1. Exploratory Data Analysis

1.3. EDA Techniques

1.3.5. Quantitative Techniques

Confirmatory Statistics

The techniques discussed in this section are classical statistical methods as opposed to EDA techniques. EDA and classical techniques are not mutually exclusive and can be used in a complamentary fashion. For example, the analysis can start with some simple graphical techniques such as the 4-plot followed by the classical confirmatory methods discussed herein to provide more rigorous statments about the conclusions. If the classical methods yield different conclusions than the graphical analysis, then some effort should be invested to explain why. Often this is an indication that some of the assumptions of the classical techniques are violated.

Many of the quantitative techniques fall into two broad categories:

1. Interval estimation
2. Hypothesis tests

Interval
Estimates

It is common in statistics to estimate a parameter from a sample of data. The value of the parameter using all of the possible data, not just the sample data, is called the population parameter or true value of the parameter. An estimate of the true parameter value is made using the sample data. This is called a point estimate or a sample estimate.

For example, the most commonly used measure of location is the mean. The population, or true, mean is the sum of all the members of the given population divided by the number of members in the population. As it is typically impractical to measure every member of the population, a random sample is drawn from the population. The sample mean is calculated by summing the values in the sample and dividing by the number of values in the sample. This sample mean is then used as the point estimate of the population mean.

Interval estimates expand on point estimates by incorporating the uncertainty of the point estimate. In the example for the mean above, different samples from the same population will generate different values for the sample mean. An interval estimate quantifies this uncertainty in the sample estimate by computing lower and upper
values of an interval which will, with a given level of confidence (i.e., probability), contain the population parameter.

Hypothesis Hypothesis tests also address the uncertainty of the sample estimate. Tests However, instead of providing an interval, a hypothesis test attempts to refute a specific claim about a population parameter based on the sample data. For example, the hypothesis might be one of the following:

- the population mean is equal to 10
- the population standard deviation is equal to 5
- the means from two populations are equal
- the standard deviations from 5 populations are equal

To reject a hypothesis is to conclude that it is false. However, to accept a hypothesis does not mean that it is true, only that we do not have evidence to believe otherwise. Thus hypothesis tests are usually stated in terms of both a condition that is doubted (null hypothesis) and a condition that is believed (alternative hypothesis).

A common format for a hypothesis test is:
H_{0} : A statement of the null hypothesis, e.g., two population means are equal.
$\mathrm{H}_{\mathrm{a}}: \quad$ A statement of the alternative hypothesis, e.g., two population means are not equal.
Test Statistic: The test statistic is based on the specific hypothesis test.
Significance Level: The significance level, α, defines the sensitivity of the test. A value of $\alpha=0.05$ means that we inadvertently reject the null hypothesis 5% of the time when it is in fact true. This is also called the type I error. The choice of α is somewhat arbitrary, although in practice values of $0.1,0.05$, and 0.01 are commonly used.

The probability of rejecting the null hypothesis when it is in fact false is called the power of the test and is denoted by $1-\beta$. Its complement, the probability of accepting the null hypothesis when the alternative hypothesis is, in fact, true (type II error), is called β and can only be computed for a specific alternative hypothesis.

Critical Region: The critical region encompasses those values of the test statistic that lead to a rejection of the null hypothesis. Based on the distribution of the test statistic and the significance level, a cut-off value for the test statistic is computed. Values either above or below or both (depending on the direction of the test) this cut-off define the critical region.

Practical It is important to distinguish between statistical significance and Versus Statistical Significance

Uncertainty Estimates

Table of Contents

Bootstrap In some cases, it is possible to mathematically derive appropriate practical significance. Statistical significance simply means that we reject the null hypothesis. The ability of the test to detect differences that lead to rejection of the null hypothesis depends on the sample size. For example, for a particularly large sample, the test may reject the null hypothesis that two process means are equivalent. However, in practice the difference between the two means may be relatively small to the point of having no real engineering significance. Similarly, if the sample size is small, a difference that is large in engineering terms may not lead to rejection of the null hypothesis. The analyst should not just blindly apply the tests, but should combine engineering judgement with statistical analysis.
uncertainty intervals. This is particularly true for intervals based on the assumption of a normal distribution. However, there are many cases in which it is not possible to mathematically derive the uncertainty. In these cases, the bootstrap provides a method for empirically determining an appropriate interval.

Some of the more common classical quantitative techniques are listed below. This list of quantitative techniques is by no means meant to be exhaustive. Additional discussions of classical statistical techniques are contained in the product comparisons chapter.

- Location

1. Measures of Location
2. Confidence Limits for the Mean and One Sample t-Test
3. Two Sample t-Test for Equal Means
4. One Factor Analysis of Variance
5. Multi-Factor Analysis of Variance

- Scale (or variability or spread)

1. Measures of Scale
2. Bartlett's Test
3. Chi-Square Test
4. F-Test
5. Levene Test

- Skewness and Kurtosis

1. Measures of Skewness and Kurtosis

- Randomness

1. Autocorrelation
2. Runs Test

- Distributional Measures

1. Anderson-Darling Test
2. Chi-Square Goodness-of-Fit Test
3. Kolmogorov-Smirnov Test

- Outliers

1. Grubbs Test

- 2-Level Factorial Designs

1. Yates Analysis
2. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.1. Measures of Location

Location

Definition of Location

A fundamental task in many statistical analyses is to estimate a location parameter for the distribution; i.e., to find a typical or central value that best describes the data.

The first step is to define what we mean by a typical value. For univariate data, there are three common definitions:

1. mean - the mean is the sum of the data points divided by the number of data points. That is,

$$
\bar{Y}=\sum_{i=1}^{N} Y_{i} / N
$$

The mean is that value that is most commonly referred to as the average. We will use the term average as a synonym for the mean and the term typical value to refer generically to measures of location.
2. median - the median is the value of the point which has half the data smaller than that point and half the data larger than that point. That is, if $X_{1}, X_{2}, \ldots, X_{N}$ is a random sample sorted from smallest value to largest value, then the median is defined as:

$$
\begin{aligned}
& \tilde{Y}=Y_{(N+1) / 2} \quad \text { if } N \text { is odd } \\
& \tilde{Y}=\left(Y_{N / 2}+Y_{(N / 2)+1}\right) / 2 \quad \text { if } N \text { is even }
\end{aligned}
$$

3. mode - the mode is the value of the random sample that occurs with the greatest frequency. It is not necessarily unique. The mode is typically used in a qualitative fashion. For example, there may be a single dominant hump in the data perhaps two or more smaller humps in the data. This is usually evident from a histogram of the data.

When taking samples from continuous populations, we need to be somewhat careful in how we define the mode. That is, any
specific value may not occur more than once if the data are continuous. What may be a more meaningful, if less exact measure, is the midpoint of the class interval of the histogram with the highest peak.

Why A natural question is why we have more than one measure of the typical

Different
Measures

Normal
Distribution
value. The following example helps to explain why these alternative definitions are useful and necessary.

This plot shows histograms for 10,000 random numbers generated from a normal, an exponential, a Cauchy, and a lognormal distribution.

The first histogram is a sample from a normal distribution. The mean is 0.005 , the median is -0.010 , and the mode is -0.144 (the mode is computed as the midpoint of the histogram interval with the highest peak).

The normal distribution is a symmetric distribution with well-behaved tails and a single peak at the center of the distribution. By symmetric, we mean that the distribution can be folded about an axis so that the 2 sides coincide. That is, it behaves the same to the left and right of some center point. For a normal distribution, the mean, median, and mode are actually equivalent. The histogram above generates similar estimates for the mean, median, and mode. Therefore, if a histogram or normal probability plot indicates that your data are approximated well by a normal distribution, then it is reasonable to use the mean as the location estimator.

Exponential Distribution

Cauchy Distribution

The second histogram is a sample from an exponential distribution. The mean is 1.001 , the median is 0.684 , and the mode is 0.254 (the mode is computed as the midpoint of the histogram interval with the highest peak).

The exponential distribution is a skewed, i. e., not symmetric, distribution. For skewed distributions, the mean and median are not the same. The mean will be pulled in the direction of the skewness. That is, if the right tail is heavier than the left tail, the mean will be greater than the median. Likewise, if the left tail is heavier than the right tail, the mean will be less than the median.

For skewed distributions, it is not at all obvious whether the mean, the median, or the mode is the more meaningful measure of the typical value. In this case, all three measures are useful.

The third histogram is a sample from a Cauchy distribution. The mean is 3.70 , the median is -0.016 , and the mode is -0.362 (the mode is computed as the midpoint of the histogram interval with the highest peak).

For better visual comparison with the other data sets, we restricted the histogram of the Cauchy distribution to values between -10 and 10. The full Cauchy data set in fact has a minimum of approximately -29,000 and a maximum of approximately 89,000 .

The Cauchy distribution is a symmetric distribution with heavy tails and a single peak at the center of the distribution. The Cauchy distribution has the interesting property that collecting more data does not provide a more accurate estimate of the mean. That is, the sampling distribution of the mean is equivalent to the sampling distribution of the original data. This means that for the Cauchy distribution the mean is useless as a measure of the typical value. For this histogram, the mean of 3.7 is well above the vast majority of the data. This is caused by a few very extreme values in the tail. However, the median does provide a useful measure for the typical value.

Although the Cauchy distribution is an extreme case, it does illustrate the importance of heavy tails in measuring the mean. Extreme values in the tails distort the mean. However, these extreme values do not distort the median since the median is based on ranks. In general, for data with extreme values in the tails, the median provides a better estimate of location than does the mean.

Lognormal The fourth histogram is a sample from a lognormal distribution. The Distribution

Robustness There are various alternatives to the mean and median for measuring location. These alternatives were developed to address non-normal data since the mean is an optimal estimator if in fact your data are normal.

Tukey and Mosteller defined two types of robustness where robustness is a lack of susceptibility to the effects of nonnormality.

1. Robustness of validity means that the confidence intervals for the population location have a 95% chance of covering the population location regardless of what the underlying distribution is.
2. Robustness of efficiency refers to high effectiveness in the face of non-normal tails. That is, confidence intervals for the population location tend to be almost as narrow as the best that could be done if we knew the true shape of the distributuion.
The mean is an example of an estimator that is the best we can do if the underlying distribution is normal. However, it lacks robustness of validity. That is, confidence intervals based on the mean tend not to be precise if the underlying distribution is in fact not normal.

The median is an example of a an estimator that tends to have robustness of validity but not robustness of efficiency.

The alternative measures of location try to balance these two concepts of robustness. That is, the confidence intervals for the case when the data are normal should be almost as narrow as the confidence intervals based on the mean. However, they should maintain their validity even if the underlying data are not normal. In particular, these alternatives address the problem of heavy-tailed distributions.

Alternative Measures of Location

Case Study The uniform random numbers case study compares the performance of several different location estimators for a particular non-normal distribution.

Software
Most general purpose statistical software programs, including Dataplot, can compute at least some of the measures of location discussed above.
$\frac{\text { NIST }}{\text { SEMATECH }}$

HOME
TOOLS \& AIDS
SEARCH
BACK NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.2. Confidence Limits for the Mean

Purpose: \quad Confidence limits for the mean (Snedecor and Cochran, 1989) are an interval estimate

Interval Estimate for Mean

Definition:
Confidence Interval
for the mean. Interval estimates are often desirable because the estimate of the mean varies from sample to sample. Instead of a single estimate for the mean, a confidence interval generates a lower and upper limit for the mean. The interval estimate gives an indication of how much uncertainty there is in our estimate of the true mean. The narrower the interval, the more precise is our estimate.

Confidence limits are expressed in terms of a confidence coefficient. Although the choice of confidence coefficient is somewhat arbitrary, in practice $90 \%, 95 \%$, and 99% intervals are often used, with 95% being the most commonly used.

As a technical note, a 95% confidence interval does not mean that there is a 95% probability that the interval contains the true mean. The interval computed from a given sample either contains the true mean or it does not. Instead, the level of confidence is associated with the method of calculating the interval. The confidence coefficient is simply the proportion of samples of a given size that may be expected to contain the true mean. That is, for a 95% confidence interval, if many samples are collected and the confidence interval computed, in the long run about 95% of these intervals would contain the true mean.

Confidence limits are defined as:

$$
\bar{Y} \pm t_{(\alpha / 2, N-1)} s / \sqrt{N}
$$

where \bar{Y} is the sample mean, s is the sample standard deviation, N is the sample size, α is the desired significance level, and $t_{(\alpha / 2, N-1)}$ is the upper critical value of the \underline{t} distribution with $N-1$ degrees of freedom. Note that the confidence coefficient is 1 α.

From the formula, it is clear that the width of the interval is controlled by two factors:

1. As N increases, the interval gets narrower from the \sqrt{N} term.

That is, one way to obtain more precise estimates for the mean is to increase the sample size.
2. The larger the sample standard deviation, the larger the confidence interval.

This simply means that noisy data, i.e., data with a large standard deviation, are going to generate wider intervals than data with a smaller standard deviation.

Definition: \quad To test whether the population mean has a specific value, $/ \mu_{0}$, against the two-sided

Hypothesis
Test Output for Confidence Interval

Sample Dataplot generated the following output for a confidence interval from the alternative that it does not have a value $/ \mu_{0}$, the confidence interval is converted to hypothesis-test form. The test is a one-sample t-test, and it is defined as:
$\mathrm{H}_{0}: \quad \mu=\mu \mu_{0}$
$\mathrm{H}_{\mathrm{a}}: \quad \quad \mu \neq / \mu_{0}$
Test Statistic: $\quad T=\left(\bar{Y}-\mu_{0}\right) /(s / \sqrt{N})$
where \bar{Y}, N, and s are defined as above.
Significance Level: α. The most commonly used value for α is 0.05 .
Critical Region: Reject the null hypothesis that the mean is a specified value, $/ \mu_{0}$, if

$$
T<-t_{(n / 2, N-1)}
$$

or

$$
T>t_{(\alpha / 2, N-1)}
$$ ZARR13.DAT data set:

CONFIDENCE LIMITS FOR MEAN (2-SIDED)

NUMBER OF OBSERVATIONS	$=$	195
MEAN	$=$	9.261460
STANDARD DEVIATION	$=$	$0.2278881 \mathrm{E}-01$
STANDARD DEVIATION OF MEAN	$=$	$0.1631940 \mathrm{E}-02$

CONFIDENCE T T X SD (MEAN) LOWER UPPER

VALUE (\%) VALUE LIMIT LIMIT

50.000	0.676	$0.110279 \mathrm{E}-02$	9.26036	9.26256
75.000	1.154	$0.188294 \mathrm{E}-02$	9.25958	9.26334
90.000	1.653	$0.269718 \mathrm{E}-02$	9.25876	9.26416
95.000	1.972	$0.321862 \mathrm{E}-02$	9.25824	9.26468
99.000	2.601	$0.424534 \mathrm{E}-02$	9.25721	9.26571
99.900	3.341	$0.545297 \mathrm{E}-02$	9.25601	9.26691
99.990	3.973	$0.648365 \mathrm{E}-02$	9.25498	9.26794
99.999	4.536	$0.740309 \mathrm{E}-02$	9.25406	9.26886

Interpretation of the Sample Output Output for t Test

Sample Dataplot generated the following output for a one-sample t-test from the
The first few lines print the sample statistics used in calculating the confidence interval. The table shows the confidence interval for several different significance levels. The first column lists the confidence level (which is $1-\alpha$ expressed as a percent), the second column lists the t-value (i.e., $\left.t_{(\alpha / 2, N-1)}\right)$, the third column lists the t -value times the standard error (the standard error is s / \sqrt{N}), the fourth column lists the lower confidence limit, and the fifth column lists the upper confidence limit. For example, for a 95% confidence interval, we go to the row identified by 95.000 in the first column and extract an interval of $(9.25824,9.26468)$ from the last two columns.

Output from other statistical software may look somewhat different from the above output. ZARR13.DAT data set:

NULL HYPOTHESIS UNDER TEST--MEAN MU $=5.000000$
SAMPLE:
NUMBER OF OBSERVATIONS = 195
MEAN $=9.261460$
STANDARD DEVIATION $=0.2278881 \mathrm{E}-01$
STANDARD DEVIATION OF MEAN $=0.1631940 \mathrm{E}-02$
TEST:
MEAN-MU0 $=4.261460$
T TEST STATISTIC VALUE $=2611.284$
DEGREES OF FREEDOM = 194.0000
T TEST STATISTIC CDF VALUE = 1.000000
ALTERNATIVE-
HYPOTHESIS
MU <> 5.000000
MU > 5.000000

ALTERNATIVE-
HYPOTHESIS
CONCLUSION
ACCEPT
REJECT
ACCEPT

Interpretation of Sample Output

Questions

Related

Techniques

Case Study Heat flow meter data.
$\frac{\text { NIST }}{\text { SEMATECH }}$

Software Confidence limits for the mean and one-sample t-tests are available in just about all
general purpose statistical software programs, including Dataplot.
We are testing the hypothesis that the population mean is 5. The output is divided into three sections.

1. The first section prints the sample statistics used in the computation of the t-test.
2. The second section prints the t-test statistic value, the degrees of freedom, and the cumulative distribution function (cdf) value of the t-test statistic. The t-test statistic cdf value is an alternative way of expressing the critical value. This cdf value is compared to the acceptance intervals printed in section three. For an upper one-tailed test, the alternative hypothesis acceptance interval is ($1-\alpha, 1$), the alternative hypothesis acceptance interval for a lower one-tailed test is $(0$, $\boldsymbol{\alpha}$), and the alternative hypothesis acceptance interval for a two-tailed test is (1$\alpha / 2,1)$ or $(0, \alpha / 2)$. Note that accepting the alternative hypothesis is equivalent to rejecting the null hypothesis.
3. The third section prints the conclusions for a 95% test since this is the most common case. Results are given in terms of the alternative hypothesis for the two-tailed test and for the one-tailed test in both directions. The alternative hypothesis acceptance interval column is stated in terms of the cdf value printed in section two. The last column specifies whether the alternative hypothesis is accepted or rejected. For a different significance level, the appropriate conclusion can be drawn from the t-test statistic cdf value printed in section two. For example, for a significance level of 0.10 , the corresponding alternative hypothesis acceptance intervals are $(0,0.05)$ and $(0.95,1),(0,0.10)$, and $(0.90,1)$.
Output from other statistical software may look somewhat different from the above output.

Confidence limits for the mean can be used to answer the following questions:

1. What is a reasonable estimate for the mean?
2. How much variability is there in the estimate of the mean?
3. Does a given target value fall within the confidence limits?

Two-Sample T-Test

Confidence intervals for other location estimators such as the median or mid-mean tend to be mathematically difficult or intractable. For these cases, confidence intervals can be obtained using the bootstrap.
$\boxed{H O M E} \quad$ TOOLS \& AIDS \quad SEARCH

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.3. Two-Sample t-Test for Equal Means

Purpose: \quad The two-sample t-test (Snedecor and Cochran, 1989) is used to determine if two

Test if two
population means are equal population means are equal. A common application of this is to test if a new process or treatment is superior to a current process or treatment.

There are several variations on this test.

1. The data may either be paired or not paired. By paired, we mean that there is a one-to-one correspondence between the values in the two samples. That is, if $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{n}$ are the two samples, then X_{i} corresponds to Y_{i}. For paired samples, the difference $X_{i}-Y_{i}$ is usually calculated. For unpaired samples, the sample sizes for the two samples may or may not be equal. The formulas for paired data are somewhat simpler than the formulas for unpaired data.
2. The variances of the two samples may be assumed to be equal or unequal. Equal variances yields somewhat simpler formulas, although with computers this is no longer a significant issue.
3. The null hypothesis might be that the two population means are not equal ($\left.\mu_{1} \neq \mu_{2}\right)$. If so, this must be converted to the form that the difference between the two population means is equal to some constant ($\mu_{1}-\mu_{2}=d_{0}$). This form might be preferred if you only want to adopt a new process or treatment if it exceeds the current treatment by some threshold value.

Definition The two sample t test for unpaired data is defined as:
$\mathrm{H}_{0}: \quad \mu_{1}=\mu_{2}$
$\mathrm{H}_{\mathrm{a}}: \quad \mu_{1} \neq \mu_{2}$
$\begin{aligned} & \text { Test } \\ & \text { Statistic: }\end{aligned} \quad T=\frac{\bar{Y}_{1}-\bar{Y}_{2}}{\sqrt{s_{1}^{2} / N_{1}+s_{2}^{2} / N_{2}}}$
where N_{1} and N_{2} are the sample sizes, \bar{Y}_{1} and $\overline{Y_{2}}$ are the sample means, and s_{1}^{2} and s_{2}^{2} are the sample variances.

If equal variances are assumed, then the formula reduces to:

$$
T=\frac{\bar{Y}_{1}-\bar{Y}_{2}}{s_{p} \sqrt{1 / N_{1}+1 / N_{2}}}
$$

where

$$
s_{p}^{2}=\frac{\left(N_{1}-1\right) s_{1}^{2}+\left(N_{2}-1\right) s_{2}^{2}}{N_{1}+N_{2}-2}
$$

Significance α.
Level:
Critical Reject the null hypothesis that the two means are equal if
Region:

$$
T<-t_{(\alpha / 2, v)}
$$

or

$$
T>t_{(n / 2, v)}
$$

where $t_{(\alpha / 2, v)}$ is the critical value of the t distribution with V degrees of freedom where

$$
v=\frac{\left(s_{1}^{2} / N_{1}+s_{2}^{2} / N_{2}\right)^{2}}{\left(s_{1}^{2} / N_{1}\right)^{2} /\left(N_{1}-1\right)+\left(s_{2}^{2} / N_{2}\right)^{2} /\left(N_{2}-1\right)}
$$

If equal variances are assumed, then

$$
v=N_{1}+N_{2}-2
$$

Sample Output

Dataplot generated the following output for the t test from the AUTO83B.DAT data set:

> T TEST
> $(2-$ SAMPLE $)$

NULL HYPOTHESIS UNDER TEST--POPULATION MEANS MU1 = MU2
SAMPLE 1:
NUMBER OF OBSERVATIONS $=249$
MEAN $=20.14458$
STANDARD DEVIATION $=6.414700$
STANDARD DEVIATION OF MEAN $=0.4065151$

SAMPLE 2:
NUMBER OF OBSERVATIONS $=\quad 79$
MEAN $=30.48101$
STANDARD DEVIATION $=6.107710$
STANDARD DEVIATION OF MEAN $=0.6871710$
IF ASSUME SIGMA1 = SIGMA2:
POOLED STANDARD DEVIATION $=6.342600$
DIFFERENCE (DEL) IN MEANS = -10.33643
STANDARD DEVIATION OF DEL $=0.8190135$
T TEST STATISTIC VALUE $=-12.62059$
DEGREES OF FREEDOM $=326.0000$
T TEST STATISTIC CDF VALUE = 0.000000

IF NOT ASSUME SIGMA1 = SIGMA2:
STANDARD DEVIATION SAMPLE $1=6.414700$
STANDARD DEVIATION SAMPLE $2=6.107710$
BARTLETT CDF VALUE $=0.402799$
DIFFERENCE (DEL) IN MEANS = -10.33643
STANDARD DEVIATION OF DEL $=0.7984100$
T TEST STATISTIC VALUE $=-12.94627$
EQUIVALENT DEG. OF FREEDOM = 136.8750
T TEST STATISTIC CDF VALUE = 0.000000

ALTERNATIVE-
HYPOTHESIS
MU1 <> MU2
MU1 < MU2
MU1 > MU2

ALTERNATIVE-
HYPOTHESIS
ACCEPTANCE INTERVAL
(0,0.025) (0.975,1)
(0,0.05)
(0.95,1)

ALTERNATIVEHYPOTHESIS
CONCLUSION
ACCEPT
ACCEPT
REJECT

Interpretation We are testing the hypothesis that the population mean is equal for the two of Sample Output samples. The output is divided into five sections.

1. The first section prints the sample statistics for sample one used in the computation of the t-test.
2. The second section prints the sample statistics for sample two used in the computation of the t-test.
3. The third section prints the pooled standard deviation, the difference in the means, the t-test statistic value, the degrees of freedom, and the cumulative distribution function (cdf) value of the t-test statistic under the assumption that the standard deviations are equal. The t-test statistic cdf value is an alternative way of expressing the critical value. This cdf value is compared to the acceptance intervals printed in section five. For an upper one-tailed test, the acceptance interval is $(0,1-\boldsymbol{\alpha})$, the acceptance interval for a two-tailed test is ($\alpha / 2,1-\alpha / 2$), and the acceptance interval for a lower one-tailed test is ($\alpha, 1$).
4. The fourth section prints the pooled standard deviation, the difference in the means, the t-test statistic value, the degrees of freedom, and the cumulative distribution function (cdf) value of the t-test statistic under the assumption that the standard deviations are not equal. The t-test statistic cdf value is an alternative way of expressing the critical value. cdf value is compared to the acceptance intervals printed in section five. For an upper one-tailed test, the alternative hypothesis acceptance interval is ($1-\alpha, 1$), the alternative hypothesis acceptance interval for a lower one-tailed test is $(0, \Omega)$, and the alternative hypothesis acceptance interval for a two-tailed test is $(1-\alpha / 2,1)$ or $(0, \alpha / 2)$. Note that accepting the alternative hypothesis is equivalent to rejecting the null hypothesis.
5. The fifth section prints the conclusions for a 95% test under the assumption that the standard deviations are not equal since a 95% test is the most common case. Results are given in terms of the alternative hypothesis for the two-tailed test and for the one-tailed test in both directions. The alternative hypothesis acceptance interval column is stated in terms of the cdf value printed in section four. The last column specifies whether the alternative hypothesis is accepted or rejected. For a different significance level, the appropriate conclusion can be drawn from the t-test statistic cdf value printed in section four. For example, for a significance level of 0.10 , the corresponding alternative hypothesis acceptance intervals are $(0,0.05)$ and $(0.95,1),(0,0.10)$, and $(0.90,1)$.
Output from other statistical software may look somewhat different from the above output.

Questions Two-sample t-tests can be used to answer the following questions:

1. Is process 1 equivalent to process 2 ?
2. Is the new process better than the current process?
3. Is the new process better than the current process by at least some pre-determined threshold amount?

Related Confidence Limits for the Mean
Techniques

Case Study Ceramic strength data.
Software Two-sample t-tests are available in just about all general purpose statistical software programs, including Dataplot.

NIST $\overline{\text { SEMATECH }}$ HOME TOOLS \& AIDS SEARCH

BACK NEXT|

Data Used \quad The following is the data used for the two-sample t-test example. The
first column is miles per gallon for U.S. cars and the second column is miles per gallon for Japanese cars. For the t-test example, rows with the second column equal to -999 were deleted.

Two-Sample t-Test
Example
$18 \quad 24$
15
27
$18 \quad 27$
16
25
17
31
$15 \quad 35$
14
24
14
19
14
28
15 23
$15 \quad 27$
$14 \quad 20$
$15 \quad 22$
$14 \quad 18$
$22 \quad 20$
$18 \quad 31$
$21 \quad 32$
$21 \quad 31$
$10 \quad 32$
$10 \quad 24$
$11 \quad 26$
$9 \quad 29$
$28 \quad 24$
$25 \quad 24$
1933
$16 \quad 33$
$17 \quad 32$
$19 \quad 28$
$18 \quad 19$

14 32
14 34
14
26
1430
12
22
$13 \quad 22$
13
33
18
39
$22 \quad 36$
$19 \quad 28$
$18 \quad 27$
$23 \quad 21$
$26 \quad 24$
$25 \quad 30$
$20 \quad 34$
$21 \quad 32$
$13 \quad 38$
$14 \quad 37$
$15 \quad 30$
$14 \quad 31$
$17 \quad 37$
$11 \quad 32$
$13 \quad 47$
1241
$13 \quad 45$
$15 \quad 34$
$13 \quad 33$
$13 \quad 24$
$14 \quad 32$
$22 \quad 39$
$28 \quad 35$
$13 \quad 32$
$14 \quad 37$
$13 \quad 38$
$14 \quad 34$
$15 \quad 34$
$12 \quad 32$
$13 \quad 33$
$13 \quad 32$
$14 \quad 25$
$13 \quad 24$
$12 \quad 37$
$13 \quad 31$
$18 \quad 36$
$16 \quad 36$

18	34
18	38
23	32
11	38
12	32
13	-999
12	-999
18	-999
21	-999
19	-999
21	-999
15	-999
16	-999
15	-999
11	-999
20	-999
21	-999
19	-999
15	-999
26	-999
25	-999
16	-999
16	-999
18	-999
16	-999
13	-999
14	-999
14	-999
14	-999
28	-999
19	-999
18	-999
15	-999
15	-999
16	-999
15	-999
16	-999
14	-999
17	-999
16	-999
15	-999
18	-999
21	-999
20	-999
13	-999
23	-999

20	-999
23	-999
18	-999
19	-999
25	-999
26	-999
18	-999
16	-999
16	-999
15	-999
22	-999
22	-999
24	-999
23	-999
29	-999
25	-999
20	-999
18	-999
19	-999
18	-999
27	-999
13	-999
17	-999
13	-999
13	-999
13	-999
30	-999
26	-999
18	-999
17	-999
16	-999
15	-999
18	-999
21	-999
19	-999
19	-999
16	-999
16	-999
16	-999
16	-999
25	-999
26	-999
31	-999
34	-999
36	-999
20	-999

19	-999
20	-999
19	-999
21	-999
20	-999
25	-999
21	-999
19	-999
21	-999
21	-999
19	-999
18	-999
19	-999
18	-999
18	-999
18	-999
30	-999
31	-999
23	-999
24	-999
22	-999
20	-999
22	-999
20	-999
21	-999
17	-999
18	-999
17	-999
18	-999
17	-999
16	-999
19	-999
19	-999
36	-999
27	-999
23	-999
24	-999
34	-999
35	-999
28	-999
29	-999
27	-999
34	-999
32	-999
28	-999
26	-999

1.3.5.3.1. Data Used for Two-Sample t-Test

24	-999
19	-999
28	-999
24	-999
27	-999
27	-999
26	-999
24	-999
30	-999
39	-999
35	-999
34	-999
30	-999
22	-999
27	-999
20	-999
18	-999
28	-999
27	-999
34	-999
31	-999
29	-999
27	-999
24	-999
23	-999
38	-999
36	-999
25	-999
38	-999
26	-999
22	-999
36	-999
27	-999
27	-999
32	-999
28	-999
31	-999

NIST

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.4. One-Factor ANOVA

Purpose: One factor analysis of variance (Snedecor and Cochran, 1989) is a
Test for
Equal
Means
Across
Groups

Definition The Product and Process Comparisons chapter (chapter 7) contains a more extensive discussion of 1 -factor ANOVA, including the details for the mathematical computations of one-way analysis of variance.

The model for the analysis of variance can be stated in two mathematically equivalent ways. In the following discussion, each level of each factor is called a cell. For the one-way case, a cell and a level are equivalent since there is only one factor. In the following, the subscript \boldsymbol{i} refers to the level and the subscript \boldsymbol{j} refers to the observation within a level. For example, \boldsymbol{Y}_{23} refers to the third observation in the second level.

