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Adaptation 

We have already learned about many different types of systems. We started 
with frequency selective filters and filters designed for their time-domain 
properties. Then we saw nonfilters that had capabilities that filters lack, 
such as PLLs that can lock onto desired frequency components. Next we 
saw how to match a filter to a prespecified signal in order to best detect 
that signal. We have even glimpsed higher-order signal processing systems 
that can differentiate between signals with identical power spectra. Yet all 
these systems are simple in the sense that their design characteristics are 
known ahead of time. Nothing we have studied so far can treat problems 
where we are constantly changing our minds as to what the system should 
do. 

In this chapter we briefly discuss adaptive filters, that is, filters that vary 
in time, adapting their coefficients according to some reference. Of course 
the term ‘adaptive filter’ is a misnomer since by definition filters must be 
time-invariant and thus cannot vary at all! However, we allow this shameful 
usage when the filter coefficients vary much more slowly than the input 
signal. 

You may think that these adaptive filters would be only needed on rare 
occasions but in practice they are extremely commonplace. In order to un- 
derstand how and why they turn up we disregard our usual custom and 
present three applications before tackling the more general theory. These 
applications, noise cancellation, echo cancellation, and equalization turn out 
to have a lot in common. 

After this motivation we can introduce the more general problem, stress- 
ing the connection with the Wiener-Hopf equations. Direct solution of these 
equations is usually impossible, and so we will learn how to iteratively ap- 
proximate a solution using the Widrow-Hoff equations and the LMS algo- 
rithm. We then briefly present several of the variants to vanilla LMS, and 
the alternative RLS algorithm. 
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10.1 Adaptive Noise Cancellation 

A lecture is to be recorded using a microphone placed at some distance 
from the lecturer. It is a hot summer day and the lecture hall is packed; 
a large air-conditioning unit is running noisily, and the fluorescent fixtures 
are emitting a low buzzing noise. As the lecturer begins to speak the crowd 
hushes and a tape-recorder starts to record. What exactly is being recorded? 

Were we to listen to the recording we would certainly hear the lecturer, 
but we would soon notice other sounds as well. Fluorescent lamp noise is 
spectrally localized at harmonics of the AC supply frequency and if truly 
annoying could be filtered out using techniques we have discussed previously. 
The air-conditioner sounds and the background talking from the audience 
are not as easy to remove. They are neither spectrally localized nor station- 
ary in character. Humans are extremely good at ‘tuning out’ such noises, 
but our brains use filtering based on content, a difficult feat to duplicate. Is 
there a practical way to remove these interferences from the recording? 

Let’s focus on the air-conditioner noise, although the audience’s babble 
could be similarly treated. We propose using a second microphone placed 
near the air-conditioner so that it picks up mainly its noise and not the 
speaker’s voice. Now since the first microphone is picking up the sum of two 
signals (the desired speech and the air-conditioner noise) we need to subtract 
the air-conditioner noise signal as picked up by the second microphone from 
the first signal. If done correctly the speech signal alone will remain. 

Simplifying for the sake of presentation, we will assume that the second 
microphone hears the air-conditioner noise qn alone. The lecturer’s micro- 
phone signal gn contains both the desired speech signal xn and the air- 
conditioner noise. However, yn will not be simply the sum xn + qn for at 
least two reasons. First, the amplitude of the air-conditioner noise at the 
lecturer’s microphone will most probably be weaker than that of the micro- 
phone directly in front of the unit. Second, the speed of sound is finite, and 
thus the air-conditioner noise as detected at the lecturer’s microphone is de- 
layed as compared to the close microphone. This delay is far from negligible; 
for example, assume the lecturer’s microphone is 15 meters from that of the 
air-conditioner, take the speed of sound to be 300 meters per second, and 
let’s sample at 48 kilosamples per second. Using these numbers it takes 50 
milliseconds for the sound to travel from the air-conditioner microphone to 
the lecturer’s, a delay that corresponds to 2,400 samples! Thus, at least as 
a rough approximation we believe that 

Yn = xn + bn-k (10.1) 
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Figure 10.1: Cancelling delayed and attenuated noise by subtracting. 

with k z 2400 and h < 1. Of course the delay need not be an integer number 
of samples, and indeed in a closed room we will get multiple noise echoes 
due to the sound waves bouncing off the walls and other surfaces. Each such 
echo will arrive at a different time and with a different amplitude, and the 
total effect is obtained by adding up all these contributions. We will return 
to the effect of multiple echoes later. 

Let’s try to regain the desired clean lecturer’s voice signal from the noisy 
received signal yn and the reference signal qn. Let’s assume at first that we 
know the delay k having measured the distance between the microphones, 
but have no information regarding the gain h. We can try to subtract out 
the interference 

Xn = Yn - Rh-k (10.2) 

with zn representing our attempt at recovering xn. This attempt is depicted 
in Figure 10.1, using a self-explanatory graphical technique to be presented 
more fully in Chapter 12. We know that this could work; were we to know 
h we could set e = h and 

Xn= Yn- eQn-k =(Xn+hqn-k)- hqn-k= Xn 

as required; but since we don’t know h we have to find e. When e is improp- 
erly chosen we get the desired signal plus a residual interference, 

xn =!h-%I-k =Xn+(h-e)qnmk = Xn +m-k (10.3) 

with the amplitude of the residual rn depending on the value of e. 
In order to find e we will make the assumption that the speech signal 2, 

and the interference signal qn (delayed by any amount) are not correlated. By 
uncorrelated we mean that the correlation between x, and qn-l, as measured 
over a certain time interval, 
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c3cQ(~) = c XnQn-l 
n 

is zero for every lag 1. This is a reasonable assumption since correlation 
would imply some connection between the signals that links their values. 
We believe that the air-conditioner doesn’t care what the lecturer is saying, 
and indeed would be making essentially the same noise were the lecturer 
not to have started speaking. Now it is true that when the compressor kicks 
in and the air-conditioner becomes suddenly louder the lecturer might start 
speaking more loudly, causing some correlation between the speech and the 
noise, but this is a very slow and weak effect. So we shall assume for now 
that xn and qn are uncorrelated. 

How does this assumption help us? The lack of correlation is signifi- 
cant because when we sum uncorrelated signals their energies add. Think 
of taking two flashlights and shining them on the same spot on a wall. It 
is clear from the conservation of energy that the energy of the spot is the 
sum of each flashlight’s energy. You may recall seeing experiments where 
two light beams combine and destructively interfere leaving darkness, but 
for this to happen the beams must be correlated. When the light beams are 
uncorrelated their energies add, not their amplitudes, and the same is true 
for sounds. In large rooms there may be places where echoes constructively 
or destructively interfere, making localized spots where sounds can be heard 
from afar or mysteriously disappear; but this is because different echoes of 
the same sound are correlated. 

Returning to & = Xn + rn-k, since rn is qn to within a multiplicative 
constant, xn and r, are also uncorrelated. Thus the energy of our recovered 
5& signal is the sum of the energy of the original xn and that of the residual 
r,. However, the energy of the residual is dependent on our estimate for 
the coefficient e; the residual has large energy when this estimate is poor, 
but when we are close to the proper value the residual’s energy is close to 
zero. Of course the energy of xn is not affected by our choice of e. Thus 
we can minimize the energy of the sum signal 5, by correctly choosing the 
coefficient e! 

