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The Spectrum of Periodic Signals 

Signals dwell both in the time and frequency domains; we can equally ac- 
curately think of them as values changing in time (time domain), or as 
blendings of fundamental frequencies (spectral domain). The method for de- 
termining these fundamental frequencies from the time variations is called 
Fourier or spectral analysis. Similar techniques allow returning to the time 
domain representation from the frequency domain description. 

It is hard to believe that 300 years ago the very idea of spectrum didn’t 
even exist, that less than 200 years ago the basic mechanism for its cal- 
culation was still controversial, and that as recently as 1965 the algorithm 
that made its digital computation practical almost went unpublished due to 
lack of interest. Fourier analysis is used so widely today that even passing 
mention of its most important applications is a lengthy endeavor. Fourier 
analysis is used in quantum physics to uncover the structure of matter on 
the smallest of scales, and in cosmology to study the universe as a whole. 
Spectroscopy and X-ray crystallography rely on Fourier analysis to analyze 
the chemical composition and physical structure from minute quantities of 
materials, and spectral analysis of light from stars tells us of the composition 
and temperature of bodies separated from us by light years. Engineers rou- 
tinely compute Fourier transforms in the analysis of mechanical vibrations, 
in the acoustical design of concert halls, and in the building of aircraft and 
bridges. In medicine Fourier techniques are called upon to reconstruct body 
organs from CAT scans and MRI, to detect heart malfunctions and sleep dis- 
orders. Watson and Crick discovered the double-helix nature of DNA from 
data obtained using Fourier analysis. Fourier techniques can help us differ- 
entiate musical instruments made by masters from inferior copies, can assist 
in bringing back to life deteriorated audio recordings of great vocalists, and 
can help in verifying a speaker’s true identity. 

In this chapter we focus on the concepts of spectrum and frequency, 
but only for periodic signals where they are easiest to grasp. We feel that 
several brief historical accounts will assist in placing the basic ideas in proper 
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72 THE SPECTRUM OF PERIODIC SIGNALS 

context. We derive the Fourier series (FS) of a periodic signal, find the FS for 
various signals, and see how it can be utilized in radar signal processing. We 
briefly discuss its convergence and properties, as well as its major drawback, 
the Gibbs phenomenon. We also introduce a new notation that uses complex 
numbers and negative frequencies, in order to set the stage for the use of 
Fourier techniques in the analysis of nonperiodic signals in the next chapter. 

3.1 Newton’s Discovery 

Isaac Newton went over to the window and shuttered it, completely dark- 
ening the room. He returned to his lab bench, eager to get on with the 
experiment. Although he was completely sure of the outcome, he had been 
waiting to complete this experiment for a long time. 

The year was 1669 and Newton had just taken over the prestigious Lu- 
casian chair at Cambridge. He had decided that the first subject of his 
researches and lectures would be optics, postponing his further development 
of the theory of fluxions (which we now call the differential calculus). Dur- 
ing the years 1665 and 1666 Newton had been forced to live at his family’s 
farm in Lincolnshire for months at time, due to the College being closed on 
account of the plague. While at home he had worked out his theory of flux- 
ions, but he had also done something else. He had perfected a new method 
of grinding lenses. 

While working with these lenses he had found that when white light 
passed through lenses it always produced colors. He finally gave up on trying 
to eliminate this ‘chromatic aberration’ and concluded (incorrectly) that the 
only way to make a truly good telescope was with a parabolic mirror instead 
of a lens. He had just built what we now call a Newtonian reflector telescope 
proving his theory. However, he was not pleased with the theoretical aspects 
of the problem. He had managed to avoid the chromatic aberration, but 
had not yet explained the source of the problem. Where did the colors come 
from? 

His own theory was that white light was actually composed of all possible 
colors mixed together. The lenses were not creating the colors, they were 
simply decomposing the light into its constituents. His critics on this matter 
were many, and he could not risk publishing this result without iron clad 
proof; and this present experiment would vindicate his ideas. 

He looked over the experimental setup. There were two prisms, one to 
break the white light into its constituent colors, and one that would hopefully 
combine those colors back into white light again. He had worked hard in 
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polishing these prisms, knowing that if the experiment failed it would be 
because of imperfections in the glass. He carefully lit up his light source 
and positioned the prisms. After a little experimentation he saw what he 
had expected; in between the prisms was a rainbow of colors, but after the 
second prism the light was perfectly white. He tried blocking off various 
colors and observed the recomposed light’s color, putting back more and 
more colors until the light was white again. Yes, even his most vehement 
detractors at the Royal society would not be able to argue with this proof. 

Newton realized that the white light had all the colors in it. He thought 
of these colors as ghosts which could not normally be seen, and in his Latin 
write-up he actually used the word specter. Later generations would adopt 
this word into other languages as spectrum, meaning all of the colors of the 
rainbow. 

Newton’s next step in understanding these components of white light 
should have been the realization that the different colors he observed cor- 
responded to different frequencies of radiation. Unfortunately, Newton, the 
greatest scientist of his era, could not make that step, due to his firm belief 
that light was not composed of waves. His years of experimentation with 
lenses led him to refute such a wave theory as proposed by others, and 
to assert a corpuscular theory, that light was composed of small particles. 
Only in the twentieth century was more of the truth finally known; light is 
both waves and particles, combined in a way that seventeenth-century sci- 
ence could not have imagined. Thus, paradoxically, Newton discovered the 
spectrum of light, without being able to admit that frequency was involved. 

EXERCISES 

3.1.1 Each of the colors of the rainbow is characterized by a single frequency, 
while artists and computer screens combine three basic colors. Reconcile the 
one-dimensional physical concept of frequency with the three-dimensional 
psychological concept of color. 

3.1.2 Wavepackets are particle-like waves, that is, waves that are localized in space. 
For example, you can create a wavepacket by multiplying a sine wave by a 
Gaussian 

m * sin(&) =e 2~ 

where p is the approximate location. Plot the signal in space for a given time, 
and in time for a given location. What is the uncertainty in the location of 
the ‘particle’? If one wishes the ‘particle’ to travel at a speed V, one can 
substitute 1-1 = vt. What happens to the space plot now? How accurately can 
the velocity be measured? 
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3.2 Frequency Components 

Consider a simple analog sinusoid. This signal may represent monochromatic 
light (despite Newton’s prejudices), or a single tone of sound, or a simple 
radio wave. This signal is obviously periodic, and its basic period T is the time 
it takes to complete one cycle. The reciprocal of the basic period, f = *, the 
number of cycles it completes in a second, is called the frequency. Periods are 
usually measured in seconds per cycle and frequencies in cycles per second, 
or Hertz (Hz). When the period is a millisecond the frequency is a kilohertz 
(KHz) and a microsecond leads to a megahertz (MHz). 

Why did we need the qualifier basic in ‘basic period’? Well, a signal which 
is periodic with basic period T, is necessarily also periodic with period 2T, 
3T, and all other multiples of the basic period. All we need for periodicity 
with period P is for s(t + P) to equal s(t) for all t, and this is obviously 
the case for periods P which contain any whole number of cycles. Hence 
if a sinusoid of frequency f is periodic with period P, the sinusoid with 
double that frequency is also periodic with period P. In general, sinusoids 
with period nf (where n is any integer) will all be periodic with period P. 
Frequencies that are related in this fashion are called harmonics. 

