Chapter

Fundamentals of Digital
Signal Processing

Digital signal processing (DSP) is based on the fact that an analog signal can
be digitized and input to a general-purpose digital computer or special-
purpose digital processor. Once this is accomplished, we are free to perform
all sorts of mathematical operations on the sequence of digital data samples
inside the processor. Some of these operations are simply digital versions of
classical analog techniques, while others have no counterpart in analog
circuit devices or processing methods. This chapter covers digitization and
introduces the various types of processing that can be performed on the
sequence of digital values once they are inside the processor.

7.1 Digitization

Digitization is the process of converting an analog signal such as a time-
varying voltage or current into a sequence of digitali values. Digitization
actually involves two distinct parts—sampling and quantization—which are
usually analyzed separately for the sake of convenience iand simplicity. Three
basic types of sampling, shown in Fig. 7.1, are ideal, instantaneous, and natural.
From the illustration we can see that the sampling process converts a signal
that is defined over a continuous time interval into a signal that has nonzero
amplitude values only at discrete instants of time (as in ideal sampling) or over
a number of discretely separate but internally continuous subintervals of time
(as in instantaneous and natural sampling). The signal that results from a
sampling process is called a sampled-data signal. The signals resulting from
ideal sampling are also referred to as discrete-time signals.

Each of the three basic sampling types occurs at different places within a
DSP system. The output from a sample-and-hold amplifier or a digital-to-
analog converter (DAC) is an instantaneously sampled signal. In the output
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Figure 7.1 An analog signal (a) and three different types of sampling: (b)
ideal, (¢) instantaneous, and (d) natural.

of a practical analog-to-digital converter (ADC) used to sample a signal, each
sample will of course exist for some nonzero interval of time. However,
within the software of the digital processor, these values can still be inter-
preted as the amplitudes for a sequence of ideal samples. In fact, this is
almost always the best approach since the ideal sampling model results in the
simplest processing for most applications. Natural sampling is encountered
in the analysis of the analog multiplexing that is often performed prior to
A/D conversion in multiple-signal systems. In all three of the sampling
approaches presented, the sample values are free to assume any appropriate
value from the continuum of possible analog signal values.

Quantization is the part of digitization that is concerned with converting
the amplitudes of an analog signal into values that can be represented by
binary numbers having some finite number of bits. A quantized, or discrete-
valued, signal is shown in Fig. 7.2. The sampling and quantization processes
will introduce some significant changes in the spectrum of a digitized signal.
The details of the changes will depend upon both the precision of the
quantization operation and the particular sampling model that most aptly fits
the actual situation.
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Figure 7.2 An analog signal (e) and the corresponding quantized signal

).

Ideal sampling

In ideal sampling, the sampled-data signal, as shown in Fig. 7.3, comprises a
sequence of uniformly spaced impulses, with the weight of each impulse equal
to the amplitude of the analog signal at the corresponding instant in time.
Although not mathematically rigorous, it is convenient to think of the
sampled-data signal as the result of multiplying the analog signal x(t) by a
periodic train of unit impulses:

5()=x®) 3 8t—nT)

Based upon property 11 from Table 1.5, this means that the spectrum of the
sampled-data signal could be obtained by convolving the spectrum of the
analog signal with the spectrum of the impulse train:

#lx0 5 se-nn]-xfs $ s~ |

As illustrated in Fig. 7.4, this convolution produces copies, or images, of the
original spectrum that are periodically repeated along: the frequency axis.
Each of the images is an exact (to within a scaling factor) copy of the

D -

Figure 7.3 Ideal sampling.
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Figure 7.4 Spectrum of an ideally sampled signal.

original spectrum. The center-to-center spacing of the images is equal to the
sampling rate f,, and the edge-to-edge spacing is equal to f, — 2fy. As long as
f. is greater than 2 times fy, the original signal can be recovered by a lowpass
filtering operation that removes the extra images introduced by the sampling.

Sampling rate selection

If £, is less than 2fy, the images will overlap, or alias, as shown in Fig. 7.5,
and recovery of the original signal will not be possible. The minimum
alias-free sampling rate of 2fy is called the Nyquist rate. A signal sampled
exactly at its Nyquist rate is said to be critically sampled.