To see this mathematically, we write the energy of Zn 

E;i:=)~;=~(xn+r,-k)2=~x;+2~xnr,-k+~r~-k 
n n n n n 

but the cross term is precisely lag Ic of the correlation between x, and rn 
that was assumed to be zero. 
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Figure 10.2: Cancellation of filtered noise by subtraction. The filter ek is adapted to 
equal the distorting filter hk. When successfully adapted the output of ek equals that of 
hk so that the interference is subtracted from the desired signal. 

Continuing 

which as a function of e, is a parabola, with its minimum corresponding to 
&., the energy of the speech signal. 

So to find the proper coefficient e all we need to do is to vary it until we 
find the minimal energy of the reconstructed signal. Since the energy is a 
parabola there is a single global minimum that is guaranteed to correspond 
to the original lecturer’s voice. 

Now, what can we do if the delay lc is unknown? And what if the delay is 
not a integer number of samples? We might as well consider the more general 
problem of many different paths from the air-conditioner to the lecturer’s 
microphone that all combine with different Ic and h. In such a case we have 

Yn = xn + x hkqn-k (10.4) 
k 

which we recognize as corresponding to the adding of a filtered version of 
the air-conditioner noise qn to the desired signal. We try to recover xn by 
looking for the unknown filter 

&a= Yn- c elcqn-k (10.5) 
k 

as depicted in Figure 10.2. Once again we are assured that this can be 
successful, since selecting ek = hk will guarantee Zn = Xn. Viewed in this 
light, the problem of noise removal is equivalent to the finding of an unknown 
filter, with the filter coefficients possibly varying in time. 
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Following the same path as before we find that due to the assumption of 
lack of correlation between X~ and qn, the energy of the attempted recon- 
struction is the sum of two parts. 

Es! = cxi + c (C(hk - e.,,qnsk)2 
n n k 

The first is the energy of the desired signal xn and the second is the energy 
of the residual interference. As a function of the vector of coefficients, the 
energy E(el, e2,. . . eN> is a hyperparaboloid with a single global minimum 
to be found. Once again this minimum corresponds to the desired signal. 

How does one find this minimum in practice? When there was only a 
single coefficient e to be found, this was a relatively easy job. For example, 
we could start with any arbitrary e and then try moving along the e axis 
by some positive or negative amount. If the energy decreases then we keep 
moving in the same direction; otherwise we move in the opposite direction. 
If after several steps that decrease the energy, it starts to rise again, then we 
have gone too far; so we reduce the step size and ‘home in’ on the minimum. 

The more general case can also be solved by arbitrarily moving around 
and checking the energy, but such a strategy would take a long time. With 
one variable there were just two directions in which to move, while with 
N coefficients there are an infinite number of directions. However, since we 
know that the energy surface in ek space is a hyperparaboloid, we can (with 
only a little extra work) make a good guess regarding the best direction. 
The extra work is the calculation of the gradient of the energy in ek space, 
VE(el, es,. . . eN> . Recall that the gradient of a surface is the multidimen- 
sional extension of the derivative. The gradient of a function is a vector 
that points in the direction the function increases most rapidly, and whose 
length is proportional to the steepness of the function. At a maximum or 
minimum (like the base of the energy paraboloid) the gradient is the zero 
vector. Were we to be interested in finding a maximum of the energy, the 
best strategy would be to move in the direction of the gradient. Any other 
direction would not be moving to higher energy values as quickly. In order 
to find the energy’s minimum we have to reverse this strategy and move in 
the direction opposite the gradient. This technique of finding a minimum 
of a function in N-dimensional space is called steepest descent or gradient 
descent, and will be more fully explained in Section 10.5. 
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Figure 10.3: Cancelling filtered noise by an inverse filter (equalizer). This time the filter 
ek is adapted to equal the inverse of the distorting filter hk. When successfully adapted 
the output of filter e equals the input of h so that the interference is subtracted from the 
desired signal. 

Before concluding this section we wish to note an alternative solution 
to the noise cancellation problem. We could have considered the basic noise 
signal to be that which is added at the lecturer’s microphone, and the noise 
picked up by the reference microphone to be the filtered noise. According to 
this interpretation the problem is solved when the constructed filter approx- 
imates the inverse filter, as depicted in Figure 10.3. The desired signal is 
recovered due to the noise going through a filter and its inverse in series and 
then being subtracted. Both direct and inverse interpretations are useful, 
the best one to adopt depending on the application. 

EXERCISES 

10.1.1 Unlike the air-conditioner, the audience is not located at one well-defined 
location. Can the audience noise be removed in a manner similar to the air- 
conditioner noise? 

10.1.2 Build a random signal and measure its energy. Add to it a sinusoid and mea- 
sure the resulting energy. Did the energies add? Subtract from the combined 
signal the same sinusoid with varying amplitudes (but correct phase). Graph 
the energy as a function of amplitude. What curve did you get? Keep the 
correct amplitude but vary the phase. Is the behavior the same? 

10.1.3 Electrocardiographs are required to record weak low-frequency signals and 
are often plagued by AC line frequency pickup (50 or 60 Hz). Were there 
are no desired signal components near this frequency a sharp notch filter 
would suffice, however generally an adaptive technique should be employed. 
Since we can directly measure the AC line sinusoid, the problem is reduced to 
finding the optimum gain and phase delay. Explain how to solve this problem. 
Simulate your solution using a stored waveform as the desired signal and a 
slowly amplitude- and phase-varying sinusoid as interference. 

10.1.4 A ‘frequency agile notch filter’ can remove periodic interference (of unknown 
frequency) from a nonperiodic desired signal without a separate reference 
signal. Explain how this can be done. 
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10.2 Adaptive Echo Cancellation 

Communications systems can be classified as one-way (simplex) or two-way 
(full-duplex); radio broadcasts and fax machines are of the former type, while 
telephones and modems are of the latter. Half-duplex systems, with each 
side transmitting in turn, lie in between; radio transceivers with push-to-talk 
microphones are good examples of this mode. True two-way communications 
systems are often plagued by echo, caused by some of the signal sent in one 
direction leaking back and being received by the side that transmitted it. 
This echo signal is always delayed, usually attenuated, and possibly filtered. 

For telephones it is useful to differentiate between two types of echo. 
Acoustic echo is caused by acoustic waves from a loudspeaker being re- 
flected from surfaces such as walls and being picked up by the microphone; 
this type of echo is particularly annoying for hands-free mobile phones. A 
device that attempts to mitigate this type of echo is called an acoustic echo 
canceller. Line echo is caused by reflection of electric signals traveling along 
the telephone line, and is caused by imperfect impedance matching. The 
most prevalent source of line echo is the hybrid, the device that connects the 
subscriber’s single two-wire full-duplex telephone line to the four-wire (two 
simplex) channels used by the telephone company, as depicted in Figure 10.4. 
We will concentrate on line echo in this section. 

Actually, telephones purposely leave some echo to sound natural, i.e., a 
small amount of the talker’s voice as picked up at the handset’s microphone 
is intentionally fed back to the earpiece. This feedback is called ‘sidetone’ 
and if not present the line sounds ‘dead’ and the subscriber may hang up. 
If there is too little sidetone in his telephone, John will believe that Joan 
barely hears his voice and compensates by speaking more loudly. When this 
happens Joan instinctively speaks more softly reinforcing John’s impression 
that he is speaking too softly, resulting in his speaking even more loudly. If 
there is too much sidetone in Joan’s telephone, she will speak more softly 
causing John to raise his voice, etc. 

