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Communications Signal Processing 

In this chapter we will survey various topics in signal processing for com- 
munications. Communications, like signal processing itself, is commonly di- 
vided into analog and digital varieties. Analog communications consist of 
techniques for transmitting and receiving speech, music or images as analog 
signals, as in telephones, broadcast radio and television. Digital communi- 
cations are methods of transferring digital information, usually in the form 
of bit streams. Digital communications are often between computers, or be- 
tween human and computer, although increasingly digital communications 
are being used between people as well (email). Both analog and digital sig- 
nal processing may be used for various portions of both analog and digital 
communications systems. 

A device that takes an analog input signal and creates an analog com- 
munications signal is called a transmitter, while a receiver inputs an analog 
communications signal and attempts to recover, as accurately as possible, 
the original analog message signal. A device that takes a digital input and 
creates a digital communications signal is usually called a modulator, while a 
demodulator inputs a digital communications signal and attempts to recover, 
with as few bit errors as possible, the original digital message. Transmitters 
and receivers are sometimes packaged together and called transceivers; for 
digital communications it is almost universal to package the modulator and 
demodulator together, and to call the combined device a modem. 

Digital communications systems include such diverse objects as fax ma- 
chines, telephone-grade modems, local area networks, wide area networks, 
private digital telephone exchanges, communications satellites and their 
ground stations, the public switched telephone network (yes, it too has be- 
come digital), and the Internet. Although the history of data communica- 
tions is relatively short, the present scope of its theory and application is 
huge, and we will have to stringently restrict the scope of our treatment. 
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After a historical introduction we will start our survey with an overview 
of analog communications, including AM and FM transmitters and receivers. 
We then briefly study information and communications theory, including er- 
ror correcting codes. We then design our first modem, the rest of the chapter 
being devoted to successive improvements to its design. We roughly follow 
the chronological development of telephone-grade modems that increased bit 
rates from 300 b/s to 56 Kb/s. Along the way we will learn about FSK, PSK, 
QAM, MCM, TCM, and PCM modems, and master the basic algorithms 
needed for modem implementation. 

18.1 History of Communications 

Let’s go back over 2000 years and imagine ourselves at the foot of the great 
Temple in Jerusalem. It is the thirtieth day of the month, and the Calendar 
Council is in session, waiting for witnesses to come to testify that they 
had seen the new moon. A group of people approach running. They are 
ushered into the chamber and interrogated by experts in astronomy and 
mathematics. If their testimony is found to be genuine, the new month is 
declared to have begun; if no reliable witnesses arrive the new month only 
starts the next day. Now that information must be disseminated quickly 
to those living as far away as Babylon. Only one bit of information must 
be transmitted-whether the new month has commenced-but telephones, 
radio, and even telegraph lines do not yet exist. 

Now it is not really difficult to transmit the single bit of information 
to nearby locations. One need only do something that can be reliably seen 
from afar. So the Council orders a bonfire to be lit on the top of a nearby 
mountain. On a neighboring mountain an official is waiting. When he sees 
the beacon he lights a fire of his own, which is observed at the first mountain 
and recognized as an acknowledgment that the message has been received. It 
is also observed at another mountain further away, where the next beacon in 
the chain is lit. In this way the message that the new month has commenced 
is quickly and reliably transmitted. This technique was in use until thwarted 
by the (good?) Samaritans, who maliciously lit beacons at inappropriate 
times in order to create confusion. 

Similar communications techniques were used by other pretelegraph peo- 
ples. Native Americans would burn wet grass under a blanket, which when 
removed would send up a blast of dark smoke that could be seen from afar. 
Natives of western Africa used tomtom drums that could be heard through- 
out the jungle (where visibility is limited). Mariners used signaling lamps 
that could be seen from miles away. 



18.1. HISTORY OF COMMUNICATIONS 649 

What can we do if we need to transmit more than one bit of information? 
The native Americans would simultaneously light two or three separate fires, 
and the number of columns of smoke signified the urgency of the message. 
The Africans used drums of variable pitch, and could send intricate messages 
by varying the sounds of their drumming. At sea mariners would open and 
close shutters on the signaling lamps, thus sending entire messages. 

These methods of communications suffer from several drawbacks. First, 
they work over limited distances, requiring relay operators for larger range. 
Second, they are not reliable; after the battle of Waterloo a signal lamp mes- 
sage over the English channel was received as ‘At Waterloo Nelson defeated 
. . . ’ with ‘Napoleon’ covered up by the fog. Nathan Rothschild made a for- 
tune buying up stocks on the plunging London exchange, knowing the truth 
through more reliable carrier pigeons. Third, these communications media 
are all broadcast, meaning that they can be intercepted by all. Although this 
is sometimes required it can also be a disadvantage. Settlers of the American 
West spotted Indian smoke signals and recognized that the enemy was close 
at hand. Finally, all these methods are multiple access with no signature, 
and can thus be easily forged (as the Samaritans did). 

The discovery of electric current by Stephen Gray of London in 1729 pro- 
duced a new medium for reliable communications over distances, removing 
many of the disadvantages of previous methods. In 1747, William Watson 
laid 1200 feet of wire over Westminster bridge, touching one end to the wa- 
ter of the Thames, and the other to a charged Leiden jar; a man touching 
the jar with his feet in the river received a shock. It took a while longer 
to realize that the flow of current could be detected by its lighting a light 
or moving an armature. In 1844, Samuel Morse telegraphed the message 
‘What hath God wrought?’ over an electric cable, ushering in a new era for 
humankind. Morse’s telegraph could distinguish between two states, current 
flowing or not, and so Morse had to devise a code to efficiently send letters of 
the alphabet using only two-state signals. The Morse code represents letters 
using combinations of s = 0 and s = 1 values; s = 0 are used as dividers, 
while s = 1 may occur in short durations (called a dot) or three times that 
duration (called a dash). The letter ‘E’ is encoded as a dot, that is, by a sin- 
gle s = 1, and thus only requires 1 time unit to transmit (although it must 
be followed by a single s = 0 inside a word and by three consecutive s = 0 
at the end of a word). The letter ‘Q’ is encoded as dash, dash, dot, dash, 
occupying 13 basic time intervals. The entire Morse code is presented in 
Table 18.1. In 1866, the first transatlantic cable was laid, for the first time 
linking America and Europe by an almost instantaneous communications 
medium (unfortunately, it failed within a month). 
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I . . S . . . ? .,--.. 8 ---.. 
J .--- T - _ _ . . . _ 9 -----. 

Table 18.1: The Morse code. Every letter, number, or punctuation mark is assigned a 
unique combination of dots and dashes. 

Telegraphy using Morse code still had a few disadvantages. It was rel- 
atively slow and error prone. It required skilled telegraphers at both ends 
and could not be directly used by individuals. Unless special codes were 
employed the messages could be read by others, and it was difficult to au- 
thenticate the sender’s identity. For some time people strived to mechanize 
the transfer of text using the Morse code, but this was a difficult task due to 
the variable-length characters. In 1875, Emile Baudot from France created 
a new code, one optimized for mechanized text transfer. In the Baudot code 
each letter took five equal time units, where each unit could be current flow 
(ma&) or lack thereof (space). Actual commercial exploitation of this code 
began in early twentieth century, under the trademark name teletype. 

A further breakthrough was announced within a year of Baudot’s code 
when, on March 10, 1876, Dr. Alexander Graham Bell in Boston and Elisha 
Gray in Chicago both filed for patents for a new invention, later to be called 
the telephone. Like the telegraph it used voltage signals traveling over a wire, 
but rather than being simple on-off, these signals carried a voice. Eventually, 
Dr. Bell won the protracted legal battle that reached the level of the US. 
Supreme Court. The telephone could be placed in every home, and used by 
anyone without the need for intervention of skilled middlemen. For the first 
time,point-to-point communication was direct, reliable, relatively private, 
and the voice of the person at the other end could be recognized. 

