Chapter

Butterworth Filters

Butterworth lowpass filters (LPF) are designed to have an amplitude re-
sponse characteristic that is as flat as possible at low frequencies and that is
monotonically decreasing with increasing frequency.

3.1 Transfer Function

The general expression for the transfer function of an nth-order Butterworth
lowpass filter is given by
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Example 3.1 Determine the transfer function for a lowpass third-order Butterworth
filter.

solution The third-order transfer function will have the form

1

(s — 51)(8 — 85)(5 — 83)

H(s) =

The values for s,, s,, and s; are obtained from Eq. (3.2):

2 . {2 .
§; = cos(ér) +j s1n<—3§> = —0.5 + 0.866]

8, =e" = cos(n) +J sin(n) = —1

4 4
§3= cos(—?)z) +J sin<§n> = —0.5 — 0.866]
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1
(s + 0.5 — 0.8665)(s + 1)(s + 0.5 + 0.866j)
_ 1
T 834252425 +1

Thus, H(s) =

The form of Eq. (3.1) indicates that an nth-order Butterworth filter will
always have n poles and no finite zeros. Also true, but not quite so obvious,
is the fact that these poles lie at equally spaced points on the left half of a
circle in the s plane. As shown in Fig. 3.1 for the third-order case, any
odd-order Butterworth LPF will have one real pole at s = —1, and all
remaining poles will occur in complex conjugate pairs. As shown in Fig, 3.2
for the fourth-order case, the poles of any even-order Butterworth LPF will
all occur in complex conjugate pairs. Pole values for orders 2 through 8 are

listed in Table 3.1.

3.2 Frequency Response

A C function, butterworthFreqResponse( ), for generating Butterworth
frequency response data is provided in Listing 3.1. Figures 3.3 through 3.5
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TABLE 3.1 Poles of Lowpass Butterworth Filters

n Pole values

2 —0.707107 £ 0.707107;

3 -10
—0.5 + 0.866025)

4 —0.382683 + 0.923880;
—0.923880 + 0.382683;

5 —-1.0
—0.809017 + 0.587785j
—0.309017 + 0.951057

6 ~0.258819 + 0.965926/
—0.707107 + 0.707107j
—0.965926 + 0.258819j

7 —-1.0
—0.900969 + 0.433884;
—0.623490 + 0.781831;
—0.222521 + 0.974928;

8 —0.195090 + 0.980785j
—0.555570 + 0.831470/
—0.831470 + 0.555570;
—0.980785 + 0.1950905
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Figure 3.3 Pass-band amplitude response for lowpass Butterworth filters of orders 1
through 6.
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Figure 3.4 Stop-band amplitude response for lowpass Butterworth filters of orders
1 through 6.

show, respectively, the pass-band magnitude response, the stop-band magni-
tude response, and the phase response for Butterworth filters of various
orders. These plots are normalized for a cutoff frequency of 1 Hz. To denor-
malize them, simply multiply the frequency axis by the desired cutoff fre-

quency f,.
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Figure 3.5 Phase response for lowpass Butterworth filters of orders 1 through 6.
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Example 3.2 Use Figs. 3.4 and 3.5 to determine the magnitude and phase response at
800 Hz of a sixth-order Butterworth lowpass filter having a cutoff frequency of 400 Hz.

solution By setting f, = 400, the n = 6 response of Fig. 3.4 is denormalized to obtain the
response shown in Fig. 3.6. This plot shows that the magnitude at 800 Hz is approxi-
mately —36dB. The corresponding response calculated by butterworthFreqRe-
sponse( ) is —36.12466 dB. Likewise, the n = 6 response of Fig. 3.5 is denormalized to
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Figure 3.6 Denormalized amplitude response for Example 3.2.
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Figure 3.7 Denormalized phase response for Example 3.2.
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obtain the response shown in Fig. 3.7. This plot shows that the phase response at 800 Hz
is approximately —425°. The corresponding value calculated by butterworthFreqRe-
sponse( ) is —65.474°, which “unwraps” to —425.474°.