* 
telephone 

1 
f---t hybrid hybrid - telephone u 

2 
4 

Figure 10.4: The telephone hybrid. At both ends of the telephone connection are two 
wire channels, but in between the conversation is carried over four-wire circuits. 
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Figure 10.5: The telephone echo suppressor. The top line represents one direction of 
the four wire telephone channel, and the bottom line the other. When the upper signal 
is greater than the lower one the comparator gives positive output, thus keeping the 
upper path open but suppressing the lower signal. When the lower signal is greater the 
comparator output is negative and the switches open the lower path but shut the upper. 

When the delay of line echo is short, it simply combines with the sidetone 
and is not noticeable. However, when the delay becomes appreciable line echo 
becomes quite annoying. Most people find it disconcerting to hear their own 
voice echoing back in their ear if the delay is over 30 milliseconds. An echo 
suppressor is a simple device that combats line echo by disconnecting one 
side of the conversation while the other side is talking. The functioning of 
an echo suppressor is clarified in Figure 10.5. Echo suppressors often cause 
conversations to be carried out as if the telephone infrastructure were half- 
duplex rather than full-duplex. Such conversations are unnatural, with each 
side lecturing the other without interruption, rather than engaging in true 
dialog. In addition, echo suppressors totally disrupt the operation of data 
communications devices such as faxes and modems, and must be disabled 
before these devices can be used. A Line Echo Canceller (LEC) is a more 
complex device than an echo suppressor; it enables full-duplex conversations 
by employing adaptive DSP algorithms. 

How does an echo canceller work? Like the adaptive noise canceller, the 
basic idea is that of subtraction; since we know the original signal that has 
been fed back, we need only subtract it out again. However, we need to know 
the delay, attenuation, and, more generally, the filter coefficients before such 
subtraction can be carried out. 

Full-duplex modems that fill all of the available bandwidth and use a 
single pair of wires for both directions always experience echo. Indeed the 
echo from the nearby modulator may be as strong as the received signal, 
and demodulation would be completely impossible were it not to be removed 
effectively. Hence a modem must remove its own transmitted signal from the 
received signal before attempting demodulation. 
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Modems typically determine the echo canceller parameters during a short 
initialization phase before data is transferred. Consider the following com- 
mon technique to measure the delay. The modem on one side sends an 
agreed-upon event (e.g., a phase jump of 180” in an otherwise unmodulated 
sinusoid) while the other side waits for this event to occur. As soon as the 
event is detected the second modem sends an event of its own (e.g., a phase 
reversal in its sinusoid), while the first waits. The time the first modem mea- 
sures between its original event and detecting the other modem’s event is 
precisely the round-trip delay. Similarly, the finding of the filter coefficients 
can be reduced to a system identification problem, each side transmitting 
known signals and receiving the filtered echo. While the system identification 
approach is indeed useful, its results are accurate only at the beginning of 
the session; in order to remain accurate the echo canceller must continuously 
adapt to changing line conditions. For this reason modem echo cancellers are 
initialized using system identification but thereafter become adaptive. 

Returning to telephone conversations, it is impractical to require humans 
to start their conversations with agreed-upon events (although starting with 
‘hello’ may be almost universal), but on the other hand the requirements 
are not as severe. You will probably not notice hearing an echo of your own 
voice when the delay is less than 20 milliseconds, and international stan- 
dards recommend controlling echo when the round-trip delay exceeds 50 
milliseconds. This 50 milliseconds corresponds to the round-trip propaga- 
tion delay of a New York to Los Angeles call, but modern digital networks 
introduce processing delay as well, and satellite links introduce very annoy- 
ing half-second round-trip delays. Even when absolutely required voice echo 
cancellers needn’t remove echo as completely as their modem counterparts 
and are allowed to be even less successful for a short amount of time at the 
beginning of the conversation. 

In the late 1970s the phone companies introduced phone network LECs, 
an implementation of which is depicted in Figure 10.6. Its philosophy is ex- 
actly opposite that of the modem’s internal echo canceller discussed above. 
It filters the signal arriving over the phone network from the far-end (the 
reference) and subtracts it from the near-end signal to be sent out to the 
network, aspiring to send only clean echo-free near-end speech. Echo is com- 
pletely controlled by placing LECs at both ends of the four-wire network. 

Figure 10.6 is not hard to understand. After the hybrid in the local 
telephone company office, the signal to be sent is digitized in order to send 
it to its destination over the phone system’s digital infrastructure. Before 
the signal is sent out it undergoes two processes, namely subtraction of the 
echo estimate and NonLinear Processing (NLP). 
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Figure 10.6: A digital telephone network line echo canceller (LEC). In this diagram only 
signal flow lines are indicated; invisible are the logic indications sent from the double- 
talk detector to the adaptation mechanism and NLP, and the fact that the adaptation 
mechanism sets the filter coefficients and the NLP threshold. 

The filter processor places digital samples from the far-end into a static 
buffer (called the ‘X register’ in LEC terminology), convolves them with the 
filter (called the H register), and outputs the echo estimate to be subtracted 
from the near-end samples. 

The adaptation mechanism is responsible for adapting the filter coeffi- 
cients in order to reproduce the echo as accurately as possible. Assume that 
the far-end subscriber is talking and the near-end silent. In this case the 
entire signal at the input to the subtracter is unwanted echo generated by 
the nearby hybrid and the near-end telephone. Consequently, the adaptation 
mechanism varies the filter coefficients in order to minimize the energy at the 
output of the subtracter (the place where the energy is measured is marked 
in the figure). If the far-end is quiet the adaptation algorithm automatically 
abstains from updating the coefficients. 

When the double-talk detector detects that both the near-end and far- 
end subscribers are talking at the same time, it informs the adaptation 
mechanism to freeze the coefficients. The Geigel algorithm compares the ab- 
solute value of the near-end speech plus echo to half the maximum absolute 
value in the filter’s static buffer. Whenever the near-end exceeds the far-end 
according to this test, we can assume that only the near-end is speaking. 

The nonlinear processor (NLP) is a center clipper (see equation (8.7)), 
that enables the LEC to remove the last tiny bit of perceived echo. For 
optimal functioning the center clipping threshold should also be adapted. 

Although the LEC just described is somewhat complex, the basic filter is 
essentially the same as that of the adaptive noise canceller. In both cases a 
filtered reference signal is subtracted from the signal we wish to clean up, and 
in both cases the criterion for setting the coefficients is energy minimization. 

These two characteristics are quite general features of adaptive filters. 
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EXERCISES 

10.2.1 Why is an acoustic echo canceller usually more complex than an LEC? 

10.2.2 Why is the phone network LEC designed to cancel echo from the transmitted 
signal, rather than from the received signal? 

10.2.3 Describe the following performance criteria for echo cancellers: convergence 
speed, ERLE (echo return loss enhancement), and stability (when presented 
with narrow-band signals). The minimum performance of acoustic echo can- 
tellers is detailed in ITU-T standard G.167, and that of LECs in G.165 and 
G.168. Research, compare, and contrast these standards. 

10.2.4 Assume that each tap of the echo cancelling FIR filter takes a single instruc- 
tion cycle to calculate, that each coefficient update takes a single cycle as 
well, and that all the other elements are negligible. Estimate the maximum 
and typical computational complexities (in MIPS) required to echo cancel a 
standard voice channel (8000 samples per second) assuming a 16-millisecond 
‘tail’ in which echoes can occur. 

