Chapter

15

lIR Filters via the Bilinear
Transformation

A popular technique for the design of IIR digital filters is the bilinear
transformation method, which offers several advantages over the other tech-
niques presented in the previous chapter.

15.1 Bilinear Transformation

The bilinear transformation converts the transfer function for an analog
filter into the system function for a digital filter by making the substitution

21—2z"1
2
Ti+z*

S

If the analog prototype filter is stable, the bilinear transformation will result
in a stable digital filter.

Algorithm 15.1 Bilinear transformation

step 1. Obtain the transfer function H,(s) for the desired analog prototype
filter.

step 2. In the transfer function obtained in step 1, make the substitution

2 1—2z1
T T142z7t

S

where T is the sampling interval of the digital filter. Call the resulting digital
system function H(z).

step 3. The analog prototype filter’s transfer function H,(s) will, in general,
be a ratio of polynomials in s. Therefore, the system function H(z) obtained

287

288 Chapter Fifteen

in step 2 will, in general, contain various powers of the ratio (1 —z71)/
(1+2z"1!) in both the numerator and the denominator. Multiply both the
numerator and denominator by the highest power of 1+ 27!, and collect
terms to obtain H(z) as a ratio of polynomials in z ! of the form

Z}QW:O bpz"
Hz)=————— (15.1)
1YV 1a,27"

step 4. Use the a, and b, obtained in step 3 to realize the filter in any of the
structures given in Sec. 14.1.

Exampie 15.1 Use the bilinear transform to obtain an IIR filter from a second-order
Butterworth analog filter with a 3-dB cutoff frequency of 3 KHz. The sampling rate for
the digital filter is 30,000 samples per second.

solution The analog prototype filter’s transfer function is given by

w2
H(8) =——F"——
$%2+ /20,8 + w?

where w, = 6000n. Making the substitution s = 2(1 —z) /(T(1 + 2z~ 1)) yields

0)2

2\¢/1—2z"! 1—z
— P — 2
() () vl i)+
where T = 1/30,000. After the appropriate algebraic simplifications and making use of the
fact that

H(z) =

6000n =n

Pe% =730,000 5
we obtain the desired form of H(z) as

0.063964 + 0.127929z — + 0.0639642 —2
H(z) = 15.2
@ 1—1.168261z ! 1 0.4241182z 2 (15:2)

Comparison of (15.1) and (15.2) reveals that
a, = —1.168261 a, =0.424118
b, = 0.063964 b, =0.127929 b, = 0.063964

15.2 Factored Form of the Bilinear Transformation .

Often an analog prototype filter will be specified in terms of its poles and
zeros—that is, the numerator and denominator of the filter’s transfer func-
tion will be in factored form. The bilinear transformation can be applied
directly to this factored form. An additional benefit of this approach is that
the process of finding the digital filter’s poles and zeros is greatly simplified.
Each factor in the numerator of the analog filter’s transfer function will be
of the form (s —gq,,), and each factor of the denominator will be of the form

IR Filters via the Bilinear Transformation 289

(s —p,), where g, and p,, are, respectively, the nth zero and nth pole of the filter.
When the bilinear transform is applied, the corresponding factors become

gl—z’1 and El——z”1
T1+2z1 K n T14 271 Pn

The zeros of the digital filter are obtained by finding the values of z for which

21—2z7" —0
T1+z! 9n =
The desired values of z are given by
2+4q,T
=—" 15.3
% 2— a, T ()

In a similar fashion, the poles of the digital filter are obtained from the poles of
the analog filter using

_2+p,T

= 15.4
ZP 2_pnT ()

The use of (15.3) and (15.4) is straightforward for the analog filter’s finite poles
or zeros. Usually, only the finite poles and zeros of a filter are considered, but in
the present context, all poles and zeros of the analog filter must be considered.
The analog filter’s infinite zeros will map into zeros of z = —1 for the digital
filter.

Algorithm 15.2 Bilinear transformation for transfer
functions in factored form

step 1. For the desired analog prototype filter, obtain the transfer function
H_(s) in the factored form given by

rir‘zl=1 (S - qm)
Hy() = Hy—
flvzl (s —pn)

step2. Obtain the poles z,, of the analog filter from the poles p,, of the analog
filter using

_2+p,T

=—— =12,...,N
ZP" 2—pnT n y Sy

step3. Obtain the zeros z,,, of the digital filter from the zeros g,, of the analog
filter using

_2+q,,,T

= =.,2,....,.M

290 Chapter Fifteen

step 4. Using the values of z,, obtained in step 2 and the values of z,,
obtained in step 3, form H(z) as

TN e+ DY MM _1(z—2,,)
H(z) =H, . (15.5)
flvzl(z_pnT) £1,V=1(z - zpn)
The factor (z + 1)V~ supplies the zeros at z = —1, which correspond to the

zeros at s = o« for analog filter’s having M < N. The first rational factor in
Eq. (15.5) i1s a constant gain factor that is needed to obtain results which
exactly match the results obtained via Algorithm 15.1. However, in practice,
this factor is often omitted to yield

E+DY MM (2~ 2.)