A pure sine is completely specified by its frequency (or basic period), 
its amplitude, and its phase at time t = 0. For more complex periodic 
signals the frequency alone does not completely specify the signal; one has 
to specify the content of each cycle as well. There are several ways of doing 
this. The most straightforward would seem to require full specification of the 
waveform, that is the values of the signal in the basic period. This is feasible 
for digital signals, while for analog signals this would require an infinite 
number of values to be specified. A more sophisticated way is to recognize 
that complex periodic signals have, in addition to their main frequency, many 
other component frequencies. Specification of the contributions of all these 
components determines the signal. This specification is called the signal’s 
spec trunk 

What do we mean by frequency components? Note the following facts. 

l The multiplication of a periodic signal by a number, and the addition 
of a constant signal, do not affect the periodicity. 

l Sinusoids with period nf (where n is any integer) are all periodic with 
period P = i. These are harmonics of the basic frequency sinusoid. 

l The sum of any number of signals all of which are periodic with period 
T, is also periodic with the same period. 
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From all of these facts together we can conclude that a signal that results 
from weighted summing of sinusoidal signals with frequencies n f, and possi- 
bly addition of a constant signal, is itself periodic with period P = -& Such a 
trigonometric series is no longer sinusoidal, indeed it can look like just about 
anything, but it is periodic. You can think of the spectrum as a recipe for 
preparing an arbitrary signal; the frequencies needed are the ingredients, 
and the weights indicate how much of each ingredient is required. 

The wealth of waveforms that can be created in this fashion can be 
demonstrated with a few examples. In Figure 3.1 we start with a simple sine, 
and progressively add harmonics, each with decreased amplitude (the sine 
of frequency rCf having amplitude i). On the left side we see the harmonics 
themselves, while the partial sums of all harmonics up to that point appear 
on the right. It would seem that the sum tends to a periodic sawtooth signal, 

K sin@&) K-*~ c k 
+ -I(t) 

k=O 
(3 1) . 

Figure 3.1: Building up a periodic sawtooth signal -‘T(t) from a sine and its harmonics. 
In (A) are the component sinusoids, and in (B) the composite signal. 

B 

Figure 3.2: Building up a periodic square wave signal from a sine and its odd harmonics. 
In (A) are the component sinusoids, and in (B) the composite signal. 
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and this feeling is strengthened when the summation is carried out to higher 
harmonics. Surprisingly, when we repeat this feat with odd harmonics only 
we get a square wave 

K 1 
c ---sin ((2k + 1)wt) - q (t> 
k (p+l = 

(3 2) . 

as can be seen in Figure 3.2. 
The signal f(t) = sin(wt) is an odd function of t, that is f(-t) = -f(t). 

Since the sum of odd functions is odd, all signals generated by summing only 
harmonically related sines will be odd as well. If our problem requires an 
even function, one for which f(4) = f(t), we could sum cosines in a similar 
way. In order to produce a signal that is neither odd nor even, we need to 
sum harmonically related sines and cosines, which from here on we shall call 
Harmonically Related Sinusoids (HRSs). In this way we can produce a huge 
array of general periodic signals, since any combination of sines and cosines 
with frequencies all multiples of some basic frequency will be periodic with 
that frequency. 

In fact, just about anything, as long as it is periodic, can be represented 
as a trigon .ometric series involving harmonically related sin usoids. Just about 
anything, as long as it is periodic, can be broken down into the weighted 
sum of sinusoidal signals with frequencies nf, and possibly a constant sig- 
nal. When first discovered, this statement surprised even the greatest of 
mathematicians. 

EXERCISES 

3.2.1 

3.2.2 

3.2.3 

In the text we considered summing all harmonics and all odd harmonics with 
amplitude decreasing as i. Why didn’t we consider all even harmonics? 

When two sinusoids with close frequencies are added beats with two observ- 
able frequencies result. Explain this in terms of the arguments of this section. 

To what waveforms do the following converge? 
1. ;- ip$E.l+~+~~~+...) 

2. p-p?g.l+~+~+...) . . . 
3. .$ + ipin - ii(E$E.l + Ei$l+ SCZ.#l +. . .) 

4. i- $(?y-~~+?~.+..., 
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3.3 Fourier’s Discovery 
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The idea of constructing complex periodic functions by summing trigono- 
metric functions is very old; indeed it is probable that the ancient Baby- 
lonians and Egyptians used it to predict astronomical events. In the mid- 
eighteenth century this idea engendered a great deal of excitement due to 
its possible application to the description of vibrating strings (such as violin 
strings). The great eighteenth-century Swiss mathematician Leonard Euler 
realized that the equations for the deflection of a freely vibrating string ad- 
mit sinusoidal solutions. That is, if we freeze the string’s motion, we may 
observe a sinusoidal pattern. If the string’s ends are fixed, the boundary 
conditions of nondeflecting endpoints requires that there be an even num- 
ber of half wavelengths, as depicted in Figure 3.3. These different modes 
are accordingly harmonically related. The lowest spatial frequency has one 
half-wavelength in the string’s length L, and so is of spatial frequency $ 
cycles per unit length. The next completes a single cycle in L, and so is of 

’ frequency E. This is followed by three half cycles giving frequency &, and 
so on. The boundary conditions ensure that all sinusoidal deflection patterns 
have spatial frequency that is a multiple of &. 

However, since the equations for the deflection of the string are linear, 
any linear combination of sinusoids that satisfy the boundary conditions is 
also a possible oscillation pattern. Consequently, a more general transverse 
deflection trace will be the sum of the basic modes (the sum of HRSs). The 

Figure 3.3: The instantaneous deflection of a vibrating string may be sinusoidal, and 
the boundary conditions restrict the possible frequencies of these sines. The top string 
contains only half of its wavelength between the string’s supports; the next contains a full 
wavelength, the third three-quarters, etc. 
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question is whether this is the most general pattern of deflection. In the eigh- 
teenth and nineteenth century there were good reasons for suspecting the 
answer to be negative. Not having the benefit of the computer-generated 
plots of sums of HRSs presented in the previous section, even such great 
mathematicians as Lagrange believed that all such sums would yield smooth 
curves. However, it was easy to deform the string such that its shape would 
be noncontinuous (e.g., by pulling it up at its middle point forcing a trian- 
gular shape). What would happen the moment such a plucked string was 
released? Since the initial state was supposedly not representable in terms 
of the basic sinusoidal modes, there must be other, nonsinusoidal, solutions. 
This was considered to be a fatal blow to the utility of the theory of trigono- 
metric series. It caused all of the mathematicians of the day to lose interest 
in them; all except Jean Baptiste Joseph Fourier. In his honor we are more 
apt today to say ‘Fourier series’ than ‘trigonometric series’. 