The first model is

$$
Y_{i j}=\mu_{i}+E_{i j}
$$

This model decomposes the response into a mean for each cell and an error term. The analysis of variance provides estimates for each cell mean. These estimated cell means are the predicted values of the model and the differences between the response variable and the estimated cell means are the residuals. That is

$$
\begin{aligned}
& \hat{Y}_{i j}=\hat{\mu}_{i} \\
& R_{i j}=Y_{i j}-\hat{\mu}_{i}
\end{aligned}
$$

The second model is

$$
Y_{i j}=\mu+\alpha_{i}+E_{i j}
$$

This model decomposes the response into an overall (grand) mean, the effect of the i th factor level, and an error term. The analysis of variance provides estimates of the grand mean and the effect of the i th factor level. The predicted values and the residuals of the model are

$$
\begin{aligned}
& \hat{Y}_{i j}=\hat{\mu}+\hat{\alpha}_{i} \\
& R_{i j}=Y_{i j}-\hat{\mu}-\hat{\alpha}_{\hat{i}}
\end{aligned}
$$

The distinction between these models is that the second model divides
1.3.5.4. One-Factor ANOVA
the cell mean into an overall mean and the effect of the i th factor level. This second model makes the factor effect more explicit, so we will emphasize this approach.

Model Note that the ANOVA model assumes that the error term, $\boldsymbol{E}_{\boldsymbol{i} j}$, should Validation follow the assumptions for a univariate measurement process. That is, after performing an analysis of variance, the model should be validated by analyzing the residuals.

Sample Dataplot generated the following output for the one-way analysis of variance from the GEAR.DAT data set. Output

| NUMBER OF OBSERVATIONS | $=$ | 100 |
| :--- | :---: | :---: | :---: |
| NUMBER OF FACTORS | $=$ | 1 |
| NUMBER OF LEVELS FOR FACTOR 1 | $=$ | 10 |
| BALANCED CASE | | |
| RESIDUAL STANDARD DEVIATION | $=$ | $0.59385783970 E-02$ |
| RESIDUAL DEGREES OF FREEDOM | $=$ | 90 |
| REPLICATION CASE | | |
| REPLICATION STANDARD DEVIATION | $=$ | $0.59385774657 E-02$ |
| REPLICATION DEGREES OF FREEDOM | $=$ | 90 |
| NUMBER OF DISTINCT CELLS | $=$ | 10 |

$* * * * * * * * * * * * * * * * *$

$*$ ANOVA TABLE $*$

$* * * * * * * * * * * * * * *$

	LEVEL-ID	NI	MEAN	EFFECT	SD (EFFECT)
FACTOR 1--	1.00000	10.	0.99800	0.00036	0.00178
--	2.00000	10.	0.99910	0.00146	0.00178
--	3.00000	10.	0.99540	-0.00224	0.00178
--	4.00000	10.	0.99820	0.00056	0.00178
--	5.00000	10.	0.99190	-0.00574	0.00178
--	6.00000	10.	0.99880	0.00116	0.00178
--	7.00000	10.	1.00150	0.00386	0.00178

--	8.00000	10.	1.00040	0.00276	0.00178
--	9.00000	10.	0.99830	0.00066	0.00178
--	10.00000	10.	0.99480	-0.00284	0.00178

MODEL
RESIDUAL STANDARD DEVIATION

CONSTANT \& FACTOR 1 ONLY-- 0.0059385784

Interpretation The output is divided into three sections.
of Sample
Output

1. The first section prints the number of observations (100), the number of factors (10), and the number of levels for each factor (10 levels for factor 1). It also prints some overall summary statistics. In particular, the residual standard deviation is 0.0059 . The smaller the residual standard deviation, the more we have accounted for the variance in the data.
2. The second section prints an ANOVA table. The ANOVA table decomposes the variance into the following component sum of squares:
o Total sum of squares. The degrees of freedom for this entry is the number of observations minus one.
o Sum of squares for the factor. The degrees of freedom for this entry is the number of levels minus one. The mean square is the sum of squares divided by the number of degrees of freedom.
o Residual sum of squares. The degrees of freedom is the total degrees of freedom minus the factor degrees of freedom. The mean square is the sum of squares divided by the number of degrees of freedom.
That is, it summarizes how much of the variance in the data (total sum of squares) is accounted for by the factor effect (factor sum of squares) and how much is random error (residual sum of squares). Ideally, we would like most of the variance to be explained by the factor effect. The ANOVA table provides a formal F test for the factor effect. The F-statistic is the mean square for the factor divided by the mean square for the error. This statistic follows an F distribution with $(k-1)$ and $(N-k)$ degrees of freedom. If the F CDF column for the factor effect is greater than 95%, then the factor is significant at the 5% level.
3. The third section prints an estimation section. It prints an overall mean and overall standard deviation. Then for each level of each factor, it prints the number of observations, the mean for the observations of each cell ($\hat{\Lambda}_{2}$ in the above terminology), the factor effect ($\hat{\alpha}_{j}$ in the above terminology), and the standard deviation of the factor effect. Finally, it prints the residual standard deviation for the various possible models. For the one-way ANOVA, the two models are the constant model, i.e.,

$$
Y_{i}=A_{0}+E_{i}
$$

and the model with a factor effect

$$
Y_{i j}=\mu+\alpha_{i}+E_{i j}
$$

For these data, including the factor effect reduces the residual standard deviation from 0.00623 to 0.0059 . That is, although the factor is statistically significant, it has minimal improvement over a simple constant model. This is because the factor is just barely significant.
Output from other statistical software may look somewhat different from the above output.

In addition to the quantitative ANOVA output, it is recommended that any analysis of variance be complemented with model validation. At a minimum, this should include

1. A run sequence plot of the residuals.
2. A normal probability plot of the residuals.
3. A scatter plot of the predicted values against the residuals.

Question The analysis of variance can be used to answer the following question

- Are means the same across groups in the data?

Importance The analysis of uncertainty depends on whether the factor significantly affects the outcome.

Related Techniques

Software

Two-sample t-test
Multi-factor analysis of variance Regression
Box plot

Most general purpose statistical software programs, including Dataplot, can generate an analysis of variance.

NIST
SEMATECH

HOME
TOOLS \& AIDS
SEARCH
BACK NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.5. Multi-factor Analysis of Variance

Purpose: \quad The analysis of variance (ANOVA) (Neter, Wasserman, and Kunter,

Detect significant factors

Definition 1990) is used to detect significant factors in a multi-factor model. In the multi-factor model, there is a response (dependent) variable and one or more factor (independent) variables. This is a common model in designed experiments where the experimenter sets the values for each of the factor variables and then measures the response variable.
Each factor can take on a certain number of values. These are referred to as the levels of a factor. The number of levels can vary betweeen factors. For designed experiments, the number of levels for a given factor tends to be small. Each factor and level combination is a cell. Balanced designs are those in which the cells have an equal number of observations and unbalanced designs are those in which the number of observations varies among cells. It is customary to use balanced designs in designed experiments.

The Product and Process Comparisons chapter (chapter 7) contains a more extensive discussion of 2-factor ANOVA, including the details for the mathematical computations.

The model for the analysis of variance can be stated in two mathematically equivalent ways. We explain the model for a two-way ANOVA (the concepts are the same for additional factors). In the following discussion, each combination of factors and levels is called a cell. In the following, the subscript \boldsymbol{i} refers to the level of factor $1, \boldsymbol{j}$ refers to the level of factor 2 , and the subscript k refers to the k th observation within the (i, j) th cell. For example, \boldsymbol{Y}_{235} refers to the fifth observation in the second level of factor 1 and the third level of factor 2.

The first model is

$$
Y_{i j k}=\mu_{i j}+E_{i j k}
$$

This model decomposes the response into a mean for each cell and an error term. The analysis of variance provides estimates for each cell mean. These cell means are the predicted values of the model and the differences between the response variable and the estimated cell means are the residuals. That is

$$
\begin{aligned}
& \hat{Y}_{i j k}=\hat{\mu}_{i j} \\
& R_{i j k}=Y_{i j k}-\hat{\mu}_{i j}
\end{aligned}
$$

The second model is

$$
Y_{i j k}=\mu+\alpha_{i}+\beta_{j}+E_{i j k}
$$

This model decomposes the response into an overall (grand) mean, factor effects ($\hat{\alpha}_{i}$ and $\hat{\beta}_{j}$ represent the effects of the i th level of the first
1.3.5.5. Multi-factor Analysis of Variance
factor and the j th level of the second factor, respectively), and an error term. The analysis of variance provides estimates of the grand mean and the factor effects. The predicted values and the residuals of the model are

$$
\begin{aligned}
& \hat{Y}_{i j k}=\hat{\beta}+\hat{\alpha}_{i}+\hat{\beta}_{j} \\
& R_{i j k}=Y_{i j k}-\hat{\mu}-\hat{\alpha}_{i}-\hat{\beta}_{j}
\end{aligned}
$$

The distinction between these models is that the second model divides the cell mean into an overall mean and factor effects. This second model makes the factor effect more explicit, so we will emphasize this approach.

Model \quad Note that the ANOVA model assumes that the error term, $\boldsymbol{E}_{i j k}$, should Validation follow the assumptions for a univariate measurement process. That is, after performing an analysis of variance, the model should be validated by analyzing the residuals.

Sample Dataplot generated the following ANOVA output for the JAHANMI2.DAT data set: Output

1.3.5.5. Multi-factor Analysis of Variance

RESIDUAL	DEGREES OF FREEDOM $=$	475
REPLICATION	STANDARD DEVIATION $=$	61.89010620
REPLICATION	DEGREES OF FREEDOM $=$	464

LACK OF FIT F RATIO $=\quad 2.6447=$ THE 99.7269% POINT OF THE
F DISTRIBUTION WITH 11 AND 464 DEGREES OF FREEDOM

* ESTIMATION *

GRAND MEAN $=0.65007739258 \mathrm{E}+03$
GRAND STANDARD DEVIATION $=0.74638252258 \mathrm{E}+02$

	LEVEL-ID	NI	MEAN	EFFECT	SD (EFFECT)
FACTOR 1--	-1.00000	240.	657.53168	7.45428	2.87818
	1.00000	240.	642.62286	-7.45453	2.87818
FACTOR 2--	-1.00000	240.	645.17755	-4.89984	2.87818
	1.00000	240.	654.97723	4.89984	2.87818
FACTOR 3--	-1.00000	240.	655.55084	5.47345	2.87818
--	1.00000	240.	644.60376	-5.47363	2.87818
FACTOR 4--	1.00000	240.	688.99890	38.92151	2.87818
--	2.00000	240.	611.15594	-38.92145	2.87818

MODEL
RESIDUAL STANDARD DEVIATION

CONSTANT			ONLY--	74.6382522583
CONSTANT	\& FACTOR	1	ONLY--	74.3419036865
CONSTANT	\& FACTOR	2	ONLY--	74.5548019409
CONSTANT	\& FACTOR	3	ONLY--	74.5147094727
CONSTANT	\& FACTOR	4	ONLY--	63.7284545898
CONSTANT	\& ALL 4	AC	TORS --	63.0577278137

Interpretation of Sample Output

The output is divided into three sections.

1. The first section prints the number of observations (480), the number of factors (4), and the number of levels for each factor (2 levels for each factor). It also prints some overall summary statistics. In particular, the residual standard deviation is 63.058 . The smaller the residual standard deviation, the more we have accounted for the variance in the data.
2. The second section prints an ANOVA table. The ANOVA table decomposes the variance into the following component sum of squares:

- Total sum of squares. The degrees of freedom for this entry is the number of observations minus one.
o Sum of squares for each of the factors. The degrees of freedom for these entries are the number of levels for the factor minus one. The mean square is the sum of squares divided by the number of degrees of freedom.
o Residual sum of squares. The degrees of freedom is the total degrees of freedom minus the sum of the factor degrees of freedom. The mean square is the sum of squares divided by the number of degrees of freedom.

That is, it summarizes how much of the variance in the data (total sum of squares) is accounted for by the factor effects (factor sum of squares) and how much is random error (residual sum of squares). Ideally, we would like most of the variance to be explained by the factor effects. The ANOVA table provides a formal F test for the factor effects. The F-statistic is the mean square for the factor divided by the mean square for the error. This statistic follows an F distribution with $(k-1)$ and ($N-k$) degrees of freedom where k is the number of levels for the given factor. If the F CDF column for the factor effect is greater than 95%, then the factor is significant at the 5% level. Here, we see that the size of the effect of factor 4 dominates the size of the other effects. The F test shows that factors one and four are significant at the 1% level while factors two and three are not significant at the 5% level.
3. The third section is an estimation section. It prints an overall mean and overall standard deviation. Then for each level of each factor, it prints the number of observations, the mean for the observations of each cell ($\hat{\mu}_{i j}$ in the above terminology), the factor effects ($\hat{\alpha}_{i}$ and $\hat{\beta}_{j}$ in the above terminology), and the standard deviation of the factor effect. Finally, it prints the residual standard deviation for the various possible models. For the four-way ANOVA here, it prints the constant model

$$
Y_{i}=A_{0}+E_{i}
$$

a model with each factor individually, and the model with all four factors included.

For these data, we see that including factor 4 has a significant impact on the residual standard deviation (63.73 when only the factor 4 effect is included compared to 63.058 when all four factors are included).
Output from other statistical software may look somewhat different from the above output.

In addition to the quantitative ANOVA output, it is recommended that any analysis of variance be complemented with model validation. At a minimum, this should include

1. A run sequence plot of the residuals.
2. A normal probability plot of the residuals.
3. A scatter plot of the predicted values against the residuals.

Questions The analysis of variance can be used to answer the following questions:

1. Do any of the factors have a significant effect?
2. Which is the most important factor?
3. Can we account for most of the variability in the data?

Related Techniques	$\underline{\text { One-factor analysis of variance }}$
	$\underline{\text { Two-sample } t \text {-test }}$
	$\underline{\text { Block plot }}$
	$\underline{\text { Dex mean plot }}$

Case Study The quantitative ANOVA approach can be contrasted with the more graphical EDA approach in the ceramic strength case study.

Software Most general purpose statistical software programs, including Dataplot, can perform multi-factor analysis of variance.
$\frac{\text { NIST }}{\text { SEMATECH }} \sqrt{\text { HOME }} \sqrt{\text { TOOLS \& AIDS }} \sqrt{\text { SEARCH }} \overline{\text { NEXT }}$

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.6. Measures of Scale

Scale,
Variability, or Spread

A fundamental task in many statistical analyses is to characterize the spread, or variability, of a data set. Measures of scale are simply attempts to estimate this variability.

When assessing the variability of a data set, there are two key components:

1. How spread out are the data values near the center?
2. How spread out are the tails?

Different numerical summaries will give different weight to these two elements. The choice of scale estimator is often driven by which of these components you want to emphasize.

The histogram is an effective graphical technique for showing both of these components of the spread.

Definitions of Variability

For univariate data, there are several common numerical measures of the spread:

1. variance - the variance is defined as

$$
s^{2}=\sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{2} /(N-1)
$$

where \bar{Y} is the mean of the data.
The variance is roughly the arithmetic average of the squared distance from the mean. Squaring the distance from the mean has the effect of giving greater weight to values that are further from the mean. For example, a point 2 units from the mean adds 4 to the above sum while a point 10 units from the mean adds 100 to the sum. Although the variance is intended to be an overall measure of spread, it can be greatly affected by the tail behavior.
2. standard deviation - the standard deviation is the square root of the variance. That is,

$$
s=\sqrt{\sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{2} /(N-1)}
$$

The standard deviation restores the units of the spread to the original data units (the variance squares the units).
3. range - the range is the largest value minus the smallest value in a data set. Note that this measure is based only on the lowest and highest extreme values in the sample. The spread near the center of the data is not captured at all.
4. average absolute deviation - the average absolute deviation (AAD) is defined as

$$
A A D=\sum_{i=1}^{N}\left(\left|Y_{i}-\bar{Y}\right|\right) / N
$$

where \bar{Y} is the mean of the data and $|\boldsymbol{Y}|$ is the absolute value of \boldsymbol{Y}. This measure does not square the distance from the mean, so it is less affected by extreme observations than are the variance and standard deviation.
5. median absolute deviation - the median absolute deviation (MAD) is defined as

$$
M A D=\operatorname{median}\left(\left|Y_{i}-\tilde{Y}\right|\right)
$$

where \tilde{Y} is the median of the data and $|Y|$ is the absolute value of \boldsymbol{Y}. This is a variation of the average absolute deviation that is even less affected by extremes in the tail because the data in the tails have less influence on the calculation of the median than they do on the mean.
6. interquartile range - this is the value of the 75th percentile minus the value of the 25 th percentile. This measure of scale attempts to measure the variability of points near the center.
In summary, the variance, standard deviation, average absolute deviation, and median absolute deviation measure both aspects of the variability; that is, the variability near the center and the variability in the tails. They differ in that the average absolute deviation and median absolute deviation do not give undue weight to the tail behavior. On the other hand, the range only uses the two most extreme points and the interquartile range only uses the middle portion of the data.

Why Different Measures?

Normal
Distribution

The following example helps to clarify why these alternative defintions of spread are useful and necessary.

This plot shows histograms for 10,000 random numbers generated from a normal, a double exponential, a Cauchy, and a Tukey-Lambda distribution.

The first histogram is a sample from a normal distribution. The standard deviation is 0.997 , the median absolute deviation is 0.681 , and the range is 7.87 .

The normal distribution is a symmetric distribution with well-behaved tails and a single peak at the center of the distribution. By symmetric, we mean that the distribution can be folded about an axis so that the two sides coincide. That is, it behaves the same to the left and right of some center point. In this case, the median absolute deviation is a bit less than the standard deviation due to the downweighting of the tails. The range of a little less than 8 indicates the extreme values fall within about 4 standard deviations of the mean. If a histogram or normal probability plot indicates that your data are approximated well by a normal distribution, then it is reasonable to use the standard deviation as the spread estimator.

Double Exponential Distribution

Cauchy Distribution

The second histogram is a sample from a double exponential distribution. The standard deviation is 1.417 , the median absolute deviation is 0.706 , and the range is 17.556 .

Comparing the double exponential and the normal histograms shows that the double exponential has a stronger peak at the center, decays more rapidly near the center, and has much longer tails. Due to the longer tails, the standard deviation tends to be inflated compared to the normal. On the other hand, the median absolute deviation is only slightly larger than it is for the normal data. The longer tails are clearly reflected in the value of the range, which shows that the extremes fall about 12 standard deviations from the mean compared to about 4 for the normal data.

The third histogram is a sample from a Cauchy distribution. The standard deviation is 998.389 , the median absolute deviation is 1.16 , and the range is $118,953.6$.

The Cauchy distribution is a symmetric distribution with heavy tails and a single peak at the center of the distribution. The Cauchy distribution has the interesting property that collecting more data does not provide a more accurate estimate for the mean or standard deviation. That is, the sampling distribution of the means and standard deviation are equivalent to the sampling distribution of the original data. That means that for the Cauchy distribution the standard deviation is useless as a measure of the spread. From the histogram, it is clear that just about all the data are between about -5 and 5 . However, a few very extreme values cause both the standard deviation and range to be extremely large. However, the median absolute deviation is only slightly larger than it is for the normal distribution. In this case, the median absolute deviation is clearly the better measure of spread.

Although the Cauchy distribution is an extreme case, it does illustrate the importance of heavy tails in measuring the spread. Extreme values in the tails can distort the standard deviation. However, these extreme values do not distort the median absolute deviation since the median absolute deviation is based on ranks. In general, for data with extreme values in the tails, the median absolute deviation or interquartile range can provide a more stable estimate of spread than the standard deviation.

Tukey-Lambda Distribution

The fourth histogram is a sample from a Tukey lambda distribution with shape parameter $\alpha=1.2$. The standard deviation is 0.49 , the median absolute deviation is 0.427 , and the range is 1.666 .

The Tukey lambda distribution has a range limited to $(-1 / \lambda, 1 / \lambda)$. That is, it has truncated tails. In this case the standard deviation and median absolute deviation have closer values than for the other three examples which have significant tails.

Robustness

Tukey and Mosteller defined two types of robustness where robustness is a lack of susceptibility to the effects of nonnormality.

1. Robustness of validity means that the confidence intervals for a measure of the population spread (e.g., the standard deviation) have a 95% chance of covering the true value (i.e., the population value) of that measure of spread regardless of the underlying distribution.
2. Robustness of efficiency refers to high effectiveness in the face of non-normal tails. That is, confidence intervals for the measure of spread tend to be almost as narrow as the best that could be done if we knew the true shape of the distribution.
The standard deviation is an example of an estimator that is the best we can do if the underlying distribution is normal. However, it lacks robustness of validity. That is, confidence intervals based on the standard deviation tend to lack precision if the underlying distribution is in fact not normal.

The median absolute deviation and the interquartile range are estimates of scale that have robustness of validity. However, they are not particularly strong for robustness of efficiency.

If histograms and probability plots indicate that your data are in fact reasonably approximated by a normal distribution, then it makes sense to use the standard deviation as the estimate of scale. However, if your data are not normal, and in particular if there are long tails, then using an alternative measure such as the median absolute deviation, average absolute deviation, or interquartile range makes sense. The range is used in some applications, such as quality control, for its simplicity. In addition, comparing the range to the standard deviation gives an indication of the spread of the data in the tails.

Since the range is determined by the two most extreme points in the data set, we should be cautious about its use for large values of N .

Tukey and Mosteller give a scale estimator that has both robustness of
validity and robustness of efficiency. However, it is more complicated and we do not give the formula here.

Software
Most general purpose statistical software programs, including Dataplot, can generate at least some of the measures of scale discusssed above.

NIST
 $\overline{\text { SEMATECH }}$
 HOME
 TOOLS \& AIDS SEARCH
 BACK NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.7. Bartlett's Test

Purpose: \quad Bartlett's test (Snedecor and Cochran, 1983) is used to test if k samples have equal

Test for
Homogeneity of Variances variances. Equal variances across samples is called homogeneity of variances. Some statistical tests, for example the analysis of variance, assume that variances are equal across groups or samples. The Bartlett test can be used to verify that assumption.

Bartlett's test is sensitive to departures from normality. That is, if your samples come from non-normal distributions, then Bartlett's test may simply be testing for non-normality. The Levene test is an alternative to the Bartlett test that is less sensitive to departures from normality.

Definition The Bartlett test is defined as:
$\mathrm{H}_{0}: \quad \sigma_{1}=\sigma_{2}=\ldots=\sigma_{k}$
$\mathrm{H}_{\mathrm{a}}: \quad \sigma_{i} \neq \sigma_{j} \quad$ for at least one pair (i, j).
Test The Bartlett test statistic is designed to test for equality of variances across
Statistic: groups against the alternative that variances are unequal for at least two groups.

$$
T=\frac{(N-k) \ln s_{p}^{2}-\sum_{i=1}^{k}\left(N_{i}-1\right) \ln s_{i}^{2}}{1+(1 /(3(k-1)))\left(\left(\sum_{i=1}^{k} 1 /\left(N_{i}-1\right)\right)-1 /(N-k)\right)}
$$

In the above, $\boldsymbol{s}_{i}{ }^{2}$ is the variance of the ith group, N is the total sample size, N_{i} is the sample size of the i th group, k is the number of groups, and $\boldsymbol{s}_{\boldsymbol{p}}{ }^{2}$ is the pooled variance. The pooled variance is a weighted average of the group variances and is defined as:

$$
s_{p}^{2}=\sum_{i=1}^{k}\left(N_{i}-1\right) s_{i}^{2} /\left(N-k_{i}\right)
$$

Significance
α
Level:

Critical The variances are judged to be unequal if,
Region:

$$
T>\chi_{(\alpha, k-1)}^{2}
$$

where $\chi_{(a x, k-1)}^{2}$ is the upper critical value of the chi-square distribution with $k-1$ degrees of freedom and a significance level of α.

In the above formulas for the critical regions, the Handbook follows the convention that $\chi_{i x}^{2}$ is the upper critical value from the chi-square distribution and $\chi_{1-i x}^{2}$ is the lower critical value from the chi-square distribution. Note that this is the opposite of some texts and software programs. In particular, Dataplot uses the opposite convention.

An alternate definition (Dixon and Massey, 1969) is based on an approximation to the F distribution. This definition is given in the Product and Process Comparisons chapter (chapter 7).

Sample Dataplot generated the following output for Bartlett's test using the GEAR.DAT Output data set:

BARTLETT TEST
(STANDARD DEFINITION)
NULL HYPOTHESIS UNDER TEST--ALL SIGMA(I) ARE EQUAL

TEST:
DEGREES OF FREEDOM $=9.000000$
TEST STATISTIC VALUE $=20.78580$
CUTOFF: 95\% PERCENT POINT $=16.91898$
CUTOFF: 99\% PERCENT POINT = 21.66600

CHI-SQUARE CDF VALUE $=0.986364$
NULL NULL HYPOTHESIS NULL HYPOTHESIS
HYPOTHESIS ACCEPTANCE INTERVAL CONCLUSION
ALL SIGMA EQUAL (0.000,0.950) REJECT

Interpretation of Sample
Output

Question

Importance

Related
Techniques

Case Study Heat flow meter data

NIST
SEMATECH

Software The Bartlett test is available in many general purpose statistical software programs, including Dataplot.
We are testing the hypothesis that the group variances are all equal. The output is divided into two sections.

1. The first section prints the value of the Bartlett test statistic, the degrees of freedom ($k-1$), the upper critical value of the chi-square distribution corresponding to significance levels of 0.05 (the 95% percent point) and 0.01 (the 99% percent point). We reject the null hypothesis at that significance level if the value of the Bartlett test statistic is greater than the corresponding critical value.
2. The second section prints the conclusion for a 95% test.

Output from other statistical software may look somewhat different from the above output.

Bartlett's test can be used to answer the following question:

- Is the assumption of equal variances valid?

Bartlett's test is useful whenever the assumption of equal variances is made. In particular, this assumption is made for the frequently used one-way analysis of variance. In this case, Bartlett's or Levene's test should be applied to verify the assumption.

Standard Deviation Plot
Box Plot
Levene Test
Chi-Square Test
Analysis of Variance

HOME
TOOLS \& AIDS
SEARCH
BACK NEXT|

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.8. Chi-Square Test for the Standard Deviation

Purpose: Test if standard deviation is equal to a specified value

Definition

A chi-square test (Snedecor and Cochran, 1983) can be used to test if the standard deviation of a population is equal to a specified value. This test can be either a two-sided test or a one-sided test. The two-sided version tests against the alternative that the true standard deviation is either less than or greater than the specified value. The one-sided version only tests in one direction. The choice of a two-sided or one-sided test is determined by the problem. For example, if we are testing a new process, we may only be concerned if its variability is greater than the variability of the current process.

The chi-square hypothesis test is defined as:

$$
\begin{array}{lll}
\mathrm{H}_{0}: & \sigma=\sigma_{0} & \\
\mathrm{H}_{\mathrm{a}}: & \sigma<\sigma_{0} \quad \text { for a lower one-tailed test } \\
& \sigma>\sigma_{0} \quad \text { for an upper one-tailed test } \\
& \sigma \neq \sigma_{0} \quad \text { for a two-tailed test } \\
\text { Test Statistic: } & \mathrm{T}=(\mathrm{N}-1)\left(s / \sigma_{0}\right)^{2}
\end{array}
$$

where N is the sample size and \boldsymbol{s} is the sample standard deviation. The key element of this formula is the ratio s / σ_{0} which compares the ratio of the sample standard deviation to the target standard deviation. The more this ratio deviates from 1, the more likely we are to reject the null hypothesis.
Significance Level: $\boldsymbol{\alpha}$.
Critical Region: Reject the null hypothesis that the standard deviation is a specified value, σ_{0}, if
$T>\chi_{(\alpha, N-1)}^{2} \quad$ for an upper one-tailed alternative
$T<\chi_{(1-i, N, N-1)}^{2}$ for a lower one-tailed alternative
$T<\chi_{(1-i 2 / 2, N-1)}^{2}$ for a two-tailed test
or
$T>\chi_{(N / 2, N-1)}^{2}$
where $\chi_{\left({ }_{(, N} N-1\right)}^{2}$ is the critical value of the chi-square distribution with $N-$ 1 degrees of freedom.

In the above formulas for the critical regions, the Handbook follows the convention that $\chi_{i x}^{2}$ is the upper critical value from the chi-square distribution and $\chi_{1-i x}^{2}$ is the lower critical value from the chi-square distribution. Note that this is the opposite of some texts and software programs. In particular, Dataplot uses the opposite convention.

The formula for the hypothesis test can easily be converted to form an interval estimate for the standard deviation:

$$
\sqrt{\frac{(N-1) s^{2}}{\chi_{(\alpha / 2, N-1)}^{2}}} \leq \sigma \leq \sqrt{\frac{(N-1) s^{2}}{\chi_{(1-\alpha / 2, N-1)}^{2}}}
$$

Sample
Output

Dataplot generated the following output for a chi-square test from the GEAR.DAT data set:

```
                        CHI-SQUARED TEST
            SIGMAO = 0.1000000
NULL HYPOTHESIS UNDER TEST--STANDARD DEVIATION SIGMA = . }100000
```

SAMPLE:
NUMBER OF OBSERVATIONS = 100
MEAN $=0.9976400$
STANDARD DEVIATION S = 0.6278908E-02
TEST:
S/SIGMA0 $=0.6278908 \mathrm{E}-01$
CHI-SQUARED STATISTIC $=0.3903044$
DEGREES OF FREEDOM $=99.00000$
CHI-SQUARED CDF VALUE $=0.000000$

Interpretation of Sample Output

ALTERNATIVE- ALTERNATIVEHYPOTHESIS HYPOTHESIS ACCEPTANCE INTERVAL CONCLUSION
SIGMA <> . $1000000(0,0.025),(0.975,1)$ ACCEPT
SIGMA < . 1000000 (0,0.05) ACCEPT
SIGMA > . 1000000 (0.95,1) REJECT

We are testing the hypothesis that the population standard deviation is 0.1 . The output is divided into three sections.

1. The first section prints the sample statistics used in the computation of the chi-square test.
2. The second section prints the chi-square test statistic value, the degrees of freedom, and the cumulative distribution function (cdf) value of the chi-square test statistic. The chi-square test statistic cdf value is an alternative way of expressing the critical value. This cdf value is compared to the acceptance intervals printed in section three. For an upper one-tailed test, the alternative hypothesis acceptance interval is ($1-\alpha, 1$), the alternative hypothesis acceptance interval for a lower one-tailed test is $(0, \alpha)$, and the alternative hypothesis acceptance interval for a two-tailed test is (1- $\alpha / 2,1$) or $(0, \alpha / 2)$. Note that accepting the alternative hypothesis is equivalent to rejecting the null hypothesis.
3. The third section prints the conclusions for a 95% test since this is the most common case. Results are given in terms of the alternative hypothesis for the two-tailed test and for the one-tailed test in both directions. The alternative hypothesis acceptance interval column is stated in terms of the cdf value printed in section two. The last column specifies whether the alternative hypothesis is accepted or rejected. For a different significance level, the appropriate conclusion can be drawn from the chi-square test statistic cdf value printed in section two. For example, for a significance level of 0.10, the corresponding alternative hypothesis acceptance intervals are $(0,0.05)$ and $(0.95,1)$, $(0,0.10)$, and $(0.90,1)$.
Output from other statistical software may look somewhat different from the above output.
Questions The chi-square test can be used to answer the following questions:
4. Is the standard deviation equal to some pre-determined threshold value?
5. Is the standard deviation greater than some pre-determined threshold value?
6. Is the standard deviation less than some pre-determined threshold value?
Related

Techniques \quad| $\underline{\text { F Test }}$ |
| :--- |
| |
| $\underline{\text { Bartlett Test }}$ |

Software The chi-square test for the standard deviation is available in many general purpose statistical software programs, including Dataplot.

