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Correlation 

Our study of signal processing systems has been dominated by the concept 
of ‘convolution’, and we have somewhat neglected its close relative the ‘cor- 
relation’. While formally similar (in fact convolution by a symmetric FIR 
filter can be considered a correlation as well), the way one should think 
about the two is different. Convolution is usually between a signal and a 
filter; we think of it as a system with a single input and stored coefficients. 
Crosscorrelation is usually between two signals; we think of a system with 
two inputs and no stored coefficients. The difference may be only in our 
minds, but nonetheless this mind-set influences the way the two are most 
often used. 

Although somewhat neglected we weren’t able to get this far without 
mentioning correlations at all. We have already learned that crosscorrela- 
tion is a measure of similarity between two signals, while autocorrelation is 
a measure of how similar a signal is to itself. In Section 5.6 we met the auto- 
correlation for stochastic signals (which are often quite unlike themselves), 
and in Section 6.13 we used the crosscorrelation between input and output 
signals to help identify an unknown system. 

Correlations are the main theme that links together the present chapter. 
We first motivate the concept of correlation by considering how to compare 
an input signal to a reference signal. We find that the best signal detector 
is the correlator. After formally defining both crosscorrelation and autocor- 
relation and calculating some examples, we prove the important Wiener- 
Khintchine theorem, which relates the autocorrelation to the power spectral 
density (PSD). 

Next we compare correlation with convolution and discover that the op- 
timal signal detector can be implemented as a matched filter. The matched 
filter was invented for radar and a digression into this important applica- 
tion is worthwhile. The matched filter is good for signal detection, but for 
cleaning up a partially unknown signal we need the Wiener filter, which is 
also based on correlations. 
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350 CORRELATION 

There is also a close connection between correlation and prediction. Lin- 
ear predictive coding is crucial in speech processing, and we present it here 
in preparation for our later studies. 

The Wiener-Khintchine theorem states that correlations are second-order 
entities. Although these are sufficient for a wide variety of tasks, we end this 
chapter with a short introduction to the more general higher-order signal 
processing. 

9.1 Signal Comparison and Detection 

A signal detector is a device that alerts us when a desired signal appears. 
Radar and sonar operate by transmitting a signal and detecting its return 
after having being reflected by a distant target. The return signal is often 
extremely weak in amplitude, while interference and noise are strong. In 
order to be able to reliably detect the presence of the return signal we 
employ a signal detector whose output is maximized when a true reflection 
appears. Similar signal detectors are employed in telephony call progress 
processing, medical alert devices, and in numerous other applications. 

Envision a system with a single input that must sound an alarm when 
this input consists of some specified signal. It is important not to miss any 
events even when the signal is weak compared to the noise, but at the same 
time we don’t want to encourage false alarms (reporting detection when the 
desired signal was not really there). In addition, we may need to know as 
accurately as possible precisely when the expected signal arrived. 

The signal to be detected may be as simple as a sinusoid of given fre- 
quency, but is more often a rather complex, but known signal. It is evident 
that signal detection is closely related to signal comparison, the determina- 
tion of how closely a signal resembles a reference signal. Signal comparison 
is also a critically important element in its own right, for example, in digital 
communications systems. In the simplest of such systems one of several ba- 
sic signals is transmitted every T seconds and the receiver must determine 
which. This can be accomplished by building signal detectors for each of the 
basic signals and choosing the signal whose respective detector’s output is 
the highest. A more complex example is speech recognition, where we may 
build detectors for a multitude of different basic sounds and convert the 
input audio into a string of best matches. Generalization of this technique 
to images produces a multitude of further applications, including optical 
character recognition. 
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From these examples we see that comparison and detection are essen- 
tially the same. The simplest detector is implemented by comparing the out- 
put of a comparator to a threshold. Complex detectors may employ more 
sophisticated decision elements, but still require the basic comparison mech- 
anism to function. 

Signal detection and comparison are nontrivial problems due to the pres- 
ence of noise. We know how to build filters that selectively enhance defined 
frequency components as compared to noise; but how do we build a system 
that selectively responds to a known but arbitrary reference signal? Our 
first inclination would be to subtract the input signal sn from the desired 
reference rn, thus forming an error signal en = rn - sn. Were the error signal 
to be identically zero, this would imply that the input precisely matches the 
reference, thus triggering the signal detector or maximizing the output of 
the signal comparator. However, for an input signal contaminated by noise 
%a = rn + vn, we can not expect the instantaneous error to be identically 
zero, but the lower the energy of the error signal the better the implied 
match. So a system that computes the energy of the difference signal is a 
natural comparator. 

This idea of using a simple difference is a step in the right direction, 
but only the first step. The problem is that we have assumed that the input 
signal is simply the reference signal plus additive noise; and this is too strong 
an assumption. The most obvious reason for this discrepancy is that the 
amplitude of the input signal is usually arbitrary. The strength of a radar 
return signal depends on the cross-sectional area of the target, the distance 
from the transmitter to the target and the target to the receiver, the type 
and size of the radar antenna, etc. Communications signals are received 
after path loss, and in the receiver probably go through several stages of 
analog amplification, including automatic gain control. A more reasonable 
representation of the input signal is 

sn= Am + U, 

where A is some unknown gain parameter. 
In order to compare the received signal sn with the reference signal rn it 

is no longer sufficient to simply form the difference; instead we now have to 
find a gain parameter g such that rn - gsn is minimized. We can then use 
the energy of the resulting error signal 

En = m$rn - $I%> 

as the final match criterion. How can we find this g? Assuming for the 
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moment that there is no noise, then for every time YZ we require 

7”n 1 
g =-=- 

Sn A 

in addition to the weaker constraint that the error energy be zero. 

C( rn - gqJ2 = 0 
n 

(9 1) . 

(9 2) . 

By opening the square the latter becomes 

c r~-2gCTnSn+g2CS~=0 
n n n 

which can be rewritten in the following way. 

E?- - 2gC,, + g2ES = 0 (9 3) . 

Here ET is the energy of the reference signal, ES is the energy of the input 
signal, and CTS = C, n n r s is the crosscorrelation between the reference and 
the input. Among all input signals of given energy the correlation is maximal 
exactly when the energy of the difference signal is minimal. 

Now, from equation (9.1) we can deduce that 

C r2 Er 
g2=-=F c n sn s 

which when substituted into (9.3) brings us to the conclusion that 

Gs = l/z% (9 4) . 

in the absence of noise. When the input signal does not precisely match the 
reference, due to distortion or noise, we have lCrSI < +dm. The cross- 
correlation CTS is thus an easily computed quantity that compares the input 
signal to the reference, even when the amplitudes are not equal. A compara- 
tor can thus be realized by simply computing the correlation, and a signal 
detector can be implemented by comparing it to dm (e.g., requiring 

Unfortunately we have not yet considered all that happens to the ref- 
erence signal before it becomes an input signal. In addition to the additive 
noise and unknown gain, there will also usually be an unknown time shift. 
For communications signals we receive a stream of signals to compare, each 
offset by an unknown time delay. For the radar signal the time delay derives 



9.1. SIGNAL COMPARISON AND DETECTION 353 

from the round-trip time of the signal from the transmitter to the target 
and back, and is precisely the quantity we wish to measure. When there is 
a time shift, a reasonable representation of the input signal is 

S - Arn+m + vn n- Vn 

where A is the gain and m < 0 the time shift parameter. 
In order to compare the received signal sn with the reference signal rn 

we can no longer simply compute a single crosscorrelation; instead we now 
have to find the time shift parameter m such that 

c&n) = &+d%-t. = CrnS7-k-m 
n n 

is maximal. How do we find m? The only way is to compute the crosscor- 
relation Crs(m) for all relevant time shifts (also called time ‘lags’) m and 
choose the maximal one. It is this 

that must be compared with dm in order to decide whether a signal has 
been detected. 

EXERCISES 

9.1.1 Formulate the concept of correlation in the frequency domain starting from 
spectral difference and taking into account an arbitrary gain of the spectral 
distribution. What happens if we need to allow an arbitrary spectral shift? 

9.1.2 Give a complete algorithm for the optimal detection of a radar return sn given 
that the transmitted signal rn was sent at time Ti, returns are expected to 
be received before time T2, and the correlation is required to be at least y. 
Note that you can precompute E,. and compute Es and CTB(rn) in one loop. 

9.1.3 Design an optimal detector for the V.34 probe signal introduced in exer- 
cise 2.6.4. The basic idea is to perform a DFT and implement a correlator 
in the frequency domain by multiplying the spectrum by a comb with 21 
pass-bands (of suitable bandwidth). However, note that this is not indepen- 
dent of signal strength. You might try correcting this defect by requiring the 
correlation to be over 80% of the total signal energy, but this wouldn’t work 
properly since, e.g., answer tone (a pure 2100 Hz tone) would trigger it, be- 
ing one of the frequencies of the probe signal. What is wrong? How can this 
problem be solved? 
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9.2 Crosscorrelation and Autocorrelation 

The time has come to formally define correlation. 

Definition: crosscorrelation 
The crosscorrelation between two real signals x and y is given by 

Cxy(~) 3 J” ~(t)y(t - T)O% A D C,,(m) - 5 XnYn-m (9.5) 
-03 n=-00 

where the time shift r or m is called the lug. n 

There is an important special case, called autocorrelation, when y is taken 
to be x. It might seem strange to compare a signal with itself, but the lag in 
equation (9.5) means that we are actually comparing the signal at different 
times. Thus autocorrelation can assist in detecting periodicities. 

Definition: autocorrelation 
The autocorrelation of a real signal s is given by 

C&) = Im s(t)s(t - ~)dt A D Sn%-m (9 6) . 
-cm n=--00 

and the normalized autocorrelation is defined to be 

cs (7) ~(7) = m A D cs (f-4 cS(m) = - 
cs (0) 

where r or m is called the lug. 

(9 7) . 