Another development was born out of a purely mathematical insight. 
In 1865, James Clerk Maxwell wrote down differential equations describing 
all that was then known about electricity and magnetism. These equations 
described how an electric charge created an electric field (Coulomb’s law), 
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how an electric current created a magnetic field (Ampere’s law), and how 
a changing magnetic field created an electric field. Far away from currents 
and charges the equations 

VE = 0 V-B = 0 
1 aB Ox-ii = -;Jj- Vii3 = 0 - - 

were obviously not symmetric. To make them completely symmetric Maxwell 
hypothesized that a changing electric field could induce a magnetic field, 

VE = 0 VB = 0 

vxk = -;-J-f 1 i3B 
- VxB = +g 

- 

a phenomenon that had not previously been observed. These new equations 
admitted a new type of solution, a changing electric field inducing a changing 
magnetic field reinforcing the original changing electric field. This electro- 
magnetic field could travel at the speed of light (not surprising since light is 
exactly such a field) and carry a signal far away without the need for wires. 
In 1887, Hertz performed an experiment to test Maxwell’s purely theoretical 
prediction. He made sparks jump between two polished brass knobs sepa- 
rated by a small gap, and detected the transmitted electromagnetic waves 
using a simple receiver of looped wire and similar knobs several meters away. 

Radio waves can carry Morse or Baudot code by transmitting or not 
transmitting (on-off keying). They can also carry voice by continuously 
changing some characteristic of the field, such as its amplitude (AM) or 
frequency (FM). In the next section we will learn how this can be done. 

EXERCISES 

18.1.1 Compute the time durations of the 26 letters in Morse code. What is the 
average duration assuming all characters are equally probable? What is the 
average duration assuming that the letter probabilities are roughly E:12%, 
TAOINS:8%, HRDLU:4%, MCFGPB:2%, and all the rest 1%. Is Morse 
code better or worse than Baudot code for actual text? 

18.1.2 Write a program that inputs a text file and outputs Morse code. You will 
need a computer with minimal sound capabilities. Whenever s = 1 play a 
tone (1000 Hz is good). Make the speed an adjustable parameter, specified in 
words per minute (figure an average word as 5 characters). Add an option to 
your program to output two different tones, a high-frequency tone for s = 1 
and a low-frequency one for s = 0. 
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18.1.3 Modify the above program to output a file with sampled signal values (use 
a sampling rate of 8000 Hz and a tone of 750Hz). Now write a program that 
inputs this file and decodes Morse code (converts signal values back to text). 
Improve your program to take into account small amounts of noise and small 
variabilities in speed (and add these features to the generating program). Do 
you think you could write a program to read Morse code sent by hand on a 
noisy channel? 

18.2 Analog Modulation Types 

In our historical discussion we carefully avoided using the word ‘modulation’; 
we now just as carefully define it. 

Definition: modulation 
Modulation is the exploitation of any observable characteristic of a signal 
to carry information. The signal whose characteristics are varied is called 
a carrier. We modulate the carrier by the information signal in order to 
create the modulated signal, and demodulate the modulated signal in order 
to recover the information signal. The systems that perform these functions 
are called the modulator and demodulator, respectively. n 

Modulation is used whenever it is not possible or not convenient to con- 
vey the information signal directly. For example, a simple two station inter- 
com will probably directly transmit the voice signals (after amplification) 
from one station to another over a pair of wires. This scenario is often called 
baseband transmission. A more sophisticated intercom system may modu- 
late a radio signal, or the AC power signal, in order to eliminate the need 
for wires. The public switched telephone network uses wires, but maximizes 
their utilization by modulating a single base signal with a large number of 
subscriber signals. 

Perhaps the simplest signal that is used as a carrier is the sinusoid. 

s(t) = Acos(2rft + 4) (18.1) 

For example, the very existence of the carrier can be used to send Morse or 
Baudot code. This is called On-Off Keying (OOK) and mathematically is 
represented by 

SooK = A(t) cos(2d t) (18.2) 
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C 

Figure 18.1: Amplitude modulation changes the amplitude of a carrier in accordance to 
a modulating signal. In (A) we see the carrier, in (B) a sinusoidal modulating signal, and 
in (C) the resulting AM signal (the modulation index was 75%). 

where A(t) takes the values zero or one, fc is the carrier frequency, and (with- 
out limiting generality) we choose the phase to be zero. In order to carry 
voice or other acoustic modulating signals w(t), we need more freedom. Now 
equation (18.2) is strongly reminiscent of the instantaneous representation 
of a signal of equation (4.66); but there the amplitude A(t) was a continu- 
ously varying function. This leads us to the idea of conveying a continuously 
varying analog signal v(t) by varying the carrier’s amplitude 

SAM@> = Ao (1 + mAM v(t)) co@f,t) 

where we assume Iv(t) 1 < 1. This modulation technique, known as Amplitude 
Modulation (AM), is depicted in Figure 18.1. The coefficient 0 < ?nAM 5 1 
is known as the modulation index, and is often specified as a percentage. 

Amplitude is not the only signal characteristic that one can modulate. 
The sinusoidal carrier of equation (18.1) has two more characteristics that 
may be varied, the frequency f and the phase 4. Morse- or Baudot-encoded 
text may be sent by Frequency Shift Keying (FSK), that is, by jumping 
between two frequencies. 

s,,,(t) = Aces (%rf(t) t + 4) (18.4) 
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C 

Figure 18.2: Frequency modulation changes the frequency of a carrier in accordance to 
a modulating signal. In (A) we see the carrier, in (B) a sinusoidal modulating signal, and 
in (C) the resulting FM signal. 

Here it is f(t) that can take on two different values. The third alternative is 
called Phase Shift Keying (PSK), 

sps&) = &OS (Wd + 4(t)) 

where 4(t) can take on two values (e.g., 0” and lSO”). Similarly, voice can 
be transmitted by Frequency Modulation (FM) and by Phase Modulation 
(PM), as will be explained in the next section. For example, in Figure 18.2 
we see the frequency of a sinusoid continuously varying in sinusoidal fashion. 

We have still not exhausted the possibilities for modulation. The sinu- 
soid, although the most prevalent carrier, is not the only signal that can 
be modulated. An alternative is to start with a train of pulses and modify 
their amplitudes (PAM), their relative timing (PPM) or their pulse widths 
(PWM). Another common occurrence is secondary modulation where mod- 
ulated signals are used to modulate a second signal. For example, several 
AM-modulated voice signals may be used to frequency modulate a wide- 
band radiotelephone link carrier. Sometimes it seems that the number of 
different modulation techniques that have been used in communications sys- 
tems equals the number of communications systems designers. 
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EXERCISES 

18.2.1 Why is equation (18.3) not simply Aov(t) cos(27rf,t)? Plot sinusoidally mod- 
ulated AM signals for various values of modulation index. What index do 
you think should be used? 

18.2.2 Write a program that generates an AM-modulated wave. (For concreteness 
you may assume a sampling frequency of 2.048 MHz, a carrier of 455 KHz, 
and take the modulating signal to be a sinusoid of frequency 5 KHz.) Plot 1 
millisecond of signal. What does the spectrum look like? 

18.2.3 Why do we prefer sinusoidal carriers to other waveforms (e.g., square waves)? 

18.2.4 Can we simultaneously modulate with AM and FM? AM and PM? FM and 
PM? 

18.3 AM 

Now that we know what modulation is, we can commence a more systematic 
study of modulated signals and the signal processing systems used to mod- 
ulate and demodulate. For now we are only interested in modulating with 
continuous analog signals such as speech; digital modulation will be treated 
later. 

How can we create an amplitude modulated signal using analog electron- 
ics? The simplest way would be to first create the carrier using an oscillator 
set to the desired frequency. Next the output of this oscillator is input to 
an amplifier whose gain is varied according to the modulating signal (see 
Figure 18.3). Since both oscillators and variable gain amplifiers are stan- 
dard electronic devices, building an AM transmitter in analog electronics 

oscillator 
c 

v amplifier 
A 

I 

microphone I 

Figure 18.3: The basic analog AM transmitter built from an oscillator and a variable gain 
amplifier. The oscillator has a single parameter fc that is not varied during transmission. 
The amplifier’s gain parameter A is varied according to the signal. The inverted 
at the top right is the conventional graphic representation of an antenna. 

triangle 
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is straightforward. Of course there are lots of technical details to be dealt 
with, such as guaranteeing oscillator frequency stability, ensuring that the 
microphone’s output is sufficiently strong, keeping the amplifier in its linear 
range, band-pass filtering the signal to avoid interference to nearby receivers, 
matching the input impedance of the amplifier with the output impedance 
of the oscillator, etc. Failing to properly cope with any of these details will 
result in inefficiency, low or distorted audio, or interference. 

