
The Frequency Domain 

The concept of frequency is clearest for simple sinusoids, but we saw in the 
previous chapter that it can be useful for nonsinusoidal periodic signals as 
well. The Fourier series is a useful tool for description of arbitrary periodic 
signals, describing them in terms of a spectrum of sinusoids, the frequencies 
of which are multiples of a basic frequency. 

It is not immediately obvious that the concepts of spectrum and fre- 
quency can be generalized to nonperiodic signals. After all, frequency is only 
meaningful if something is periodic! Surprisingly, the concept of spectrum 
turns out to be quite robust; for nonperiodic signals we simply need a con- 
tinuum of frequencies rather than harmonically related ones. Thus analog 
signals can be viewed either as continuous functions of time or as continuous 
functions of frequency. This leads to a pleasingly symmetric view, whereby 
the signal can be described in the time domain or the frequency domain. 

The mathematical tool for transforming an analog signal from its time 
domain representation to the frequency domain, or vice versa, is called the 
Fourier transform (FT). The name hints at the fact that it is closely related 
to the Fourier series that we have already discussed. For digital signals we 
have close relatives, namely the discrete Fourier transform (DFT) and the z 
transform (zT). In this chapter we introduce all of these, review their prop- 
erties, and compute them for a few example signals. We also introduce a 
non-Fourier concept of frequency, the instantaneous frequency. The FS, FT, 
DFT, zT, and instantaneous frequency, each in its own domain of applica- 
bility, is in some sense the proper definition of frequency. 

4.1 From Fourier Series to Fourier Transform 

In the previous chapter we learned that the set of harmonically related sinu- 
soids or complex exponentials form a basis for the vector space of periodic 
signals. We now wish to extend this result to the vector space of all analog 
signals. The expansion in this basis is the Fourier transform. 
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Looking back at the steps in proving the existence of the Fourier series we 
see that the periodicity of the signals was not really crucial; in fact the whole 
periodicity constraint was quite a nuisance! The SUIs form a basis for all 
signals, whether periodic or not. It was only when we introduced the HRSs, 
sums of which are necessarily periodic, that we had to restrict ourselves to 
representing periodic signals. It would seem that had we allowed arbitrary 
frequency sinusoids we would have been able to represent any signal, and 
indeed this is the case. In fact it would have been just as easy for us to have 
directly derived the Fourier transform without the annoyance of the Fourier 
series; however this would have involved a grave break with mathematical 
tradition that mandates deriving the Fourier transform from the Fourier 
series. 

The basic idea behind this latter derivation is inherent in the FS derived 
in Section 3.8. There we saw how increasing the period of the signal to be 
analyzed required decreasing the fundamental frequency of the HRSs. It is 
a general result that the longer the time duration that we must accurately 
reproduce, the more frequency resolution is required to do so. Now let us 
imagine the period going to infinity, so that the signal effectively is no longer 
periodic. If you find this infinity troublesome just imagine a period longer 
than the time during which you are willing to wait for the signal to repeat. 
The required frequency resolution will then become infinitesimal, and at ev- 
ery step of the way the corresponding HRSs form a basis for the signals with 
this large period. In the limit of aperiodic signals and continuous spectrum 
we discover that the set of all sinusoids forms a basis for the entire vector 
space of signals. Of course, for our basis signals we can choose to use si- 
nusoids in quadrature sin(&) and cos(wt), sinusoids with arbitrary phases 
sin(wt + cp), or complex exponentials e id with both positive and negative 
frequencies. 

We have neglected an essential technical detail-as long as the funda- 
mental frequency is small, but still finite, there are a denumerably infinite 
number of basis signals, and so the dimension of the space is No and ex- 
pansions of arbitrary signals are infinite sums. Once the spectrum becomes 
continuous, there are a nondenumerable infinity of basis functions, and we 
must replace the infinite sums with integrals. The set of ‘coefficients’ Sk 
becomes a single continuous function of frequency S(w). 

The result is an expression for a signal as an integral over all time of a 
function of frequency times a complex exponential. 

-ii.& & (4 1) . 
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This function of frequency is called the Fourier transform (FT). As we shall 
show, you may think of it as the spectrum of a nonperiodic signal. The ex- 
tension of Fourier’s theorem now states that every (not necessarily periodic) 
function (that obeys certain conditions) can be written as the integral over 
complex exponentials. The conditions for the convergence of the Fourier 
transform are almost the same as Dirichlet’s conditions for the Fourier se- 
ries; just remember to increase the region of integration to all times and 
insist on at most a finite number of extrema and discontinuities in any finite 
amount of time. 

Paradoxically, while in normal speech to transform usually means to 
change the form of a quantity without changing its meaning, in mathemat- 
ics a transform is a changing of meaning that does not alter the form. The 
Fourier transform changes the meaning from time to frequency domain, but 
the form remains a continuous function. The Fourier series is not a transform 
since it changes a continuous function into an infinite-dimensional vector of 
coefficients. We will see later that the discrete Fourier transform translates 
infinite-dimensional vectors into infinite-dimensional vectors. Specifically, in- 
tegral transforms, like the FT, are representations of continuous functions 
as 

F(w) = J 
where K is called the kernel of the 

When dealing with transforms 
write S(w) = FT (s(Q) and 

f(t) w, 4 dt 
transform. 
we often use operator notation, i.e., we 

S(w) = FT (s(t)) = LOO s(t) emiwt dt 
=-(-JQ (4 2) . 

and think of FT as an operator that transforms the time domain represen- 
tation of a signal into the frequency domain representation. 

As was the case for periodic signals, the spectrum contains all possible 
information about the signal, and therefore the signal can be reconstructed 
from the spectrum alone. Consequently, we can define the inverse Fourier 
transform (iFT), s(t) = FT-l (S(w)) where FT-l is the inverse operator. 

s(t) = FT-l (S(W)) = $ Im S(w) eiwt dw 
w=-00 

(4 3) . 

The form of the iFT is almost identical to that of the transform itself, but 
it integrates out the frequency variable leaving the time variable. The only 
differences are the normalization constant (more about that shortly) and 
the sign of the exponent. 
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The inverse operator obeys FT-lFT = 1 where 1 is the identity operator 
that leaves every signal completely unchanged 

s(t) = FT-1 (S(U)) = FT-1 FT (Q)) (44 

an identity sometimes called the Fourier Integral Theorem. The two rep- 
resentations related by the FT and FT-l operators are called a Fourier 
transform pair. They are both functions of a single continuous variable and 
contain exactly the same information about the signal, but in different forms. 
The function s(t) is the time domain representation of the signal, while S(w) 
is its frequency domain representation. 

Let’s prove equation (4.4). 

FT-l FT (s(t)) = & I:- S(++Qu 
w- cm 

= 

s 
00 = s(t’) J& J T- eeiwt’eiwt & &’ t’=-00 w- 00 

= s O” s(t’)S(t - t’) dt’ = s(t) 
t/=-m 

We now see why the exponents have different signs-it’s required to get the 
needed delta function. Incidentally, we see that instead of the normalization 
constant & in the iFT we could have used any constants in both FT and -.. 
iFT whose product is $. For instance, physicists usually 
symmetric pair 

S(W) = FT (s(t)) = $= S_m_ s(t) emiwt dt 

s(t) = FT-1 (S(w)) = g/“1 

03 

S(w) eiWt dw 
7r w --oo 

define a more 

(4.5) 

but any other combination could be used as well. The DSP convention of 
putting the constant only in the definition of the inverse transform becomes 
more symmetric when using the frequency f in Hz (cycles per second) rather 
than the angular frequency w in radians per second. 

S(f) = I” s(t)e-2”iftdt 

s(t) = s fT- S(f)e2”iftdf 
-cxI 

(4.6) 
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We have shown that the FT indeed delivers a function of frequency that 
contains all the information in the signal itself. What we haven’t shown is 
its relationship to the concept of frequency spectrum as we understand it. 
The true spectrum should be prominent at frequencies that are provably 
significant components of the signal, and should be zero at frequencies not 
corresponding to any physical aspect of the signal. We could show this di- 
rectly, starting with a single sinusoid such as s(t) = Acos(w’t) and showing 
that it is 

S(w) = FT (A cos(w’t)) = Jm A cos(w’t)eviwtdt 
t=-ocl 

= Arem + (eiw’t + ,-iw’t) +dtdt 

A 
ccl 

= - 
2 (I O” ,idt ewiwtdt + 

J 
e-iw’te-iwtdt 

t=-co t=-CQ > 
A O” = - 
2 (I e -i(w-d)tdt + 

J 

00 
e -i(w+d)tdt 

t=-00 t=-co > 

= 27r + (q&J - w’) + qw + w’,) 

and accordingly has only components at fw’ as expected. Then we would 
have to invoke the linearity of the FT and claim that for all combinations 
of sinusoids 

K 

c AI, co+“kt) 
k=O 

the FT has discrete lines of precisely the expected relative weights. Next we 
would have to consider the continuous spectra of nonperiodic signals and 
show that the FT captures the meaning we anticipate. Finally, we would 
need to show that the FT is zero for unwanted frequencies. This could con- 
ceivably involve forcibly notching out frequencies from an arbitrary signal, 
and observing the FT at these frequencies to be zero. 

This prescription is perhaps overly ambitious for us at this point, and in 
any case there is a shrewd way out. All we really need do is to show that the 
FT is the proper generalization of the FS for possibly nonperiodic signals. 
This will ensure that all well-known properties of FS spectra will survive in 
the FT, and all new properties of the FT will be taken to be the definition 
of what the true spectrum should be. 
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We start from slightly modified versions of equations (3.26) and (3.27) 
for the FS of a periodic signal s(t) with period T 

1 
Sk = T T s(t)e 

J 

5 -iZ$.kt 
-- 

2 

00 

s(t) 
- - 

xl 
Se k 

iZ$kt 

k=-oo 

and define w E F. We can now think of the FS as SW instead of Sk; of 
course the indices are no longer integers, but there still are a denumerable 
number of them. They are uniformly spaced with Aw = F between them, 
and they still run from minus infinity to plus infinity. 

S 
Aw 

J 

T 
w=- T 27r we 

-iwtdt 
-- 

2 

00 

s(t) 
- - 

c SWe 
iwt 

w=-00 
We next envision increasing the period 2’ without limit T + 00. As we have 
already discussed, the frequency spacing A will become smaller and smaller 
A + 0, until the sequence {Sw}~~~oo becomes a continuous function S(w). 
Unfortunately, this definition of S(w) is unsatisfactory. Looking back at the 
equation for SW we see that it is proportional to Aw. Assuming the integral 
approaches a finite value, SW will vanish as Aw + 0. However, the ratio .$& 
will remain finite in this limit, and has the pleasing interpretation of being 
the density of Fourier components per unit frequency. 

We therefore propose defining S(w) E &, in terms of which 

SC > 
1 w =- 

27r s 

% -iwtdt 
T we 

-- 

@> = 5 i(w)eiwtAw 
w=-00 

In the limit T + 00 and Aw + 0 several things happen. The integral 
over t now runs from -oo to +oo. The finite difference Aw becomes the 
infinitesimal dw. The sum over the discrete w index in the formula for s(t) 
will of course become an integral over the continuous w variable. Substitution 
of these brings us to 

s( > 
1 00 

w =- 
27r J me 

-iwtdt 
-00 

s(t) - - J 00 S(w)eiwtdw 
-00 
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which is the FT in an unusual but legitimate normalization scheme. Of 
course had we defined S(w) E 27~. & we would have obtained exactly (4.2) 
and (4.3), and S(w) E & & would have produced the physicist’s (4.5). 

In Section 3.4 we interpreted the FS as the expansion of a periodic signal 
in the basis of sines and cosines. We have just derived the FT by a limiting 
process starting from the FS, so it is not surprising that we can interpret 
the FT as the expansion a nonperiodic signal in a basis. Due to the nonde- 
numerably infinite amount of information in a general nonperiodic signal, it 
is not surprising that we need a nondenumerable number of basis functions, 
and that the sum in the expansion becomes an integral. 

Reiterating what we have accomplished, we have shown that the FT as 
we have defined it is the natural generalization to nonperiodic signals of 
Fourier’s expansion of periodic signals into sinusoids. The function S(w) has 
a meaningful interpretation as the Fourier spectral density, so that S(w)& 
is the proper extension of the FS component. The FT is therefore seen to 
truly be the best definition of spectrum (so far). 

EXERCISES 

4.1.1 Prove the opposite direction of (4.4), namely 

S(w) = FTFT-1 (S(w)) 

4.1.2 Find the FT of A sin(w’t). How is it different from that of Acos(w’T)? 

4.1.3 Find the FT of the rectangular wave of Section 3.8. How does it relate to the 
FS found there? Find the FT of a single rectangle. How does it relate to that 
of the first part? 

