Chapter

Discrete Fourier Transform

The Fourier series (FS), introduced in Chap. 1, links the continuous-time
domain to the discrete-frequency domain; and the Fourier transform (FT)
links the continuous-time domain to the continuous-frequency domain. The
discrete-time Fourier transform (DTFT), introduced in Sec. 7.2, links the
discrete-time domain to the continuous-frequency domain. In this chapter, we
examine the discrete Fourier transform (DFT) which links the discrete-time
and discrete-frequency domains. A complete treatment of the design and
coding of DFT algorithms can fill volumes (see Brigham 1975; Burrus and
Parks 1984; Nussbaumer 1981). Rather than attempt complete coverage of
DFTs, this chapter presents only those aspects that are germane to the design
of digital filters. Coverage of the so-called fast algorithms for implementation
of the DFT is limited to one specific type of algorithm along with an ex-
amination of the computational savings that fast algorithms can provide.

8.1 Discrete Fourier Transform

The discrete Fourier transform and its inverse are given by

N-—1

X[m]l= 3 x[n]e s2mmrFT m=0,1,..., N—1 (8.1a)
n=0
N-1 N-1
= Y x[n] cos(2nmnFT) +j Y x[n] sin(2nmnFT) (8.1b)
n=0 n=20
N-1 _
x[n]= Y Xm}e™FT n=0,1,...,N-1 (8.2a)
m=20

= Nil X[m] cos(2nmnFT) +j Nil X[m] sin(2emnFT) (8.2b)
=0 m=0

m

It is a common practice in the DSP literature to “bury the details” of Egs.

137

138 Chapter Eight

(8.1) and (8.2) by defining Wy = ¢/2V = ¢/2*F7 and rewriting (8.1a) and (8.2a)
as

N-1

X[m] = Z x[n] Wx™ (8.3)
N -1

x[n] = 2—:0 X[m] Wg» (8.4)

Since the exponents in (8.3) and (8.4) differ only in sign, another common
practice in writing DFT software is to write only a single routine that can
evaluate either (8.3) or (8.4) depending upon the value of an input flag being
equal to +1 or —1. Back in the “olden days,” when memory and disk space
were expensive, this was a big deal; but these days, having two separate
routines may pay for itself in terms of clarity, execution speed, and simplified
calling sequences.

Parameter selection

In designing a DFT for a particular application, values must be chosen for
the parameters N, 7, and F. N is the number of time sequence values x[n]
over which the DFT summation is performed to compute each frequency
sequence value. It is also the total number of frequency sequence values X[m]
produced by the DFT. For convenience, the complete set of N consecutive
time sequence values is referred to as the input record, and the complete set
of N consecutive frequency sequence values is called the output record. T is
the time interval between two consecutive samples of the input sequence, and
F is the frequency interval between two consecutive samples of the output
sequence. The selection of values for N, F, and T is subject to the following
constraints, which are a consequence of the sampling theorem and the

inherent properties of the DFT:

1. The inherent properties of the DFT require that FNT =1.

2. The sampling theorem requires that T < 1/(2fy), where fy is the highest
significant frequency component in the continuous-time signal.

3. The record length in time is equal to NT or 1/F.

4. Many fast DFT algorithms (such as the one discussed in Sec. 8.5) require
that N be an integer power of 2.

Example 8.1 Choose values of N, F, and T given that F must be 5 Hz or less, N must be
an integer power of 2, and the bandwidth of the input signal is 300 Hz. For the values
chosen, determine the longest signal that can fit into a single input record.

solution From constraint 2 above, T' < 1/(2fy). Since f5 = 300 Hz, T < 1.66 ms. If we select
F =5 and T =0.0016, then N > 125. Since N must be an integer power of 2, then we
choose N =128 =27, and F becomes 4.883 Hz. Using these values, the input record will

span NT = 204.8 ms.

Discrete Fourier Transform 139

Example 8.2 Assuming that N =256 and F must be 5 Hz or less, determine the highest
input-signal bandwidth that can be accommodated without aliasing.

solution Since FNT =1, then T > 781.25 us. This corresponds to a maximum f of 640 Hz.