Wouldn’t it be simpler to implement the AM transmitter using DSP? 
The analog oscillator and amplifier could be replaced with digital ones, and 
using correct digital techniques there will be no problems of efficiency, fre- 
quency stability, amplifier stability, impedance matching, etc. Although in 
principle this approach is correct, there are two practical problems. First, 
a digital amplifier by itself will only be sufficient for very low-power appli- 
cations; in order to supply the high power usually needed (from about ten 
watts for mobile radios to many thousands of watts for broadcast stations) 
an additional analog power amplifier will usually be needed. Second, the 
bandwidth B W of the audio frequencies (AF) is usually much lower than 
the radio frequency (RF) of fc. Directly implementing Figure 18.3 digitally 
would require us to operate at a sampling rate over twice fC + BW, which 
would be extremely wasteful of computational power. Instead we can per- 
form all the computation at an intermediate frequency (IF) and then upmix 
the signal to the desired radio frequency. Figure 18.4 shows a hybrid AM 
transmitter that utilizes digital techniques for the actual modulation and 
analog electronics for the upmixing and power amplification. 

Now that we know how to transmit AM we need a receiver to demodulate 
our AM transmission. The simplest analog receiver is the envelope detector, 

synthesizer = 

digit al 
oscillator 

digit al 
amplifier - D/A - mixer . = 

power 
amplifier 

7 

Figure 18.4: The basic hybrid digital-analog AM transmitter. The digital components 
operate at an intermediate frequency and at low power. After conversion to the analog 
domain the signal is upmixed to the desired carrier frequency and amplified to the required 
output power. The synthesizer is a (digital) local oscillator. 
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Figure 18.5: The basic analog envelope detector for the demodulation of AM signals. 
In (A) we see the AM signal to be demodulated. After half wave rectification the signal 
depicted in (B) results. Subsequent low-pass filtering removes the RF and leaves (C) the 
desired AF to within DC. 

the operation of which can be best understood by studying Figure 18.5. Since 
the desired signal is the ‘envelope’ of the received signal, it can be retrieved 
from either the top or bottom of Figure 18.5.A by connecting the peaks. 
Choosing to use the top half, half wave rectification results in the signal 
of Figure 18.5.B. We next low-pass filter this signal in order to remove the 
high-frequency RF, leaving only the envelope as in Figure 18.5.C (with a 
strong DC component). This filtering is performed by placing the rectified 
signal onto a capacitor that charges up to the voltage peaks and slowly 
interpolates between them. Finally a DC blocking filter is used to remove 
the 1 from 1 + v(t). 

Unfortunately, the envelope detector is ill suited to digital implementa- 
tion. It assumes fc to be very high compared to fm, otherwise the envelope 
will not be well sampled, and thus downmixing to a low IF will decrease its 
efficacy. More importantly, in order to actually see the analog signal’s peaks 
in its digital representation, a sampling frequency much higher than Nyquist 
is required. Even sampling at several times Nyquist we can not expect most 
of the sampling instants to fall close enough to the peaks. 

A better way of digitally performing AM demodulation is to use the 
instantaneous representation of Section 4.12. There are two closely related 
ways of doing this. The first is to apply the Hilbert transform to the IF signal 
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and to obtain the instantaneous amplitude by the square root of the sum 
of the squares. The second involves a complex downmix to zero including a 
complex low-pass filter to remove everything except the frequency compo- 
nents from zero to BW. We can then proceed to obtain the instantaneous 
amplitude as before. These methods of digital AM demodulation do not 
require high fC and function with sampling frequencies close to Nyquist. 

Up to now we have been thinking of AM only in the time domain. What 
does the spectrum of an AM signal look like? We’ll first consider modulating 
with a single sinusoid, so that equation (18.3) becomes 

SAM@) = Ao (1 + mAM C+ht)) COs(w,t) (18.6) 

where wm and wC are the modulating and carrier angular frequencies. A little 
algebra proves 

SAM(t) = A0 COS(W,~) + A0 UJAM COS(W,~) COS(W,~) (18.7) 

A0 = A0 COS(W,~) + mAMy ( COS(W, + u,)t + COS(W~ - w,)t) 

so that the spectrum contains three discrete lines, one corresponding to the 
original carrier frequency, and two lines at the carrier plus and minus the 
modulation frequency (Figure 18.6.A). 

What if we modulate the carrier not with a single sinusoid but with 
a general signal w(t)? The modulating signal can be Fourier analyzed into 
a collection of sinusoids each of which causes two lines spaced fm away 
from the carrier. We thus obtain a carrier and two sidebands as depicted in 
Figure 18.6.B. The two sidebands are inverted in frequency with respect to 
each other but contain precisely the same information. 

-L A / !A 
Figure 18.6: The generation of sidebands of an AM signal. In (A) we modulate a sinusoid 
of frequency fc by a single sinusoid of frequency f7n to obtain an AM signal with three 
frequency lines, fc , fc f fm. In (B) we modulate a sinusoid by a signal with an entire 
spectrum of frequencies, conventionally depicted as a triangle. We obtain the carrier and 
two sidebands. 
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EXERCISES 

18.3.1 Our basic analog AM receiver assumed that only a single signal is received 
at the antenna, while in fact many signals are received simultaneously. One 
method of isolating the signal of interest uses a band-pass filter centered at fc ; 
the more conventional method uses a mixer and a band-pass filter centered at 
an intermediate frequency (IF). Diagram the two methods and discuss their 
advantages and disadvantages. 

18.3.2 Diagram an entire AM receiver including antenna, local oscillator and mixer, 
IF filter, a half wave rectifier, a low-pass filter, DC blocking filter, and speaker. 
Show representative signals at the output of each block. 

18.3.3 Implement a digital envelope detector. Create a sinusoidally modulated sig- 
nal with fc = 50, fm = 2, and sampling frequency fs = 500. Compare the 
demodulated signal with the correct modulating signal. Now decrease fs to 
200. Finally decrease fc to 10. What do you conclude? 

18.3.4 Show that half of the energy of an AM signal with index of modulation 
?nAM = 1 is in the carrier and one-quarter is in each of the sidebands. 

18.3.5 Double sideband (DSB) is a more energy-efficient variant of AM, whereby 
the carrier is removed and only the two sidebands are transmitted. Diagram 
a transmitter and receiver for DSB. 

18.3.6 Single sideband (SSB) is the most efficient variant of AM, whereby only a 
single sideband is transmitted. Diagram a transmitter and receiver for SSB. 

18.3.7 Can AM demodulation be performed by a filter? If yes, what is its frequency 
response? If not, what portion of the analog and digital detectors is not a 
filter? 

18.4 FM and PM 

You might expect that frequency modulation of a carrier A cos(w,t) with a 
signal w(t) would be accomplished by 

s(t) = Aces ( (We + mv(t)) t> (18.8) 

where rn is the index of modulation. Indeed the amplitude is constant and the 
frequency varies around the carrier frequency according to the modulating 
signal; yet this is not the way FM is defined. To see why not, assume that 



660 COMMUNICATIONS SIGNAL PROCESSING 

Figure 18.7: Frequency modulation according to the naive 
artifacts. True frequency modulation should look sinusoidal. 

equation (18.8) has obvious 

the modulating signal v(t) is a sinusoid (let’s use sine rather than cosine this 
time) of frequency wm. 

s(t) = Aces ( (& + m sin@&)) t> 

Plotting this for time close to t = 0 results in a picture similar to 18.2.C, 
but for longer times we observe artifacts as in Figure 18.7. This is not what 
we expect from FM; in particular we want all the extrema of the signal 
to be those of the underlying carrier, whereas here we observe obviously 
nonsinusoidal extrema as well! 