These definitions are consistent with those of Section 5.6 for the case 
of stationary ergodic signals. In practice we often approximate the autocor- 
relation of equation (5.22) by using equation (9.6) but with the sum only 
over a finite amount of time. The resulting quantity is called the empirical 
autocorrelation. The correlation is also somewhat related to the covariance 
matrix of vector random variables, and strongly related to the convolution, 
as will be discussed in the next section. 

Before discussing properties of the correlations, let’s try calculating a 
few. The analog rectangular window 

s(t) = 1 1 ItI < 1 
0 else 
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Figure 9.1: The autocorrelation of an analog rectangularly shaped signal. In (A) the 
signal is depicted while the autocorrelation is in (B). Note that the autocorrelation is 
symmetric and has its maximal value at the origin. 

is depicted in Figure 9.1.A. Its autocorrelation is given by the triangular 

c&) = /- s(t)s(t - ~)dt = L;(“;:“:, dt = (2 - 171) -00 - , - (9 8) . 

depicted in Figure 9.1.B. In that figure we see several features that are 
readily shown to be more general. The autocorrelation is symmetric around 
time lag zero, and it takes on its maximum value at lag zero, where it is 
simply the energy ES. The autocorrelation is also wider than the original 
signal, but attacks and decays more slowly. 

Had we used an inverted rectangle (which differs from the original signal 
by a phase shift) 

{ 

-1 ItI < 1 
s(t) = 0 else 

we would have found the same autocorrelation. Indeed the generalization of 
autocorrelation to complex signals, 

~~(7) - Jm s*(t)s(t - T)dt A D C&n) f E s;snmm . (9 9) --oo 72=--00 

can be shown to be phase blind (unchanged by multiplying s by a common 
phase factor). 

What is the autocorrelation of the periodic square wave o(t)? General- 
izing our previous result we can show that the autocorrelation is a periodic 
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triangular wave of the same period. This too is quite general-the autocor- 
relation of a periodic signal is periodic with the same period; and since the 
lag-zero autocorrelation is a global maximum, all lags that are multiples of 
the period have globally maximal autocorrelations. This fact is precisely the 
secret behind using autocorrelation for determining the period of a periodic 
phenomenon. One looks for the first nonzero peak in the autocorrelation as 
an indication of the period. The same idea can be used for finding Fourier 
components as well; each component contributes a local peak to the auto- 
correlation. 

As our final example, let’s try a digital autocorrelation. The signal b, is 
assumed to be zero except for n = 1. . . 13 where it takes on the values f 1. 

. ..0.0,+1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,-1,+1,0,0 ,... (9.10) 

Its autocorrelation is easily computed to be C(0) = 13, C(m) = 0 for odd r-n 
in the range -13 < m < 13, C(m) = 1 for even nonzero m in this range, and 
all other autocorrelations are zero. We see that the autocorrelation is indeed 
maximal at m = 0 and symmetric, and in addition the highest nonzero- 
lag correlations are only 1. Signals consisting of 44 values with this last 
property (i.e., with maximal nontrivial autocorrelation of v or less) are 
called Barker codes, and are useful for timing and synchronization. There is 
no known way of generating Barker codes and none longer than this one are 
known. 

The definitions for autocorrelation or crosscorrelation given above in- 
volve integrating or summing over all times, and hence are not amenable 
to computation in practice. In any case we would like to allow signals to 
change behavior with time, and thus would like to allow correlations that 
are defined for finite time durations. The situation is analogous to the prob- 
lem that led to the definition of the STFT, and we follow the same tactic 
here. Assuming a rectangular window of length N, there are N terms in the 
expression for the zero lag, but only N - 1 terms contribute to the lag 1 
correlation slsa + szsr + . . . + SN.-~SN-~, and only N - m terms in the lag 
m sum. So we define the short-time autocorrelation 

&x%-m (9.11) 

where now the zero lag is the power rather than the energy. This quantity is 
often called the unbiased empirical autocorrelation when it is looked upon 
as a numerical estimate of the full autocorrelation. 
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EXERCISES 

9.2.1 What is the connection between autocorrelation defined here for determin- 
istic signals and the autocorrelation we earlier defined for stochastic signals 
(equation (5.22))? 

9.2.2 What is the crosscorrelation between a signal s(t) and the impulse s(t)? 

9.2.3 Compute and draw the crosscorrelation between two analog rectangular sig- 
nals of different widths. 

9.2.4 Compute and 
nals. 

draw the crosscorrelation between two analog triangular sig- 

9.2.5 Show that CyZ(m) = C&,(-m). 

9.2.6 Prove that the autocorrelation is symmetric and takes its maximum value at 
the origin, where it is the energy. Show that IcZy(m)( 5 1. 

9.2.7 Can you find Barker codes of length 5, 7, and ll? What are their autocorre- 
lations? 

9.2.8 What is the proper generalization of crosscorrelation and autocorrelation to 
complex signals? (Hint: The autocorrelation should be phase independent.) 

9.2.9 Prove that the autocorrelation of a periodic signal is periodic with the same 
period. 

9.210 Prove that zero mean symmetric signals have zero odd lag autocorrelations. 

9.2.11 Assume gn = x,+1. What are the connections between CZy (m), C,(m) and 
c,(m)? 

9.2.12 Derive the first few autocorrelation values for sn = Asin(wn + 4). 

9.2.13 Generalize the previous exercise and derive the following expression for the 
general autocorrelation of the sinusoid. 

G(m) = (wn+m) 
A2 

= yj- cos(wm) 

9.3 The Wiener-Khintchine Theorem 

The applications of correlation that we have seen so far derive from its con- 
nection with the difference between two signals. Another class of applications 
originate in the relationship between autocorrelation and power spectrum 
(see Section 4.5), a relationship known as the Wiener-Khintchine Theorem. 



358 CORRELATION 

The PSD of a signal is the absolute square of its FT, but it is also can 
be considered to be the FT of some function. Parseval’s relation tells us 
that integrating the PSD over all frequencies is the same as integrating the 
square of the signal over all times, so it seems reasonable that the iFT of 
the PSD is somehow related to the square of the signal. 

Could it be that the PSD is simply the FT of the signal squared? The DC 
term works because of Parseval, but what about the rest? We don’t have 
to actually integrate or sum to find out since we can use the connection 
between convolution and FT of a product FT(zy) = X * Y (equation (4.18) 
or (4.46)). Using the signal s for both z and y we see that the FT of s2(t) 
is S*S = $S(w - Q)S(Q)dO, which is not quite the PSD lSl2 = S*S = 
S(-w)S(w) (for real signals), but has an additional integration. We want to 
move this integration to the time side of the equation, so let’s try s *s. From 
equation (4.19) or (4.47) we see that the FT of s * s is S2(w) which is even 
closer, but has both frequency variables positive, instead of one positive and 
one negative. So we need something very much like s * s but with some kind 
of time variable inversion; that sounds like the autocorrelation! 

So let’s find the FT of the autocorrelation. 

FT (c,(t)) = FT 
(s 

O” s(r)s(r - t)d7) 
-00 

00 
= 

I (s 

00 
S(T)S(T - t)dT ciwtdt 

-00 -cm 

= 

The PSD at last! 
We have thus proven the following celebrated theorem. 

The Wiener-Khintchine Theorem 
The autocorrelation Cs (t) and the power spectrum S(w) are an FT pair. n 

Although we proved the theorem for deterministic analog signals, it is 
more general. In fact, in Section 5.7 we used the Wiener-Khintchine theorem 
as the definition of spectrum for random signals. 
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As a corollary to the theorem we can again prove that the autocorrela- 
tion is ‘phase blind’, that is, independent of the spectral phase. Two signals 
with the same power spectral density but different spectral phase will have 
the same autocorrelation function, and hence an infinite number of signals 
have the same autocorrelation. Methods of signal analysis that are based on 
autocorrelation can not differentiate between such signals, no matter how 
different they may look in the time domain. If we need to differentiate be- 
tween such signals we need to use the higher-order statistics of Section 9.12. 

EXERCISES 

9.3.1 The period of a pure sinusoid is evident as a peak in the autocorrelation and 
hence its frequency is manifested as a peak in the power spectrum. This is 
the true basis for the connection between autocorrelation and PSD. What 
can you say about the autocorrelation of a general periodic signal? What is 
the autocorrelation of the sum of two sinusoidal components? Can you see 
the PSD connection? 

9.3.2 Express and prove the Wiener-Khintchine theorem for digital signals. 

9.3.3 Generalize the Wiener-Khintchine theorem by finding the FT of the cross- 
correlation of two signals z(t) and y(t). 

9.4 The Frequency Domain Signal Detector 

Simply observing the input signal in the time domain is not a very sensitive 
method of detecting low-SNR signals, a fact made obvious by looking back 
at Figure 2.9. Since correlation is a method for detecting weak signals, and 
correlation is related to spectrum by the Wiener-Khintchine theorem, there 
should be a way of exploiting the frequency domain for signal detection. 

In Section 5.3 we saw how to reduce noise by averaging it out. This 
would seem to be a purely time domain activity, but there is a frequency 
domain connection. To see this, consider the simplest case, that of a pure 
sinusoid in noise. For averaging to optimally reinforce the signal we must 
first ensure that all the times intervals commence at precisely the same phase 
in a period, an operation called ‘time registration’. Without registration the 
signal cancels out just like the noise; with inaccurate registration the signal 
is only partially reinforced. If we wish to take successive time intervals, 
accurate registration requires the intervals to be precise multiples of the 
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sinusoid’s basic period. Thus signal emphasis by averaging requires precise 
knowledge of the signal’s frequency. 