—1(2 n)

H(z) =

Example 15.2 The Butterworth filter of Example 15.1 has a transfer function given in
factored form as

w?
[s + 0.(/2/2) — jo (/2/2)s + 0.(/2/2) + jo.(/2/2)]

Apply the bilinear transform to this factored form to obtain the IIR filter’s system
function H(z).

H_ (s) =

a

solution The analog filter has poles at

o T2
<2

i.I.('L)L‘

SIS

Using (15.4), we then obtain the poles of the digital filter as
(G
zPl
VI
Y " Vil PO,
2 < 9 +J 9)wc

= 0.584131 + 0.28794;

+<ﬂ_jﬁ>wg
o (7 f_1£>

= 0.584131 — 0.287941)

The two zeros at s = o0 map into two zeros at z = —1. Thus the system function is given
by

(z+1)?
H(z) =H, - -
(z —0.584131 + 0.287941j)(z — 0.584131 — 0.287941;)

IIR Filters via the Bilinear Transformation 291

H,T?
where H, = 0
(2—p, TX2—-p,T)
~ (6000m)*
TC\/E _nﬂ nﬁ 'Tf\/é
30,000)2(2 - 2
()<+10 ’10><+10+’10
— 0.063964

If the numerator and denominator factors are multiplied out and all terms are divided by
z2, we obtain

0.063964(1 + 22 '+ 22)
1-1.168261z ' 4 0.424118z -2

H(z) = (15.6)

which matches the result of Example 15.1.

15.3 Properties of the Bilinear Transformation

Assume that the analog prototype filter has a pole at sp =0 +jow. The
corresponding IIR filter designed via the bilinear transformation will have a
pole at

__2+sT
Y

Zp
24 (0o +jo)T
T 2— (06 +jo)T

24T +joT
T 2—06T —joT

The magnitude and angle of this pole are given by

_ J@teT) + (wT)?
el = @ o)+ (T

arg(zp) =tan™! wT —tan! —oT
2+46T 2—0T

The poles of a stable analog filter must lie in the left half of the s plane—that
is, 6 <0. When ¢ <0, the numerator of (15.7) will be smaller than the
denominator, and thus |zp| < 1. This means that analog poles in the left half
of the s plane map into digital poles inside the unit circle of the z plane—
stable analog poles map into stable digital poles. Poles that lie on the jo axis
of the s plane have ¢ = 0 and consequently map into z-plane poles which have
unity magnitude and hence lie on the unit circle. Analog poles at s =0 map
into digital poles at z = 1, and analog poles at s = 4+joo map into digital poles
at z = —1.

(15.7)

292 Chapter Fifteen

Frequency warping

The mapping of the s plane’s jo axis into the z plane’s unit circle is a highly
nonlinear mapping. The analog frequency w, can range from — oo to + oo, but
the digital frequency w, is limited to the range +n. The relationship between
w, and w, is given by

w, T
2

1

wy; =2tan™ (15.8)

If an analog prototype filter with a cutoff frequency of @, 1s used to design a
filter via the bilinear transformation, the resulting digital filter will have a
cutoff frequency of w,, where w, is related to w, via (15.8).

Example 153 A lowpass filter with a 3-dB frequency of 3 kHz is used as the prototype for
an IIR filter with a sampling rate of 30,000 samples per second. What will be the 3-dB
frequency of the digital filter designed via the bilinear transformation?

solution Equation (15.8) yields

(60007)(1/30,000)
wy =2tan! e
=0.6088

Since w, = n corresponds to a frequency of 30,000/2 = 15,000 Hz, the cutoff frequency of
the filter is given by

0.6088
o, = 280 (15,000) = 2906.8 Hz
T

The frequency-warping effects become more severe as the frequency of inter-
est increases relative to the digital filter’s sampling rate.