The reason for this errant behavior is not hard to see. The signal can be 
rewritten 

s(t) = Aces (w,t + m t sin&,.$)) 

and so has phase swings that increase linearly with time. For large t the 
phase swings completely dominate the argument of the sine except in the 
immediate vicinity of the modulating sinusoid’s zeros, thus completely de- 
stroying the overall sinusoidal behavior. The solution to this problem is 
easy to see as well-we simply move the modulating sinusoid so that it is 
not multiplied by time 

s(t) = Aces (& + msin(w,t)) 

or for a more general modulating signal 

s(t) = Aces w,t + m PM v(t)) 

(18.10) 

(18.11) 

which is known as Phase Modulation (PM). 
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There is a more direct way to arrive at PM. We think of a carrier signal 
A cos(w,t + 4) as having a degree of freedom not previously exploited-the 
phase 4. Having the phase vary with the modulating signal will create an 
information-bearing signal from which the modulating signal may be later 
retrieved, at least assuming the phase does not vary too much. We can use 
the PM index of modulation mPM to ensure that the phase deviation does 
not exceed 27r, the point where ambiguity would set in. 

True frequency modulation is similar to phase modulation, but not iden- 
tical. Recalling equation (4.72) we realize that we can make the instan- 
taneous frequency vary with a modulating signal by phase modulating by 
that signal’s integral. If that is done, the information-bearing signal has no 
unwanted artifacts, and phase recovery followed by differentiation indeed 
restores the modulating signal. 

s(t) = ACOS w,t + VIFM (18.12) 

For a modulating signal that consists of a single sinusoid, the entire difference 
between PM and FM is a phase shift and a change in the modulation index; 
for a more general modulating signal, FM and PM are less compatible. The 
integral of v(t) = sin(w,t) is -& cos(wt) , and so high-frequency Fourier 
components of v(t) are much weaker in FM than in PM, a phenomenon 
known as de-emphasis. A PM signal heard on an FM receiver has too much 
treble and sounds ‘tinny’, while using a receiver designed for PM to intercept 
an FM signal produces a ‘bassy’ sound. FM may be generated using a PM 
transmitter, if pre-emphasis is performed on the modulating audio in order 
to compensate for the later loss of high frequencies. 

The PM/FM transmitter is very similar to the AM one, with the ex- 
ception that the amplified microphone voltage is used to vary the phase 
rather than the amplitude of the carrier; but how do we make an analog 
FM receiver? One way is to use frequency-to-voltage conversion to convert 
the received FM signal into an AM one. An FM discriminator is a circuit 
with gain that varies linearly with frequency, and can thus be used for the 
frequency-to-voltage conversion. 

The digital FM receiver can derive the instantaneous frequency from the 
instantaneous phase through differentiation. Were we to drastically over- 
sample we could get by with the simple difference, since 

qqt + st> - 4(t) - &t) 6t 
as long as the phase behaves approximately linearly in the time interval 6t. 
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For more rapidly varying phases we must use a true differentiation filter (see 
Section 7.3). 

The instantaneous phase signal is bounded in the interval between -r 
and 7r (or perhaps [0 . . .27r]) and has discontinuities when it crosses these 
boundaries. These phase jumps have no physical meaning, they are simply 
artifacts of the nonuniqueness of inverse trigonometric functions. Differenti- 
ation of such discontinuities would give rise to tremendous unphysical spikes 
in the frequency demodulation. Hence we must first unwrap the phase be- 
fore differentiation. This can be done by setting a phase change threshold, 
and adding ~t27r whenever the phase jumps by more than this threshold. 
For oversampled signals this threshold can be relatively small, but close to 
Nyquist it must be carefully chosen in order to avoid unwrapping legitimate 
changes in phase. 

The unwrapped phase signal resulting from the above operation is con- 
siderably smoother than the original phase. If, however, the signal has not 
been correctly mixed down to zero frequency, the residual carrier frequency 
causes linear phase increase or decrease, which will eventually cause the 
phase to overflow. In sophisticated implementations one models this phase 
change by linear regression and corrects the mixer frequency accordingly. 
A simpler technique to avoid phase overflow is not to correct the phase at 
all, only the phase diference. Differentiation of the phase difference signal 
gives the frequency difference, and the actual frequency is found by adding 
the frequency difference to the previous frequency. This frequency is in the 
vicinity of the residual carrier frequency, and thus never overflows. 

An alternative method of phase differentiation is called the dual differ- 
entiator method. It exploits the fact that the specific differentiation to be 
performed is 

2!@(t) = -&an-’ (g) = tix-ky 
A2 (t> (18.13) 

2(t) + y2(t) is the amplitude detection. If we are interested 
in the frequency alone, we can limit the input signal (giving a constant 
amplitude) and then the above is directly proportional to the instantaneous 
frequency, If the amplitude is to be calculated in any event, it should be 
done first, and then a division carried out. 

We turn now to the spectrum of PM and FM signals, wondering whether 
there are sidebands here as there were in the AM case. Even if there are 
sidebands, they must be much different than those we saw for AM. For 
example, assume the power of the modulating signal increases. For AM the 
carrier remains unchanged and the sideband energy increases; for PM/FM 
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the total power must remain unchanged (otherwise there would be unwanted 
AM!) and thus an increase in sideband power must result in a decrease in 
carrier power. At some point the carrier will even have to entirely disappear! 
Using the same type of algebra that led to equation (18.7) we find 

s(t) = A cos (uct + m sin@&)) 

cos(wt) cos (m sin(w,t)) - sin(&) sin (m sin(w,t )) ) 

where m means m PM or mFMa Now cos(m sin(w&)) and sin(mFM sin&,&) 
are easily seen to be periodic signals with frequency wm. It turns out that 
these periodic functions have expansions in terms of the Bessel functions 
JO, J1, . . . (see A.l). 

sin(m sin(wt)) = 2 (J1 (m) sin(&) + J3 sin(3wt) + . l .) 

cos(m sin(wt)) = Jo(m) + 2 (&(m) sin(2wt) + Jd(m) sin(4wt) + a a .) 

Plugging these in, and using the trigonometric product identities (A.32) 
multiple times, we obtain the desired spectral representation. 

s(t) = A ( Jo(m) cos(wct) (18.14) 

+ Jl (m) ( cos ((h + w,)t) - cos ((w, - w,)t)) 

+ Jz(m> (cos (( w,+2w,)t) +cos((w, - 2w,)t)) 

+ J3(m)(c+Jc+3w,)t) -co+.+ - 3~449) ) 

+ *.. 

This is quite different from equation (18.7) with its sidebands at wC & +w,! 
Here we have an infinite number of sidebands at w, f kw, with amplitudes 
varying according to the Bessel functions. The carrier amplitude is propor- 
tional to JO and thus starts at unity for zero modulation index and decreases 
as m increases. All the sidebands start at zero amplitude for m = 0 and at 
first increase, but later oscillate. Of course, for constant modulation index 
m, the amplitude of the sidelobes tends to decrease with distance from the 
carrier. As a rough estimate we can say that &(m) is close to zero for n > m, 
so that the number of significant sidebands is 2n and the bandwidth is given 
by BW z 2nw,. 
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EXERCISES 

18.4.1 Prove that equation (18.9) has extrema other than those of the carrier by 
differentiating and setting equal to zero. 

18.4.2 Diagram an analog transmitter and receiver for FM. 

18.4.3 Find the spectral representation of the PM signal. 

s(t) = A cos (w,t + m cos(w,t)) 

18.4.4 AM reception suffers from noise more than FM does, for the simple reason 
that additive wideband noise directly changes the received signal’s amplitude, 
while most noise does not masquerade as frequency or phase changes. This is 
the reason FM is commonly used for high quality music broadcasting. Explain 
why FM receivers use a hard-limiter before the demodulator. 

18.4.5 Communications-grade FM receivers come equipped with a squelch circuit 
that completely silences the receiver when no FM signal is present. Explain 
how this works and why such a circuit is not used in AM receivers. 