Now let’s see how we can emphasize signals working directly in the fre- 
quency domain. In a digital implementation of the above averaging each 
time interval corresponds to a buffer of samples. Assume that the period 
is L samples and let’s use a buffer with exactly k periods. We start filling 
up the buffer with the input signal consisting of signal plus noise. Once the 
buffer is filled we return to its beginning, adding the next signal sample to 
that already there. Performing this addition M times increases the sinusoidal 
component by M but the noise component only by m (see exercise 5.3.1). 
Hence the SNR, defined as the ratio of the signal to noise energies, is im- 
proved by M. This SNR increase is called the processing gain. 

How many input samples did we use in the above process? We filled the 
buffer of length kL exactly M times; thus N = kLM input samples were 
needed. We can use a buffer with length corresponding to any integer number 
of periods k, but the N input signal samples are used most efficiently when 
the buffer contains a single cycle k = 1. This is because the processing gain 
M = & will be maximal for a given N when k = 1. However, it is possible 
to do even better! It is possible to effectively reduce the ‘buffer’ to a single 
sample such that M = N, and obtain the maximal processing gain of N. 

All we have to do is to downmix the signal to DC, by multiplying by 
a complex exponential and low-pass filtering. The noise will remain zero 
mean while the sinusoid becomes a complex constant, so that averaging as in 
Section 6.6 cancels out the noise but reinforces the constant signal. Now, as 
explained in Section 13.2, this complex downmixing can be performed using 
the DFT. So by performing a DFT the energy in the bin corresponding to the 
desired signal frequency increases much faster than all the other bins. In the 
frequency domain interpretation the processing gain is realized due to the 
signal being concentrated in this single bin, while the white noise is spread 
out over N bins. Thus were the signal and noise energies initially equal, the 
ratio of the energy in the bin corresponding to the signal frequency to that 
of the other bins would be N, the same processing gain deduced from time 
domain arguments. 

So we see that our presumption based on the Wiener-Khintchine theorem 
was correct; the frequency domain interpretation is indeed useful in signal 
detection. Although we discussed only the simple case of a single pure sinu- 
soid, it is relatively easy to extend the ideas of this section to more general 
signals by defining distinctive spectral signatures. Instead of doing this we 
will return to the time domain and see how to build there a signal detection 
system for arbitrary signals. 
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EXERCISES 

9.4.1 Express the processing gain in decibels when the DFT is performed using a 
2m point FFT. 

9.4.2 In the text we tacitly assumed the signal frequency to be precisely at a bin 
center. If this is not the case a window function 20~ (see Section 13.4) must 
be employed. Show that with a window the signal energy is enhanced by 
(C, UJ,)~ while the noise energy is increased by C, wi thus resulting in a 
processing gain of the ratio of these two expressions. 

9.4.3 Build a detector for a signal that consists of the equally weighted sum of two 
sinusoids. Is it worthwhile taking the phases into account? What if the signal 
is the weighted sum of the two sinusoids? 

9.4.4 Extend the technique of the previous exercise and build a DFT-based detector 
for a completely general signal. 

9.5 Correlation and Convolution 

Although we have not mentioned it until now, you have no doubt noticed 
the similarity between the expression for digital crosscorrelation in equa- 
tion (9.5) and that for convolution in equation (6.13). The only difference 
between them is that in correlation both indices run in the same direction, 
while in convolution they run in opposite directions. Realizing this, we can 
now realize our signal comparator as a filter. The filter’s coefficients will be 
the reference signal reversed in time, as in equation (2.16). Such a filter is 
called a matched filter, or a correlator. The name matched filter refers to the 
fact that the filter coefficients are matched to the signal values, although in 
reverse order. 

What is the frequency response of the matched filter? Reversing a sig- 
nal in time results in frequency components FT (s(4)) = S(-w), and if 

the signal is real this equals S* (w) , so the magnitude of the FT remains 
unchanged but the phase is reversed. 

From the arguments of Section 9.1 the correlator, and hence the the- 
oretically identical matched filter, is the optimum solution to the problem 
of detecting the appearance of a known signal sn contaminated by additive 
white noise x, = sn + u,. 

Can we extend this idea to optimally detect a signal in colored noise? To 
answer this question recall the joke about the mathematician who wanted a 
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cup of tea. Usually he would take the kettle from the cupboard, fill it with 
water, put it on the fire, and when the water boiled, pour it into a cup and 
drop in a tea bag. One day he found that someone had already boiled the 
water. He stared perplexed at the kettle and then smiled. He went to the 
sink, poured out the boiling water, returned the kettle to the cupboard and 
declared triumphantly: ‘The problem has been reduced to one we know how 
to solve.’ 

How can we reduce the problem of a signal in colored noise to the one for 
which the matched filter is the optimal answer? All we have to do is filter the 
contaminated signal xn by a filter whose frequency response is the inverse 
of this noise spectrum. Such a filter is called a whitening filter, because it 
flattens the noise spectrum. The filtered signal XL = sk + u; now contains 
an additive white noise component uk, and the conditions required for the 
matched filter to be optimal are satisfied. Of course the reference signal sk 
is no longer our original signal s,; but finding the matched filter for sk is 
straightforward. 

EXERCISES 

9.5.1 Create a sinusoid and add Gaussian white noise of equal energy. Recover the 
sinusoid by averaging. Experiment with inaccurate registration. Now recover 
the sinusoid by a DFT. What advantages and disadvantages are there to this 
method? What happens if the frequency is inaccurately known? 

9.5.2 Build a matched filter to detect the HPNA 1.0 pulse (see exercise 7.7.4). Try 
it out by synthesizing pulses at random times and adding Gaussian noise. 
HPNA 1.0 uses PPM where the information is in the pulse position. How 
precisely can you detect the pulse’s time of arrival? 

9.5.3 Compare the time domain matched filter with a frequency domain detector 
based on the FFT algorithm. Consider computational complexity, processing 
delay, and programming difficulty. 

9.6 Application to Radar 

Matched filters were invented in order to improve the detection of radar 
returns. We learned the basic principles of radar in Section 5.3 but were 
limited to explaining relatively primitive radar processing techniques. With 
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our newly acquired knowledge of matched filters we can now present im- 
proved radar signals and receivers. 

Radar pulses need to have as much energy as possible in order to increase 
the probability of being detected, and thus should be long in duration. In 
order to increase a radar’s range resolution we prefer narrow pulses since 
it’s hard to tell when exactly a wide pulse arrives. How can we resolve this 
conflict of interests? The basic idea is to use a wide pulse but to modulate it 
(Le., to change its characteristics with time). The output of a filter matched 
to this modulation can be made to be very short in duration, but containing 
all the energy of the original pulse. 

To this end some radars vary their instantaneous frequency linearly with 
time over the duration of the pulse, a technique known as FM chirp We 
demonstrate in Figure 9.2 the improvement chirp can bring in range reso- 
lution. The pulse in Figure 9.2-A is unmodulated and hence the matched 
filter can do no better than to lock onto the basic frequency. The output of 
such a matched filter is the autocorrelation of this pulse, and is displayed in 
Figure 9.2.B. Although theoretically there is a maximum corresponding to 
the perfect match when the entire pulse is overlapped by the matched fil- 
ter, in practice the false maxima at shifts corresponding to the basic period 

Figure 9.2: The autocorrelation of pulses with and without chirp. In (A) a pulse with 
constant instantaneous frequency is depicted, and its wide autocorrelation is displayed in 
(B). In (C) we present a pulse with frequency chirp; its much narrower autocorrelation is 
displayed in (D) . 
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make it difficult to determine the precise TOA. In contrast the chirped pulse 
of Figure 9.2.C does not match itself well at any nontrivial shifts, and so 
its autocorrelation (Figure 9.2.D) is much narrower. Hence a matched filter 
built for a chirped radar pulse will have a much more precise response. 

Chirped frequency is not the only way to sharpen a radar pulse’s auto- 
correlation. Barker codes are often used because of their optimal autocorre- 
lation properties, and the best way to embed a Barker code into a pulse is 
by changing its instantaneous phase. Binary Phase Shift Keying (BPSK), 
to be discussed in Section 18.13, is generated by changing a sinusoidal sig- 
nal’s phase by 180”, or equivalently multiplying the sinusoid by -1. To use 
the 13-bit Barker code we divide the pulse width into 13 equal time inter- 
vals, and assign a value f 1 to each. When the Barker code element is +l 
we transmit + sin(wt), while when it is -1 we send - sin(&). This Barker 
BPSK sharpens the pulse’s autocorrelation by a factor of 13. 

Not all radars utilize pulses; a Continuous Wave (CW) radar transmits 
continuously with constant amplitude. How can range be determined if echo 
arrives continuously? Once again by modulating the signal, and if we want 
constant amplitude we can only modulate the frequency or phase (e.g., by 
chirp or BPSK). Both chirp and BPSK modulation are popular for CW 
radars, with the modulation sequence repeating over and over again without 
stopping. CW radars use LFSR sequences rather than Barker codes for a very 
simple reason. Barker codes have optimal linear autocorrelation properties, 
while maximal-length LFSR sequences can be shown to have optimal circular 
autocorrelation characteristics. Circular correlation is analogous to circular 
convolution; instead of overlapping zero when one signal extends past the 
other, we wrap the other signal around periodically. A matched filter that 
runs over a periodically repeated BPSK sequence essentially reproduces the 
circular autocorrelation. 

EXERCISES 

9.6.1 Plot, analogously to Figure 9.2, the autocorrelation of a pulse with a 13-bit 
Barker code BPSK. 

9.6.2 What is the circular autocorrelation of the LFSR15 sequence? 

9.6.3 What is the difference between coherent 
way are coherent radars better? 

and incoherent pulse radars? In what 
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9.7 The Wiener Filter 

The matched filter provides the optimum solution to the problem of detect- 
ing the arrival of a known signal contaminated by noise; but correlation- 
based filters are useful for other problems as well, for example, removing 
noise from an unknown signal. 