Uniform sampling theorem. If the spectrum X(f) of a function x(f) vanishes
beyond an upper frequency of fy Hz or wy rad/s, then x(¢) can be com-
pletely determined by its values at uniform intervals of less than 1/(2fy) or
7w, If sampled within these constraints, the original function x(¢) can be
reconstructed from the samples by

] in[2 _
0= £ s )

n = —auo

where T is the sampling interval.

Since practical signals cannot be strictly band-limited, sampling of a
real-world signal must be performed at a rate greater than 2f; where the
signal is known to have negligible (that is, typically less than 1 percent)
spectral energy above the frequency of f;. When designing a signal process-
ing system, we will rarely, if ever, have reliable information concerning the
exact spectral occupancy of the noisy real-world signals that our system will
eventually face. Consequently, in most practical design situations, a value is
selected for f,, based upon the requirements of the particular application, and
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Figure 7.5 Aliasing due to overlap of spectral images.

then the signal is lowpass-filtered prior to sampling. Filters used for this
purpose are called antialiasing filters or guard filters. The sample-rate selec-
tion and guard filter design are coordinated so that the filter provides
attenuation of 40 dB or more for all frequencies above f, /2. The spectrum of
an ideally sampled practical signal is shown in Fig. 7.6. Although some
aliasing does occur, the aliased components are suppressed at least 40 dB
below the desired components. Antialias filtering must be performed prior to
sampling. In general, there is no way to eliminate aliasing once a signal has
been improperly sampled. The particular type (Butterworth, Chebyshev,
Bessel, Cauer, and so on) and order of the filter should be chosen to provide
the necessary stop-band attenuation while preserving the pass-band charac-
teristics most important to the intended application.

instantaneous sampling

In instantaneous sampling, each sample has a nonzero width and a flat top.
As shown in Fig. 7.7, the sampled-data signal resulting from instantaneous
sampling can be viewed as the result of convolving a sample pulse p(f) with
an ideally sampled version of the analog signal. The resulting sampled-data
signal can thus be expressed as

xs(->=p<t)*[x<t> b a(t—nT)]

where p(f) is a single rectangular sampling pulse and %(t) is the original
analog signal. Based upon property 10 from Table 1.5, this means that the
spectrum of the instantaneous sampled-data signal can be obtained by multi-
plying the spectrum of the sample pulse with the spectrum of the ideally
sampled signal:

s«*{pa) *[x(t) T —nT)]}=P(f) - {X(f) *[fs 3 5(f—mfs)]}

m= — o0
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Figure 7.6 Spectrum of an ideally sampled practical signal: (a) spectrum of raw
analog signal, (b) spectrum after lowpass filtering, and {(c) spectrum after sam-

pling.

As shown in Fig. 7.8, the resulting spectrum is similar to the spectrum
produced by ideal sampling. The only difference is the amplitude distortion
introduced by the spectrum of the sampling pulse. This distortion is some-
times called the aperture effect. Notice that distortion is present in all the
images, including the one at base-band. The distortion will be less severe for
narrow sampling pulses. As the pulses become extremely narrow, instanta-
neous sampling begins to look just like ideal sampling, and distortion due to
the aperture effect all but disappears.
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Figure 7.7 Instantaneous sampling.
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Figure 7.8 Spectrum of an instantaneously sampled signal is
equal to the spectrum (a) of an ideally sampled signal multi-
plied by the spectrum (b) of 1 sampling pulse.

Natural sampling

In natural sampling, each sample’s amplitude follows the analog signal’s
amplitude throughout the sample’s duration. As shown in Fig. 7.9, this is
mathematically equivalent to multiplying the analog signal by a periodic
train of rectangular pulses:

x,() = 2(t) - {p(t) . [ P nT)]}

n
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Figure 7.9 Natural sampling.