18.4.6 What happens when two AM signals transmit too close together in fre- 
quency? What happens with FM? 

18.5 Data Communications 

Communications systems tend to be extremely complex. For example, a 
phone call starts with someone picking up the receiver (i.e., the telephone 
goes of--hook). This causes current to flow thus informing the local Central 
Office (CO) that service has been requested. The CO responds by sending 
a signal composed of two sinusoids of 350 and 440 Hz called dial tone to 
the customer and starting up a rotary dialing pulse decoder and a DTMF 
receiver. The customer hears the dial tone and starts dialing. As soon as 
the CO notes activity it stops sending dial tone and starts decoding and 
collecting the digits. At some point the CO realizes that the entire number 
has been dialed and decides whether the call is local, long distance, overseas, 
etc. If the called party belongs to the same CO the appropriate line must 
be found, and whether it is presently in use must be checked. If it is in 
use a busy signal (480+620 Hz one half-second on and one half-second off) 
is returned to the calling party; if not, an AC ring voltage is placed on it, 
and a ring-back signal (440+480 Hz one second on and three seconds off) 
returned until someone answers by going off-hook. However, if the phone call 
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must be routed to another CO, complex optimization algorithms must be 
called up to quickly determine the least expensive available way to connect 
to the desired party. The calling CO then informs the called CO of the caller 
and callee phone numbers along a digital link using multifrequency tones or 
digital messages. The called CO then checks the called number’s line and 
either returns an indication of busy, or places ring voltage and returns an 
indication of ringing. Of course we haven’t mentioned caller identification, 
call waiting, billing, voicemail, etc. 

If making a telephone call is that complex behind the scenes, just think 
of what happens when you surf the Internet with a web browser! In order 
to facilitate comprehension of such complex systems, they are tradition- 
ally divided into layers. The popular Open Systems Interconnection (OSI) 
reference model delineates seven distinct layers for the most general data 
communications system, namely physical, datalink, network, transport, ses- 
sion, presentation, and application layers. At each layer the source can be 
considered to be communicating with the same layer of the destination via 
a protocol defined for that layer. In reality information is not transferred di- 
rectly between higher layers; rather it is passed down to the physical layer, 
sent over the communications channel, and then passed up through the lay- 
ers. Hence, each layer requires all the layers under it in order to function, 
directly accessing functions of the layer immediately beneath it and pro- 
viding functionality to the layer immediately above it. The physical layer 
contains specifications of the cables and connectors to be employed, the 
maximum allowed voltage levels, etc. It also defines the ‘line code’ (i.e., the 
modulation type that determines how the digital information influences the 
line voltage). The datalink layer specifications are responsible for detecting 
and correcting errors in the data over a link (between one node in a net- 
work and the next), while the network layer routes information from the 
point of origin through the network to the destination, and ensures that the 
network does not become congested. The transport layer guarantees reli- 
able source-to-destination transport through the network, while the session 
layer is where an entire dialog between the two sides is established (e.g., a 
user logs on to a computer) and maintained. The presentation layer trans- 
lates data formats and provides encryption-decryption services and, finally, 
the application (e.g., email, file transfer, remote log-on, etc.) is the most 
abstract layer, providing users with a comprehensible method of commu- 
nicating. Most of these layers do not require DSP. Their main function is 
packaging information into various-size ‘chunks’, tacking headers onto them, 
and figuring out where to send them. 
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EXERCISES 

18.5.1 Assume that someone uses a dial-up modem to connect to the World Wide 
Web. Try to identify as many communications protocols as you can, and at 
what OS1 layer(s) they operate. (Hint: The modem has connection, physi- 
cal layer transfer and perhaps error correction facilities. The application on 
the user’s computer uses a serial protocol to communicate with the service 
provider. The Internet is based on TCP/IP. The web sits above the Internet.) 

18.5.2 Do we really need to divide communications systems into layers? If not, what 
are there advantages and disadvantages? 

18.6 Information Theory 

Digital communications involves reliably sending information-bearing sig- 
nals from a source through a channel to a destination. Were there no chan- 
nel this would be a trivial task; the problem is that the channel distorts 
and adds noise to the signal, adversely affecting the reliability. Basic physics 
dictates the (usually negative) effects of the channel, and signal processing 
knowledge helps design signals that get through these channels with minimal 
damage. 

As anyone who has ever been on the Internet knows, we always want to 
send the information from source to destination as quickly as possible. In 
order to measure the speed of the information transfer we need to know how 
much information is in an arbitrary message. This is the job of information 
theory. 

The basic tenet of information theory is that information content can 
always be quantified. No matter what form the information takes, text, 
speech, images, or even thoughts, we can express the amount of information 
in a unique way. We will always measure information content in bits. The 
rate of information transfer is thus measured in bits per second. 

Suppose that I am thinking of a number II: between 0 and 255 (for def- 
initeness, z = 137); how much information is transferred when I tell you 
that number? You probably know the answer to that question, exactly eight 
bits of information. Formally, the reason that a number between 0 and 255 
contains eight bits of information is that in general eight individual yes-no 
questions must be asked in order to find the number. An optimal sequence 
of questions is as follows: 



18.6. INFORMATION THEORY 667 

&I: Is the x1 = x greater than or equal to 128? Al: Yes (x1 = 137 2 128). 
Q2: Isx2=x1- 128 greater than or equal to 64? A2 No (x2 = 9 < 64). 
Q3: Is x3 = x2 greater than or equal to 32? As: No (x3 = 9 < 32). 
Q4: Is x4 = x3 greater than or equal to 16? Ad: No (x4 = 9 < 16). 
Q5: Is x5 = x4 greater than or equal to 8? As: Yes (xg = 9 2 8). 
Q6: Is x6 = x5- 8 greater than or equal to 4? As: No (zfj = 1 < 4). 
Q7: Is x7 = 26 greater than or equal to 2? A7: No (x7 = 1 < 2). 
Qs: Is xp, = x7 equal to l? As: Yes (x7 = 1). 

Only the number 137 will give this particular sequence of yes-no an- 
swers, and interpreting yes answers as 1 and no answers as 0 produces the 
binary representation of x from MSB to LSB. Similarly we can determine 
the number of bits of information in arbitrary messages by constructing a 
set of yes-no questions that uniquely determines that message. 

Let’s assume a source wishes to convey to the destination a message 
consisting of an integer between 0 and 255. The transmitter needn’t wait for 
the receiver to ask the questions, since the questioning tactic is known. All 
the transmitter needs to do is to transmit the answers Al through Ag. 

Signals that carry information appear to be random to some extent. This 
is because information is only conveyed by surprising its receiver. Constant 
signals, constant amplitude and frequency sinusoids or square waves, convey 
no information, since one can predict exactly what the signal’s value will be 
at any time. Yet consider a signal that can take only two values, say s = 0 
or s = 1, that can change in value every T seconds, but remains constant 
between kT and (k + l)T. Such a signal is often called a Non Return to Zero 
(NRZ) signal, for reasons that will become clear shortly. If the signal jumps 
in an apparently randomly fashion between its two values, one can interpret 
its behavior as a sequence of bits, from which text, sound, or images may 
be derived. If one bit is inferred every T seconds, the information transfer 
rate is $ bits per second. 

According to this point of view, the more random a signal is, the higher 
its information transfer rate. Longer T implies a lower information transfer 
rate since the signal is predictable for longer times. More complex predictable 
behavior also reduces the information transfer rate. For example, a Return 
to Zero (RZ) signal (see Figure 18.8.B) is similar to the NRZ signal described 
above, but always returns to s = 0 for odd k (we count from k = 0). Since an 
unpredictable signal value only appears every 2T seconds, the information 
is transferred at half the rate of the NRZ signal. Predictability may be even 
more subtle. For example, the Manchester signal used in Ethernet LANs 
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Figure 18.8: Comparison of (A) NRZ, (B) RZ, and (C) Manchester signals. The message 
is 11100101 and our channel bandwidth requires transitions to be spaced T seconds apart. 
Using NRZ this message requires 8T seconds. RZ and Manchester both require 16T seconds 
to transmit the same message. 

(see Figure l&&C) encodes a binary one by having s = 1 for even Ic and 
s = 0 for the subsequent Ic + 1 interval; a zero is encoded by s = 0 followed 
by s = 1. Once again the information transfer rate is only half that of the 
NRZ signal, although the lack of randomness is less obvious. Whereas the 
NRZ signal has no correlation between signal values spaced T seconds apart, 
the Manchester signal never allows odd k intervals to have the same value 
as the previous even k interval. 

