Chapter

Practical Considerations

All of the digital filter designs presented up until now have been based on
infinite-precision mathematics. That is, we have assumed that all of the
signal samples, filter coefficients, and results of mathematical computations
are represented exactly or with infinite precision. In most cases we have used
the double data type in C to approximate such precision. In Think C for the
Apple Macintosh, the double data type has a 64-bit mantissa that provides
approximately 19 decimal digits of precision. In Turbo C for the PC, the
double data type has a 52-bit mantissa that provides approximately 15
decimal digits of precision. For most practical situations, either 15 or 19
digits of precision is a reasonable approximation to infinite precision. Fur-
thermore, the double type is a floating-point format and thus provides good
dynamic range in addition to high precision.

Although floating-point formats are used in some digital filters, cost and
speed considerations will often dictate the use of fixed-point formats having a
relatively short word length. Such formats will force some precision to be lost
in representations of the signal samples, filter coefficients, and computation
results. A digital filter designed under the infinite-precision assumption will
not perform up to design expectations if implemented with short-word-length,
fixed-point arithmetic. In many cases, the degradations can be so severe as to
make the filter unuseable. This chapter examines the various types of degrada-
tions caused by finite-precision implementations and explores what can be
done to achieve acceptable filter performance in spite of the degradations.

16.1 Binary Representation of Numeric Values

Fixed-point formats

Binary fixed-point representation of numbers enjoys widespread use in digital
signal processing applications where there is usually some control over the

299

300 Chapter Sixteen
range of values that must be represented. Typically, all of the coefficients A[n]
for a digital filter will be scaled such that
|h[n]] < 1.0 forn=1,2,...,N (16.1)
Once scaled in this way, each coefficient can be expressed as
h=b,2+b,2"1+b,2724--- (16.2)

where each of the b, is a single bit; that is, b, € {0,1}. If we limit our
representation to a length of L + 1 bits, the coefficients can be represented as
a fixed-point binary number of the form shown in Fig. 16.1. As shown in the
figure, a small triangle is often used to represent the binary point so that it
cannot be easily confused with a decimal point. The expansion of Eq. (16.2)
can then be written as

L
A=Y b,2°* (16.3)
k=0

The bit shown to the left of the binary point in Fig. 16.1 is necessary to
represent coefficients for which the equality in (16.1) holds, but its presence
complicates the implementation of arithmetic operations. If we eliminate the
need to exactly represent coefficients that equal unity, we can use the
fixed-point fractional format shown in Fig. 16.2. Using this scheme, some
values are easy to write:

Y4 = 41000
% = 201100
Ysa = 2000101
Some other values are not so easy. Consider the case of %,, which expands as

1/10:274_‘_275+2—8+279+2—12+2~13+_,,

— Z (2—4k+2—4k—-1)

k=1
20 2!
_ 2-1 2-2
-2 -3 -L
™ > /Dg |
Figure 16.1 Fixed-point bi- Figure 16.2 Alternative
nary number format. fixed-point binary num-

ber format.

Practical Considerations 301

The corresponding fixed-point binary representation is a repeating fraction
given by

Vi = A000110011 - - -

If we are limited to a 16-bit fixed-point binary representation, we can truncate
the fraction after 16 bits to obtain

Vo = 40001100110011001

The actual value of this 16-bit representation is

6553
2744275 +278 4279427124 92718 4 9716 = ——— ~ (099990845
+27P 427842704272y 28y T

Thus the value represented in 16 bits is too small by approximately
9.155 x 10—,

Instead of truncating, we could use a rounding approach. Rounding a
binary value is easy—just add 1 to the first (leftmost) bit that is not being
retained in the rounded format. In the current example we add 1 to bit 16.
This generates a carry into b;; which propagates into b,, to yield

6554
65,5636

»40001100110011010 = = 0.100006104

This value is too big by approximately 6.1 x 10—,

In many DSP applications where design simplicity, low cost, or high speed
is important, the word length may be significantly shorter than 16 bits, and
the error introduced by either truncating or rounding the coefficients can be
quite severe, as we will see in Sec. 16.2.

Floating-point formats

A fixed-point fractional format has little use in a general-purpose computer
where there is little or no a priori control over the range of values that may
need to be represented. Clearly, any time a value equals or exceeds 1.0, it
cannot be represented in the format of Fig. 16.2. Floating-point formats
remove this limitation by effectively allowing the binary point to shift
position as needed. For floating-point representations, a number is typically
expanded in the form

L
h =2a Z bk27k
k=0

In Think C for the Macintosh, a floating-point value has the form shown in
Fig. 16.3. The fields denoted i and f contain a fixed-point value of the form
shown in Fig. 16.1 where the binary point is assumed to lie between 1 and the
most significant bit of f. This fixed-point value is referred to as the mantissa.

302 Chapter Sixteen

12 16 17 18 80

[s] e [i] f B

Figure 16.3 Floating-point binary number format
used in Think C for the Macintosh.