Although mathematics was Fourier’s true interest, his training was for 
the military and clergy. He was sorely vexed upon reaching his twenty-first 
birthday without attaining the stature of Newton, but his aspirations had to 
wait for some time due to his involvement in the French revolution. Fourier 
(foolishly) openly criticized corrupt practices of officials of Robespierre’s gov- 
ernment, an act that led to his arrest and incarceration. He would have gone 
to the guillotine were it not for Robespierre himself having met that fate 
first. Fourier returned to mathematics for a time, studying at the Ecole Nor- 
mal in Paris under the greatest mathematicians of the era, Lagrange and 
Laplace. After that school closed, he began teaching mathematics at the 
Ecole Polytechnique, and later succeeded Lagrange to the chair of mathe- 
matical analysis. He was considered a gifted lecturer, but as yet had made 
no outstanding contributions to science or mathematics. 

Fourier then once again left his dreams of mathematics in order to join 
Napoleon’s army in its invasion of Egypt. After Napoleon’s loss to Nel- 
son in the Battle of the Nile, the French troops were trapped in Egypt, 
and Fourier’s responsibilities in the French administration in Cairo included 
founding of the Institut d’Egypte (of which he was secretary and member of 
the mat hemat its division), the overseeing of archaeological explorations, and 
the cataloging of their finds. When he finally returned to France, he resumed 
his post as Professor of Analysis at the Ecole Polytechnique, but Napoleon, 
recalling his administrative abilities, snatched him once again from the uni- 
versity, sending him to Grenoble as Prefect. Although Fourier was a most 
active Prefect, directing a number of major public works, he neglected nei- 
ther his Egyptological writing nor his scientific research. His contributions 
to Egyptology won him election to the French Academy and to the Royal 
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Society in London. His most significant mathematical work is also from this 
period. This scientific research eventually led to his being named perpetual 
secretary of the Paris Academy of Sciences. 

Fourier was very interested in the problem of heat propagation in solids, 
and in his studies derived the partial differential equation 

dV 
K 

d2 V -- - 
at dX2 

now commonly known as the difjhion equation. The solution to such an 
equation is, in general, difficult, but Fourier noticed that there were solutions 
of the form f(t)g(x), where f(t) were decreasing exponentials and g(x) were 
either sin(nx) or cos(nx). Fourier claimed that the most general g(x) would 
therefore be a linear combination of such sinusoids 

g(x) = 2 (uk sin(kx) + bk cos(kx)) 
k=O 

(3 3) . 

the expansion known today as the Fourier series. This expansion is more 
general than that of Euler, allowing both sines and cosines to appear simul- 
taneously. Basically Fourier was claiming that arbitrary functions could be 
written as weighted sums of the sinusoids sin(nx) and cos(nx), a result we 
now call Fourier’s theorem. 

Fourier presented his theorem to the Paris Institute in 1807, but his 
old mentors Lagrange and Laplace criticized it and blocked its publication. 
Lagrange once again brought up his old arguments based on the inability 
of producing nonsmooth curves by trigonometric series. Fourier eventually 
had to write an entire book to answer the criticisms, and only this work 
was ever published. However, even this book fell short of complete rigorous 
refutation of Lagrange’s claims. The full proof of validity of Fourier’s ideas 
was only established later by the works of mathematicians such as Dirichlet, 
Riemann, and Lebesgue. Today we know that all functions that obey certain 
conditions (known as the Dirichlet conditions), even if they have discontin- 
uous derivatives or even if they are themselves discontinuous, have Fourier 
expansions. 

EXERCISES 

3.3.1 Consider functions f(t) defined on the interval -1 5 t 5 1 that are defined 
by finite weighted sums of the form XI, fit cos(dt), where k is an integer. 
What do all these functions have in common? What about weighted sums of 
sin@t)? 
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3.3.2 Show that any function f(t) defined on the interval -1 5 t < 1 can be written 
as the sum of an even function fe(t) (fe(--t) = fe(-t)) and an odd function 
(fo(-t) = -fo(-t)). 

3.3.3 Assume that all even functions can be represented as weighted sums of cosines 
as in the first exercise, and that all odd functions can be similarly rep- 
resented as weighted sums of sines. Explain how Fourier came to propose 
equation (3.3). 

3.3.4 How significant is the difference between a parabola and half a period of 
a sinusoid? To find out, approximate z(t) = cos(t) for -4 5 t 5 4 by 
y(t) = at2 + bt + c. Find the coefficients by requiring y(-t) = y(t), y(0) = 1 
and y(f ;) = 0. Plot the cosine and its approximation. What is the maximal 
error? The cosine has slope 1 at the ends of the interval; what is the slope 
of the approximation? In order to match the slope at t = &4 as well, we 
need more degrees of freedom, so we can try y(t) = at4 + bt2 + c. Find the 
coefficients and the maximum error. 

3.4 Representation by Fourier Series 

In this section we extend our discussion of the mathematics behind the 
Fourier series. We will not dwell upon formal issues such as conditions for 
convergence of the series. Rather, we have two related tasks to perform. 
First, we must convince ourselves that Fourier was right, that indeed any 
function (including nonsmooth ones) can be uniquely expanded in a Fourier 
Series (FS). This will demonstrate that the sinusoids, like the SUIs of Sec- 
tion 2.5, form a basis for the vector space of periodic signals with period T. 
The second task is a practical one. In Section 3.2 we posited a series and 
graphically determined the periodic signal it represented. Our second task 
is to find a way to do the converse operation-given the periodic signal to 
find the series. 

In Section 2.5 we saw that any digital signal could be expanded in the 
set of all SUIs. It was left as exercises there to show that the same is true 
for the analog domain, and in particular for periodic analog signals. The 
set of all shifted analog impulses (Dirac delta functions) s(t - T) forms a 
basis in which all analog signals may be expanded. Now, since we are dealing 
with periodic signals let us focus on the signal’s values in the time interval 
between time zero and time T. It is clear that it is sufficient to employ 
shifted impulses for times from zero to T to recreate any waveform in this 
time interval. 
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The desired proof of a similar claim for HRSs can rest on our showing 
that any shifted analog impulse in the required time interval can be built 
up from such sinusoids. Due to the HRS’s periodicity in T, the shifted im- 
pulse will automatically be replicated in time to become a periodic ‘impulse 
train’. Consequently the following algorithm finds the HRS expansion of any 
function of period T. 

focus on the interval of time from t=O to t=T 
expand the desired signal in this interval in shifted impulses 
for each impulse substitute its HRS expansion 
rearrange and sort the HRS terms 
consider this to be the desired expansion for all t 

All that remains is to figure out how to represent an impulse in terms 
of HRSs. In Section 3.2 we experimented with adding together an infinite 
number of HRSs, but always with amplitudes that decreased with increasing 
frequency. What would happen if we used all harmonics equally? 

bo + cos(t) + cos(2t) + cos(3t) + cos(4t) + . . . (3 4) . 

At time zero all the terms contribute unity and so the infinite sum diverges. 
At all other values the oscillations cancel themselves out. We demonstrate 
graphically in Figure 3.4 that this sum converges to an impulse centered 
at time zero. We could similarly make an impulse centered at any desired 
time by using combinations of sin and cos terms. This completes the demon- 
stration that any analog impulse centered in the basic period, and thus any 
periodic signal, can be expanded in the infinite set of HRSs. 