If the signal is known in the matched filter problem, then why do we need 
to clean it up? The reason is that the signal may be only partially known, 
and we must remove noise to learn the unknown portion. In one common 
situation we expect a signal from a family of signals and are required to 
discover which specific signal was received. Or we might know that the signal 
is a pure sinusoid, but be required to measure its precise frequency; this is 
the case for Doppler radars which determine a target’s velocity from the 
Doppler frequency shift. 

Let’s see how to build a filter to optimally remove noise and recover a 
signal. Our strategy is straightforward. It is simple to recover a sufficiently 
strong signal in the presence of sufficiently weak noise (i.e., when the SNR 
is sufficiently high). When the SNR is low we will design a filter to enhance 
it; such a filter’s design must take into account everything known about the 
signal and the noise spectra. 

Before starting we need some notation. For simplicity we observe the 
spectrum from DC to some frequency F. We will denote the original analog 
signal in time as s(t) and in frequency as S(f). We will call its total energy 
Es. We denote the same quantities for the additive noise, v(t), V(f), and 
Ev, respectively. These quantities are obviously related by 

and if the noise is white then we further define its constant power spectral 
density to be Vu = $Y watt per Hz. The overall signal-to-noise ratio is the 
ratio of the energies 

SNR = 2 (9.12) 
Y 

but we can define time- and frequency-dependent SNRs as well. 

I V>l 2 

SNR(t) = -!--- 
I @)I v 2 

IW >I2 SNW) = Iv(f)lz (9.13) 
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Finally, the observed signal is the sum of the signal plus the noise. 

x(t) = s(t) + v(t) X(f) = S(f) + w (9.14) 

We’ll start with the simple case of a relatively pure sinusoid of frequency 
fo in white noise. The signal PSD consists of a single narrow line (and 
its negative frequency conjugate), while the noise PSD is a constant VO; 
accordingly the SNR is 3. What filter will optimally detect this signal 
given this noise? Looking at the frequency-dependent SNR we see that the 
signal stands out above the noise at fo; so it makes sense to use a narrow 
band-pass filter centered on the sinusoid’s frequency J-J. The narrower the 
filter bandwidth BW, the less noise energy is picked up, so we want BW 
to be as small as possible. The situation is depicted in Figure 9.3.A where 
we see the signal PSD represented as a single vertical line, the noise as a 
horizontal line, and the optimum filter as the smooth curve peaked around 
the signal. The signal-to-noise ratio at the output of the filter 

(9.15) 

is greater than that at the input by a factor of & . For small B W this is a 
great improvement in SNR and allows us to detect the reference signal even 
when buried in very high noise levels. 

Now let’s complicate matters a bit by considering a signal with two equal 
spectral components, as in Figure 9.3.B. Should we use a filter that captures 
both spectral lines or be content with observing only one of them? The two- 
component filter will pass twice the signal energy but twice the noise energy 
as well. However, a filter that matches the signal spectrum may enhance the 
time-dependent SNR; the two signal components will add constructively at 
some time, and by choosing the relative phases of the filter components we 
can make this peak occur whenever we want. Also, for finite times the noise 
spectrum will have local fluctuations that may cause a false alarm in a single 
filter, but the probability of that happening simultaneously in both filters 
is much smaller. Finally, the two-component filter can differentiate better 
between the desired signal and a single frequency sinusoid masquerading as 
the desired signal. 

Were one of the frequency components to be more prominent than the 
other, we would have to compensate by having the filter response H(f) as 
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Figure 9.3: Expected behavior of an optimum filter in the frequency domain. In all the 
figures we see the PSD of the reference signal and noise, as well as the Wiener filter. The 
various cases are discussed in the text. 

depicted in Figure 9.3.C. This seems like the right thing to do, since such a 
filter emphasizes frequencies with high SNR. Likewise Figure 9.3.D depicts 
what we expect the optimal filter to look like for the case of two equal signal 
components, but non-white noise. 

How do we actually construct this optimum filter? It’s easier than it 
looks. From equation (9.14) the spectrum at the filter input is S(f) + V(f), 
so the filter’s frequency response must be 

S(f) 
H(f) = S(f) + V(f) (9.16) 

in order for the desired spectrum S(f) to appear at its output. This fre- 
quency response was depicted in Figure 9.3. Note that we can think of this 
filter as being built of two parts: the denominator corresponds to a whitening 
filter, while the numerator is matched to the signal’s spectrum. Unlike the 
whitening filter that we met in the matched filter detector, here the entire 
signal plus noise must be whitened, not just the noise. 

This filter is a special case of the Wiener filter derived by Norbert Wiener 
during World War II for optimal detection of radar signals. It is a special 
case because we have been implicitly assuming that the noise and signal are 
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uncorrelated. When the noise can be correlated to the signal we have to be 
more careful. 

This is not the first time we have attempted to find an unknown FIR fil- 
ter. In Section 6.13 we found that the hard system identification problem for 
FIR filters was solved by the Wiener-Hopf equations (6.63). At first it seems 
that the two problems have nothing in common, since in the Wiener filter 
problem only the input is available, the output being completely unknown 
(otherwise we wouldn’t need the filter), while in the system identification 
case both the input and output were available for measurement! However, 
neither of these statements is quite true. Were the output of the Wiener 
filter completely unspecified the trivial filter that passes the input straight 
through would be a legitimate solution. We do know certain characteristics 
of the desired output, namely its spectral density or correlations. In the hard 
system identification problem we indeed posited that we intimately knew the 
input and output signals, but the solution does not exploit this much detail. 
Recall that only the correlations were required to find the unknown system. 

So let’s capitalize on our previous results. In our present notation the 
input is xn = sn + u, and the desired output sn. We can immediately state 
the Wiener-Hopf equations in the time domain 

k 

so that given CsZ and CZ we can solve for h, the Wiener filter in the time 
domain. To compare this filter with our previous results we need to transfer 
the equations to the frequency domain, using equation (4.47) for the FT of 
a convolution. 

Here PsZ (w) is the FT of the crosscorrelation between s(t) and x(t) , and 
Px(w) is the PSD of x(t) ( i.e., FT of its autocorrelation). Dividing we find 
the full Wiener filter. 

f+) = psz(w) 
w4 

(9.17) 

For uncorrelated noise Ps&) = P&) and Pz(w) = P&) + P&) and so 
the full Wiener filter reduces to equation (9.16). 

The Wiener filter only functions when the signals being treated are sta- 
tionary (i.e., Psx and Ps are not functions of time). This restriction too can 
be lifted, resulting in the K&nun filter, but any attempt at explaining its 
principles would lead us too far astray. 
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EXERCISES 

9.7.1 Assume that the signal s(t) has constant PSD in some range but the noise 
y(t) is narrow-band. Explain why we expect a Wiener filter to have a notch 
at the disturbing frequency. 

9.7.2 An alternative to the SNR is the ‘signal-plus-noise-to-noise-ratio’ S+NNR. 
Why is this ratio of importance? What is the relationship between the overall 
S+NNR and SNR? What is the relationship between the Wiener filter and 
the frequency-dependent S+NNR and SNR? 

9.8 Correlation and Prediction 

A common problem in DSP is to predict the next signal value sn based on 
the values we have observed so far. If sn represents the closing value of a 
particular stock on day n the importance of accurate prediction is obvious. 
Less obvious is the importance of predicting the next value of a speech signal. 
It’s not that I impolitely do not wish to wait for you to finish whatever 
you have to say; rather the ability to predict the next sample enables the 
compression of digitized speech, as will be discussed at length in Chapter 19. 
Any ability to predict the future implies that less information needs to be 
transferred or stored in order to completely specify the signal. 

If the signal s is white noise then there is no correlation between its 
value sn and its previous history (i.e., Cs(m) = 0 Vm # 0), and hence no 
prediction can improve on a guess based on single sample statistics. However, 
when the autocorrelation is nontrivial we can use past values to improve 
our predictions. So there is a direct connection between correlation and 
prediction; we can exploit the autocorrelation to predict what the signal 
will must probably do. 

The connection between correlation and prediction is not limited to au- 
tocorrelation. If two signals x and y have a nontrivial crosscorrelation this 
can be exploited to help predict yn given xn. More generally, the causal pre- 
diction of yn could depend on previous y values, x~, and previous x values. 
An obvious example is when the crosscorrelation has a noticeable peak at 
lag m, and much information about gn can be gleaned from xnern. 

We can further clarify the connection between autocorrelation and signal 
prediction with a simple example. Assume that the present signal value sn 
depends strongly on the previous value s,-1 but only weakly on older values. 
We further assume that this dependence is linear, sn M b ~~-1 (were we to 
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take s n ti b ~~-1 + c we would be forced to conclude c = 0 since otherwise the 
signal would diverge after enough time). Now we are left with the problem of 
finding b given an observed signal. Even if our assumptions are not very good, 
that is, even if sn does depend on still earlier values, and/or the dependence 
is not really linear, and even if sn depends on other signals as well, we are 
still interested in finding that b that gives the best linear prediction given 
only the previous value. 

Sn - = bsn-l (9.18) 

What do we mean by best prediction? The best definition of best is for 
the Mean Squared Error (MSE) 

dz = (in - bn)2 = (sn - bsn-1)2 = Si - 2 bsn Sn-1 + b2si-l 

to be as small as possible, on the average. We are now in familiar territory. 
Assuming the signal to be time-invariant we average over all time 

(di) = (SE) -2b (SnSn-1) +b2 (Si-1) = (1+b2)Cs(0) - 2bCs(l) 

and then differentiate and set equal to zero. We find that the optimal linear 
prediction is 

b ‘s(l) = - = c,(l) 
cs (0) 

(9.19) 

the normalized autocorrelation coefficient for lag 1. Substituting this back 
into the expression for the average square error, we find 

( > 
d; = cm - c,2(1) 

cs (0) 
(9.20) 

so that the error vanishes when the lag 1 correlation equals the energy. 