10.2.5 Explain the Geigel algorithm for double-talk detection. Why isn’t it sufficient 
to compare the present near-end to a single far-end value? Why compare to 
half the maximum far-end? How does it differ from the comparator in the 
echo suppressor? How can it be improved? 

10.3 Adaptive Equalization 

As a third and final example of adaptive signal processing we will consider 
adaptive equalization of digital communications signals. We previously de- 
fined an equalizer as a filter that counteracts the unwanted effects of another 
filter. For communications signals (to be treated in Chapter 18) this invari- 
ably means trying to overcome destructive effects of the communications 
channel; this channel being universally modeled as a filter followed by addi- 
tion of noise, as depicted in Figure 10.7. 

In general the equalizer cannot overcome noise, and so the optimal equal- 
izer is the inverse filter of the channel. Recall from the previous section how 
modems calculate their echo cancellers; in similar fashion they use system 
identification techniques during an initialization phase in order to learn the 
channel and hence the optimum equalizer. Adaptive equalization is needed 
thereafter to track changes in the channel characteristics. 

Is channel equalization really needed? Let’s consider the simplest possible 
digital communications signal, one that takes on one value for each 0 bit 
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Figure 10.7: An equalizer for digital communications signals. The original signal z(t) 
transmitted through the communications channel, and subject to additive noise y(t), is 
received as signal y(t). The purpose of the equalizer is to construct a signal z(t) that is as 
close to z(t) as possible. 

to be transmitted, and another for each 1 bit. These transmitted values 
are referred to as ‘symbols’, and each such symbol is transmitted during a 
symbol interval. Ideally the signal would be constant at the proper symbol 
value during each symbol interval, and jump instantaneously from symbol 
to symbol; in reality it is sufficient for the signal value at the center of the 
symbol interval to be closer to the correct symbol than to the alternative. 
When this is the case the receiver, by focusing on times far from transitions, 
can make correct decisions as to the symbols that were transmitted. 

When the modem signal traverses a channel it becomes distorted and 
the ability of the receiver to properly retrieve the original information is 
impaired. This effect is conventionally tested using the eye pattern (see Fig- 
ure 10.8). The eye pattern is constructed by collecting multiple traces of the 
signal at the output of the equalizer. When the ‘eye is open’ information 
retrieval is possible, but when the ‘eye is closed’ it is not. In terms of the 
eye pattern, the purpose of an equalizer is to open the eye. 

Figure 10.8: The eye pattern display graphically portrays the effect of ISI, noise and 
possibly other impairments on the receiver’s capability to properly decode the symbol. In 
the present diagram the eye is ‘open’ and proper decoding is possible. 



406 ADAPTATION 

Figure 10.9: The effect of increasing intersymbol interference, The filtered channel out- 
put is superposed over the original signal. In (A) (th e mildest channel) the received signal 
is close to the ideal signal. In (B) the bandwidth has been reduced and symbol recovery 
has become harder. In (C) proper symbol recovery is not always likely. In (D) (the harshest 
channel) symbol recovery has become impossible. 

Why do channels cause the eyes to close? Channels limit the bandwidth 
of signals that pass through them, and so ideal symbols will never be ob- 
served at the channel output. Mild channels merely smooth the symbol-to- 
symbol jumps, without impairing our ability to observe the proper symbol 
value far from transitions, but channels with long impulse responses smear 
each symbol over many symbol intervals, as seen in Figure 10.9. As a re- 
sult the channel output at any given time is composed not only of the de- 
sired symbol, but of contributions of many previous symbols as well, a phe- 
nomenon known as InterSymbol Interference (ISI). When the IS1 is strong 
the original information cannot be recovered without equalization. 

At first glance the adaptation of an equalizer would seem to be com- 
pletely different from the applications we discussed in previous sections. In 
the previous cases there was an interfering signal that contaminated the 
signal of interest; here the source of contamination is the signal itself! In 
the previous cases there was a reference signal highly correlated to the con- 
taminating signal; here we observe only a single signal! Notwithstanding 
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these apparent differences, we can exploit the same underlying principles. 
The trick is to devise a new signal (based on our knowledge of the original 
signal) to play the role of the reference signal. 

Assuming that the equalizer was initially acquired using system identifi- 
cation techniques, we can presume that the receiver can make proper deci- 
sions regarding the symbols that were transmitted, even after some drift in 
channel characteristics. If proper decisions can be made we can reconstruct 
a model of the originally transmitted signal and use this artificially recon- 
structed signal as the reference. This trick is known as Decision Directed 
Equalization (DDE). Using DDE makes adaptive equalization similar to 
adaptive noise cancellation and adaptive echo cancellation. 

EXERCISES 

10.3.1 An alternative to equalization at the receiver as illustrated in Figure 10.7 is 
‘Tomlinson equalization’, where the inverse filter is placed at the transmitter. 
What are the advantages and disadvantages of this approach? (Hints: What 
happens if the channel’s frequency response has zeros? How can the equalizer 
be adapted?) 

10.3.2 DDE is not the only way to adapt an equalizer. Blind equalization uses gen- 
eral characteristics of the signal, without making explicit decisions. Assume 
the symbol for a 0 bit is -1 and that for a 1 bit is +l. How can the fact that 
the square of both symbols is unity be used for blind equalization? Describe 
a blind equalizer for a constant amplitude signal that encodes information in 
its phase. 

10.3.3 Signal separation is a generalization of both equalization and echo cancel- 
lation. The task is to separate the signal mixtures and recover the original 
signals. Let xi be the original signals we wish to recover, and yi the observed 
combination signals. The most general linear two-signal case is 

Yl = h * xl + hn * x2 (10.6) 

Y2 = h * XI + hzz * x2 

where hii are the self-filters (which need to be equalized) and the hi#j the 
cross-filters (which need to be echo-cancelled). Generalize this to N combi- 
nations of N signals. What conditions must hold for such problems to be 
solvable? 
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10.4 Weight Space 

After seeing several applications where adaptive filters are commonly used, 
the time has come to develop the conceptual formalism of adaptive signal 
processing. In Section 10.1 we saw how to adapt a noise cancellation filter 
by minimization of energy; in this section we will see that a large family of 
problems can be solved by finding the minimum of a cost function. A cost 
function, or loss function, is simply a function that we wish to minimize. If 
you have to buy a new computer in order to accomplish various tasks, and 
the computer comes in many configurations and with many different pe- 
ripherals, you would probably try to purchase the package of minimum cost 
that satisfies all your needs. Some people, apparently with a more positive 
mind-set, like to speak of maximizing gain functions rather than minimizing 
loss functions, but the two approaches are equivalent. 

We start by reformulating the difficult FIR system identification problem 
of Section 6.13. Your opponent has an FIR filter u that produces a desired 
output signal dm = C,“=, vnx,-,. We can rewrite this using a new notation 
that stresses the fact that the output is the weighted combination of its 
inputs. 

N 
(10.7) 

n=l 

We have introduced this rather unusual vector notation in order to keep our 
discussion as general as possible. Using the dot product we can consider d to 
be the output of an FIR filter, in which case x are N consecutive values of 
a signal; the output of a phased array (see Section 7.9), in which case x are 
values of N different signals received simultaneously by N sensors; or a-two- 
class linearly separable pattern recognition discrimination function. In this 
last application there are objects, each of which has N measurable numerical 
features, xi . . . XN. Each object belongs to one of two classes, and pattern 
recognition involves identifying an object’s class. Two classes are called lin- 

early separable when there is a linear function d(:[“l) = C,“=, v,x~~] that 
is positive for all objects belonging to one class and negative for all those 
belonging to the other. 