4.1.4 Write a routine that computes the value of the FT of a real signal s(t) at 
frequency f = $. The signal is nonzero only between times t = 0 and t = T, 
and is assumed to be reasonably well behaved. You should use numerical 
Riemann integration with the time resolution At variable. 

4.1.5 Generate a signal composed of a constant plus a small number of unrelated 
sinusoids. Using the routines developed in the previous exercise, plot the real 
and imaginary parts of its FT for a frequency band containing all frequencies 
of interest. Vary the time resolution, How is the accuracy affected? Vary the 
frequency resolution. Are the frequencies of the sinusoids exact or is there 
some width to the lines? Is this width influenced by the time resolution? How 
much time is needed to compute the entire FT (as a function of time and 
frequency resolution)? 
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4.2 Fourier Transform Examples 

The time has come to tackle a few examples of FT calculation. Although it 
is instructive to go through the mechanics of integration a few times, that is 
not our only motivation. We have selected examples that will be truly useful 
in our later studies. 

The simplest signal to try is a constant signal s(t) = 1, and for this 
signal we almost know the answer as well! There can only be a DC (zero 
frequency) component, but how much DC is there? The integral in (4.2) is 

S(w) = /OO eWiwtdt = /OO (cos wt - isin wt) dt 
t=-00 t=-w (4 7) . 

(we simply replaced s(t) by 1). Now we are stuck, since the required definite 
integrals don’t appear in any table of integrals. We can’t do the indefi- 
nite integral and substitute the values at the endpoints, since sin(foo) and 
cos(foo) don’t approach a constant value; and don’t confuse this integral 
with equation (3.21) for m = 1, since the integral is over the entire t axis. 
Whenever we’re stuck like this, it is best to think about what the integral 
means. When w = 0 we are trying to integrate unity over the entire t axis, 
which obviously diverges. For all other w we are integrating sinusoids over 
all time. Over full periods sinusoids are positive just as much as they are 
negative, and assuming infinity can be considered to be a whole number of 
periods, the integral should be zero. We have thus deduced a delta function 
to within a constant S(w) = 76(w). To find y we need to integrate over w. 
We know from (4.4) that 

1 
- lw S(w)dw 
27r -W 

= FT-1 (S(w)) = s(t) = 1 

from which we conclude that y = 2n. 
Let’s try the other way around. What is the transform of an analog 

impulse s(t) = 6(t)? Well it’s just 

FT (s(t)) = lw 6(t)eeiwtdt = e” = 1 
=- 00 

using property (A.69) of the delta function. So it works the other way as 
well-the transform of a delta is a constant. With only minimal additional 
effort we can find the transform of an impulse at any nonzero time r. In this 
case we pick out the exponential at some other time 

FT (6(t - Qt - de 
-&t& = ,-&T (4 81 . 
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which is a complex exponential in the frequency domain. The interpretation 
of this sinusoid is slightly different from the usual. Remember that here r is 
a constant that we are given and w is the variable. The sinusoidal behavior 
is as a function of frequency, and the higher r is, the more compressed 
the oscillation becomes. So T plays the role of frequency here, which is not 
surprising due to the dual nature of time and frequency. 

Conversely, a non-DC complex exponential s(t) = P has the transform 

FT (s(t)) = lrn ei%-iwtdt = drn ,i(n-w)tdt = 27r6(w - R) (4.9) 
z-w =- 00 

(we could interchange the omegas since the delta function is symmetric). 
Thus the complex exponential corresponds to a single frequency line, as 
expected. 

What about a real sinusoid sin@) or cos(Stt)? Using the linearity of the 
FT and the expressions (A.8) we can immediately conclude that sine and 
cosine consist of two delta functions in the frequency domain. One delta is 
at +a and the other at -0. 

FT (sin(wt)) = z (b(w - St) - S(w + 0)) 
i 

FT (cos(wt)) = n- (6(w - 0) + S(w + R,) (4.10) 

The absolute value of the spectrum is symmetric, as it must be for real 
functions, but sine and cosine differ in the relative phase of the deltas. 

The FT decaying exponential can also be useful to know. It is simply 

FT (e-%(t)) = & 
1 

(4.11) 

and actually the same transform holds for complex A, as long as the real 
part of X is positive. 

Up to now we have treated rather smooth signals and impossibly singular 
ones (the delta). We will also need to investigate archetypical jump discon- 
tinuities, the sgn and step functions. Since sgn is odd, sgn(-t) = -sgn(t), 
we can immediately deduce that the zero frequency component of sgn’s FT 
must be zero. The zero frequency component of u(t) is obviously infinite 
and so we know that u(w) must have a M(w) component. The value of AJ 
can be determined from the fact that u(-t) + u(t) = 1 and from linearity 
FT(u(-t)) + FT(u(t)) = FT(l) = 2nS(w); so the DC component is simply 
7rS(w). 

Trying to find the nonzero frequency components of either sgn or u(t) 
we stumble upon one of those impossible integrals, like (4.7). For large w it 
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should go to zero since the integral over an even number of cycles of sinusoids 
is zero; but for smaller w there is the issue of the end effects. We will be able 
to prove later that the spectrum decays as $, i.e., every time we double the 
frequency the amplitude drops to half its previous value. When displaying 
the spectrum on a logarithmic scale this translates to a linear drop of 6 dB 
per octave. Since any signal with a single discontinuity can be considered to 
be continuous signal plus a step or sgn, all signals with step discontinuities 
have this 6 dB per octave drop in their spectra. 

EXERCISES 

4.2.1 Calculate the FT of a complex exponential from those of sin and cos using 
linearity and equation (A.8). 

4.2.2 What is the difference between the FT of sin and cos? Explain the effect of 
A and cp on the FT of Asin(wt + cp). 

4.2.3 Find the FT of the single rectangle (equation (3.29)). 

4.2.4 Show that ~~=-~ eeiwnT = 0 when w is not a multiple of y. 

4.2.5 Formally prove that the FT of the impulse train s(t) = C s(t - IcT) is an im- 
pulse train in the frequency domain by finding its Fourier series and relating 
the transform to the series. 

4.2.6 Our proof of the universality of the Fourier series in Section 3.4 rested on the 
expansion of shifted delta functions in the basic period in terms of harmoni- 
cally related sinusoids. Show how this can be simplified using our results for 
impulse trains. 

4.2.7 Prove that the following are FT pairs: 

UP> rib(w) + & 
e-%(t) 1 

x+iw 

tee%(t) 1 
(X+lw)2 

&-4 1-d 
l-2a cos(w)+a~ 

14 -3 
I 

emuIt 2a 
3x7 1 
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4.3 FT Properties 

As we saw in the examples, the Fourier transform of a signal may look like 
just about anything. It is customary to differentiate between continuous 
and discrete line spectra. When the FT is a continuous smooth function of 
frequency a nondenumerable number of frequency components are required 
to reproduce the signal. A FT composed of some number of sharp discrete 
lines results from a signal that is the sum of that number of sinusoids. 
In general, spectra may have both continuous and discrete parts. In fact all 
signals encountered in practice are noisy and so cannot be precisely periodic, 
and hence some continuous spectrum contribution is always present. 

The question of the ‘mathematical existence’ of the FT is an important 
one for mathematicians, but one we will not cover extensively. The Dirichlet 
conditions for the FT require that the integral over all time of the absolute 
value of the signal be finite, as well as there being only a finite number of 
extrema and discontinuities in any finite interval. The FT obviously does 
not exist in the technical sense for periodic signals such as sinusoids, but by 
allowing delta functions we bypass this problem. 

Although we will not dwell on existence, there are many other character- 
istics of the FT that we will need. Many times we can find the FT of signals 
without actually integrating, by exploiting known transforms and some of 
the following characteristics. These characteristics are often closely related 
to characteristics of the FS, and so we need not derive them in detail. 

First, it is important to restate the Fourier Integral Theorem that the 
inverse FT given by equation (4.3) is indeed the inverse operation. 

FT-1 FTz = x FTFT-‘X=X (4.12) 

Next, the FT is linear, i.e., 

FT (z(t) + !dt)) = X(w) + Y(w) 

FT (,,(t,> = US(U) 

a property already used in our derivation of the FT of real sinusoids. 
Speaking of real signals, it is easy to see that the FT of a real signal is 

Hermitian even, 
S(-w) = s*(w) 

meaning that RS(c3) is even, QS(w) is odd, IS( is even, and U(w) is odd. 
Conversely the FT of an even signal (s( -t) = s(t)) is real, and that of an 
odd signal is pure imaginary. 
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There are two properties that deal with changing the clock, namely the 
time shifting property 

FT (,(t - T))) = e-%(w) (4.14) 

and the time scaling property. 

FT (s(4) = j$s(;) (4.15) 

Conversely, there is a property that deals with shifting the frequency axis 

FT (s(t)eiRt) = S(w - Cl) (4.16) 

an operation we usually call mixing. 
What happens when you differentiate s(t) = eiwt? You get &s(t). Simi- 

larly, integrating it you get ks(t). It follows that differentiating or integrat- 
ing an arbitrary signal affects the FT in a simple way. 

These are surprising results; we think of differentiation and integration as 
purely time domain operations, but they are even simpler in the frequency 
domain! We will see in Section 7.3 that the DSP approach to differentiation 
and integration in the time domain involves first designing a filter in the 
frequency domain. Note also that differentiation emphasizes high frequen- 
cies, while integration emphasizes lows. This is because derivatives involve 
subtracting nearby values, while integrals are basically averaging operators. 

Linearity told us how to find the spectrum when adding signals; what 
happens when we multiply them? Since we have never tried this before we 
will have to actually do the integral. 

J O” x(t)y(t)e+ dt = 
-03 

1 O” 
= i% Q=-00 J 

xm / t_m_m Y(W ib-n)t & dfl 

= 

What we did was simply to replace z(t) by its iFT, change the order of 
integration, and recognize the FT of y. So we have found the following: 

FT (x(t)y(t)) = ; k;- x(n)y(u - 52) df-2 = x * y (4.18) 
co 



4.3. FT PROPERTIES 115 

Now that we have the answer, what does it mean? The FT of the product 
of two signals in the time domain is the integral of a strange-looking product 
in the frequency domain. We hide this strangeness by using the symbol *, 
implying a product of some sort. It’s a truly unusual product since the 
integration variable in Y runs in the opposite direction to that of the X 
variable. If that is not bad enough, repeating the above computation for 
iFT of a product in the frequency domain, we find 

FT-1 (X(w)Y(w)) = Lm x(T)y(t - T)dT E x * y 
=--o(J 

(4.19) 

where the integration variable in y runs backward in time! We are not yet 
ready to digest this strange expression that goes under the even stranger 
name of convolution, but it will turn out to be of the utmost importance 
later on. 

A particular case of equation (4.18) is the DC (w = 0) term 

X(fl)Y(-0) dS2 

and by taking x(t) = s(t), y(t) = s*(t) and changing the name of the 
integration variable, we get Parseval’s relation for the FT. 

s O” ls(t)12dt = & Srn b%f)i2df (4.20) 
-00 w=-OQ 

IS(W))~~ = lrn 
f =- 00 

Parseval’s relation tells us that the signal’s energy is the same whether we 
look at it in the time domain or the frequency domain. This is an important 
physical consistency check. 

To demonstrate the usefulness of some of these properties, we will now 
use the integration rule to derive a result regarding signals with discontinu- 
ous derivatives. We know that the FT of the impulse is constant, and that 
its integral is the unit step u(t). Thus we would expect from (4.17) for the 
FT of the step to be simply 6, which is not what we previously found! 
The reason is that (4.17) breaks down at w = 0, and so we always have to 
allow for the possible inclusion of a delta function. Integrating once more we 

get f(t) = Wt), which is continuous but has a discontinuous first deriva- 
tive. The integration rule tells us that the FT of this f is -wB2 (except at 
W = 0). Integrating yet another time gives us a signal with continuous first 
derivative but discontinuous second derivative and iwS3 behavior. Continu- 
ing this way we see that if all derivatives up to order k are continuous but 
the (k + l)th is not, then the (nonzero frequency) transform is proportional 
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Figure 4.1: The effect of derivative discontinuity on the FT. In (A) the signal itself (the 
zeroth derivative) is discontinuous and the spectrum is constant. In (B) the first derivative 
is discontinuous and the spectrum decays as wB2. In (C) the second derivative jumps and 
the spectrum decays as we4. 

to cd-Ic, and the power spectrum is inversely proportional to u2’. In other 
words a discontinuous first derivative contributes a term which decays 6 dB 
per octave; a second derivative 12 dB per octave, etc. These results, depicted 
in Figure 4.1, will be useful in Section 13.4. 