Figure 3.4: Building up an impulse from a cosine and its harmonics. 
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We are almost done. We have just shown that the HRSs span the vector 
space of periodic analog signals. In order for this set to be a basis the ex- 
pansions must be unique. The usual method of proving uniqueness involves 
showing that there are no extraneous signals in the set, i.e., by showing that 
the HRSs are linearly independent. Here, however, there is a short-cut; we 
can show that the HRSs comprise an orthonormal set, and we know from 
Appendix A.14 that all orthonormal sets are linearly independent. 

In Section 2.5 the dot product was shown to be a valid scalar multipli- 
cation operation for the vector space of analog signals. For periodic analog 
signals we needn’t integrate over all times, rather the product given by 

T 
r =x-y means r = 

s 
x(t) I@> dt 

0 

(where the integration can actually be performed over any whole period) 
should be as good. Actually it is strictly better since the product over all 
times of finite-valued periodic signals may be infinite, while the present 
product always finite. Now it will be useful to try out the dot product on 
sinusoids. 

We will need to know only a few definite integrals, all of which are 
derivable from equation A.34. First, the integral of any sinusoid over any 
number of whole periods gives zero 

iTsin dt=O (3 6) . 

since sin(-x) = - sin(x), and so for every positive contribution to the in- 
tegral there is an equal and opposite negative contribution. Second, the 
integral of sin* (or cos*) over a single period is 

iTsin ($t) dt = g 

which can be derived by realizing that symmetry dictates 

I = iTsin ($t) dt = lTcos2 (ft) dt 

and so 

W) 

21=iT (sin*($t)+cos*($t)) dt=lTldt=T 
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by identity (A.20). Somewhat harder to guess is the fact that the integral 
of the product of different harmonics is always zero, i.e. 

L*sin (Ft) cos (Ft) dt = 0 V72,m > 0 

lTsin (Fi!) sin (Ft) dt = $,mS 

iTcos (Ft) cos (Ft) dt = &,S 

(3 8) . 

the proof of which is left as an exercise. 
These relations tell us that the set of normalized signals {v~}~=~ defined 

bY 

vzrc+1@> = &OS(y) Vk>O 

?J2k@) = J$in(Tt) Vk>O 

forms an orthonormal set of signals. Since we have proven that any signal 
of period T can be expanded in these signals, they are an orthonormal set 
of signals that span the space of periodic signals, and so an orthonormal 
basis. The {vk} are precisely the HRSs to within unimportant multiplica- 
tive constants, and hence the HRSs are an orthogonal basis of the periodic 
signals. The Fourier series takes on a new meaning. It is the expansion of 
an arbitrary periodic signal in terms of the orthogonal basis of HRSs. 

We now return to our second task-given a periodic signal s(t), we now 
know there is an expansion: 

How do we find the expansion coefficients ck? This task is simple due to 
the basis {2/k) being orthonormal. From equation A.85 we know that for an 
orthonormal basis we need only to project the given signal onto each basis 
signal (using the dot product we defined above). 

s T 

i&=s’v= s(t) vk(t) dt 
0 
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This will give us the coefficients for the normalized basis. To return to the 
usual HRSs 

(3 9) . 

is not difficult. 

ak = $iTs(t)sin(Ft) dt 

1 T 
b(-J = - 

J 
s(t) dt 

bl, = i j&COS(~t) dt 

(3.10) 

This result is most fortunate; were the sinusoids not orthogonal, finding 
the appropriate coefficients would require solving ‘normal equations’ (see 
Appendix A.14). When there are a finite number N of basis functions, this 
is a set of N equations in N variables; if the basis is infinite we are not even 
able to write down the equations! 

These expressions for the FS coefficients might seem a bit abstract, so 
let’s see how they really work. First let’s start with a simple sinusoid s(t) = 

A sin(&) + B. The basic period is T = c and so the expansion can contain 
only sines and cosines with periods that divide this T. The DC term is, using 
equations (3.6) and (3.7), 

1 T 
bo = - J T o 

s(t) dt = iiT (Asin +B) dt= $B’T=l3 

as expected, while from equations (3.8) all other terms are zero except for 
one. 

al = GiTs(t)sin (Ft) dt 

= $iT(Asin($t)+B)sin($t)dt=$Ag=A 

This result doesn’t surprise us since the expansion of one of basis signals 
must be exactly that signal! 
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Slightly more interesting is the case of the square wave q (t/T). There 
will be no DC term nor any cosine terms, as can be seen by direct symmetry, 
To show this mathematically we can exploit a fact we have previously men- 
tioned, that the domain of integration can be over any whole period. In this 
case it is advantageous to use the interval from -T/2 to T/2. Since q (t/T) 
is an odd function, i.e., 0(-t/T) = - q (t/T), the contribution from the left 
half interval exactly cancels out the contribution of the right half interval. 
This is a manifestation of a general principle; odd functions have only sine 
terms, while even functions have only DC and cosine term contributions. 
The main contribution for q (t/T) will be from the sine of period T, with 
coefficient 

al = $- LTs(t)sin ($t) dt 

while the sine of double this frequency 

cannot contribute because of the odd problem once again. Therefore only 
odd harmonic sinusoids can appear, and for them 

uk = $ /)(t)sin (Ft) dt 

= ~~~sin(~~)~~-~~~sin(~~)~~ 

= 2$S,Tsin($5+~= -$ 

which is exactly equation (3.2). 

EXERCISES 

3.4.1 Our proof that the HRSs span the space of periodic signals required the HRSs 
to be able to reproduce all SUIs, while Figure 3.4 reproduced only an impulse 
centered at zero. Show how to generate arbitrary SUIs (use a trigonometric 
sum formula). 
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3.4.2 Observe the sidelobes in Figure 3.4. What should the constant term bc be 
for the sidelobes to oscillate around zero? In the figure each increase in the 
number of cosines seems to add another half cycle of oscillation. Research 
numerically the number and amplitude of these oscillations by plotting the 
sums of larger numbers of cosines. Do they ever disappear? 

3.4.3 Reproduce a graph similar to Figure 3.4 but using sines instead of cosines. 
Explain the results (remember that sine is an odd function). Why isn’t the 
result simply a shifted version of cosine case? 

3.4.4 Find the Fourier series coefficients for the following periodic signals. In order 
to check your results plot the original signal and the partial sums. 

1. Sum of two sines al sin(&) + iz2 sin(2Lctt) 

2. Triangular wave 

3. Fully rectified sine 1 sin(z)1 

4. Half wave rectified sine sin(z)u(sin(z)) 

3.4.5 We can consider the signal s(t) = Asin + B to be periodic with period 
T = k What is the expansion now? Is there really a difference? 

W’ 

3.4.6 For the two-dimensional plane consider the basis made up of unit vectors 
along the x axis Al = (1,O) and along the 45” diagonal A = (-&, -$). The 

unit vector of slope $ is Y = (5, -&). Find the coefficients of the expansion 
Y = cqAl + cx2A2 by projecting Y on both Al and A2 and solving the 
resulting equations. 