When using this new notation the N coefficients are called ‘weights’, 
and v a ‘weight vector’. In all three cases, the adaptive filter, the adaptive 
beamformer, and the two-class discriminator, our task is to find this weight 
vector given example inputs x [ml and outputs dImI. Since this is still the 

system identification problemryou know that the optimum solution will be 
given by the Wiener-Hopf equations (6.63). However, we beg your indulgence 
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as our aim is to rederive these equations in a way that will be more suitable 
for adaptive filters. 

Assume that after seeing m - 1 inputs and respective desired outputs we 
manage to come up with some weight vector w. Then upon observing the - 
mth example, we predict the output to be 

(10.8) 

and if the desired output is really Jrnl our output gm is in error by 614 = 
&4 - ,bq 

Consider now the abstract iv-dimensional vector space of all possible 
weight vectors w. Before our opponent allows us to observe the system 
all weight vectors are possible, and all points in weight space are equally 
plausible. After we have observed a single input-output example only a small 
subset of weight space remains as plausible weight vectors, since most weight 
vectors would produce outputs differing significantly from the observed one. 
We can pick any point in this subset of plausible weight vectors as our guess 
w. Each successive input-output example we observe reduces the size of the 
subset of plausible weight vectors; indeed, were there no noise, after seeing 
N different examples the subset would have been reduced to a single point. 

This picture is encouraging, but doesn’t provide us a practical heuristic 
with which to find good weight vectors. To do so we now define the cost (or 
loss) function L(w). This cost function is defined for every weight vector 
in weight space, id is simply a measure of how plausible a weight vector 
w  really is. A highly plausible weight vector should have a low cost, while 
one that noticeably violates the desired examples would be assigned a high 
cost. An obvious candidate for the cost function is the Mean Squared Error 

WE) 
L(w) = ( (6[“Q2) (10.9) - 

the averaging being done over all the observed examples. From its definition 
the MSE is always nonnegative, and in the absence of noise there is a single 
weight vector for which the MSE is precisely zero. This weight vector is 
precisely the weight vector your opponent used, and by finding it you win 
the game. In the presence of noise there will generally not be any weight 
vectors with precisely zero MSE, but your best guess will be the weight 
vector with the Minimum Mean Squared Error (MMSE). 

Now you have a strategy with which to proceed. For each example m 
take the input z irnl, calculate the corresponding output ~1~1 for every weight - 
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vector in weight space according to equation (10.8), and furthermore com- 
pute the square of the error (6[ml)2 = (&‘l - ~1~1)~. Repeat this procedure 
for all the examples and compute the average error for each weight vector. In 
so doing you have assigned a nonnegative number to every point in weight 
space. You then need only look for the weight vector with the minimum 
cost, and you’re done. 

Of course it would be quite time consuming to compute this MSE cost 
function for all points in weight space, so let’s use a little mathematical 
analysis to zoom in on the MMSE. The MSE cost function is 

L(x) f ((&my) = ((cpl - y’“‘)2) 
= ((&4)2 - 2&7$bl + (p4)2) (10.10) 

= ((d[“l)2) - 2 (d[m$p) + ((y[“‘)2) 

where the expectation ((~@‘l)~) simply means adding up all the errors and 

dividing by the number of examples. Substituting the basic relation (10.8) 
we find 

L(u) = ((d[m1)2) - 2 ( dLml Fwnxn) + (F F w-wn~~) 
= ( (d[m])2) - 2 c 20, (d[m]xn) + cc wnq (xnxz) 

n n 1 

where the sums are all from 1 to N and the expectation on m. 
The expressions in the last line have simple interpretations. The first 

term is the average of the square of the desired outputs; we’ll call it D2. 
The second term contains N crosscorrelations between each of the input 

components Xn and the desired output dImI, C’dZ(~) E ( dimIxn) . The third 

term contains all the input autocorrelations &(n, 2) = (xnxl) . Considering 
the crosscorrelation to be a vector (with index n) and the autocorrelation 
to be a matrix (with indices 72 and Z), we can write the following matrix 
equation for the cost function as a function of the weight vectors. 

L(w) = D2 - 2 C Wn(Cdz)n + C C WnWl(C,>nl (10.11) - 
n n 1 

= D2 - 2~. Cdz -I- wC,w -- -v- 
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To find the minimum of the cost function we need to use the gradient 
operator 

(10.12) 

and set the gradient of the cost equal to zero. 

0 = VL(w) = - -2(cdz>n + 2 ~(&)dW = -2c& -j- 2c, w -- 
1 

Solving, we find the following set of N equations 

i.e. c&g = &ut - -- (10.13) 

which we immediately recognize as the Wiener-Hopf equations (6.63). The 
solution to these equations is immediate. 

To recap, given M input-output examples, we compute N input-output 
crosscorrelations (Cd,), and N2 input autocorrelations (Cz)nl. We then 
write down N coupled algebraic equations that can be solved for wn. For 
realistically large N these equations are difficult to solve explicitly, and it is 
usually worthwhile to find the MMSE iteratively. 

Finding the minimum of a function in high-dimensional space is a hard 
problem, but one that has been extensively studied. The major problem with 
numeric methods for finding a global minima is the fact that they tend to get 
stuck in local minima; in our case, the cost function in weight space defined 
in equation (10.11) is a quadratic function that can never become negative; 
as such it is always a hyperparaboloid with a single global minimum. 

One family of minima (or maxima) finding methods is iterative descent. 
These methods start with some initial guess and repeatedly update this 
guess using 

WI =w+6w (10.15) - - - 
choosing the correction term such that the cost function decreases. 

L(w’) < L(w) (10.16) - - 

If the cost function indeed decreases at each step, we must eventually arrive 
at a minimum. 

The simplest type of iterative step is gradient descent, where the new 
guess is found by moving in the direction in which the cost function de- 
creases the fastest. To do this we compute the gradient VL( w), which is - 
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Figure 10.10: The effect of different step sizes on constant step size gradient descent. 
Small steps waste iterations while large steps may overshoot the minimum. 

the direction in which the cost function increases most rapidly, and move 
in the opposite direction. More sophisticated methods exploit the matrix of 
second derivatives (the Hessian) as well, but even just calculating and stor- 
ing the N-by-N matrix can be prohibitive in high dimensions. All of these 
methods require inverting the Hessian matrix, an operation that is not only 
computationally costly, but numerically problematic. 

In the simplest type of gradient descent we move some arbitrary step 
size p at every step of the algorithm. 

W1 
w4 

- = If - ppL(w)l 
(10.17) 

In general, this is often not a good idea (see Figure 10.10) since where the 
gradient is steep this step size may be overly small requiring us to take many 
small steps where one large one would have sufficed, while where the gradient 
is shallow we may overshoot the minimum and need to reverse direction at 
the next iteration. Alternatively, we can save computation by moving some 
fraction of the value of the gradient 

wt = w - XVL(w) (10.18) - - 

which is a logical thing to do if the gradient gets larger as we go further 
from the minimum. There are more complex techniques that search along 
the line to determine how far to move (requiring much more computation), 
or vary the step size depending on the absolute value of the gradient or the 
difference between the present gradient direction and that of the previous 
iteration. 
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We have seen that the MMSE weight vector can be found explicitly 
via the Wiener-Hopf equations, or numerically using minimum finding tech- 
niques such as gradient descent. Both of these methods assume that the un- 
derlying system is time-invariant. When the system can constantly change 
we require MMSE finding methods that can dynamically adapt to these 
changes. The rest of the chapter will be devoted to such methods. It is 
an interesting coincidence of alliteration that the equations that constitute 
the simplest adaptive adaptation of the Wiener-Hopf equations is called the 
Widrow-Hoff equation. 