EXERCISES 

4.3.1 

4.3.2 

4.3.3 

4.3.4 

4.3.5 

4.3.6 

4.3.7 

Explain why s-“, &dt = 2nS(w) using a graphical argument. 

Show that time reversal causes frequency reversal FT (s(A)) = S(-w). 

Show how differentiation and integration of the spectrum are reflected back 
to the time domain. 

The derivative of cos(wt) is -w sin(wt). State this fact from the frequency 
domain point of view. 

Show that we can interchange X and Y in the convolution integral. 

Redraw the right-hand side of Figure 4.1 using dB. How does the slope relate 
to the order of the discontinuity? 

Generalize the relationship between spectral slope and discontinuity order to 
signals with arbitrary size discontinuities not necessarily at the origin. What 
if there are manv discontinuities? 
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4.4 The Uncertainty Theorem 

Another signal with discontinuities is the rectangular window 

4) - 1 ItI < T - - 
0 else (4.21) 

which is like a single cycle of the rectangular wave. The term ‘window’ is 
meant to evoke the picture of the opening a window for a short time. Its FT 

FT (s(t)) = ST eiWtdt 
-T 

e+iwT - e-iwT 
- - 

iW 

- - 2sin(wT) 
W 

= 2 T sinc(wT) 

turns out to be a sine. Now the interesting thing about this sine is that its 
bandwidth is inversely proportional to T, as can be seen in Figure 4.2. 

The wider the signal is in the time domain, the narrower it is in frequency, 
and vice versa. In fact if we define the bandwidth to be precisely between 
the first zeros of the sine, Aw = Sj?, and relate this to the time duration 
At = 2T, we find that the uncertainty product 

Aw At = 4~ 

ALtA-+LL-f 

Figure 4.2: Rectangular windows of various widths with their Fourier transforms. Note 
that the signal energy is not normalized. 
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although different definitions of bandwidth would change the precise value 
on the right-hand side. 

This is a special case of a more general rule relating time durations to 
bandwidth. A single sinusoid is defined for all time and has a completely 
precise line as its spectrum. Signals of finite duration cannot have discrete 
line spectra since in order build the signal where it is nonzero but cancel it 
out at t = foe we need to sum many nearby frequencies. The shorter the 
time duration the more frequencies we need and so the wider the bandwidth. 

It is useful to think of this in a slightly different way. Only if we can 
observe a sinusoid for an infinite amount of time can we precisely determine 
its frequency. If we are allowed to see it for a limited time duration we can 
only determine the frequency to within some tolerance; for all sinusoids with 
similar frequencies look about the same over this limited time. The less time 
we are allowed to view the sinusoid, the greater our uncertainty regarding its 
true frequency. You can convince yourself of this fact by carefully studying 
Figure 4.3. 

Figure 4.3: The effect of observation window duration on frequency uncertainty. In (A) 
we only observe the sinusoid for an extremely short time, and hence we can not accurately 
gauge its frequency. In (B) we observe about half a cycle and can now estimate the 
frequency, but with relatively large uncertainty. In (C) two full cycles are observed and 
consequently the uncertainty is much reduced. 
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As our next example, consider the Gaussian 

s(t) = Ae-Pt2 (4.22) 

whose Fourier transform is 

(4.23) 

which doesn’t look hopeful. The mathematical trick to use here is ‘complet- 
ing the square’. The exponent is -(/3t2 + id). We can add and subtract $ 
so that 

S(w) = SW Ae-(ot+$$2,-$& = Ae-$ SW e-(Gt+&)2& (4.24) 
-CO -00 

and a change of variable u = fit + 
7 
2iwp gives 

S(w) = Ae-$ 
J 

w ,-u’d” = A 
-co lo 

(4.25) 

so the FT of a Gaussian is another Gaussian. 
Now let’s look at the uncertainty product for this case. The best way 

of defining At here is as the variance of the square of the signal. Why the 
square? Well, if the signal took on negative values it would be more obvious, 
but even for the Gaussian the energy is the integral of the square of the 
signal; the ‘center of gravity’ is the expected value of the integral of t times 
the signal squared, etc. Comparing the square of the signal A2em2Pt2 with 
equation (A.19) we see that the standard deviation in the time domain is 
At = 1 

2fi’ 
while the same considerations for equation (4.25) lead us to 

realize that AU = fl. The uncertainty product follows. 

AtAw = f 

Now it turns out that no signal has a smaller uncertainty product than 
this. This theorem is called the uncertainty theorem, and it is of importance 
both in DSP and in quantum physics (where it was first enunciated by 
Heisenberg). Quantum physics teaches us that the momentum of a particle 
is the Fourier transform of its position, and hence the uncertainty theorem 
limits how accurately one can simultaneously measure its position and ve- 
locity. Energy and time are similarly related and hence extremely accurate 
energy measurements necessarily take a long time. 
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The Uncertainty Theorem 
Given any signal s(t) with energy 

E= J O” 2 s (t)dt 
-ccl 

time center-of-gravity 

squared time uncertainty 

w2 = .f.T&<t - (t> >2s2(tPt - 
E 

frequency center-of-gravity 

and squared frequency uncertainty 

(Au)2 = s-“,(w - tw> >2s2(w)dw 
E 

then the uncertainty product 

is always greater than one half. n 

Although this theorem tells us that mathematics places fundamental 
limitations on how accurately we are allowed to measure things, there is 
nothing particularly mystifying about it. It simply says that the longer you 
are allowed to observe a signal the better you can estimate its frequencies. 

Next let’s consider the train of Dirac delta functions 

s(t) = 5 qt - ?-LT) (4.26) 
n=-co 

depicted in Figure 4.4. This signal is truly fundamental to all of DSP, since 
it is the link between analog signals and their digital representations. We 
can think of sampling as multiplication of the analog signal by just such a 
train of impulses, 

so / W = ,_“_, c qt - nT)+%t 

- n--m 
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Figure 4.4: Trains of Dirac delta functions in time and frequency domains. Note that 
the spacing in the time domain is the inverse of that in the frequency domain. 

Interchanging the order of summation and integration (we ask permission 
of the more mathematically sophisticated reader before doing this), we find 
a sum over the FT of equation (4.8) with r = nT 

S(w) = nzEm lysm J(t - nT)eeiWtdt = 5 ewiwnT 
n=-co 

and once again we are stuck. Looking carefully at the sum we become con- 
vinced that for most w the infinite sum should contain just as many negative 
contributions as positive ones. These then cancel out leaving zero. At w = 0, 
however, we have an infinite sum of ones, which is infinite. Does this mean 
that the FT of a train of deltas is a single Dirac delta? No, because the same 
thing happens for all w of the form 3 as well! So similarly to the Gaussian, 
a train of impulses has an FT of the same form as itself, a train of impulses 
in the frequency domain; and when the deltas are close together in the time 
domain, they are far apart in the frequency domain, and vice versa. The 
product of the spacings obeys 

At Aw = 2n 

once again a kind of uncertainty relation. 
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EXERCISES 

4.4.1 Prove the Schwartz inequality for signals. 

4.4.2 Using Parseval’s relation and the FT of a derivative prove the following re- 
lation involving the uncertainties and the energy E. 

(& Aw)2 = J-0 - (t> >2s2wt s (%I” dt 
E4 

4.4.3 Using the Schwartz inequality, the above relation, and integration by parts, 
prove the uncertainty theorem. 

4.5 Power Spectrum 

The energy E of a signal s(t) is defined as the integral over all times of 
the squared values in the time domain. Due to this additive form, we can 
interpret the integral over some interval of time as the signal’s energy during 
that time. Making the interval smaller and smaller we obtain the power 
E(t); the signal’s energy during a time interval of infinitesimal duration dt 
centered on time t is E(t)dt where E(t) = ls(t)12. You can think of the power 
as the energy time density, using the term ‘density’ as explained at the end 
of Appendix A.9. 

Integrating the power over any finite time interval brings us back to the 
signal’s energy during that time; integrating over all time retrieves the total 
energy. 

E= J O” E(t)dt = co Is( dt 
-Xl J -00 

From Parseval’s relation we know that the energy is also computable 
as the integral of squared values in the frequency domain (except possibly 
for a normalization factor depending on the FT definition chosen). Hence 
repeating the above arguments we can define the energy spectral density 
E(f) = lS(f)\2, that specifies how the signal’s energy is distributed over 
frequency. The meaning of E(f) is similar to that of the power; the energy 
contained in the signal components in an interval of bandwidth df centered 
on frequency f is E(f) df. 
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f 

Figure 4.5: Power spectral density for the DTMF digit ‘8’. The horizontal axis is the 
frequency in KHz and the vertical axis is a linear measure of the energy density. The eight 
possible frequencies are marked for convenience. 

In the next section we will see that many signals have spectral distribu- 
tions that vary as time progresses. For such signals we wish to know how 
much energy is in the frequency range around f at times around t. Since 
the energy density in the time domain is the power, the desired quantity 
is called the Power Spectral Density (PSD). PSDs that change in time are 
so common that we almost always use the term power spectrum instead of 
energy spectrum. 

Writing the full FT as a magnitude times an angle S(f) = A(f)e@(f), 
we see that the PSD contains only the magnitude information, all the angle 
information having been discarded. At this stage of our studies it may not 
yet be entirely clear why we need the full frequency domain representation, 
but it is easy to grasp why we would want to know how a signal’s energy is 
divided among the component frequencies. For example, push-button dialing 
of a phone uses DTMF signals where two tones are transmitted at a time 
(see Figure 4.5). The lower tone of the two is selected from four candidate 
frequencies Ll, L2, L3, L4, and the higher is one of HI, Hz, H3, H4. In order 
to know that an eight was pressed we need only ascertain that there is energy 
in the vicinities of L3 and Hz. The phases are completely irrelevant. 

As a more complex application, consider a phone line on which several 
signals coexist. In order for these signals not to interfere with each other 
they are restricted by ‘masks’, i.e., specifications of the maximal amount of 
power they may contain at any given frequency. The masks in Figure 4.6 are 
specified in dBm/Hz, where dBm is the power in dB relative to a 1 milli- 
watt signal (see equation (A.16)). The horizontal scale has also been drawn 
logarithmically in order to accommodate the large range of frequencies from 
100 Hz to over 10 MHz. Although the higher frequency signals seem to be 
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Figure 4.6: PSD masks for several signals on a phone line. The horizontal axis is the 
frequency in KHz on a logarithmic scale and the vertical axis is the maximum allowed 
PSD in dBm per Hz. The leftmost signal is the POTS (Plain Old Telephone System) 
mask, including voice and voicegrade modems. The middle mask is for ADSL, with the 
lower portion for the 512 Kb/s upstream signal and the upper for the 6 Mb/s downstream 
signal. At the far right is the mask for the 1 Mb/s Home Phone Network signal. 

lower in power, this is only an illusion; the PSD is lower but the bandwidths 
are much greater. 

The mask containing the lowest frequencies is for regular telephone con- 
versations, affectionately called Plain Old Telephone Service (POTS). This 
mask, extending from 200 Hz to about 3.8 KHz, holds for voice signals, 
signals from fax machines, and voicegrade modems up to 33.6 Kb/s. 

The need for high-speed digital communications has led to innovative 
uses of standard phone lines. The Asymmetric Digital Subscriber Line 
(ADSL) modem is one such invention. It can deliver a high-speed down- 
stream (from the service provider to the customer) connection of up to 8 
Mb/s, and a medium-speed upstream (from the customer to the provider) 
connection of 640 Kb/s. ADSL was designed in order not to interfere with 
the POTS signal, so that the standard use of the telephone could continued 
unaffected. By placing the ADSL signal at higher frequencies, and restricting 
the amount of power emitted at POTS frequencies, interference is avoided. 
This restriction may be verified using the power spectrum; the signal phases 
are irrelevant. 

In the same way, after the definition of ADSL the need arose for net- 
working computers and peripherals inside a residence. Of course this can be 
done by running cables for this purpose, but this may be avoided by using 
the internal phone wiring but requiring the new ‘home phone network’ signal 
to lie strictly above the POTS and ADSL signals. 

We see that based on the power spectrum alone we may deduce whether 
signals may coexist without mutual interference. The principle behind this 
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0 

Figure 4.7: Power spectral density for speech, more specifically the sound eh pronounced 
by a male speaker. The horizontal axis is the frequency in KHz and the vertical axis is 
the energy density in dBm per Hz. The spectrum is obviously made up of discrete lines, 
and we note that three main resonances at 500, 1820, and 2510 Hz and a weak fourth at 
a higher frequency. 

is that if the frequencies do not overlap the signals may be separated by 
appropriate filters. Isolation in the frequency domain is a sufficient (but not 
a necessary) condition for signals to be separable. 