Periodicity

A periodic function of time will have a discrete-frequency spectrum, and a
discrete-time functon will have a spectrum that is periodic. Since the- DFT
relates a discrete-time function to a corresponding discrete-frequency func-
tion, this implies that both the time function and frequency function are
periodic as well as discrete. This means that some care must be exercised in
selecting DFT parameters and in interpreting DFT results, but it does not
mean that the DFT can be used only on periodic digital signals. Based on the
DFT’s inherent periodicity, it is a common practice to regard the points from
n =1 through n =N/2 as positive and the points from n = N/2 through
n=N-—1 as negative. Since both the time and frequency sequences are
periodic, the values at points n = N/2 through n = N —1 are in fact equal to
the values at points n = N/2 through n = —1. Under this convention, it is
convenient to redefine the concept of even and odd sequences: If
x[N — n] = x[n], the x[n] is even symmetric, and if x[N —n] = —x[n], then
x[n] is odd symmetric or antisymmetric.

8.2 Properties of the DFT

The DFT exhibits a number of useful properties and operational relationships
that are similar to the properties of the continuous Fourier transform
discussed in Chap. 1.

Linearity
The DFET relating x[r] and X[m]:

DFT
x[n] == X[m]
IDFT

is homogeneous

DFT

a X[n] == a X[m]

IDFT
additive

DFT

x[n] + ¥[n] == X[m] + Y[m]
IDFT

and therefore linear

DFT
a x[n] + b y[n] ﬁ a X[m] + b Y[m]

140 Chapter Eight

Symmetry

A certain symmetry exists between a time sequence and the corresponding
frequency sequence produced by the DFT. Given that x[rn] and X[m] consti-
tute a DFT pair, that is,

DFT
x[n] = X[m]
IDFT

1 DFT
then — X[n] == x[—m]
N IDFT

Time shifting

A time sequence x[n] can be shifted in time by subtracting an integer from n.
Shifting the time sequence will cause the corresponding frequency sequence
to be phase-shifted. Specifically, given

DFT
x[n] = X[m]
IDFT

DFT 3
then x[n — k] == X[m] e ~72mmkIN
IDFT

Frequency shifting

Time sequence modulation is accomplished by multiplying the time sequence
by an imaginary exponential term e/2"*/N_ This will cause a frequency shift of
the corresponding spectrum. Specifically, given

DFT
x[n] == X[m]
IDFT

_ DFT
then x[n] 7N == X[m — k]
IDFT

Even and odd symmetry

Consider a time sequence x[n] and the corresponding frequency sequence
X[m] = Xg[m] + jX;[m], where Xz[m] and X;[m] are real valued. If x[n] is
even, then X[m] is real valued and even:

x[—n] = x[n] <> X[m] = Xp[m] = Xg[—m]
If x[n] is odd, then X[m] is imaginary and odd:
x[—n] = —x[n] < X[m] =jX;[m] = —jX;[—m]

Real and imaginary properties

In general, the DFT of a real-valued time sequence will have an even real
component and an odd imaginary component. Conversely, an imaginary-

Discrete Fourier Transform 141

valued time sequence will have an odd real component and an even imaginary
component. Given a time sequence x[n] = xz[n] +jx;[n] and the correspond-
ing frequency sequence X[m] = Xg[m] + jX,;[m], then

x[n] = xg[n] < Xg[m] = Xg[—m] Xi[m] = —X;[—m]

x[n] = jx;[n] < Xg[m] = —Xp[-ml X;(m] =X;[—m]

8.3 Implementing the DFT

The C function shown in Listing 8.1 is the “brute-force” implementation of
Eq. (8.1). This function is an example of grossly inefficient code. The sine and
cosine operations are each performed N? times to compute an N-point DFT.

Since
=2mjk\ —2nj(k mod N)
xp(N > = exp[N] (8.5)

it follows that there are only N different values of phi that need be computed
in dft(). We can trade space for speed by precomputing and storing the
values of sin(phi) and cos(phi) for phi=0,1,..., N—1. The resulting
modified function dft2() is presented in Listing 8.2.

8.4 Fast Fourier Transforms

Consider the operation of dft2() for the case of N = 8. The computation of
sumRe involves the product of x[n].Re and cosVal[k] for n=0,1,...,7.
For any given value of n, the value of k& is determined by the value of m using

k = mn modulo N

For N =8, there are 64 possible combinations of (m, n) and only 8 possible
values of k. Obviously, more than 1 combination of (m, n) will map into each
value of k as indicated in Table 8.1.