Example 15.4 Consider the case of an analog filter with a 3-dB frequency of 3 kHz used
as the prototype for an IIR filter designed via the bilinear transformation. Determine the
impact on the 3-dB frequency if the sampling rate is changed from 10,000 samples per
second to 30,000 samples per second in steps of 1000 samples per second.

solution The various sampling rates and the corresponding warped 3-dB frequencies are
listed in Table 15.1.

Fortunately, it is a simple matter to counteract the effects of frequency warping by
prewarping the critical frequencies of the analog prototype filter in such a way that the
warping caused by the bilinear transformation restores the critical frequencies to their
original intended values. Equation (15.8) can be inverted to yield the equation needed for
this prewarping:

2 Wy
== tan -2 15.
w, Tanz (15.9)

Example 15.5 We wish to design an IIR filter with a 3-dB frequency of 3kHz and a
sampling rate of 30,000 samples per second. Determine the prewarped 3-dB frequency
required for the analog prototype filter.

IIR Filters via the Bilinear Transformation 293

TABLE 15.1 Warped Cutoff Frequencies for Example 15.4

Sampling rate Cutoff frequency, Hz % error
10,000 2405.8 —19.81
11,000 2480.5 —17.32
12,000 2543.1 —15.23
13,000 2595.8 —13.47
14,000 2640.4 —11.99
15,000 2678.5 —10.72
16,000 2711.1 —9.63
17,000 2739.3 —8.69
18,000 2763.6 —17.88
19,000 2784.9 -7.17
20,000 2803.5 —6.55
21,000 2819.9 —6.00
22,000 2834.4 —5.52
23,000 2847.2 - —5.09
24,000 2858.7 —4.7
25,000 2868.9 —4.37
26,000 2878.1 —4.06
27,000 2886.4 —3.79
28,000 2893.8 —3.54
29,000 2900.6 —3.31
30,000 2906.8 —3.11

solution Since w, = n corresponds to a frequency of 30,000/2 = 15,000 Hz, a frequency of
3 kHz corresponds to a w, of

3000 _#

“4=75000" 5

The prototype analog frequency w, is obtained by using this value of w, in Eq. (15.9):

2 T
=% tan=19495.18
“e = (1/30,000) 2" 10

The analog prototype filter must have a 3-dB frequency of 19,495.18/(2n) = 3102.75 Hz in
order for the IIR filter to have a 3-dB frequency of 3 kHz after warping.

15.4 Programming the Bilinear Transformation

Assume that the transfer function of the analog prototype filter is in the form
given by

H”Illl=1(s _qm)

£1V=1 (S _pn)

Ha(s) = HO

where p, and g, denote, respectively, the filter’s poles and zeros. To generate

294 Chapter Fifteen

a digital filter via the bilinear transformation, we make the substitution
2 /1—z"1
s=—
T\1+2z!

f3() o]
m=H T\ -1 m
H(z) = H, Rk

2/(1—z"1
N _— I
n=1|:T<1+21> pn:|

which, after some algebraic manipulation, can be put into the form

(1+z HN-MTIN_, [(;—qm)—@wtqm)zl}
H(z) = H,

[l o)]

Thus, the denominator of H(z) is given by

and obtain

N
D)= [] G.+6,27Y (15.10)

n=1

To see how (15.10) can be easily evaluated by computer, let’s examine the
sequence of partial products {D,(z)} encountered in the evaluation:

Di(z)=(1+6:271)

Dy(2) = (yo+ 6,2 YD, (2) = y,D,(2) + 6,27 D, (2)
D;(2) = (y3+ 032 1)D,(2) = 93 D4(2) + 8327 Dy(2)
D,(2) = (4 + 8,2 ")D3(2) = y,D4(2) + 6,2 ' Dy(2)

D(z) = Dn(2) = (yn +0n2 DDy _1(2) =ynDy_ (2) + 27 Dy _1(2)

Examination of this sequence reveals that the partial product D,(z) at
iteration & can be expanded in terms of the partial product D, ,(2) as

Dy(2) =Dy, _1(2) + 6,27 D, _,(2)
The partial product D, _,(2) will be a (k¢ — 1)-degree polynomial in z~!:

Dy 1(@) =pe(z ™)+) ez D2+ gy (27)R

IIR Filters via the Bilinear Transformation 295

The products y,D, ,(2) and 6,z ' D, _,(2) are then given by
TeDr - 1) = vt + 7t (@) + prpta(z D4 Ay (27 HEE
0x2 "Dy 1(2) = Optto(2 ™) + Sty (27 + 8ppta(z)P4+ Sppy 1 (2)
and D,(2) is given by

