Chapter

The z Transform

The two-sided, or bilateral, z transform of a discrete-time sequence x[n] is
defined by

X@= Y xlnjz " (9.1)

and the one-sided, or unilateral, z transform is defined by

X@@ =) x[nlz " (9.2)
n=0

Some authors (for example, Rabiner and Gold 1975) use the unqualified term
“z transform” to refer to (9.1), while others (for example, Cadzow 1973) use
the unqualified term to refer to (9.2). In this book, “z transform” refers to the
two-sided transform, and the one-sided transform is explicitly identified as
such. For causal sequences (that is, x[n] =0 for n < 0) the one-sided and
two-sided transforms are equivalent. Some of the material presented in this
chapter may seem somewhat abstract, but rest assured that the z transform
and its properties play a major role in many of the design and realization
methods that appear in later chapters. '

9.1 Region of Convergence

For some values of z, the series in (9.1) does not converge to a finite value.
The portion of the z plane for which the series does converge is called the
region of convergence (ROC). Whether or not (9.1) converges depends upon
the magnitude of z rather than a specific complex value of 2. In other words,
for a given sequence x[n], if the series in (9.1) converges for a value of z = z,,
then the series will converge for all values of z for which |z} =]z|. Con-
versely, if the series diverges for z = z,, then the series will diverge for all
values of z for which |z| = |2,|. Because convergence depends on the magni-
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Figure 9.1 Possible configurations of the region of
convergence for the z transform.

tude of z, the region or convergence will always be bounded by circles
centered at the origin of the z plane. This is not to say that the region of
convergence is always a circle—it can be the interior of a circle, the exterior
of a circle, an annulus, or the entire z plane as shown in Fig. 9.1. Each of
these four cases can be loosely viewed as an annulus—a circle’s interior
being an annulus with an inner radius of zero and a finite outer radius, a
circle’s exterior being an annulus with nonzero inner radius and infinite
outer radius, and the entire z plane being an annulus with an inner radius of
zero and an infinite outer radius. In some cases, the ROC has an inner radius
of zero, but the origin itself is not part of the region. In other cases, the ROC
has an infinite outer radius, but the series diverges at [z| = 0.

By definition, the ROC cannot contain any poles since the series becomes
infinite at the poles. The ROC for a z transform will always be a simply
connected region in the z plane. If we assume that the sequence x[n] has a
finite magnitude for all finite values of n, the nature of the ROC can be
related to the nature of the sequence in several ways as discussed in the
paragraphs that follow and as summarized in Table 9.1.

Finite-duration sequences
If x[n] is nonzero over only a finite range of n, then the z transform can be
rewritten as

Ny

X(= ) x[nlz""

n=N;
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TABLE 9.1 Properties of the Region of Convergence for the z Transform

x[n] ROC for X(z)
All Includes no poles
All Simply connected region
Single sample at n =0 Entire z plane

Finite-duration, causal, x[rn] =0 for all n <0, =z plane except for z =0
x[n] #0 for some n >0

Finite-duration, with x[n} 0 for some n <0, 2z plane except for z = ©
x[n] =0 for all n >0

Finite-duration, with x[n] # 0 for some n <0, =z plane except for z=0 and z = «©
x[n} #0 for some n >0

Right-sided, x[n] = fM’or all n <0 Outward from outermost pole

Right-sided, x[n] # 0 for some n <0 Outward from outermost pole, z = o is excluded
Left-sided, x[n] =0 for all n >0 Inward from innermost pole

Left-sided, x[n] # 0 for some n >0 Inward from innermost pole, z =0 is excluded
Two-sided Annulus

This series will converge provided that |x[n]| < oo for N; <n < N, and [z 77| <
w for N, < n < N,. For negative values of n, |z~ "| will be infinite for z = oo;
and for positive values of n, |z7"| will be infinite for z =0. Therefore, a
sequence having nonzero values only for n = N, through n = N, will have a
z transform that converges everywhere in the z plane except for z = v when
N, <0 and z =0 when N, > 0. Note that a single sample at n =0 is the only
finite-duration sequence defined over the entire z plane.

Infinite-duration sequences

The sequence x[r] is a right-sided sequence if x[n] is zerp for all n less than
some finite value N,. It can be shown (see Oppenheim and Schafer 1975 or
1989) that the z transform X(z) of a right-sided sequencé will have an ROC
that extends outward from the outermost finite pole of X(2). In other words,
the ROC will be the area outside a circle whose radius equals the magnitude
of the pole of X(2) having the largest magnitude (see Fig. 9.2). If N, <0, this
ROC will not include z = 0.

The sequence x[n] is a left-sided sequence if x[n}] is zero for all n greater
than some finite value N,. The z transform X(z) of a left-sided sequence will
have an ROC that extends inward from the innermost pole of X(z). The ROC
will be the interior of a circle whose radius equals the magnitude of the pole
of X(2) having the smallest magnitude (see Fig. 9.3). If N, > 0, this ROC will
not include z =0.
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Figure 9.2 Region of conver-
gence for the z transform of a
right-sided sequence.
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Figure 9.3 Region of conver-
gence for the z transform of a
left-sided sequence.
X = poles

The sequence x[n] is a two-sided sequence if x[n] has nonzero values
extending to both — oo and + oo. The ROC for the z transform of a two-sided

sequence will be an annulus.