HOME
TOOLS \& AIDS \quad SEARCH
| BACK NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques
1.3.5.8. Chi-Square Test for the Standard Deviation

1.3.5.8.1. Data Used for Chi-Square Test for the Standard Deviation

Data Used for
Chi-Square
Test for the Standard
Deviation
Example

The following are the data used for the chi-square test for the standard deviation example. The first column is gear diameter and the second column is batch number. Only the first column is used for this example.

1.006	1.000
0.996	1.000
0.998	1.000
1.000	1.000
0.992	1.000
0.993	1.000
1.002	1.000
0.999	1.000
0.994	1.000
1.000	1.000
0.998	2.000
1.006	2.000
1.000	2.000
1.002	2.000
0.997	2.000
0.998	2.000
0.996	2.000
1.000	2.000
1.006	2.000
0.988	3.000
0.991	3.000
0.987	3.000
0.997	3.000
0.999	3.000
0.995	3.000
0.994	3.000

0.999	3.000
0.996	3.000
0.996	3.000
1.005	4.000
1.002	4.000
0.994	4.000
1.000	4.000
0.995	4.000
0.994	4.000
0.998	4.000
0.996	4.000
1.002	4.000
0.996	4.000
0.998	5.000
0.998	5.000
0.982	5.000
0.990	5.000
1.002	5.000
0.984	5.000
0.996	5.000
0.993	5.000
0.980	5.000
0.996	6.000
1.009	6.000
1.013	6.000
1.009	6.000
0.997	6.000
0.988	6.000
1.002	6.000
0.995	6.000
0.998	6.000
0.981	6.000
0.996	7.000
0.990	7.000
1.004	7.000
0.996	7.000
1.001	7.0000
0.998	7.000
1.000	7.0000
1.018	8.000
1.010	
0.996	
1.002	
0.998	
1.000	1.006

1.000	8.000
1.002	8.000
0.996	8.000
0.998	8.000
0.996	8.000
1.002	8.000
1.006	8.000
1.002	9.000
0.998	9.000
0.996	9.000
0.995	9.000
0.996	9.000
1.004	9.000
1.004	9.000
0.998	9.000
0.999	10.000
0.991	10.000
0.991	10.000
0.995	10.000
0.984	10.000
0.994	10.000
0.997	10.000
0.997	10.000
0.991	10.000
0.998	
1.004	9.997

NIST
SEMATECH
$\boxed{\text { HOME }} \quad$ TOOLS \& AIDS
SEARCH
BACK NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.9. F-Test for Equality of Two Standard Deviations

Purpose: An F-test (Snedecor and Cochran, 1983) is used to test if the standard deviations of two

Test if
standard deviations
from two populations are equal

Definition The F hypothesis test is defined as:
$\begin{array}{lll}\mathrm{H}_{0}: & \sigma_{1}=\sigma_{2} & \\ \mathrm{H}_{\mathrm{a}}: & \sigma_{1}<\sigma_{2} \quad \text { for a lower one tailed test } \\ & \sigma_{1}>\sigma_{2} \quad \text { for an upper one tailed test } \\ & \sigma_{1} \neq \sigma_{2} \quad \text { for a two tailed test } \\ \text { Test } & \boldsymbol{F}=s_{1}^{2} / s_{2}^{2} & \end{array}$
where s_{1}^{2} and s_{2}^{2} are the sample variances. The more this ratio deviates from 1, the stronger the evidence for unequal population variances.
Significance $\quad \alpha$
Level:

Critical The hypothesis that the two standard deviations are equal is rejected if Region: $F>F_{(\alpha, N 1-1, N 2-1)}$ for an upper one-tailed test $F<F_{(1-i, N 1-1, N 2-1)}$ for a lower one-tailed test $F<F_{(1-i N / 2, N 1-1, N 2-1)}$ for a two-tailed test
or
$F>F(12 / 2, N 1-1, N 2-1)$
where $F_{(i, k-1, N-k)}$ is the critical value of the \underline{F} distribution with ν_{1} and $l^{2} / 2$ degrees of freedom and a significance level of α.

In the above formulas for the critical regions, the Handbook follows the convention that $F_{i x}$ is the upper critical value from the F distribution and $F_{1-i x}$ is the lower critical value from the F distribution. Note that this is the opposite of the designation used by some texts and software programs. In particular, Dataplot uses the opposite convention.

Sample Output

Dataplot generated the following output for an F-test from the JAHANMI2.DAT data set:

F TEST	
ALTERNATIVE HYPOTHESIS UNDER TEST--SIGMA1 NOT EQUAL SIGMA2	
SAMPLE 1:	
NUMBER OF OBSERVATIONS =	240
MEAN	688.9987
STANDARD DEVIATION	65.54909
SAMPLE 2:	
NUMBER OF OBSERVATIONS =	240
MEAN	611.1559
STANDARD DEVIATION	61.85425
TEST:	
STANDARD DEV. (NUMERATOR) =	65.54909
STANDARD DEV. (DENOMINATOR) =	61.85425
F TEST STATISTIC VALUE =	1.123037
DEG. OF FREEDOM (NUMER.) =	239.0000
DEG. OF FREEDOM (DENOM.) =	239.0000
F TEST STATISTIC CDF VALUE =	0.814808
NULL NULL HYPOTHESIS	NULL HYPOTHESIS
HYPOTHESIS ACCEPTANCE INTERVAL	CONCLUSION
SIGMA1 $=$ SIGMA2 (0.000,0.950)	ACCEPT

Case Study Ceramic strength data.

Interpretation of Sample
Output

Questions

Related
Techniques

Software

We are testing the hypothesis that the standard deviations for sample one and sample two are equal. The output is divided into four sections.

1. The first section prints the sample statistics for sample one used in the computation of the F-test.
2. The second section prints the sample statistics for sample two used in the computation of the F-test.
3. The third section prints the numerator and denominator standard deviations, the F-test statistic value, the degrees of freedom, and the cumulative distribution function (cdf) value of the F-test statistic. The F-test statistic cdf value is an alternative way of expressing the critical value. This cdf value is compared to the acceptance interval printed in section four. The acceptance interval for a two-tailed test is ($0,1-\boldsymbol{\alpha}$).
4. The fourth section prints the conclusions for a 95% test since this is the most common case. Results are printed for an upper one-tailed test. The acceptance interval column is stated in terms of the cdf value printed in section three. The last column specifies whether the null hypothesis is accepted or rejected. For a different significance level, the appropriate conclusion can be drawn from the F-test statistic cdf value printed in section four. For example, for a significance level of 0.10 , the corresponding acceptance interval become ($0.000,0.9000$).
Output from other statistical software may look somewhat different from the above output.

The F-test can be used to answer the following questions:

1. Do two samples come from populations with equal standard deviations?
2. Does a new process, treatment, or test reduce the variability of the current process?

Quantile-Quantile Plot
Bihistogram
Chi-Square Test
Bartlett's Test
Levene Test

The F-test for equality of two standard deviations is available in many general purpose statistical software programs, including Dataplot.
$\frac{\text { NIST }}{\text { SEMATECH }} \sqrt{\text { HOME }} \sqrt{\text { TOOLS \& AIDS }} \quad \sqrt{B A C K} \overline{\text { NEXT }}$

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.10. Levene Test for Equality of Variances

Purpose: Levene's test (Levene 1960) is used to test if k samples have equal

Test for
Homogeneity
of Variances variances. Equal variances across samples is called homogeneity of variance. Some statistical tests, for example the analysis of variance, assume that variances are equal across groups or samples. The Levene test can be used to verify that assumption.

Levene's test is an alternative to the Bartlett test. The Levene test is less sensitive than the Bartlett test to departures from normality. If you have strong evidence that your data do in fact come from a normal, or nearly normal, distribution, then Bartlett's test has better performance.

Definition
The Levene test is defined as:
H_{0} :
$\sigma_{1}=\sigma_{2}=\ldots=\sigma_{k}$
H_{a} :
$\sigma_{i} \neq \sigma_{j} \quad$ for at least one pair (i,j).
Test \quad Given a variable Y with sample of size N divided into k Statistic: \quad subgroups, where N_{i} is the sample size of the i th subgroup, the Levene test statistic is defined as:

$$
W=\frac{(N-k)}{(k-1)} \frac{\sum_{i=1}^{k} N_{i}\left(\bar{Z}_{i .}-\bar{Z}_{. .}\right)^{2}}{\sum_{i=1}^{k} \sum_{j=1}^{N_{i}}\left(Z_{i j}-\bar{Z}_{i .}\right)^{2}}
$$

where $Z_{i j}$ can have one of the following three definitions:
1.

$$
Z_{i j}=\left|Y_{i j}-\bar{Y}_{i .}\right|
$$

where $\bar{Y}_{i_{1}}$ is the mean of the i th subgroup.
2.

$$
Z_{i j}=\left|Y_{i j}-\tilde{Y}_{i .}\right|
$$

where $\tilde{Y}_{i .}$ is the median of the i th subgroup.

$$
Z_{i j}=\left|Y_{i j}-\bar{Y}_{i .}^{\prime}\right|
$$

where $\bar{Y}_{i_{\text {. }}^{\prime}}^{\prime}$ is the 10% trimmed mean of the i th subgroup.
\bar{Z}_{i}. are the group means of the $Z_{i j}$ and $\bar{Z}_{\text {. }}$ is the overall mean of the $\boldsymbol{Z}_{i j}$.

The three choices for defining $Z_{i j}$ determine the robustness and power of Levene's test. By robustness, we mean the ability of the test to not falsely detect unequal variances when the underlying data are not normally distributed and the variables are in fact equal. By power, we mean the ability of the test to detect unequal variances when the variances are in fact unequal.

Levene's original paper only proposed using the mean. Brown and Forsythe (1974)) extended Levene's test to use either the median or the trimmed mean in addition to the mean. They performed Monte Carlo studies that indicated that using the trimmed mean performed best when the underlying data followed a Cauchy distribution (i.e., heavy-tailed) and the median performed best when the underlying data followed a χ_{4}^{2} (i.e., skewed) distribution. Using the mean provided the best power for symmetric, moderate-tailed, distributions.

Although the optimal choice depends on the underlying distribution, the definition based on the median is recommended as the choice that provides good robustness against many types of non-normal data while retaining good power. If you have knowledge of the underlying distribution of the data, this may indicate using one of the other choices.
Significance α Level:

Critical The Levene test rejects the hypothesis that the variances are Region: equal if

$$
W>F_{(\alpha, k-1, N-k)}
$$

where $F_{(\alpha, k-1, N-k)}$ is the upper critical value of the \underline{F} distribution with $k-1$ and $N-k$ degrees of freedom at a significance level of α.

In the above formulas for the critical regions, the Handbook follows the convention that $F_{i \Sigma}$ is the upper critical value from the F distribution and $F_{1-i \Sigma}$ is the lower critical value. Note that this is the opposite of some texts and software programs. In particular, Dataplot uses the opposite convention.
$\begin{array}{ll}\text { Sample } & \text { Dataplot generated the following output for Levene's test using the } \\ \text { Output } & \text { GEAR.DAT data set: }\end{array}$

LEVENE F-TEST FOR SHIFT IN VARIATION (ASSUMPTION: NORMALITY)

1. STATISTICS

NUMBER OF OBSERVATIONS	$=$	100
NUMBER OF GROUPS	$=$	10
LEVENE F TEST STATISTIC	$=$	1.705910

2. FOR LEVENE TEST STATISTIC

0	$\%$ POINT	$=$	0.
50	$\%$ POINT	$=$	0.9339308
75	$\%$ POINT	$=$	1.296365
90	$\%$ POINT	$=$	1.702053
95	$\%$ POINT	$=$	1.985595
99	$\%$ POINT	$=$	2.610880
99.9	$\%$ POINT	$=$	3.478882

90.09152 \% Point: 1.705910
3. CONCLUSION (AT THE 5\% LEVEL): THERE IS NO SHIFT IN VARIATION. THUS: HOMOGENEOUS WITH RESPECT TO VARIATION.

Interpretation of Sample Output

Question

Related
Techniques

Software

NIST

We are testing the hypothesis that the group variances are equal. The output is divided into three sections.

1. The first section prints the number of observations (N), the number of groups (k), and the value of the Levene test statistic.
2. The second section prints the upper critical value of the \underline{F} distribution corresponding to various significance levels. The value in the first column, the confidence level of the test, is equivalent to $100(1-\alpha)$. We reject the null hypothesis at that significance level if the value of the Levene F test statistic printed in section one is greater than the critical value printed in the last column.
3. The third section prints the conclusion for a 95% test. For a different significance level, the appropriate conclusion can be drawn from the table printed in section two. For example, for $\alpha=0.10$, we look at the row for 90% confidence and compare the critical value 1.702 to the Levene test statistic 1.7059. Since the test statistic is greater than the critical value, we reject the null hypothesis at the α $=0.10$ level.
Output from other statistical software may look somewhat different from the above output.

Levene's test can be used to answer the following question:

- Is the assumption of equal variances valid?

Standard Deviation Plot
Box Plot
Bartlett Test
Chi-Square Test
Analysis of Variance

The Levene test is available in some general purpose statistical software programs, including Dataplot.

HOME
TOOLS \& AIDS
SEARCH
BACK NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.11. Measures of Skewness and Kurtosis

Skewness A fundamental task in many statistical analyses is to characterize the and Kurtosis location and variability of a data set. A further characterization of the data includes skewness and kurtosis.

Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A distribution, or data set, is symmetric if it looks the same to the left and right of the center point.

Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution. That is, data sets with high kurtosis tend to have a distinct peak near the mean, decline rather rapidly, and have heavy tails. Data sets with low kurtosis tend to have a flat top near the mean rather than a sharp peak. A uniform distribution would be the extreme case.

The histogram is an effective graphical technique for showing both the skewness and kurtosis of data set.

Definition of For univariate data $Y_{1}, Y_{2}, \ldots, Y_{N}$, the formula for skewness is: Skewness

$$
\text { skewness }=\frac{\sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{3}}{(N-1) s^{3}}
$$

where \bar{Y} is the mean, s is the standard deviation, and N is the number of data points. The skewness for a normal distribution is zero, and any symmetric data should have a skewness near zero. Negative values for the skewness indicate data that are skewed left and positive values for the skewness indicate data that are skewed right. By skewed left, we mean that the left tail is heavier than the right tail. Similarly, skewed right means that the right tail is heavier than the left tail. Some measurements have a lower bound and are skewed right. For example, in reliability studies, failure times cannot be negative.

Definition of Kurtosis

Examples

Normal
Distribution

For univariate data $Y_{1}, Y_{2}, \ldots, Y_{N}$, the formula for kurtosis is:

$$
\text { kurtosis }=\frac{\sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{4}}{(N-1) s^{4}}
$$

where \bar{Y} is the mean, s is the standard deviation, and N is the number of data points.

The kurtosis for a standard normal distribution is three. For this reason, excess kurtosis is defined as

$$
\text { kurtosis }=\frac{\sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{4}}{(N-1) s^{4}}-3
$$

so that the standard normal distribution has a kurtosis of zero. Positive kurtosis indicates a "peaked" distribution and negative kurtosis indicates a "flat" distribution.

The following example shows histograms for 10,000 random numbers generated from a normal, a double exponential, a Cauchy, and a Weibull distribution.

SKEWNESS $=69.9$, KURTOSIS $=6693$ SKEWNESS $=1.082$, KURTOSIS $=4.46$

The first histogram is a sample from a normal distribution. The normal distribution is a symmetric distribution with well-behaved tails. This is indicated by the skewness of 0.03 . The kurtosis of 2.96 is near the expected value of 3 . The histogram verifies the symmetry.

Double The second histogram is a sample from a double exponential

Cauchy
Distribution

Weibull
Distribution

Dealing
with
Skewness
and Kurtosis
distribution. The double exponential is a symmetric distribution. Compared to the normal, it has a stronger peak, more rapid decay, and heavier tails. That is, we would expect a skewness near zero and a kurtosis higher than 3. The skewness is 0.06 and the kurtosis is 5.9.

The third histogram is a sample from a Cauchy distribution.
For better visual comparison with the other data sets, we restricted the histogram of the Cauchy distribution to values between -10 and 10. The full data set for the Cauchy data in fact has a minimum of approximately $-29,000$ and a maximum of approximately 89,000 .

The Cauchy distribution is a symmetric distribution with heavy tails and a single peak at the center of the distribution. Since it is symmetric, we would expect a skewness near zero. Due to the heavier tails, we might expect the kurtosis to be larger than for a normal distribution. In fact the skewness is 69.99 and the kurtosis is 6,693 . These extremely high values can be explained by the heavy tails. Just as the mean and standard deviation can be distorted by extreme values in the tails, so too can the skewness and kurtosis measures.

The fourth histogram is a sample from a Weibull distribution with shape parameter 1.5. The Weibull distribution is a skewed distribution with the amount of skewness depending on the value of the shape parameter. The degree of decay as we move away from the center also depends on the value of the shape parameter. For this data set, the skewness is 1.08 and the kurtosis is 4.46, which indicates moderate skewness and kurtosis.

Many classical statistical tests and intervals depend on normality assumptions. Significant skewness and kurtosis clearly indicate that data are not normal. If a data set exhibits significant skewness or kurtosis (as indicated by a histogram or the numerical measures), what can we do about it?

One approach is to apply some type of transformation to try to make the data normal, or more nearly normal. The Box-Cox transformation is a useful technique for trying to normalize a data set. In particular, taking the log or square root of a data set is often useful for data that exhibit moderate right skewness.

Another approach is to use techniques based on distributions other than the normal. For example, in reliability studies, the exponential, Weibull, and lognormal distributions are typically used as a basis for modeling rather than using the normal distribution. The probability plot
correlation coefficient plot and the probability plot are useful tools for determining a good distributional model for the data.

Software The skewness and kurtosis coefficients are available in most general purpose statistical software programs, including Dataplot.
$\frac{\text { NIST }}{\text { SEMATECH }}$

HOME
$\longdiv { \text { TOOLS \& AIDS } }$
SEARCH
(BACK NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.12. Autocorrelation

Purpose: The autocorrelation (Box and Jenkins, 1976) function can be used for

Detect

Non-Randomness, Time Series
Modeling
the following two purposes:

1. To detect non-randomness in data.
2. To identify an appropriate time series model if the data are not random.

Given measurements, $Y_{1}, Y_{2}, \ldots, Y_{N}$ at time $X_{1}, X_{2}, \ldots, X_{N}$, the lag k autocorrelation function is defined as

$$
r_{k}=\frac{\sum_{i=1}^{N-k}\left(Y_{i}-\bar{Y}\right)\left(Y_{i+k}-\bar{Y}\right)}{\sum_{i=1}^{N}\left(Y_{i}-\bar{Y}\right)^{2}}
$$

Although the time variable, X, is not used in the formula for autocorrelation, the assumption is that the observations are equi-spaced.

Autocorrelation is a correlation coefficient. However, instead of correlation between two different variables, the correlation is between two values of the same variable at times $\boldsymbol{X}_{\boldsymbol{i}}$ and $\boldsymbol{X}_{\boldsymbol{i}+\boldsymbol{k}}$.

When the autocorrelation is used to detect non-randomness, it is usually only the first (lag 1) autocorrelation that is of interest. When the autocorrelation is used to identify an appropriate time series model, the autocorrelations are usually plotted for many lags.

Sample Output Dataplot generated the following autocorrelation output using the LEW.DAT data set:

```
THE LAG-ONE AUTOCORRELATION COEFFICIENT OF THE
2 0 0 ~ O B S E R V A T I O N S ~ = ~ - 0 . 3 0 7 3 0 4 8 E + 0 0 ~
THE COMPUTED VALUE OF THE CONSTANT A = -0.30730480E+00
```

lag.	autocorrelation
0.	1.00
1.	-0.31
2.	-0.74
3.	0.77
4.	0.21
5.	-0.90
6.	0.38
7.	0.63
8.	-0.77
9.	-0.12
10.	0.82
11.	-0.40
12.	-0.55
13.	0.73
14.	0.07
15.	-0.76
16.	0.40
17.	0.48
18.	-0.70
19.	-0.03
20.	0.70
21.	-0.41
22.	-0.43
23.	0.67
24.	0.00
25.	-0.66
26.	0.42
27.	0.39
28.	-0.65
29.	0.03
30.	0.63
31.	-0.42
32.	-0.36
33.	0.64
34.	-0.05
35.	-0.60
36.	0.43
37.	0.32
38.	-0.64
39.	0.08
40.	0.58

41.	-0.45
42.	-0.28
43.	0.62
44.	-0.10
45.	-0.55
46.	0.45
47.	0.25
48.	-0.61
49.	0.14

Questions

Importance

Related
Techniques

Case Study The heat flow meter data demonstrate the use of autocorrelation in determining if the data are from a random process.

The beam deflection data demonstrate the use of autocorrelation in developing a non-linear sinusoidal model.

Software
The autocorrelation function can be used to answer the following questions

1. Was this sample data set generated from a random process?
2. Would a non-linear or time series model be a more appropriate model for these data than a simple constant plus error model?

Randomness is one of the key assumptions in determining if a univariate statistical process is in control. If the assumptions of constant location and scale, randomness, and fixed distribution are reasonable, then the univariate process can be modeled as:

$$
Y_{i}=A_{0}+E_{i}
$$

where $\boldsymbol{E}_{\boldsymbol{i}}$ is an error term.
If the randomness assumption is not valid, then a different model needs to be used. This will typically be either a time series model or a non-linear model (with time as the independent variable).

Autocorrelation Plot
Run Sequence Plot
Lag Plot
Runs Test

The autocorrelation capability is available in most general purpose statistical software programs, including Dataplot.

NIST

1.3.5.13. Runs Test for Detecting Non-randomness

Purpose:
Detect
Non-Randomness

Typical Analysis and Test
Statistics

The runs test (Bradley, 1968) can be used to decide if a data set is from a random process.

A run is defined as a series of increasing values or a series of decreasing values. The number of increasing, or decreasing, values is the length of the run. In a random data set, the probability that the $(\mathrm{I}+1)$ th value is larger or smaller than the Ith value follows a binomial distribution, which forms the basis of the runs test.

The first step in the runs test is to compute the sequential differences ($\boldsymbol{Y}_{\boldsymbol{i}}$ -\boldsymbol{Y}_{i-1}). Positive values indicate an increasing value and negative values indicate a decreasing value. A runs test should include information such as the output shown below from Dataplot for the LEW.DAT data set. The output shows a table of:

1. runs of length exactly I for $\mathrm{I}=1,2, \ldots, 10$
2. number of runs of length I
3. expected number of runs of length I
4. standard deviation of the number of runs of length I
5. a z-score where the z-score is defined to be

$$
Z_{i}=\frac{Y_{i}-\bar{Y}}{s}
$$

where \bar{Y} is the sample mean and s is the sample standard deviation. The z-score column is compared to a standard normal table. That is, at the 5% significance level, a z-score with an absolute value greater than 1.96 indicates non-randomness.

There are several alternative formulations of the runs test in the literature. For example, a series of coin tosses would record a series of heads and tails. A
run of length r is r consecutive heads or r consecutive tails. To use the Dataplot RUNS command, you could code a sequence of the $N=10$ coin tosses HHHHTTHTHH as

1234323234

that is, a heads is coded as an increasing value and a tails is coded as a decreasing value.

Another alternative is to code values above the median as positive and values below the median as negative. There are other formulations as well. All of them can be converted to the Dataplot formulation. Just remember that it ultimately reduces to 2 choices. To use the Dataplot runs test, simply code one choice as an increasing value and the other as a decreasing value as in the heads/tails example above. If you are using other statistical software, you need to check the conventions used by that program.

Sample Output Dataplot generated the following runs test output using the LEW.DAT data set:

3	2.0	6.5750	2.1639	-2.11
4	0.0	1.3625	1.1186	-1.22
5	0.0	0.2323	0.4777	-0.49
6	0.0	0.0337	0.1833	-0.18
7	0.0	0.0043	0.0652	-0.07
8	0.0	0.0005	0.0218	-0.02
9	0.0	0.0000	0.0069	-0.01
10	0.0	0.0000	0.0021	0.00

RUNS DOWN

STATISTIC $=$ NUMBER OF RUNS DOWN OF LENGTH EXACTLY I

EXP (STAT) SD (STAT)
Z
25.0
41.7083
6.4900
-2. 57
5.02
-2. 56
0.0
18.2167
3.3444
2.0355
-1. 10
-0.45
0.0
0.1986
0.4424
-0.17
-0.06
-0.02
-0.01
0.00

STATISTIC = NUMBER OF RUNS DOWN OF LENGTH I OR MORE

I	STAT	EXP $(S T A T)$	SD $(S T A T)$	Z
1	60.0	66.5000	4.1972	-1.55
2	35.0	24.7917	2.8083	3.63
3	0.0	6.5750	2.1639	-3.04
4	0.0	1.3625	1.1186	-1.22
5	0.0	0.2323	0.4777	-0.49
6	0.0	0.0337	0.1833	-0.18
7	0.0	0.0043	0.0652	-0.07
8	0.0	0.0005	0.0218	-0.02
9	0.0	0.0000	0.0069	-0.01
10	0.0	0.0000	0.0021	0.00

STATISTIC $=$ NUMBER OF RUNS TOTAL OF LENGTH I OR MORE

I	STAT	EXP (STAT)	SD (STAT)	Z
1	120.0	133.0000	5.9358	-2.19
2	77.0	49.5833	3.9716	6.90
3	2.0	13.1500	3.0602	-3.64
4	0.0	2.7250	1.5820	-1.72
5	0.0	0.4647	0.6756	-0.69
6	0.0	0.0674	0.2592	-0.26
7	0.0	0.0085	0.0923	-0.09
8	0.0	0.0010	0.0309	-0.03
9	0.0	0.0001	0.0098	-0.01
10	0.0	0.0000	0.0030	0.00

LENGTH OF THE LONGEST RUN UP		$=$	3			
LENGTH OF THE LONGEST RUN DOWN	$=$	2				
LENGTH OF THE LONGEST RUN UP OR DOWN	$=$	3				
NUMBER OF POSITIVE DIFFERENCES	$=$	104				
NUMBER OF	NEGATIVE DIFFERENCES $=$	95				
NUMBER OF ZERO	DIFFERENCES $=$	0				

Interpretation of Sample Output

Question

Importance

Related
Techniques

Case Study Heat flow meter data

Software above output. process can be modeled as:

$$
Y_{i}=A_{0}+E_{i}
$$

where $\boldsymbol{E}_{\boldsymbol{i}}$ is an error term.

Autocorrelation
Run Sequence Plot
Lag Plot

Scanning the last column labeled " Z ", we note that most of the z -scores for run lengths 1,2 , and 3 have an absolute value greater than 1.96. This is strong evidence that these data are in fact not random.

Output from other statistical software may look somewhat different from the

The runs test can be used to answer the following question:

- Were these sample data generated from a random process?

Randomness is one of the key assumptions in determining if a univariate statistical process is in control. If the assumptions of constant location and scale, randomness, and fixed distribution are reasonable, then the univariate

If the randomness assumption is not valid, then a different model needs to be used. This will typically be either a times series model or a non-linear model (with time as the independent variable).

Most general purpose statistical software programs, including Dataplot, support a runs test.

WOME $\sqrt{\text { TOOLS \& AIDS }}$ SEARCH \quad BACK $\overline{\text { NEXT }}$

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.14. Anderson-Darling Test

Purpose: The Anderson-Darling test (Stephens, 1974) is used to test if a sample of data

Test for
Distributional
Adequacy came from a population with a specific distribution. It is a modification of the Kolmogorov-Smirnov (K-S) test and gives more weight to the tails than does the K-S test. The K-S test is distribution free in the sense that the critical values do not depend on the specific distribution being tested. The Anderson-Darling test makes use of the specific distribution in calculating critical values. This has the advantage of allowing a more sensitive test and the disadvantage that critical values must be calculated for each distribution. Currently, tables of critical values are available for the normal, lognormal, exponential, Weibull, extreme value type I, and logistic distributions. We do not provide the tables of critical values in this Handbook (see Stephens 1974, 1976, 1977, and 1979) since this test is usually applied with a statistical software program that will print the relevant critical values.

The Anderson-Darling test is an alternative to the chi-square and Kolmogorov-Smirnov goodness-of-fit tests.

Definition The Anderson-Darling test is defined as:

$\mathrm{H}_{0}: \quad$ The data follow a specified distribution.
H_{a} : The data do not follow the specified distribution
Test The Anderson-Darling test statistic is defined as
Statistic: $\quad A^{2}=-N-S$
where

$$
S=\sum_{i=1}^{N} \frac{(2 i-1)}{N}\left[\ln F\left(Y_{i}\right)+\ln \left(1-F\left(Y_{N+1-i}\right)\right)\right]
$$

\boldsymbol{F} is the cumulative distribution function of the specified distribution. Note that the Y_{i} are the ordered data.

Critical The critical values for the Anderson-Darling test are dependent Region: on the specific distribution that is being tested. Tabulated values and formulas have been published (Stephens, 1974, 1976, 1977, 1979) for a few specific distributions (normal, lognormal, exponential, Weibull, logistic, extreme value type 1). The test is a one-sided test and the hypothesis that the distribution is of a specific form is rejected if the test statistic, A, is greater than the critical value.

Note that for a given distribution, the Anderson-Darling statistic may be multiplied by a constant (which usually depends on the sample size, n). These constants are given in the various papers by Stephens. In the sample output below, this is the "adjusted Anderson-Darling" statistic. This is what should be compared against the critical values. Also, be aware that different constants (and therefore critical values) have been published. You just need to be aware of what constant was used for a given set of critical values (the needed constant is typically given with the critical values).

Sample Dataplot generated the following output for the Anderson-Darling test. 1,000 Output random numbers were generated for a normal, double exponential, Cauchy, and lognormal distribution. In all four cases, the Anderson-Darling test was applied to test for a normal distribution. When the data were generated using a normal distribution, the test statistic was small and the hypothesis was accepted. When the data were generated using the double exponential, Cauchy, and lognormal distributions, the statistics were significant, and the hypothesis of an underlying normal distribution was rejected at significance levels of 0.10 , 0.05 , and 0.01 .