A third example is given by the speech signal. Most of the information 
in speech is encoded in the PSD; in fact our hearing system is almost in- 
sensitive to phase, although we use the phase difference between our ears 
to ascertain direction. In Figure 4.7 we see the spectrum of a (rather drawn 
out) eh sound. The vertical axis is drawn logarithmically, since our hearing 
system responds approximately logarithmically (see Section 11.2). We can’t 
help noticing three phenomena. First, the spectrum is composed entirely of 
discrete lines the spacing between which changes with pitch. Second, there 
is more energy at low frequencies than at high ones; in fact when we average 
speech over a long time we discover a drop of between 6 and 12 dB per 
octave. Finally, there seem to be four maxima (called fomnants), three over- 
lapping and one much smaller one at high frequency; for different sounds 
we find that these formants change in size and location. With appropriate 
training one can ‘read’ what is being said by tracking the formants. 

In Section 9.3 we will learn that the PSD at a given frequency is itself 
the FT of a function called the autocorrelation. 

ASPS = J_“, [J_“, s(t)+ - T) dt] ciwT d7 (4.27) 

The autocorrelation is a generalization of the idea of squaring the signal, 
and hence this relation tells us that the squaring operation can be performed 
either before or after the Fourier integral. 
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EXERCISES 

4.5.1 Write a program that finds the PSD by numerical integration (equation (4.1)) 
and squaring. Use this program to find the PSD of a rectangular window 
(equation (4.21)) f or several different widths. Repeat the exercise for a sinc- 
shaped pulse for several different pulse widths. 

4.5.2 Build 1024 samples of sine waves of 1, 2, 3, 4, 5, 6, 7, and 8 KHz sampled 
at 8 KHz. Observe the sines in the time domain; can you see the aliasing for 
f > 4 KHz? Extract the PSD (if you didn’t write your own program in the 
first exercise many programs are readily available for this purpose). Can you 
read off the frequency? What do you see now for f > 4 KHz? 

4.5.3 Build 1024 sample points of sine waves with frequencies 1.1, 2.2, and 3.3 KHz 
sampled at 8 KHz. What happened to the spectral line? Try multiplying the 
signal by a triangular window function that linearly increases from zero at 
n = 0 to one at the center of the interval, and then linearly decreases back 
to zero). 

4.5.4 In exercise 2.6.4 we introduced the V.34 probe signal. Extract its power 
spectrum. Can you read off the component frequencies? What do you think 
the probe signal is for? 

4.5.5 Find the PSD of the sum of two sinusoids separated by 500 Hz (use 2 KHz & 
500 Hz) sampled at 8 KHz. Can you distinguish the two peaks? Now reduce 
the separation to 200 Hz. When do the two peaks merge? Does the triangular 
window function help? 

4.5.6 In the text it was stated that isolation in the frequency domain is a sujficient 
but not a necessary condition for signals to be separable. Explain how can 
signals can be separated when their PSDs overlap. 

4.6 Short Time Fourier Transform (STFT) 

The Fourier transform is a potent mathematical tool, but not directly rele- 
vant for practical analog signal processing, because the integration must be 
performed from the beginning of time to well after the observer ceases car- 
ing about the answer. This certainly seems to limit the number of FTs you 
will calculate in your lifetime. Of course, one can compute the FT for finite 
time signals, since they were strictly zero yesterday and will be strictly zero 
tomorrow, and so you only have to observe them today. But that is only the 
case for signals that are strictly zero when you aren’t observing them-small 
isn’t good enough when we are integrating over an infinite amount of time! 
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In Section 4.2 we found the FT for various infinite time signals. Could we 
have approximated these mathematical results by numerically integrating 
over a finite amount of time? Other than the restrictions placed by the 
uncertainty theorem it would seem that this is possible. One needn’t observe 
a simple sinusoid for years and years to be able to guess its spectrum. Of 
course the longer we observe it the narrower the line becomes, but we will 
probably catch on after a while. The problem is that we can’t be completely 
sure that the signal doesn’t radically change the moment after we give up 
observing it. Hence we can only give our opinion about what the signal’s 
FT looked like over the time we observed it. Unfortunately, the FT isn’t 
defined that way, so we have to define a new entity-the Short Time Fourier 
Transform (STFT). 

Consider the signal 

s1(t) = 
{ 

sin(27rflt) t < 0 
sin(27rfzt) t 2 0 

which is a pure sine of frequency fl from the beginning of time until at time 
t = 0 when, for whatever reason, its frequency abruptly changes to f2. What 
is the FT of this signal? 

As we have seen, the FT is basically a tool for describing a signal si- 
multaneously at all times. Each frequency component is the sum total of all 
contributions to this frequency from time t = -oo to t = +oo. Consequently 
we expect the power spectrum calculated from the FT to have two equal 
components, one corresponding to fr and the other to f~. 

Now consider the signal 

sz(t) = 
{ 

sin(27rfzt) t < 0 
sin(2nflt) t 2 0 

It is clear that the power spectrum will continue to be composed of two equal 
components as before since time reversal does not change the frequency 
composition. Assume now that fl and fz correspond to a whole number of 
cycles per second. Then the signal sa(t) 

S3@) = 
1 

sin(2nfl t) [tJ even 
sin(2nf2 t) [tJ odd 

which consists of interleaved intervals of sin(27rfrt) and sin(2n&t), must also 
have the same power spectrum! 

The STFT enables us to differentiate between these intuitively different 
signals, by allowing different spectral compositions at different times. The 
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FT basically considers all signals to be unvarying, never changing in spec- 
trum, while the STFT is an adaptation of the mathematical idea of the FT 

to the realities of the real world, where nothing stays unchanged for very 
long. 

The STFT, or more accurately the short time PSD, goes under several 
different aliases in different fields. A ‘musical score’ is basically a STFT 
with a horizontal time axis, a vertical frequency axis and a special notation 
for durations. The STFT has long been a popular tool in speech analysis 
and processing, where it goes under the name of sonogrum. The sonogram 
is conventionally depicted with a vertical frequency axis, with DC at the 
bottom, and a horizontal time axis, with time advancing from left to right. 
Each separate STFT is depicted by a single vertical line, traditionally drawn 
in a gray-scale. If there is no component at a given frequency at the time 
being analyzed the appropriate point is left white, while darker shades of 
gray represent higher energy levels. With the advent of DSP and computer 
graphics, analog sonographs with their rolls of paper have been replaced 
with scrolling graphics screens. The modern versions often use color rather 
than gray-scale, and allow interactive measurement as well. 

Figure 4.8 is a sonogram of the author saying ‘digital signal processing’, 
with the sounds being uttered registered underneath. With some training one 
can learn to ‘read’ sonograms, and forensic scientists use the same sonograms 
for speaker identification. In the figure the basic frequency (pitch) of about 

4000 

3000 

2000 

1000 

0 

DI GI TA L SI GNAL PROCESSING 

Figure 4.8: Sonogram of author saying ‘digital signal processing’. The vertical axis is the 
frequency from 0 to 4000 Hz, while the horizontal axis is time (approximately 2 seconds). 
The sounds being uttered at each time are indicated by the writing below. 



4.6. SHORT TIME FOURIER TRANSFORM (STFT) 129 

200 Hz is clearly visible at the bottom, and the difference between vowels 
and consonants is readily identifiable, You can probably also discern which 
syllables are accented, and may be able to see similarities among the various 
i sounds. The two s sounds in the last word seem to be invisible; this is due 
to their indeed having low energy, and most of that energy being spread 
out and at high frequencies, above the bandwidth displayed here. The ing 
is also very weak, due to being unaccented. 

Rotating the sonogram by 90” we obtain the fulling raster spectrogram 
popular in radar signal processing. Here the horizontal axis represents fre- 
quencies in the region of interest, time advances from top to bottom, and 
gray-scale intensity once again represents the square amplitude of the STFT 
component. Once the desired range of frequencies is selected, falling raster 
spectral displays provide intuitive real-time pictures; the display scrolling 
upwards as text does on a computer terminal. 

The transition from FT to STFT requires forcing arbitrary signals to 
become finite time signals. To accomplish this we multiply the signal by a 
window function, that is, a function w(t) that is strictly zero outside the time 
of interest. The window function itself should not introduce any artifacts 
to the spectrum of this product, and will be discussed in more detail in 
Section 13.4. For now you can think of the simplest window, the rectangular 
window of equation (4.21). Also commonly used are window functions that 
rise smoothly and continuously from zero to unity and then symmetrically 
drop back down to zero. 

Of course, the uncertainty theorem puts a fundamental limitation on 
the precision of the STFT. The longer the time during which we observe a 
signal, the more precise will be our frequency. distribution predictions; but 
the longer the window duration the more we blur the frequency changes 
that may be taking place in the signal. The uncertainty inequality does not 
allow us to simultaneously measure to arbitrary accuracy both the spectral 
composition and the times at which this composition changes. 

The sonogram and similar graphic displays are tools to view the signal 
simultaneously in the time and frequency domains, yet they do not treat 
time and frequency on equal footing. What we may really want is to find a 
function f(t,w) such that f(t, w) dtdw is the energy in the ‘time-frequency 
cell’. This brings us to define joint time-frequency distributions. 

These are derived by considering time and frequency to be two character- 
istics of signals, just as height and weight are two characteristics of humans. 
In the latter case we can define a joint probability density p(h, w) such that 
p(h, w) dh dw is the percentage of people with both height between h and 
h + dh and weight between w and w + dw (see Appendix A.13). For such 
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joint probability distributions we require the so-called ‘marginals’, 

where the integrations are over the entire range of possible heights and 
weights, p(h)dh is the percentage of people with height between h and h+dh 
regardless of weight, and p(w)dw is the percentage of people with weight 
between w and w + dw regardless of height. 

Similarly, a joint time-frequency distribution is a function of both time 
and frequency p(t, w). We require that the following marginals hold 

s 
00 s(t) = I44 4 d&J -co S(w) = /* p(t,w) dt 

-00 

and the integration over both time and frequency must give the total energy, 
which we normalize to E = 1. We may then expect p(t, w) dt CL to represent 
the amount of energy the signal has in the range between w and w + dw 
during the times between t and t + dt. 

Gabor was the first to express the STFT as a time-frequency distribution 

but he suggested using Gaussian-shaped windows, rather than rectangular 
ones, since Gaussians have the minimal uncertainty product. Perhaps even 
simpler than the short-time PSD is the double-square distribution 

PW = WI2 lS(412 
while more complex is the Wigner-Ville distribution 

Pk 4 = &/s*(t-;) ciwTs(t+;) dr 

The double square requires computing lS(c~)l~ by the FT’s integral over all 
time, and then simply multiplies this by the signal in the time domain. It 
is obviously zero for times or frequencies for which the signal is zero, but 
doesn’t attempt any more refined time-frequency localization. The Wigner- 
Ville formula looks similar to equation (4.27) for finding the power spectrum 
via the autocorrelation, and is only one of an entire family of such bilinear 
distributions. 
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In addition to these, many other distributions have been proposed; in- 
deed Cohen introduced a general family from which an infinite number of 
different time-frequency distributions can be derived, 

p(t, w) = --& I/ 1 e-iet-irw+ieu~*(~ - ;)cp(6, r)s(u + ;) du dr d0 

but none are perfect. Although they all satisfy the marginals, unexpected 
behaviors turn up. For example, when two frequencies exist simultaneously, 
some distributions display a third in between. When one frequency compo- 
nent ceases and another commences a short time later, some distributions 
exhibit nonzero components in the gap. These strange phenomena derive 
from the bilinear nature of the Cohen distributions. Even more bizarre is 
the fact that while the short-time PSD and the double-square are always 
positive, most of the others can take on nonintuitive negative values. 

EXERCISES 

4.6.1 There is another case for which we can compute the FT after only a finite 
observation time, namely when someone guarantees the signal to be periodic. 
Do we need the STFT for periodic signals? 

4.6.2 In the text, examples were presented of signals with identical power spec- 
tra. Doesn’t this contradict the very nature of a transform as a reversible 
transformation to another domain? Resolve this paradox by demonstrating 
explicitly the difference between the three cases. 

4.6.3 Compute the FT by numerical integration and plot the empirical PSD of a 
sinusoid of time duration T. How does the line width change with T? 

4.6.4 A FSK signal at any given time is either one of two sinusoids,,one of frequency 
wr, and the other of frequency LJ~. Generate a FSK signal that alternates 
between wr and w2 every T seconds, but whose phase is continuous. Using 
a sampling frequency of 8000 Hz, frequencies 1000 and 2000 Hz, and an 
alternation rate of 100 per second, numerically compute the power spectrum 
for various window durations. You may overlap the windows if you so desire. 
Plot the result as a falling raster spectrogram. What do you get when a 
transition occurs inside a window? Does the overall picture match what you 
expect? Can you accurately measure both the frequencies and the times that 
the frequency changed? 