The moral is that any correlation between signal values at different times 
reduces the amount of information carried. An infinite amount of informa- 
tion is carried by a signal with no correlation between different times (i.e., 
by white noise). Of course a true white noise signal, which has frequency 
components up to infinite frequency, cannot pass unaltered through a chan- 
nel with finite bandwidth. Thus for a finite bandwidth channel, the signal 
with maximal information content is one whose sole predictability is that 
caused by the bandwidth constraint. Such a signal has a spectrum that is 
flat in the allowed pass-band. 

We can similarly define the information transfer rate when the signal 
may take on many values (called symbols), not just zero and one. A signal 
that can jump randomly every T seconds, but that is a constant s = 0, 1,2, 
or 3 in between these jumps, obviously carries 2 bits every T seconds, or $ 
bits per second. 

What if the different symbols are not equally probable? For example, a 
signal that takes on 26 values corresponding to a message containing text 
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in English would use the symbol corresponding to ‘E’ much more frequently 
than that corresponding to ‘Q’. Information theory tells us that a consistent 
measure of information of a single symbol s is the entropy 

H(s) = - ( logzp(s)) = - x P(S) log2 P(S) 
9 

(18.15) 

where s represents the possible signal values, and the triangular brackets 
stand for the expected value (see Appendix A. 13). 

To understand this result let’s return to the simple case of a sending a 
message that consists of a number z between 0 and 255. Before transmission 
commences, the receiver has no information as to the value of x other than 
the fact that it is between 0 and 255. Thus the receiver assigns an equal 
probability of & to each of the integers 0 . . . 255. A priori the transmitter 
may send a first symbol of 0 or 1 with probability 3. In the previous example 
it would send a 1; immediately the receiver updates its probability estimates, 
now 0. . . 127 have zero probability and 128.. .255 have probability 1 in 128. 
The receiver’s uncertainty has been reduced by a factor of two, corresponding 
to a single bit of information. Now the second answer (in our example a zero) 
is sent. Since the second answer is independent of the first, the probability 
of both answers is the product of the individual probabilities i . i = 1. 

14 Similarly, the probability of any particular sequence of three answers is 2 . 
1 1 ‘z-g= 8. 1 In general it is clear that after each subsequent answer is received 
the probability of the message is halved, as is the uncertainty of the receiver. 
After eight answers have been received the probability of the message has 
been reduced to & and all uncertainty removed. 

Now we prefer to think of information as being added after each answer 
has been received, although the probabilities were multiplied. The only way 
of making an arbitrary multiplication into an addition is to employ a log- 
arithmic relation, such as (18.15). If we wish each reduction of probability 
by a factor of one half to correspond to the addition of a single bit, the 
base of the logarithm must be 2 and a minus sign must be appended (since 
- log, $ = + log, 2 = 1). Thus, for our simple example, each answer Ai 
contributes 

I(Ai) = - log, p(Ai) = log2 $ = 1 

bits of information. The information of the sequence of answers is 

8 8 
I(x) = c I(Ai) = - c log,p(Ai) = 8 

i=l 

bits, as we claimed. 

i=l 
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The guessing game with yes-no questions is not restricted to determining 
numbers; it can be played for other types of messages. For example, in trying 
to ascertain which person in a group is intended we could progressively ask 
‘male or female?‘, ‘tall or short?‘, ‘light or dark hair?‘, etc. until only one 
person remains. Indeed after a little thought you will become convinced that 
every well-defined message can be encoded as a series of answers to yes-no 
questions. The minimal number of such questions needed to unambiguously 
recover the message intended is defined to be the information content of that 
message in bits. In communications we are mostly interested in the rate at 
which information can be transferred from source to destination, specified 
in bits per second. 

EXERCISES 

18.6.1 Consider a signal that can take one of two values, s = 0 with probability 
p and s = 1 with probability 1 - p. Plot the entropy of a single value as a 
function of p. Explain the position and value of the extrema of this graph. 

18.6.2 Compute the entropy in bits per character of English text. Use the proba- 
bilities from exercise 18.1.1 or collect histograms using some suitably large 
on-line text to which you have access. Is a byte required to encode each letter? 

18.6.3 Use a file compression program to reduce the size of some English text. What 
is the connection between final file size and entropy? 

18.6.4 Repeat the previous two exercises for other languages that use the same 
alphabet (French, Spanish, Italian, German, etc.). Can these probabilities be 
used to discriminate between different languages? 

18.6.5 What are the most prevalent pairs of letters in English? How can letter pairs 
be used to aid text compression? To aid in language identification? 

18.6.6 Using Table 18.1 compute the time durations of Morse code letters and sort 
them in increasing order. Did Morse maximize the information transfer rate? 

18.7 Communications Theory 

We have seen that all information can be converted into bits (i.e., into dig- 
ital information). Thus all communications, including those of an analog 
nature, can be performed digitally. That does not imply that all communi- 
cations should be performed digitally, since perhaps the conversion of analog 
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Figure 18.9: The conversion of an analog communications system into digital one. In (A) 
we see the original analog system. In (B) we have performed the separation into source 
and channel coding guaranteed by Shannon’s theorem. In (C) we add line coding in order 
to utilize an analog channel (EC stands for error correction). 

information into digital data, its transmission, reception, and reconversion 
into analog data would lead to a loss in quality or efficiency. In previous sec- 
tions we learned how to transmit analog signals using AM, FM, and other 
forms of analog modulations. With such robust analog techniques at our dis- 
posal it does not seem likely that the conversion to digital communications 
would be useful. 

In the late 194Os, Claude Shannon laid the mathematical framework for 
digital communications. Logically the first result, already deep and perhaps 
surprising, is that digital communications can always be used without sac- 
rificing quality or efficiency. More precisely, Shannon showed that one could 
separate any communications problem, including an analog one, into two 
independent parts, without sacrificing quality. He called these parts source 
coding and channel coding. Source encoding refers to the process of efficiently 
converting the source message into digital data (i.e., representing the mes- 
sage as a bit stream with minimal number of bits). Channel encoding means 
the method of selecting signals to be sent over the communications channel. 
The inverse operations are channel decoding and source decoding, which 
convert the received signals back into digital data and convert the digi- 
tal data back into the original message, respectively. By using this model, 
rather than directly transmitting an analog signal over an analog channel 
(Figure 18.9.A), we can efficiently convert an analog signal into a digital one, 
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send this essentially without error over a digital channel, and then recover 
the original signal (Figure 18.9.B). 

It should be stressed that Shannon’s separation of communications into 
two parts is fundamentally different from the OS1 separation of communi- 
cations into seven layers. There is no theory stating that the division of the 
OS1 model does not impair the communications system; the layers are only 
separated in order to facilitate human comprehension. In a similar fashion 
the channel coding of Shannon’s theorem is often further divided into two 
separate parts, error correction coding and line coding. An error correction 
code converts digital data into protected digital data, which can be trans- 
mitted over a digital channel with less fear of corruption due to noise. Of 
course all real transmission channels are analog, and so digital channels are 
actually an abstraction. The conversion of the (protected) digital signal into 
an analog one suitable for the physical transmission line is called line coding. 
The entire process is thus that of Figure 18.9.C. The division of the channel 
code into error correction code and line code is performed solely as an aid to 
the designers (it’s hard to find one person expert in both fields!) but is not 
guaranteed to be conserve optimality. Indeed one can increase performance 
by combining the two (see Section 18.19). 

Shannon’s theorem, although in many ways satisfying, has not yet con- 
vinced us to convert over to digital communications systems. All we have 
seen is that we have nothing to lose by converting; we have yet to see that 
we have something to gain. Can digital systems actually increase band- 
width efficiency, improve the quality, reduce the cost, or provide any other 
measurable advantage as compared with analog communications? Shannon 
affirmatively answered these questions in a series of theorems about source 
and channel coding. Source coding theorems are beyond the scope of our 
present treatment, yet we can readily understand how proper source and 
channel coding can help us attain some of these goals. 

For maximal efficiency source coding should produce a bit stream with 
no more bits than absolutely needed. We know that the minimal number of 
bits required to encode a message is the information (entropy), and thus the 
ideal source coder produces no more bits than entropy requires. For example, 
speech can be source encoded into 8 Kb/s or less (see Chapter 19) and there 
are modems (line codes) of over 32 Kb/s; hence using digital techniques one 
can transfer four conversations over a single telephone line. Thus proper 
source encoding can increase bandwidth efficiency. 