3.4.7 Find explicitly the normal equations for a set of basis signals 
estimate the computational complexity of solving these equations 

Al,(t) and 

3.5 Gibbs Phenomenon 

Albert Abraham Michelson was the first American to receive a Nobel prize 
in the sciences. He is justly famous for his measurement of the speed of 
light and for his part in the 1887 Michelson-Morley experiment that led to 
the birth of the special theory of relativity. He invented the interferometer 
which allows measurement of extremely small time differences by allowing 
two light waves to interfere with each other. What is perhaps less known is 
that just after the Michelson-Morley experiment he built a practical Fourier 
analysis device providing a sort of physical proof of Fourier’s mathematical 
claims regarding representation of periodic signals in terms of sinusoids. He 
was quite surprised when he found that the Fourier series for the square wave 
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n(t) didn’t converge very well. In fact there was significant ‘ringing’, both- 
ersome oscillations that wouldn’t go away with increasing number of terms. 
Unsure whether he had discovered a new mathematical phenomenon or sim- 
ply a bug in his analyzer he turned to the eminent American theoretical 
physicist of the time, Josiah Willard Gibbs. Gibbs realized that the problem 
was caused by discontinuities. Dirichlet had shown that the Fourier series 
converged to the midpoint at discontinuities, and that as long as there were 
a finite number of such discontinuities the series would globally converge; 
but no one had previously asked what happened near a discontinuity for a 
finite number of terms. In 1899 Gibbs published in Nature his explanation 
of what has become known as the Gibbs phenomenon. 

In Section 3.3 we mentioned the Dirichlet conditions for convergence of 
the Fourier series. 

Theorem: Dirichlet’s Convergence Conditions 
Given a periodic signal s(t), if 

1. s(t) is absolutely integratable, i.e., S Is(t)ldt < 00, where the integral 
is over one period, 

2. s(t) has at most a finite number of extrema, and 

3. s(t) has at most a finite number of finite discontinuities, 

then the Fourier series converges for every time. At discontinuities the series 
converges to the midpoint. n 

To rigorously prove Dirichlet’s theorem would take us too far afield so we 
will just give a taste of the mathematics one would need to employ. What is 
necessary is an analytical expression for the partial sums S&t) of the first 
K terms of the Fourier series. It is useful to define the following sum 

DK(t) = ; + cos(t) + cos(2t) + . . . + cos(Kt) = $ + 2 cos(kt) (3.11) 
k=l 

and to find for it an explicit expression by using trigonometric identities. 

&c(t) = 
sin ((K + ij)t) 

2sin($) 

It can then be shown that for any signal s(t) the partial sums equal 

(3.12) 

SK(t)= ~Js(~+T) DK ($7) dr (3.13) 
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Figure 3.5: Partial sums of the Fourier series of a periodic square wave signal O(t) for 
K = 0, 1,2,3,5 and 7. Note that although far from the discontinuity the series converges 
to the square wave, near it the overshoot remains. 

(the integration being over one period of duration T) from which Dirichlet’s 
convergence results emerge. 

Now you may believe, as everyone did before Gibbs, that Dirichlet’s 
theorem implies that amplitude of the oscillations around the true values 
decreases as we increase the number of terms in the series. This is the case 
except for the vicinity of a discontinuity, as can be seen in Figure 3.5. We 
see that close to a discontinuity the partial sums always overshoot their 
target, and that while the time from the discontinuity to the maximum 
overshoot decreases with increasing K, the overshoot amplitude does not 
decrease very much. This behavior does not contradict Dirichlet’s theorem 
since although points close to jump discontinuities may initially be affected 
by the overshoot, after enough terms have been summed the overshoot will 
pass them and the error will decay. 

For concreteness think of the square wave 0 (t). For positive times close 
to the discontinuity at t = 0 equation (3.13) can be approximated by 

SK(t) = 2 
7T 

sgn(t) Sine (47r.K 

as depicted in Figure 3.6. Sine is the sine integral. 

s 

t 

Sine(t) = sinc(-r) dr 
0 

Sine approaches 5 for large arguments, and thus SK(~) does approach unity 
for large K and/or t. The maximum amplitude of Sine occurs when its 
derivative (sine) is zero, i.e., when its argument is 7r. It is not hard to find 
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Figure 3.6: Gibbs phenomenon for the discontinuity of the square wave at t = 0. Plotted 
are the square wave, the partial sum with K = 3 terms, and the approximation using the 
sine integral. 

numerically that for large K this leads to an overshoot of approximately 
0.18, or a little less than 9% of the height of the jump. Also, the sine integral 
decays to its limiting value like i; hence with every doubling of distance from 
the discontinuity the amplitude of the oscillation is halved. We derived these 
results for the step function, but it is easy to see that they carry over to a 
general jump discontinuity. 

That’s what the mathematics says, but what does it mean? The os- 
cillations themselves are not surprising, this is the best way to smoothly 
approximate a signal-sometimes too high, sometimes too low. As long as 
these oscillations rapidly die out with increasing number of terms the ap- 
proximation can be considered good. What do we expect to happen near a 
discontinuity? The more rapid a change in the signal in the time domain is, 
the wider the bandwidth will be in the frequency domain. In fact the un- 
certainty theorem (to be discussed in Section 4.4) tells us that the required 
bandwidth is inversely proportional to the transition time. A discontinuous 
jump requires an infinite bandwidth and thus no combination of a finite 
number of frequencies, no matter how many frequencies are included, can 
do it justice. Of course the coefficients of the frequency components of the 
square wave do decrease very rapidly with increasing frequency. Hence by 
including more and more components, that is, by using higher and higher 
bandwidth, signal values closer and closer to the discontinuity, approach 
their proper values. However, when we approximate a discontinuity using 
bandwidth BW, within about l/BW of the discontinuity the approxima- 
tion cannot possibly approach the true signal. 
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We can now summarize the Gibbs phenomenon. Whenever a signal has 
a jump discontinuity its Fourier series converges at the jump time to the 
midpoint of the jump. The partial sums display oscillations before and after 
the jump, the number of cycles of oscillation being equal to the number 
of terms taken in the series. The size of the overshoot decreases somewhat 
with the number of terms, approaching about 9% of the size of the jump. 
The amplitude of the oscillations decreases as one moves away from the 
discontinuity, halving in amplitude with every doubling of distance. 

EXERCISES 

3.5.1 Numerically integrate sine(t) and plot Sine(t). Show that it approaches &$ 
for large absolute values. Find the maximum amplitude. Where does it occur? 
Verify that the asymptotic behavior of the amplitude is i. 

3.5.2 The following exercises are for the mathematically inclined. Prove equa- 
tion (3.12) by term-by-term multiplication of the sum in the definition of 
OK by sin (3) and using trigonometric identity (A.32). 