4.6.5 Repeat the previous exercise with the double-square distribution. 

4.6.6 Show that the uncertainty theorem does not put any restrictions on joint 
time-frequency distributions, by proving that any distribution that satisfies 
the marginals satisfies the uncertainty theorem. 
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4.7 The Discrete Fourier Transform (DFT) 

We have often discussed the fact that signals are functions of time that have 
pertinent frequency domain interpretation. The importance of being able to 
transform between time and frequency domains is accordingly evident. For 
analog signals we have seen that the vehicle for performing the transforma- 
tion is the Fourier transform (FT), while in DSP it is the Discrete Fourier 
Transform (DFT). 

The DFT can be derived from the FT 

S(w) = Irn s(t) e-%it 
--oo 

by discretization of the time variable. To accomplish this we must first deter- 
mine the entire interval of time [t, . . . tZ] wherein s(t) is significantly different 
from zero. We will call the duration of this interval 2’ E t, - t,. If this time 
interval is very large, or even the entire t axis, then we can partition it up in 
some manner, and calculate the FT separately for each part. Next divide the 
interval into N equal-sized bins by choosing N equally spaced times {tn}~~~ 
in the following fashion t, = t,+nAt where At E 5. (Note that to = t, but 
tN-1 = &-At; however, tN-1 z t, when N > 1 or equivalently At < T.) If 
we allow negative n, we can always take ta = 0 without limiting generality. 
In this case we have tn = nAt. For sampled signals we recognize At as the 
basic sample interval (the inverse of the sampling frequency) ts = i. 

Now we also want to discretize the frequency variable. In a similar way 
we will define wk = IcAw with Aw G E. It is obvious that short time 
intervals correspond to high frequencies, and vice versa. Hence, if we choose 
to use a small At we will need a high upper frequency limit CL The exact 
correspondence is given by 

NAw=n=g or AwAt = $ (4.28) 

where we recognize an uncertainty product. 
We can now evaluate the FT integral (4.2) as a Riemann sum, substi- 

tuting tn and wk for the time and frequency variables, 

,qw) = Iw @) ,-iwt dt - sk = Nc1 ,n,-iW4Wt) 
--oo n=O 

which upon substitution gives 

N-l 

,!?I, = c 

2mtk 
s,e 

i 
N (4.29) 

n=O 
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which is the DFT. The power spectrum for the digital case is ISkI and each 
Ic represents the energy that the signal has in the corresponding ‘frequency 
bin’. 

For a given N, it is useful and customary to define the Nth root of unity 
WN. This is a number, in general complex, that yields unity when raised to 
the Nth power. For example, one square root of unity is -1 since ( -1)2 = 1; 
but l2 = 1 so 1 is a square root of itself as well. Also i is a fourth root of 
unity since i2 = (-1O)2 = 1, but so are -i, -1, and 1. There is a unique best 
choice for W’N, namely the trigonometric constant 

(4.30) 

which for N = 2 is as follows. 

-iZ 
Wz=e N=-1 (4.31) 

This is the best choice since its powers Wh for k = 0.. . N - 1 embrace all 
the N roots. Thinking of the complex numbers as points in the plane, WN is 
clearly on the unit circle (since its absolute value is one) and its phase angle 
is $ of the way around the circle. Each successive power moves a further h 
around the circle until for N = 1 we return to WE = 1. This is illustrated 
in Figure 4.9 for N = 8. 

Figure 4.9: The N complex roots of unity displayed graphically. (Here N = 8.) 

In terms of WN the DFT can be expressed 

N-l 

Sk = 
c SnWEk (4.32) 
n=O 

(just note that (WN)“” = (e-is)nk = e-‘v). The powers (WN)“~ are also 
on the unit circle, but at integer multiples of the basic angle. Consequently 
the set of all the powers of WN divides the unit circle into N equal pieces. 
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It is illuminating to investigate the simplest DFT, the two-point trans- 
form. Substituting N = 2 into equation (4.31) we readily find 

so = -&snw;= so+s1 
n=O 

Sl = 5 SnWF = SO - Sl (4.33) 
n=O 

which has a simple interpretation. The zeroth (DC) coefficient is simply 
the sum (i.e., twice the average of SO and sl). The other (high-frequency) 
coefficient is the difference (the derivative). 

How do we return to the time domain given the discrete frequency com- 
ponents Sk? 

1 N-l 

s, = - 
c 

nk 

N skwi 
k=O 

(4.34) 

This is easy to show by direct substitution of (4.32). 
Equations (4.32) and (4.34) are the main results of this section. We see 

that the sn and the Sk can be calculated one from the other, and so contain 
precisely the same information. They form what is known as the discrete 
Fourier transform pair. With the equations we have derived one can go back 
and forth between the time and frequency domains, with absolutely no loss 
of information. 

The DFT as we have derived it looks only at sn over a finite interval of 
time. What happens if we take the DFT Sk and try to find sn for times not 
in the interval from 0 to N - l? The DC term is obviously the same outside 
the interval as inside, while all the others are periodic in N. Hence the DFT 
predicts SN+n = Sn, IlOt SN+~ = 0 as we perhaps expected! There is no way 
of getting around this paradox; as discussed in Section 2.8 the very act of 
sampling an analog signal to convert it into a digital one forces the spectrum 
to become periodic (aliased). 

The only way to handle a nonperiodic infinite duration digital signal 
is to let the DFT’s duration N increase without limit. Since the Nyquist 
frequency range is divided into N intervals by the DFT, the frequency reso- 
lution increases until the frequency bins become infinitesimal in size. At this 
point we have a denumerably infinite number of time samples but a continu- 
ous frequency variable S(w) (defined only over the Nyquist interval). There 
is no consensus in the literature as to the name of this Fourier transform. 
We will sometimes call it the Long Time DFT (LTDFT) but only when we 
absolutely need to differentiate between it and the usual DFT. 
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The (short time) DFT takes in a finite number of digital values and 
returns a finite number of digital values. We thus have a true transform 
designed for digital computation. However, this transform is still a math- 
ematical concept, not a practical tool. In Chapter 14 we will see that the 
DFT is eminently practical due to the existence of an efficient algorithm for 
its computation. 

EXERCISES 

4.7.1 Derive the LTDFT directly from the FT. 

4.7.2 Express W,” and kVhN-‘)-k in terms of IV&. Express IV; + I%‘;” and 
IV; - IVGk in terms of sine and cosine. How much is kVk+m)k? Derive 
the trigonometric sum formulas (A.23) using these relations. 

4.7.3 What is the graphical interpretation of raising a complex number to a positive 
integer power ? What is special about numbers on the unit circle? Give a 
graphical interpretation of the fact that all powers of VVN are N roots of 
unity. Write a program that draws the unit circle and ail the IV&. Connect 
consecutive powers of each root with straight lines. Describe the pictures you 
obtain for odd and even N. 

4.7.4 What are the equations for 4-point DFT, and what is their interpretation? 

4.7.5 Write a straightforward routine for the computation of the DFT, and find 
the digital estimate of the PSD of various sinusoids. Under what conditions 
is the estimate good? 

4.8 DFT Properties 

Some of the DFT’s properties parallel those of the FT for continuous signals 
discussed in Section 4.3, but some are specific to signals with discrete time 
index. For most of the properties we will assume that the frequency index 
is discrete as well, but the obvious extensions to the LTDFT will hold. 

First, let’s review properties that we have already mentioned. We clearly 
need for the inverse operation defined in equation 4.34 to be a true inverse 
operation, (i.e., we need a sort of ‘Fourier sum theorem’). 

DFT-1 DFT s = s DFT DFT-1 S = S (4.35) 
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It is equally important for the DFT to be linear. 

DFT(z, + $~n) = & + yk 
DFT(a&) = ask 

(4.36) 

Also important, but not corresponding to any characteristic of the FT, are 
the facts that the DFT and its inverse are periodic with period N. For 
example, when given a signal so, sr, . . , SN-1 we usually compute the DFT 
for the N frequencies centered around DC. If we want the DFT at some 
frequency outside this range, then we exploit periodicity. 

S k-mm = Sk for all integer m (4.37) 

This leads us to our first implementational issue; how should we put the 
DFT values into a vector? Let’s assume that our signal has N = 8 samples, 
the most commonly used indexation being 0 to N - 1 (i.e., so, ~1,. . . ~7). 
Since there are only 8 data points we can get no more than 8 independent 
frequency components, about half of which are negative frequency compo- 
nents. 

s-4,s-3,s-2,s-l,sO,sl,s2,s3 

Why is there an extra negative frequency component? Consider the signals 

ei2Kfn = cos(2rfn) + i sin(2rfn) 
k 

where f = N 

for integer k, which are precisely the signals with only one nonzero DFT com- 
ponent . For all integer k in the range 1 5 k 5 s the signal with frequency 
f = +h and the corresponding signal with negative frequency f = -$ 
are different. The real part of the complex exponential is a cosine and so is 
unchanged by sign reversal, but the imaginary term is a sine and so changes 
sign. Hence the two signals with the same IfI are complex conjugates, When 
k = -% the frequency is f = -3 and the imaginary part is identically zero. 
Since this signal is real, the corresponding f = +$ signal is indistinguish- 
able. Were we (despite the redundancy) to include both f = ZJZ$ signals in a 
‘basis’, the corresponding expansion coefficients of an arbitrary signal would 
be identical; exactly that which is needed for periodicity to hold. 

. . . s-4, s-3, s-2, s-1, SO, sl, s2, s3, s-4, s-3, s-2, s-1, SO, sl, s2, s3, . . . 

In fact, any N consecutive Fourier coefficients contain all the information 
necessary to reconstruct the signal, and the usual convention is for DFT 
routines to return them in the order 

SO, &, s2, s3, s4=s-4, s5=%3, &=A%2, &=s-1 
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obtained by swapping the first half (S-d,S-3, S-2, S-1) with the second 
(sO,%s2,s3)~ 

Let’s observe a digital signal sn from time n = 0 until time n = N - 1 
and convert it to the frequency domain Sk. Now using the iDFT we can 
compute the signal in the time domain for all times n, and as we saw in 
the previous section the resulting sn will be periodic. No finite observation 
duration can completely capture the behavior of nonperiodic signals, and 
assuming periodicity is as good a guess as any. It is convenient to visualize 
digital signals as circular buffers, with the periodicity automatically imposed 
by the buffer mechanics. 

Now for some new properties. The DFT of a real signal is Hermitian 
even, 

s-k = s; for real sn (4.38) 

and that of an imaginary signal is Hermitian odd. Evenness (or oddness) for 
finite duration discrete time signals or spectra is to be interpreted accord- 
ing to the indexation scheme of the previous paragraph. For example, the 
spectrum So, Sl, S2, S3, S-4, S-3, S-2,S-1 = 

A-1. lb-l. 
7, -l+@+l)i, -l+i, -l+~i, -1, -1-41, -l-i, -l-(&+i)i 

is Hermitian even and hence corresponds to a real signal. This property 
allows us to save computation time by allowing us to compute only half of 
the spectrum when the input signal is real. 

Conversely, real spectra come from Hermitian even signals (s-~ = SE) 
and pure imaginary spectra from Hermitian odd signals. For example, the 
DFT of the signal SO, sr, ~2, ~3, ~4, ~5, ss, s7 = 

77 --I-@+l>i, -l--i, -l-2(&-l)i, -1, -1+2(fl-l)i, -l+i, -l+(fi+l)i 

will be real. 
The properties that deal with transforming the discrete time and fre- 

quency axes are the time shifting property 

DFT s~-~ = e-imkSk (4.39) 

the time reversal property 

DFT s+ = S-k (4.40) 

and the frequency shifting (mixing) property. 

DFT (sneinn) = Sk-, (4.41) 
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Of course, for finite-duration DFTs, time shifts can move us to times where 
we haven’t observed the signal, and frequency shifts to frequencies where we 
haven’t computed the DFT. When this happens simply use the periodicity 
properties. When we use the word ‘shift’ for digital signals we always mean 
‘circular shift’ (i.e., shift in a circular buffer). 

Parseval’s relation for the DFT is easy to guess 

n=O k=O 

(4.42) 

and for infinite duration signals the sum on the left is over a denumerably 
infinite number of terms and the right-hand side becomes an integral. 