EXERCISES 

9.8.1 Wiener named his book The Extrapolation, Interpolation and Smoothing of 
Stationa y Time Series with Engineering Applications. Wiener’s ‘extrapola- 
tion’ is what we have called ‘prediction’. What did he mean by ‘interpolation’ 
and ‘smoothing’ ? 

9.8.2 Find the optimal linear prediction coefficients when two lags are taken into 
account. 

s,, = bls,.+1 + bzsn-2 
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9.9 Linear Predictive Coding 

Signal coding, that is, compression of the amount of information needed to 
represent a signal, is an important application of DSP. To see why, consider 
the important application of digital speech. A bandwidth of 4 KHz is re- 
quired so we must sample at 8000 samples per second; with 16 bit samples 
this requires 128 Kb/s, or just under 1 MB of data every minute. This data 
rate cannot be transferred over a telephone connection using a modem (the 
fastest telephone-grade modems reach 56 Kb/s) and would even be a tremen- 
dous strain on storage facilities. Yet modern speech compression techniques 
(see Chapter 19) can reduce the required rate to 8 Kb/s or less with only 
barely noticeable quality degradation. 

Let’s call the signal to be compressed sn. If s is not white noise then it 
is at least partially linearly predictable based on its M previous values. 

sn = Ge, -I- 5 bmsn-m 
m=l 

(9.21) 

Here e, is the portion of the signal not predictable based on the signal’s own 
history, G is an arbitrarily introduced gain, and bm are called the Linear 
Predictive Coding (LPC) coefficients. Note that most people use a for these 
coefficients, but we reserve a for FIR coefficients; some people use a minus 
sign before the sum (i.e., use what we call ,0 coefficients). 

Equation (9.21) has a simple interpretation; the signal sn is obtained 
by filtering the unpredictable signal e, by a all-pole filter with gain G and 
coefficients bm . The e, is called the ‘excitation’ signal since it ‘excites’ the 
filter into operation. Since the filter is all-pole it enhances certain excited 
frequencies; these amplified frequencies are responsible for the non-flat spec- 
trum and nontrivial autocorrelation of predictable signals. For speech sig- 
nals (see Section 11.3) the excitation e, is the ‘glottal excitation’; for voiced 
speech (e.g., vowels) this is a periodic set of pulses created by the vocal 
chords,.while for unvoiced speech (e.g., h) it is a noise-like signal created by 
constricting the passage of air. For both cases the mouth and nasal cavities 
act as a filter, enhancing frequencies according to their geometry. 

In order to compress the signal we need an algorithm for finding the 
M + 1 parameters G and bm given a buffer of N samples of the signal 

{ 1 N-l Sn n=O* Looking carefully at equation (9.21) we note a problem. There 
are too many unknowns. In order to uniquely determine the coefficients bm 
we need to know both the observed speech signal sn and the excitation 
en. Unfortunately, the latter signal is usually inaccessible; for speech signals 
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obtaining it would require swallowing a microphone so that it would be close 
to the vocal chords and before the vocal tract. We thus venture forth under 
the assumption that the excitation is identically zero. This is true most of the 
time for a pulse train excitation, only erring for those time instants when the 
impulse appears. It is obviously not a good approximation for many other 
cases. 

Under the assumption of zero excitation we get the homogeneous recur- 
sion 

M 

sn = c bmsn-m (9.22) 
m=l 

for which s = 0 (the zero signal) is a solution. It is the only solution if the 
excitation was truly always zero; but due to the IIR nature of the filter, other 
possibilities exist if the excitation was once nonzero, even if zero during the 
duration of the present buffer. For speech the excitation is not truly zero, 
so even when we find the coefficients bm we can only approximately predict 
the next signal value. 

M 

sn = c bmsn-m (9.23) 
m=l 

The error of this approximation is called the residual signal 

M 

7-n = sn - sn = sn, - c bmsn-m = 5 Pmsn-m (9.24) 

(where ,& E 1 and pm = -bm), and the correct LPC coefficients minimize 
this residual. Note that the residual is obtained by FIR filtering the input 
signal, with the filter coefficients being precisely pm. This all-zero filter is 
usually called the ‘LPC analysis filter’ and it is the inverse filter of the 
‘LPC synthesis filter’ that synthesizes the speech from the excitation (see 
Figure 9.4). The analysis filter is also called the ‘LPC whitening filter’, the 
residual being much whiter than the original speech signal, since the linear 
predictability has been removed. 

There is another way of looking at the residual signal. Rather than taking 
no excitation and treating the residual as an error signal, we can pretend 
that there is excitation but take the error to be precisely zero. What must 
the excitation be for s’, to be the correct signal value? Comparing equations 
(9.24) and (9.21) we see that rn = Gen, the residual is simply the excitation 
amplified by the gain. Thus when analyzing voiced speech we see that the 
residual is usually small but displays peaks corresponding to the vocal chord 
pulses. 
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e+Ft-+s s = = t- all-zero 
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Figure 9.4: LPC synthesis and analysis filters. The synthesis filter synthesizes the signal 
s,, from the excitation e,, while the analysis filter analyzes incoming signal s,, and outputs 
the residual error signal rn. The synthesis and analysis filters are inverse systems to within 
a gain. 

One final remark regarding the residual. In speech compression termi- 
nology the residual we defined is called the open-loop residual. It can be 
calculated only if the original speech samples sn are available. When decom- 
pressing previously compressed speech these samples are no longer available, 
and we can only attempt to predict the present signal value based on past 
predicted w&es. It is then better to define the closed-loop residual 

M 

7-i = sn + C bm%t-m 
m=l 

and minimize it instead. 
Returning to our mission, we wish to find coefficients bm that minimize 

the residual of equation (9.24). In order to simultaneously minimize the 
residual rn for all times of interest n, we calculate the MSE 

E = cri = C(sn - 5 bmsn-m)2 
n n m=l 

(9.25) 

and minimize it with respect to the bm (m = 1. . .1M). This minimization is 
carried out by setting all M partial derivatives equal to zero 

which leads us to the following set of A4 equations. 

M 

c(C 

bl&-mSn-l- &&x-m 
) 

=o 

n 1=1 

(9.26) 
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Moving the sum on 72 inside we can rewrite these 

in which the signal enters only via autocorrelations Cs. 

(9.27) 

(9.28) 

These are, of course, the Yule-Walker equations for the LPC coefficients. 
The sum in the autocorrelations should run over all times n. This is 

problematic for two reasons. First, we are usually only given an input signal 
buffer of length IV, and even if we are willing to look at speech samples 
outside this buffer, we cannot wait forever. Second, many signals including 
speech are stationary only for short time durations, and it is only sensible 
to compute autocorrelations over such durations. Thus we must somehow 
limit the range of times taken into account in the autocorrelation sums. 
This can be done in two ways. The brute-force way is to artificially take all 
signal values outside the buffer to be zero for the purposes of the sums. A 
somewhat more gentle variant of the same approach uses a window function 
(see Section 13.4) that smoothly reduces the signal to zero. The second 
way is to retain the required values from the previous buffer. The first way 
is called the autocorrelation method and is by far the most popular; the 
second is called the covariance method and is less popular due to potential 
numerical stability problems. 

The autocorrelation method allows the sum in the MSE to be over all 
times, but takes all signal values outside the buffer se. . . s~-l to be zero. 
Since the error en in equation (9.24) depends on A4 + 1 signal values, it can 
only be nonzero for n = 0. . . N + M - 1. Accordingly, the MSE is 

N+M-1 

E= c et 
n=O 

and the correlations appearing in it have these limits. 

N+M-1 

C,g(mj Z) e C Sn-m,Sn-1 = C~(l?72 - 21) 

n=O 
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Writing the Yule-Walker equations in matrix notation 

cs (0) Cs(l) . . . Cs(M-1) 

cs (1) Cs(0) . . . Cs(M-2) 

cs (2) Cs(l) . . . C,(M-3) 
. . . . . . . . 

C,(M-1) C,(M-2) l :. GiO) 

we see that the matrix is symmetric and Toeplitz. In the next section we 
will study a fast method for solving such equations. 

The MSE in the covariance method is taken to be 
N-l 

E=p; 
n=O 

and here we don’t assume that the signal was zero for n < 0. We must thus 
access N + M signal values, including M values from the previous buffer. 
Equations (9.27) are still correct, but now the sums over n no longer lead 
to genuine autocorrelations due to the limits of the sums being constrained 
differently. 

N-l 

Cs(77%, Z) S C Sn-m,Sn-1 = Cs(1, m) 
n=O 

In particular C, although symmetric is no longer a function of II - ml, but 
rather a function of I and m separately. Writing these equations in matrix 
form we get a matrix that is symmetric but not Toeplitz. 

Cs(l,l) C&,2) * * * Cs(l,M) Cs(l,l) C&,2) * * * Cs(l,M) 

C&,2) C&2) . . . G(2, M) C&,2) C&2) . . . G(2, M) 

C&3) Cs(2,3) . . . G(3,M) C&3) Cs(2,3) . . . G(3,M) (9.30) (9.30) 
. . . . . . . . . . . . 

Cs(l;M) C,(2jM) .:. Cs(l;M) C,(2jM) .:. 

The fast methods of solving Toeplitz equations are no longer available, and 
the Cholesky decomposition (equation (A.94)) is usually employed. 

Since general covariance matrices are of this form this method is called 
the covariance method, although no covariances are obviously present. For 
N >> M the difference between using N samples and using N + M samples 
becomes insignificant, and the two methods converge to the same solution. 
For small buffers the LPC equations can be highly sensitive to the boundary 
conditions and the two methods may produce quite different results. 
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EXERCISES 

9.9.1 What is the approximation error for the covariance method? 

9.9.2 Equation (9.22) predicts sn based on M previous values s,+r, ~~-2,. . . s,+M 
and is called the forward predictor. We can also ‘predict’ (postdict?) s,-M 
based on the next M values s+M+r, . . . , s,+ 1, sn. This surprising twist on 
LPC is called backward linear prediction. Modify equation (9.22) for this case 
(call the coefficients c,). What is the residual? 