The normal random numbers were stored in the variable Y1, the double exponential random numbers were stored in the variable Y2, the Cauchy random numbers were stored in the variable Y 3 , and the lognormal random numbers were stored in the variable Y 4 .

```
****************************************
** anderson darling normal test y1 **
*******************************************
```

ANDERSON-DARLING 1-SAMPLE TEST
THAT THE DATA CAME FROM A NORMAL DISTRIBUTION

1. STATISTICS:

NUMBER OF OBSERVATIONS = 1000 MEAN $=0.4359940 \mathrm{E}-02$
2. CRITICAL VALUES:

90	$\%$ POINT	$=$	0.6560000
95	$\%$ POINT	$=$	0.7870000
97.5	$\%$ POINT	$=$	0.9180000
99	$\%$ POINT	$=$	1.092000

3. CONCLUSION (AT THE 5\% LEVEL):

THE DATA DO COME FROM A NORMAL DISTRIBUTION.

```
** anderson darling normal test y2
```

ANDERSON-DARLING 1-SAMPLE TEST
THAT THE DATA CAME FROM A NORMAL DISTRIBUTION

1. STATISTICS:

NUMBER OF OBSERVATIONS	$=$	1000
MEAN	$=$	$0.2034888 \mathrm{E}-01$
STANDARD DEVIATION	$=$	1.321627
ANDERSON-DARLING TEST STATISTIC VALUE	$=$	5.826050
ADJUSTED TEST STATISTIC VALUE	$=$	5.849208

2. CRITICAL VALUES:

90	$\%$ POINT	$=$	0.6560000
95	$\%$ POINT	$=$	0.7870000
97.5	$\%$ POINT	$=$	0.9180000
99	$\%$ POINT	$=$	1.092000

3. CONCLUSION (AT THE 5\% LEVEL) :

THE DATA DO NOT COME FROM A NORMAL DISTRIBUTION.
** anderson darling normal test y3 **

```
ANDERSON-DARLING 1-SAMPLE TEST
THAT THE DATA CAME FROM A NORMAL DISTRIBUTION
```

1. STATISTICS:

NUMBER OF OBSERVATIONS	$=$	1000
MEAN	$=$	1.503854
STANDARD DEVIATION	$=$	35.13059
ANDERSON-DARLING TEST STATISTIC VALUE	$=$	287.6429
ADJUSTED TEST STATISTIC VALUE	$=$	288.7863

2. CRITICAL VALUES:

90	\circ	$=0.6560000$	
95	$\%$ POINT	$=0.7870000$	
97.5	$\%$ POINT	$=0.015 T$	$=0.9180000$
99	$\%$ POINT	$=1.092000$	

3. CONCLUSION (AT THE 5\% LEVEL) :

THE DATA DO NOT COME FROM A NORMAL DISTRIBUTION.

** anderson darling normal test y4 **

ANDERSON-DARLING 1-SAMPLE TEST
THAT THE DATA CAME FROM A NORMAL DISTRIBUTION

1. STATISTICS:

NUMBER OF OBSERVATIONS $=1000$
MEAN $=1.518372$
STANDARD DEVIATION $=1.719969$

ANDERSON-DARLING TEST STATISTIC VALUE $=83.06335$
ADJUSTED TEST STATISTIC VALUE $=83.39352$
2. CRITICAL VALUES:

90	\circ	OOINT	$=0.6560000$
95	$\%$ POINT	$=0.7870000$	
97.5	$\%$ POINT	$=0.9180000$	
99	$\%$ POINT	$=1.092000$	

3. CONCLUSION (AT THE 5\% LEVEL) :

THE DATA DO NOT COME FROM A NORMAL DISTRIBUTION.

Interpretation of the Sample

Output

The output is divided into three sections.

1. The first section prints the number of observations and estimates for the location and scale parameters.
2. The second section prints the upper critical value for the Anderson-Darling test statistic distribution corresponding to various significance levels. The value in the first column, the confidence level of the test, is equivalent to $100(1-\alpha)$. We reject the null hypothesis at that significance level if the value of the Anderson-Darling test statistic printed in section one is greater than the critical value printed in the last column.
3. The third section prints the conclusion for a 95% test. For a different significance level, the appropriate conclusion can be drawn from the table printed in section two. For example, for $\alpha=0.10$, we look at the row for 90% confidence and compare the critical value 1.062 to the statistic is less than the critical value, we do not reject the null hypothesis at the $\alpha=0.10$ level.

As we would hope, the Anderson-Darling test accepts the hypothesis of normality for the normal random numbers and rejects it for the 3 non-normal cases.

The output from other statistical software programs may differ somewhat from the output above.

Questions The Anderson-Darling test can be used to answer the following questions:

- Are the data from a normal distribution?
- Are the data from a log-normal distribution?
- Are the data from a Weibull distribution?
- Are the data from an exponential distribution?
- Are the data from a logistic distribution?

Importance

Related
Techniques

Case Study Airplane glass failure time data.
Software The Anderson-Darling goodness-of-fit test is available in some general purpose statistical software programs, including Dataplot.

NIST
HOME

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.15. Chi-Square Goodness-of-Fit Test

Purpose: \quad The chi-square test (Snedecor and Cochran, 1989) is used to test if a sample of data came

Test for distributional adequacy
from a population with a specific distribution.

An attractive feature of the chi-square goodness-of-fit test is that it can be applied to any univariate distribution for which you can calculate the cumulative distribution function. The chi-square goodness-of-fit test is applied to binned data (i.e., data put into classes). This is actually not a restriction since for non-binned data you can simply calculate a histogram or frequency table before generating the chi-square test. However, the value of the chi-square test statistic are dependent on how the data is binned. Another disadvantage of the chi-square test is that it requires a sufficient sample size in order for the chi-square approximation to be valid.

The chi-square test is an alternative to the Anderson-Darling and Kolmogorov-Smirnov goodness-of-fit tests. The chi-square goodness-of-fit test can be applied to discrete distributions such as the binomial and the Poisson. The Kolmogorov-Smirnov and Anderson-Darling tests are restricted to continuous distributions.

Additional discussion of the chi-square goodness-of-fit test is contained in the product and process comparisons chapter (chapter 7).

The chi-square test is defined for the hypothesis:

$$
\begin{array}{ll}
\mathrm{H}_{0}: & \text { The data follow a specified distribution. } \\
\mathrm{H}_{\mathrm{a}}: & \text { The data do not follow the specified distribution. }
\end{array}
$$

Test Statistic: For the chi-square goodness-of-fit computation, the data are divided into k bins and the test statistic is defined as

$$
\chi^{2}=\sum_{i=1}^{k}\left(O_{i}-E_{i}\right)^{2} / E_{i}
$$

where O_{i} is the observed frequency for bin i and $\bar{E}_{\bar{i}}$ is the expected frequency for bin i. The expected frequency is calculated by

$$
E_{i}=N\left(F\left(Y_{i}\right)-F\left(Y_{i}\right)\right)
$$

where F is the cumulative Distribution function for the distribution being tested, $\boldsymbol{Y}_{\boldsymbol{u}}$ is the upper limit for class $\boldsymbol{i}, \boldsymbol{Y}_{\boldsymbol{l}}$ is the lower limit for class \boldsymbol{i}, and N is the sample size.

This test is sensitive to the choice of bins. There is no optimal choice for the bin width (since the optimal bin width depends on the distribution). Most reasonable choices should produce similar, but not identical, results. Dataplot uses 0.3 *s, where s is the sample standard deviation, for the class width. The lower and upper bins are at the sample mean plus and minus $6.0 *$ s, respectively. For the chi-square approximation to be valid, the expected frequency should be at least 5 . This test is not valid for small samples, and if some of the counts are less than five, you may need to combine some bins in the tails.
Significance Level: α.
Critical Region: The test statistic follows, approximately, a chi-square distribution with $(k-c)$ degrees of freedom where k is the number of non-empty cells and $c=$ the number of estimated parameters (including location and scale parameters and shape parameters) for the distribution +1 . For example, for a 3-parameter Weibull distribution, $c=4$.

Therefore, the hypothesis that the data are from a population with the specified distribution is rejected if

$$
\chi^{2}>\chi_{(x, k-c)}^{2}
$$

where $\chi_{(i x, k-r)}^{2}$ is the chi-square percent point function with $k-c$ degrees of freedom and a significance level of α.

In the above formulas for the critical regions, the Handbook follows the convention that $\chi_{i x}^{2}$ is the upper critical value from the chi-square distribution and $\chi_{1-i x}^{2}$ is the lower critical value from the chi-square distribution. Note that this is the opposite of what is used in some texts and software programs. In particular, Dataplot uses the opposite convention.

Sample Dataplot generated the following output for the chi-square test where 1,000 random Output numbers were generated for the normal, double exponential, t with 3 degrees of freedom, and lognormal distributions. In all cases, the chi-square test was applied to test for a normal distribution. The test statistics show the characteristics of the test; when the data are from a normal distribution, the test statistic is small and the hypothesis is accepted; when the data are from the double exponential, t, and lognormal distributions, the statistics are significant and the hypothesis of an underlying normal distribution is rejected at significance levels of $0.10,0.05$, and 0.01 .

The normal random numbers were stored in the variable Y1, the double exponential random numbers were stored in the variable Y 2 , the t random numbers were stored in the variable Y 3 , and the lognormal random numbers were stored in the variable Y 4 .

CHI-SQUARED GOODNESS-OF-FIT TEST

NULL HYPOTHESIS HO:	DISTRIBUTION FITS THE DATA
ALTERNATE HYPOTHESIS HA: DISTRIBUTION DOES NOT FIT THE DATA	
DISTRIBUTION:	NORMAL

SAMPLE:
NUMBER OF OBSERVATIONS = 1000
NUMBER OF NON-EMPTY CELLS = 24
NUMBER OF PARAMETERS USED $=0$

TEST:

CHI-SQUARED TEST STATISTIC	$=$	17.52155
DEGREES OF FREEDOM	$=$	23
CHI-SQUARED CDF VALUE	$=$	0.217101

ALPHA LEVEL	CUTOFF	CONCLUSION
10%	32.00690	ACCEPT H0
5%	35.17246	ACCEPT H0
1%	41.63840	ACCEPT H0

CELL NUMBER, BIN MIDPOINT, OBSERVED FREQUENCY, AND EXPECTED FREQUENCY WRITTEN TO FILE DPST1F.DAT

NULL HYPOTHESIS HO:	DISTRIBUTION FITS THE DATA
ALTERNATE HYPOTHESIS HA:	DISTRIBUTION DOES NOT FIT THE DATA
DISTRIBUTION:	NORMAL

SAMPLE:
NUMBER OF OBSERVATIONS = 1000
NUMBER OF NON-EMPTY CELLS $=10$
NUMBER OF PARAMETERS USED = 0

TEST:
CHI-SQUARED TEST STATISTIC = 1162098.
DEGREES OF FREEDOM $=\quad 9$
CHI-SQUARED CDF VALUE = 1.000000

ALPHA LEVEL CUTOFF CONCLUSION 10\% 14.68366 REJECT H0 5\% 16.91898 REJECT H0 1\% 21.66600 REJECT H0

CELL NUMBER, BIN MIDPOINT, OBSERVED FREQUENCY, AND EXPECTED FREQUENCY
WRITTEN TO FILE DPST1F.DAT

As we would hope, the chi-square test does not reject the normality hypothesis for the normal distribution data set and rejects it for the three non-normal cases.

Questions The chi-square test can be used to answer the following types of questions:

- Are the data from a normal distribution?
- Are the data from a log-normal distribution?
- Are the data from a Weibull distribution?
- Are the data from an exponential distribution?
- Are the data from a logistic distribution?
- Are the data from a binomial distribution?

Importance Many statistical tests and procedures are based on specific distributional assumptions. The assumption of normality is particularly common in classical statistical tests. Much reliability modeling is based on the assumption that the distribution of the data follows a Weibull distribution.

There are many non-parametric and robust techniques that are not based on strong distributional assumptions. By non-parametric, we mean a technique, such as the sign test, that is not based on a specific distributional assumption. By robust, we mean a statistical technique that performs well under a wide range of distributional assumptions. However, techniques based on specific distributional assumptions are in general more powerful than these non-parametric and robust techniques. By power, we mean the ability to detect a difference when that difference actually exists. Therefore, if the distributional assumption can be confirmed, the parametric techniques are generally preferred.

If you are using a technique that makes a normality (or some other type of distributional) assumption, it is important to confirm that this assumption is in fact justified. If it is, the more powerful parametric techniques can be used. If the distributional assumption is not justified, a non-parametric or robust technique may be required.

Related Anderson-Darling Goodness-of-Fit Test
Techniques
Kolmogorov-Smirnov Test
Shapiro-Wilk Normality Test
Probability Plots

Probability Plot Correlation Coefficient Plot

Case Study \quad Airplane glass failure times data.
Software Some general purpose statistical software programs, including Dataplot, provide a chi-square goodness-of-fit test for at least some of the common distributions.
$\frac{\text { NIST }}{\text { SEMATECH }} \sqrt{\text { HOME }} \sqrt{\text { TOOLS \& AIDS }} \quad \sqrt{\text { SEARCH }} \quad$ NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.16. Kolmogorov-Smirnov Goodness-of-Fit Test

Purpose: The Kolmogorov-Smirnov test (Chakravart, Laha, and Roy, 1967) is used to

Test for
Distributional Adequacy
decide if a sample comes from a population with a specific distribution.

The Kolmogorov-Smirnov (K-S) test is based on the empirical distribution function (ECDF). Given N ordered data points $\boldsymbol{Y}_{1}, \boldsymbol{Y}_{2}, \ldots, \boldsymbol{Y}_{N}$, the ECDF is defined as

$$
E_{N}=n(i) / N
$$

where $\boldsymbol{n}(\boldsymbol{i})$ is the number of points less than $\boldsymbol{Y}_{\boldsymbol{i}}$ and the $\boldsymbol{Y}_{\boldsymbol{i}}$ are ordered from smallest to largest value. This is a step function that increases by $1 / N$ at the value of each ordered data point.

The graph below is a plot of the empirical distribution function with a normal cumulative distribution function for 100 normal random numbers. The K-S test is based on the maximum distance between these two curves.

Characteristics and
Limitations of the K-S Test

An attractive feature of this test is that the distribution of the K-S test statistic itself does not depend on the underlying cumulative distribution function being tested. Another advantage is that it is an exact test (the chi-square goodness-of-fit test depends on an adequate sample size for the approximations to be valid). Despite these advantages, the K-S test has several important limitations:

1. It only applies to continuous distributions.
2. It tends to be more sensitive near the center of the distribution than at the tails.
3. Perhaps the most serious limitation is that the distribution must be fully specified. That is, if location, scale, and shape parameters are estimated from the data, the critical region of the K-S test is no longer valid. It typically must be determined by simulation.

Due to limitations 2 and 3 above, many analysts prefer to use the Anderson-Darling goodness-of-fit test. However, the Anderson-Darling test is only available for a few specific distributions.

Definition The Kolmogorov-Smirnov test is defined by:
$\mathrm{H}_{0}: \quad$ The data follow a specified distribution
H_{a} : The data do not follow the specified distribution
Test Statistic: The Kolmogorov-Smirnov test statistic is defined as

$$
D=\max _{1 \leq i \leq N}\left|F\left(Y_{i}\right)-\frac{\dot{i}}{N}\right|
$$

where \boldsymbol{F} is the theoretical cumulative distribution of the distribution being tested which must be a continuous distribution (i.e., no discrete distributions such as the binomial or Poisson), and it must be fully specified (i.e., the location, scale, and shape parameters cannot be estimated from the data).
Significance Level: α.
Critical Values: The hypothesis regarding the distributional form is rejected if the test statistic, \boldsymbol{D}, is greater than the critical value obtained from a table. There are several variations of these tables in the literature that use somewhat different scalings for the K-S test statistic and critical regions. These alternative formulations should be equivalent, but it is necessary to ensure that the test statistic is calculated in a way that is consistent with how the critical values were tabulated.

We do not provide the K-S tables in the Handbook since software programs that perform a K-S test will provide the relevant critical values.

Sample Output Dataplot generated the following output for the Kolmogorov-Smirnov test where 1,000 random numbers were generated for a normal, double exponential, t with 3 degrees of freedom, and lognormal distributions. In all cases, the Kolmogorov-Smirnov test was applied to test for a normal distribution. The Kolmogorov-Smirnov test accepts the normality hypothesis for the case of normal data and rejects it for the double exponential, t, and lognormal data with the exception of the double exponential data being significant at the 0.01 significance level.

The normal random numbers were stored in the variable Y 1 , the double exponential random numbers were stored in the variable Y2, the t random numbers were stored in the variable Y 3 , and the lognormal random numbers were stored in the variable Y4.

```
**********************************************************
** normal Kolmogorov-Smirnov goodness of fit test y1 **
**********************************************************
```


KOLMOGOROV-SMIRNOV GOODNESS-OF-FIT TEST
$\begin{array}{ll}\text { NULL HYPOTHESIS HO: } & \text { DISTRIBUTION FITS THE DATA } \\ \text { ALTERNATE HYPOTHESIS HA: DISTRIBUTION DOES NOT FIT THE DATA }\end{array}$ DISTRIBUTION: NORMAL

NUMBER OF OBSERVATIONS $=1000$
TEST:
KOLMOGOROV-SMIRNOV TEST STATISTIC $=0.5140864 \mathrm{E}-01$
ALPHA LEVEL CUTOFF CONCLUSION
10\% 0.03858 REJECT H0
5\% 0.04301 REJECT H0
1\% 0.05155 ACCEPT H0
** normal Kolmogorov-Smirnov goodness of fit test y3 **

KOLMOGOROV-SMIRNOV GOODNESS-OF-FIT TEST
NULL HYPOTHESIS HO: DISTRIBUTION FITS THE DATA
ALTERNATE HYPOTHESIS HA: DISTRIBUTION DOES NOT FIT THE DATA DISTRIBUTION: NORMAL

NUMBER OF OBSERVATIONS = 1000
TEST:
KOLMOGOROV-SMIRNOV TEST STATISTIC $=0.6119353 \mathrm{E}-01$
ALPHA LEVEL CUTOFF CONCLUSION
10\% 0.03858 REJECT H0
5\% 0.04301 REJECT HO
1\% 0.05155 REJECT H0

** normal Kolmogorov-Smirnov goodness of fit test y 4 **

Questions The Kolmogorov-Smirnov test can be used to answer the following types of questions:

- Are the data from a normal distribution?
- Are the data from a log-normal distribution?
- Are the data from a Weibull distribution?
- Are the data from an exponential distribution?
- Are the data from a logistic distribution?

Importance
Many statistical tests and procedures are based on specific distributional assumptions. The assumption of normality is particularly common in classical statistical tests. Much reliability modeling is based on the assumption that the data follow a Weibull distribution.

There are many non-parametric and robust techniques that are not based on strong distributional assumptions. By non-parametric, we mean a technique, such as the sign test, that is not based on a specific distributional assumption. By robust, we mean a statistical technique that performs well under a wide range of distributional assumptions. However, techniques based on specific distributional assumptions are in general more powerful than these non-parametric and robust techniques. By power, we mean the ability to detect a difference when that difference actually exists. Therefore, if the distributional assumptions can be confirmed, the parametric techniques are generally preferred.

If you are using a technique that makes a normality (or some other type of distributional) assumption, it is important to confirm that this assumption is in fact justified. If it is, the more powerful parametric techniques can be used. If the distributional assumption is not justified, using a non-parametric or robust technique may be required.

Related
Techniques
Anderson-Darling goodness-of-fit Test
Chi-Square goodness-of-fit Test
Shapiro-Wilk Normality Test
Probability Plots
$\underline{\text { Probability Plot Correlation Coefficient Plot }}$

Case Study Airplane glass failure times data

Software Some general purpose statistical software programs, including Dataplot, support the Kolmogorov-Smirnov goodness-of-fit test, at least for some of the more common distributions.

1. Exploratory Data Analysis

1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.17. Grubbs' Test for Outliers

Purpose: \quad Grubbs' test (Grubbs 1969 and Stefansky 1972) is used to detect

Detection of Outliers outliers in a univariate data set. It is based on the assumption of normality. That is, you should first verify that your data can be reasonably approximated by a normal distribution before applying the Grubbs' test.

Grubbs' test detects one outlier at a time. This outlier is expunged from the dataset and the test is iterated until no outliers are detected.
However, multiple iterations change the probabilities of detection, and the test should not be used for sample sizes of six or less since it frequently tags most of the points as outliers.

Grubbs' test is also known as the maximum normed residual test.
Definition Grubbs' test is defined for the hypothesis:
$\mathrm{H}_{0}: \quad$ There are no outliers in the data set
$\mathrm{H}_{\mathrm{a}}: \quad$ There is at least one outlier in the data set
Test The Grubbs' test statistic is defined as:
Statistic:

$$
G=\frac{\max \left|Y_{i}-\bar{Y}\right|}{s}
$$

where \bar{Y} and \boldsymbol{s} are the sample mean and standard deviation. The Grubbs test statistic is the largest absolute deviation from the sample mean in units of the sample standard deviation.
Significance $\boldsymbol{\alpha}$.
Level:

Critical The hypothesis of no outliers is rejected if
Region:

$$
G>\frac{(N-1)}{\sqrt{N}} \sqrt{\frac{t_{(\alpha /(2 N), N-2)}^{2}}{N-2+t_{(\alpha /(2 N), N-2)}^{2}}}
$$

where $t_{(\alpha /(2 N), N-2)}$ is the critical value of the t-distribution with ($\mathrm{N}-2$) degrees of freedom and a significance level of $\alpha /(2 N)$.

In the above formulas for the critical regions, the Handbook follows the convention that $t_{i x}$ is the upper critical value from the t-distribution and $t_{1-\alpha}$ is the lower critical value from the t-distribution. Note that this is the opposite of what is used in some texts and software programs. In particular, Dataplot uses the opposite convention.

Sample Output

Dataplot generated the following output for the ZARR13.DAT data set showing that Grubbs' test finds no outliers in the dataset:

GRUBBS TEST FOR OUTLIERS
(ASSUMPTION: NORMALITY)

1. STATISTICS:

NUMBER OF OBSERVATIONS = 195
MINIMUM $=9.196848$
MEAN $=9.261460$
MAXIMUM $=9.327973$
STANDARD DEVIATION $=0.2278881 \mathrm{E}-01$
GRUBBS TEST STATISTIC = 2.918673
2. PERCENT POINTS OF THE REFERENCE DISTRIBUTION FOR GRUBBS TEST STATISTIC

0	$\%$ POINT	$=$	0.
50	$\%$ POINT	$=$	2.984294
75	$\%$ POINT	$=$	3.181226
90	$\%$ POINT	$=$	3.424672
95	$\%$ POINT	$=$	3.597898
99	$\%$ POINT	$=$	3.970215

37.59665 \% POINT: 2.918673
3. CONCLUSION (AT THE 5\% LEVEL): THERE ARE NO OUTLIERS.

Interpretation of Sample

Output

Questions Grubbs' test can be used to answer the following questions:

1. Does the data set contain any outliers?
2. How many outliers does it contain?

Importance
The output is divided into three sections.

1. The first section prints the sample statistics used in the computation of the Grubbs' test and the value of the Grubbs' test statistic.
2. The second section prints the upper critical value for the Grubbs' test statistic distribution corresponding to various significance levels. The value in the first column, the confidence level of the test, is equivalent to $100(1-\Upsilon)$. We reject the null hypothesis at that significance level if the value of the Grubbs' test statistic printed in section one is greater than the critical value printed in the last column.
3. The third section prints the conclusion for a 95% test. For a different significance level, the appropriate conclusion can be drawn from the table printed in section two. For example, for α $=0.10$, we look at the row for 90% confidence and compare the critical value 3.42 to the Grubbs' test statistic 2.92. Since the test statistic is less than the critical value, we accept the null hypothesis at the $\alpha=0.10$ level.
Output from other statistical software may look somewhat different from the above output.

Many statistical techniques are sensitive to the presence of outliers. For example, simple calculations of the mean and standard deviation may be distorted by a single grossly inaccurate data point.

Checking for outliers should be a routine part of any data analysis. Potential outliers should be examined to see if they are possibly erroneous. If the data point is in error, it should be corrected if possible and deleted if it is not possible. If there is no reason to believe that the outlying point is in error, it should not be deleted without careful consideration. However, the use of more robust techniques may be warranted. Robust techniques will often downweight the effect of outlying points without deleting them.

Related Several graphical techniques can, and should, be used to detect Techniques outliers. A simple run sequence plot, a box plot, or a histogram should show any obviously outlying points.

Run Sequence Plot
Histogram
Box Plot
Normal Probability Plot
Lag Plot
Case Study Heat flow meter data.

Software Some general purpose statistical software programs, including Dataplot, support the Grubbs' test.

HOME
TOOLS \& AIDS
SEARCH
BACK NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.18. Yates Analysis

Purpose: Full factorial and fractional factorial designs are common in designed experiments for

Estimate
Factor
Effects in a 2-Level
Factorial Design engineering and scientific applications.

In these designs, each factor is assigned two levels. These are typically called the low and high levels. For computational purposes, the factors are scaled so that the low level is assigned a value of -1 and the high level is assigned a value of +1 . These are also commonly referred to as "-" and "+".

A full factorial design contains all possible combinations of low/high levels for all the factors. A fractional factorial design contains a carefully chosen subset of these combinations. The criterion for choosing the subsets is discussed in detail in the process improvement chapter.

The Yates analysis exploits the special structure of these designs to generate least squares estimates for factor effects for all factors and all relevant interactions.

The mathematical details of the Yates analysis are given in chapter 10 of Box, Hunter, and Hunter (1978).

The Yates analysis is typically complemented by a number of graphical techniques such as the dex mean plot and the dex contour plot ("dex" represents "design of experiments"). This is demonstrated in the Eddy current case study.

Yates Before performing a Yates analysis, the data should be arranged in "Yates order". That Order is, given k factors, the k th column consists of 2^{k-1} minus signs (i.e., the low level of the factor) followed by 2^{k-1} plus signs (i.e., the high level of the factor). For example, for a full factorial design with three factors, the design matrix is

$$
\begin{array}{ccc}
- & - & - \\
+ & - & - \\
- & + & - \\
+ & + & - \\
- & - & + \\
+ & - & + \\
- & + & + \\
+ & + & +
\end{array}
$$

Determining the Yates order for fractional factorial designs requires knowledge of the confounding structure of the fractional factorial design.

Yates
Output

A Yates analysis generates the following output.

1. A factor identifier (from Yates order). The specific identifier will vary depending on the program used to generate the Yates analysis. Dataplot, for example, uses the following for a 3 -factor model.
$1=$ factor 1
$2=$ factor 2
$3=$ factor 3
$12=$ interaction of factor 1 and factor 2
$13=$ interaction of factor 1 and factor 3
$23=$ interaction of factor 2 and factor 3
123 =interaction of factors 1,2 , and 3
2. Least squares estimated factor effects ordered from largest in magnitude (most significant) to smallest in magnitude (least significant).

That is, we obtain a ranked list of important factors.
3. A t-value for the individual factor effect estimates. The t-value is computed as

$$
t=\frac{e}{s_{e}}
$$

where e is the estimated factor effect and s_{e} is the standard deviation of the estimated factor effect.
4. The residual standard deviation that results from the model with the single term only. That is, the residual standard deviation from the model

$$
\text { response }=\text { constant }+0.5\left(\boldsymbol{X}_{\boldsymbol{i}}\right)
$$

where $\boldsymbol{X}_{\boldsymbol{i}}$ is the estimate of the i th factor or interaction effect.
5. The cumulative residual standard deviation that results from the model using the current term plus all terms preceding that term. That is,
response $=$ constant +0.5 (all effect estimates down to and including the effect of interest)

This consists of a monotonically decreasing set of residual standard deviations (indicating a better fit as the number of terms in the model increases). The first cumulative residual standard deviation is for the model

$$
\text { response }=\text { constant }
$$

where the constant is the overall mean of the response variable. The last cumulative residual standard deviation is for the model

$$
\text { response }=\text { constant }+0.5^{*}(\text { all factor and interaction estimates })
$$

This last model will have a residual standard deviation of zero.
Sample Dataplot generated the following Yates analysis output for the Eddy current data set: Output
(NOTE--DATA MUST BE IN STANDARD ORDER)
NUMBER OF OBSERVATIONS $=$
NUMBER OF FACTORS $=$
NO REPLICATION CASE

```
PSEUDO-REPLICATION STAND. DEV. = 0.20152531564E+00
PSEUDO-DEGREES OF FREEDOM = 1
(THE PSEUDO-REP. STAND. DEV. ASSUMES ALL
3, 4, 5, ...-TERM INTERACTIONS ARE NOT REAL,
BUT MANIFESTATIONS OF RANDOM ERROR)
```

STANDARD DEVIATION OF A COEF. $=0.14249992371 \mathrm{E}+00$
(BASED ON PSEUDO-REP. ST. DEV.)

GRAND MEAN	$=$	$0.26587500572 \mathrm{E}+01$
GRAND STANDARD DEVIATION	$=$	$0.17410624027 \mathrm{E}+01$
99%		
95% CONFIDENCE LIMITS $(+-)$	$=$	
99.5% POINT OF T DISTRIBUTION	$=0.90710897446 \mathrm{E}+01$	
97.5% POINT OF T DISTRIBUTION	$=0.18106349707 \mathrm{E}+01$	
9		

IDENTIFIER EFFECT	T VALUE	RESSD: \quad RESSD :
		MEAN $+\quad$ MEAN +
		TERM \quad CUM TERMS

MEAN	2.65875		1.74106	1.74106
1	3.10250	$21.8 *$	0.57272	0.57272
2	-0.86750	-6.1	1.81264	0.30429
23	0.29750	2.1	1.87270	0.26737
13	0.24750	1.7	1.87513	0.23341
3	0.21250	1.5	1.87656	0.19121
123	0.14250	1.0	1.87876	0.18031
12	0.12750	0.9	1.87912	0.00000

Interpretation of Sample Output

Model
Selection and

From the above Yates output, we can define the potential models from the Yates analysis. An important component of a Yates analysis is selecting the best model from the available potential models.

Once a tentative model has been selected, the error term should follow the assumptions for a univariate measurement process. That is, the model should be validated by analyzing the residuals.

Some analysts may prefer a more graphical presentation of the Yates results. In particular, the following plots may be useful:

1. Ordered data plot
2. Ordered absolute effects plot
3. Cumulative residual standard deviation plot

In summary, the Yates analysis provides us with the following ranked list of important factors along with the estimated effect estimate.

1. X1: effect estimate $=3.1025 \mathrm{ohms}$
2. X2: \quad effect estimate $=-0.8675 \mathrm{ohms}$
3. $\mathrm{X} 2 * \mathrm{X} 3: \quad$ effect estimate $=0.2975$ ohms
4. $\mathrm{X} 1 * \mathrm{X} 3: \quad$ effect estimate $=0.2475 \mathrm{ohms}$
5. X3: effect estimate $=0.2125 \mathrm{ohms}$
6. $\mathrm{X} 1 * \mathrm{X} 2 * \mathrm{X} 3: \quad$ effect estimate $=0.1425 \mathrm{ohms}$
7. $\mathrm{X} 1 * \mathrm{X} 2: \quad$ effect estimate $=0.1275 \mathrm{ohms}$

Validation

Graphical Presentation

Questions

The Yates analysis can be used to answer the following questions:

1. What is the ranked list of factors?
2. What is the goodness-of-fit (as measured by the residual standard deviation) for the various models?

Related Multi-factor analysis of variance
Techniques Dex mean plot
Block plot
Dex contour plot
Case Study The Yates analysis is demonstrated in the Eddy current case study.
Software Many general purpose statistical software programs, including Dataplot, can perform a Yates analysis.