Dy(2) = y0(2 N + (s — Srpto)z "D + (Vabts — Opp 2 "2+ -
+ et -1 — bty o)z D =S (27D

Therefore, we can conclude that if p, is the coefficient for the (z =) term in
D, ,(2), then the coefficient for the (z)" term in D(z2) is (y,u, + Oppt, _,) with
the proviso that x £0 in D, _,(2). The polynomial D, _,(2) is represented in
the computer as an array of & coefficients, with the array index corresponding
to the subscript on p and the superscript (exponent) on (z). Thus, array
element mu[0] contains y,, array element mu[1] contains U,, and so forth.
The coefficients for the partial product D,(z) can be obtained from the
coefficients for D, _,(2), as indicated by the following fragment of pseudocode:

for{ j=k:j>=1:j--)
{mulj]l=gamma * mu{j] + beta * mulj—-1]:}

The loop is executed in reverse order so that the coefficients can be updated
“in place” without prematurely overwriting the old values. Notice that I
referred to the fragment shown above as “pseudocode.” In actuality, mu[],
gamma, and delta are each complex valued; and the arithmetic operations
shown in the fragment are incorrect. The following code fragment performs the
complex arithmetic correctly, but all the complex functions tend to obscure
the algorithm which is more clearly conveyed by the pseudocode above:

for{ j=k;j>=1,j--)
{mulj] =cSub(cMult(gamma, mulj]. cMult(delta, mulj—17)):}

If this fragment is placed within an outer loop with % ranging from 1 to
numPoles, the final values in mu[n] will be the coefficients a, for Eq. (15.1).
A similar loop can be developed for the numerator product N(z) given by

N(Z) = ﬁ (am _:Bmzil) (1511)

h ==
where «,, T +qm

-2
ﬁm‘T—qm

A C program for computation of the bilinear transformation is provided in
Listing 15.1.

296 Chapter Fifteen

Listing 15.1 bilinear()

f**#******‘****ttt*******t******l**ﬁ

/* */
/% Listing 15.1 */
/% X/
/* hilinear{) */
/* */

f‘*t*l***t*t#**********************;

void bilinear{ struct complex palel]
int numPoles,
struct complex zero[],
int numleros,
real hZero,
real bigT,
struct complex al],
struct complex b[])
{
int j,k,m,n, maxCoef;
real hC;
struct complex mu[MAKPOLES];
struct complex alpha, beta, gamma, delta, etq;
struct complex work, cTuwo;

for{j=8; j<MAKPOLES; j++) {
nulj] = coplx(0.6,8.0);
aljl = caplx(8.8,8,8);
blj] = capix(€.8,8.6);

}
F T T */
/¥ compute constant gain facter */
ht = 1.6;

work = cmplx(1.8,8.8);
cTwo = caplx{2.8,0.08);
forin=1: n<=numPoles; n++) {
work = cfult{work, cSub{cTaeo, sMult{bigT,paleln]}));

hC = hC * bigT;

}
h€ = hZerc * h{ / work.Re;
J ¥ e x/
/* compute numerator coefficients x/

nul@] = cmplx{1.8, &.6);

maxCoef = @;

for{ m=1; m<={nunPoles-numleros)}; m++) {
maxloef++;

IIR Filters via the Bilinear Transformation

fori j=maxCoef; jr=i; j--)
{ mulj] = chdd? muljl, mulj-11};}
}
for{ m=1; m<=numleros; m++) {
maxCoef++;
alpha = cAdd{emplx{ (-2.8/bigT), &.8), zero[n]);
beta = cSublcmplx{ (-2.8¢higT), €.6), polelnl):
faori j=maxCoef; j»=1; j--)
{ wulj] = cAdd(mulj], clult{ beta, mulj-11));}

}
for{ j=0; j<=numPoles; j++) b[j) = shult(hC, mulj]);

/% compute denominator coefficients ¥/
mul@] = coplx(1.8,0.8);
for{n=1; n<MARPOLES; nt+)
{muln] = cmplx{@.8,6.@);}
for{ n=1; n<=nunPoles; n++) {
gamma = cSub{cmpix{ (2.8/bigT}, @.8), polelnl);
delta = cSub(cmplx((-2.8/bigT), 8.8}, pole[nl};
eta = clliv(delta, ganma);
for(j=n; j>=1; j--)
{ mulj] = cAdd{ mulj], cMult{eta, mulj-11)};}
1
H
for{ j=1; j<=numPoles; j++)
{ alj] = stult(-1.8, mulj] };}
return;

}

297