9.9.3 Show that the MSE error can be written E = C, si + C,“=, b, C, snsnmm 

and thus for the autocorrelation method E = C,(O) + Cz=1 bmCs(m). 

9.9.4 Show that assuming the input to be an impulse G&Q the gain is given by 
the error as given in the previous exercise. 

9.9.5 Use the LPC method to predict the next term in the sequence 1, a, 02, a3,. . . 
for various 0 < c1! < 1. Repeat for cy > 1. Does the LPC method always 
correctly predict the next signal value? 

9.10 The Levinson-Durbin Recursion 

Take an empty glass soft-drink bottle and blow over its mouth. Now put a 
little water in the bottle and blow again. The frequency produced is higher 
since the wavelength that resonates in the cavity is shorter (recall our dis- 
cussion of wavelength in Section 7.9). By tuning a collection of bottles you 
can create a musical instrument and play recognizable tunes. 

The bottle in this experiment acts as a filter that is excited by breath 
noise. Modeling the bottle as a simple cylinder, the frequency it enhances 
is uniquely determined by its height. What if we want to create a signal 
containing two different frequencies? One way would be to blow over two 
different bottles separately (i.e., to place the filters in parallel). From our 
studies of filters we suspect that there may be a way of putting the filters in 
series (cascade) as well, but putting two cylinders one after the other only 
makes a single long cylinder. In order to get multiple frequencies we can use 
cylinders of different cross-sectional areas, the resonant frequencies being 
determined by the widths rather than the heights. 

If we send a sound wave down a pipe that consists of a sequence of 
cylinders of different cross-sectional areas Ai, at each interface a certain 
amount of acoustic energy continues to travel down the pipe while some is 
reflected back toward its beginning. Let’s send a sinusoidal acoustic wave 
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down a pipe consisting of two cylinders. Recalling from Section 7.9 that 
traveling waves are functions of s - wt, we can express the incoming wave 
for this one directional case as foilowL 

#I (z t) = Asin(z - vt) ant 7 (9.31) 

The reflected wave in the first cylinder will be sinusoid of the same frequency 
but traveling in the opposite direction and reduced in amplitude 

$J~>(z 7 t) = kAsin(z + vt) (9.32) 

where the reflection coefficient k is the fraction of the wave that is reflected. 
Since the energy is proportional to the signal squared, the fraction of the 
wave’s energy that is reflected is k2, while the wave energy that continues 
on to the second cylinder is whatever remains. 

E2 = (1- k2)E1 (9.33) 

Now for a little physics. The $ for sound waves can represent many 
different physical quantities (e.g., the average air particle displacement, the 
air particle velocity, the pressure). We’ll assume here that it represents the 
velocity. Physically this velocity must be continuous across the interface 
between the two sections, so at the interface the following must hold. 

The derivative of the velocity is the acceleration, which is proportional to 
the force exerted on the air particles. The pressure, defined as the force per 
unit area, must be continuous at the interface, implying that the following 
must hold there. 

$‘I (z t) - &$(z t) ant 7 9 p(rr: t) ? = 
AI A2 

Combining these two equations results in 

l+k l-k -=- 
Al A2 

and rearranging we find an expression for the reflection coefficient in terms 
of the cross-sectional areas. 

k AI - A2 

= A,+& 
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Let’s check to see that this result is reasonable. If the second cylinder 
shrinks to zero area (closing off the pipe) then k = 1 and the wave is entirely 
reflected, as it should be. If there really is no interface at all (i.e., Al = AZ) 
then k = 0 and no energy is reflected. If AZ >> A1 then k = -1, which seems 
unreasonable at first; but an open-ended pipe has zero pressure at its end, 
and so the wave reflects but with a phase reversal. 

It isn’t hard to generalize our last result to a pipe with many sections. 
The reflection coefficient at the interface between section i and section i + 1 
is 

ki = Ai - Ai+1 
Ai + Ai+1 

(9.34) 

What does all this have to do with solving the Yule-Walker equations for 
the LPC coefficients in the autocorrelation method? The LPC coefficients 
b, are not the only way of describing an all-pole system; the area ratios, 
the reflection coefficients, and many others (including an interesting set to 
be discussed in the next section) can be used instead. Since all of these 
parameter sets contain exactly the same information, it follows that we can 
derive any set from any other set. Many of the parameter sets are related by 
linear transformations, and hence the conversion is equivalent to multiplying 
by a matrix. We will now show that the connection between the reflection 
and LPC coefficients can be expressed as a recursion that is the most efficient 
way of deriving both. 

How can equation (9.29) be solved recursively? For simplicity we’ll drop 
the subscript identifying the signal, but we have to add superscripts identi- 
fying the recursion depth. The first case is simple (for further simplicity we 
have dropped the subscript) 

C(0) bl’] = C(1) --+ 

and its MSE is 

El = C(0) - bl]lC(l) = C(O)(l - kf) 

where we have defined kl z br]. Let’s assume we have already solved the 

mth case 

. . 

blnm] 
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and let’s write this C[“]b[ml = ~1~1. W e are now interested in the (m + l)th 
= - 

case 

where we have drawn in delimiters that divide the equations into two parts: 

i 

C(O) C(1) . . . C(m-1) 

cm C(0) . . . C(m2) 

. . . . . . . . . . . . 

C(1IE-1) C(m-2) . . . 04 C(l) C(2) = 
L 1 

. . . C(m) 
and 

( C(m) C(?n-1) . . . co> C(O) ) 

(9.35) 

(9.36) 

Now multiply equation (9.35) by the inverse of the autocorrelation matrix 

of the mth iteration (C[ml)-l and use the results of that iteration. 
= 
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Defining J as the matrix that reverses row order 
= 

0 0 . . . 0 1 
0 0 . . . 1 0 

J ii;;; = 

= i 0 1 . . . 0 0 
1 0 . . . 0 0 1 

and noting that it commutes with Toeplitz matrices, we can finally write 
the following recursion for the LPC coefficients 

[ F)=(L-km+li)[ fl (9.37) 

where k, E bk]. 
In the statistics literature the k variables are called ‘partial correlation’ or 

PARCOR coefficients, since they can be shown to measure the correlation 
between the forward and backward prediction errors (see exercise 9.9.2). 
Later we will show that they are exactly the reflection coefficients. 

Were we to know km+1 this recursion would produce all the other new 
b[“+‘l given the old b[ml. So we have reduced the problem of finding the 
LPC coefficients to the problem of finding the PARCOR coefficients. Yet it 
is obvious from equation (9.36) that the converse is also true, kLm+l] can be 

derived from the lower b[“+‘] coefficients. So let’s derive a recursion for the 
ks and try to eliminate the bs. 

First we rewrite equation (9.36) as 

C(1) C(2) . . . 

J = + km+lC(O) = C(mtl) 

which can be written (with obvious notation) as follows. 

c - Jb’“+‘I + km+lC(O) = C(m + 1) - -- - 
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Now we substitute the !I[~+‘] vector from equation (9.37) 

381 

c . J(I - km+l J)b[“l + k,+#(O) = C(m + 1) 
== =- 

and finally solve for km+1 (noting J2 = I) = = 

C(m + 1) - c l JbLrnl 
k m+l = 

C(O) - c T$T- 

C(m+lG-_ __ c * Jb[ml 
= 

Em - 

identifying the MSE in the denominator. After following all the above the 
reader will have no problem proving that the MSE obeys the simplest re- 
cursion of all. 

E m+l = (1~ k&+,)Ern (9.38) 

Let’s now group together all the recursive equations into one algorithm 
that computes the k and b coefficients for successively higher orders until 
we reach the desired order M. 

Given the signal autocorrelations C(0) through C(M) 
Start with EO = C(0) 
for m + 1 to M 

b[m] + km = 

for p = m - 1 down to 1 
&/I t b[m-1l _ k P 

b[“-ll 
m m-u 

Em + (l-kg)Em-r ’ 
for p + 1 to M 

b t bLM1 

To see how the algorithm works 
coefficients . 

( g; g’, ) 

The first iteration is easy. 

E. = 

b[l’] = 

let’s run through it for the case of two 

(i:)=( 2) 

C(O) 
C(1) ICI = - 
C(O) 
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Now we can perform the second iteration 

E _ C2(O> - C2(l> 
1- 

C(O) 

bp = k2= 
C(2)C(O) - C2(1) 

C2(0) - V(l) 

$1 = $1 - k2 = WC(O) - ww 
C2(0) - C2(1) 

and we have found the desired coefficients br and b2. 
We finish the section by fulfilling our promise to show that the k are the 

reflection coefficients. If we implement the LPC analysis filter (the FIR filter 
that converts the signal into the residual as a multistage lattice filter) then 
equation (9.38) tells us how the energy of the residual decreases. Comparing 
this with equation (9.33) completes the identification. 

EXERCISES 

9.10.1 Prove equation (9.34) for a pipe with multiple sections taking into account 
the reflected wave from the next interface. 

9.10.2 Transmission lines have both voltage and current traveling waves, the ratio 
between the voltage and current being the impedance 2. At a splice where 
the impedance changes a reflected wave is generated. Express the reflection 
coefficient in terms of the impedances. Explain the limiting cases of shorted 
and open circuited cables. 

9.10.3 Prove equation (9.38) for the MSE. 

9.10.4 Solve the three-coefficient problem on paper using the Levinson-Durbin re- 
cursion. 

9.10.5 Show that the complexity of the Levinson-Durbin algorithm is O(i@) rather 
than O(M3) as for non-Toeplitz systems. 