HOME
TOOLS \& AIDS
SEARCH
BACK $\overline{N E X T}$

BACK NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques
1.3.5.18. Yates Analysis

1.3.5.18.1. Defining Models and Prediction Equations

Parameter In most cases of least squares fitting, the model coefficients for previously added terms

Estimates
Don't
Change as
Additional
Terms
Added change depending on what was successively added. For example, the X1 coefficient might change depending on whether or not an X 2 term was included in the model. This is not the case when the design is orthogonal, as is a 2^{3} full factorial design. For orthogonal designs, the estimates for the previously included terms do not change as additional terms are added. This means the ranked list of effect estimates simultaneously serves as the least squares coefficient estimates for progressively more complicated models.

Yates
Table
For convenience, we list the sample Yates output for the Eddy current data set here.

$$
\begin{array}{lcc}
\text { (NOTE--DATA MUST BE IN STANDARD ORDER) } & \\
\text { NUMBER OF OBSERVATIONS } & = & 8 \\
\text { NUMBER OF FACTORS } & = & 3
\end{array}
$$

NO REPLICATION CASE

```
PSEUDO-REPLICATION STAND. DEV. = 0.20152531564E+00
```

PSEUDO-DEGREES OF FREEDOM = 1
(THE PSEUDO-REP. STAND. DEV. ASSUMES ALL
3, 4, 5, ...-TERM INTERACTIONS ARE NOT REAL,
BUT MANIFESTATIONS OF RANDOM ERROR)
STANDARD DEVIATION OF A COEF. $=0.14249992371 \mathrm{E}+00$
(BASED ON PSEUDO-REP. ST. DEV.)
GRAND MEAN $=0.26587500572 \mathrm{E}+01$
GRAND STANDARD DEVIATION
$=0.17410624027 \mathrm{E}+01$
99\% CONFIDENCE LIMITS (+-) = 0.90710897446E+01
95\% CONFIDENCE LIMITS (+-) = $0.18106349707 \mathrm{E}+01$
99.5\% POINT OF T DISTRIBUTION $=0.63656803131 \mathrm{E}+02$
1.3.5.18.1. Defining Models and Prediction Equations
97.5\% POINT OF T DISTRIBUTION $=0.12706216812 \mathrm{E}+02$

IDENTIFIER	EFFECT	T VALUE	RESSD: MEAN + TERM	RESSD: MEAN + CUM TERMS
MEAN	2.65875		1.74106	1.74106
1	3.10250	21.8*	0.57272	0.57272
2	-0.86750	-6.1	1.81264	0.30429
23	0.29750	2.1	1.87270	0.26737
13	0.24750	1.7	1.87513	0.23341
3	0.21250	1.5	1.87656	0.19121
123	0.14250	1.0	1.87876	0.18031
12	0.12750	0.9	1.87912	0.00000

The last column of the Yates table gives the residual standard deviation for 8 possible models, each with one more term than the previous model.

Potential Models

For this example, we can summarize the possible prediction equations using the second and last columns of the Yates table:

$\hat{Y}=2.65875$

has a residual standard deviation of 1.74106 ohms. Note that this is the default model. That is, if no factors are important, the model is simply the overall mean.
${ }^{\bullet} \hat{Y}=2.65875+0.5(3.1025 \times 1)$
has a residual standard deviation of 0.57272 ohms. (Here, X 1 is either a +1 or -1 , and similarly for the other factors and interactions (products).)

$$
\hat{Y}=2.65875+0.5(3.1025 X 1-0.8675 X 2)
$$

has a residual standard deviation of 0.30429 ohms.

$$
\hat{Y}=2.65870+0.5(3.1025 X 1-0.8675 X 2+0.2975 X 2 * X 3)
$$

has a residual standard deviation of 0.26737 ohms.
${ }^{\bullet} \hat{Y}=2.65875+0.5(3.1025 X 1-0.8675 X 2+$
$0.2975 \times 2 * X 3+0.2475 X 1 * X 3)$
has a residual standard deviation of 0.23341 ohms

$$
\begin{aligned}
\hat{Y}= & 2.65875+0.5(3.1025 X 1-0.8675 X 2+ \\
& 0.2970 X 2 * X 3+0.2475 X 1 * X 3+0.2125 X 3)
\end{aligned}
$$

has a residual standard deviation of 0.19121 ohms.

$$
\begin{aligned}
\hat{Y}= & 2.65875+0.5(3.1025 X 1-0.8675 X 2+ \\
& 0.2975 X 2 * X 3+0.2475 X 1 * X 3+0.2125 X 3+ \\
& 0.1425 X 1 * X 2 * X 3)
\end{aligned}
$$

has a residual standard deviation of 0.18031 ohms.

$$
\begin{aligned}
\hat{Y}= & 2.65875+0.5(3.1025 X 1-0.8675 X 2+ \\
& 0.2975 X 2 * X 3+0.2475 X 1 * X 3+0.2125 X 3+ \\
& 0.1425 X 1 * X 2 * X 3+0.1275 X 1 * X 2)
\end{aligned}
$$

has a residual standard deviation of 0.0 ohms. Note that the model with all possible terms included will have a zero residual standard deviation. This will always occur with an unreplicated two-level factorial design.

Model The above step lists all the potential models. From this list, we want to select the most Selection appropriate model. This requires balancing the following two goals.

1. We want the model to include all important factors.
2. We want the model to be parsimonious. That is, the model should be as simple as possible.
Note that the residual standard deviation alone is insufficient for determining the most appropriate model as it will always be decreased by adding additional factors. The next section describes a number of approaches for determining which factors (and interactions) to include in the model.
3. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques
1.3.5.18. Yates Analysis

1.3.5.18.2. Important Factors

Identify Important Factors

Criteria for Including Terms in the Model

The Yates analysis generates a large number of potential models. From this list, we want to select the most appropriate model. This requires balancing the following two goals.

1. We want the model to include all important factors.
2. We want the model to be parsimonious. That is, the model should be as simple as possible. In short, we want our model to include all the important factors and interactions and to omit the unimportant factors and interactions.

Seven criteria are utilized to define important factors. These seven criteria are not all equally important, nor will they yield identical subsets, in which case a consensus subset or a weighted consensus subset must be extracted. In practice, some of these criteria may not apply in all situations.

These criteria will be examined in the context of the Eddy current data set. The Yates Analysis page gave the sample Yates output for these data and the Defining Models and Predictions page listed the potential models from the Yates analysis.

In practice, not all of these criteria will be used with every analysis (and some analysts may have additional criteria). These critierion are given as useful guidelines. Mosts analysts will focus on those criteria that they find most useful.

The seven criteria that we can use in determining whether to keep a factor in the model can be summarized as follows.

1. Effects: Engineering Significance
2. Effects: Order of Magnitude
3. Effects: Statistical Significance
4. Effects: Probability Plots
5. Averages: Youden Plot
6. Residual Standard Deviation: Engineering Significance
7. Residual Standard Deviation: Statistical Significance

The first four criteria focus on effect estimates with three numeric criteria and one graphical criteria. The fifth criteria focuses on averages. The last two criteria focus on the residual standard deviation of the model. We discuss each of these seven criteria in detail in the following sections.

The last section summarizes the conclusions based on all of the criteria.

Effects: The minimum engineering significant difference is defined as

Engineering
Significance

Effects:
Order of Magnitude

Effects:
Statistical
Significance

$$
\left|\hat{\beta}_{i}\right|>\Delta
$$

where $\left|\hat{\beta}_{2}\right|$ is the absolute value of the parameter estimate (i.e., the effect) and Δ is the minimum engineering significant difference.

That is, declare a factor as "important" if the effect is greater than some a priori declared engineering difference. This implies that the engineering staff have in fact stated what a minimum effect will be. Oftentimes this is not the case. In the absence of an a priori difference, a good rough rule for the minimum engineering significant Δ is to keep only those factors whose effect is greater than, say, 10% of the current production average. In this case, let's say that the average detector has a sensitivity of 2.5 ohms. This would suggest that we would declare all factors whose effect is greater than 10% of $2.5 \mathrm{ohms}=0.25$ ohm to be significant (from an engineering point of view).

Based on this minimum engineering significant difference criterion, we conclude that we should keep two terms: X1 and X2.

The order of magnitude criterion is defined as

$$
\left|\beta_{i}\right|<0.10 * \max \left|\beta_{i}\right|
$$

That is, exclude any factor that is less than 10% of the maximum effect size. We may or may not keep the other factors. This criterion is neither engineering nor statistical, but it does offer some additional numerical insight. For the current example, the largest effect is from X1 (3.10250 ohms), and so 10% of that is 0.31 ohms, which suggests keeping all factors whose effects exceed 0.31 ohms.

Based on the order-of-magnitude criterion, we thus conclude that we should keep two terms: X1 and X2. A third term, X2*X3 (.29750), is just slightly under the cutoff level, so we may consider keeping it based on the other criterion.

Statistical significance is defined as

$$
\left|\hat{\beta}_{i}\right|>2 s d\left(\hat{\beta}_{i}\right)=2\left(\frac{2 \sigma}{\sqrt{n}}\right)
$$

That is, declare a factor as important if its effect is more than 2 standard deviations away from 0 (0 , by definition, meaning "no effect").

The " 2 " comes from normal theory (more specifically, a value of 1.96 yields a 95% confidence interval). More precise values would come from t-distribution theory.

The difficulty with this is that in order to invoke this criterion we need the standard deviation, σ, of an observation. This is problematic because

1. the engineer may not know σ;
2. the experiment might not have replication, and so a model-free estimate of σ is not obtainable;
3. obtaining an estimate of σ by assuming the sometimes- employed assumption of ignoring 3-term interactions and higher may be incorrect from an engineering point of view.
For the Eddy current example:
4. the engineer did not know σ;
5. the design (a 2^{3} full factorial) did not have replication;
6. ignoring 3-term interactions and higher interactions leads to an estimate of σ based on omitting only a single term: the $\mathrm{X} 1 * \mathrm{X} 2 * \mathrm{X} 3$ interaction.
For the current example, if one assumes that the 3-term interaction is nil and hence represents a single drawing from a population centered at zero, then an estimate of the standard deviation of an effect is simply the estimate of the 3-factor interaction (0.1425). In the Dataplot output for our example, this is the effect estimate for the $\mathrm{X} 1 * \mathrm{X} 2 * \mathrm{X} 3$ interaction term (the EFFECT column for the row labeled " 123 "). Two standard deviations is thus 0.2850 . For this example, the rule is thus to keep all $\left|\hat{\beta}_{i}\right|>0.2850$.

This results in keeping three terms: X1 (3.10250), X2 (-.86750), and X1*X2 (.29750).
Effects: \quad Probability plots can be used in the following manner.

Probability Plots

Normal
Probablity
Plot of
Effects and
Half-Normal
Probability
Plot of
Effects

The following half-normal plot shows the normal probability plot of the effect estimates and the half-normal probability plot of the absolute value of the estimates for the Eddy current data.

Eddy Current Data
Hall-normal Probability Plot of Effects

For the example at hand, both probability plots clearly show two factors displaced off the line, and from the third plot (with factor tags included), we see that those two factors are factor 1 and factor 2 . All of the remaining five effects are behaving like random drawings from a normal distribution centered at zero, and so are deemed to be statistically non-significant. In conclusion, this rule keeps two factors: X1 (3.10250) and X2 (-.86750).

Effects:
Youden Plot

A Youden plot can be used in the following way. Keep a factor as "important" if it is displaced away from the central-tendancy "bunch" in a Youden plot of high and low averages. By definition, a factor is important when its average response for the low (-1) setting is significantly different from its average response for the high (+1) setting. Conversely, if the low and high averages are about the same, then what difference does it make which setting to use and so why would such a factor be considered important? This fact in combination with the intrinsic benefits of the Youden plot for comparing pairs of items leads to the technique of generating a Youden plot of the low and high averages. of Effect Estimatess

Residual
Standard
Deviation:
Engineering
Significance

Youden Plot
 The following is the Youden plot of the effect estimatess for the Eddy current data.

For the example at hand, the Youden plot clearly shows a cluster of points near the grand average (2.65875) with two displaced points above (factor 1) and below (factor 2). Based on the Youden plot, we conclude to keep two factors: X1 (3.10250) and X2 (-.86750).

This criterion is defined as
Residual Standard Deviation > Cutoff
That is, declare a factor as "important" if the cumulative model that includes the factor (and all larger factors) has a residual standard deviation smaller than an a priori engineering-specified minimum residual standard deviation.

This criterion is different from the others in that it is model focused. In practice, this criterion states that starting with the largest effect, we cumulatively keep adding terms to the model and monitor how the residual standard deviation for each progressively more complicated model becomes smaller. At some point, the cumulative model will become complicated enough and comprehensive enough that the resulting residual standard deviation will drop below the pre-specified engineering cutoff for the residual standard deviation. At that point, we stop adding terms and declare all of the model-included terms to be "important" and everything not in the model to be "unimportant".

This approach implies that the engineer has considered what a minimum residual standard deviation should be. In effect, this relates to what the engineer can tolerate for the magnitude of the typical residual (= difference between the raw data and the predicted value from the model).

In other words, how good does the engineer want the prediction equation to be. Unfortunately, this engineering specification has not always been formulated and so this criterion can become moot.

In the absence of a prior specified cutoff, a good rough rule for the minimum engineering residual standard deviation is to keep adding terms until the residual standard deviation just dips below, say, 5% of the current production average. For the Eddy current data, let's say that the average detector has a sensitivity of 2.5 ohms. Then this would suggest that we would keep adding terms to the model until the residual standard deviation falls below 5% of $2.5 \mathrm{ohms}=0.125 \mathrm{ohms}$.

Based on the minimum residual standard deviation criteria, and by scanning the far right column of the Yates table, we would conclude to keep the following terms:

1. X1 (with a cumulative residual standard deviation $=0.57272$)
2. X2 (with a cumulative residual standard deviation $=0.30429$)
3. X2*X3 (with a cumulative residual standard deviation $=0.26737$)
4. X1*X3 (with a cumulative residual standard deviation $=0.23341$)
5. X3 (with a cumulative residual standard deviation $=0.19121$)
6. $\mathrm{X} 1 * \mathrm{X} 2 * \mathrm{X} 3$ (with a cumulative residual standard deviation $=0.18031$)
7. $\mathrm{X} 1 * \mathrm{X} 2$ (with a cumulative residual standard deviation $=0.00000$)

Residual This criterion is defined as
Note that we must include all terms in order to drive the residual standard deviation below 0.125 . Again, the 5\% rule is a rough-and-ready rule that has no basis in engineering or statistics, but is simply a "numerics". Ideally, the engineer has a better cutoff for the residual standard deviation that is based on how well he/she wants the equation to peform in practice. If such a number were available, then for this criterion and data set we would select something less than the entire collection of terms.

Residual Standard Deviation $>\sigma$
where σ is the standard deviation of an observation under replicated conditions.
That is, declare a term as "important" until the cumulative model that includes the term has a residual standard deviation smaller than σ. In essence, we are allowing that we cannot demand a model fit any better than what we would obtain if we had replicated data; that is, we cannot demand that the residual standard deviation from any fitted model be any smaller than the (theoretical or actual) replication standard deviation. We can drive the fitted standard deviation down (by adding terms) until it achieves a value close to σ, but to attempt to drive it down further means that we are, in effect, trying to fit noise.

In practice, this criterion may be difficult to apply because

1. the engineer may not know σ;
2. the experiment might not have replication, and so a model-free estimate of σ is not obtainable.

For the current case study:

1. the engineer did not know σ;
2. the design (a 2^{3} full factorial) did not have replication. The most common way of having replication in such designs is to have replicated center points at the center of the cube $((\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3)=(0,0,0))$.

Thus for this current case, this criteria could not be used to yield a subset of "important" factors.

Conclusions In summary, the seven criteria for specifying "important" factors yielded the following for the Eddy current data:

1. Effects, Engineering Significance: X1, X2
2. Effects, Numerically Significant: X1, X2
3. Effects, Statistically Significant: X1, X2, X2*X3
4. Effects, Probability Plots: X1, X2
5. Averages, Youden Plot: X1, X2
6. Residual SD, Engineering Significance: all 7 terms
7. Residual SD, Statistical Significance: not applicable

Such conflicting results are common. Arguably, the three most important criteria (listed in order of most important) are:
4. Effects, Probability Plots:

X1, X2

1. Effects, Engineering Significance: X1, X2
2. Residual SD, Engineering Significance: all 7 terms

Scanning all of the above, we thus declare the following consensus for the Eddy current data:

1. Important Factors: X 1 and X 2
2. Parsimonious Prediction Equation:

$$
\hat{Y}=2.65875+0.5(3.1025 X 1-0.8675 \times 2)
$$

(with a residual standard deviation of .30429 ohms)
Note that this is the initial model selection. We still need to perform model validation with a residual analysis.
$\longdiv { \text { TOOLS \& AIDS } } \quad$ SEARCH
BACK $\overline{\text { NEXT }}$

1. Exploratory Data Analysis
1.3. EDA Techniques

1.3.6. Probability Distributions

Probability Distributions

Table of
Contents

Probability distributions are a fundamental concept in statistics. They are used both on a theoretical level and a practical level.

Some practical uses of probability distributions are:

- To calculate confidence intervals for parameters and to calculate critical regions for hypothesis tests.
- For univariate data, it is often useful to determine a reasonable distributional model for the data.
- Statistical intervals and hypothesis tests are often based on specific distributional assumptions. Before computing an interval or test based on a distributional assumption, we need to verify that the assumption is justified for the given data set. In this case, the distribution does not need to be the best-fitting distribution for the data, but an adequate enough model so that the statistical technique yields valid conclusions.
- Simulation studies with random numbers generated from using a specific probability distribution are often needed.

1. What is a probability distribution?
2. Related probability functions
3. Families of distributions
4. Location and scale parameters
5. Estimating the parameters of a distribution
6. A gallery of common distributions
7. Tables for probability distributions

HOME
TOOLS \& AIDS
SEARCH
BACK NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions

1.3.6.1. What is a Probability Distribution

Discrete Distributions

The mathematical definition of a discrete probability function, $\mathrm{p}(\mathrm{x})$, is a function that satisfies the following properties.

1. The probability that x can take a specific value is $\mathrm{p}(\mathrm{x})$. That is

$$
P[X=x]=p(x)=p_{x}
$$

2. $p(x)$ is non-negative for all real x.
3. The sum of $p(x)$ over all possible values of x is 1 , that is

$$
\sum_{j} p_{j}=1
$$

where \boldsymbol{j} represents all possible values that x can have and $\boldsymbol{p}_{\boldsymbol{j}}$ is the probability at x_{j}.

One consequence of properties 2 and 3 is that $0<=p(x)<=1$. What does this actually mean? A discrete probability function is a function that can take a discrete number of values (not necessarily finite). This is most often the non-negative integers or some subset of the non-negative integers. There is no mathematical restriction that discrete probability functions only be defined at integers, but in practice this is usually what makes sense. For example, if you toss a coin 6 times, you can get 2 heads or 3 heads but not $21 / 2$ heads. Each of the discrete values has a certain probability of occurrence that is between zero and one. That is, a discrete function that allows negative values or values greater than one is not a probability function. The condition that the probabilities sum to one means that at least one of the values has to occur.

Continuous Distributions

Probability Mass
Functions
Versus
Probability
Density
Functions

NIST $\overline{\text { SEMATECH }}$

The mathematical definition of a continuous probability function, $\mathrm{f}(\mathrm{x})$, is a function that satisfies the following properties.

1. The probability that x is between two points a and b is

$$
p[a \leq x \leq b]=\int_{a}^{b} f(x) d x
$$

2. It is non-negative for all real x .
3. The integral of the probability function is one, that is

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

What does this actually mean? Since continuous probability functions are defined for an infinite number of points over a continuous interval, the probability at a single point is always zero. Probabilities are measured over intervals, not single points. That is, the area under the curve between two distinct points defines the probability for that interval. This means that the height of the probability function can in fact be greater than one. The property that the integral must equal one is equivalent to the property for discrete distributions that the sum of all the probabilities must equal one.

Discrete probability functions are referred to as probability mass functions and continuous probability functions are referred to as probability density functions. The term probability functions covers both discrete and continuous distributions. When we are referring to probability functions in generic terms, we may use the term probability density functions to mean both discrete and continuous probability functions.

HOME TOOLS \& AIDS SEARCH

BACK NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions

1.3.6.2. Related Distributions

Probability distributions are typically defined in terms of the probability density function. However, there are a number of probability functions used in applications.

Probability For a continuous function, the probability density function (pdf) is the

Density
Function probability that the variate has the value x. Since for continuous distributions the probability at a single point is zero, this is often expressed in terms of an integral between two points.

$$
\int_{a}^{b} f(x) d x=\operatorname{Pr}[a \leq X \leq b]
$$

For a discrete distribution, the pdf is the probability that the variate takes the value x .

$$
f(x)=\operatorname{Pr}[X=x]
$$

The following is the plot of the normal probability density function.

Cumulative Distribution Function

The cumulative distribution function (cdf) is the probability that the variable takes a value less than or equal to x . That is

$$
F(x)=\operatorname{Pr}[X \leq x]=\alpha
$$

For a continuous distribution, this can be expressed mathematically as

$$
F(x)=\int_{-\infty}^{x} f(\mu) d \mu
$$

For a discrete distribution, the cdf can be expressed as

$$
F(x)=\sum_{i=0}^{x} f(i)
$$

The following is the plot of the normal cumulative distribution function.

The horizontal axis is the allowable domain for the given probability function. Since the vertical axis is a probability, it must fall between zero and one. It increases from zero to one as we go from left to right on the horizontal axis.

Percent The percent point function (ppf) is the inverse of the cumulative

Point
Function distribution function. For this reason, the percent point function is also commonly referred to as the inverse distribution function. That is, for a distribution function we calculate the probability that the variable is less than or equal to x for a given x . For the percent point function, we start with the probability and compute the corresponding x for the cumulative distribution. Mathematically, this can be expressed as

$$
\operatorname{Pr}[X \leq G(\alpha)]=\alpha
$$

or alternatively

$$
x=G(\alpha)=G(F(x))
$$

The following is the plot of the normal percent point function.

Since the horizontal axis is a probability, it goes from zero to one. The vertical axis goes from the smallest to the largest value of the cumulative distribution function.

Hazard
Function

The hazard function is the ratio of the probability density function to the survival function, $S(\mathrm{x})$.

$$
h(x)=\frac{f(x)}{S(x)}=\frac{f(x)}{1-F(x)}
$$

The following is the plot of the normal distribution hazard function.

Hazard plots are most commonly used in reliability applications. Note that Johnson, Kotz, and Balakrishnan refer to this as the conditional failure density function rather than the hazard function.

Cumulative The cumulative hazard function is the integral of the hazard function. It Hazard Function can be interpreted as the probability of failure at time x given survival until time x .
$H(x)=\int_{-\infty}^{x} h(\mu) d \mu$
This can alternatively be expressed as
$H(x)=-\ln (1-F(x))$
The following is the plot of the normal cumulative hazard function.

Cumulative hazard plots are most commonly used in reliability applications. Note that Johnson, Kotz, and Balakrishnan refer to this as the hazard function rather than the cumulative hazard function.

Survival
Function

Survival functions are most often used in reliability and related fields. The survival function is the probability that the variate takes a value greater than x .
$S(x)=\operatorname{Pr}[X>x]=1-F(x)$
The following is the plot of the normal distribution survival function.

For a survival function, the y value on the graph starts at 1 and monotonically decreases to zero. The survival function should be compared to the cumulative distribution function.

Inverse
Survival
Function

Just as the percent point function is the inverse of the cumulative distribution function, the survival function also has an inverse function. The inverse survival function can be defined in terms of the percent point function.

$$
Z(\alpha)=G(1-\alpha)
$$

The following is the plot of the normal distribution inverse survival function.

As with the percent point function, the horizontal axis is a probability. Therefore the horizontal axis goes from 0 to 1 regardless of the particular distribution. The appearance is similar to the percent point function. However, instead of going from the smallest to the largest value on the vertical axis, it goes from the largest to the smallest value.

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions

1.3.6.3. Families of Distributions

Shape
Parameters

Many probability distributions are not a single distribution, but are in fact a family of distributions. This is due to the distribution having one or more shape parameters.

Shape parameters allow a distribution to take on a variety of shapes, depending on the value of the shape parameter. These distributions are particularly useful in modeling applications since they are flexible enough to model a variety of data sets.

Example:
Weibull
Distribution
The Weibull distribution is an example of a distribution that has a shape parameter. The following graph plots the Weibull pdf with the following values for the shape parameter: $0.5,1.0,2.0$, and 5.0.

The shapes above include an exponential distribution, a right-skewed distribution, and a relatively symmetric distribution.

The Weibull distribution has a relatively simple distributional form. However, the shape parameter allows the Weibull to assume a wide variety of shapes. This combination of simplicity and flexibility in the shape of the Weibull distribution has made it an effective distributional model in reliability applications. This ability to model a wide variety of distributional shapes using a relatively simple distributional form is possible with many other distributional families as well.

PPCC Plots The PPCC plot is an effective graphical tool for selecting the member of a distributional family with a single shape parameter that best fits a given set of data.

HOME
TOOLS \& AIDS
SEARCH
BACK NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions

1.3.6.4. Location and Scale Parameters

Normal PDF

A probability distribution is characterized by location and scale parameters. Location and scale parameters are typically used in modeling applications.

For example, the following graph is the probability density function for the standard normal distribution, which has the location parameter equal to zero and scale parameter equal to one.

Location The next plot shows the probability density function for a normal Parameter distribution with a location parameter of 10 and a scale parameter of 1.

The effect of the location parameter is to translate the graph, relative to the standard normal distribution, 10 units to the right on the horizontal axis. A location parameter of -10 would have shifted the graph 10 units to the left on the horizontal axis.

That is, a location parameter simply shifts the graph left or right on the horizontal axis.

Scale
Parameter

The next plot has a scale parameter of 3 (and a location parameter of zero). The effect of the scale parameter is to stretch out the graph. The maximum y value is approximately 0.13 as opposed 0.4 in the previous graphs. The y value, i.e., the vertical axis value, approaches zero at about (+/-) 9 as opposed to (+/-) 3 with the first graph.

In contrast, the next graph has a scale parameter of $1 / 3(=0.333)$. The effect of this scale parameter is to squeeze the pdf. That is, the maximum y value is approximately 1.2 as opposed to 0.4 and the y value is near zero at (+/-) 1 as opposed to (+/-) 3 .

The effect of a scale parameter greater than one is to stretch the pdf. The greater the magnitude, the greater the stretching. The effect of a scale parameter less than one is to compress the pdf. The compressing approaches a spike as the scale parameter goes to zero. A scale
parameter of 1 leaves the pdf unchanged (if the scale parameter is 1 to begin with) and non-positive scale parameters are not allowed.

Location The following graph shows the effect of both a location and a scale and Scale Together

Standard
Form
parameter. The plot has been shifted right 10 units and stretched by a factor of 3 .

The standard form of any distribution is the form that has location parameter zero and scale parameter one.

It is common in statistical software packages to only compute the standard form of the distribution. There are formulas for converting from the standard form to the form with other location and scale parameters. These formulas are independent of the particular probability distribution.

Formulas for Location and Scale Based on	The following are the formulas for computing various probability functions based on the standard form of the distribution. The paran a refers to the location parameter and the parameter b refers to the parameter. Shape parameters are not included.	
the Standard	Cumulative Distribution Function	$\mathrm{F}(x ; a, b)=\mathrm{F}((x-a) / b ; 0,1)$
	Probability Density Function	$\mathrm{f}(x ; a, b)=(1 / b) \mathrm{f}((x-a) / b ; 0,1)$
	Percent Point Function	$\mathrm{G}(\alpha ; a, b)=a+b \mathrm{G}(\alpha ; 0,1)$
	Hazard Function	$\mathrm{h}(x ; a, b)=(1 / b) \mathrm{h}((x-a) / b ; 0,1)$
	Cumulative Hazard Function	$\mathrm{H}(x ; a, b)=\mathrm{H}((x-a) / b ; 0,1)$
	Survival Function	$\mathrm{S}(x ; a, b)=\mathrm{S}((x-a) / b ; 0,1)$
	Inverse Survival Function	$\mathrm{Z}(\alpha ; a, b)=a+b \mathrm{Z}(\alpha ; 0,1)$
	Random Numbers	$\mathrm{Y}(a, b)=a+b \mathrm{Y}(0,1)$

Relationship For the normal distribution, the location and scale parameters to Mean and Standard Deviation correspond to the mean and standard deviation, respectively. However, this is not necessarily true for other distributions. In fact, it is not true for most distributions.

NIST

HOME TOOLS \& AIDS SEARCH

BACK NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions

1.3.6.5. Estimating the Parameters of a Distribution

Model a	One common application of probability distributions is modeling
univariate	univariate data with a specific probability distribution. This involves the
data set with	following two steps:

1. Determination of the "best-fitting" distribution.
2. Estimation of the parameters (shape, location, and scale parameters) for that distribution.

Various
Methods
There are various methods, both numerical and graphical, for estimating the parameters of a probability distribution.

1. Method of moments
2. Maximum likelihood
3. Least squares
4. PPCC and probability plots

NIST

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.5. Estimating the Parameters of a Distribution

1.3.6.5.1. Method of Moments

Method of The method of moments equates sample moments to parameter Moments estimates. When moment methods are available, they have the advantage of simplicity. The disadvantage is that they are often not available and they do not have the desirable optimality properties of maximum likelihood and least squares estimators.

The primary use of moment estimates is as starting values for the more precise maximum likelihood and least squares estimates.

Software Most general purpose statistical software does not include explicit method of moments parameter estimation commands. However, when utilized, the method of moment formulas tend to be straightforward and can be easily implemented in most statistical software programs.

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.5. Estimating the Parameters of a Distribution

1.3.6.5.2. Maximum Likelihood

Maximum Likelihood

Advantages The advantages of this method are:

- Maximum likelihood provides a consistent approach to parameter estimation problems. This means that maximum likelihood estimates can be developed for a large variety of estimation situations. For example, they can be applied in reliability analysis to censored data under various censoring models.
- Maximum likelihood methods have desirable mathematical and optimality properties. Specifically,

1. They become minimum variance unbiased estimators as the sample size increases. By unbiased, we mean that if we take (a very large number of) random samples with replacement from a population, the average value of the parameter estimates will be theoretically exactly equal to the population value. By minimum variance, we mean that the estimator has the smallest variance, and thus the narrowest confidence interval, of all estimators of that type.
2. They have approximate normal distributions and approximate sample variances that can be used to
generate confidence bounds and hypothesis tests for the parameters.

- Several popular statistical software packages provide excellent algorithms for maximum likelihood estimates for many of the commonly used distributions. This helps mitigate the computational complexity of maximum likelihood estimation.

Disadvantages The disadvantages of this method are:

- The likelihood equations need to be specifically worked out for a given distribution and estimation problem. The mathematics is often non-trivial, particularly if confidence intervals for the parameters are desired.
- The numerical estimation is usually non-trivial. Except for a few cases where the maximum likelihood formulas are in fact simple, it is generally best to rely on high quality statistical software to obtain maximum likelihood estimates. Fortunately, high quality maximum likelihood software is becoming increasingly common.
- Maximum likelihood estimates can be heavily biased for small samples. The optimality properties may not apply for small samples.
- Maximum likelihood can be sensitive to the choice of starting values.

Software Most general purpose statistical software programs support maximum likelihood estimation (MLE) in some form. MLE estimation can be supported in two ways.