EXERCISES 

10.4.1 Assume that there is but a single weight w, so that the Wiener-Hopf equation 
is simply c& = w*C,. Show that the cost function as a function of this w 
is a simple nonnegative parabola with a single minimum. For what weight is 
the cost precisely zero? 

10.4.2 Assume that there are two weights wr and ~2. Show that the cost function 
surface is a paraboloid with a single minimum. 

10.4.3 What is the computational complexity of the solution in (10.14)? 

10.4.4 Try directly solving the Wiener-Hopf equations for the case of simple aver- 
aging (i.e., the unknown coefficients are all *). Generate some large number 
of input-output pairs, compute the correlations, and use the matrix inversion 
technique of the previous exercise to solve. Have an opponent supply some 
random w and try to discover it. - 

10.4.5 Show that the MMSE weight vector decorrelates the error from the input 

vector, (i.e., for w* the error 61ml and the input z lrnl obey (6’“1~1”‘> = 0). 

What is the deeper meaning of this statement, sometimes called the orthog- 
onality principle? What can be said about the error-output correlation? 

10.5 The LMS Algorithm 

In the previous section we saw that by using gradient descent we could ap- 
proximate the solution to the Wiener-Hopf equations without inverting the 
autocorrelation matrix. However, we still have to set aside memory and com- 
pute the autocorrelation matrix and crosscorrelation vector for some large 
N. We would really like to avoid these as well. Accordingly we make a fur- 
ther approximation; we assume that we can iteratively update the weight 
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vector based on each input-output example taken in isolation. In this way 
each time we observe a new input-output example, we make an indepen- 
dent estimate of the gradient, perform gradient descent, and then discard 
the example before the next one is presented. Of course in general such a 
gradient estimate may not be very good, and we will often take ‘pseudo- 
gradient descent’ steps in the wrong direction! Unfortunately, there is no 
way to avoid this, but if we take small enough steps, and observe enough 
input-output examples, then the majority tendency toward lower cost will 
eventually dominate although there will be some small steps in the wrong 
direction. 

Now it really isn’t so incredible that the gradient can be approximated by 
quantities that relate solely to a single input-output example. We originally 
defined the cost function as the average error; assuming that we are given 
some finite number of samples M, we could equally well have defined it as 
the sum of the errors, or half that sum. 

L(w) f ; 5 (dmq2 = 3 5 (&I - y[4)2 
m=l m=l 

(10.19) 

We can thus expressed the MSE cost function as the sum of M nonnegative 
single example terms, which can be zero only if all the individual terms are 
zero. As an inference the gradient of this cost function must also be the 
sum of single example terms! The problem is that moving w  in the direction 
dictated by one example, although decreasing the present &tribution, may 
increase the contributions from other examples! In particular we may move 
the weight vector in order to optimize for some input-output example, and 
then move it right back for the next example; but when we get close enough 
to the global minimum everything should work out fine. 

So let’s investigate the single example gradient. Its nth coordinate is 

(VLL”l), = Z$ 

where we have used the chain rule, equation (10.19) and equation (10.8). 
Substituting this into equation (10.18) we find 

,I4 = ,b-11 + &4&d (10.20) - - - 
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This is the Widrow-Hoff equation. In neural network terminology it is 
often called the ‘delta rule’, referring to the S that figures in it so prominently. 
The iterative algorithm for finding best weight vector based on the Widrow- 
Hoff equation 

Initialize: wl”l = 0 

Loop until c&verged : 
get new input 321ml and desired output dlml - 
compute new output ylml = 2~1~1 . ~1~1 

calculate error @l = d[ml-- y[mJ 
correct weight vector wlm+ll = wlml+ XS[mlzlml - - - 

is called the LMS algorithm. LMS stands for Least Mean Squared, referring 
to our attempt at finding an MMSE solution. 

Unlike our attempts at finding the MMSE in the previous section, the 
LMS algorithm is an adaptive algorithm. If the true weights v vary slowly in 
time, the LMS algorithm will follow these changes, approxr%ating at each 
instant the best weight vector for that time. Of course if the underlying 
system varies too rapidly, even an adaptive algorithm may not be able to 
keep up. 

The LMS algorithm is by far the most popular adaptive algorithm, and 
the Widrow-Hoff equation appears in many contexts, although sometimes it 
may be hidden. There is an easy way to recognize Widrow-Hoff in disguise; 
all the correction terms contain the same output error term, while each 
weight correction term multiplies it by its own input. Remember that the 
complete correction term is a constant times the input times the output 
error. 

In order to get a ‘feel’ for the use of the LMS algorithm, let’s try a 
simple example. We’ll take a three-dimensional case with the true weight 
vector w” = (5, i, i), and start with an initial guess of w  = (0, 0,O). Now 
assuming that the first input is x = (1 , 1,l) , we’ll be told that the desired - 
output is 

d = w” l x = (f, $, 8, * (1, 1,l) = 1 - - 

while the present system outputs w  l x = (0, 0,O) . (1, 1,l) = 0. The output -- 
erroristhusS=d-y= l.IfweuseX= i the corrections will be as follows. 

w  * w  + X6x = (O,O,O) + $ ’ 1’ (l,l, 1) = (i, h, ;, - - - 
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Let’s take the same input and perform another iteration. The output is 

w*x = ( -- i, ;, $) * (l,l, 1) = $ 

so that the error is 6 = d - y = 1 - i = i. The new weight vector is 

w +- w + X6x = <+, 4, ;, + i * a * - - - (17 171) = ($ ;: ;) 

with each component deviating only about 2% from the true value. 
In this case two iterations were sufficient to obtain a weight vector quite 

close to the correct one. Of course all of the components were equal at 
every iteration, since both the initial guess and inputs had this symmetry. 
In Figure 10.11 we plot the convergence of the LMS algorithm for a slightly 
harder problem. The correct weight vector is as before, but we select inputs 
randomly, and observe the desired output in 10% uniform additive noise. 
We decided to use a smaller X = 0.1 here, in order to better average out the 
noise and randomness. We see in the figure the three weights are no longer 
identical, but nevertheless remain close to each other. The convergence takes 
longer, partially because of the noise but mainly due to the lower A, but the 
weights consistently approach their proper values. 

wn 

f  

l/3 

0 
0 10 20 30 40 

m 

Figure 10.11: The convergence of the Widrow-Hoff algorithm. Here the correct weight 
vector has three components equal to 4, the initial guess is zero, the inputs are random, 
the desired output is observed with 10% noise, and X = O,l, We see that the weights ~1, 
~2, and wg converge slowly but are close to the proper values after m FZ 50 iterations. 
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We just used the word ‘convergence’ without specifying what this means. 
We may mean that the difference between the derived weight vector and the 
true one must converge to zero, or that the MSE must converge to zero, but 
for the LMS algorithm we usually mean that the mean squared error should 
converge to some small value (nonzero due to the noise). How do we know 
when the weights have converged? In Figure 10.11 we see that the changes 
have become much less drastic after about thirty cycles, but can we really 
be sure that this isn’t a temporary phenomenon? Around cycle 15 there was 
a short stretch where the weights did not change much for a few cycles, but 
afterward the changes returned. In practice it really can be a tricky decision, 
and usually the convergence criterion can be concocted only after in-depth 
study of the particular problem at hand. 