3.3 Determination of Minimum Order for
Butterworth Filters

Usually in the real world, the order of the desired filter is not given as in
Example 3.2, but instead the order must be chosen based on the required
performance of the filter. For lowpass Butterworth filters, the minimum order
n that will ensure a magnitude of A, or lower at all frequencies w, and above
can be obtained by using

_ log(10 41— 1)

2 log(w, /w,) (3.3)

where @, = 3-dB frequency
w, = frequency at which the magnitude response first falls below A,

(Note: The value of A, is assumed to be in decibels. The value will be
negative, thus canceling the minus sign in the numerator exponent.)

3.4 Impulse Response of Butterworth Filters

To obtain the impulse response for an nth-order Butterworth filter, we need
to take the inverse Laplace transform of the transfer function. Application of
the Heaviside expansion to Eq. (3.1) produces

ht)= 2 [HE) = 3 K, e (3.4)

r=1

(s —s,)
where K, = .
(S —31)(3 —82) e (S —S") s=s,
The values of both K, and s, are, in general, complex, but for the lowpass
Butterworth case all the complex pole values occur in complex conjugate
pairs. When the order n is even, this will allow Eq. (3.4) to be put in the form

n/2
h(t) = Z [2 Re(K,) e’ ! cos(w,t) — 2 Im(K,) e’ sin(w, t)] (3.5)
r=1
where s, =0, + jo, and the roots s, are numbered such that for r=1,2,...,
n/2 the s, lie in the same quadrant of the s plane. [This last restriction
prevents two members of the same complex conjugate pair from being used
independently in evaluation of (3.5).] When the order n is odd, Eq. (3.4) can
be put into the form
(n—1)2

ht) =Ke '+ Y [2Re(K,)e’ " cos(w,t) —2Im(K,) e’ *sin(w,t)] (3.6)

r=1



Butterworth Filters 71

where no two of the roots s,,r =1,2,...,(n —1)/2 form a complex conjugate
pair. [Equations (3.5) and (3.6) form the basis for the C routine butter-
worthImpulseResponse( ) provided in Listing 3.2.] This routine was used
to generate the impulse responses for the lowpass Butterworth filters shown
in Figs. 3.8 and 3.9. These responses are normalized for lowpass filters having
a cutoff frequency equal to 1rad/s. To denormalize the response, divide the
time axis by the desired cutoff frequency w, = 2nf, and multiply the time axis
by the same factor.
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Figure 3.8 Impulse response of even-order Butterworth filters.

time (seconds)

Figure 3.9 Impulse response of odd-order Butterworth filters.
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Figure 3.10 Denormalized impulse response for Example 3.3.

Example 3.3 Determine the instantaneous amplitude of the output 1.6 ms after a unit
impulse is applied to the input of a fifth-order Butterworth LPF having f. = 250 Hz.

solution The n =5 response of Fig. 3.9 is denormalized as shown in Fig. 3.10. This plot
shows that the response amplitude at ¢ = 1.6 ms is approximately 378.

3.5 Step Response of Butterworth Filters

The step response can be obtained by integrating the impulse response. Step
responses for lowpass Butterworth filters are shown in Figs. 3.11 and 3.12.

time (sec)

Figure 3.11 Step response of even-order lowpass Butterworth
filters.
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Figure 3.12 Step response of odd-order lowpass Butterworth filters.

These responses are normalized for lowpass filters having a cutoff frequency
equal to 1rad/s. To denormalize the response, divide the time axis by the
desired cutoff frequency w, = 2xf,.

