Chapter

Elliptical Filters

By allowing ripples in the pass band, Chebyshev filters obtain better selectiv-
ity than Butterworth filters do. Elliptical filters improve upon the perfor-
mance of Chebyshev filters by permitting ripples in both the pass band and
stop band. The response of an elliptical filter satisfies

1
.
[H(jo)] 1+ 2R2(w, L)

where R,(w, L) is an nth-order Chebyshev rational function with ripple
parameter L. Elliptical filters are sometimes called Cauer filters.

5.1 Parameter Specification

As shown in Chap. 3, determination of the (amplitude-normalized) transfer
function for a Butterworth lowpass filter requires specification of just two
parameters—cutoff frequency w, and filter order n. Determination of the
transfer function for a Chebyshev filter requires specification of these two
parameters plus a third—pass-band ripple (or stop-band ripple for inverse
Chebyshev). Determination of the transfer function for an elliptical filter
requires specification of the filter order n plus the following four parameters,
which are depicted in Fig. 5.1:

A, = maximum pass-band loss, dB
A, =minimum stop-band loss, dB
w, = pass-band cutoff frequency
w, = stop-band cutoff frequency

The design procedures presented in this chapter assume that the maximum
pass-band amplitude is unity. Therefore, A, is the size of the pass-band
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O Up Us
Figure 51 Frequency response showing parameters used to specify an
elliptical filter.

ripples, and A, is the size of the stop-band ripples. Any four of the five filter
parameters can be specified independently, with the fifth then being fixed by
the nature of the elliptical filter’s response. The usual design strategy
involves specifying A,, A,, w,, and w, based upon requirements of the
intended application. Algorithm 5.1, as follows, can then be used to compute
the minimum value of n for which an elliptical filter can yield the desired
performance. Since n must be an integer, not all combinations of A, A, o,
and w, can be realized exactly. The design procedure presented in thls
chapter can yield a filter that meets the specified 4,, A,, and w, and that
meets or exceeds the specification on A,.

Algorithm 5.1 Determining the required order for
elliptical filters

step 1. Based upon requirements of the intended application, determine the
maximum stop-band loss A, and minimum stop-band loss A, in decibels.

Step 2. Based on requirements of the intended application, determine the
pass-band cutoff frequency w, and stop-band cutoff frequency w;,.

step 3. Using w, and w,, compute selectivity factor k as k = w, [w,.

step 4. Using the selectivity factor computed in step 3, compute the modu-
lar constant q using

q =u + 2u®+ 15u® + 150613 (5.1)

4/1 _ k2
where u = (5.2)
2(1 + \4/1 k%)
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step 5. Using the values of A, and A,, determined in step 1, compute the
discrimination factor D as
10411 — 1

=i (5.3)

step 6. Using the value of D from step 5 and the value of ¢ from step 4,
compute the minimum required order n as

_ log 16D—'
" [log(l/q) &4

where [x7] denotes the smallest integer equal to or greater than x.

The actual minimum stop-band loss provided by any given combination of
A,, w,, o, and n is given by

(5.5)

1042710 _ 1
A, =10 log<1+0p7>

16"
where ¢ is the modular constant given by Eq. (5.1).

Example 5.1 Use Algorithm 5.1 to determine the minimum order for an elliptical filter for
which A, =1, A, 2 50.0, w, = 3000.0, and w, = 3200.0.

solution

3000
k=" =09375
3200
u=0.12897
q = 0.12904
105—1
D = 5o = 4.293,093.82

n=[8.812671=9

A C function cauerOrderEstim( ), which implements Algorithm 5.1, is
provided in Listing 5.1. This function also computes the actual minimum
stop-band loss in accordance with Eq. (5.5).

5.2 Normalized-Transfer Function

The design of elliptical filters is greatly simplified by designing a frequency-
normalized filter having the appropriate response charagcteristics, and then
frequency-scaling this design to the desired operating freqhency. The simplifi-
cation comes about because of the particular type of normalizing that is
performed. Instead of normalizing so that either a 3-dB bandwidth or the
ripple bandwidth equals unity, an elliptical filter is normalized so that

A/ prwsN = 1 (5.6)
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where w,y and w,y are, respectively, the normalized pass-band cutoff fre-
quency and the normalized stop-band cutoff frequency. If we let o represent
the frequency-scaling factor such that

Do = (5.7)

CON=
P o o

then we can solve for the value of a by substituting (5.7) into (5.6) to obtain

W, (5.8)

As it turns out, the only way that the frequencies w,y and w,y enter into the
design procedure (given by Algorithm 5.2) is via the selectivity factor k that

is given by

po@en W)t @ (5.9)

WsNn W / a Wy

)

Since Eq. (5.9) indicates that & can be obtained directly from the desired w,
and w,, we can design a normalized filter without having to determine the
normalized frequencies w,y and w,y! However, once a normalized design is
obtained, the frequency-scaling factor « as given by (5.8) will be needed to
frequency-scale the design to the desired operating frequency.