1. A software program may provide a generic function minimization (or equivalently, maximization) capability. This is also referred to as function optimization. Maximum likelihood estimation is essentially a function optimization problem.

This type of capability is particularly common in mathematical software programs.
2. A software program may provide MLE computations for a specific problem. For example, it may generate ML estimates for the parameters of a Weibull distribution.

Statistical software programs will often provide ML estimates for many specific problems even when they do not support general function optimization.

The advantage of function minimization software is that it can be applied to many different MLE problems. The drawback is that you have to specify the maximum likelihood equations to the software. As
the functions can be non-trivial, there is potential for error in entering the equations.

The advantage of the specific MLE procedures is that greater efficiency and better numerical stability can often be obtained by taking advantage of the properties of the specific estimation problem. The specific methods often return explicit confidence intervals. In addition, you do not have to know or specify the likelihood equations to the software. The disadvantage is that each MLE problem must be specifically coded.

Dataplot supports MLE for a limited number of distributions.

NIST SEMATECH

HOME TOOLS \& AIDS SEARCH BACK NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.5. Estimating the Parameters of a Distribution

1.3.6.5.3. Least Squares

Least Squares \quad Non-linear least squares provides an alternative to maximum likelihood.

Advantages The advantages of this method are:

- Non-linear least squares software may be available in many statistical software packages that do not support maximum likelihood estimates.
- It can be applied more generally than maximum likelihood. That is, if your software provides non-linear fitting and it has the ability to specify the probability function you are interested in, then you can generate least squares estimates for that distribution. This will allow you to obtain reasonable estimates for distributions even if the software does not provide maximum likelihood estimates.

Disadvantages The disadvantages of this method are:

- It is not readily applicable to censored data.
- It is generally considered to have less desirable optimality properties than maximum likelihood.
- It can be quite sensitive to the choice of starting values.

Software \quad Non-linear least squares fitting is available in many general purpose statistical software programs. The macro developed for Dataplot can be adapted to many software programs that provide least squares estimation.

NIST

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.5. Estimating the Parameters of a Distribution

1.3.6.5.4. PPCC and Probability Plots

PPCC and Probability Plots

Advantages The advantages of this method are:

- It is based on two well-understood concepts.

1. The linearity (i.e., straightness) of the probability plot is a good measure of the adequacy of the distributional fit.
2. The correlation coefficient between the points on the probability plot is a good measure of the linearity of the probability plot.

- It is an easy technique to implement for a wide variety of distributions with a single shape parameter. The basic requirement is to be able to compute the percent point function, which is needed in the computation of both the probability plot and the PPCC plot.
- The PPCC plot provides insight into the sensitivity of the shape parameter. That is, if the PPCC plot is relatively flat in the neighborhood of the optimal value of the shape parameter, this is a strong indication that the fitted model will not be sensitive to small deviations, or even large deviations in some cases, in the value of the shape parameter.
- The maximum correlation value provides a method for comparing across distributions as well as identifying the best value of the shape parameter for a given distribution. For example, we could use the PPCC and probability fits for the Weibull, lognormal, and possibly several other distributions. Comparing the maximum correlation coefficient achieved for each distribution can help in selecting which is the best distribution to use.

SEMATECH

Disadvantages

Case Study The airplane glass failure time case study demonstrates the use of the PPCC and probability plots in finding the best distributional model and the parameter estimation of the distributional model.

Other
Graphical Methods

NIST
The disadvantages of this method are:

- It is limited to distributions with a single shape parameter.
- PPCC plots are not widely available in statistical software packages other than Dataplot (Dataplot provides PPCC plots for 40+ distributions). Probability plots are generally available. However, many statistical software packages only provide them for a limited number of distributions.
- Significance levels for the correlation coefficient (i.e., if the maximum correlation value is above a given value, then the distribution provides an adequate fit for the data with a given confidence level) have only been worked out for a limited number of distributions.

For reliability applications, the hazard plot and the Weibull plot are alternative graphical methods that are commonly used to estimate parameters.

HOME
TOOLS \& AIDS
SEARCH
BACK NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions

1.3.6.6. Gallery of Distributions

Gallery of
Common
Distributions

Detailed information on a few of the most common distributions is available below. There are a large number of distributions used in statistical applications. It is beyond the scope of this Handbook to discuss more than a few of these. Two excellent sources for additional detailed information on a large array of distributions are Johnson, Kotz, and Balakrishnan and Evans, Hastings, and Peacock. Equations for the probability functions are given for the standard form of the distribution. Formulas exist for defining the functions with location and scale parameters in terms of the standard form of the distribution.

The sections on parameter estimation are restricted to the method of moments and maximum likelihood. This is because the least squares and PPCC and probability plot estimation procedures are generic. The maximum likelihood equations are not listed if they involve solving simultaneous equations. This is because these methods require sophisticated computer software to solve. Except where the maximum likelihood estimates are trivial, you should depend on a statistical software program to compute them. References are given for those who are interested.

Be aware that different sources may give formulas that are different from those shown here. In some cases, these are simply mathematically equivalent formulations. In other cases, a different parameterization may be used.

Continuous

Distributions

Normal Distribution

Uniform Distribution

Cauchy Distribution

t Distribution

Exponential Distribution

Fatigue Life Distribution

$\frac{\text { Power Normal }}{\underline{\text { Distribution }}}$

Extreme Value Type I Distribution

F Distribution

Weibull Distribution

Gamma Distribution

$\underline{\text { Chi-Square }}$
$\underline{\text { Distribution }}$

Lognormal Distribution

Double Exponential Distribution

$\frac{\text { Tukey-Lambda }}{\underline{\text { Distribution }}}$

Discrete Distributions

NIST
 SEMATECH

HOME
TOOLS \& AIDS
SEARCH
BACK NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.1. Normal Distribution

Probability The general formula for the probability density function of the normal Density distribution is
Function

$$
f(x)=\frac{e^{-(x-\mu)^{2} f\left(2 \sigma^{2}\right)}}{\sigma \sqrt{2 \pi}}
$$

where μ is the location parameter and σ is the scale parameter. The case where $\mu=0$ and $\sigma=1$ is called the standard normal distribution. The equation for the standard normal distribution is
$f(x)=\frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}}$
Since the general form of probability functions can be expressed in terms of the standard distribution, all subsequent formulas in this section are given for the standard form of the function.

The following is the plot of the standard normal probability density function.

Cumulative The formula for the cumulative distribution function of the normal Distribution Function distribution does not exist in a simple closed formula. It is computed numerically.

The following is the plot of the normal cumulative distribution function.

Percent The formula for the percent point function of the normal distribution

Point
Function

Hazard
Function does not exist in a simple closed formula. It is computed numerically. The following is the plot of the normal percent point function.

The formula for the hazard function of the normal distribution is
$h(x)=\frac{\phi(x)}{\Phi(-x)}$
where Φ is the cumulative distribution function of the standard normal distribution and $\phi_{\text {is the probability density function of the standard }}$ normal distribution.

The following is the plot of the normal hazard function.

Cumulative The normal cumulative hazard function can be computed from the Hazard
Function normal cumulative distribution function.

The following is the plot of the normal cumulative hazard function.

Survival Function

Inverse
Survival Function

The normal survival function can be computed from the normal cumulative distribution function.

The following is the plot of the normal survival function.

The normal inverse survival function can be computed from the normal percent point function.

The following is the plot of the normal inverse survival function.

Common	Mean	The location parameter $/ L$.
Statistics	Median	The location parameter $/ L$.
	Mode	The location parameter $/ L$.
	Range	Infinity in both directions.
	Standard Deviation Coefficient of	The scale parameter σ.
	σ / μ	
	Variation	
	Skewness	0
Kurtosis	3	

Parameter Estimation

The location and scale parameters of the normal distribution can be estimated with the sample mean and sample standard deviation, respectively.

Comments For both theoretical and practical reasons, the normal distribution is probably the most important distribution in statistics. For example,

- Many classical statistical tests are based on the assumption that the data follow a normal distribution. This assumption should be tested before applying these tests.
- In modeling applications, such as linear and non-linear regression, the error term is often assumed to follow a normal distribution with fixed location and scale.
- The normal distribution is used to find significance levels in many hypothesis tests and confidence intervals.

Theroretical Justification

- Central

Limit
Theorem

Software
Most general purpose statistical software programs, including Dataplot, support at least some of the probability functions for the normal distribution.
$\frac{\text { NIST }}{\text { SEMATECH }}$
HOME
TOOLS \& AIDS
SEARCH
BACK NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.2. Uniform Distribution

Probability The general formula for the probability density function of the uniform
Density
Function distribution is
$f(x)=\frac{1}{B-A} \quad$ for $A \leq x \leq B$
where A is the location parameter and $(\mathrm{B}-\mathrm{A})$ is the scale parameter. The case where $\mathrm{A}=0$ and $\mathrm{B}=1$ is called the standard uniform distribution. The equation for the standard uniform distribution is
$f(x)=1 \quad$ for $0 \leq x \leq 1$
Since the general form of probability functions can be expressed in terms of the standard distribution, all subsequent formulas in this section are given for the standard form of the function.

The following is the plot of the uniform probability density function.

Cumulative The formula for the cumulative distribution function of the uniform Distribution distribution is

Function

$F(x)=x \quad$ for $0 \leq x \leq 1$
The following is the plot of the uniform cumulative distribution function.

Percent The formula for the percent point function of the uniform distribution is
Point
Function

$$
G(p)=p \quad \text { for } 0 \leq p \leq 1
$$

The following is the plot of the uniform percent point function.

Hazard
Function
The formula for the hazard function of the uniform distribution is

$$
h(x)=\frac{1}{1-x} \quad \text { for } 0 \leq x<1
$$

The following is the plot of the uniform hazard function.

Cumulative The formula for the cumulative hazard function of the uniform distribution is Hazard
Function

$$
H(x)=-\ln (1-x) \quad \text { for } 0 \leq x<1
$$

The following is the plot of the uniform cumulative hazard function.

Survival Function

Inverse Survival Function

The uniform survival function can be computed from the uniform cumulative distribution function.

The following is the plot of the uniform survival function.

The uniform inverse survival function can be computed from the uniform percent point function.

The following is the plot of the uniform inverse survival function.

Common	Mean	$(\mathrm{A}+\mathrm{B}) / 2$
Statistics	Median	$(\mathrm{A}+\mathrm{B}) / 2$
	Range	$\mathrm{B}-\mathrm{A}$
	Standard Deviation	$\sqrt{\frac{(B-A)^{2}}{12}}$
		$\sqrt{\frac{(B-A)}{}}$
	Coefficient of	$\frac{\sqrt{3}(B+A)}{}$
	Variation	0
		$9 / 5$

Parameter The method of moments estimators for A and B are
Estimation

$$
\begin{aligned}
& A=\bar{x}-\sqrt{3} s \\
& B=\bar{x}+\sqrt{3} s
\end{aligned}
$$

The maximum likelihood estimators for A and B are

$$
\begin{aligned}
& A=\text { midrange }\left(Y_{1}, Y_{2}, \ldots, Y_{+}\right)-0.0\left[\operatorname{range}\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right]\right. \\
& B=\text { midrange }\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)+0.0\left[\operatorname{range}\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right]\right.
\end{aligned}
$$

Comments

NIST $\overline{\text { SEMATECH }}$

Software Most general purpose statistical software programs, including Dataplot, support at least some of the probability functions for the uniform distribution.
The uniform distribution defines equal probability over a given range for a continuous distribution. For this reason, it is important as a reference distribution.

One of the most important applications of the uniform distribution is in the generation of random numbers. That is, almost all random number generators generate random numbers on the $(0,1)$ interval. For other distributions, some transformation is applied to the uniform random numbers.

HOME TOOLS \& AIDS SEARCH BACK NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.3. Cauchy Distribution

Probability The general formula for the probability density function of the Cauchy
Density distribution is
Function

$$
f(x)=\frac{1}{s \pi\left(1+((x-t) / s)^{2}\right)}
$$

where t is the location parameter and s is the scale parameter. The case where $t=0$ and $s=1$ is called the standard Cauchy distribution. The equation for the standard Cauchy distribution reduces to
$f(x)=\frac{1}{\pi\left(1+x^{2}\right)}$
Since the general form of probability functions can be expressed in terms of the standard distribution, all subsequent formulas in this section are given for the standard form of the function.

The following is the plot of the standard Cauchy probability density function.

Cumulative The formula for the cumulative distribution function for the Cauchy Distribution distribution is

Function

$$
F(x)=0.5+\frac{\arctan (x)}{\pi}
$$

The following is the plot of the Cauchy cumulative distribution function.

Percent The formula for the percent point function of the Cauchy distribution is

Point
Function

$$
G(p)=-\cot (\pi p)
$$

The following is the plot of the Cauchy percent point function.

Hazard
Function

The Cauchy hazard function can be computed from the Cauchy probability density and cumulative distribution functions.

The following is the plot of the Cauchy hazard function.

Cumulative The Cauchy cumulative hazard function can be computed from the Hazard
Function Cauchy cumulative distribution function.

The following is the plot of the Cauchy cumulative hazard function.

Survival
Function

Inverse
Survival Function

The Cauchy survival function can be computed from the Cauchy cumulative distribution function.

The following is the plot of the Cauchy survival function.

The Cauchy inverse survival function can be computed from the Cauchy percent point function.

The following is the plot of the Cauchy inverse survival function.

Common	Mean	The mean is undefined.
Statistics	Median	The location parameter t.
	Mode	The location parameter t.
	Range	Infinity in both directions.
Standard Deviation	The standard deviation is undefined.	
Coefficient of	The coefficient of variation is undefined.	
Variation		
Skewness	The skewness is undefined.	
Kurtosis	The kurtosis is undefined.	

Parameter Estimation

The likelihood functions for the Cauchy maximum likelihood estimates are given in chapter 16 of Johnson, Kotz, and Balakrishnan. These equations typically must be solved numerically on a computer.

Comments The Cauchy distribution is important as an example of a pathological case. Cauchy distributions look similar to a normal distribution. However, they have much heavier tails. When studying hypothesis tests that assume normality, seeing how the tests perform on data from a Cauchy distribution is a good indicator of how sensitive the tests are to heavy-tail departures from normality. Likewise, it is a good check for robust techniques that are designed to work well under a wide variety of distributional assumptions.

The mean and standard deviation of the Cauchy distribution are undefined. The practical meaning of this is that collecting 1,000 data points gives no more accurate an estimate of the mean and standard deviation than does a single point.

Software Many general purpose statistical software programs, including Dataplot, support at least some of the probability functions for the Cauchy distribution.

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.4.t Distribution

Probability The formula for the probability density function of the t distribution is Density Function

$$
f(x)=\frac{\left(1+\frac{x^{2}}{\nu}\right)^{\frac{-(\nu+1)}{2}}}{B(0 . \overline{0}, 0 . \bar{v}) \sqrt{\nu}}
$$

where \boldsymbol{B} is the beta function and \boldsymbol{v} is a positive integer shape parameter. The formula for the beta function is
$B(\alpha, \beta)=\int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1} d t$
In a testing context, the t distribution is treated as a "standardized distribution" (i.e., no location or scale parameters). However, in a distributional modeling context (as with other probability distributions), the t distribution itself can be transformed with a location parameter, $/ L$, and a scale parameter, σ.

The following is the plot of the t probability density function for 4 different values of the shape parameter.

These plots all have a similar shape. The difference is in the heaviness of the tails. In fact, the t distribution with v equal to 1 is a Cauchy distribution. The t distribution approaches a normal distribution as l becomes large. The approximation is quite good for values of $\ell>30$.

Cumulative \quad The formula for the cumulative distribution function of the t distribution

Distribution Function
is complicated and is not included here. It is given in the Evans, Hastings, and Peacock book.

The following are the plots of the t cumulative distribution function with the same values of v as the pdf plots above.

Percent
Point
Function

The formula for the percent point function of the t distribution does not exist in a simple closed form. It is computed numerically.

The following are the plots of the t percent point function with the same values of ν as the pdf plots above.

Other
Probability
Functions

Common
Statistics

Comments

Software

NIST SEMATECH

Most general purpose statistical software programs, including Dataplot, support at least some of the probability functions for the t distribution.
Since the t distribution is typically used to develop hypothesis tests and confidence intervals and rarely for modeling applications, we omit the formulas and plots for the hazard, cumulative hazard, survival, and inverse survival probability functions.

Mean	0 (It is undefined for v equal to 1.)
Median	0
Mode	0
Range	Infinity in both directions.
Standard Deviation	$\sqrt{\frac{v}{(v-2)}}$

It is undefined for v equal to 1 or 2 .
Coefficient of Undefined
Variation
Skewness
0 . It is undefined for v less than or equal to 3 . However, the t distribution is symmetric in all cases.
Kurtosis

$$
\frac{3(v-2)}{(v-4)}
$$

It is undefined for $\boldsymbol{\nu}$ less than or equal to 4 .

Since the t distribution is typically used to develop hypothesis tests and confidence intervals and rarely for modeling applications, we omit any discussion of parameter estimation.

The t distribution is used in many cases for the critical regions for hypothesis tests and in determining confidence intervals. The most common example is testing if data are consistent with the assumed process mean.

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.5. F Distribution

Probability The F distribution is the ratio of two chi-square distributions with

Density
Function
degrees of freedom ν_{1} and ν_{2}, respectively, where each chi-square has first been divided by its degrees of freedom. The formula for the probability density function of the F distribution is

$$
f(x)=\frac{\Gamma\left(\frac{\nu_{2}+t_{2}}{2}\right)\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\frac{v_{1}}{3}} x^{\frac{\nu_{1}}{2}-1}}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)\left(1+\frac{\nu_{1} x}{\nu_{2}}\right)^{\frac{v_{1}+v_{2}}{2}}}
$$

where ${ }^{\nu} 1$ and ${ }^{\nu / 2}$ are the shape parameters and Γ is the gamma function. The formula for the gamma function is

$$
\Gamma(a)=\int_{0}^{\infty} t^{\Delta-1} e^{-t} d t
$$

In a testing context, the F distribution is treated as a "standardized distribution" (i.e., no location or scale parameters). However, in a distributional modeling context (as with other probability distributions), the F distribution itself can be transformed with a location parameter, $/ \mu$, and a scale parameter, σ.

The following is the plot of the F probability density function for 4 different values of the shape parameters.

Cumulative Distribution Function

The formula for the Cumulative distribution function of the F distribution is

$$
F(x)=1-I_{k}\left(\frac{\nu_{2}}{2}, \frac{\nu_{1}}{2}\right)
$$

where $\mathrm{k}=\nu_{2} /\left(\nu_{2}+\nu_{1} * x\right)$ and I_{k} is the incomplete beta function. The formula for the incomplete beta function is

$$
I_{k}(x, \alpha, \beta)=\frac{\int_{0}^{x} t^{\alpha-1}(1-t)^{\beta-1} d t}{B(\alpha, \beta)}
$$

where \boldsymbol{B} is the beta function

$$
B(\alpha, \beta)=\int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1} d t
$$

The following is the plot of the F cumulative distribution function with the same values of ν_{1} and $l^{l / 2}$ as the pdf plots above.

Percent

Point

Function

The formula for the percent point function of the F distribution does not exist in a simple closed form. It is computed numerically.

The following is the plot of the F percent point function with the same values of ν_{1} and ${ }^{\nu / 2}$ as the pdf plots above.

Other
Probability
Functions

Common
Statistics

Parameter Estimation

Comments

Software

Since the F distribution is typically used to develop hypothesis tests and confidence intervals and rarely for modeling applications, we omit the formulas and plots for the hazard, cumulative hazard, survival, and inverse survival probability functions.

The formulas below are for the case where the location parameter is zero and the scale parameter is one.

Mean	$\frac{v_{2}}{\left(v_{2}-2\right)} \quad v_{2}>2$
Mode	$\frac{\nu_{2}\left(v_{1}-2\right)}{v_{1}\left(v_{2}+2\right)} \quad \nu_{1}>2$
Range	
Standard Deviation	0 to positive infinity
Coefficient of Variation	$\sqrt{\frac{2 v_{2}^{2}\left(v_{1}+v_{2}-2\right)}{v_{1}\left(v_{2}-2\right)^{2}\left(v_{2}-4\right)}} \quad v_{2}>4$
Skewness	$\frac{2\left(v_{1}+v_{2}-2\right)}{v_{1}\left(v_{2}-4\right)} \quad v_{2}>4$
	$\sqrt{\left(2 \nu_{1}+v_{2}-2\right) \sqrt{8\left(v_{2}-4\right)}}$

Since the F distribution is typically used to develop hypothesis tests and confidence intervals and rarely for modeling applications, we omit any discussion of parameter estimation.

The F distribution is used in many cases for the critical regions for hypothesis tests and in determining confidence intervals. Two common examples are the analysis of variance and the F test to determine if the variances of two populations are equal.

Most general purpose statistical software programs, including Dataplot, support at least some of the probability functions for the F distribution.

NIST
SEMATECH

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.6. Chi-Square Distribution

Probability \quad The chi-square distribution results when $l /$ independent variables with

Density
Function
standard normal distributions are squared and summed. The formula for the probability density function of the chi-square distribution is

$$
f(x)=\frac{e^{\frac{-x}{3}} x^{\frac{v}{2}-1}}{2^{\frac{\nu}{2}} \Gamma\left(\frac{v}{2}\right)} \quad \text { for } x \geq 0
$$

where l is the shape parameter and Γ is the gamma function. The formula for the gamma function is
$\Gamma(a)=\int_{0}^{\infty} t^{\alpha-1} e^{-t} d t$
In a testing context, the chi-square distribution is treated as a "standardized distribution" (i.e., no location or scale parameters). However, in a distributional modeling context (as with other probability distributions), the chi-square distribution itself can be transformed with a location parameter, μ, and a scale parameter, σ.

The following is the plot of the chi-square probability density function for 4 different values of the shape parameter.

Cumulative Distribution

Function

The formula for the cumulative distribution function of the chi-square distribution is

$$
F(x)=\frac{\gamma\left(\frac{\nu}{2}, \frac{x}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \quad \text { for } x \geq 0
$$

where Γ is the gamma function defined above and γ is the incomplete gamma function. The formula for the incomplete gamma function is
$\Gamma_{x}(a)=\int_{0}^{x} t^{(t-1} e^{-t} d t$
The following is the plot of the chi-square cumulative distribution function with the same values of ℓ as the pdf plots above.

Percent
Point
Function

The formula for the percent point function of the chi-square distribution does not exist in a simple closed form. It is computed numerically.

The following is the plot of the chi-square percent point function with the same values of v as the pdf plots above.

Other
Probability
Functions

Common
Statistics

Parameter
Estimation

Comments

Software
Most general purpose statistical software programs, including Dataplot, support at least some of the probability functions for the chi-square distribution.
Since the chi-square distribution is typically used to develop hypothesis tests and confidence intervals and rarely for modeling applications, we omit the formulas and plots for the hazard, cumulative hazard, survival, and inverse survival probability functions.

Mean	v
Median	approxim
Mode	$v-2$
Range	0 to positive
Standard Deviation	$\sqrt{2 v}$
Coefficient of	$\sqrt{\frac{2}{v}}$
Variation	$\frac{2^{1.5}}{\sqrt{v}}$
Skewness	$3+\frac{12}{v}$

Since the chi-square distribution is typically used to develop hypothesis tests and confidence intervals and rarely for modeling applications, we omit any discussion of parameter estimation.

The chi-square distribution is used in many cases for the critical regions for hypothesis tests and in determining confidence intervals. Two common examples are the chi-square test for independence in an $\boldsymbol{R} \boldsymbol{x} \boldsymbol{C}$ contingency table and the chi-square test to determine if the standard deviation of a population is equal to a pre-specified value.

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.7. Exponential Distribution

Probability The general formula for the probability density function of the
Density
Function exponential distribution is
$f(x)=\frac{1}{\beta} e^{-(x-\mu) / \beta} \quad x \geq \mu ; \beta>0$
where μ^{α} is the location parameter and β is the scale parameter (the scale parameter is often referred to as λ which equals $1 / \beta$). The case where $\mu^{\Delta}=0$ and $\beta=1$ is called the standard exponential distribution. The equation for the standard exponential distribution is
$f(x)=e^{-x} \quad$ for $x \geq 0$
The general form of probability functions can be expressed in terms of the standard distribution. Subsequent formulas in this section are given for the 1-parameter (i.e., with scale parameter) form of the function.

The following is the plot of the exponential probability density function.

Cumulative The formula for the cumulative distribution function of the exponential Distribution

Function

 distribution is$$
F(x)=1-e^{-x / \beta} \quad x \geq 0 ; \beta>0
$$

The following is the plot of the exponential cumulative distribution function.

Percent The formula for the percent point function of the exponential
Point
Function distribution is

$$
G(p)=-\beta \ln (1-p) \quad 0 \leq p<1 ; \beta>0
$$

The following is the plot of the exponential percent point function.

Hazard Function

The formula for the hazard function of the exponential distribution is

$$
h(x)=\frac{1}{\beta} \quad x \geq 0 ; \beta>0
$$

The following is the plot of the exponential hazard function.

Cumulative The formula for the cumulative hazard function of the exponential Hazard
Function distribution is

$$
H(x)=\frac{x}{\beta} \quad x \geq 0 ; \beta>0
$$

The following is the plot of the exponential cumulative hazard function.

Survival
Function

$$
S(x)=e^{-x / \beta} \quad x \geq 0 ; \beta>0
$$

The following is the plot of the exponential survival function.

Inverse
Survival
Function
The formula for the survival function of the exponential distribution is

The formula for the inverse survival function of the exponential distribution is

$$
Z(p)=-\beta \ln (p) \quad 0 \leq p<1 ; \beta>0
$$

The following is the plot of the exponential inverse survival function.

Common Statistics	Mean	β
	Median	$\beta \ln 2$
	Mode	Zero
	Range	Zero to plus infinity
	Standard Deviation	β
	Coefficient of Variation	1
	Skewness	2
	Kurtosis	9

Comments The exponential distribution is primarily used in reliability applications.

Parameter Estimation

Software

For the full sample case, the maximum likelihood estimator of the scale parameter is the sample mean. Maximum likelihood estimation for the exponential distribution is discussed in the chapter on reliability (Chapter 8). It is also discussed in chapter 19 of Johnson, Kotz, and Balakrishnan. The exponential distribution is used to model data with a constant failure rate (indicated by the hazard plot which is simply equal to a constant).

NIST

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.8. Weibull Distribution

Probability The formula for the probability density function of the general Weibull distribution Density is
Function
$f(x)=\frac{\gamma}{\alpha}\left(\frac{x-\mu}{\alpha}\right)^{(\gamma-1)} \exp \left(-((x-\mu) / \alpha)^{\gamma}\right) \quad x \geq \mu \gamma \gamma, \alpha>0$
where γ is the shape parameter, $/^{L}$ is the location parameter and α is the scale parameter. The case where $/ L=0$ and $\alpha=1$ is called the standard Weibull distribution. The case where $\mu=0$ is called the 2-parameter Weibull distribution. The equation for the standard Weibull distribution reduces to

$$
f(x)=\gamma x^{(\gamma-1)} \exp \left(-\left(x^{\gamma}\right)\right) \quad x \geq 0 ; \gamma>0
$$

Since the general form of probability functions can be expressed in terms of the standard distribution, all subsequent formulas in this section are given for the standard form of the function.

The following is the plot of the Weibull probability density function.

Cumulative Distribution
Function

The formula for the cumulative distribution function of the Weibull distribution is

$$
F(x)=1-e^{-\left(x^{\gamma}\right)} \quad x \geq 0 ; \gamma>0
$$

The following is the plot of the Weibull cumulative distribution function with the same values of γ as the pdf plots above.

Percent Point
Function

$$
G(p)=(-\ln (1-p))^{1 / \gamma}
$$

$$
0 \leq p<1 ; \gamma>0
$$

The following is the plot of the Weibull percent point function with the same values of γ as the pdf plots above.

Hazard The formula for the hazard function of the Weibull distribution is
Function
$h(x)=\gamma x^{(\gamma-1)} \quad x \geq 0 ; \gamma>0$
The following is the plot of the Weibull hazard function with the same values of γ as the pdf plots above.

Cumulative Hazard
Function

The formula for the cumulative hazard function of the Weibull distribution is
$H(x)=x^{7}$
$x \geq 0 ; \gamma>0$

The following is the plot of the Weibull cumulative hazard function with the same values of γ as the pdf plots above.

Survival The formula for the survival function of the Weibull distribution is Function

$$
S(x)=\exp -\left(x^{\gamma}\right) \quad x \geq 0 ; \gamma>0
$$

The following is the plot of the Weibull survival function with the same values of γ as the pdf plots above.

Inverse
Survival
Function
The formula for the inverse survival function of the Weibull distribution is $Z(p)=(-\ln (p))^{1 / \gamma} \quad 0 \leq p<1 ; \gamma>0$
The following is the plot of the Weibull inverse survival function with the same values of γ as the pdf plots above.

Common Statistics

The formulas below are with the location parameter equal to zero and the scale parameter equal to one.

Mean

$$
\Gamma\left(\frac{\gamma+1}{\gamma}\right)
$$

where Γ is the gamma function

Median
$\Gamma(a)=\int_{0}^{\infty} t^{\alpha-1} e^{-t} d t$
$\ln (2)^{1 / 7}$
Mode

$$
\begin{aligned}
& \left(1-\frac{1}{\gamma}\right)^{1 / \gamma} \quad \gamma>1 \\
& 0
\end{aligned} \quad \gamma \leq 1
$$

Range
Zero to positive infinity.
Standard Deviation

$$
\sqrt{\Gamma\left(\frac{\gamma+2}{\gamma}\right)-\left(\Gamma\left(\frac{\gamma+1}{\gamma}\right)\right)^{2}}
$$

Coefficient of Variation

$$
\sqrt{\frac{\Gamma\left(\frac{\gamma+2}{\gamma}\right)}{\left(\Gamma\left(\frac{\gamma+1}{\gamma}\right)\right)^{2}}-1}
$$

Parameter Maximum likelihood estimation for the Weibull distribution is discussed in the Estimation Reliability chapter (Chapter 8). It is also discussed in Chapter 21 of Johnson, Kotz, and Balakrishnan.

Comments The Weibull distribution is used extensively in reliability applications to model failure times.

Software Most general purpose statistical software programs, including Dataplot, support at least some of the probability functions for the Weibull distribution.

NIST
$\overline{\text { SEMATECH }}$
HOME TOOLS \& AIDS SEARCH

BACK $\overline{N E X T}$

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.9. Lognormal Distribution

Probability A variable X is lognormally distributed if $\mathrm{Y}=\mathrm{LN}(\mathrm{X})$ is normally

Density
Function distributed with "LN" denoting the natural logarithm. The general formula for the probability density function of the lognormal distribution is
$f(x)=\frac{e^{-\left((\ln ((x-\theta) / m))^{2} /\left(2 \sigma^{2}\right)\right)}}{(x-\theta) \sigma \sqrt{2 \pi}} \quad x \geq \theta ; m, \sigma>0$
where σ is the shape parameter, θ is the location parameter and \boldsymbol{m} is the scale parameter. The case where $\theta=0$ and $\boldsymbol{m}=1$ is called the standard lognormal distribution. The case where θ equals zero is called the 2-parameter lognormal distribution.