If the bits in field f are designated from left to right as f,, f,, . .. , fe3, the value
of the mantissa is given by

63
m=i+ Y f,2°F

k=1
The field denoted as e is a 15-bit integer value used to indicate the power of
2 by which the numerator must be multiplied in order to obtain the value
being represented. This can be a positive or negative power of 2, but rather
than using a sign in conjunction with the exponent, most floating-point
formats use an offset. A 15-bit binary field can have values ranging from 0 to
32,767. Values from 0 to 16,382 are interpreted as negative powers of 2, and
values from 16,384 to 32,766 are interpreted as positive powers of 2. The value
16,383 is interpreted as 2° =1, and the value 32,767 is reserved for represent-
ing infinity and specialized values called NaN (not-a-number). The sign bit
denoted by s is the sign of the overall number. Thus the value represented by
a floating-point number in the format of Fig. 16.3 can be obtained as

63
l)=(—1)s 2(e—16,383)<i+ Z fk2k>
k=1

provided e # 32,767.

Suppose we wish to represent %, in the floating-point format of Fig. 16.3.
One way to accomplish this is to set the mantissa equal to a 64-bit fixed-point
representation of /, and set e = 16,383 to indicate a multiplier of unity. Using
the hexadecimal notation discussed previously, we can write the results of
such an approach as

§=0
e = 0x3fff
t=0

f=0x0ccceeeccccceeee

With the various fields packed together, the resulting 80-bit floating-point
representation of Y}, is W = 0x3fffOcccccccceececee. Slightly more precision
can be squeezed into the representation if we shift f 4 places to the left and
modify e to indicate multiplication by 2-%. Such an approach yields

W = 0x3ffbccececcecececece

Practical Considerations 303

Numbers greater than 1.0 present no problem for this format. The value 57
is represented as

s=0
e = 0x4004 (that is, 2°)
i=1
f = 0x6400000000000000
W = 0x4004e400000000000000
In other words, this representation stores 57 by making use of the fact

57=25(20+2 14224 279)

16.2 Quantized Coefficients

When the coeflicients of a digital filter are quantized, the filter becomes a
different filter. The resulting filter is still a discrete-time linear time-invari-
ant system—it’s just not the system we set out to design. Consider the 21-tap
lowpass filter using a von Hann window that was designed in Example 11.6.
The coefficients of this filter are reproduced in Table 16.1. The values given
in the table, having 15 decimal digits in the fractional part, will be used as
the baseline approximation to the coefficients’ infinite-precision values. Let’s
force the coefficient values into a fixed-point fractional format having a 16-bit
magnitude plus 1 sign bit. After truncating the bits in excess of 16, the
coeflicient values listed in Table 16.2 are obtained. The magnitude response of
a filter using such coefficients is virtually identical to the response obtained
using the floating-point coefficients of Table 16.1. If the coefficients are

TABLE 16.1 Coefficients for 21-tap Lowpass Filter Using a
von Hann Window

n h[n]

0, 20 0.000

1,19 —0.000823149720361
2,18 —0.002233281959082
3,17 0.005508892585759
4,16 0.017431813641454
5,17 —0.000000000000050
6, 16 —0.049534952531101
7,15 —0.049511869643024
8,14 0.084615800641299
9,13 0.295322344140975
10 0.40

304 Chapter Sixteen

TABLE 16.2 Truncated 16-bit Coefficients for 21-tap Lowpass Filter

n Sign Hex value Decimal value

0, 20 + 0000 0.0

1,19 — 0035 —0.000808715820312
2,18 — 0092 —0.002227783203125
3,17 + 0169 0.005508422851562
4,16 + 0476 0.017425537109375
5,15 + 0000 0.0

6, 14 - Ocae —0.049530029296875
7,13 — Ocac —0.049499511718750
8,12 + 15a9 0.084609985351562
9,11 + 4b9a 0.295318603515625
10 + 6666 0.399993896484375

TABLE 16.3 Truncated 10-bit Coefficients for 21-tap Lowpass Filter

n Sign Hex value Decimal value
0, 20 + 000 0.0
1,19 — 000 0.0
2,18 - 008 —0.001953125
3,17 + 014 0.0048828125
4,16 + 044 0.0166015625
5,15 + 000 0.0
6, 14 — 0c8 —0.048828125
7,13 — 0c8 —0.048828125
8,12 + 158 0.083984375
9,11 + 4b8 0.294921875
10 + 664 0.3994140625

further truncated to 14- or 12-bit magnitudes, slight degradations in stop-
band attenuation can be observed.

The degradations in filter response are really quite significant for the 10-bit
coeflicients listed in Table 16.3. As shown in Fig. 16.4, the fourth sidelobe is
narrowed, and the fifth sidelobe peaks at —50.7dB—a value significantly
worse than the —68.2dB of the baseline case. The filter response for 8 and
6-bit coeflicients are shown in Figs. 16.5 and 16.6, respectively.

16.3 Quantization Noise

The finite digital word lengths used to represent numeric values within a
digital filter limit the precision of other quantities besides the filter co-
efficients. Each sample of the input and output, as well as all intermediate
results of mathematical operations, must be represented with finite precision.
As we saw in the previous section, the effects of coefficient quantization are
straightforward and easy to characterize. The effects of signal quantization
are somewhat different.