9.10.6 Levinson originally solved the more general problem of solving the equations 
TX = y where T is Toeplitz but unrelated to y. Generalize the recursion -- - - 
G solve this problem. (Hint: You will need another set of recursions.) How 
much more computationally complex is the solution? 
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9.11 Line Spectral Pairs 

Another set of parameters that contain exactly the same information as the 
LPC coefficients are the Line Spectral Pair (LSP) frequencies. To introduce 
them we need to learn a mathematical trick that can be performed on the 
polynomial in the denominator of the LPC system function. 

A polynomial of degree M 

M 

u(x) = C pmxm = a0 + ala: + azx2 + . . . aM-2xMe2 + aMelxM-l + aMxM 

is called ‘palindromic’ if Um = UM-m, i.e., 

a() = aM al = aM-1 a2 = aM-2 etc. 

and ‘antipalindromic’ if Um = -aM-m, i.e., 

al = -M-l a2 = -M-2 etc. 

so 1 + 2x + x2 is palindromic, while z + x2 - x3 is antipalindromic. It is 
not hard to show that the product of two palindromic or two antipalin- 
dromic polynomials is palindromic, while the product of an antipalindromic 
polynomial with a palindromic one is antipalindromic. 

We will now prove that every real polynomial that has all of its zeros on 
the unit circle is either palindromic or antipalindromic. The simplest cases 
are x + 1 and x - 1, which are obviously palindromic and antipalindromic, re- 
spectively. Next consider a second degree polynomial with a pair of complex 
conjugate zeros on the unit circle. 

a(x) = (x - 24) (x - e-i+) 
= x2 _ e-i4 x _ &4, + ,i4,--i+ 

= x2 - 2cos($) + 1 

This is obviously palindromic. 
Any real polynomial that has k pairs of complex conjugate zeros will 

be the product of k palindromic polynomials, and thus palindromic. If a 
polynomial has k pairs of complex conjugate zeros and the root +l it will 
also be palindromic, while if it has -1 as a root it will be antipalindromic. 
This completes the proof. 

The converse of this statement is not necessarily true; not every palin- 
dromic polynomial has all its zeros on the unit circle. The idea behind the 
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LSPs is to define palindromic and antipalindromic polynomials that do obey 
the converse rule. Let’s see how this is done. 

Any arbitrary polynomial a(z) can be written as the sum of a palin- 
dromic polynomial p(z) and an antipalindromic polynomial a(x) 

a, = 2Prn + qm) where Pm = am + a,--WI 

%?I = a??X- aM--m 
(9.39) 

(if M is even the middle coefficient appears in pm only). When we are dealing 
with polynomials that have their constant term equal to unity, we would like 
the polynomials pm and qm to share this property. To accomplish this we 
need only pretend for a moment that am is a polynomial of order M + 1 and 
use the above equation with a~+1 = 0. 

a, = $<Pm + Qm) where Pm = am + aM+l-m 

qT7-t = am- aM+l-772 
(9.40) 

Now a0 = PO = Qo = 1 but pm and qm are polynomials of degree M + 1. 

Figure 9.5: The zeros of a polynomial and of its palindromic and antipalindromic com- 
ponents. The Xs are the zeros of a randomly chosen tenth order polynomial (constrained 
to have its zeros inside the unit circle). The circles and diamonds are the zeros of the p(z) 
and q(z). Note that they are all on the unit circle and are intertwined. 
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Formally we can write the relationships between the polynomials 

44 = $ (P(X) + q(2)) where 

and it is not hard to show that if all the zeros of a(x) are inside the unit circle, 
then all the zeros of p(x) and of q(x) are on the unit circle. Furthermore, 
the zeros of p(x) and q(x) are intertwined, i.e., between every two zeros 
of p(x) there is a zero of q(x) and vice versa. Since these zeros are on the 
unit circle they are uniquely specified by their angles. For the polynomial 
in the denominator of the LPC frequency response these angles represent 
frequencies, and are called the LSP frequencies. 

Why are the LSP frequencies a useful representation of the all-pole filter? 
The LPC coefficients are not a very homogeneous set, the higher-order bm 
being more sensitive than the lower-order ones. LPC coefficients do not 
quantize well; small quantization error may lead to large spectral distortion. 
Also the LPC coefficients do not interpolate well; we can’t compute them at 
two distinct times and expect to accurately predict them in between. The 
zeros of the LPC polynomial are a better choice, since they all have the same 
physical interpret at ion. However, finding these zeros numerically entails a 
complex two-dimensional search, while the zeros of p(x) and q(x) can be 
found by simple one-dimensional search techniques. In speech applications 
it has been found empirically that the LSP frequencies quantize well and 
interpolate better than all other parameters that have been tried. 

EXERCISES 

9.11 .l Let’s create a random polynomial of degree M by generating M + 1 random 
numbers and using them as coefficients. We can now find the zeros of this 
polynomial and plot them in the complex plane. Verify empirically the hard- 
to-believe fact that for large M most of the zeros are close to the unit circle 
(except for large negative real zeros). Change the distribution of the random 
number generator. Did anything change? Can you explain why? 

9.11.2 Prove that if all the zeros of U(Z) are inside the unit circle, then all the zeros 
of p(z) and of a(~) are on the unit circle. (Hint: One way is write the p and 
Q polynomials as a(z) (1 f h(x)) w h ere h(x) is an all-pass filter.) Prove that 
the zeros of p(z) and q(z) are intertwined. (Hint: Show that the phase of 
all-pass filter is monotonic, and alternately becomes x (zero of p) and 0 (zero 
of cl>*> 

9.11.3 A pipe consisting of M + 1 cylinders that is completely open or completely 
closed at the end has its last reflection coefficient kM+i = f 1. How does this 
relate to the LSP representation? 
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9.11.4 Generate random polynomials and find their zeros. Now build p(x) and q(x) 
and find their zeros. Verify that if the polynomial zeros are inside the unit 
circle, then those of p and q are on the unit circle. Is there a connection 
between the angles of the polynomial zeros and those of the LSPs? 

9.11.5 The Greek mathematician Apollonius of Perga discovered that given two 
points in the plane ~1 and ~2, the locus of points with distances to zi and ~2 
in a fixed ratio is circle (except when the ratio is fixed at one when it is a 
straight line). Prove this theorem. What is the connection to LSPs? 

9.12 Higher-Order Signal Processing 

The main consequence of the Wiener-Khintchine theorem is that most of 
the signal processing that we have learned is actually only ‘power spectrum’ 
processing. For example, when we use frequency selective filters to enhance 
signals we cannot discriminate between signals with the same power spec- 
trum but different spectral phase characteristics. When we use correlations 
to solve system identification problems, we are really only recovering the 
square of the frequency response. We have yet to see methods for deal- 
ing with signals with non-Gaussian distributions or non-minimum-phase at- 
tributes of systems. 

In this section we will take a brief look at a theory of signal process- 
ing that does extend beyond the power spectrum. We will assume that our 
signals are stochastic and stationary and accordingly use the probabilistic 
interpretation of correlations, first introduced in Section 5.6. There we de- 
fined the moment functions, definitions we repeat here in slightly modified 
form. 

M~kl(ml, m2,. . . , mk) f (wn+m, l l l sn+mk) 

The lath moment function of the digital stationary stochastic signal s is the 
average of the product of Ic + 1 signal values, at time lags defined by the 
moment function’s parameters. 

The first-order moment function is simply 

MA’] = (sn) 

the signal’s average (DC) value. The second-order moment function is 

Mi2](m) = (s~s~+~) = c&-m) 
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the autocorrelation (recall the probabilistic interpretation of autocorrelation 
of equation (5.22)). The third-order moment function is a new entity. 

@“I (ml, m2> = (wn+ml %I+,,) 
Normal signal processing exploits only the first and second moments; higher- 
order signal processing utilizes the third and higher moments as well. 

The moment functions have an especially simple interpretation for the 
special case of a stochastic signal that can only take on values 0 and 1. The 
first moment, the signal’s average value, can be interpreted as the proba- 
bility that the signal takes on the value 1; if the average is 4 this means 
that the 0 and 1 values are equally probable. The second moment, the au- 
tocorrelation, relates the signal’s values at two different times separated by 
m. Its interpretation is the probability that the signal takes on value 1 at 
any two times separated by m. If the signal is white (i.e., the 0 or 1 value 
is chosen independently at each time instant), then the autocorrelation will 
be i (fifty-fifty) for all nonzero time lags. A higher correlation at time lag 
m means that the signal’s being 1 at time n encourages the probability that 
it will be 1 at time n + m as well, while a lower correlation indicates that 
a 1 at one time inhibits a second 1. A periodic signal will have its second 
moment function equal to unity for a lag equaling the period of any multiple 
thereof, since the probability of matching values is a certainty. As correla- 
tions of nonperiodic function normally die down for large enough lags, the 
two events become independent for large m. 

The interpretation of the third moment function is now clear. It is the 
probability that the O-l stochastic signal takes on the value 1 at all three 
times n, n + ml, and n + m2. If both ml and m2 are very large we expect 
the third moment to equal the mean cubed, while if ml is small enough 
for there to be nontrivial correlations, but rn2 still large, then we expect a 
slightly more complex expression. 

However, the third moment can be significantly different from this as well. 
For instance, a signal that is generated by 

Sn = 0 (Vn + W%--ml + ags(n - ma) +. . . > 

(where V, is some driving noise signal) will have a nontrivial third moment 
function with just these lags. 
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Similarly the fourth and higher moment functions give the probability 
that the signal takes on 1 values at four or more times. In practice, in- 
terpretation of numeric moment function data is complex because of the 
contributions from lower-order moments, as in equations (9.42) and (9.43). 
For example, if 0 and 1 are equally probable, we expect to observe 1 at two 
different times with a probability of one-quarter; only deviations from this 
value signify that there is something special about the lag between the two 
times. Likewise, to really understand how connected four different times 
are, we must subtract from the fourth moment function all the contribu- 
tions from the third-order moments, but these in turn contain portions of 
second-order moments and so on. The way to escape this maize of twisty 
little passages is to define cumulants. 