Convergence of the unilateral z transform

Note that all of the properties discussed above are for the two-sided z
transform defined by (9.1). Since the one-sided z transform is equivalent to
the two-sided transform when x[n] =0 for n <0, the ROC for a one-sided
transform will always look like the ROC for the two-sided transform of either
a causal finite-duration sequence or a causal right-sided sequence. For all
causal systems, the ROC for the bilateral transform always consists of the
area outside a circle of radius R = 0. Therefore, for two-sided transforms of
causal sequences and for all one-sided transforms, the ROC can be (and
frequently is) specified in terms of a radius of convergence R such that the
transform converges for |z| > R.
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9.2 Relationship between the Laplace and z Transforms

The z transform can be related to both the Laplace and Fourier transforms.
As noted in Chap. 7, a sequence can be obtained by sampling a function of
continuous time. Specifically, for a causal sequence

x[n] = i x,(nT) ot —nT) (9.3)

n=0

the Laplace transform is given by

X(s) = i x,(nT)e "Ts (9.4)

n=0
Let X,(s) denote the Laplace transform of x,(t). The pole-zero pattern for X(s)

consists of the pole-zero pattern for X,(s) replicated at intervals of w, =2n/T
along the jw axis in the s plane. If we modify (9.4) by substituting

K z=e7 (9.5)
x[n] =x,(nT) (9.6)

we obtain the z transform defined by Eq. (9.1).

Relationships between features in the s plane and features in the z plane
can be established using (9.5). Since s =¢ +jo with ¢ and w real, we can
expand (9.5) as

z=eT=e'Te/*T = e T(cos wT +j sin wT)

Because |e/*7| = (cos® T +sin? wT)'? =1, and T >0, we can conclude that
|z| <1 for ¢ <0. Or, in other words, the left half of the ¢ plane maps into the
interior of the unit circle in the z plane. Likewise, |z| =1 for ¢ =0, so the jo
axis of the s plane maps onto the unit circle in the # plane. The “extra”
replicated copies of the pole-zero pattern for X(s) will all map into a single
pole-zero pattern in the z plane. When evaluated around the unit circle (that
is, z = /%), the z transform yields the discrete-time Fourier transform (DTFT)
(see Sec. 7.2).

9.3 System Functions

Given the relationships between the Laplace transform and the z transform
that were noted in the previous section, we might suspect that the =z
transform of a discrete-time system’s unit sample response (that is, digital
impulse response) plays a major role in the analysis of the system in much
the same way that the Laplace transform of a continuous-time system’s
impulse response yields the system’s transfer function. This suspicion is
indeed correct. The z transform of a discrete-time system’s unit sample
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response is called the system function, or transfer function, of the system and

1s denoted by H(z).
The system function can also be derived from the linear difference equation
that describes the filter. If we take the z transform of each term in Eq. (7.6),

we obtain
Y(z) +a,27'Y(2) +a,z 2Y (@) + - +a,z"*Y(2)

= by X(2) + b2 'X(2) + byz 2X(2) + b,z *X(2)
Factoring out Y(2) and X(2) and then solving for H(z) = Y(2)/X(z) yields

Y(2) by+bz ' +bz2 %+ -+ bz
Xz 1+4a,z2 '+az7 2+ -+a,z7*

Both the numerator and denominator of H(z) can be factored to yield

bo(z —q1 )2 —q2) - (2 —qp)
(z=p, (2 —p Xz —p3) - (2 —Dx)

H(z) =
The poles of H(z) are p,, p,, ..., P, and the zeros are ¢,,q,, ..., q,,-

9.4 Common z-Transform Pairs and Properties

The use of the unilateral z transform by some authors and the use of the
bilateral transform by others does not present as many problems as we might
expect, because in the field of digital filters, most of the sequences of interest
are causal sequences or sequences that can easily be made causal. As we
noted previously, for causal sequences the one-sided and two-sided trans-
forms are equivalent. It really just comes down to a matter of being careful
about definitions. An author using the unilateral default (that is, “z trans-
form” means ‘“unilateral z transform”) might say that the z transform of
x[n] =a” is given by

X(2) =z—i—a for |z| > |a| 9.7

On the other hand, an author using the bilateral default might say that (9.7)
represents the z transform of x[n] =a” u[n], where u[n] is the unit step
sequence. Neither author is concerned with the values of a” for n < 0—the
first author is eliminating these values by the way the transform is defined,
and the second author is eliminating these values by multiplying them with
a unit step sequence that is zero for n < 0. There are a few useful bilateral
transform pairs that consider values of x[n] for n < 0. These pairs are listed
in Table 9.2. However, the majority of the most commonly used z-transform
pairs involve values of x[n] only for n = 0. These pairs are most conveniently
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TABLE 9.2 Common Bilateral 2-Transform Pairs

z[n] X(2) ROC

o[n] 1 all z
d[n—m],m>0 z™™ 2#0
éfn-m],m<0 z—m Zz # 0
uln] zil |z| >1
—u[—n—-1] zil |2| <1
—a™u[—n —1] ud 2| < |a]

z—a
—ne”ul-n 1] ﬁ l2| < la|

tabulated as unilateral tran@*ms with the understanding that any unilat-
eral transform pair can be converted into a bilateral transform pair by
replacing x[n] with x[n] «[n]. Some common unilateral z-transform pairs are
listed in Table 9.3. Some useful properties exhibited by both the unilateral
and bilateral z transforms are listed in Table 9.4.