TABLE 8.1 Values of k as a Function of (m, n) for an 8-point DFT

n k(0, n) k(1, n) k(2, n) k(3, n) k(4,n) k(5, n)i k(6, n) k(7, n)

TN I =~ wo
O RO RO hahO
LR b 1IN O
=R WA T 3O

SN Otk WY =O
oo o0 o0 oo
SIS b WY =O
D NO OO MO
Nk O N O

142 Chapter Eight

For N =8, the function dft2() computes the product x[0].Re*cosVal[0] a
total of eight times—once for each different value of m. Similarly, the
product x[4].Re*cosVal[0] is computed a total of four times—once for each
odd value of m. A variety of different fast DFT algorithms has been developed
by reordering and regrouping hhe DFT computations so as to minimize or
eliminate the need for multiple calculation of the same product.

The expanded equations for computation of X(0) through X(7) for an
8-point DFT are listed in Table 8.2. Making use of Eq. (8.5) along with the
commutative, associative, and distributive properties of addition and multi-
plication, the equations of Table 8.2 can be rewritten in the form shown in
Table 8.3. Examination of these equations reveals that they share many
common terms that can be computed once and then used as needed without
having to be computed over again. Use of these common terms is easier to
understand if the equations are presented in the form of a signal flow graph
as in Fig. 8.1. The format of this signal flow graph has been slightly modified
from the format of Sec. 7.6 in order to reduce the clutter somewhat. In the
modified format, each circle represents one (possibly complex) addition and
one (possibly complex) multiplication. The term corresponding to the line
with the arrowhead entering the circle is multiplied by the constant within
the circle and then added to the term correesponding to the other line
entering the circle. The notation W” represents exp(—j2n/N). The computa-

TABLE 8.2 Equations for Computation of an 8-point DFT

X(0) = 2(0) WO + 2(1)) WO + x(2) WO + x(3)W° + x()W° + x(5) W° + x(6) W° + x(T)W°
X(1) = x(0)W° + (DW* + x(2) W2 + 2(3)W? + x(HW* + x(5) W3 + x(6) WS + x(T)W’
X(2) = x(0)W° + 2(1)W? + x(2) W* + 2(3) W® + x(4) W8 + x(5) W + x(6) W'2 + x(7) Wi
X(3) = 2(0) WO + 2(1) W3 + 2(2) W + x(3)W? + x(4) W2 + x(5) WS + x(6) W8 + x(T) W2
X(4) = 2(0) WO + x(L)W* + x(2)W8 + x(W2 4 x(HW'6 + 2(5) W2 + x(6) W + x(T)W?
X(5) = (0)W° + (L)W + 2(2) W' + x(3) WS + x(4) W2 + x(5) W2 + x(6) W + x(T) W
X(6) = 2(0)W° + (1)) WS + 2(2)W™2 + x(3)W® + x() W + 2(5) W + x(6) W + x(T) W42
X(T) = Q)W + (D)W + 2(QW™ + ()W + x(4) W2 + x(5) W + x(6)W*2 + x(T)W*®

TABLE 8.3 Factored Equations for Computation of an 8-point DFT

X(0) = {[x(0) + x(4)W°] + W,[x(2) + x(6) WO} + W,{[x(1) + x(5) W] + W [x(3) + x(T) W]}
X(1) = {[x(0) + x(4) W*] + W2x(2) + 2(6) W4} + W{[x(1) + x(5)W*] + W2{x(3) + x()W*)}
X(2) = {[x(0) + x(4)W°] + W4[x(2) + x(6) W°]} + W2{[x(1) + x(5) W] + W*[x(3) + x(T)W]}
X(3) = {[x(0) + x(4)W*] + Wo[x(2) + (6)W*]} + W3{[x(1) + x(5) W*] + Wo[x(8) + x(7)W*]}
X(4) = {[x(0) + x(4) WO] + WO[x(2) + x(6) W1} + W*{[x(1) + x(5) W] + W [x(3) + x(T)W°]}
X(5) = {[x(0) + x(4)W1] + W2[x(2) + x(6) W*]} + W3{[x(1) + x(B) W*] + W?[x(3) + x(T)W*]}
X(6) = {[x(0) + x(4)W°] + W4[x(2) + 2(6)W°]} + WE{[x(1) + x(5) W°] + W*{x(3) + x(T) W]}
X(7) = {[x(0) + x(4)W*] + We[x(2) + x(6) W4} + W7{[x(1) + 2(5) W*] + WO[x(3) + () W*]}