The exact definition of the cumulant is a bit tricky since we have to 
keep track of all possible groupings of the time instants that appear in the 
moment function. For this purpose we use the mathematical concept of a 
‘partition’, which is a collection of nonempty sets whose union is a given set. 
For example, in the third moment there are three time instances no = n, 

721 = n+ml, and n2 = n + m2, and these can be grouped into five different 
partitions. PI = {(n17n2,n3)), P2 = e-Q>, @2r n3)), p3 = {(n2), (w, n3)), 

p4 = {(n2), (ni,n2)}, and P5 = {(nr), (ns), (n3)). We’ll use the symbol Sij 
for the jth set of partition Pi (e.g., $1 = (ni) and &2 = (nl,n2)), Ni the 
number of such sets (Ni = 1, N2 = N3 = N4 = 2 and N5 = 3)) and Nij for 
the number of elements in a set (e.g., Nrr = 3, N51 = 1). We can now define 
the cumulant 

C[“I = C(-l)~~-l(N~ - l)! ~ ~~Nij’(S~j) s (9.44) 
i j=l 

where the sum is over all possible partitions of the Ic time instants. 
It will be convenient to have a special notation for the signal with its 

DC component removed, $ E s - (s) . The first few cumulants can now be 
exmessed as follows: 

as expected, 

c;21(m) = M~21(?n) - (My)2 = (&$n+m) 

which is the autocovariance rather than the autocorrelation, 
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CL31(m1, m2) = 

Mu”] ( mw2) - A@] (M;“](n) + AI;“] ( n+m1) + M;21(n+m2) + 2(A4q3 > 
= (&Gn+ml &l+?nz > 

a surprisingly simple result, 

c~4](ml,m2,m3) = itd~4](ml,m2,m3) - . l . - 6(Mi11)4 = 

(&&+ml &l+m2 &z+ma > 

-&m,)c; (??%2--m3) PI PI PI PI PI 
-q (rn2)C$ (m3-74 - cg (ms)C4 (7w-m2) 

which is somewhat more complex. For the special case of a zero mean signal 
and ml = rn2 = ma, Cl21 is the variance, Cl31 the ‘skew’, and Ci41 the 
‘kurtosis’. 

Other than their interpretability, the cumulants are advantageous due 
to their convenient characteristics. The most important of these, and the 
reason they are called ‘cumulants’, is their additivity. 

PI Cz+&-m, m2,. . . mk-1) = Cikl(ml, m2,. . . m&l) + $‘(ml, m2,. . . m&l) 

It is easy to see that this characteristic is not shared by the moment func- 
tions. Another nice feature is their blindness to DC components 

> * * * m&l) = cikl(ml, m2,. . . mk-1) 

where a is any constant. Like the moments, cumulants are permutation blind 

C~kl(m,l, m,,, . . . mcrk.l) = C, PI (ml, m2, . . . mk-1) 

where cri is any permutation of 1. . . k - 1; and scale according to their order. 

Q?( ml, 7732,. . . mk-1) = gkdkl(ml m2 S 9 9”’ mk-1) 

If the signal is symmetrically distributed then all odd-order cumulants van- 
ish. If a signal is Gaussianly distributed all cumulants above the second-order 
vanish. 

Higher-order spectra are defined in analogy with the Wiener-Khintchine 
theorem. Just as the spectrum is the FT of CL2’ (m), the &spectrum is defined 

PI to be the two-dimensional FT of CS (ml, m2), and the trispectrum the three- 

dimensional FT of Ci41 (ml, m2, ma). It can be shown that for signals with 
finite energy, the general polyspectrum is given by a product of FTs. 

s[“l ( al, u2 - . . uk-1) = s(4s(td2) . . . s(tik-l)s*(til + (4 + . . . + w&l) 
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Now that we have defined them, we can show that cumulants are truly 
useful. Assume that we have a non-Gaussian signal distorted by Gaussian 
noise. Standard signal processing does not take advantage of the higher- 
order statistics of the signal, and can only attempt to separate the signal 
from the noise in the power spectral domain. However, cumulants of the 
third and higher orders of the noise will vanish exactly, while those of the 
signal will not, thus providing a more powerful tool for recovery of such a 
signal. For example, higher-order matched filters can be used as sensitive 
detectors of the arrival of non-Gaussian signals in Gaussian noise. 

We know from Section 8.1 that intermodulation products are produced 
when two sinusoids enter a nonlinearity. Assume we observe several fre- 
quency components in the output of a possibly nonlinear system; is there 
any way to tell if they are intermodulation frequencies rather than indepen- 
dent signals that happen to be there? The fingerprint of the phenomenon is 
that intermodulation products are necessarily phase coupled to the inputs; 
but such subtle phase relations are lost in classical correlation-based anal- 
ysis. By using higher-order cumulants intermodulation frequencies can be 
identified and the precise nature of system nonlinearities classified. 

In Sections 6.12 and 6.13 we saw how to perform correlation-based sys- 
tem identification when we had access to a system’s input and output. 
Sometimes we may desire to identify a system, but can only observe its 
output. Amazingly, this problem may be tractable if the input signal is non- 
Gaussian. For example, if the unknown system is an N tap FIR filter, 

N-l 

Yn = c hmxn-m + vn 
m=O 

the input x is zero mean but with nonzero third-order cumulant, and the 
output y is observed contaminated by additive Gaussian (but not necessarily 
white) noise v, then the system’s impulse response can be derived solely from 
the output’s third-order cumulants. 

hm = 

This amazing result is due to the input’s third-order cumulant (assumed 
nonzero) appearing in the numerator and denominator and hence cancelling 
out, and can be generalized to higher-order cumulants if needed. A related 
result is that cumulant techniques can be used for blind equalization, that 
is, constructing the inverse of an unknown distorting system, without access 
to the undistorted input. 
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EXERCISES 

9.12.1 Find all the partitions of four time instants and express CP](mi, na2, ma) in 
terms of moments. 

9.12.2 Consider the three systems (0 < a, b < 1) 

yn = &a - (U + b)xn-1 + abxn-2 

Yn = Xn - (a + b)xn+l + ubxn+2 

Yn = -ax,+1 + (I+ ab)x, - bxn-1 

What are the system functions for these systems? Which system is mini- 
mum phase, which maximum phase, and which mixed phase? Take xn to 
be a zero mean stationary white noise signal, with (xnxn+m) = S,O and 
(XnXn+m~Xn+mz > = ~,I,,. Show that the output signals from all three sys- 
tems have the same autocorrelations. Prove that for all three systems the 
same frequency response is measured. Why is this result expected? Show 
that the third-order moments are different. 

9.12.3 Prove equation (9.45). 

9.12.4 There is another way of defining cumulants. Given the k signal values 

Sn,Sn+m17-.-7 Sn+mk--l 

we posit k dummy variables wa . . . wk-1 and define the following function, 
known as the characteristic function. 

The cumulants are the coefficients of the Taylor expansion of the logarithm of 
this function. Derive the first few cumulants according to this definition and 
show that they agree with those in the text. Derive the additivity property 
from this new definition. 

9.12.5 In the text we mentioned the application of higher-order signal processing 
to the identification of intermodulation products. Let cpr, (~2 and (~3 be in- 
dependent uniformly distributed random variables and define two stochastic 
signals 

&I = cm (wn + 91) + cos (w2n + 92) cos ((w + w2)n + (p1 + $92)) 

$1 = cos (win + cpl) + cos (w2n + 4 cos ((WI + w2)n + 93) 

each of which has three spectral lines, the highest frequency being the sum 
of the lower two. The highest component of ~1~1 could be an intermodulation 
product since it is phase-locked with the other two, while that of ~1~1 is an 
unrelated signal. Show that both signals have the same autocorrelation and 
power spectrum, but differ in their third-order cumulants. 



392 BIBLIOGRAPHICAL NOTES 

Bibliographical Notes 

Matched filters are covered in most books on communications theory, e.g. [242, 951. 
Wiener’s first expositions of the Wiener-Khintchine theorem were in mathe- 

matical journals [276] but he later wrote an entire book on his discoveries [277]. 
The co-discoverer of the theorem was Aleksandr Khintchine (or Khinchin), whose 
Mathematical Foundations of Information Theo y was translated into English from 
the original Russian in 1957. 

The second volume of Norbert Wiener’s autobiography [280] has fascinating 
background information on Wiener’s work at MIT during the World War II years. 
His 1942 report, entitled Extrapolation, Interpolation and Smoothing of Stationary 
Time Series, was suppressed because of possible military applications, and finally 
released only in 1949 [278]. Even though written to be more understandable than 
the former paper, its mathematics, more familiar to physicists than engineers, was 
so difficult to the latter audience that it was commonly called the ‘yellow peril’. 
Levinson both explained Wiener’s results to a wider audience [146] and translated 
the formalism to the digital domain. While accomplishing this second task he in- 
vented his recursion [147], although digital hardware capable of computing it did 
not exist at the time. 

The invention of LPC is due to Bishnu Atal of Bell Labs [lo], who was mainly 
interested in its use for compression of speech [9]. The LSP frequencies are due 
to Itakura of NTT Research Labs [log] (but don’t bother checking the original 
reference, it’s only an abstract). 

Higher-order signal processing is the subject of a book [181] and numerous 
review articles [173, 1821. [33] d iscusses partitions in a simple way, and includes 
source code for computing the number of partitions of n objects. Cumulants were 
introduced in statistics by Fisher in the 1930s and in use in physics at about the 
same time. The idea of higher-order spectra as the FT of cumulants dates back 
to Kolmogorov, but the nomenclature ‘polyspectra’ is due to Tukey. The use of 
cumulants for output-only system identification is due to Georgios Giannakis [72]. 
A few references to the extensive literature on applications of cumulants include 
noise cancellation [49]; system identification [73, 651; blind equalization [235, 2361; 
and signal separation [286, 287, 1081. 