Assuming that the LMS algorithm does indeed converge, can we be sure 
that it will converge to the right answer? Happily we can prove that the 
expectation of the weight vector approaches the MMSE solution as M in- 

creases. To show this we first slightly rewrite the n th component of the 
Widrow-Hoff equation. 

In matrix notation we can write this 

Jm+ll = QdJJ4 + I - @+JJ~l ,bl 
- - ( (10.21) 

= - - > - 

where the two input vectors form an outer product. Now we unfold this 
recursion into an iteration 

wb+ll = x m - c( 
I - ~,bl&4 m-‘L&l&l + I - ~&4,bl)m JOI 

p=o = - - > - ( = - - - 

and take the expectation of both sides. 

(wrm”]) = x 2 (I - Kq C& + (I - Acqrn lJ”l - CL=0 = = - = c - 
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This last equation, being a matrix equation, must be true in all coordinate 
systems, in particular in a coordinate system where the input autocorrela- 
tion matrix is diagonal. In this system I - XC, is also diagonalized. The 

diagonal elements l- Xc, will be less thai unitzn absolute value if X obeys 

2 o<x<c (10.22) 

where c = maxn cn is the maximum eigenvalue of the input autocorrelation 

matrix. Assuming that X obeys this criterion the m th power of this matrix 
approaches the zero matrix as m increases without limit. Hence, with this 
proviso on X, the second term above vanishes as m + 00. In the same 
coordinate system and limit we can sum the geometric series in the first 
term according to (A.47) 

xg Cl-bY= 1 (1x xc ) =- - - p=o n 
XL 

n 

which is the inverse of the correlation matrix in these coordinates. Plugging 
this back in we find 

(,[m”l) -+ S-l& (10.23) 

which is precisely the solution to the Wiener-Hopf equations, and so the 
MMSE solution! 

This proof is not only reassuring, it also incidentally provides the maxi- 
mal step size for convergence. We noted above that we may choose a small 
step size because of noise, but if X is chosen too low it will take ages for 
the weight vector to converge. In adaptive applications we may not even 
find the weight vector before it changes! So we wish to use as large a X as 
possible, but no larger than dictated by equation (10.22) since otherwise the 
LMS algorithm may diverge. Of course only in unusual cases do we know the 
value of the largest input autocorrelation eigenvalue, but if it is significantly 
larger than the rest of the eigenvalues, we may take it to be approximately 
equal to the trace of the autocorrelation, namely 

vmax = Tr Cx = NE, Z 

where Ez is the energy of the input signal. This leads to a useful approximate 
range for X. 

2 
o<x<- 

(E ) 
(10.24) 

2 



10.5. THE LMS ALGORITHM 419 

Up to now our discussion has been completely general; we end this section 
by restricting the general discussion of input-output pairs to the system 
identification case. By using the observed recent inputs and output of an 
FIR system we can combine FIR convolution and LMS adaptation, thus 
defining the standard adaptive FIR filter. We can make a new input-output 
example for ewemJ new time instant 

Z-Nfl, x--N+2, * ’ ’ x-1, x0 - Yo 
x--N+2, x-N+3, “a x0, 21 - Yl 

x-N+3, x-N+4, .** xl, zi - Y2 
x--N+4, x--N+5, *.- x2, x3 - Y3 

x-N+5, x-N+6, ..’ x3, x4 - Y4 

etc., or we can use only some of these possibilities. By choosing examples 
at the maximum rate we get the most information for adaptation and track 
changes in the signal at the highest time resolution. However, this requires 
the most computational power as well. 

EXERCISES 

10.5.1 It is easy to extend the derivation of the delta rule to nonlinear combinations, 
the most important of which is the sigmoidal nonlinearity of equation (8.11). 
Show that in this case the delta rule reads w, + wn + X6Y(l - y)zn. (Hint: 
Use a further chain rule and exercise 8.4.5). 

10.5.2 Assume the unknown weights of a three-parameter linear combination are 
w” = ($, $,O) and that the inputs are x = (l,O,O), (O,l,O), (O,O, 1) over and 

over again. Simulate this system with x = 4 and no noise. Try other values 
for X and add noise. How fast can you make the LMS algorithm converge? 
What happens if X is too large? What happens if we multiply all the inputs 
by 100? 

10.5.3 Although LMS finds the best direction, its choice of constant step size seems 
overly primitive. A more sophisticated approach would be to search for min- 
imal cost along the gradient direction. Compare LMS and this line-search 
gradient algorithm on a simulated problem. How many cycles are required 
for convergence? How many output and error evaluations? 

10.5.4 Equation (10.20) seems to require two multiplications and one addition for 
each tap update. Show how this can be reduced. Compare the computational 
complexity of LMS update to that of running the FIR filter. Why do some 
DSP processors have an LMS instruction? 

10.5.5 What is necessary to make the LMS algorithm work for complex-valued sig- 
nals? What is the complexity compared to a real signal? 
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10.5.6 In exercise 10.1.3 we discussed the cancellation of power line noise from weak 
medical signals. Even when a narrow notch filter could be used LMS fil- 
ters may require less computation. For example, assume that an ECG is 
a quasiperiodic with period about one Hz. For the purposes of simulation, 
model the ECG signal as two sinusoidal cycles one after the other, the first 
with period one-tenth of the whole period, and the second filling the remain- 
ing 0.9, but with amplitude one-tenth of the first. Add some white noise 
and a nominal power line frequency with total energy about the same as the 
desired signal. Try to remove the power line signal with a static FIR notch 
filter; how many coefficients are required? Now use an LMS filter; how many 
taps are required now? 

10.6 Other Adaptive Algorithms 

Although vanilla LMS is the most popular adaptive algorithm, it is certainly 
not the only one. There are both countless variants on the LMS theme, and 
also a few completely different algorithms. The LMS variants all start off 
with standard LMS and try to rectify some potential problem. 

What problems does LMS potentially have? The need to guess the best 
step size, the possibly slow speed of convergence, dependence on initial condi- 
tions, and numerical instability are related but distinct problems that many 
variants try to resolve. 

One LMS variant that frequently converges faster and that helps in 
the step size problem is Normalized LMS (NLMS). In the spirit of equa- 
tion (10.17) we normalize the input vectors 

(10.25) 

where Ex is the input signal’s energy. One way of thinking about NLMS is 
to cast it in standard LMS form with a normalized X; 

accordingly NLMS is LMS with the step size tuned individually for each 
input’s energy. In many applications NLMS converges faster than vanilla 
LMS. More good news about NLMS is that it converges when 0 < p < 2, 
so we needn’t estimate input energy or autocorrelation eigenvalues. In fact, 
p = 1 is just about always best. One drawback is that NLMS requires the 
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additional computation of the input signal’s energy and a division. Even 
more worrisome is the fact that for low-energy signals the division is by a 
small number, causing numeric problems for fixed-point implement at ions. 