3.5.3 Prove equation (3.13) and show Dirichlet’s convergence results. 

3.5.4 Prove the approximation (3.14). 

3.5.5 Lanczos proposed suppressing the Gibbs phenomenon in the partial sum SK 
by multiplying the kth Fourier coefficient (except the DC) by sine ($) . Try 
this for the square wave. How much does it help? Why does it help? 

3.5.6 We concentrated on the Gibbs phenomenon for the square wave. How do 
we know that other periodic signals with discontinuities act similarly? (Hint: 
Consider the Fourier series for s(t) + au(t) w h ere s(t) is a continuous signal 
and a a constant.) 

3.6 Complex FS and Negative Frequencies 

The good news about the Fourier series as we have developed it is that its 
basis signals are the familiar sine and cosine functions. The bad news is 
that its basis signals are the familiar sine and cosine functions. The fact 
that there are two different kinds of basis functions, and that the DC term 
is somewhat special, makes the FS as we have presented it somewhat clumsy 
to use. Unfortunately, sines alone span only the subspace composed of all 
odd signals, while cosines alone span only the subspace of all even signals. 
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Signals which are neither odd nor even. truly require combinations of both 
Since the FS in equation (3.9) includes for every frequency both a sine and 
cosine function (which differ by 90” or a quarter cycle), it is said to be in 
quadrature form. 

The first signal space basis we studied, the SUI basis, required only one 
functional form. Is there a single set of sinusoidal signals, all of the same type, 
that forms a basis for the space of periodic signals? Well, for each frequency 
component w  the FS consists of the sum of two terms a cos(wt) + b sin@!). 
Such a sum produces a pure sinusoid of the same frequency, but with some 
phase offset d sin(wt + cp). In fact, it is easy to show that 

ak SiIl(Ut) + bl, COS(Ut) = dl, SiIl(Ut + ‘Pk) (3.15) 

as long as 

dk = J&Gj @ = taI+(bk, Q) (3.16) 

where the arctangent is the full four-quadrant function, and 

al, = dl, COS vk bk = dk Sin vk 

in the other direction. 
As a result we can expand periodic signals s(t) as 

s(t) = do i- 5 dksin 
k=. (3 + 4 

(3.17) 

(3.18) 

with both amplitudes and phases being parameters to be determined. 
The amplitude and phase form is intellectually more satisfying than the 

quadrature one. It represents every periodic signal in terms of harmonic 
frequency components, each with characteristic amplitude and phase. This is 
more comprehensible than representing a signal in terms of pairs of sinusoids 
in quadrature. Also, we are often only interested in the power spectrum, 
which is the amount of energy in each harmonic frequency. This is given by 
ldk12 with the phases ignored. 

There are drawbacks to the amplitude and phase representation. Chief 
among them are the lack of symmetry between dk and pk and the lack 
of simple formulas for these coefficients. In fact, the standard method to 
calculate dk and pk is to find ak and bk and use equations (3.16)! 

We therefore return to our original question: Is there a single set of 
sinusoidal signals, all of the same type, that forms a basis for the space of 
periodic signals and that can be calculated quickly and with resort to the 

quadrature representation? The answer turns out to be affirmative. 
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To find this new representation recall the connection between sinusoids 
and complex exponentials of equation (A.8). 

cos(wt) = f (&t + f+) 1 
sin(&) = 5 (eiwt - eeiwt) (3.19) 

We can think of the exponents with positive eiwt and negative e-jut expo- 
nents as a single type of exponential eiwt with positive and negative frequen- 
cies w. Using only such complex exponentials, although of both positive and 
negative frequencies, we can produce both the sine and cosine signals of the 
quadrature representation, and accordingly represent any periodic signal. 

s(t) = F j&&t eke T 
k=-co1 

We could once again derive the expression for the coefficients ck from those 
for the quadrature representation, but it is simple enough to derive them 
from scratch. We need to know only a single integral. 

J 

‘1 jalrnt 
eT e 

0 
-ivt ,jt = 6,,,T (3.21) 

This shows that the complex exponentials are orthogonal with respect to 
the dot product for complex signals 

J 
T 

Sl ‘S2 = Q(t) s;(q c&t 
0 

and that 

form a (complex) orthonormal set. From this it is easy to see that 

1 T 
Ck(t) = T J s(t) esiFt & 

0 

(3.22) 

(3.23) 

(3.24) 

with a minus sign appearing in the exponent. Thus Fourier’s theorem can be 
stated in a new form: All periodic functions (which obey certain conditions) 
can be written as weighted sums of complex exponentials. 

The complex exponential form of the FS is mathematically the simplest 
possible. There is only one type of function, one kind of coefficient, and 
there is strong symmetry between equations (3.20) and (3.24) that makes 
them easier to remember. The price to pay has been the introduction of 
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mysterious negative frequencies. What do we mean by -100 Hz? How can 
something cycle minus 100 times per second? 

Physically, negative frequency signals are almost identical to their posi- 
tive counterparts, since only the real part of a complex signal counts. Recall 
the pen-flashlight experiment that you were requested to perform in exer- 
cise 2.2.6. The complex exponential corresponds to observing the flashlight 
head-on, while the real sinusoid is observing it from the side. Rotation of 
the light in clockwise or counterclockwise (corresponding to positive or neg- 
ative frequencies) produces the same effect on an observer who perceives 
just the vertical (real) component; only an observer with a full view notices 
the difference. However, it would be foolhardy to conclude that negative 
frequencies are of no importance; when more than one signal is present the 
relative phases are crucial. 

We conclude this section with the 
ponential FS-that of a real sinusoid, 
of course T, and 

2Tr 
A cos( +) tci+ dt = 

computation of a simple complex ex- 
Let s(t) = Acos( %$t). The period is 

-iZ$lt 
> 

,-iZZ!$t dt 

which after using the orthogonality relation (3.21) leaves two terms. 

ck = & &,-I + $ bk,+l 

This is exactly what we expected considering equation (3.19). Had we chosen 
s(t) = Asin we would have still found two terms with identical k and 
amplitudes but with phases shifted by 90”. This is hardly surprising; indeed 
it is easy to see that all s(t) = A cos(yt + cp) will have the same FS except 
for phase shifts of cp. Such constant phase shifts are meaningless, there being 
no meaning to absolute phase, only to changes in phase. 

EXERCISES 

3.6.1 Plot sin(z) + sin(2a: + ‘p) with cp = 0, 5, T, %. What can you say about the 
effect of phase? Change the phases in the Fourier series for a square wave. 
What signals can you make? 

3.6.2 Derive all the relations between coefficients of the quadrature, amplitude and 
phase, and complex exponential representations. In other words, show how 
to obtain cLk and bl, from ck and vice versa; c&k and bk from dk and vice versa; 
ck from dk and vice versa. In your proofs use only trigonometric identities 
and equation (A.7). 
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3.6.3 Prove equation (3.21). 

3.6.4 Calculate the complex exponential FS of s(t) = Asin( yt). How does it 
differ from that of the cosine? 

3.6.5 Consistency requires that substituting equation (3.20) for the FS into equa- 
tion (3.24) for ck should bring us to an identity. Show this using (3.21). What 
new expression for the delta function is implied by the reverse consistency 
argument? 