Algorithm 5.2 Generating normalized-transfer
functions for elliptical filters

step 1. Use Algorithm 5.1 or any other equivalent method to determine a
viable combination of values for A,, A, w,, w,, and n.

step 2. Using w, and w,, compute the selectivity factor k as k = w, [o,.

step 3. Using the selectivity factor computed in step 3, compute the modu-
lar constant q using

q =u + 2u’+ 15u° + 150u™3 (5.10)

47 2
where u =—1-——1—k— (5.11)
21+ Y1 kY

step 4. Using the values of A, and n from step 1, compute V as

1 104,/20 41
V=oo 1n<———1 5 1) (5.12)
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step 5. Using the value of g from step 3 and the value of V from step 4,
compute p, as

gt Y (—1)™ g™+ Psinh[(2m + 1)V]
me (5.13)

Do = o
05+ ¥ (—1)™q™ cosh2mV

m=1
step 6. Using the value of k from step 2 and the value of p, from step 5,
compute W as

P 1z
W= I:(l + _IE>(1 + kp%)] (5.14)

step 7. Determine r, the number of quadratic sections in the filter, as
r =n/2 for even n, and r = (n —1)/2 for odd n.

step8. Fori=1,2,...,r, compute X; as

[e o]

2¢'* Y, (—1™ g™+ Vsin[(2m + un/n]
0

X, =" — (5.15)
1+2 Y (=1)™g™ cos(2mun/n)
m=1
{i n odd
where u=<.
i—% n even
step9. Fori=1,2,...,r, compute Y; as
2 1/2
Y{(l —%>(1 - ka)] (5.16)
step 10. For i =1,2,...,r, use the W, X;, and Y, from steps 6, 8, and 9;
compute the coefficients a;, b;, and ¢; as
1
% =33 (5.17)
2p, Y,
o= Poli 5.18
=T pEX? (5.18)
(Do YR+ (X W)?
- 5.19
‘ (1+p3X?)* (519
step 11. Using a; and ¢;, compute H, as
po I i—i n odd
Hy=< 7' . (5.20)
10-4/2 [T =  n even

i=18;
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step 12. Finally, compute the normalized transfer function Hy(s) as

H, r s?+a;
e =3 s, (521
where d — {s +Ppo n odd
1 n even

A C function cauerCoeffs( ), which implements steps 1 through 11 of
Algorithm 5.2, is provided in Listing 5.2. Step 12 is implemented separately in
the C function cauerFreqResponse( ) shown in Listing 5.3, since Eq. (5.21)
must be reevaluated for each value of frequency.

Example 5.2 Use Algorithm 5.2 to obtain the coefficients of the normalized-transfer
function for the ninth-order elliptical filter having A, =0.1dB, w, =3000rad/s, and
w, = 3200 rad/s. Determine the actual minimum stop-band loss.

solution Using the formulas from Algorithm 5.2 plus Eq. (5.5), we obtain
g=0129041 V=0286525 p,=0.470218
W =1.221482 r=4 A, = 51.665651

The coefficients X,, Y;, a;, b,, and ¢, obtained via steps 8 through 10 for i =1, 2, 3, 4 are
listed in Table 5.1. Using (5.20), we obtain H,=0.015317. The normalized-frequency
response of this filter is shown in Figs. 5.2, 5.3, and 5.4. (The phase response shown in
Fig. 5.4 may seem a bit peculiar. At first glance, the discontinuities in the phase response
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Figure 5.2 Pass-band magnitude response for Example 5.2.



TABLE 5.1 Coefficients for Example 5.2

Elliptical Filters

i X; Y; a; b; c;
1 0.4894103  0.7598211 4.174973  0.6786235  0.4374598
2 0.7889940 0.3740371 1.606396 0.3091997 0.7415493
3 0.9196814 0.1422994 1.182293 0.1127396 0.8988261
4 0.9636668  0.0349416 1.076828  0.0272625  0.9538953
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Figure 5.3 Stop-band magnitude response for Example 5.2.
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normalized frequency

might be taken for jumps of 2r caused by the +n to —n “wraparound” of the arctangent
operation. However, this is not the case. The discontinuities in Fig. 5.4 are jumps of n
that coincide with the nulls in the magnitude response.