The spectrum of a naturally sampled signal is found by convolving the
spectrum of the analog signal with the spectrum of the sampling pulse train:

Flx,()] = X(f) » [P(f) Y 5(f—mfs)]

m= — 0

As shown in Fig. 7.10, the resulting spectrum will be similar to the spectrum
produced by instantaneous sampling. In instantaneous sampling, all frequen-
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Figure 7.10 Spectrum (c) of a naturally sampled signal is
equal to the spectum (a) of the analog signal multiplied by
the spectrum (b) of the sampling pulse train.
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cies of the sampled signal’s spectrum are attenuated by the spectrum of the
sampling pulse, while in natural sampling each image of the basic spectrum
will be attenuated by a factor that is equal to the value of the sampling
pulse’s spectrum at the center frequency of the image. In communications
theory, natural sampling is called shaped-top pulse amplitude modulation.

Discrete-time signals

In the discussion so far, weighted impulses have been used to represent
individual sample values in a discrete-time signal. This was necessary in
order to use continuous mathematics to connect continuous-time analog
signal representations with their corresponding discrete-time digital repre-
sentations. However, once we are operating strictly within the digital or
discrete-time realms, we can dispense with the Dirac delta impulse and adopt
in its place the unit sample function, which is much easier to work with. The
unit sample function is also referred to as a Kronecker delta impulse (Cadzow
1973). Figure 7.11 shows both the Dirac delta and Kronecker delta represen-
tations for a typical signal. In the function sampled using a Dirac impulse
train, the independent variable is continuous time ¢, and integer multiples of
the sampling interval T are used to explicitly define the discrete sampling
instants. On the other hand, the Kronecker delta notation assumes uniform
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Figure 7.11  Sampling with Dinac
x(n) and Kronecker impulses: (a)
continuous signal, (b) sampling
with Dirac impulses, and (c)
sampling with Kronecker im-
pulses.
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sampling with an implicitly defined sampling interval. The independent
variable is the integer-valued index n whose values correspond to the dis-
crete instants at which samples can occur. In most theoretical work, the
implicitly defined sampling interval is dispensed with completely by treating
all the discrete-time functions as though they have been normalized by

setting 7 = 1.

Notation

Writers in the field of digital-signal processing are faced with the problem of
finding a convenient notational way to distinguish between continuous-time
functions and discrete-time functions. Since the early 1970s, a number of
different approaches have appeared in the literature, but none of the
schemes advanced so far have been perfectly suited for all situations. In
fact, some authors use two or more different notational schemes within
different parts of the same book. In keeping with long-established mathe-
matical practice, functions of a continuous variable are almost universally
denoted with the independent variable enclosed in parentheses: x(t), H(e/®),
¢(f) and so on. Many authors, such as Oppenheim and Schafer (1975),
Rabiner and Gold (1975), and Roberts and Mullis (1987), make no real
notational distinction between functions of continuous variables and func-
tions of discrete variables, and instead rely on context to convey the distinc-
tion. This approach, while easy for the writer, can be very confusing for the
reader. Another approach involves using subscripts for functions of a dis-
crete variable:

x, 2 x(kT)
H, 2 H(e)
G 2 P(mF)

This approach quickly becomes typographically unwieldy when the indepen-
dent variable is represented by a complicated expression. A fairly recent
practice (Oppenheim and Schafer 1989) uses parentheses ( ) to enclose the
independent variable of continuous-variable functions and brackets [ ] to
enclose the independent variable of discrete-variable functions:

x[k] = x(kT)
H(n] = H(e"*)
¢lm] = ¢(mF)

For the remainder of this book, we will adopt this practice and just remind
ourselves to be careful in situations where the bracket notation for discrete-
variable functions could be confused with the bracket notation used for

arrays in the C language.
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7.2 Discrete-Time Fourier Transform

The Fourier series given by Eq. (1.140) can be rewritten to make use of the
discrete sequence notation that was introduced in Sec. 7.1:

x(t) = i X[n] el2nnFt

n= —aoo

1 . . .
where F = ;= sample spacing in the frequency domain
0

t, = period of x(t)

Likewise, Eq. (1.141) can be written as

X[n] = 1 j x(t) e 7"t dt
to Jio

0

The fact that the signal x(f) and sequence F[n] form a Fourier series pair
with a frequency domain sampling interval of F can be indicated as

FS; F
x(t) —— X|[n]

Discrete-time Fourier transform

In Sec. 7.1 the results concerning the impact of sampling upon a signal’s
spectrum were obtained using the continuous-time Fourier transform in
conjunction with a periodic train of Dirac impulses to model the sampling of
the continuous-time signal x(f). Once we have defined a discrete-time se-
quence x[n], the discrete-time Fourier transform (DTFT) can be used to obtain
the corresponding spectrum directly from the sequence without having to
resort to impulses and continuous-time Fourier analysis.