Discrete Fourier Transform 143

) & (wo) (W) WO)—e xo)
G B——®

SOX XK e Nl
S e
ol XN e

N

01 ¢ e (@) s
w aSo ol

Figure 8.1 Signal flow graph representing the equations of Table 8.3.

x(4)

x{2)

tion scheme depicted by Fig. 8.1 can be extended for any value of N that is an
integer power of 2. A C function fft() that implements this scheme is given
in Listing 8.3. Listings of the support functions bitRev(), ipow(), and
log2() are provided in App. A.

8.5 Applying the Discrete Fourier Transform

Short time-limited signals

Consider the time-limited continuous-time signal and its continuous spec-
trum shown in Figs. 8.2a and 8.2b. (Remember that a signal cannot be both
strictly time limited and strictly band limited.) We can sample this signal to
produce the time sequence shown in Fig. 8.2c for input to a DFT. If the input
record length N is chosen to be longer than the length of the input time
sequence, the entire sequence can fit within the input record as shown. As
discussed in Sec. 8.2, the DFT will treat the input sequenﬁ;e as though it is the
periodic sequence shown in Fig. 8.2d. This will result in a periodic discrete-
frequency spectrum as shown in Fig. 8.2e. The actual output produced by the
DFT algorithm will be the sequence of values from m =0 to m =N —1. Of
course, there will be some aliasing due to the time-limited nature (and
consequently unlimited bandwidth) of the input-signal pulse.

Periodic signals

Consider the band-limited and periodic continuous-time signal and its spec-
trum shown in Fig. 8.3. We can sample this signal to produce the time

144 Chapter Eight

®
o AL

©
.ll”“lll.
——

Tin

@

Tin Tin Tin

@ Figure 8.2 Signals and se-
quences for the DFT of a short
time-limited signal.

f

@ Figure 8.3 Signal and sequences
for the DFT of a periodic signal.
The length L of the DFT input
record equals the period of the
signal.

Discrete Fourier Transform 145

sequence shown in Fig. 8.3¢ for input to the DFT. If the input record length
N of the DFT is chosen to be exactly equal to the length of 1 period of this
sequence, the periodic assumption implicit in the DFT will cause the DFT to
treat the single input record as though it were the complete sequence. The
corresponding periodic discrete-frequency spectrum is shown in Fig. 8.3d.
The DFT output sequence will actually consist of just 1 period that matches
exactly the spectrum of Fig. 8.3b. We could not hope for (or find) a more
convenient situation. Unfortunately, this realtionship exists only in an
N-point DFT where the input signal is both band limited and periodic with a
period of exactly N.

Long aperiodic signals

So far we have covered the use of the DFT under relatively favorable
conditions that are not likely to exist in many important signal processing
applications. Often the signal to be analyzed will be neither periodic nor
reasonably time limited. The corresponding sequence of digitized-signal val-
ues will be longer than the DFT input record and will therefore have to be
truncated to just N samples before the DFT can be applied. The periodic
nature of the DFT will cause the truncated sequence of Fig. 8.4b to be
interpreted as though it were the sequence shown in Fig. 8.4c. Notice that in
this sequence there is a large discontinuity in the signal at the points
corresponding to the ends of the input record. This will introduce additional
high-frequency components into the spectrum produced by the DFT. This

O

Figure 8.4 Discontinuities caused
by truncating the input se-
quence of a DFT: (a) long input
sequence, (b) truncated input
sequence; (¢) input sequence as
interpreted by the DFT, and (d)
resulting discontinuities.

