total
number of zeros. Equation (14.12) can be evaluated using simple arithmetic—
there is no symbolic manipulation needed. The denominator D ,, is obtained
as

N
Dy, = H (Pr —Dp)

n=1
nsk

step 3. Evaluation of H(z) is more than plain, straightforward arithmetic.
At this point, for each value of k, the coefficient A, is known and the
coefficient exp(s,T) can be evaluated. However, z remains a variable and
hence will demand some special consideration. To simplify the notation in

278 Chapter Fourteen

the subsequent development, let us rewrite H(z) as

Hz= 5 — 4
= 1+ B,z7!

(14.15)
where f, = —exp(s, T)

step 4. For the summation in (14.15), the common denominator will be the
product of each summand’s denominator:

D(z) = ﬁ (1+ Brz™Y) (14.16)

k=1

To see how (14.16) can be easily evaluated by computer, let’s examine the
sequence of partial products {D,(z)} encountered in the evaluation:

D,@=(1+pzY

Dy(2) = (1 + Boz ") Dy(2) = D, (2) + Pz ' D, (2)
Dy(2) = (1 + B3z 1) Dy(2) = Dy(2) + B3z~ Dy(2)
Dy(2) = (1+ Bs2") Dy(2) = Dy(2) + Bz~ Dy(2)

D(2) = Dn(2) = (1 + Bz ") Dy 1(2) =Dy 1(2) + fnz "' Dy _1(2)

Examination of this sequence reveals that the partial product D,(z) at
iteration k can be expressed in terms of the partial product D, ,(2) as

Dy(2) =D, _1(2) + prz ™' D, _1(2)
The partial product D, _,(z) will be a (k — 1)-degree polynomial in z':
D, (@) =00z N’ +0,(z D'+ 0,27)2+ -+ 8, _ (" H* !
The product 8,z ' D, ,(2) is then given by
Bez 7Dy 1(2) =80z) + 61 Bz TN+ 2Bz T+ - + 85 1 Br(z D"
and D,(2) is given by
Dy(2) =06(2)+ (61 4+ 0B)z) + B+ 5, B)z)2+ - -
+(0p_ 1+ 0 _ o)z)+ 8, _ 1Bz V)

Therefore, we can conclude that if §, is the coefficient for the (z)" term in
D, ,(2), then the coeflicient for the (z~")" term in D,(2) is (5, + J,_,B,) with
the proviso that §, 20 in D,_,(2). The polynomial D, ,(z) can be repre-
sented in the computer as an array of k coefficients, with the array index

HR Filters 279

corresponding to the subscript on § and the superscript (exponent) on (z™Y:
delta[0] = J,, delta[l] =4,, and so on. The coefficients for the partial
product D,(z) can be obtained from the coefficients for D, _,(z) as indicated
by the following fragment of pseudocode:

for(j=k;j>=1.j--)
{delta[jj =delta[j] + beta * delta[j—1]:}

The loop is executed in reverse order so that the coefficients can be updated
“in place” without prematurely overwriting the old values. Notice that I
referred to the fragment shown above as “pseudocode.” In actuality, both
delta[] and beta are complex valued; and the arithmetic operations shown
in the fragment are incorrect. The following code fragment performs the
complex arithmetic correctly, but all the complex functions tend to obscure
the algorithm that is more clearly conveyed by the pseudocode above:

for(j=k;j>=1;1—--)
{delta[j] =cAdd(delta[j]. cMult(beta, deltalj=11)):}

If this fragment is placed within an outer loop with k ranging from 1 to
numPoles, the final values in delta[n] will be the coefficients a, for Eq.
(14.14).

For the summation in Eq. (14.13), the numerator can be computed as

N N
NE) = Y, l:Ak I (1—anl)] (14.17)
ey

For each value of k, the product in (14.17) can be evaluated in a manner
similar to the way in which the denominator is evaluated. The major
difference is that the factor (1 — 8,2 ') is not included in the product. It is
then a simple matter to add the coefficients of each of the N products to
obtain the coefficients for the numerator polynomial N(z). A complete func-
tion for computing the coefficients a, and b, is provided in Listing 14.2.

14.4 Step Invariance

One major drawback to filters designed via the impulse-invariance method is
their sensitivity to the specific characteristics of the input signal. The digital
filter’s unit-sample response is a sampled version of the prototype filter’s
impulse response. However, the prototype filter’s response to an arbitrary
input cannot in general be sampled to obtain the digital filter’s response to a
sampled version of the same arbitrary input. In many applications a filter’s
step response is of more concern than is the filter’s impulse response. In such
cases, the impulse-invariance technique can be modified to design a digital
filter based on the principle of step invariance.