The simplest application of Parseval’s relation for the DFT involves a signal 
of length two. The DFT 1s 

so = so + Sl Sl = so - Sl 

and it is easy to see that Parseval’s relation holds. 

s,2 + sf = (so + s1>2 + (so - s1)2 = a(4 + ST) 

g 1Sn12 = SW (Skl”dk 
n=O -00 

(4.43) 

Products of discrete signals or spectra correspond to convolution sums 
rather than convolution integrals. 

LTDFT (Inun) = 2 x,&s, f x * Y (4.44) 
tC=--00 

LTDFT-1 (X(w)Y(w)) = 2 Xnyn-m G X * y (4.45) 
m=-00 

When the signals are of finite time duration the periodicity forces us to define 
a new kind of convolution sum, known as circular (or cyclic) convolution. 

(4.46) 

DFT-l (XkYk) = N2 Xny(n-m)mod N = X@y 
m=O 

(4.47) 
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where the indices k - K and n - m wrap around according to the periodicity. 
In other words, while the linear (noncircular) convolution of ICO,CE~, 22,x3 
with YO, ~1, ~2~~3 gives 

X*Y = XOYO, 

XOYl + XlYO, 

XoY2 + XlYl + X2Y0, 

2oy3 + Xl y2 + xaYl+ X3Y0, 

21Y3 + X2Y2 + X3Yll 

x2Y3 + x3Y2 

X3Y3 

the circular convolution gives the following periodic signal. 

x@y = . . . 

SOY0 + XlYS + X2Y2 + X3Y1, 

XOYl + XlYO + x2Y3 + x3Y2, 

XoY2 + x1y1+ X2Yo + X3Y3, 

XOYQ + XlY2 + J;2y1+ X3Y0, 

XOYO + XlY3 + X2Y2 + X3Y1, 

XOYl + XlYO + x2Y3 + x3Y2, 

XoY2 + XlYl + XZYO + X3Y3, 

. . . 

We will return to the circular convolution in Section 15.2. 
To demonstrate the use of some of the properties of the FT and DFT 

we will now prove the sampling theorem. Sampling can be considered to be 
implemented by multiplying the bandlimited analog signal s(t) by a train of 
impulses spaced t, apart. This multiplication in the time domain is equiva- 
lent to a convolution in the frequency domain, and since the FT if an impulse 
train in time is an impulse train in frequency, the convolution leads to a pe- 
riodic FT. Stated in another way, the multiplication is a sampled signal sn, 
and thus we should talk in terms of the DFT, which is periodic. We know 
that the impulse train in the frequency domain has repetition frequency 
fs = & and so the convolution forces the frequency domain representation 
to be periodic with this period. The situation is clarified in Figure 4.10 for 
the case of bandwidth less than half fs. If the analog signal s(t) has band- 
width wider than ifs the spectra will overlap, resulting in an irreversible 
loss of information. 
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Ill t 
Figure 4.10: The sampling theorem. On the left we see the signals of interest in the time 
domain, and on the right in the frequency domain. The graphs in (A) depict the original 
analog signal, those in (B) the sampling impulses, and in (C) the sampled signal. 

EXERCISES 

4.8.1 Prove all of the DFT’s properties stated above. 

4.8.2 DFT routines usually return the same number of outputs as inputs, but 
sometimes we need higher frequency resolution. Assuming that we only have 
access to N samples, how can we generate 2N DFT components? Conversely, 
assume we have N DFT components and require 2N signal values. How can 
we retrieve them? These tricks seem to create new information that didn’t 
previously exist. How can this be? 

4.8.3 Prove that an even time signal has an even DFT, and an odd time signal has 
an odd DFT. What can you say about real even signals? 

4.8.4 Explain why we didn’t give the counterparts of several of the properties 
discussed for the FT (e.g., time scaling and differentiation). 

4.8.5 Why does the circular convolution depend on N? (Some people even use the 
notation x Q y to emphasize this fact.) 

4.8.6 In Section 2.8 we mentioned the band-pass sampling theorem that holds for 
a signal with components from frequency fo > 0 to fi > fo. Using a figure 
similar to Figure 4.10 find the precise minimal sampling rate. 

4.8.7 What can be said about the FT of a signal that is zero outside the time 
interval -T < t < +T? (Hint: This is the converse of the sampling theorem.) 
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4.9 Further Insights into the DFT 

In this section we wish to gain further insight into the algebraic and com- 
putational structure of the DFT. This insight will come from two new ways 
of understanding the DFT; the first as the product of the W matrix with 
the signal, and the second as a polynomial in W. 

The DFT is a linear transformation of a finite length vector of length N to 
a finite length vector of the same length. Basic linear algebra tells us that all 
linear transformations can be represented as matrices. This representation 
is also quite evident from equation (4.32)! Rather than discussing a function 
that transforms N signal values se through s~-i into frequency bins SO 
through SN-~, we can talk about the product of an N by N matrix W with 

= 
an iv-vector (se, . . . SN-1) yielding an N-vector (SO, . . . SN-1). 

s=ws (4.48) - -- - 
For example, the simple two-point DFT of equation (4.33) can be written 

more compactly as 

(z)=(: ‘l)(Z) 
as can be easily seen. More generally, the WN matrix is 

w= (4.49) 
= 

1 1 
1 WN 

1 w;t, = 
1 w; 
. . . . 

; wj- 

\ 1 * 
wN-1 

w2rN-l) 

w; “’ N 
w?(N-l) 

. . . . 

1 w2(N-l) . . . w(/-‘)(N-‘) 
N 

and since WN is the Nth root of unity, the exponents can be reduced modulo 
N. Thus 

w2=(% z)=(: !l) (4.50) C 
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w4 = 

and 

= 

ws = 

pg!i#j=[;~$gj(4.51 

t 1 1 1 1 -1 -i 1 i -1 -1 1 1 -; -i 1 ’ 1 

(4.52) 

which can be made explicit using Wg = e -i$ = l!Z(l - i). 
The W matrix is symmetric, as is obvious from the above examples, but 

there are further, less obvious, symmetries as well. For instance, any two 
rows of the matrix are orthogonal, and the squared length (sum of squares 
of the elements) of any row is precisely N. Furthermore, there are relations 
between the elements of WN and those of WM when M divides N. It is these 
relations that make the FFT possible, as will be explained in Section 14.5. 

The matrix representation gives us a simple interpretation for the inverse 
DFT as well. The IDFT’s matrix must be the inverse of the DFT’s matrix 

s = w-‘s (4.53) - =- 

and 

E-’ =- ;W* 
= 

where the Hermitian conjugate of the WN matrix has elements 

(4.54) 

(w*)$c = ,+iy = W-$C 

as can easily be shown. 
There is yet another way of writing the basic formula for the DFT (4.32) 

that provides us with additional insight. For given N and Ic let us drop the 



4.10. THE Z TRANSFORM 143 

indices and write W E IV;. Then the DFT takes the form of a polynomial 
in W with coefficients sn 

N-l 

Sk = c &wn 

n=O 

(4.55) 

which is a viewpoint that is useful for two reasons. First, the connection with 
polynomials will allow use of efficient algorithms for computation of polyno- 
mials to be used here as well. The FFT, although first introduced in signal 
processing, can be considered to be an algorithm for efficient multiplica- 
tion of polynomials. Also, use of Horner’s rule leads to an efficient recursive 
computation for the DFT known as Goertzel’s algorithm. Second, a more 
modern approach considers the DFT as the polynomial approximation to the 
real spectrum. When the real spectrum has sharp peaks such a polynomial 
approximation may not be sufficient and rational function approximation 
can be more effective. 

EXERCISES 

4.9.1 Write explicitly the matrices for DFT of sizes 3, 5, 6, 7, and 8. 

4.9.2 Invert the DFT matrices for sizes 2, 3, and 4. Can you write the iDFT matrix 
in terms of the DFT matrix? 

4.9.3 Prove that any two rows of the DFT matrix are orthogonal and that the 
squared length of any row is N. Show that -&b is a unitary matrix. 

4.10 The z Transform 

So far this chapter has dealt exclusively with variations on a theme by 
Fourier. We extended the FS for periodic analog signals to the FT of arbi- 
trary analog signals, adapted it to the DFT of arbitrary digital signals, and 
modified it to the STFT of changing signals. In all the acronyms the ubiqui- 
tous F for Fourier appeared; and for good reason. The concept of spectrum 
a la Fourier is rooted in the basic physics of all signals. From colors of light 
through the pitch of voices and modes of mechanical vibration to frequen- 
cies of radio stations, Fourier’s concept of frequency spectrum is so patently 
useful that it is hard to imagine using anything else. 
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In the special world of DSP there is, however, an alternative. This alter- 
native is entirely meaningless in the analog world, in some ways less mean- 
ingful than the Fourier spectrum even in the digital world, and on occasion 
seems to be a mere artificial, purely mathematical device. It does sometimes 
enhance our understanding of signals, often greatly simplifies calculations, 
and always includes Fourier’s spectrum as a special case. 

This alternative is called the x trunsfonn, which we shall denote zT. This 
nomenclature is admittedly bizarre since the use of the letter x is completely 
arbitrary (there was no section in the previous chapter named ‘Z Discovers 
Spectrum’), and it is not really a transform at all. Recall that the FS, which 
maps periodic analog signals to discrete spectra, is not called a transform. 
The FT, which maps analog signals to continuous spectra, and the DFT, 
which makes digital signals into discrete spectra, are. The zT takes an arbi- 
trary digital signal and returns a continuous function. This change of form 
from sequence to function should disqualify it from being called a transform, 
but for some reason doesn’t. Even more curious is the fact that outside the 
DSP sphere of influence the term ‘z transform’ is entirely unknown; but a 
closely related entity is universally called the generating function. 

As we have done in the past, we shall abide by DSP tradition. After all, 
every field has its own terminology that has developed side by side with its 
advances and applications, even if these terms seem ridiculous to outsiders. 
Computer hardware engineers use flip-flops without falling. Programmers 
use operating systems without upsetting surgeons. Mathematicians use ir- 
rational numbers and nonanalytic functions, and no one expects either to 
act illogically. High-energy physicists hypothesize subatomic particles called 
quads that have strangeness, flavor, and even charm. When lawyers garnish 
they leave people without appetite, while according to their definitions the 
victim of battery can be left quite powerless. So saying DC when there is no 
electric current, spectral when we are not scared, and x transform pales in 
comparison with the accepted terminologies of other fields! 

The basic idea behind the classic generating function is easy to explain; 
it is a trick to turn an infinite sequence into a function. Classic mathematics 
simply knows a lot more about functions than it does about infinite se- 
quences. Sometimes sequences can be bounded from above or below and in 
this way proven to converge or not. A few sequences even have known limits. 
However, so much more can be accomplished when we know how to change 
arbitrary sequences into functions; specifically, recursions involving sequence 
elements become algebraic equations when using generating functions. 
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Given a sequence se, sr, ~2, . . ., its generating function is defined to be 

s(x) CE 2 snxn (4.56) 
n=O 

basically an infinite polynomial in x. The variable x itself is entirely artificial, 
being introduced solely for the purpose of giving the generating function 
a domain. It is easily seen that the correspondence between a sequence 
and its generating function is one-to-one; different sequences correspond to 
different generating functions, and different generating functions generate 
different sequences. In a way, generating sequences are the opposite of Taylor 
expansions. A Taylor expansion takes a function s(x) and creates a sequence 
of coefficients sn of exactly the form of equation (4.56), while the generating 
function does just the opposite. The Taylor coefficients give us intuition as 
to the behavior of the function, while the generating function gives us insight 
as to the behavior of the sequence. 

We can demonstrate the strength of the generating function technique 
with a simple example, that of the Fibonacci sequence fn. This famous se- 
quence, invented by Leonardo of Pisa (nicknamed Fibonacci) in 1202, models 
the number of female rabbits in successive years. We assume that each ma- 
ture female rabbit produces a female offspring each year and that no rabbit 
ever dies. We start with a single female rabbit (fo = 1); there is still only 
that rabbit after one year (fr = l), since it takes a year for the rabbit to 
reach maturity. In the second year a new baby rabbit is born (f2 = 2)) and 
another in the third (fs = 3). Th ereafter in each year we have the number of 
rabbits alive in the previous year plus those born to rabbits who were alive 
two years ago. We can deduce the recursive definition 

fo = 1 fl = 1 fn = fn-1 + fn-2 forn > 2 (4.57) 

that produces the values 1, 1,2,3,5,8,13,21, . . . . However, were we to need 
fls7 we would have no recourse other than to recurse 137 times. Is there an 
explicit (nonrecursive) formula for fn . 7 At this point we don’t see any way 
to find one, but this is where the generating function can help. Generating 
functions convert complex recursions into simple algebraic equations that 
can often be solved. 