146 Chapter Eight

phenomenon is called leakage. To reduce the leakage effects, it is a common
practice to multiply the truncated input sequence by a tapering window prior
to application of the DFT. A good window shape will taper off at the ends of
the input record but still have a reasonably compact and narrow spectrum.
This is important since multiplying the time sequence by the window will
cause the corresponding frequency sequence to be convolved with the spec-
trum of the window. A narrow window spectrum will cause minimum smear-
ing of the signal spectrum. Several popular windowing functions and their
spectra are treated at length in Chap. 11.

Listing 8.1 dft()

/*ltt*t!*****t*t*t****l*****t**#**

/t

/* Llisting 8.1

/%

/0 dfi()

/%

/*t*‘******‘*‘**************‘*****

void dft(struct complex x[],
struct complex xx[],
int N)

{

int n, m;

real sumRe, sumlIm, phi;

for{ m=8; m<N; m++) {
sumBe = ©.8;
sumle = 8.6;
for{ n=8; n<N; n++) {
phi = 2.8 ¥ P1 * g * n /N;

*/
*/
*/
*/
*/
*/
*/

Discrete Fourier Transform

sumRe += x[n].Re * cos(phi) + x[nl.Im ¥ sin{phi);
sumle += x[nl.Im * cos(phi) - x[n).Ae * sin{phi);

}
xx[n) = cmplx{sumfe, sumln);
)

return;

}

Listing 8.2 dft2()
/#***#***tt“l**tt*t*t**‘*******tt

f!

/% Listing 8.2
/%

/* dft20)

/%

f*************t***t***#**#*t*tt**t

void dft2{ struct complex x[],
struct complex xx[],
int N)

{

int n, m, k;

real sumRe, sumlm, phi;

static real coslal[DFTSIZE], sinVal[DFTSIZE];

*/
*/
*/
*/
Ij
*/
*/

147

148 Chapter Eight

for{ k=8; k<N; k++) {
cosUallk] = cos{2.8 * PI * k /N);
sinUaltlk] = sin(2.8 * P] * k /N);
}

for{ m=8; m<N; m++) {
sumRe = 8.8;
sumlm = @.0;

for{n=8; n<N; n++) {
k = (m*n)XN;
sumRe += x[n].Re * cosVallk] + x[n).Im * sinVailk];
sumlm += x[n).1a ¥ cosVallk] - x[n].Re * sinVallk];

}
xx{m] = copix{sumRe, suslm);
}
return;

}

Listing 8.3 fft()

f*l*****#********t******tt*********/

/* */
/* Listing 8.3 */
r* X/
/4 R0 X/
/* */

/“****‘**i***t***t****#******#**#t/

void fft(struct complex xIn[],
struct complex xOut{],
int N)

{

static struct complex x[2][DFTSIZE];

static real cc[DFTSIZE], ss[DFTSIZE];

static char inStringldl];

int ping, pong, n, L, nSkip, level, ul, nf, kt, kb, nBot;

for{ n=8; n<N; n++} {
x[81[n] = xInlnl;
ccln] = cos{2.8 * FI1 * n /H);
ss[u] = sin{2.8 * P1 * n /N);
}

Discrete Fourier Transform

pong = 8;
ping = 1;
L = log2(N};
nSkip = N;

for(level=1; lewvel<=L; level++) {
nSkip /= 2;
n=8e;
for(n6=8; nb<ipow(2,{level-1)); nb++) {
kt = bitReu(L,2%n6);
kb = bitRev(L,2*nG+1);

for{nB=8; nB<nSkip; nB++) {
nBot = n + nSkip;
x[ping}nl.Re = x[pongl{n].Re
+ cefkt] * x[ponglinBot].Re
+ ss[kt] * x[pongllnBot].lm;
xlpingllnl.Ia = x[ponglin].ln
+ cclkt] * x[pong)inBot]. Im
- sslkt] * x[pongllnBot].Re;
x{pingllnBot].Re = x[ponglln].Re
+ cclkb] * x[pongllnBet].Re
+ ss[kb] * x[pongl{nBot].In;
x[pingl{nBet]).Im = x[ponglln].lm
+ cclkb] * x[pong}[nBot].Inm
- ss[kb] * x[pong]InBat].Re;
n++;
}
n += nSkip;
}
ping = lping;
pong = !pong;
}
for{n=8; n<N; n++) xOutlbitRev{L,n)] = x[ponglln];
return;

}

149