280 Chapter Fourteen

Algorithm 14.2 Step-invariant design of lIR filters

step 1. Obtain the transfer function H,(s) for the desired analog prototype
filter.

step 2. Multiply H,(s) by 1/s to obtain G,(s), the filter’s response to the unit
step function.

step3. Fork=1,2,..., N, determine the poles s, of G,(s) and compute the
coefficients A, using

Ak = [(S - Sk)Ga(s)] Isssk

step 4. Using the coefficients A, obtained in step 3, generate the system
function G(z) as
N Ak

G2) = kgl 1 —exp(s,T)z

—1

step 5. Multiply G(2) by (1 —z7') to remove the z transform of a unit step
and thereby obtain H(z) as

Hz =(1-27" i A
2)=(1—-2z
e=1 1 —exp(s,T)z 1
step 6. Obtain a common denominator for the terms in the summation of
step 5, and express H(z) as a ratio of polynomials in z ! in the form

Zyzo byz~*

G = ——e———
1-YN_ a2z %

step7. Use the aq, and b, obtained in step 6 to realize the filter in any of the
structures given in Sec. 14.1.

Programming considerations

The step-invariance method is similar to the impulse-invariance method, with
two important differences. In step 2 of Algorithm 14.2, the transfer function
H,(s) is multiplied by 1/s. Assuming that H,(s) is represented in terms of its
poles and zeros, multiplication by 1/s is accomplished by simply adding a pole
at s = 0. (Strictly speaking, if the analog filter has a zero at s =0, multiplica-
tion by 1/s creates a pole at s =0, which cancels the zero. However, since
none of the analog prototype filters within the scope of this book have zeros
at s =0, we shall construct the software without provisions for handling a
zero at s =0.)

In step 5 of Algorithm 14.2, the system function G(z2) is multiplied by
(1—z71 to remove the z transform of a unit step and thereby obtain the

IIR Filters 281

system function H(z). Conceptually, this multiplication is appropriately lo-
cated in step 5. However, for ease of implementation it makes sense to defer
the multiplication until after the coefficients a, and b, are generated in step
6. A function modified to perform the step-invariance technique is provided in
Listing 14.3.

282 Chapter Fourteen

Listing 14.1 iirResponse()

jtt****tl*t****t******t*******‘**‘t[

/* x/
/¥ Listing 14.1 *¢
/¥ ¥/
/¥ iirResponsel) *
/¥ g

f‘***t****#******t************#****j

void iirResponse{struct complex al],
int bigh,
struct complex bl],
int bigh,
int number(fPoints,
logical dbScale,
real magnitude{]
real phase[])

{

static struct complex response[MAXPOINTS];

int k, n, m;

real sumRe, sumlm, phi;

/* compute DFT of H{z) numerator x4
for{ a=8; m<number0fPoints; m++) {
sumfe = 0.8;
sumim = 8.0;
print f{"\rXd B0E",m};
for{n=8; n<=bigl; n++) {
print f{"\b\b\b%¥3d",n);
phi = 2.8 * PI ¥ p * n / (2.8%nunber0fPoints);
printf{"b[¥d] = (Xe, %e)\n",n,bln].Re,bln]. In);
sumfe += b[n].Re * cos{phi} + bln)].In * sin{phi);
sumlm += blnl.Im ¥ cas{phi) - bln).Re * sin{phi);
}
response{m] = caplx{sumfle, sunlm);
printf{"response = (8¢, ¥e)\n",response[m].Re, responselal.

/% compute OFT of H(z) denominator x/

for(m=0; m<number(fPaints; m++) {
supRe = 1.§;
sumlm = 0.6;

IIR Filters

forin=1; n<=bigN; n++) {
phi = 2.8 ¥ Pl ¥ o * n / (2,.0%number0fPoints);
sumRe += -aln].Re * cosiphi) - a[n].Im * siniphi);
sumlm += -al{n).Im * cosiphi) * alnl.Re * siniphi};

}
response{m] = cliv{responsel{m],cmplyisumfe, sumlm)y;
}
jl __ *
/¥ compute magnitude and phase of response L

for{ n=8; m<numberlfFoints; m++) {
phase[n] = argiresponse{m]);
ifidbScale)
{magnitude[m] = 28.8 * logl@ cAbs{respanseln]}};}
else
{magnitude[m] = chbs(response(n]);}
printf("mag = fe\n",magnitudelm]};
}
return;

}

Listing 14.2 impulselnvar()

/***t****t*****l****‘**‘#****‘#t#**/

/* */
/¥ Listing 14.2 */
/* */
/% impulselnuar() *7
/* */

/tl**********t*********************/

vaid inpuiselnuar{ struct complex pole(],
int numPoles,
struct complex zero[],
int numleros,
real hlera,
real bigT,
atruct complex all,
struct complex b[])