The generating function for the Fibonacci sequence is 

f(X) = 2 fnXn = 1 + X + 2x2 + 3x3 + 5x4 + 8x5 + . . . 

n=O 
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and this is what we wish to evaluate. To proceed, take the recursion that 
defines the Fibonacci sequence, multiply both sides by P and sum from 
n = 2 to infinity. 

cm co co 

Cf nxn = Cf n-lxn + Cf n-2X 
n 

n=2 n=2 n=2 

= x c fn-lxn-l + x2 c fne2p-2 
n=2 n=2 

= xgfnXn+X2gfnXn 
n=l n=O 

f (4 - fox0 - flJ: l = x (f (2) - foxO) + x2f (x) 
f (2) - 1 - x = f (x)x - x + f (x)x2 

Solving the algebraic equation we easily find an explicit expression for the 
generating function A 

f(x) = 1 l-x-22 

which is plotted in Figure 4.11. 

Figure 4.11: The generating function for the Fibonacci sequence. Note the divergences 
at -y x -1.618 and -7’ M 0.618. 
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The zeros of the quadratic in the denominator are easily found to be 
-y and -7’ where y E y = cos-1 A (x) is the famous ‘golden ratio’ and 
y == l-6 1 = -- 

We c&i now &turn to our original problem. In order to find an explicit 
formula for the nth Fibonacci element, we need only to rewrite the gener- 
ating function as an infinite polynomial and pick out the coefficients. To do 
this we use a ‘partial fraction expansion’ 

Ox) = (x + $x + 7’) > 

where a + b = -ab = 1. Utilizing the formula for the sum of a geometric 
1 progression l-az = Cr!-o(all:)n and comparing term by term, we find 

fn = 5 (Tn+’ - (,y+l) (4.58) 

the desired explicit formula for the n th Fibonacci element. 
Most people when seeing this formula for the first time are amazed that 

this combination of irrational numbers yields an integer at all. When that 
impression wears off, a feeling of being tricked sets in. The two irrational 
numbers in the numerator contain exactly a factor of 6, which is exactly 
what is being eliminated by the denominator; but if it is all a trick why 
can’t a formula without a & be devised? So we are now surprised by our 
prior lack of surprise! Equation (4.58) is so astounding that you are strongly 
encouraged to run to a computer and try it out. Please remember to round 
the result to the nearest integer in order to compensate for finite precision 
calculations. 

Now that we have become convinced of the great utility of generating 
functions, we will slightly adapt them for use in DSP. The z-transform is 
conventionally defined as 

00 

SM = zT(s,) = c snCn 
n=-co 

(4.59) 

and you surely discern two modifications but there is also a third. First, 
we needed to make the sum run from minus infinity rather than from zero; 
second, the DSP convention is to use 2-l rather than x; and third, we 
will allow .Z to be a complex variable rather than merely a real one. The 
second change is not really significant because of the first; using .Z instead 
of x-l is equivalent to interchanging sn with s+. The really consequential 
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change is that of using a complex variable. Unlike the generating function 
we saw above, S(Z) is defined over the complex plane, called the z-plane. 
Sinusoids correspond to z on the unit circle, decaying exponentials to z 
inside the unit circle, growing exponentials to z outside the unit circle. The 
definition of z in the complex plane makes available even more powerful 
analytic techniques. The study of functions of complex variables is one of 
the most highly developed disciplines that mathematics has to offer, and 
DSP harnesses its strength via the z transform. 

Any complex variable z can be written in polar form 

2 = r&W 

where r is the magnitude, and w the angle. In particular, if x is on the unit 
circle T = 1, and z = elW. If we evaluate the zT on the unit circle in the 
x-plane, considering it to be a function of angle, we find 

(4.60) 
n=-co n=--00 

which is precisely the DFT. The zT reduces to the DFT if evaluated on the 
unit circle. 

For other nonunity magnitudes we can always write r = ex so that 
2 = ex+iw and 

S(z) = g &g-n = -g- q.&++i+ 

n=--00 n=--00 
(4.61) 

which is a digital version of the Laplace Transform (LT). The Laplace trans- 
form, which will not be discussed in detail here, expands functions in terms 
of exponentially increasing or damped sinusoids, of the type described in 
equation (2.11). Its expression is 

f(s) = Jm f(t)e-“tdt 
-CO 

(4.62) 

where s is understood to be complex (defining the s-plane). Sinusoids corre- 
spond to purely imaginary s, decaying exponentials to positive real s, grow- 
ing exponentials to negative real s. The LT generalizes the FT, since the 
FT is simply the LT along the imaginary s axis. This is analogous to the zT 
generalizing the DFT, where the DFT is the zT on the unit circle. Although 
a large class of analog signals can be expanded using the FT, the LT may 
be more convenient, especially for signals that actually increase or decay 
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with time. This is analogous to the DFT being a sufficient representation 
for most digital signals but the zT often being more useful. 

We have been ignoring a question that always must be raised for infinite 
series. Does expression (4.59) for the zT converge? When there are only a 
finite number of terms in a series there is no problem with performing the 
summation, but with an infinite number of terms the terms must decay fast 
enough with n for the sum not to explode. For complex numbers with large 
magnitudes the terms will get larger and larger with 72, and the whole sum 
becomes meaningless. 

By now you may have become so accustomed to infinities that you may 
not realize the severity of this problem. The problem with divergent infinite 
series is that the very idea of adding terms may be called into question. 
We can see that unconvergent sums can be meaningless by studying the 
following enigma that purports to prove that 00 = -l! Define 

S=1+2+4+8+... 

so that S is obviously infinite. By pulling out a factor of 2 we get 

S = 1 + 2(1+ 2 + 4 + 8 + . . .) 

and we see that the expression in the parentheses is exactly S. This implies 
that S = 1 + 2S, which can be solved to give S = -1. The problem here 
is that the infinite sum in the parentheses is meaningless, and in particular 
one cannot rely on normal arithmetical laws (such as 2(a + b) = 2a + 2b) to 
be meaningful for it. It’s not just that I is infinite; I is truly meaningless 
and by various regroupings, factorings, and the like, it can seem to be equal 
to anything you want. 

The only truly well-defined infinite series are those that are absolutely 
convergent. The series 

S=C an 
n=O 

is absolutely convergent when 

A= y, ~%-tl 
n=O 

converges to a finite value. If a series S seems to converge to a finite value 
but A does not, then by rearranging, regrouping, and the like you can make 
S equal to just about anything. 
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Since the zT terms are a, = s&, our first guess might be that 1x1 
must be very small for the sum to converge absolutely. Note, however, that 
the sum in the zT is from negative infinity to positive infinity; for absolute 
convergence we require 

A = fJ ISnIIZln = 2 lS,ll~ln+~ l%illXln = E Is-nIICln+~ ISnIIXln 
n=-00 12=--o;) n=O n=l n=O 

where we defined C G z-r. If lzl is small then ICI is large, and consequently 
small values of Iz I can be equally dangerous. In general, the Region Of 
Convergence (ROC) of the z transform will be a ring in the z-plane with 
the origin at its center (see Figure 4.12). This ring may have T = 0 as its 
lower radius (and so be disk-shaped), or have r = co as its upper limit, or 
even be the entire z-plane. When the signal decays to zero for both n + --00 
and n + 00 the ring will include the unit circle. 

3 

Figure 4.12: In general, the region of convergence (ROC) of the z transform is a ring in 
the z-plane with the origin at its center. 

The x-plane where the zT lives, with its ROCs, poles, and zeros, is a 
more complex environment than the frequency axis of the FT. We will learn 
a lot more about it in the coming chapters. 

EXERCISES 

4.10.1 The zT is an expansion in basis functions zn = reiwn. Show that this basis 
is orthogonal. 

4.10.2 Derive the generating function for a Fibonacci sequence with initial condi- 
tions fo = 1, fl = 2. What is the explicit formula for fn? 
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4.10.3 The integer recursions for the two families of sequences g+ and g- 

f 
gn+1= 

{ 

39; f 1 
&I$ 

g,f odd 
9,’ even 

may eventually lead to g = 1, or may oscillate wildly. For example, for the 
g- case, go = 5 leads to a cycle 5,14,7,20,10,5; no cycle has ever been found 
for the g+ case (the Collatz problem). Compute numerically the generating 
functions g*(z) for 0 5 z < 1 and starting values go = 2. . . 10. Can you tell 
which initial values cycle from the generating function? 

4.10.4 Consider the infinite series S = 1 - 1 + 1 - 1 + . , . . Writing this S = (1 - 
1) + (1 - 1) + . . . = 0 + 0 + . . . it would seem to converge to zero. Regroup 
to make S equal something other than zero. Is S absolutely convergent? 

4.10.5 Show that if the zT of a signal is a rational function of z then the locations 
of poles and zeros completely specifies that signal to within a gain. 

4.10.6 Show that the LT of s(t) is the FT of s(t)emxt. 

4.10.7 Find the Laplace transforms of the unit impulse and unit step. 

4.10.8 Derive the zT from the LT similarly to our derivation of DFT from FT. 

4.10.9 According to the ratio test an infinite sum C,“=, a, converges absolutely if 
the ratio 1 y 1 converges to a value less than unity. How does this relate to 
the zT? 

4.11 More on the z Transform 

Once again the time has come to roll up our sleeves and calculate a few 
examples. The first signal to try is the unit impulse sn = &,o, for which 

S(x) = zT(&u) = 5 s,x-~ = 1 s x0 = 1 
n=-00 

which is analogous to the FT result. The series converges for all z in the 
z-plane. Were the impulse to appear at time m $ 0, it is easy to see that 
we would get S(z) = z-~, which has a zero at the origin for negative times 
and a pole there for positive ones. The ROC is the entire plane for m 5 0, 
and the entire plane except the origin for m > 0. 
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What is the zT of s, = CPU,? This signal increases exponentially with 
time for QI > 1, decreases exponentially for 0 < Q! < 1, and does the same 
but with oscillating sign for a < 0. 

S(z) = zT(c2’&) = 2 ~2%~ z--~ = &oZ-1)n 
n=--00 n=O 

Using the equation (A.47) for the sum of an infinite geometric series, we find 

S(x) = l 
z 

=- 
1 - cw-1 z-a 

(4.63) 

which has a pole at z = a. The ROC is thus 1x1 > 1~11, the exterior of disk 
of radius a. When does the FT exist? As a general rule, poles in the z-plane 
outside the unit circle indicate explosive signal growth. If Ial < 1 the ROC 
includes the unit circle, and so the FT converges. For the special case of the 
unit step Sn = un, we have QI = 1, SO the zT is 5 with ROC 1~1 > 1; the 
FT does not exist. 

We can shift the signal step to occur at time m here as well. In this case 

qz) = 2 an-mUn-mX-n = E CL~--mZ-mZ-(n--m) 

n=-00 n=m 

which after a change in variable from n to n - m gives 

S(x) = Z-m fy cPX-n = z-m1 _ iZbl 

Z1-m 
=- 

n=O z-o! 

with poles at z = QI and z = 0, and ROC unchanged. 
What about sn = oVnun? This is a trick question! This is the same as 

before if we write sn = ($)nun so S(x) = 1-i-1, with ROC IzI > Jo-‘1. 
Since the sum we performed is true in general, the Q! used above can be 
anything, even imaginary or complex. Hence we know, for instance, that the 
zT of elwn is 1 

l-elwy-1 
with ROC IzI > Ieiwl = 1. 

We can perform a calculation similar to the above for sn = onU-n. 

S(Z) = C~?-,QnU-nZ-n = 5 (O!Z-l)n 

n=--00 
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The ROC is now jz[ < Ial, th e interior of the disk. Shifting the ending time 
to n = m we get 

S(z) = c~y-oo cP-- U++.m) X-n = 2 an-m Z-m Z-(n-m) 
n=--00 

C,“=&-w 
1 

= = Zrn 
1 - a-lx 

with an extra pole if m < 0. It will often be more useful to know the zT of 
s, = anU-n-l. This will allow covering the entire range of n with no overlap. 
It is convenient to remember that the zT of sn = --CPU-,-~ is exactly that 
of sn = anUn but with ROC IzI < Ial. The desired transform is obtained by 
noting that multiplication of sn by anything, including - 1, simply causes 
the zT to be multiplied by this same amount. 

Rather than calculating more special cases directly, let’s look at some 
of the z transform’s properties. As usual the most critical is linearity, i.e., 
the zT of axn + by, is ax(z) + by(z). The ROC will always be at least the 
intersection of the ROCs of the terms taken separately. This result allows us 
to calculate more transforms, most importantly that of cos(wn). We know 
that cos(wn) = i(eiwn+emiwn ), so the desired result is obtained by exploiting 
linearity. 