The equation for the standard lognormal distribution is

$$
f(x)=\frac{e^{-\left((\ln x)^{2} / 2 r^{2}\right)}}{x \sigma \sqrt{2 \pi}} \quad x \geq 0 ; \sigma>0
$$

Since the general form of probability functions can be expressed in terms of the standard distribution, all subsequent formulas in this section are given for the standard form of the function.

The following is the plot of the lognormal probability density function for four values of σ.

There are several common parameterizations of the lognormal distribution. The form given here is from Evans, Hastings, and Peacock.

Cumulative The formula for the cumulative distribution function of the lognormal Distribution Function distribution is

$$
F(x)=\Phi\left(\frac{\ln (x)}{\sigma}\right) \quad x \geq 0 ; \sigma>0
$$

where Φ is the cumulative distribution function of the normal distribution.

The following is the plot of the lognormal cumulative distribution function with the same values of σ as the pdf plots above.

Percent
Point
Function

The formula for the percent point function of the lognormal distribution is

$$
G(p)=\exp \left(\sigma \Phi^{-1}(p)\right) \quad 0 \leq p<1 ; \sigma>0
$$

where Φ^{-1} is the percent point function of the normal distribution.
The following is the plot of the lognormal percent point function with the same values of σ as the pdf plots above.

Hazard Function
$h(x, \sigma)=\frac{\left(\frac{1}{x \sigma}\right) \phi\left(\frac{\ln x}{\sigma}\right)}{\Phi\left(\frac{-\ln x}{\sigma}\right)} \quad x>0 ; \sigma>0$
where $\phi_{\text {is the probability density function of the normal distribution }}$ and Φ is the cumulative distribution function of the normal distribution.

The following is the plot of the lognormal hazard function with the same values of σ as the pdf plots above.

Cumulative The formula for the cumulative hazard function of the lognormal Hazard
Function distribution is

$$
H(x)=\ln \left(1-\Phi\left(\frac{\ln (x)}{\sigma}\right)\right) \quad x \geq 0 ; \sigma>0
$$

where Φ is the cumulative distribution function of the normal distribution.

The following is the plot of the lognormal cumulative hazard function with the same values of σ as the pdf plots above.

Survival Function

The formula for the survival function of the lognormal distribution is $S(x)=1-\Phi\left(\frac{\ln (x)}{\sigma}\right) \quad x \geq 0 ; \sigma>0$
where Φ is the cumulative distribution function of the normal distribution.

The following is the plot of the lognormal survival function with the same values of σ as the pdf plots above.

Inverse
Survival
Function

The formula for the inverse survival function of the lognormal distribution is

$$
Z(p)=\exp \left(\sigma \Phi^{-1}(1-p)\right) \quad 0 \leq p<1 ; \sigma>0
$$

where $\Phi^{-\mathbf{1}}$ is the percent point function of the normal distribution.
The following is the plot of the lognormal inverse survival function with the same values of σ as the pdf plots above.

Common Statistics

Parameter Estimation

The formulas below are with the location parameter equal to zero and the scale parameter equal to one.

Mean
Median

Mode

Range Zero to positive infinity
Standard Deviation

$$
\sqrt{e^{r^{2}}\left(e^{r^{2}}-1\right)}
$$

Skewness

$$
\left(e^{r^{2}}+2\right) \sqrt{e^{r^{2}}-1}
$$

Kurtosis

$$
\left(e^{\sigma^{2}}\right)^{4}+2\left(e^{\sigma^{2}}\right)^{3}+3\left(e^{\sigma^{2}}\right)^{2}-3
$$

Coefficient of
Variation

The maximum likelihood estimates for the scale parameter, \boldsymbol{m}, and the shape parameter, σ, are

$$
\hat{m}=\exp \hat{\mu}
$$

and

$$
\hat{\sigma}=\sqrt{\frac{\sum_{i=1}^{N}\left(\ln \left(X_{i}\right)-\hat{\mu}\right)^{2}}{N}}
$$

where

$$
\hat{\mu}=\frac{\sum_{i=1}^{N} \ln X_{i}}{N}
$$

If the location parameter is known, it can be subtracted from the original data points before computing the maximum likelihood estimates of the shape and scale parameters.

Comments The lognormal distribution is used extensively in reliability applications to model failure times. The lognormal and Weibull distributions are probably the most commonly used distributions in reliability applications.

Software
Most general purpose statistical software programs, including Dataplot, support at least some of the probability functions for the lognormal distribution.
1.3.6.6.9. Lognormal Distribution

NIST

 SEMATECH1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.10. Fatigue Life Distribution

Probability
Density
Function

The fatigue life distribution is also commonly known as the Birnbaum-Saunders distribution. There are several alternative formulations of the fatigue life distribution in the literature.

The general formula for the probability density function of the fatigue life distribution is

$$
f(x)=\left(\frac{\sqrt{\frac{x-\mu}{\beta}}+\sqrt{\frac{\beta}{x-\mu}}}{2 \gamma(x-\mu)}\right) \phi\left(\frac{\sqrt{\frac{x-\mu}{\beta}}-\sqrt{\frac{\beta}{x-\mu}}}{\gamma}\right) \quad x>\mu ; \gamma, \beta>0
$$

where γ is the shape parameter, $/ \Delta$ is the location parameter, β is the scale parameter, $\phi_{\text {is the probability density function of the standard normal }}$ distribution, and Φ is the cumulative distribution function of the standard normal distribution. The case where $\mu=0$ and $\beta=1$ is called the standard fatigue life distribution. The equation for the standard fatigue life distribution reduces to
$f(x)=\left(\frac{\sqrt{x}+\sqrt{\frac{1}{x}}}{2 \gamma x}\right) \phi\left(\frac{\sqrt{x}-\sqrt{\frac{1}{x}}}{\gamma}\right) \quad x>0 ; \gamma>0$
Since the general form of probability functions can be expressed in terms of the standard distribution, all subsequent formulas in this section are given for the standard form of the function.

The following is the plot of the fatigue life probability density function.

Cumulative Distribution Function

The formula for the cumulative distribution function of the fatigue life distribution is

$$
F(x)=\Phi\left(\frac{\sqrt{x}-\sqrt{\frac{1}{x}}}{\gamma}\right) \quad x>0 ; \gamma>0
$$

where Φ is the cumulative distribution function of the standard normal distribution. The following is the plot of the fatigue life cumulative distribution function with the same values of $\mathcal{\gamma}$ as the pdf plots above.

Percent The formula for the percent point function of the fatigue life distribution is

Point
Function

$$
G(p)=\frac{1}{4}\left[\gamma \Phi^{-1}(p)+\sqrt{4+\left(\gamma \Phi^{-1}(p)\right)^{2}}\right]^{2}
$$

where $\Phi^{-\mathbf{1}}$ is the percent point function of the standard normal distribution. The following is the plot of the fatigue life percent point function with the same values of γ as the pdf plots above.

Hazard The fatigue life hazard function can be computed from the fatigue life probability Function density and cumulative distribution functions.

The following is the plot of the fatigue life hazard function with the same values of γ as the pdf plots above.

Cumulative Hazard
Function
The fatigue life cumulative hazard function can be computed from the fatigue life cumulative distribution function.

The following is the plot of the fatigue cumulative hazard function with the same values of γ as the pdf plots above.

Survival Function

The fatigue life survival function can be computed from the fatigue life cumulative distribution function.

The following is the plot of the fatigue survival function with the same values of γ as the pdf plots above.

Inverse \quad The fatigue life inverse survival function can be computed from the fatigue life

Survival
Function

Common Statistics

Parameter Estimation

Comments percent point function.

The following is the plot of the gamma inverse survival function with the same values of γ as the pdf plots above.

The formulas below are with the location parameter equal to zero and the scale parameter equal to one.
Mean

$$
1+\frac{\gamma^{2}}{2}
$$

Range
Standard Deviation
Zero to positive infinity.

$$
\gamma \sqrt{1+\frac{\bar{\partial} \gamma^{2}}{4}}
$$

Coefficient of Variation

$$
\frac{2+\gamma^{2}}{\gamma \sqrt{1+\bar{y} \gamma^{2}}}
$$

Maximum likelihood estimation for the fatigue life distribution is discussed in the Reliability chapter.

The fatigue life distribution is used extensively in reliability applications to model failure times.

Software Some general purpose statistical software programs, including Dataplot, support at least some of the probability functions for the fatigue life distribution. Support for this distribution is likely to be available for statistical programs that emphasize reliability applications.

NIST SEMATECH

$$
\longdiv { \text { HOME } }
$$

$$
\longdiv { \text { TOOLS \& AIDS } }
$$

SEARCH
BACK NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.11. Gamma Distribution

Probability The general formula for the probability density function of the gamma
Function distribution is

$$
f(x)=\frac{\left(\frac{x-\mu}{\beta}\right)^{\gamma-1} \exp \left(-\frac{x-\mu}{\beta}\right)}{\beta \Gamma(\gamma)} \quad x \geq \mu ; \gamma, \beta>0
$$

where γ is the shape parameter, μ^{μ} is the location parameter, β is the scale parameter, and Γ is the gamma function which has the formula
$\Gamma(a)=\int_{0}^{\infty} t^{\Delta-1} e^{-t} d t$
The case where $\mu=0$ and $\beta=1$ is called the standard gamma distribution. The equation for the standard gamma distribution reduces to

$$
f(x)=\frac{x^{\gamma-1} e^{-x}}{\Gamma(\gamma)} \quad x \geq 0 ; \gamma>0
$$

Since the general form of probability functions can be expressed in terms of the standard distribution, all subsequent formulas in this section are given for the standard form of the function.

The following is the plot of the gamma probability density function.

Cumulative Distribution Function

The formula for the cumulative distribution function of the gamma distribution is

$$
F(x)=\frac{\Gamma_{x}(\gamma)}{\Gamma(\gamma)} \quad x \geq 0 ; \gamma>0
$$

where Γ is the gamma function defined above and $\Gamma_{x}(a)$ is the incomplete gamma function. The incomplete gamma function has the formula
$\Gamma_{x}(a)=\int_{0}^{x} t^{t-1} e^{-t} d t$
The following is the plot of the gamma cumulative distribution function with the same values of γ as the pdf plots above.

Percent
Point
Function

The formula for the percent point function of the gamma distribution does not exist in a simple closed form. It is computed numerically.

The following is the plot of the gamma percent point function with the same values of γ as the pdf plots above.

Hazard Function

$$
h(x)=\frac{x^{\gamma-1} e^{-x}}{\Gamma(\gamma)-\Gamma_{x}(\gamma)} \quad x \geq 0 ; \gamma>0
$$

The following is the plot of the gamma hazard function with the same values of γ as the pdf plots above.

Cumulative The formula for the cumulative hazard function of the gamma Hazard
Function distribution is

$$
H(x)=-\log \left(1-\frac{\Gamma_{x}(\gamma)}{\Gamma(\gamma)}\right) \quad x \geq 0 ; \gamma>0
$$

where Γ is the gamma function defined above and $\Gamma_{x}(a)$ is the incomplete gamma function defined above.

The following is the plot of the gamma cumulative hazard function with the same values of γ as the pdf plots above.

Survival Function

The formula for the survival function of the gamma distribution is

$$
S(x)=1-\frac{\Gamma_{x}(\gamma)}{\Gamma(\gamma)} \quad x \geq 0 ; \gamma>0
$$

where Γ is the gamma function defined above and $\Gamma_{x}(a)$ is the incomplete gamma function defined above.

The following is the plot of the gamma survival function with the same values of γ as the pdf plots above.

Inverse
Survival
Function

The gamma inverse survival function does not exist in simple closed form. It is computed numberically.

The following is the plot of the gamma inverse survival function with the same values of γ as the pdf plots above.

Common Statistics

Parameter Estimation

$$
\begin{aligned}
& \hat{\gamma}=\left(\frac{\bar{x}}{s}\right)^{2} \\
& \hat{\beta}=\frac{s^{2}}{\bar{x}}
\end{aligned}
$$

where \bar{x} and s are the sample mean and standard deviation, respectively.
The equations for the maximum likelihood estimation of the shape and scale parameters are given in Chapter 18 of Evans, Hastings, and Peacock and Chapter 17 of Johnson, Kotz, and Balakrishnan. These equations need to be solved numerically; this is typically accomplished by using statistical software packages.

Software Some general purpose statistical software programs, including Dataplot,
Some general purpose statistical software programs, including D
support at least some of the probability functions for the gamma distribution.

NIST
$\overline{\text { SEMATECH }}$
The formulas below are with the location parameter equal to zero and the scale parameter equal to one.

Mean
Mode
Range
Standard Deviation
Skewness

Kurtosis

Coefficient of
Variation

$$
\gamma-1 \quad \gamma \geq 1
$$

Zero to positive infinity.

$$
3+\frac{6}{\gamma}
$$

$$
\frac{1}{\sqrt{\gamma}}
$$

The method of moments estimators of the gamma distribution are

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.12. Double Exponential Distribution

Probability The general formula for the probability density function of the double
Density
Function exponential distribution is

$$
f(x)=\frac{e^{-\left|\frac{x, p}{\beta}\right|}}{2 \beta}
$$

where $/ \mu$ is the location parameter and β is the scale parameter. The case where ${ }^{\mu}=0$ and $\beta=1$ is called the standard double exponential distribution. The equation for the standard double exponential distribution is
$f(x)=\frac{e^{-|x|}}{2}$
Since the general form of probability functions can be expressed in terms of the standard distribution, all subsequent formulas in this section are given for the standard form of the function.

The following is the plot of the double exponential probability density function.

Cumulative Distribution Function

The formula for the cumulative distribution function of the double exponential distribution is

$$
F(x)=\begin{array}{ll}
\frac{e^{x}}{2} & \text { for } x<0 \\
1-\frac{e^{-x}}{2} & \text { for } x \geq 0
\end{array}
$$

The following is the plot of the double exponential cumulative distribution function.

Percent The formula for the percent point function of the double exponential Point
Function

$$
G(P)=\begin{array}{ll}
\log (2 p) & \text { for } p \leq 0 . \overline{2} \\
-\log (2(1-p)) & \text { for } p>0 . \overline{0}
\end{array}
$$

The following is the plot of the double exponential percent point function.

Hazard
Function
The formula for the hazard function of the double exponential distribution is
$h(x)=\begin{array}{ll}\frac{e^{x}}{2-e^{x}} & \text { for } x<0 \\ 1 & \text { for } x \geq 0\end{array}$
The following is the plot of the double exponential hazard function.

Cumulative The formula for the cumulative hazard function of the double Hazard exponential distribution is
Function

$$
H(x)=\begin{array}{ll}
-\log \left(1-\frac{e^{x}}{2}\right) & \text { for } x<0 \\
x+\log (2) & \text { for } x \geq 0
\end{array}
$$

The following is the plot of the double exponential cumulative hazard function.

Survival
Function

Inverse
Survival
Function

The double exponential survival function can be computed from the cumulative distribution function of the double exponential distribution.

The following is the plot of the double exponential survival function.

The formula for the inverse survival function of the double exponential distribution is

$$
Z(P)=\begin{array}{ll}
\log (2(1-p)) & \text { for } p \leq 0.5 \\
-\log (2 p) & \text { for } p>0 . \overline{5}
\end{array}
$$

The following is the plot of the double exponential inverse survival function.

Common	Mean	μ
Statistics	Median	μ
	Mode	μ
	Range	Negative infinity to positive infinity
	Standard Deviation	$\sqrt{2} \beta$
	Skewness	0
	Kurtosis	6
	Coefficient of	$\sqrt{2}\left(\frac{\beta}{\mu}\right)$
	Variation	

Parameter Estimation

The maximum likelihood estimators of the location and scale parameters of the double exponential distribution are
$\hat{\mu}=\tilde{X}$
$\hat{\beta}=\frac{\sum_{i=1}^{N}\left|X_{i}-\tilde{X}\right|}{N}$
where \tilde{X} is the sample median.
Software Some general purpose statistical software programs, including Dataplot, support at least some of the probability functions for the double exponential distribution.
1.3.6.6.12. Double Exponential Distribution

NIST

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.13. Power Normal Distribution

Probability The formula for the probability density function of the standard form of

Density
Function
the power normal distribution is

$$
f(x, p)=p \phi(x)(\Phi(-x))^{p-1} \quad x, p>0
$$

where \boldsymbol{p} is the shape parameter (also referred to as the power parameter), Φ is the cumulative distribution function of the standard normal distribution, and $\phi_{\text {is the probability density function of the standard }}$ normal distribution.

As with other probability distributions, the power normal distribution can be transformed with a location parameter, μ, and a scale parameter, σ. We omit the equation for the general form of the power normal distribution. Since the general form of probability functions can be expressed in terms of the standard distribution, all subsequent formulas in this section are given for the standard form of the function.

The following is the plot of the power normal probability density function with four values of \boldsymbol{p}.

Cumulative Distribution Function

The formula for the cumulative distribution function of the power normal distribution is

$$
F(x, p)=1-(\Phi(-x))^{p} \quad x, p>0
$$

where Φ is the cumulative distribution function of the standard normal distribution.

The following is the plot of the power normal cumulative distribution function with the same values of \boldsymbol{p} as the pdf plots above.

Percent
Point
Function

The formula for the percent point function of the power normal distribution is

$$
G(f)=\Phi^{-1}\left(1-(1-f)^{1 / p}\right) \quad 0<f<1 ; p>0
$$

where $\Phi^{-\mathbf{1}}$ is the percent point function of the standard normal distribution.

The following is the plot of the power normal percent point function with the same values of \boldsymbol{p} as the pdf plots above.

Hazard Function

$$
h(x, p)=\frac{p \phi(x)}{\Phi(-x)} \quad x, p>0
$$

The following is the plot of the power normal hazard function with the same values of \boldsymbol{p} as the pdf plots above.

Cumulative The formula for the cumulative hazard function of the power normal

Hazard
Function

The following is the plot of the power normal cumulative hazard function with the same values of \boldsymbol{p} as the pdf plots above.

The formula for the survival function of the power normal distribution is Function

$$
S(x, p)=(\Phi(-x))^{p} \quad x, p>0
$$

The following is the plot of the power normal survival function with the same values of \boldsymbol{p} as the pdf plots above.

Inverse
Survival
Function

The formula for the inverse survival function of the power normal distribution is
$Z(f)=\Phi^{-1}\left(1-f^{1 / p}\right) \quad 0<f<1 ; p>0$
The following is the plot of the power normal inverse survival function with the same values of \boldsymbol{p} as the pdf plots above.

Common The statistics for the power normal distribution are complicated and Statistics require tables. Nelson discusses the mean, median, mode, and standard deviation of the power normal distribution and provides references to the appropriate tables.

Software Most general purpose statistical software programs do not support the probability functions for the power normal distribution. Dataplot does support them.

HOME $\longdiv { \text { TOOLS \& AIDS } }$ SEARCH

BACK NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.14. Power Lognormal Distribution

Probability Density Function

The formula for the probability density function of the standard form of the power lognormal distribution is
$f(x, p, \sigma)=\left(\frac{p}{x \sigma}\right) \phi\left(\frac{\log x}{\sigma}\right)\left(\Phi\left(\frac{-\log x}{\sigma}\right)\right)^{p-1} \quad x, p, \sigma>0$
where \boldsymbol{p} (also referred to as the power parameter) and σ are the shape parameters,
Φ is the cumulative distribution function of the standard normal distribution, and ϕ is the probability density function of the standard normal distribution.

As with other probability distributions, the power lognormal distribution can be transformed with a location parameter, $\boldsymbol{\mu}$, and a scale parameter, \boldsymbol{B}. We omit the equation for the general form of the power lognormal distribution. Since the general form of probability functions can be expressed in terms of the standard distribution, all subsequent formulas in this section are given for the standard form of the function.

The following is the plot of the power lognormal probability density function with four values of \boldsymbol{p} and σ set to 1 .

Cumulative The formula for the cumulative distribution function of the power lognormal Distribution Function distribution is

$$
F(x, p, \sigma)=1-\left(\Phi\left(\frac{-\log x}{\sigma}\right)\right)^{p} \quad x, p, \sigma>0
$$

where Φ is the cumulative distribution function of the standard normal distribution.
The following is the plot of the power lognormal cumulative distribution function with the same values of \boldsymbol{p} as the pdf plots above.

Percent
Point
Function

The formula for the percent point function of the power lognormal distribution is
$G(f, p, \sigma)=\exp \left(\Phi^{-1}\left(1-(1-f)^{1 / p}\right) \sigma\right) \quad 0<p<1 ; p, \sigma>0$ where Φ^{-1} is the percent point function of the standard normal distribution.

The following is the plot of the power lognormal percent point function with the same values of \boldsymbol{p} as the pdf plots above.

Hazard Function

Cumulative Hazard Function

$$
h(x, p, \sigma)=\frac{p\left(\frac{1}{x_{\sigma}}\right) \phi\left(\frac{\log x}{\sigma}\right)}{\Phi\left(\frac{-\log x}{\sigma}\right)} \quad x, p, \sigma>0
$$

where Φ is the cumulative distribution function of the standard normal distribution, and $\phi_{\text {is the probability density function of the standard normal distribution. }}$

Note that this is simply a multiple (p) of the lognormal hazard function.
The following is the plot of the power lognormal hazard function with the same values of \boldsymbol{p} as the pdf plots above.

The formula for the hazard function of the power lognormal distribution is

The formula for the cumulative hazard function of the power lognormal distribution is

$$
H(x, p, \sigma)=-\log \left(\left(\Phi\left(\frac{-\log x}{\sigma}\right)\right)^{p}\right) \quad x, p, \sigma>0
$$

The following is the plot of the power lognormal cumulative hazard function with the same values of \boldsymbol{p} as the pdf plots above.

Survival
Function
The formula for the survival function of the power lognormal distribution is

$$
S(x, p, \sigma)=\left(\Phi\left(\frac{-\log x}{\sigma}\right)\right)^{p} \quad x, p, \sigma>0
$$

The following is the plot of the power lognormal survival function with the same values of \boldsymbol{p} as the pdf plots above.

Inverse Survival Function

Common Statistics

Parameter Estimation

Software

The formula for the inverse survival function of the power lognormal distribution is

$$
Z(f, p, \sigma)=\exp \left(\Phi^{-1}\left(1-f^{1 / p}\right) \sigma\right) \quad 0<p<1 ; p, \sigma>0
$$

The following is the plot of the power lognormal inverse survival function with the same values of \boldsymbol{p} as the pdf plots above.

The statistics for the power lognormal distribution are complicated and require tables. Nelson discusses the mean, median, mode, and standard deviation of the power lognormal distribution and provides references to the appropriate tables.

Nelson discusses maximum likelihood estimation for the power lognormal distribution. These estimates need to be performed with computer software. Software for maximum likelihood estimation of the parameters of the power lognormal distribution is not as readily available as for other reliability distributions such as the exponential, Weibull, and lognormal.

Most general purpose statistical software programs do not support the probability functions for the power lognormal distribution. Dataplot does support them.

NIST SEMATECH

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.15. Tukey-Lambda Distribution

Probability
Density
Function

The Tukey-Lambda density function does not have a simple, closed form. It is computed numerically.

The Tukey-Lambda distribution has the shape parameter λ. As with other probability distributions, the Tukey-Lambda distribution can be transformed with a location parameter, μ, and a scale parameter, σ. Since the general form of probability functions can be expressed in terms of the standard distribution, all subsequent formulas in this section are given for the standard form of the function.

The following is the plot of the Tukey-Lambda probability density function for four values of λ.

Cumulative The Tukey-Lambda distribution does not have a simple, closed form. It Distribution Function is computed numerically.

The following is the plot of the Tukey-Lambda cumulative distribution function with the same values of λ as the pdf plots above.

Percent
Point
Function
The formula for the percent point function of the standard form of the Tukey-Lambda distribution is

$$
G(p)=\frac{p^{\lambda}-(1-p)^{\lambda}}{\lambda}
$$

The following is the plot of the Tukey-Lambda percent point function with the same values of λ as the pdf plots above.

Other
Probability
Functions

The Tukey-Lambda distribution is typically used to identify an appropriate distribution (see the comments below) and not used in statistical models directly. For this reason, we omit the formulas, and plots for the hazard, cumulative hazard, survival, and inverse survival functions. We also omit the common statistics and parameter estimation sections.

The Tukey-Lambda distribution is actually a family of distributions that can approximate a number of common distributions. For example,
$\lambda=-1 \quad$ approximately Cauchy
$\lambda=0 \quad$ exactly logistic
$\lambda=0.14$ approximately normal
$\lambda=0.5$ U-shaped
$\lambda=1$ exactly uniform (from -1 to +1)
The most common use of this distribution is to generate a Tukey-Lambda PPCC plot of a data set. Based on the ppec plot, an appropriate model for the data is suggested. For example, if the maximum correlation occurs for a value of λ at or near 0.14 , then the data can be modeled with a normal distribution. Values of λ less than this imply a heavy-tailed distribution (with -1 approximating a Cauchy). That is, as the optimal value of λ goes from 0.14 to -1 , increasingly heavy tails are implied. Similarly, as the optimal value of λ becomes greater than 0.14 , shorter tails are implied.

As the Tukey-Lambda distribution is a symmetric distribution, the use of the Tukey-Lambda PPCC plot to determine a reasonable distribution to model the data only applies to symmetric distributuins. A histogram of the data should provide evidence as to whether the data can be reasonably modeled with a symmetric distribution.

Software
Most general purpose statistical software programs do not support the probability functions for the Tukey-Lambda distribution. Dataplot does support them.

HOME
TOOLS \& AIDS SEARCH
BACK NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.16. Extreme Value Type I Distribution

Probability The extreme value type I distribution has two forms. One is based on the

Density
Function smallest extreme and the other is based on the largest extreme. We call these the minimum and maximum cases, respectively. Formulas and plots for both cases are given. The extreme value type I distribution is also referred to as the Gumbel distribution.

The general formula for the probability density function of the Gumbel (minimum) distribution is
$f(x)=\frac{1}{\beta} e^{\frac{x-\mu}{\beta}} e^{-e^{\frac{x-\beta}{\beta}}}$
where μ is the location parameter and β is the scale parameter. The case where $\mu^{2}=0$ and $\beta=1$ is called the standard Gumbel
distribution. The equation for the standard Gumbel distribution (minimum) reduces to
$f(x)=e^{x} e^{-e^{x}}$
The following is the plot of the Gumbel probability density function for the minimum case.

The general formula for the probability density function of the Gumbel (maximum) distribution is

$$
f(x)=\frac{1}{\beta} e^{-\frac{x-\mu}{\beta}} e^{-e^{-\frac{x-\beta}{\beta}}}
$$

where μ^{L} is the location parameter and β is the scale parameter. The case where $\mu^{\mu}=0$ and $\beta=1$ is called the standard Gumbel distribution. The equation for the standard Gumbel distribution (maximum) reduces to

$$
f(x)=e^{-x} e^{-e^{-x}}
$$

The following is the plot of the Gumbel probability density function for the maximum case.

Since the general form of probability functions can be expressed in terms of the standard distribution, all subsequent formulas in this section are given for the standard form of the function.

Cumulative The formula for the cumulative distribution function of the Gumbel Distribution Function distribution (minimum) is

$$
F(x)=1-e^{-e^{r}}
$$

The following is the plot of the Gumbel cumulative distribution function for the minimum case.

The formula for the cumulative distribution function of the Gumbel distribution (maximum) is
$F(x)=e^{-e^{-x}}$
The following is the plot of the Gumbel cumulative distribution function for the maximum case.

Percent The formula for the percent point function of the Gumbel distribution Point
Function (minimum) is

$$
G(p)=\ln \left(\ln \left(\frac{1}{1-p}\right)\right)
$$

The following is the plot of the Gumbel percent point function for the minimum case.

The formula for the percent point function of the Gumbel distribution (maximum) is

$$
G(p)=-\ln \left(\ln \left(\frac{1}{p}\right)\right)
$$

The following is the plot of the Gumbel percent point function for the maximum case.

Hazard Function

The formula for the hazard function of the Gumbel distribution (minimum) is
$h(x)=e^{x}$
The following is the plot of the Gumbel hazard function for the minimum case.

The formula for the hazard function of the Gumbel distribution
(maximum) is
$h(x)=\frac{e^{-x}}{e^{e^{-x}}-1}$
The following is the plot of the Gumbel hazard function for the maximum case.

Cumulative The formula for the cumulative hazard function of the Gumbel Hazard distribution (minimum) is
Function
$H(x)=e^{x}$
The following is the plot of the Gumbel cumulative hazard function for the minimum case.

The formula for the cumulative hazard function of the Gumbel distribution (maximum) is
$H(x)=-\ln \left(1-e^{-e^{-x}}\right)$
The following is the plot of the Gumbel cumulative hazard function for the maximum case.

Survival Function

The formula for the survival function of the Gumbel distribution (minimum) is
$S(x)=e^{-e^{x}}$
The following is the plot of the Gumbel survival function for the minimum case.

The formula for the survival function of the Gumbel distribution (maximum) is
$S(x)=1-e^{-e^{-x}}$
The following is the plot of the Gumbel survival function for the maximum case.

Inverse
Survival
Function

The formula for the inverse survival function of the Gumbel distribution (minimum) is

$$
Z(p)=\ln \left(\ln \left(\frac{1}{p}\right)\right)
$$

The following is the plot of the Gumbel inverse survival function for the minimum case.

The formula for the inverse survival function of the Gumbel distribution (maximum) is

$$
Z(p)=-\ln \left(\ln \left(\frac{1}{1-p}\right)\right)
$$

The following is the plot of the Gumbel inverse survival function for the maximum case.

Common Statistics

The formulas below are for the maximum order statistic case.
Mean $\quad \mu+0 . \overline{9} 772 \beta$

The constant 0.5772 is Euler's number.

Median	$\mu-\beta \ln (\ln (2))$
Mode	μ
Range	Negative infinity to pos
Standard Deviation	$\frac{\beta \pi}{\sqrt{6}}$
	1.13955
Skewness	5.4
Kurtosis Coefficient of Variation	$\frac{\beta \pi}{\sqrt{6}(\mu+0.5772 \beta)}$

Parameter The method of moments estimators of the Gumbel (maximum) Estimation distribution are

$$
\begin{aligned}
& \tilde{\beta}=\frac{s \sqrt{6}}{\pi} \\
& \tilde{\mu}=\bar{X}-0 . \overline{2} 772 \tilde{\beta}
\end{aligned}
$$

where \bar{X} and s are the sample mean and standard deviation, respectively.

The equations for the maximum likelihood estimation of the shape and scale parameters are discussed in Chapter 15 of Evans, Hastings, and Peacock and Chapter 22 of Johnson, Kotz, and Balakrishnan. These equations need to be solved numerically and this is typically accomplished by using statistical software packages.

Software Some general purpose statistical software programs, including Dataplot, support at least some of the probability functions for the extreme value type I distribution.