5.3 Denormalized-Transfer Function

As noted in Sec. 2.9, if we have a response normalized for w, =1, we can
frequency-scale the transfer function to yield an identical response for w, = «
by multiplying each pole and each zero by « and dividing the overall transfer
function by a™= ~ "’ where n, is the number of zeros and n, is the number of
poles. An elliptical filter has a transfer function of the form given by (5.20).
For odd n, there is a real pole at s = p, and r can conjugate pairs of poles that

are roots of

s?2+b;s+c¢; =0

i=12...,r
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Figure 5.4 Phase response for Example 5.2.

Using the quadratic formula, the ith pair of complex pole values can be
expressed as

—b, +./b% —4c;

2

pb; =

The zeros of the normalized-transfer function occur at s = + j\/;,-, i=
1,2,...,r. For even n, the number of poles equals the number of zeros so
a"= ") =1. For odd n,n, —n, = —1, so the transfer function must be di-
vided by 1/x or multiplied by o. If we multiply the poles and zeros by « and
multiply the overall transfer function by 1 or « as appropriate, we obtain the
frequency-scaled transfer function H(s) as

r s+ aa,
He)=K [| ———— 5.22
©) ,-1;11 s2+ab;s +a’c; (622)
Ho
dd
where K =<s + ap, no
H, n even

Comparison of Egs. (5.21) and (5.22) indicates that the frequency rescaling
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consists of making the following substitutions in (5.21):
o2q; replaces a;
a’c; replaces c;
ab; replaces b,
H,a replaces H, (n odd)
ap, replaces p, (n odd)

A C function cauerRescale( ), which makes these substitutions, is given in
Listing 5.4.
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Listing 5.1 cauerOrderEstim( )

/*#*****‘ttt**tt****ttt*#******#*l*ﬁ

/* */
/% Listing 5.1 */
7% */
/% cauerOrderEstinm() */
/* */

/******t****#t****t#*********t*t***f

void couer0rderEstim( real omegaPass,
real omegaStop,
real maxPassloss,
real minStoploss,
int *order,
real *actualllinStoploss)
{
real k, u, q, dd, kk, lombda, w, mu, om;
real sum, term, denom, numer, sigma, v;
int i, m, r;

k=omegaPass/omegaStop; /% Alg. 5.1, step 3 */

kk=sqrt(sqrt{1.8 - k*k})); /¥ Eq (5.2) %/
u=8.5%{1.8-kk)/{1.8+kk);

158.8 * ipow{u,13); /* Eq {5.1) %/
=g+ 15.8 ¥ ipow(u,9);

q+ 2.8 * ipow{u,5);

=g+

L0 0 0 0
.

dd = pow{18.8, minStopLoss/18.8) - 1.8; /* Eg (5.3) »/
dd = dd/ {pow(10.8,maxPassloss/10.8) - 1.0);

*order = ceil{ log!8(16.8%dd) / log!®(1.8/q)); /* Eq (5.4) */

/¥ Eq (5.5) %/
nueer = pow{18.8, (maxPassloss/16.8))-1.8;
*actualMinStoploss = 18.8 * log18{numer/(16%ipow{g,*order))+1.8);
return;

}
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Listing 5.2 cauerCoeffs( )

/t!t*tt#tttttlt!ttt**tttitl*t**tt*#[

7% %/
/* Listing 5.2 ¥/
7* */
/¥  cauerloeffs() x/
/* */

/t**t!#t#t#t#**t#*#*t*t*ti*****t*tt/

void cauerloeffs{real omegaPass,
real omegaStop,
real maxPassloss,

int order,
real aal],
real bb[],
real ccl],

int *numSecs,
real *hlero,
real *p2ero)

{

real k, kk, u, q, v, we, Bu, xx, yy;

real sum, term, denom, numer;

int i, m, r;

k=omegaPass/omegaStop; /* Rilg 5.2, step 2 */

kk=sgrt{sqrt (1.8 - k*k)); /% Eq (5.11) %/
u=8.5¥{1.,8-kk)/(1.8+kk);

156.8 % ipow(u,13); /* Eq (5.18) %/
q+ 15.8 * jpow(u,9);

q+ 2.8 * ipow(u,5};

=q + u;

0 0 L0 5
"