The next most important property of the zT is the effect of a time shift. 
For the FS and FT, shifting on the time axis led to phase shifts, here there is 
something new to be learned. In the cases we saw above, the effect of shifting 
the time by m digital units was to multiply the zT by zmrn. In particular the 
entire effect of delaying the digital signal by one digital unit of time was to 
multiply the zT by a factor of z -‘. This is a general result, as can be easily 
derived. 

zT(xn-1) = C~?-ooXn-lX-n = C XnZ -(n+l) 

n=-co 
co 

n=-00 

Accordingly the factor of 2-l can be thought of as a unit delay operator, as 
indeed we defined it back in equation (2.21). The origin of the symbol that 
was arbitrary then is now understood; delaying the signal by one digital unit 
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of time can be accomplished by multiplying it by x-l in the z domain. This 
interpretation is the basis for much of the use of the zT in DSP. 

For example, consider a radioactive material with half-life T years. At 
the beginning of an experiment n = 0 we have 1 unit of mass m = 1 of this 
material; after one half-life n = 1 the mass has dropped to m = $ units, 
3 having been lost. At digital time n = 2 its mass has further dropped to 
m=4 ’ after losing a further $, etc. After an infinite wait 

i+$+i+&+...=l 

all of the material has been lost (actually converted into another material). 
The mass left as a function of time measured in half-lives is 

an exponentially decreasing signal. Now a scientist measures the amount of 
mass at some unknown time n and wishes to predict (or is it postdict?) what 
the mass was one half-life back in time. All that need be done is to double 
the amount of mass measured, which is to use the operator z-l with z being 
identified as i. This example might seem a bit contrived, but we shall see 
later that many systems when left alone tend to decrease exponentially in 
just this manner. 

What about time reversal? For the FT this caused negation of the fre- 
quency; here it is straightforward to show that the zT of s-n has its x variable 
inverted, zT(s-n) = S(Z-l). If the original signal had a ROC & < 1~1 < Rh, 
then the time-reversed signal will have a ROC of RF1 > 1~1 > Rh’. The 
meaning of this result is not difficult to comprehend; the inversion of x = reiw 
both negates the w and inverts T. Thus decaying exponentials are converted 
to exploding ones and vice versa. 

You must be wondering why we haven’t yet mentioned the inverse zT 
(izT). The reason is that it is somewhat more mathematically challenging 
than the other inverse operations we have seen so far. Remember that the 
zT’s range is a ring in the complex z-plane, not just a one-dimensional line. 
To regain sn from S(x) we must perform a contour integral 

1 
Sn= . 

2x2 f s( > 
n-l zx dz (4.64) 

over any closed counterclockwise contour within the ROC. This type of 
integral is often calculated using the residue theorem, but we will not need 
to use this complex mechanism in this book. 
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Many more special zTs and properties can be derived but this is enough 
for now. We will return to the zT when we study signal processing systems. 
Systems are often defined by complex recursions, and the zT will enable us 
to convert these into simple algebraic equations. 

EXERCISES 

4.11.1 

4.11.2 

4.11.3 

4.11.4 

4.11.5 

4.11.6 

4.11.7 

Write a graphical program that allows one to designate a point in the z-plane 
and then draws the corresponding signal. 

Plot the z transform of 6, m for various m. 9 

Prove the linearity of the zT. 

Express zT(~n2,) in terms of z(z) = zT(z,). 

What 
1. 
2. 
3. 
4. 
5. 

What 
1. 
2. 
3. 

Prove 
1. 
2. 
3. 
4. 
5. 
6. 

is the z transform of the following digital signals? What is the ROC? 
6 0 
%2+2 

anu(n) 
ant+n - 1) 
2jnUn + inU-n 

digital signals have the following z transforms? 
- z 2 

2+2 
1 

1-2~4 ROC 14 > I21 

the following properties of the zT: 
linearity 
time shift ZTsn-k = Z-%(Z) 
time reversal ZTs-n = S(e) 
conjugation zTsE = S*(z*) 
resealing ZT(ansn) = S(2) 
z differentiation zT(ns,) = --t&S’(z) 

4.12 The Other Meaning of Frequency 

We have discussed two quite different representations of functions, the Tay- 
lor expansion and the Fourier (or z) transform. There is a third, perhaps 
less widely known representation that we shall often require in our signal 
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processing work. Like the Fourier transform, this representation is based on 
frequency, but it uses a fundamentally different way of thinking about the 
concept of frequency. The two usages coincide for simple sinusoids with a 
single constant frequency, but differ for more complex signals. 

Let us recall the examples with which we introduced the STFT in Sec- 
tion 4.6. There we presented a pure sinusoid of frequency fi, which abruptly 
changed frequency at t = 0 to become a pure sine of frequency fi. Intu- 
ition tells us that we should have been able to recover an instantaneous 
frequency, defined at every point in time, that would take the value fi for 
negative times, and f2 for positive times. It was only with difficulty that 
we managed to convince you that the Fourier transform cannot supply such 
a frequency value, and that the uncertainty theorem leads us to deny the 
existence of the very concept of instantaneous frequency. Now we are going 
to produce just such a concept. 

The basic idea is to express the signal in the following way: 

s(t) = A(t) cos p-w) 

for some A(t) and G(t). This is related to what is known a~ the analytic 
representation of a signal, but we will call it simply the instantaneous rep- 
resentation. The function A(t) is known a~ the instantaneous amplitude of 
the signal, and the Q(t) is the instantaneous angle. Often we separate the 
angle into a linear part and the deviation from linearity 

s(t) = A(t) cos (wt + qqt)) 

where the frequency w is called the carrier frequency, and the residual 4(t) 
the instantaneous phase. 

The instantaneous frequency is the derivative of the instantaneous angle 

d@ (t > d4w 29Tf(t) = ----g-- = w + 7 (4.67) 

which for a pure sinusoid is exactly the frequency. This frequency, unlike 
the frequencies in the spectrum, is a single function of time, in other words, 
a signal. This suggests a new world view regarding frequency; rather than 
understanding signals in a time interval as being made up of many frequen- 
cies, we claim that signals are fundamentally sinusoids with well-defined 
instantaneous amplitude and frequency. One would expect the distribution 
of different frequencies in the spectrum to be obtained by integration over 
the time interval of the instantaneous frequency. This is sometimes the case. 
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Consider, for example, a signal that consists of a sinusoid of frequency fi 
for one second, and then a sinusoid of nearby frequency f2 for the next sec- 
ond. The instantaneous frequency will be fl and then jump to fi; while the 
spectrum, calculated over two seconds, will contain two spectral lines at fr 
and f2. Similarly a sinusoid of slowly increasing instantaneous frequency will 
have a spectrum that is flat between the initial and final frequencies. 

This new definition of frequency seems quite useful for signals that we 
usually consider to have a single frequency at a time; however, the instanta- 
neous representation of equation (4.65) turns out to very general. A constant 
DC signal can be represented (using w = 0), but it is easy to see that a con- 
stant plus a sinusoid can’t. It turns out (as usual, we will not dwell upon the 
mathematical details) that all DC-less signals can be represented. This leads 
to an apparent conflict with the Fourier picture. Consider a signal composed 
of the sum of the two sinusoids with close frequencies fi and fi; what does 
the instantaneous representation do, jump back and forth between them? 
No, this is exactly a beat signal (discussed in exercise 2.3.3) with instanta- 
neous frequency a constant i (fr + f2), and sinusoidally varying amplitude 
is with frequency $ lfr - f21. Such a signal is depicted in Figure 4.13. The 
main frequency that we see in this figure (or hear when listening to such a 
combined tone) is the instantaneous frequency, and after that the effect of 
A(t), not the Fourier components. 

We will see in Chapter 18 that the instantaneous representation is par- 
ticularly useful for the description of communications signals, where it is 
the basis of modulation. Communications signals commonly carry informa- 

Figure 4.13: The beat signal depicted here is the sum of two sinusoids of relatively 
close frequencies. The frequencies we see (and hear) are the average and half-difference 
frequencies, not the Fourier components. 
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tion by varying (modulating) the instantaneous amplitude, phase, and/or 
frequency of a sinusoidal ‘carrier’. The carrier frequency is the frequency 
one ‘tunes in’ with the receiver frequency adjustment, while the terms AM 
(Amplitude Modulation) and FM (Frequency Modulation) are familiar to 
all radio listeners. 

Let us assume for the moment that the instantaneous representation 
exists; that is, for any reasonable signal s(t) without a DC component, we 
assume that one can find carrier frequency, amplitude, and phase signals, 
such that equation (4.65) holds. The question that remains is how to find 
them. The answering of this question is made possible through the use of a 
mathematical operator known as the Hilbert transform. 

The Hilbert transform of a real signal z(t) is a real signal y(t) = ax(t) 
obtained by shifting the phases of all the frequency components in the spec- 
trum of z(t) by 90”. Let’s understand why such an operator is so remarkable. 
Assume z(t) to be a simple sinusoid. 

x(t) = Acos(wt) 

Obtaining the 90” shifted version 

y(t) = Xx(t) = A cos = A sin(&) 

is actually a simple matter, once one notices that 

y(t) = Aces w t 
( (-&))=x(t-&) 

which corresponds to a time delay. So to perform the Hilbert transform of 
a pure sine one must merely delay the signal for a time corresponding to 
one quarter of a period. For digital sinusoids of period L samples, we need 
to use the operator z -4, which can be implemented using a FIFO of length 
L/4. 

However, this delaying tactic will not work for a signal made up of more 
that one frequency component, e.g., when 

x(t) = Al cos(wlt) + A2 co+&) 

we have 
y(t) = %x(t) = A 1 sin(wt) + A2 sir@) 

which does not equal x(t - 7) for any time delay r. 
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Hence the Hilbert transform, which shifts all frequency components by 
a quarter period, independent of frequency, is a nontrivial operator. One 
way of implementing it is by performing a Fourier transform of the signal, 
individually shifting all the phases, and then performing an inverse Fourier 
transform. We will see an alternative implementation (as a fiEter) in Sec- 
tion 7.3. 

Now let us return to the instantaneous representation 

s(t) = A(t) cos (wt + #+)) (4.68) 

of a signal, which we now call z(t). Since the Hilbert transform instanta- 
neously shifts all A cos(wt) to A sin(wt), we can explicitly express y(t). 

Y(t) = 3-149 = A(t) sin (wt + d(t)) (4.69) 

We can now find the instantaneous amplitude by using 

A(t) = 4x2(t) + y2(t) (4.70) 

the instantaneous phase via the (four-quadrant) arctangent 

4(t) = tan-l $j - wt 

and the instantaneous frequency by differentiating the latter. 

w(t) d4@) =--- 
dt 

(4.71) 

(4.72) 

The recovery of amplitude, phase, or frequency components from the original 
signal is called demodulation in communications signal processing. 

We have discovered a method of constructing the instantaneous repre- 
sentation of any signal x(t). This method can be carried out in practice for 
digit al signals, assuming that we have a numeric method for calculating the 
Hilbert transform of an arbitrary signal. The instantaneous frequency simi- 
larly requires a numeric method for differentiating an arbitrary signal. Like 
the Hilbert transform we will see later that differentiation can be imple- 
mented as a filter. This type of application of numerical algorithms is what 
DSP is all about. 
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EXERCISES 

4.12.1 

4.12.2 

4.12.3 

4.12.4 

4.12.5 

4.12.6 

We applied the Hilbert transform to z(t) = cos(wt + 4(t)) and claimed that 
one obtains y(t) = sin@ + 4(t)). Using trigonometric identities prove that 
this is true for a signal with two frequency components. 

Even a slowly varying phase may exceed 2n or drop below zero causing 
nonphysical singularities in its derivative. What should be done to phases 
derived from equation (4.71) in such a case? 

What is the connection between the instantaneous frequency and the spec- 
trum of the signal? Compare the short time power spectrum calculated over 
a time interval to the histogram of the instantaneous frequency taken over 
this interval. 

Show that given a signal s(t) and any amplitude signal A(t) an appropriate 
phase (a(t) can be found so that equation (4.65) holds. Similarly, show that 
given any phase an amplitude signal may be found. The amplitude and phase 
are not unique; the z(t) and y(t) that are related by the Hilbert Transform 
are the canonical (simplest) representation. 

Find an explicit direct formula for the instantaneous frequency as a function 
of z(t) and y(t). What are the advantages and disadvantages of these two 
methods of finding the instantaneous frequency? 

We can rewrite the analytic form of equation (4.68) in quadrature form. 

x(t) = a(t) cos(wt) + b(t) sin(wt) 

What is the connection between a(t), b(t) and A(t), 4(t)? We can also write 
it in sideband form. 

x(t) = (u(t) + l(t)) cos(wt) + (u(t) - l(t)) sin(wt) 

What are the relationships now? 
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