9.5 Inverse z Transform

The inverse z transform is given by the contour integral

x[n] = % €§C X(@)2""'dz (9.8)

where the integral notation indicates a counterclockwise closed contour that
encircles the origin of the z plane and that lies within the region of
convergence for X(z). If X(2) is rational, the residue theprem can be used to
evaluate (9.8). However, direct evaluation of the inversion integral is rarely
performed in actual practice. In practical situations, inversion of the z
transform is usually performed indirectly, using established transform pairs
and transform properties.

9.6 Inverse z Transform via Partial Fraction Expansion
Consider a system function of the general form given by

boz™+b,2" "+ +b, 2+ b,
Z,+a.2" " '+ +a,_ ,2'+a,

H(z) = (9.9)
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TABLE 9.3 Common Unilateral z-Transform Pairs

(R = radius of convergence)

x[n] X(2) R
z
1 1
z—-1
P
1
u,[n] 71
of[n} 1 (z =0 included)
Tz
nT P — 1
(z-1?
T?2(z+1
(nT):Z # 1
(z-1)°
T32(z%+ 4z +1
(nT)s —(___) 1
(z—-D*
z
a” la]
z—a
22
n+1a” — a
(n +1) N G i
n+Dn+2) o 23 |
2! (z —a)?
n+1)(n+2)n+3) 2?
a” — Jal
3! (z —a)?
(n+1(n+2Xn+3)n +4) 2°
a” — laf
4! (z —a)®
na® % la|
(z —a)?
2 n az(z +a)
n2a — lal
(z—-a)
5 n az(2? + 4az + a? i
nda p—
a_’i e%/z 0
!
z
—an —aT
et z—e T le I
. T az sinwT |a|
a n
St ne 22— 2az cos wT + a?
N T 2?2 —za cos wT |
co a
arcosn 22 —2az cos wT +a?
ze " *Tsin w, T
—anT _; T 0 e — 2T
¢ sit Golt 22— 2ze " *Tcos wy T + e~ 27 | |
22 —ze *Tcosw, T
e *"T cos wonT Y 1 le 27|

22— 2ze *Tcosw, T + e~
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TABLE 9.4 Properties of the z Transform
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Property no. Time function Transform
x[n} X(2)
yln] Y(z)
1 a xin] a X(2)
2 x[n] + y(n] X(2) + Y(2)
3 e~ "7 x[n)] X(e* 2)
3 " xin] 1)
a
5 x[n —m] z= " X(2)
6 x[n] * yln] X(2) Y(2)
7 n x{n] -z i X(2)
dz
8 x[—n] Xz
9 x*[n] X*(z*)

Such a system function can be expanded into a sum of simpler terms that
can be more easily inverse-transformed. Linearity of the z transform allows
us to then sum the simpler inverse transforms to obtain the inverse of the
original system function. The method for generating the expansion differs
slightly depending upon whether the system function’s poles are all distinct
or if some are multiple poles. Since most practical filter designs involve
system functions with distinct poles, the more complicated multiple-pole
procedure is not presented. For a discussion of the multiple-pole case, see

Cadzow (1973).
Algorithm 9.1 Partial fraction expansion for H(z)
having simple poles

step 1. Factor the denominator of H(z) to produce

bozm+b,z2" Y+ -+ b, 2"+ b,
(z —p Nz —py)(z —p3) - (2 —Dx)

H(z) =

step 2. Compute ¢, as given by

b

0=H 2=0"
¢o=H@)|— o= = ST ) (o)
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step 3. Compute ¢, for 1 <i < m using
2 —D;
C; 2__Z—H(z)’z:pl

Step 4. Formulate the discrete-time function A[n] as given by
h(n) = coé(n) + Cl(pl)n + c2(p2)n + e + cm(pm)n fOr n= 07 1v 2’ A
The function A[n] is the inverse z transform of H(z).

Example 9.1 Use the partial fraction expansion to determine the inverse z transform of

22
H@ =—2"
@ z22+z -2

solution
Step 1. Factor the denominator of H(z) to produce

22

H@) = (z—1D(z+2)

Step 2. Compute ¢, as
¢o=H@)|,_,=0

Step 3. Compute ¢, ¢, as

o = (z—1) 22 S 1
e 2 (z—-1)z+2) 2:1_224-22 2:1—3
o (z+2) 2?2 z? 2
2T z (-De+2|,._, 2*—z|,__, 3

Step 4. The inverse transform A[n] is given by
hin] =% ()" + % (-2)
=1+ Y%(-2)" n=012...