/* Eq (5.12) */
nuser = pow{18.8,maxPassloss/28.8)+1.8;
vo = log( numer / (pow(18.8, maxPassloss/28.8)-1))/(2.8%order);

sun = B.8; /% Eq (5.13) %/
for( m=8; m<5; m++) {
tera = ipow(-1.8,m);
tern = term * ipow(q, a*{m+1));
tera = term ¥ sinh{({2*a+1) * vy);
forint f(duspFile,"for m=%d, tera = Se\n",m, tern);
sum = sum * term;
}

numer = 2.8 ¥ sup * sqrt{sqrt{q));
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sum = 0.8;
for{ m=1; 8<5; m++) {
term = ipow(-1.8,m);
term = term * ipow{q,m*m);
term = term * cosh{2.8 * o * wy);
sum = sum + ternm;
}
denom = 1.8 + 2, @%sum;
*pZero = fabs{numer/dencm);

ws = 1.8 + k * ¥pZero * *plero; /* Eq (5.14) */
ww = sgrif{uw * (1.8 + *plero * *pZero/k));

r = {order-{order¥2))/2; /* Alg 5.2, step 7 %/
*nusSecs = r;

for(i=1; i<=p; i++) { /% loop for Alg 5.2, steps 8, 9, 18 */
if{orders2)
{mu = i;}
else
{mu =i - 8,5;}
sum = 6.6; /¥ Eq (5.15) numerator */
for{m=8; a<5; w++) {
termn = ipow(-1.8,m);
ters = term ¥ ipow{qg, a*{m+1));
ters = tere * sin{ (2*m+!1) * P] * su / order);
sum = sum + ternm;
}

numer = 2.8 * sum ¥ sqrt(sqrt(qg));

sum = 8.8; /% Eq (5.15) denominator */
for{m=1; m<5; m++) {
term = ipow(-1.6,m);
term = term * ipow(q,n*s);
term = term ¥ cos{2.8 * Pl * m ¥ gu / order);
fprintf(duspFile,"for m=%d, term = Xe\n",n,tern);
sum = sus * ternm;
}
denow = 1.8 + 2.8 ¥ sum;
xx = numer/denom;

yy = 1.8 - k ¥ xx¥xx; /¥ Eq (5.16) %/
yy = sqrtfyy ¥ {1.8-(xx*xx/k})};

gali) = 1.0/ {xx¥xx); /% Eq (5.17) */
denom = 1.8 + ipow{*plero*xx, 2); /% Eq (D.18) %/

bbli] = 2.8 ¥ *pZero ¥ yy/denom;



denor = ipou{denom,2); /% Eq (5.19) %/

nuser = ipow{*p2ero*yy,2) + ipow(xx*ww,2};
cclil = numer/denon;

}

term = 1.8; /% Eq (5.28) %/
for(i=1; i<=p; i++) {
ters = term * cclil/aali];
}
i f{orderX2)
{term = term * *pZero;}
else
{term = term * pow(18.8, maxPassloss/(-28.8));)

*hlero = term;
return;

}

Listing 5.3 cauerFreqResponse( )

f**ttltl*t***#*t*#tl*t******‘*****t/

/¥ */
/* Listing 5.3 */
/% x/
/%  cauerFreqResponse() x/
/* */

/l*t*t***tt***t*t********!***tt****/

void cauerfFregResponse{ int order,

real aall,
real bbl],
real ccl],
real hlero,
real plero,

real frequency,
real *magnitude,
real *phase)
{
double normalizedFrequency;
int r, k, ix, i;
struct complex s, cProd, cTeraNumer, cTermDencm;

r = {order-{order¥2))/2;
s = coplx(0.8, frequency);

if{order¥2) {
cTernlenom = cAdd{s, cmplx{plero, 0.0));
cProd = cDiv{capix(1.6,8.8), cTeralenon);
¢Prod = sMult{hZero, cProd);
}

Elliptical Filters
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else {
cProd = caplx(hZero,8.8);
}

for (i=1; i<=r; i++) {
cTerabuaer=ctult{s,s);
cTeralenor=cAdd{cTeratumer,stult (bb[i],s));
cTeraNumer .Re = cTermNumer.Re + aali];
cTeraDenon.Re = cTeralenon.Re + cclil;
cProd = clult{cProd, cTeraNumer);
cProd = cDiv(cProd, cTeraDenom);
}

*aagnitude = 28.8% log!8(cAbs{ cProd)};

*phase = 168.8 * arg(cProd)/PI;

return;

}

Listing 5.4 cauerRescale( )

/t*tt***!******ltt****tt*#***tt#tt*/

/* */
/%  Listing 5.4 */
/¥ X/
/% cauerRescale() */
/% ¥/
JEERRFREERAEXREERREXRXXKKRXRERKKRRR
void cauerRescaole( int order,

real aal],

real bbl],

real cc[],

real *hlero,
real ¥plero,
real alpha)

{

real alphaSqrd;

int r, i;

alphaSqrd = alpha*alpha;

i f{ order%2) {
r = {order-1)/2;
*hZero = *hlero * alpha;
*pZero = *plero * alpha;

}
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else {
r = order/2;
}

for(i=1; i<=r; i++) {
aali] = aali) * ulphaSqrd;
celil = eccli) * alphaSqrd;
bblil = bbli]l * alpha;
}