{
L

int k, n, j, maxCoef;

struct complex deltalNAXPOLES];

struct complex bigR[MAXPOLES];

struct complex beta, denom, numer, work?Z;

283

284 Chapter Fourteen

for{j=08; j<MAXPOLES; j++) {
deltalj] = cmplx(8.8,8.8);
alj] = cmplx(6.6,8.6);
blj] = cmpix{0.8,8.0);

/¥ compute partial fraction expansion coefficients */
fori k=1; k<=numPoles; k++) {
numer = caplx{hZero,B.8);
forin=1; n<=numZeras; n++)
{ numer = clult{numer, cSub{poleln), zeralnl));}
denom = cmplx(1.8,0.8);
for{ n=1; n<=numPales; n++) {
i f{n==k) continue;
denom = cllult(denom, cSub{polelk],pelelnl));

}
bighlk] = chiv{numer, dencaj;
}
¥ e e mm Y
/¥ compute numeratar coefficients X/
for{ k=1; k<=pumPoles; k++) [

deltall]) = cmplx(1.8, 8.06);
for{n=1; n<NARPOLES; n++)
{deltaln] = cmpix(@.6,0.6);}
moxCoef = §;
for{ n=1; n<=numPales; n++) {
i f{n==k) continue;
max{oef++;
beta = sMult{-1.8, cExp(sMult{bigT,paleln])}};
for{j=maxCoef; jr=1; j--}
{ deltalj]l = cAdd{ deltalj], clult{ beta, deltalj-1]});}
!
for{ j=8; j<numPoles; j++)
{ b[j] = cRddiblj], chult(bigAlk], dettalj1)); }

1
J

e e x/
/% compute denominator deltaficiente %/
al@] = cmplx(1.6,0.8);
for{ n=1; n<=numPoles; n++) {
beta = shult{~1.8, cExp(shult(bigT,poleln])));
for(j=n; j>=1; j--)
{ aljl = cAdd(alj), cMult(beta, alj-1]));}
}
for{ j=1; j<=numPoles; j++)
{ alj] = shult(-1.8,alj]);}
return;

}

HR Filters

Listing 14.3 stepinvar()

{“#***l*l***t**t***&*********#*****;‘

/¥ */
/% Listing 14.3 */
/¥ *
/¥ steplnuar() X/
/% X/

void steplnuar{ struct complex polel],
int numPoles,
steuct complex zeral],
int nualeros,
real hlero,
real big?,
struct complex al)
struct complex b}

~— -

{

int k, n, i, maxCoef;

struct complex deltallAXPOLES];

struct complex bigR[MARPOLES];

struct complex beta, denom, numer, work?;

for(j=8; j<NMARPOLES; j++) {
deltalj] = cmpix(8.8,8.0);
alj] = cmplx{0.8,6.0);
b1 = caplx(6.8,8.6);
}

pole[8] = cmpix(0.8,08.8);

/¥ compute partial fraction expansion coefficients */
for{ k=8; k<=numPales; k++) {
numer = cmpix{hZero,8.8);
for(n=1; n<=numZeros; n++)
{ numer = clult{numer, cSub{poleln], zerolnl});}
denom = cmpix(1.8,8.8};
for{ n=8; n<=numPoles; n++) {
if{n==k) continue;
denom = cMultidenom, cSub{polelk],poleln]));

}
bighlk]l = cliv{numer, denom};
}
S ¥ e e e e X,
/¥ compute numerator coefficients X/

for(k=1; k<=numPales; k++j {
deltal®) = caplx{1.6, 8.8);
for{n=1; n<MAXPOLES; n++)

285

286

Chapter Fourteen

{deltaln] = cmplx(0.6,8.08);}
maxloef = @;
fori n=8; n<=numFeles; n++) {
ifin==k) continue;
maxCoef++;
beta = sMult{-1.8, cExp(sfult{bigT,paleln])));
for{j=maxCoef; jo=1; j--)
{ deltalj] = cRdd(deltalj], cMult{ beta, deltalj-1]));}
}
for(j=8; j<numPoles; j++)
{ blj) = chdd{b[j], cMuit! bigRlk], deltaljl}); }

¥ sultiply by 1-z¥*{-1) %/

/!

beta = cmplx{-1.8,8,8};
for{=nuaPales+1; j>=1; j--}) {
b[j] = cAddib{j], chult{beta, blj-11)});}

compute denominator coefficients ¥/

al8) = cmplx(1.60,06.8);
for{ n=1; n<=numPoles; n++) {

beta = sMult{-1.8, cExp{shultibigT,poleln])));
for{ j=n; j>=1; j--)

{ alj] = cRdd(alj], cMult{ beta, alj-1]});}
}

for{ j=1; j<=numPoles; j++)

{ alj] = shult{-1.8,alj1};}

return;

}