Another popular LMS variant, called block LMS, strives to speed conver- 
gence by smoothing out the weight vector fluctuations while still allowing 
a relatively large X. BLMS is less computationally expensive than conven- 
tional LMS since it does not perform the actual correction for every input. 
Instead an averaged estimate of the gradient in weight space is computed 

by adding up the error times input for all m in the block; then once the 
entire block has been seen a single correction 

w  +-- w+AV (10.26) - - 

is performed. 
Block LMS is preferable to vanilla LMS when the input signal fluctuates 

rapidly, but converges more slowly for relatively stationary signals. To con- 
vince yourself of this latter fact think of a block of length M in which the 
signal is constant. Standard LMS will perform M separate iterations while 
block LMS essentially performs only the first of these. 

A compromise between BLMS and vanilla LMS is LMS with momentum. 
In this variant we smooth the weight changes by a kind of AR filtering 

wb+11 = ,M + X&“l &d (10.27) - - - 
+ a (,,bl - ,c-11) 

- - 

the new term approximating the derivative of the movement in weight space. 
If QI = 0 we have vanilla LMS, while for larger Q! the new term tends to cause 
the weight vector to continue as in the previous iteration (hence the term 
‘momentum’). 

After seeing all these LMS variants the time has come to discuss a com- 
pletely different algorithm. In deriving the LMS algorithm we wrote the MSE 
as a sum of single example terms. This allowed us to adapt to time-varying 
systems, but is not the only way to acquire this adaptability. An alternative 
policy is to take the MSE as the average over the last M examples seen, 

1 M 

Mm=1 - - 
c pbl - w . ,[my (10.28) 

where M is taken small enough that the underlying system does not vary 
appreciably during the M time instants. This policy automatically provides 
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a certain amount of averaging, curing one of the aforementioned potential 
problems. If the underlying system changes rapidly, it is more appropriate 
to use a recursive filter rather than a plain average. Calling the forgetting 
factor cp, we have 

M 

c 
cpM-~~&l - 20 . J412 (10.29) -- 

m=l 

where we have discarded any normalization factors that will not affect the 
minimization. For this to be exponentially decaying weighting, we require 
0 < p < 1. We can use the arguments that lead up to equations (10.13) 
almost without change to show that the MMSE solution here is 

w = c,-led, (10.30) - Z 

where the correlations appearing here are only slightly different from the 
usual ones. 

cz = 5 p-mZ[mlZ[ml 
Z - - 

m=l 

M 

cdz = c 
(pM-mdb’d x [ml 

- 
m=l 

The useful thing about exponential weighting is that these quantities can 
be built up recursively. 

Cz Lrnl = (&p-l1 + ,JmlJml (10.31) - - 

= ipFh b-11 + &‘d x[m] 
- 

Now if we only knew how to recursively update the inverse autocorrela- 
tion matrix P s C/l we could substitute these recursions into (10.30) to - 
obtain a re&&ion=fr the weight vector. Luckily, there are ways to recur- 
sively update the inverse of a matrix of this sort. Using the matrix inversion 
lemma (A.100) with A = cpCZlm-ll, g = D = ~1~1 and C = 1 we find 

= C = - = 

( 
(pc,b11 + &4JJ4 -l 

Z > 
= ~-1~In-11 - 

@pb-11 &d &-d p[m-11 

- - (P-~&lp[ 
- 

-m&T+ 1 

which looks messy but contains only quantities known at step m of the 
recursion. In order to clean it up a little we define the gain vector 

p.4 =, 
pb-11 xb.4 - 

xIml;b-llxbl + cp (10.32) 
- = 
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in terms of which we can rewrite the recursion for the inverse autocorrelation. 

fml = 9-l (g b-11 - j&d rJm1 pb-11 - - = ) (10.33) 

Now the expression for the gain vector looks terrible, but it really has a 
simple interpretation. Rearranging equation (10.32) 

@d = 
- ( 

qlpim-ll - ,-QJmlzM pb-11) .[m] - - = 

and from equation (10.33) we recognize the factor in the parenthesis to be 
precisely P Lrn]. As a result the gain vector 

= 

r;[ml = pbQm1 = C,bl&l 
- = - c - 

(10.34) 

is the input partially decorrelated by its own inverse autocorrelation. 
Now we can finally substitute the recursions (10.31) back into equa- 

tion (10.30). 

,bl = (C,byC&,bl - 
= pTl cpcd,bd + &4&d) 

L 
= ~p[ml ch b-11 + &d piA &4 

= = - 

We now substitute the recursive update of the inverse autocorrelation (10.33) 
and use equations (10.30) and (10.34). 

,M = pb-1lCd,b-ll - ~[mlz[mlp[m-ll~~[m-ll + &4pbl&l - 
= ,Wl - pdJJmlq-&-i +;r4 p[ml,bl 

= - 

- - - 
= ,c-11 - ~[ml (Jd,bM - $) 

- 

- - - - 

The final step is to recognize the error SLrn] in the parentheses and we have 
found the desired recursion. 

,bl = J-11 + &“I j&ml (10.35) - - 

We now understand why we called k the ‘gain vector’; it is a directed gain 
that multiplies the error in the weight update recursion. 
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We can at last give the Recursive Least Squares (RLS) algorithm. 

Initialize: w[Ol = 0 - 
Loop until converged: 

get new input x Iml and desired output 61m] - 
compute new output ~1~1 = wlml .x[~l 
calculate error 61ml = d[~l- grmJ 
compute gain vector /cl”] using equation (10.32) 
correct weight vector using equation (10.35) 
update inverse autocorrelation P using equation (10.33) 

= 

Comparing this to the LMS algorithm we see some differences but a 
strong similarity. Recalling equation (10.34) we can write the weight update 

,bl = wb-11 + pbl&ml &I 

Hence RLS can be thought of as LMS with a very intelligent adaptive step 
size. This step size is a matrix, and hence takes care of cost function surfaces 
in weight space that are steep in some directions but flat in others. The step 
size is optimized at every step to ensure rapid convergence. 

Each iteration of the RLS algorithm is more complex than an iteration 
of the LMS algorithm, and indeed RLS is often impractical for real-time 
applications. However, the RLS algorithm will normally converge faster than 
the LMS one, at least when the noise is small. When there is strong additive 
noise a long period of averaging is necessary in order to average out the 
noise, and so RLS cannot significantly decrease the number of iterations 
needed. 

As with many recursive update formulas, the RLS updates can accumu- 
late numerical error, eventually leading to a noninvertible CZ. This usually 

isn’t a problem when only a few w  are needed, but becomeszolerable when 
we must continuously update weFght vectors. One solution to this problem is 
to iteratively update the Cholesky decomposition of CZ (see equation (A.94)) 

rather than the matrix itself. Another is the so-called QR-RLS algorithm, 
which multiplies the equations by an orthogonal matrix in order to keep 
them triangular; but further discussion of these topics would take us too far 
astray. 
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EXERCISES 

10.6.1 Compare the LMS, NLMS, and RLS algorithms on benchmarks of your 
choice. Which is fastest? Which is most robust? 

10.6.2 One way of ameliorating the numeric difficulties of NLMS is by using the 
following regularization. 

2 
w’=w+p&-=--- - - E -I- Ez 

Experiment with NLMS and regularized NLMS for signals with large dynamic 
range. 
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The applications we presented are covered by review articles of note; adaptive 
noise cancelling in [273, 591, echo cancellation in (87, 1781, and equalizers in (202, 
2031. 
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