Digital compact disks have replaced analog long playing records mainly 
due to their superior audio quality. This quality is obtained because of the 
use of digital error correcting channel codes that guarantee accurate re- 
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production of the original sound. Analog music signals that have become 
contaminated with noise cannot generally be corrected, and the noise man- 
ifests itself as various hisses and pops. Thus proper channel encoding can 
indeed increase signal quality. 

While we will not delve into all of Shannon’s theorems, there is one 
that will be essential for us. Before Shannon, engineers knew that noise and 
interference on digital channels cause errors in the reconstructed bit stream; 
and they thought that there was only one way of overcoming this problem, by 
increasing the power of the communications signal. The principle in which all 
designers believed was that no matter what the noise or interference is like, 
if we transmit a strong enough signal it will wipe them out. Then there was 
the separate issue of bandwidth; the higher the bandwidth the more data 
one could reliably transfer in a given time. Thus common wisdom stated 
that the probability of error for digital communications was a function of 
the SNR, while the speed was determined by the bandwidth. Shannon’s 
capacity theorem completely changed this picture; by explaining that the 
SNR and bandwidth establish a maximum transmission rate, under which 
information could be transferred with arbitrarily low error rate. This result 
will be the subject of the next section. 

EXERCISES 

18.7.1 Shannon introduced entropy (defined in the previous section) in connection 
with source coding. The ultimate purpose of source coding is to produce no 
more bits than required by the entropy content of the source. When is simple 
A/D conversion the optimal source coding for an analog signal? What should 
one do when this is not the case? 

18.7.2 In order to achieve the maximum efficiency predicted by Shannon, source 
coding is often required even for digital data. Explain and give several exam- 
ples. (Hint: Data compression, fax.) 

18.7.3 The Baudot code and ASCII are source codes that convert letters into bits. 
What are the essential differences between them? Which is more efficient for 
the transfer of plain text? How efficient is it? 

18.7.4 In today’s world of industrial espionage and computer hackers sensitive data 
is not safe unless encrypted. Augment the diagram of Figure 18.9.C to take 
encryption into account. 

18.7.5 We often want to simultaneously send multiple analog signals (for example, 
all the extensions of an office telephone system) over a single line. This process 
is called multiplexing and its inverse demultiplexing, Show how this fits into 
Figure 18.9.C. 
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18.8 Channel Capacity 

The main challenge in designing the physical layer of a digital communica- 
tions system is approaching the channel capacity. By channel capacity we 
mean the maximum number of information bits that can be reliably trans- 
ferred through that channel in a second. For example, the capacity of a 
modern telephone channel is about 35,000 bits per second (35 Kb/s); it is 
possible to transfer information at rates of up to 35 kilobits per second with- 
out error, but any attempt at perfectly transferring more data than that will 
surely fail. 

Why is there a maximal channel capacity? Why can’t we push data as 
fast as we wish through a digital link? One might perhaps believe that the 
faster data is transmitted, the more errors will be made by the receiver; 
instead we will show that data can be received essentially without error up 
to a certain rate, but thereafter errors invariably ensue. The maximal rate 
derives from two factors, noise and finite bandwidth. Were there to be no 
noise, or were the channel to have unlimited bandwidth, there would be 
unlimited capacity as well. Only when there are both noise and bandwidth 
constraints is the capacity finite. Let us see why this is the case. 

Assume there is absolutely no noise and that the channel can support 
some range of signal amplitudes. Were we to transmit a constant signal of 
some allowable amplitude into a nonattenuating noiseless channel, it would 
emerge at the receiver with precisely the same amplitude. An ideal receiver 
would be able measure this amplitude with arbitrary accuracy. Even if the 
channel does introduce attenuation, we can precisely compensate for it by 
a constant gain. There is also no fundamental physical reason that this 
measurement cannot be performed essentially instantaneously. Accordingly 
we can achieve errorless recovery of an infinite amount of information per 
second. For example, let’s assume that the allowable signal amplitudes are 
those between 0 and 1 and that we wish to transmit the four bits 0101. 
We simply define sixteen values in the permissable range of amplitudes, and 
map the sixteen possible combinations of four bits onto them. The simplest 
mapping method considers this string of bits as a value between 0 and 1, 
namely the binary fraction 0.01012. Since this amplitude may be precisely 
measured by the receiver in one second, we can transfer at least four bits 
per second through the channel. Now let’s try to transmit eight bits (e.g., 
01101001). w e now consider this as the binary fraction 0.01101001~ and 
transmit a constant signal of this amplitude. Once again this can be exactly 
retrieved in a second and thus the channel capacity is above eight bits per 
second. In similar fashion we could take the complete works of Shakespeare, 
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Figure 18.10: The effect of noise on amplitude resolution. The minimum possible spacing 
between quantization levels is the noise amplitude N, and the total spread of possible signal 
values is the peak-to-peak signal amplitude S plus the noise N. The number of levels is 
thus the ratio between the signal-plus-noise and the noise, and the number of bits is the 
base-two logarithm of this ratio. 

encode the characters as bytes, and represent the entire text as a single 
(rather lengthy) number. Normalizing this number to the interval between 
0 and 1 we could, in principle, send the entire text as a single voltage in one 
second through a noiseless channel. This demonstrates that the information- 
carrying capacity of a noiseless channel is infinite. 

What happens when there is noise? The precision to which the amplitude 
can be reliably measured at the receiver is now limited by the noise. We can’t 
place quantization levels closer than the noise amplitude, since the observed 
signals would not be reliably distinguishable. As is clarified by Figure 18.10 
the noise limits the number of bits to the base-two logarithm of the signal- 
plus-noise-to-noise ratio, SNNR = SNR + 1. 

Of course, even if the noise limits us to sending b bits at a time, we can 
always transmit more bits by using a time varying signal. We first send b 
bits, and afterwards another b bits, then yet another b, and so on. Were 
the channel to be of unlimited bandwidth we could abruptly change the 
signal amplitude as rapidly as we wish. The transmitted waveform would 
be piecewise constant with sharp jumps at the transitions. The spectral 
content of such jump discontinuities extends to infinite frequency, but since 
our channel has infinite bandwidth the waveform is received unaltered at the 
receiver, and once again there is no fundamental limitation that hinders our 
receiver from recovering all the information. So even in the presence of noise, 
with no bandwidth limitation the channel capacity is effectively infinite. 

Signals that fluctuate rapidly cannot traverse a channel with finite band- 
width without suffering the consequences. The amount of time a signal must 
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remain relatively constant is inversely proportional to the channel band- 
width, and so when the bandwidth is BW our piecewise constant signal 
cannot vary faster than BW times per second. Were we to transfer an NRZ 
signal through a noisy finite-bandwidth channel we would transfer BW bits 
per second. By using the maximum number of levels the noise allows, we 
find that we can send BW loga SNNR bits per second. Slightly tightening 
up our arguments (see the exercises at the end of this section) leads us to 
Shannon’s celebrated channel capacity theorem. 

Theorem: The Channel Capacity Theorem 
Given a transmission channel bandlimited to BW by an ideal band-pass 
filter, and with signal-to-noise ratio SNR due to additive white noise: 

l there is a way of transmitting digital information through this channel 
at a rate up to 

C = BW log,(SNR + 1) (18.16) 

bits per second, which allows the receiver to recover the information with 
negligible error; 

l at any transmission rate above C bits per second rate no transmission 
method can be devised that will eliminate all errors; 

l the signal that attains the maximum information transfer rate is in- 
distinguishable from white noise filtered by the channel band-pass filter. H 

As an example of the use of the capacity theorem, consider a telephone 
line. The SNR is about 30 dB and the bandwidth approximately 3.5 KHz. 
Since SNR >> 1 we can approximate 

c = BW log,(SNR + 1) * BWlog, SNR = BW SNRm 
10 log,, 2 

,BW%$!z? 

and so C is about 35 Kb/s. 
What the channel theorem tells us is that under about 35 Kb/s there 

is some combination of modulation and error correcting techniques that 
can transfer information essentially error-free over telephone lines. We will 
see later that V.34 modems presently attain 33.6 Kb/s, quite close to the 
theoretical limit. There will occasionally be errors even with the best modem, 
but these are caused by deviations of the channel from the conditions of 
the theorem, for example, by short non-white noise spikes. The reader who 
presently uses 56 Kb/s modems or perhaps DSL modems that transmit over 
telephone lines at rates of over 1 Mb/s can rest assured these modems exploit 
more bandwidth than 3.5 KHz. 
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The last part of the capacity theorem tells us that a signal that optimally 
fills the channel has no structure other than that imposed by the channel. 
This condition derives from the inverse relation between predictability and 
information. Recall from Section 5.2 that white noise is completely unpre- 
dictable. Any deviation of the signal from whiteness would imply some pre- 
dictability, and thus a reduction in information capacity. Were the signal to 
be of slightly narrower bandwidth, this would mean that it obeys the differ- 
ence equation of a band-pass filter that filters it to this shape, an algebraic 
connection between sample values that needlessly constrains its freedom to 
carry information. 