The discrete-time Fourier transform, which links the discrete-time and
continuous-frequency domain, is defined by

=)

XE*Ty= Y «x[n]e /T (7.1)

n= —oo

and the corresponding inverse is given by
1 (™ . on T
x[n] = 5 X)) e/ dw (7.2)
T )=

If Egs. (7.1) and (7.2) are compared to the DTFT definitions given by certain
texts (Oppenheim and Schafer 1975; Oppenheim and Schafer 1989; Rabiner
and Gold 1975), an apparent disagreement will be found. The cited texts
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define the DTFT and its inverse as

X(e?) = Oi x[n] e —/on (7.3)

x[n] = 1 f X(e’®) e’ T dw (7.4)
2n |_,

The disagreement is due to the notation used by these texts, in which o is used
to denote the digital frequency given by

=—=QT
w 7

where Q = analog frequency
F, = sampling frequency
T = sampling interval

In most DSP books other than the three cited above, the analog frequency is
denoted by w rather than by Q. Whether w or Q is the “natural” choice for
denoting analog frequency depends upon the overall approach taken in
developing Fourier analysis of sequences. Books that begin with sequences, and
then proceed on to Fourier analysis of sequences, and finally tie sequences to
analog signals via sampling tend to use w for the first frequency variable
encountered which is digital frequency. Other books that begin with analog
theory and then move on to sampling and sequences, tend to use w for the first
frequency variable encountered which is analog frequency. In this book, we will
adopt the convention used by Peled and Liu (1976) denoting analog frequency by
w and digital frequency by 4 = o 7. The function X(e/“T)is periodic with a period
of w, = 2n/T, and X(e’*) is periodic with a period of 4, = 2x.

Independent of the w versus Q controversy, the notation X(e/“T) or X(e'*) is
commonly used rather than X(w) or X(A) so that the form of (7.1) remains similar
to the form of the z transform given in Sec. 5.1 which is

Xz = Y =xnlz" (7.5)
If e/* is substituted for z in (7.5), the result is identical to (7.1). This indicates
that the DTFT is nothing more than the z transform evaluated on the unit circle.
[Note: e/ = cos w +j sin w, 0 < w < 27, does in fact define the unit circle in the
z plane since |e’*| = (cos® w + sin® @) '* = 1].

Convergence conditions
If the time sequence x[n] satisfies

o

Y |xlnl| < oo

n=-—ow
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then X(e/“T) exists and the series in (7.1) converges uniformly to X(e/*7). If
x[n] satisfies

oo

Y |xrIP<

n=—o

then X(e’*T) exists and the series in (7.1) converges in a mean-square sense to
X(e/*T), that is,

lim f | X(e’T) — Xpy (e’ T) dw =0
M- |_o

M
where Xp(e’T) = Y x[n]e 7T

n=-M

The function X,,(e/“7) is a form of the Dirichlet kernel discussed in Sec. 11.2.

Relationship to Fourier series

Since the Fourier series represents a periodic continuous-time function in
terms of a discrete-frequency function, and the DTFT represents a discrete-
time function in terms of a periodic continuous-frequency function, we might
suspect that some sort of duality exists between the Fourier series and DTFT.
It turns out that such a duality does indeed exist. Specifically if

Flk] s F(eioT)
and we set
wo=T
x(®) = 7)), _ 7
X{n] = flR]|s - —

FS; wg
then x(t) — X[n]

7.3 Discrete-Time Systems

In Chap. 2 we saw how continuous-time systems such as!filters and amplifiers
can accept analog input signals and operate upon them to produce different
analog output signals. Discrete-time systems perform essentially the same role
for digital or discrete-time signals.