Practical Considerations 305

(dB)

mognitude

frequency X\

Figure 16.4 Magnitude response for a von Hann-windowed
21-tap lowpass filter with coefficients quantized to 10 bits
plus sign.

(dB)

magnitude

frequency X

Figure 16.5 Magnitude response for a von Hann-windowed
21-tap lowpass filter with coefficients quantized to 8 bits plus
sign.

306 Chapter Sixteen

magnitude (dB)

-90 p

frequency X

Figure 16.6 Magnitude response for a von Hann-windowed
21-tap lowpass filter with coefficients quantized to 6 bits plus
sign.

Figure 16.7 Typical transfer characteristic for a rounding quantizer.

Practical Considerations 307

Typically, an analog-to-digital converter (ADC) is used to sample and
quantize an analog signal that can be thought of as a continuous amplitude
function of continuous time. The ADC can be viewed as a sampler and
quantizer in cascade. Sampling was discussed in Chap. 7, and in this section
we examine the operation of quantization. The transfer characteristic of a
typical quantizer is shown in Fig. 16.7. This particular quantizer rounds the
analog value to the nearest “legal” quantized value. The resulting sequence
of quantized signal values y(n] can be viewed as the sampled continuous-time
signal x[n] plus an error sequence e[n] whose values are equal to the errors
introduced by the quantizer:

y[n] = x[n] + e[n]

A typical discrete-time signal along with the corresponding quantized se-
quence and error sequence are shown in Fig. 16.8. Because the quantizer
rounds to the nearest quantizer level, the magnitude of the error will never
exceed @/2, where @ is the increment between two consecutive legal quan-
tizer output levels, that is,

-9
2

2o | D

<e(t) < for all t

TAWAWAWA
z‘zi/\/y\/\
TANAWANA'
IRV ARV ARV

(b)

0.5 4 V (V] (V) v

f N N [

{c)

Figure 16.8 (a) Discrete-time continuous amplitude signal,
(b) corresponding quantized signal, and (c) error sequence.

308 Chapter Sixteen

The error is usually assumed to be uniformly distributed between —@/2 and
/2 and consequently to have a mean and variance of 0 and Q?/12, respec-
tively. For most practical applications, this assumption is reasonable. The
quantization interval @ can be related to the number of bits in the digital
word. Assume a word length of L + 1 bits with 1 bit used for the sign and L
bits for the magnitude. For the fixed-point format of Fig. 16.2, the relation-
ship between @ and L is then given by @ =27,

It is often useful to characterize the quantization noise by means of a
signal-to-noise ratio (SNR). In order to accomplish this characterization, the
following additional assumptions are usually made:

1. The error sequence is assumed to be a sample sequence of a stationary
random proces; that is, the statistical properties of the error sequence do
not change over time.

2. The error is a white-noise process; or equivalently, the error signal is
uncorrelated.

3. The error sequence e[n] is uncorrelated with the sequence of unquantized
samples x[n].

Based on these assumptions, the power of the quantization noise is equal to
the error variance that was given previously as

0_2 _ Q_2 _ 272L
° 12 12

If we let 62 denote the signal power, then the SNR is given by

0l _ o2
o2 = gpg~ (127200

Expressed in decibels, this SNR is

2

10 log{ 2% } = 10 log 12 + 20L log 2 + 10 log o>
0.2

e

=10.792 + 6.021L + 10 log 2 (16.4)

The major insight to be gained from (16.4) is that the SNR improves by
6.02 dB for each bit added to the digital word format. We are not yet in a
position to compute an SNR using Eq. (16.4), because the term o2 needs some
further examination. How do we go about obtaining a value for ¢2? Whatever
the value of 6% may be originally, we must realize that in practical systems,
the input signal is subjected to some amplification prior to digitization. For
a constant amplifier gain of A, the unquantized signal becomes Ax[n], the

signal power becomes A2%02, and the corresponding SNR is given by

2.2

A
SNR = 10 10g< ;’) =10.792 + 6.021L + 10 log(A %52) (16.5)
g

e

Practical Considerations 309

A general rule of thumb often used in practical DSP applications is to set A
so that Ac, is equal to 25 percent of the ADC full-scale value. Since we have
been treating full scale as being normalized to unity, this indicates a value of
A such that

Ao, =0.25 or A=

Substituting this value of A into (16.5) yields

1
SNR = 10.79 + 6.02L + 10 log<fé>

=6.02L —1.249dB

Using a value of A = 1/(40,) means that the ADC will introduce clipping any
time the unquantized input signal exceeds 4c,. Increasing A improves the
SNR but decreases the dynamic range, that is, the range of signal values that
can be accommodated without clipping. Thus, for a fixed word length, we can
improve the SNR at the expense of degraded dynamic range. Conversely, by
decreasing A, we could improve dynamic range at the expense of degraded
SNR. The only way to simultaneously improve both dynamic range and
quantization SNR is to increase the number of bits in the digital word length.