3.6.6 What transformations can be performed on a signal without effecting its 
power spectrum Ick 1 . 27 What is the physical meaning of such transformations? 

3.7 Properties of Fourier Series 

In this section we continue our study of Fourier series. We will exclusively 
use the complex exponential representation of the FS since it is simplest, 
and in any case we can always convert to other representations if the need 
arises. 

The first property, which is obvious from the expression for ck, is linearity. 
Assume sr (t) has FS coefficients ck and sz (t) has coefficients cg , then s(t) = 
As&) + &z(t) has as its coefficients ck = AC: + Bci. This property is often 
useful in simplifying calculations, and indeed we already implicitly used it in 
our calculation of the FS of cos(wt) = $eiwt + $esiwt. As a further example, 
suppose that we need to find the FS of a constant (DC) term plus a sinusoid. 
We can immediately conclude that there will be exactly three nonzero cI, 
terms, c-l, CO, and c+i. 

In addition to its being used as a purely computational ploy, the linearity 
of ck has theoretic significance. The world would be a completely different 
place were the FS not to be linear. Were the FS of As(t) not to be Ack then 
simple amplification would change the observed harmonic content of a signal. 
Linear operators have various other desirable features. For example, small 
changes to the input of a linear operator can only cause bounded changes to 
the output. In our case this means that were one to slightly perturb a signal 
with known FS, there is a limit to how much ck can change. 

The next property of interest is the effect of time shifts on the FS. By 
time shift we mean replacing t by t - 7, which is equivalent to resetting our 
clock to read zero at time r. Since the time we start our clock is arbitrary 
such time shifts cannot alter any physical aspects of the signal being studied. 
Once again going back to the expression for cI, we find that the FS of s(t - 7) 
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l 2rk 
is e-l- T ck. The coefficients magnitudes are unchanged, but the phases have 
been linearly shifted. As we know from exercise 3.6.6 such phase shifts do 
not change the power spectrum but still may be significant. We see here that 
phase shifts that are linear in frequency correspond to time shifts. 

When a transformation leaves a signal unchanged or changes it in some 
simple way we call that transformation a symmetry. Time shift is one inter- 
esting symmetry, and another is time reversal Rev s. Although the import 
of the latter is less compelling than the former many physical operations are 
unchanged by time reversal. It is not difficult to show that the effect of time 
reversal is to reverse the FS to c-k. 

The next property of importance was discovered by Parseval and tells 
us how the energy can be recovered from the FS coefficients. 

E 
1 - T oT ls@)12 dt = 2 lck12 -- 

s 
(3.25) 

k=-co 

What does Parseval’s relation mean? The left hand side is the power com- 
puted over a single period of the periodic signal. The power of the sum of two 
signals equals the sum of the powers if and only if the signals are orthogonal. 

1 
-IT lx(t) + y(t)12dt = 1 
T 0 

T LT (x(t) + !#I)* (x(t) + y(t)) dt 

1 - - T SOT bW12 + lYW12 + m (x*~t)Yw) dt 

Since any two different sinusoids are uncorrelated, their powers add, and 
this can be generalized to the sum of any number of sinusoids. So Parseval’s 
relation is another consequence of the fact that sinusoids are orthogonal. 

For complex valued signals s(t) there is a relation between the FS of 
the signal and that of its complex conjugate s*(t). The FS of the complex 
conjugate is c:k. For real signals this implies a symmetry of ck (i.e., c-k = 
cz), which means Ic-k I = lckl and %(c-k) = %(ck) but $(c-k) = -g(ck). 

There are many more symmetries and relations that can be derived for 
the FS, e.g., the relationship between the FS of a signal and those of its 
derivative and integral. There is also an important rule for the FS of the 
product of two signals, which the reader is not yet ready to digest. 

EXERCISES 

3.7.1 Show that adding to the argument of a sinusoid a phase that varies linearly 
with time shifts its frequency by a constant. Relate this to the time shift 
property of the FS. 
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3.7.2 Plot the sum of several sinusoids with various phases. Demonstrate that a 
linear phase shift causes a time shift. Can you tell that all these signals have 
the same power spectrum? 

3.7.3 How does change of time scale s(CYt) affect ck? Prove that the effect of time 
reversal is to reverse the FS. 

3.7.4 Derive Parseval’s relation for the FS. 

3.7.5 Show that if a signal is symmetric(antisymmetric), i.e., if s(t + 5) = &s(t), 
then its FS contains only even (odd) harmonics. 

3.7.6 The FS of s is ck; what is the FS of its derivative? Its integral? 

3.8 The Fourier Series of Rectangular Wave 

Since we have decided to use the complex exponential representation almost 
exclusively, we really should try it out. First, we want to introduce a slightly 
different notation. When we are dealing with several signals at a time, say 
a(t>, r(t), and s(t), using ck for the FS coefficients of all of them, would be 
confusing to say the least. Since the Fourier coefficients contain exactly the 
same information as the periodic signal, using the name of the signal, as in 
qk, rk, or Sk, would be justified. There won’t be any confusion since s(t) is 
continuous and SI, is discrete; however, later we will deal with continuous 
spectra where it wouldn’t be clear. So most people prefer to capitalize the 
Fourier coefficients, i.e., to use Qk, &, and SK, in order to emphasize the 
distinction between time and frequency domains. Hence from now on we 
shall use 

1 
Sk = - 

T s 
-iyt & (3.26) 

(with the integration over any full period) to go from a signal s(t) to its FS 

{sk}g-,, and 
00 

so 
- - 

>: Se k 
iZZ+kt 

(3.27) 
k=-oo 

to get back again. 
Now to work. We have already derived the FS of a square wave, at least 

in the quadrature representation. Here we wish to extend this result to the 
slightly more general case of a rectangular wave, i.e., a periodic signal that 
does not necessarily spend half of its time at each level. The fraction of time 
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Figure 3.7: The rectangular signal with amplitude A, period T, and duty cycle S = $. 

a rectangular wave spends in the higher of its levels is called its duty cycle 
6 = $!, and a rectangular wave with 6 = $ duty cycle is a square wave. 
We also wish to make the amplitude and period explicit, and to have the 
signal more symmetric in the time domain; we accordingly introduce A, T, 
and d = ST, and require the signal to be high from -$ to $. Unlike the 
square wave, a non-50% duty cycle rectangular signal will always have a DC 
component. There is consequently no reason for keeping the levels symmetric 
around zero, and we will use 0 and A rather than &A. 