Example 3.4 Determine how long it will take for the step response of a third-order
Butterworth LPF (f, = 4 kHz) to first reach 100 percent of its final value.

solution By setting w, = 2nf, = 80007 = 25,132.7, the n = 3 response of Fig. 3.12 is denor-
malized to obtain the response shown in Fig. 3.13. This plot indicates that the step
response first reaches a value of 1 in approximately 150 ps.
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Figure 3.13 Denormalized step response for Example 3.4.
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Listing 3.1 butterworthFreqResponse( )

/********t******#**t***********tltt/

/* X/
/* Listing 3.1 */
/% ¥/
/*  butterworthFreqhesponse() x/
’* */

JEEERERKKRERRRRRRRERRRRRARERKKKEKXK /

¥include <math.h>
*include <stdio.h>
#include "globDefs.h"
#inuclude "protos.h"

void butterworthFregResponse{ int order,
real frequency,
real *magnitude,
real *phase)
{
struct complex pale, s, numer, denom, transferfunction;
real x;
int k;
nuser = caplx{1.8,0.8);
denor = caeplx(1.8,6.8);

s = caplx{8.8, frequency);
for( k=1; k<=order; k++)
{
x = P1 * ({double){order + (2*k)-1}) / (double){2%order);
pole = caplx({ cos{x), sin{x));
denos = clult{denom, cSub(s,pole)};
}
transferFunction = cBiv(numser, denom);
*magnitude = 28.8 * logl@8({cAbs{transferfunction));
*phase = 168.8 * arg{transferFunction) / PI;
return;

}
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Listing 3.2 bunerwonhhnpuhenesponse()

/tl******t*t#*t*tttt*t!‘t*t********t#*tt*********/

/* */
/¥ Listing 3.2 */
/* */
/*  butterworthlmpulseResponse() x/
/x */

/t‘******t******ttt*****#***t****tt**l**t**#**l**/

%include <math.h>
Sincliude <stdio.h>
#include "qloblefs.h”
%incliude "protos.h”

void butterworthlmpulseResponse{ int order,
real delta_t,

int npts,
real ywalll)
i
real L, M, x, R, I, LT, MT, cosPart, sinPart, h_of.t;
real K, sigma, omega, t;
int ix, r, §i, iii;
real ymax, ymin;

for{ ix=0; ix <= npts; ix++)

{
printf("%d/n", ix);
hoof_t = 8.8;

t = delta.t ¥ ix;
for{ r=1; r <= (order>>1); r++)
{
x = PI * {(double){order + (2*r)-1) / (double){2%order);
sigma = cos(x);
omega = sin{x);

/¥ Compute Lr and Nr */

L=1.8;

n=0.8;

for{ ii=1; ii<=order; ii++)
{
if{ ii == r ) continue;

x = P1 * {double){order + (2%ii)-1) / (double){2%order);
R = signa - cos{x);
1 = omega - sin{xJ;
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LT = L*R - IM*];
MY = L*] + R*N;
L =LT;
N=NT,
}
L=LT 7 (LTXT + NT¥MT);
M= -MT Z{LT*LT + NT*NT);
cosPart = 2.8 * L * exp(sigma*t) * cos(omegu*t);
sinPart = 2.8 * 1 * exp{signa*t) * sin{omega®t);

h_of_t = h_of_t + cosPart - sinPart;
)
if( (order®2) == 8)
{
gvallix] = hoof_t;
if( (real} h_of_t > ymax) ymax = h_of_t;
if{ (real) hoof_t < ymin) ymin = h_of_t;
cont inue;

}

/* compute the real exponential component for odd-order responses */
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r = (order+1)/2;
x = PI * (double){order + (2%rj-1) / (double)(2*order);
sigma = cos(x);
omega = sin(x);
for( iii=1; iii<=order; iii++)
{
if( iii == r) continue;
x = P1 * {double)(order + (2%iii)-1) / {double){2%order);
R = sigma - cos{x);
I = omega - sinix);

LT = L*R - N*];
NT = L¥] + R*N;
L=LT;

M=NT;

}

K = LT / (LT*LT + NT*NT);

hoof_t = hoof_t # K * exp(-t)};

yvallix] = hoof_t;

if{ (real) hoof_t > ymax) ymax = h_of_t;
if( (real) h_of_t < ymin) ymin = h_of_t;
}

return;