Ditference equations

Although I have deliberately avoided discussing differential equations and
their accompanying headaches in the analysis of analog systems, difference
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equations are much easier to work with, and they play an important role in
the analysis and synthesis of discrete-time systems. A discrete-time, linear,
time-invariant (or if you prefer, shift-invariant) (DTLTI or DTLSI) system,
which accepts an input sequence x[n] and produces an output sequence y[n],
can be described by a linear difference equation of the form

y[nl +a,yln — 1] +asyln —2] +- -+ a, yln — k]
=byx[n] +b,x[n —1] +byx[n —2] + -+ b, x[n — k] (7.6)

Such a difference equation can describe a DTLTI system having any initial
conditions as long as they are specified. This is in contrast to the discrete-
convolution and discrete-transfer function that are limited to describing
digital filters that are initially relaxed (that is, all inputs and outputs are
initially zero). In general, the computation of the output y[n] at point n using
Eq. (7.6) will involve previous outputs y[n — 1], y[n — 2], y[n — 3], and so on.
However, in some filters, all of the coefficients a,, a,, . . ., @, are equal to zero,
thus yielding

y[nl = by x[n] + b, x[n — 1] + by x[n — 2] + - -+ by x[n — k] (7.1

in which the computation of y[n] does not involve previous output values.
Difference equations involving previous output values are called recursive
difference equations, and equations in the form of (7.7) are called nonrecursive
difference equations.

Example 7.1 Determine a nonrecursive difference equation for a simple moving-average

lowpass filter in which the output at n =i is equal to the arithmetic average of the five
inputs from n =i — 4 through n =1.

solution The desired difference equation is given by

x[n] +x[n —1] + x[n — 2] + x[n — 3] + x[n — 4]
yln] = 5

=0.2x[n] + 0.2x[n — 1] + 0.2x{n — 2] + 0.2x[n — 3] + 0.2x[n — 4] (7.8)

Relating this to the standard form of Eq. (7.7), we find k=4,5,=0 for all i, and
aGy=a,=08,=a3=a,=0.2.

Discrete convolution

A discrete-time system’s impulse response is the output response produced
when a unit sample function is applied to the input of the previously relaxed
system. As we might expect from our experiences with continuous systems,
we can obtain the output y[n] due to any input by performing a discrete
convolution of the input signal x[n] and the impulse response h{n]. This
discrete convolution is given by

sinl = 3 Alm] 2ln —m]
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If the impulse response has nonzero values at an infinite number of points
along the discrete-time axis, a digital filter having such an impulse response
is called an infinite-impulse response (IIR) filter. On the other hand, if
h[m] =0 for all m = M, the filter is called a finite-impulse response (FIR)
filter, and the convolution summation can be rewritten as

—1

y[n] = Z h[m] x[n — m]

=0

FIR filters are also called transversal filters.

Example 7.2 For the moving-average filter described in Example 7.1, obtain the filter’s
impulse response.

solution The filter's impulse response h[n] can be obtained by direct evaluation of Eq.
(7.8) for the case of x[n] equal to the unit sample function:

0

hln] =y[n) for x[n]={(1) :: o

<n <
Thus, h[]_{oz 0<n<4

otherwise

The following summation identities will often prove useful in the evaluation
of convolution summations:

N 1—(ZN+1
R — 1 .
ngoa l_a a¢ (79)
N o
Y nat= s (L = N Na¥eh a1 (7.10)
n=0 -
Z n2on (- - 1—a)® [+ o)1 —a™) —2(1—)NaV — (1 —a)®’ N?* o] a#1

(7.11)

7.4 Diagramming Discrete-Time Systems

Block diagrams

As is the case for continuous-time systems, block diagrams are useful in the
design and analysis of discrete-time systems. Construction of block diagrams
for discrete time systems involves three basic building blocks: the unit-delay
element, multiplier, and summer.

Unit-delay element. As its name implies, a unit-delay element generates an
output that is identical to its input delayed by 1 sample interval:

ylk] = x[k —1]
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x[k] x[k-1]

O Figure 7.12 Block diagram repre-

sentation of a unit-delay ele-
ment.