The channel capacity theorem as expressed above is limited by two con- 
ditions, namely that the bandwidth is filtered by an ideal band-pass filter, 
and that the noise is completely white. However, the extension to arbitrary 
channels with arbitrary stationary noise is (at least in principle) quite sim- 
ple. Zoom in on some very small region of the channel’s spectrum; for a small 
enough region the attenuation as a function of frequency will be approxi- 
mately constant and likewise the noise spectrum will be approximately flat. 
Hence for this small spectral interval the channel capacity theorem holds and 
we can compute the number of bits per second that could be transferred us- 
ing only this part of the total spectrum. Identical considerations lead us to 
conclude that we can find the capacities of all other small spectral intervals. 
In principle we could operate independent modems at each of these spectral 
regions, dividing the original stream of bits to be transmitted between the 
different modems. Hence we can add the information rates predicted by the 
capacity theorem for all the regions to reach an approximate prediction for 
the entire spectrum. Let’s call the bandwidth of each spectral interval Sf, 
and the signal-to-noise ratio in the vicinity of frequency f we shall denote 
SNR(f). Then 

.- r 

C = xlog,(SNR(f) + 1) Sf 
s 

and for this approximation to become exact we need only make the regions 
infinitesimally small and integrate instead of adding. 

C= 
s 1%2(swf) + 1) df (18.17) 

We see that for the general case the channel capacity depends solely on the 
frequency-dependent signal-to-noise ratio. 

From the arguments that lead up to the capacity theorem it is obvious 
that the SNR mentioned in the theorem is to be measured at the receiver, 
where the decisions must be made. It is not enough to specify the transmitted 
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power at the frequency of interest P( f ) (measured in watts per Hz), since 
for each small spectral region it is this transmitted power times the line 
attenuation A(t) that must be compared to the noise power N(t) (also in 
watts per Hz) at that frequency. In other words, the SNR is P(f)A(t)/N(f), 
and the total information rate to be given by the following integral. 

c = log, 
I ( 

Kf M(t) 
N(f) + l df > 

(18.18) 

Unfortunately, equation (18.18) is not directly useful for finding the max- 
imal information capacity for the common case where we are given the line 
attenuation A(t), the noise power distribution N(f) and the total transmit- 
ted power P. r 

(18.19) 

In order to find the maximal capacity we have to know the optimal trans- 
mitter power distribution P(f). Should we simply take the entire power at 
the transmitter’s disposal and spread it equally across the entire spectrum? 
Or can we maximize the information rate of an arbitrary channel by trans- 
mitting more power where the attenuation and noise are greater? A little 
thought leads us to the conclusion that the relevant quantity is the noise- 
to-attenuation ratio N(f)/A(f). I n re g ions where this ratio is too high we 
shouldn’t bother wasting transmitted power since the receiver SNR will end 
up being low anyway and the contribution to the capacity minimal. We 
should start spending power where the N/A ratio is lower, and expend the 
greatest amount of power where the ratio is lowest and thus the received 
SNR highest. 

In other words, we should distribute the power according to 

(18.20) 

where the value of 0 is determined by the requirement (18.19) that the total 
Power should equal P. Gallager called this the ‘water pouring criterion’. To 
understand this name, picture the attenuation to noise distribution ratio as 
an irregularly shaped bowl, and the total amount of power to be transmit- 
ted as the amount of water in a pitcher (Figure 18.11). Maximizing signal 
capacity is analogous to pouring the water from the pitcher into the bowl. 
Where the bowl’s bottom is too high no water remains, where the bowl is 
low the height of water is maximal. 
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Figure 18.11: The water pouring criterion states that the information rate is maximized 
when the amount of power available to be transmitted is distributed in a channel in the 
same way as water fills an irregularly shaped bowl. 

With the water pouring criterion the generalized capacity theorem is 
complete. Given the total power and the attenuation-to-noise ratio, we ‘pour 
water’ using equation (18.20) to find the power distribution of the signal with 
the highest information transfer rate. We can then find the capacity using the 
capacity integral (18.18). Modern modems exploit this generalized capacity 
theorem in the following way. During an initialization phase they probe the 
channel, measuring the attenuation-to-noise ratio as a function of frequency. 
One way of doing this is to transmit a set of equal amplitude, equally spaced 
carriers and measuring the received SNR for each. This information can 
then be used to tailor the signal parameters so that the power distribution 
approximates water pouring. 

EXERCISES 

188.1 SNR always refers to the power ratio, not the signal value ratio. Show that 
assuming the noise is uncorrelated with the signal, the capacity should be 
proportional to a log, SNR. 

18.8.2 Using the sampling theorem, show that if the bandwidth is W we can trans- 
mit 2W pulses of information per second. Jump discontinuities will not be 
passed by a finite bandwidth channel. Why does this not affect the result? 

18.83 Put the results of the previous examples together and prove Shannon’s the- 
orem. 

18.8.4 When the channel noise is white its power can be expressed as a noise power 
density No in watts per Hz. Write the information capacity in terms of BW 
and NO. 
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18.8.5 

18.8.6 

Early calculations based on Shannon’s theorem set the maximum rate of 
information transfer lower than that which is now achieved. The resolution 
of this paradox is the improvement of SNR and methods to exploit more of 
the bandwidth. Calculate the channel capacity of a telephone line that passes 
from 200 Hz to 3400 Hz and has a signal-to-noise ratio of about 20-25 dB. 
Calculate the capacity for a digital telephone line that passes from 200 Hz to 
3800 Hz and encodes using logarithmic PCM (12-13 bits). 

The ‘maximum reach’ of a DSL modem is defined to be the distance over 
which it can function when the only source of interference is thermal white 
noise. The attenuation of a twisted pair of telephone wires for frequencies 
over 250 KHz can be approximated by 

A(f) = e -s(nq/7+nsf)L 

where L is the cable length in Km. For 24-gauge wire ~1 = 2.36. 10s3, K,Z = 
-0.34.10-8 and for thinner 26-gauge wire i~r = 2.98e10-3, ~2 = -1.06~10-8. 
Assume that the transmitter can transmit 13 dBm between 250 KHz and 5 
MHz and that the thermal noise power is -140 dBm per Hz. Write a program 
to determine the optimal transmitter power distribution and the capacity for 
lengths of 1, 2, 3, 4, and 5 Km. 

18.9 Error Correcting Codes 

In order to approach the error-free information rate guaranteed by Shannon, 
modem signals and demodulators have become extremely sophisticated; but 
we have to face up to the fact that no matter how optimally designed the 
demodulator, it will still sometimes err. A short burst of noise caused by a 
passing car, a tone leaking through from another channel, changes in channel 
frequency characteristics due to rain or wind on a cable, interference from 
radio transmitters, all of these can cause the demodulator to produce a bit 
stream that is not identical to that intended. Errors in the reconstructed 
bit stream can be catastrophic, generating annoying clicks in music, causing 
transferred programs to malfunction, producing unrecoverable compressed 
files, and firing missile banks when not intended. In order to reduce the 
probability of such events, an error correcting code (ECC) may be used. 

Using the terminology of Section 18.7, an ECC is a method of channel 
encoding designed to increase reliability. Error correcting codes are indepen- 
dent of the signal processing aspects of the bit transfer (line coding); they 
are purely mathematical mechanisms that detect whether bits have become 