Thus we will study 

1 Ifrac( +)I < $ 
s(t) = A 0 

1 

$ < Ifrac($)l < T - 4 (3.28) 
1 T- 4 < Ifrac($)l < T 

(where frac(z) is the fractional part of x) as depicted in Figure 3.7. 
The period is T and therefore the angular frequencies in the Fourier series 

will all be of the form wk = T . a/c We can choose the interval of integration 
in equation (3.24) as we desire, as long as it encompasses a complete period. 
The most symmetric choice here is from -5 to 5, since the signal then 
becomes simply 

4) - - A 

and as a consequence 
i 

1 I<+>1 < $ 
0 else 

(3.29) 

1 
T 

0 T 
r3jc = - 

T s 
T s(t) Ciyt dt 

-- 
2 

A 

-1 

d 
2 

- - 

T 
+)kt & 

d -- 
2 
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which after change of variable and use of equation (A.8) becomes 

sin( %$) 
sk=A d 

2 

= Asinc (y) = Asinc (T) = Asinc(nlc6) (3.30) 

where we have recognized our old friend sine. The FS is dependent only on 
the duty cycle, not directly on T. Of course this does not mean that the 
Fourier series is not dependent on T! The coefficient Sk multiplies the term 
containing wk = q, and consequently the distribution on the frequency 
axis indeed changes. Taking into account this meaning of Sk we see that the 
spectral envelope is influenced by the pulse width but not the period. 

The main lobe of the sine function is between -7r and 7r, which here 
means between Sic = -1 and Sk 
WI, = y = fj+, 

= 1. Hence most of the energy is between 
or otherwise stated, the frequency spread is Aw = 3. 

The minimum spacing between two points in time that represent the same 
point on the periodic signal is obviously At = T. The relationship between 
the time and frequency spreads can therefore be expressed as 

4n 
AwAt = T (3.31) 

which is called the ‘time-frequency uncertainty product’. The effect of vary- 
ing the duty cycle S at constant period T is demonstrated in Figure 3.8. As 
6 is decreased the width of the spectrum increases (i.e., the spectral am- 
plitudes become more constant) until finally at zero duty cycle (the signal 
being a periodic train of impulses) all the amplitudes are equal. If the duty 
cycle is increased to one (the signal becoming a constant s(t) = A), only the 
DC component remains nonzero. 

What happens when the period T is increased, with 6 constant? We 
know that the wider the spacing in the time domain, the narrower the 
spacing of the frequency components will be. The constancy of the time- 
frequency uncertainty product tells us that the extent of the sine function 
on the frequency axis doesn’t change, just the frequency resolution. This is 
demonstrated in Figure 3.9. 

These characteristics of the FS of a rectangular wave are important in 
the design of pulse radar systems. We will discuss radar in more detail in 
Section 5.3, for now it is sufficient to assume the following simplistic model. 
The radar transmits a periodic train of short duration pulses, the period of 
which is called the Pulse Repetition Interval (PRI); the reciprocal of the 
PRI is called the Pulse Repetition Frequency (PRF). 

This transmitted radar signal is reflected by a target and received back 
at the radar at this same PRI but offset by the round-trip time. Dividing 
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Figure 3.8: The effect of changing the duty cycle at constant period. In these figures 
we see on the left a periodic rectangular signal, and on the right the absolute squares of 
its FS amplitudes represented as vertical bars placed at the appropriate frequencies. (A) 
represents a duty cycle of 20%, (B) 40%, (C) 60?’ o and (D) 80%. Note that when the duty 
cycle vanishes all amplitudes become equal, while when the signal becomes a constant, 
only the DC term remains. 

the time offset by two and multiplying by the speed of radar waves (the 
speed of light c) we obtain the distance from radar to target. The round-trip 
time should be kept lower than the PRI; and echo returning after precisely 
the PRI is not received since the radar receiver is ‘blanked’ during trans- 
mission; if the round-trip time exceeds the PRI we get aliasing, just as 
in sampling analog signals. Hence we generally strive to use long PRIs so 
that the distance to even remote targets can be unambiguously determined. 
More sophisticated radars vary the PRI from pulse to pulse in order to dis- 
ambiguate the range while keeping the echo from returning precisely when 
the next pulse is to be transmitted. 

Due to the Doppler effect, the PRF of the reflection from target moving 
at velocity w  is shifted from its nominal value. 

APRF = PRF ; (3.32) 

An approaching target is observed with PRF higher than that transmitted, 
while a receding target has a lower PRF. The PRF is conveniently found 
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effect of changing the period at constant duty cycle. In these figures we 
see on the left a periodic rectangular signal, and on the right the absolute squares of its 
FS amplitudes represented as vertical bars placed at the appropriate frequencies. As we 
progress from (A) through (D) the period is halved each time. Note that as the period is 
decreased with constant pulse width the frequency resolution decreases but the underlying 
sine is unchanged. 

using Fourier analysis techniques, with precise frequency determination fa- 
voring high PRF. Since the requirements of unambiguous range (high PRI) 
and precise velocity (high PRF) are mutually incompatible, simple pulse 
radars can not provide both simultaneously. 

The radar signal is roughly a low duty cycle rectangular wave, and so its 
FS is approximately that of Figures 3.8 and 3.9. In order to maximize the 
probability of detecting the echo, we endeavor to transmit as much energy 
as possible, and thus desire wider pulses and higher duty cycles. Higher duty 
cycles entail both longer receiver blanking times and narrower sine functions 
in the frequency domain. The former problem is easily understood but the 
latter may be more damaging. In the presence of interfering signals, such as 
reflections from ‘clutter’, intentional jamming, and coincidental use of the 
same spectral region by other services, the loss of significant spectral lines 
results in reduced target detection capability. 
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EXERCISES 

3.8.1 Show how to regain the Fourier series of the square wave (equation (3.2)), 
from (3.30) by taking a 50% duty cycle. 

3.8.2 We assumed that A in equation (3.28) was constant, independent of T and 
d. Alternative choices are also of interest. One could demand that the basic 
rectangle be of unit area A = $, or of unit energy A = -&, or that the power 

(energy per time) be unity A = &. X- Explain the effect of the different choices 
on the signal and its FS when 6 and 2” are varied. 

3.8.3 Show that the FS of a train of impulses s(t) = c J(t - IcT) is a train of 
impulses in the frequency domain. How does this relate to the calculations 
of this section? To which choice of A does this correspond? 

3.8.4 One technique that radar designers use to disambiguate longer ranges is PRI 
staggering. Staggering involves alternating between several PRIs. How does 
staggering help disambiguate? How should the PRIs be chosen to maximize 
the range? (Hint: Use the Chinese remainder theorem.) 

3.8.5 What is the FS of a rectangular wave with stagger two (i.e., alternation 
between two periods Tl and Z”z)? 

Bibliographical Notes 

For historical background to the development of the concept of frequency consult 
[223]. Newton’s account of the breaking up of white light into a spectrum of colors 
can be read in his book Opticks [179]. For more information on the colorful life 
of Fourier consult [83]. Incidentally, Marc Antoine Parseval was a royalist, who 
had to flee France for a while to avoid arrest by Napoleon. Lord Rayleigh, in his 
influential 1877 book on the theory of sound (started interestingly enough on a 
vacation to Egypt where Fourier lived eighty years earlier), was perhaps the first 
to call the trigonometric series by the name ‘Fourier series’. Gibbs’ presentation of 
his phenomenon is [74]. 

There are many books devoted entirely to Fourier series and transforms. To get 
more practice in the mechanics of Fourier analysis try [104]. In-depth discussion 
of the Dirichlet conditions can be found in the mathematical literature on Fourier 
analysis. 