The unit-delay element is usually drawn as shown in Fig. 7.12. The term z !

is used to denote a unit delay because delaying a discrete-time signal by 1
sample time multiplies the signal’s z transform by z~'. (See property 5 in
Table 9.4.) Delays of p sample times may be depicted as p unit delays in series
or as a box enclosing z 7.

Multiplier. A multiplier generates as output the product of a fixed constant
and the input signal

y[k] = a x[k]

A multiplier can be drawn in any of the ways shown in Fig. 7.13. The form
shown in Fig. 7.13c is usually reserved for adaptive filters and other situa-
tions where the factor a is not constant. [Note that a system containing
multiplication by a nonconstant factor would not be a linear time-invariant

(LTI) system!]

Summer. A summer adds two or more discrete-time signals to generate the
discrete-time output signal:

Ykl = x, [k] + x2[k] + - - + x,,[R]

(] y[K]

a)

b) Ic

c) .
Figure 7.13 Block diagram repre-

sentations of a multiplier.
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x[k] N y[¥]

T

x,[k
y[k] Figure 7.14 Block diagram repre-

] T
xz[k] : ) sentations of a summer.

xa[k]

A summer is depicted using one of the forms shown in Fig. 7.14. A negative
sign can be placed next to a summer’s input paths as required to indicate a
signal that is to be subtracted rather than added.

Example 7.3 Draw a block diagram for a simple moving-average lowpass filter in which
the output at k =i is equal to the arithmetic average of the three inputs for k =i —2
through k& =1i.

solution The difference equation for the desired filter is
ylk] = Vyxlk] + Yyx[k — 1] + Yoxlk — 2]
The block diagram for this filter will be as shown in Fig. 7.15. It should be noted that

block diagram representations are in general not unique and that a given system can be
represented in several different ways.

Example 7.4 Draw alternative block diagrams for the filter of Example 7.3.

solution Since multiplication distributes over addition, the difference equation can be
rewritten as

ylk] = Y {x[k] + x[k — 1] + x[k — 2]}

and the block diagram can be redrawn as shown in Fig. 7.16.

z! z!

[« Vs N y[K]
z

1/3

1/3

Figure 7.15 Block diagram for Example 7.3.
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(4] N
- . 2z

z? z!

Figure 7.16 Block diagram for Example 7.4.

Signal flow graphs

A modified form of a directed graph, called a signal flow graph (SFT), can be
used to depict all the same information as a block diagram but in a more
compact form. Consider the block diagram in Fig. 7.17 which has some
labeled points added for ease of reference. The oriented graph, or directed
graph, for this system is obtained by replacing each multiplier, each connect-
ing branch, and each delay element with a directed line segment called an
edge. Furthermore, each branching point and each adder is replaced by a
point called a node. The resulting graph is shown in Fig. 7.18. A signal flow
graph is obtained by associating a signal with each node and a linear
operation with each edge of the directed graph. The node weights correspond
to signals present within the discrete-time system. Associated with each edge
is the linear operation (delay or constant gain) that must be performed upon
the signal associated with the edge’s from node in order to obtain the signal
associated with the edge’s to node. For a node which is the to node for two or
more edges, the signal associated with the node is the sum of all the signals
produced by the incoming edges. For the graph shown in Fig. 7.18, the

d

o

a i b 1/3 .
z! z! z

1/3

Figure 7.17 Block diagram of a discrete-time system.

Figure 7.18 Directed graph corresponding to the
block diagram of Fig. 7.17.
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x[n] z- V3 z-1 z[“}

Pe -

1/3

Figure 7.19 Signal flow graph derived from the
directed graph of Fig. 7.18.

following correpondences can be identified:

Node a: x[k]

Node b: x[k — 1]

Node c: Yex[k — 1]

Node d: summer producing y[k]

Edge (a, b): first delay element

Edge (c,d): second delay element

Edge (a,d): bottom multiplier

Edge (b,c): top multiplier

Edge (¢, d): unity gain connection from point ¢ to summer

The resulting signal flow graph is shown in Fig. 7.19. It is customary to use
multiplication by 2z ~! as a shorthand notation for unit delay, even though the
signals in an SFG are time domain signals, and multiplication by 27" is a
frequency domain operation.