HOME TOOLS \& AIDS

SEARCH
BACK NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.17. Beta Distribution

Probability The general formula for the probability density function of the beta distribution is Density Function

$$
f(x)=\frac{(x-a)^{p-1}(b-x)^{q-1}}{B(p, q)(b-a)^{p+q-1}} \quad a \leq x \leq b ; p, q>0
$$

where p and q are the shape parameters, a and b are the lower and upper bounds, respectively, of the distribution, and $B(p, q)$ is the beta function. The beta function has the formula

$$
B(\alpha, \beta)=\int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1} d t
$$

The case where $a=0$ and $b=1$ is called the standard beta distribution. The equation for the standard beta distribution is

$$
f(x)=\frac{x^{p-1}(1-x)^{q-1}}{B(p, q)} \quad 0 \leq x \leq 1 ; p, q>0
$$

Typically we define the general form of a distribution in terms of location and scale parameters. The beta is different in that we define the general distribution in terms of the lower and upper bounds. However, the location and scale parameters can be defined in terms of the lower and upper limits as follows:

$$
\begin{aligned}
& \text { location }=a \\
& \text { scale }=b-a
\end{aligned}
$$

Since the general form of probability functions can be expressed in terms of the standard distribution, all subsequent formulas in this section are given for the standard form of the function.

The following is the plot of the beta probability density function for four different values of the shape parameters.

Cumulative Distribution Function

The formula for the cumulative distribution function of the beta distribution is also called the incomplete beta function ratio (commonly denoted by $\boldsymbol{I}_{\boldsymbol{x}}$) and is defined as

$$
F(x)=I_{x}(p, q)=\frac{\int_{0}^{x} t^{p-1}(1-t)^{q-1} d t}{B(p, q)} \quad 0 \leq x \leq 1 ; p, q>0
$$

where \boldsymbol{B} is the beta function defined above.
The following is the plot of the beta cumulative distribution function with the same values of the shape parameters as the pdf plots above.

Percent The formula for the percent point function of the beta distribution does not exist in a

Point Function

Other
Probability
Functions
Common
Statistics simple closed form. It is computed numerically.

The following is the plot of the beta percent point function with the same values of the shape parameters as the pdf plots above.

Since the beta distribution is not typically used for reliability applications, we omit the formulas and plots for the hazard, cumulative hazard, survival, and inverse survival probability functions.

The formulas below are for the case where the lower limit is zero and the upper limit is one.

Parameter Estimation

Software
Most general purpose statistical software programs, including Dataplot, support at least some of the probability functions for the beta distribution.
The maximum likelihood equations for the case when a and b are not known are given in pages 221-235 of Volume II of Johnson, Kotz, and Balakrishan.
where \bar{x} is the sample mean and s^{2} is the sample variance. If a and b are not 0 and 1 , respectively, then replace \bar{x} with $\frac{\bar{x}-a}{b-a}$ and s^{2} with $\frac{s^{2}}{(b-a)^{2}}$ in the above equations.

For the case when a and b are known, the maximum likelihood estimates can be obtained by solving the following set of equations

$$
\begin{aligned}
& \psi(\hat{p})-\psi(\hat{p}+\hat{q})=\frac{1}{n} \sum_{i=1}^{n} \log \left(\frac{Y_{i}-a}{b-a}\right) \\
& \psi(\hat{q})-\psi(\hat{p}+\hat{q})=\frac{1}{n} \sum_{i=1}^{n} \log \left(\frac{b-Y_{i}}{b-a}\right)
\end{aligned}
$$

HOME
TOOLS \& AIDS
SEARCH
$\sqrt{\text { BACK }}$ NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.18. Binomial Distribution

Probability The binomial distribution is used when there are exactly two mutually

Mass
Function exclusive outcomes of a trial. These outcomes are appropriately labeled "success" and "failure". The binomial distribution is used to obtain the probability of observing x successes in N trials, with the probability of success on a single trial denoted by p. The binomial distribution assumes that p is fixed for all trials.

The formula for the binomial probability mass function is

$$
P(x, p, n)=\binom{n}{x}(p)^{x}(1-p)^{(n-x)} \quad \text { for } x=0,1,2, \cdots, n
$$

where
$\binom{n}{x}=\frac{n!}{x!(n-x)!}$
The following is the plot of the binomial probability density function for four values of p and $n=100$.

Cumulative Distribution Function

The formula for the binomial cumulative probability function is

$$
F(x, p, n)=\sum_{i=0}^{x}\binom{n}{i}(p)^{i}(1-p)^{(x-i)}
$$

The following is the plot of the binomial cumulative distribution function with the same values of p as the pdf plots above.

Percent Point
Function

Common
Statistics

$n p$

$p(n+1)-1 \leq x \leq p(n+1)$
0 to N

$$
\sqrt{n p(1-p)}
$$

Coefficient of
Variation

Skewness

$$
\frac{(1-2 p)}{\sqrt{n p(1-p)}}
$$

$$
3-\frac{6}{n}+\frac{1}{n p(1-p)}
$$

The binomial distribution is probably the most commonly used discrete distribution.

Parameter The maximum likelihood estimator of p (n is fixed) is
Estimation

$$
\tilde{p}=\frac{x}{n}
$$

Software Most general purpose statistical software programs, including Dataplot, support at least some of the probability functions for the binomial distribution.

NIST $\overline{\text { SEMATECH }}$
 HOME TOOLS \& AIDS
 SEARCH
 BACK NEXT

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.19. Poisson Distribution

Probability The Poisson distribution is used to model the number of events

Mass
Function occurring within a given time interval.

The formula for the Poisson probability mass function is

$$
p(x, \lambda)=\frac{e^{-\lambda, \lambda^{x}}}{x!} \quad \text { for } x=0,1,2, \cdots
$$

λ is the shape parameter which indicates the average number of events in the given time interval.

The following is the plot of the Poisson probability density function for four values of λ.

Cumulative The formula for the Poisson cumulative probability function is Distribution
Function

$$
F(x, \lambda)=\sum_{i=0}^{x} \frac{e^{-\lambda} \lambda^{i}}{i!}
$$

The following is the plot of the Poisson cumulative distribution function with the same values of λ as the pdf plots above.

Percent The Poisson percent point function does not exist in simple closed form. Point
Function It is computed numerically. Note that because this is a discrete distribution that is only defined for integer values of x, the percent point function is not smooth in the way the percent point function typically is for a continuous distribution.

The following is the plot of the Poisson percent point function with the same values of λ as the pdf plots above.

Common Statistics

Parameter Estimation

Software

Mean
Mode

Range
Standard Deviation
Coefficient of
Variation
Skewness

Kurtosis

0 to positive infinity

For non-integer λ, it is the largest integer less than λ. For integer $\lambda, x=\lambda$ and $x=\lambda-1$ are both the mode.

The maximum likelihood estimator of λ is
$\tilde{\lambda}=\bar{X}$
where \bar{X} is the sample mean.

NIST

 SEMATECH1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions

1.3.6.7. Tables for Probability Distributions

Tables

Several commonly used tables for probability distributions can be referenced below.

The values from these tables can also be obtained from most general purpose statistical software programs. Most introductory statistics textbooks (e.g., Snedecor and Cochran) contain more extensive tables than are included here. These tables are included for convenience.

1. Cumulative distribution function for the standard normal distribution
2. Upper critical values of Student's t-distribution with \boldsymbol{V} degrees of freedom
3. Upper critical values of the F -distribution with ν_{1} and ${ }^{\nu / 2}$ degrees of freedom
4. Upper critical values of the chi-square distribution with ν degrees of freedom
5. Critical values of t * distribution for testing the output of a linear calibration line at 3 points
6. Upper critical values of the normal PPCC distribution
7. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.7. Tables for Probability Distributions

1.3.6.7.1. Cumulative Distribution Function of the Standard Normal Distribution

How to Use This Table

The table below contains the area under the standard normal curve from 0 to z. This can be used to compute the cumulative distribution function values for the standard normal distribution.

The table utilizes the symmetry of the normal distribution, so what in fact is given is

$$
P[0 \leq x \leq|a|]
$$

where a is the value of interest. This is demonstrated in the graph below for $a=0.5$. The shaded area of the curve represents the probability that x is between 0 and a.

This can be clarified by a few simple examples.

1. What is the probability that x is less than or equal to 1.53 ? Look for 1.5 in the X column, go right to the 0.03 column to find the value 0.43699 . Now add 0.5 (for the probability less than zero) to obtain the final result of 0.93699 .
2. What is the probability that x is less than or equal to -1.53 ? For negative values, use the relationship
$P[x \leq a]=1-P[x \leq|a|] \quad$ for $x<0$
From the first example, this gives $1-0.93699=0.06301$.
3. What is the probability that x is between -1 and 0.5 ? Look up the
values for $0.5(0.5+0.19146=0.69146)$ and $-1(1-(0.5+$
$0.34134)=0.15866)$. Then subtract the results $(0.69146-$
0.15866) to obtain the result 0.5328 .

To use this table with a non-standard normal distribution (either the location parameter is not 0 or the scale parameter is not 1), standardize your value by subtracting the mean and dividing the result by the standard deviation. Then look up the value for this standardized value.

A few particularly important numbers derived from the table below, specifically numbers that are commonly used in significance tests, are summarized in the following table:

| p | 0.001 | 0.005 | 0.010 | 0.025 | 0.050 | 0.100 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Z_{p} | -3.090 | -2.576 | -2.326 | -1.960 | -1.645 | -1.282 |
| p | 0.999 | 0.995 | 0.990 | 0.975 | 0.950 | 0.900 |
| Z_{p} | +3.090 | +2.576 | +2.326 | +1.960 | +1.645 | +1.282 |

These are critical values for the normal distribution.

Area under the Normal Curve from 0 to X

\mathbf{x}	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09

$\begin{array}{llllllllllllll}0.0 & 0.00000 & 0.00399 & 0.00798 & 0.01197 & 0.01595 & 0.01994 & 0.02392 & 0.02790 & 0.03188\end{array}$ 0.03586
$\begin{array}{llllllllllll}0.1 & 0.03983 & 0.04380 & 0.04776 & 0.05172 & 0.05567 & 0.05962 & 0.06356 & 0.06749 & 0.07142\end{array}$ 0.07535
0.2
0.11409
$\begin{array}{llllllllllll}0.3 & 0.11791 & 0.12172 & 0.12552 & 0.12930 & 0.13307 & 0.13683 & 0.14058 & 0.14431 & 0.14803\end{array}$
0.15173
$\begin{array}{llllllllllll}0.4 & 0.15542 & 0.15910 & 0.16276 & 0.16640 & 0.17003 & 0.17364 & 0.17724 & 0.18082 & 0.18439\end{array}$
0.18793
$\begin{array}{llllllllllllllll}0.5 & 0.19146 & 0.19497 & 0.19847 & 0.20194 & 0.20540 & 0.20884 & 0.21226 & 0.21566 & 0.21904\end{array}$
0.22240
$\begin{array}{llllllllllllllll}0.6 & 0.22575 & 0.22907 & 0.23237 & 0.23565 & 0.23891 & 0.24215 & 0.24537 & 0.24857 & 0.25175\end{array}$
0.25490
$\begin{array}{llllllllllllllllll}0.7 & 0.25804 & 0.26115 & 0.26424 & 0.26730 & 0.27035 & 0.27337 & 0.27637 & 0.27935 & 0.28230\end{array}$
0.28524
$\begin{array}{lllllllllllllllllll}0.8 & 0.28814 & 0.29103 & 0.29389 & 0.29673 & 0.29955 & 0.30234 & 0.30511 & 0.30785 & 0.31057\end{array}$
0.31327
$\begin{array}{lllllllllllllllll}0.9 & 0.31594 & 0.31859 & 0.32121 & 0.32381 & 0.32639 & 0.32894 & 0.33147 & 0.33398 & 0.33646\end{array}$
0.33891
$\begin{array}{lllllllllllllll}1.0 & 0.34134 & 0.34375 & 0.34614 & 0.34849 & 0.35083 & 0.35314 & 0.35543 & 0.35769 & 0.35993\end{array}$
0.36214
$\begin{array}{llllllllllllllllll}1.1 & 0.36433 & 0.36650 & 0.36864 & 0.37076 & 0.37286 & 0.37493 & 0.37698 & 0.37900 & 0.38100\end{array}$
0.38298
$\begin{array}{llllllllllllllllll}1.2 & 0.38493 & 0.38686 & 0.38877 & 0.39065 & 0.39251 & 0.39435 & 0.39617 & 0.39796 & 0.39973\end{array}$
0.40147
$\begin{array}{llllllllllll}1.3 & 0.40320 & 0.40490 & 0.40658 & 0.40824 & 0.40988 & 0.41149 & 0.41308 & 0.41466 & 0.41621\end{array}$
0.41774
$\begin{array}{lllllllllll}1.4 & 0.41924 & 0.42073 & 0.42220 & 0.42364 & 0.42507 & 0.42647 & 0.42785 & 0.42922 & 0.43056\end{array}$ 0.43189
$\begin{array}{lllllllllll}1.6 & 0.44520 & 0.44630 & 0.44738 & 0.44845 & 0.44950 & 0.45053 & 0.45154 & 0.45254 & 0.45352\end{array}$
0.45449
$\begin{array}{lllllllllll}1.7 & 0.45543 & 0.45637 & 0.45728 & 0.45818 & 0.45907 & 0.45994 & 0.46080 & 0.46164 & 0.46246\end{array}$
0.46327
$\begin{array}{llllllllllll}1.8 & 0.46407 & 0.46485 & 0.46562 & 0.46638 & 0.46712 & 0.46784 & 0.46856 & 0.46926 & 0.46995\end{array}$
0.47062
$\begin{array}{llllllllllll}1.9 & 0.47128 & 0.47193 & 0.47257 & 0.47320 & 0.47381 & 0.47441 & 0.47500 & 0.47558 & 0.47615\end{array}$
0.47670
$\begin{array}{llllllllllll}2.0 & 0.47725 & 0.47778 & 0.47831 & 0.47882 & 0.47932 & 0.47982 & 0.48030 & 0.48077 & 0.48124\end{array}$
0.48169
$\begin{array}{lllllllllllll}2.1 & 0.48214 & 0.48257 & 0.48300 & 0.48341 & 0.48382 & 0.48422 & 0.48461 & 0.48500 & 0.48537\end{array}$
0.48574
$\begin{array}{llllllllllll}2.2 & 0.48610 & 0.48645 & 0.48679 & 0.48713 & 0.48745 & 0.48778 & 0.48809 & 0.48840 & 0.48870\end{array}$
0.48899
$2.3 \quad 0.48928 \quad 0.489560 .489830 .49010 \quad 0.49036 \quad 0.490610 .490860 .491110 .49134$
0.49158
$\begin{array}{lllllllllll}2.4 & 0.49180 & 0.49202 & 0.49224 & 0.49245 & 0.49266 & 0.49286 & 0.49305 & 0.49324 & 0.49343\end{array}$
0.49361
$2.5 \quad 0.49379 \quad 0.493960 .494130 .49430 \quad 0.494460 .494610 .494770 .494920 .49506$
0.49520
$2.6 \quad 0.49534 \quad 0.495470 .49560 \quad 0.495730 .49585 \quad 0.49598 \quad 0.496090 .496210 .49632$
0.49643
$2.7 \quad 0.496530 .496640 .496740 .496830 .496930 .497020 .497110 .497200 .49728$
0.49736
$2.8 \quad 0.49744 \quad 0.497520 .49760 \quad 0.497670 .497740 .497810 .497880 .497950 .49801$
0.49807
$\begin{array}{llllllllllll}2.9 & 0.49813 & 0.49819 & 0.49825 & 0.49831 & 0.49836 & 0.49841 & 0.49846 & 0.49851 & 0.49856\end{array}$
0.49861
$\begin{array}{lllllllllllll}3.0 & 0.49865 & 0.49869 & 0.49874 & 0.49878 & 0.49882 & 0.49886 & 0.49889 & 0.49893 & 0.49896\end{array}$
0.49900
$3.1 \quad 0.499030 .499060 .49910 \quad 0.499130 .499160 .49918 \quad 0.499210 .499240 .49926$
0.49929
$\begin{array}{lllllllllllll}3.2 & 0.49931 & 0.49934 & 0.49936 & 0.49938 & 0.49940 & 0.49942 & 0.49944 & 0.49946 & 0.49948\end{array}$
0.49950
$\begin{array}{lllllllllllll}3.3 & 0.49952 & 0.49953 & 0.49955 & 0.49957 & 0.49958 & 0.49960 & 0.49961 & 0.49962 & 0.49964\end{array}$
0.49965
$\begin{array}{llllllllllll}3.4 & 0.49966 & 0.49968 & 0.49969 & 0.49970 & 0.49971 & 0.49972 & 0.49973 & 0.49974 & 0.49975\end{array}$
0.49976
$\begin{array}{llllllllllll}3.5 & 0.49977 & 0.49978 & 0.49978 & 0.49979 & 0.49980 & 0.49981 & 0.49981 & 0.49982 & 0.49983\end{array}$
0.49983
$\begin{array}{llllllllllll}3.6 & 0.49984 & 0.49985 & 0.49985 & 0.49986 & 0.49986 & 0.49987 & 0.49987 & 0.49988 & 0.49988\end{array}$
0.49989
$3.7 \quad 0.49989 \quad 0.49990 \quad 0.49990 \quad 0.49990 \quad 0.499910 .499910 .499920 .499920 .49992$
0.49992
$\begin{array}{lllllllllllll}3.8 & 0.49993 & 0.49993 & 0.49993 & 0.49994 & 0.49994 & 0.49994 & 0.49994 & 0.49995 & 0.49995\end{array}$
0.49995
$3.9 \quad 0.499950 .499950 .499960 .49996 \quad 0.499960 .499960 .499960 .499960 .49997$
0.49997
$4.0 \quad 0.49997 \quad 0.49997 \quad 0.49997 \quad 0.49997 \quad 0.49997 \quad 0.49997 \quad 0.49998 \quad 0.49998 \quad 0.49998$
0.49998

NIST

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.7. Tables for Probability Distributions

1.3.6.7.2. Upper Critical Values of the Student's-t Distribution

How to Use This Table

This table contains the upper critical values of the Student's t-distribution. The upper critical values are computed using the percent point function. Due to the symmetry of the t-distribution, this table can be used for both 1-sided (lower and upper) and 2-sided tests using the appropriate value of α.

The significance level, α, is demonstrated with the graph below which plots a t distribution with 10 degrees of freedom. The most commonly used significance level is $\boldsymbol{\alpha}=0.05$. For a two-sided test, we compute the percent point function at $\alpha / 2(0.025)$. If the absolute value of the test statistic is greater than the upper critical value (0.025), then we reject the null hypothesis. Due to the symmetry of the t-distribution, we only tabulate the upper critical values in the table below.

Given a specified value for α :

1. For a two-sided test, find the column corresponding to $\alpha / \mathbf{2}$ and reject the null hypothesis if the absolute value of the test statistic is greater than the value of $t_{i x / 2}$ in the table below.
2. For an upper one-sided test, find the column corresponding to α and reject the null hypothesis if the test statistic is greater than the tabled value.
3. For an lower one-sided test, find the column corresponding to α and reject the null hypothesis if the test statistic is less than the negative of the tabled value.

Upper critical values of Student's t distribution with v degrees of freedom

31	1.309	1.696	2.040	2.453	2.744	3.375
32.	1.309	1.694	2.037	2.449	2.738	3.365
33.	1.308	1.692	2.035	2.445	2.733	3.356
34.	1.307	1.691	2.032	2.441	2.728	3.348
35.	1.306	1.690	2.030	2.438	2.724	3.340
36.	1.306	1.688	2.028	2.434	2.719	3.333
37.	1.305	1.687	2.026	2.431	2.715	3.326
38.	1.304	1.686	2.024	2.429	2.712	3.319
39.	1.304	1.685	2.023	2.426	2.708	3.313
40.	1.303	1.684	2.021	2.423	2.704	3.307
41	1.303	1.683	2.020	2.421	2.701	3.301
42.	1.302	1.682	2.018	2.418	2.698	3.296
43.	1.302	1.681	2.017	2.416	2.695	3.291
44.	1.301	1.680	2.015	2.414	2.692	3.286
45.	1.301	1.679	2.014	2.412	2.690	3.281
46 .	1.300	1.679	2.013	2.410	2.687	3.277
47 .	1.300	1.678	2.012	2.408	2.685	3.273
48.	1.299	1.677	2.011	2.407	2.682	3.269
49.	1.299	1.677	2.010	2.405	2.680	3.265
50.	1.299	1.676	2.009	2.403	2.678	3.261
51.	1.298	1.675	2.008	2.402	2.676	3.258
52.	1.298	1.675	2.007	2.400	2.674	3.255
53.	1.298	1.674	2.006	2.399	2.672	3.251
54	1.297	1.674	2.005	2.397	2.670	3.248
55.	1.297	1.673	2.004	2.396	2.668	3.245
56.	1.297	1.673	2.003	2.395	2.667	3.242
57.	1.297	1.672	2.002	2.394	2.665	3.239
58.	1.296	1.672	2.002	2.392	2.663	3.237
59.	1.296	1.671	2.001	2.391	2.662	3.234
60.	1.296	1.671	2.000	2.390	2.660	3.232
61	1.296	1.670	2.000	2.389	2.659	3.229
62.	1.295	1.670	1.999	2.388	2.657	3.227
63.	1.295	1.669	1.998	2.387	2.656	3.225
64	1.295	1.669	1.998	2.386	2.655	3.223
65.	1.295	1.669	1.997	2.385	2.654	3.220
66.	1.295	1.668	1.997	2.384	2.652	3.218
67.	1.294	1.668	1.996	2.383	2.651	3.216
68.	1.294	1.668	1.995	2.382	2.650	3.214
69.	1.294	1.667	1.995	2.382	2.649	3.213
70.	1.294	1.667	1.994	2.381	2.648	3.211
71.	1.294	1.667	1.994	2.380	2.647	3.209

1.3.6.7.2. Upper Critical Values of the Student's-t Distribution

72.	1.293	1. 666	1.993	2.379	2.646	3.207
73.	1.293	1.666	1.993	2.379	2.645	3.206
74.	1.293	1.666	1.993	2.378	2.644	3.204
75.	1.293	1.665	1.992	2.377	2.643	3.202
76.	1.293	1.665	1.992	2.376	2.642	3.201
77.	1.293	1.665	1.991	2.376	2.641	3.199
78.	1.292	1.665	1.991	2.375	2.640	3.198
79.	1.292	1.664	1.990	2.374	2.640	3.197
80.	1.292	1.664	1.990	2.374	2.639	3.195
81	1.292	1.664	1.990	2.373	2.638	3.194
82.	1.292	1.664	1.989	2.373	2.637	3.193
83.	1.292	1.663	1.989	2.372	2.636	3.191
84.	1.292	1.663	1.989	2.372	2.636	3.190
85.	1.292	1.663	1.988	2.371	2.635	3.189
86.	1.291	1.663	1.988	2.370	2.634	3.188
87.	1.291	1.663	1.988	2.370	2.634	3.187
88.	1.291	1.662	1.987	2.369	2.633	3.185
89.	1.291	1.662	1.987	2.369	2.632	3.184
90.	1.291	1.662	1.987	2.368	2.632	3.183
91	1.291	1.662	1.986	2.368	2.631	3.182
92.	1.291	1.662	1.986	2.368	2.630	3.181
93.	1.291	1.661	1.986	2.367	2.630	3.180
94.	1.291	1.661	1.986	2.367	2.629	3.179
95.	1.291	1.661	1.985	2.366	2.629	3.178
96.	1.290	1.661	1.985	2.366	2.628	3.177
97.	1.290	1.661	1.985	2.365	2.627	3.176
98.	1.290	1.661	1.984	2.365	2.627	3.175
99.	1.290	1.660	1.984	2.365	2.626	3.175
100.	1.290	1.660	1.984	2.364	2.626	3.174
∞	1.282	1.645	1.960	2.326	2.576	3.090

$\frac{\text { NIST }}{\text { SEMATECH }} \sqrt{\text { HOME }} \sqrt{\text { TOOLS \& AIDS }} \quad \sqrt{B A C K} \frac{\text { NEXT }}{}$

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.7. Tables for Probability Distributions

1.3.6.7.3. Upper Critical Values of the F Distribution

How to Use This Table

Contents

This table contains the upper critical values of the F distribution. This table is used for one-sided F tests at the $\alpha=0.05,0.10$, and 0.01 levels.

More specifically, a test statistic is computed with ν_{1} and ${ }^{\nu / 2}$ degrees of freedom, and the result is compared to this table. For a one-sided test, the null hypothesis is rejected when the test statistic is greater than the tabled value. This is demonstrated with the graph of an F distribution with $\boldsymbol{\nu}_{\boldsymbol{L}}=10$ and $\boldsymbol{l}^{\prime}=10$. The shaded area of the graph indicates the rejection region at the α significance level. Since this is a one-sided test, we have α probability in the upper tail of exceeding the critical value and zero in the lower tail. Because the F distribution is asymmetric, a two-sided test requires a set of of tables (not included here) that contain the rejection regions for both the lower and upper tails.

The following tables for ν_{2} from 1 to 100 are included:

1. One sided, 5% significance level, $\nu / 1=1-10$
2. One sided, 5% significance level, $\nu / 1=11-20$
3. One sided, 10% significance level, $\nu_{1}=1-10$
4. One sided, 10% significance level, $\nu_{1}=11-20$
5. One sided, 1% significance level, $\nu_{L}=1-10$
6. One sided, 1% significance level, $\nu_{1}=11-20$

Upper critical values of the F distribution

for ${ }^{v_{1}}$ numerator degrees of freedom and ${ }^{\boldsymbol{v}_{2}}$ denominator degrees of freedom 5\% significance level

$$
F_{.05}\left(v_{1}, v_{2}\right)
$$

	11	2	3	4	56	7	8
9	10						
v_{2}							
1	161.448	199.500	215.707	224.583	230.162	233.986	236.768
238.882	240.543	241.882					
	18.513	19.000	19.164	19.247	19.296	19.330	19.353
19.3713	19.385	19.396					
	10.128	9.552	9.277	9.117	9.013	8.941	8.887
8.845	8.812	8.786					
	7.709	6.944	6.591	6.388	6.256	6.163	6.094
6.0415	5.999	5.964					
	6.608	5.786	5.409	5.192	5.050	4.950	4.876
4.818	4.772	4.735					
6	5.987	5.143	4.757	4.534	4.387	4.284	4.207
4.1477	4.099	4.060					
	5.591	4.737	4.347	4.120	3.972	3.866	3.787
3.726	3.677	3.637					
8	5.318	4.459	4.066	3.838	3.687	3.581	3.500
3.438	3.388	3.347					
9	5.117	4.256	3.863	3.633	3.482	3.374	3.293
3.230	3.179	3.137					
10	4.965	4.103	3.708	3.478	3.326	3.217	3.135
3.07211	3.020	2.978					
	4.844	3.982	3.587	3.357	3.204	3.095	3.012
2.948	2.896	2.854					
12	4.747	3.885	3.490	3.259	3.106	2.996	2.913
2.84913	2.796	2.753					
	4.667	3.806	3.411	3.179	3.025	2.915	2.832
2.767	2.714	2.671					
	4.600	3.739	3.344	3.112	2.958	2.848	2.764
2.69915	2.646	2.602					
	4.543	3.682	3.287	3.056	2.901	2.790	2.707
2.641	2.588	2.544					

16
$4.494 \quad 3.634$
3.239
3.007
2.852 2.741 2.657 $2.5912 .538 \quad 2.494$

17
2.548

18
2.510

19
2.477

20
2.447

21
2.420

22
2.397

23
2.375

24
2.355

25
2.337

26
2. 321

27
2.305

28
2.291

29
2.278

30
2.266

31
2.255

32
2.244

33
2.235

34
2.225

35
2.217

36
2.209

37
2.201

38
2.194
$4.451 \quad 3.592$ $2.494 \quad 2.450$
$4.414 \quad 3.555$ $2.456 \quad 2.412$
$4.381 \quad 3.522$ $2.423 \quad 2.378$

$$
4.351 \quad 3.493
$$

$$
2.393 \quad 2.348
$$

$2.366^{4.325} 2.321$
$4.301 \quad 3.443$
3.049
2.817
2.661
2.549
2.464 $2.342 \quad 2.297$
$4.279 \quad 3.422$
3.028
2.796
2.640
2.528
2.442
$2.320 \quad 2.275$
$4.260 \quad 3.403$
3.009
2.776
2.621
2.508
2.423
$2.300 \quad 2.255$
$2.282^{4.242} 2.236$
2.991
2.759
2.603
2.490
2.405
2.975
2.743
2.587
2.474
2.388
$2.265 \quad 2.220$
$2.250^{4.210} 2.2044^{3.354}$
2.960
2.728
2.572
2.459
2.373
2.947
2.714
2.558
2.445
2.359
$2.236 \quad 2.190$
$2.223^{2.177^{3}}$
$4.171 \quad 3.316$
$2.211 \quad 2.165$
$4.160 \quad 3.305$ 2.1992 .153
$4.149 \quad 3.295$
2.901
2.668
2.512
2.399
2.313
$2.189 \quad 2.142$
$4.139 \quad 3.285$
2.892
2.659
2.503
2.389
2.303
$2.179 \quad 2.133$
$4.130 \quad 3.276$
2.883
2.650
2.494
2.380
2.294 $2.170 \quad 2.123$
$4.121 \quad 3.267$
2.874
2.641
2.485
2.372
2.285
2.1612 .114
$4.113 \quad 3.259$
2.866
2.634
2.477
2.364
2.277
$2.153 \quad 2.106$
$4.105 \quad 3.252$
2.859
2.626
2.470
2.356
2.270
$2.145 \quad 2.098$
$4.098 \quad 3.245$
$2.138 \quad 2.091$

39
$4.091 \quad 3.238$
2.845
2.612
2.456 2.342 2.255
$2.187 \quad 2.131 \quad 2.084$
40
$4.085 \quad 3.232$
2.839
2.606
2.449
2.336
2.249
2.180 $2.124 \quad 2.077$
41
$4.079 \quad 3.226$
2.833
2.600
2.443
2.330
2.243
$2.1742 .118 \quad 2.071$
42
4.073
3.220
2.827
2.594
2.438
2.324
2.237
2.168

43
2.163 $2.112 \quad 2.065$
$4.067 \quad 3.214$
2.822
2.589
2.432
2.318
2.232

44
2.157
$4.062 \quad 3.209$
2.816
2.584
2.427
2.313
2.226
2.1012 .054
2.152

46
2.147

47
2.143 48
2.138 49
$4.057 \quad 3.204$
2.812
2.579
2.422
2.308
2.221 $2.096 \quad 2.049$
$4.052 \quad 3.200$
2.807
2.574
2.417
2.304
2.216
$2.091 \quad 2.044$
$4.047 \quad 3.195$
2.802
2.570
2.413
2.299
2.212
$2.086 \quad 2.039$
$4.043 \quad 3.19$
$2.082 \quad 2.035$
2.134 50
2.130

51
2.126

52
2.122

53
2.119

54
2.115 55
2.112 56
2.109

57
2.106

58
2.103

59
2.100 60
2.097

61
2.094
$\begin{array}{lr}4.038 & 3.18 \\ 077 & 2.030\end{array}$
$4.034 \quad 3.183$
2.790
2.557
2.400
2.286
2.199 $2.073 \quad 2.026$

$$
2.069 \quad 2.022
$$

2.786
2.553
2.397
2.283
2.195
$2.066 \quad 2.018$
$2.7832 .550 \quad 2.393 \quad 2.279 \quad 2.192$
$2.062^{4.023} 2.0152^{3.172}$

$$
2.0020 .015
$$

$4.020 \quad 3.168$ $2.059 \quad 2.011$
$4.016 \quad 3.165$
2.773
2.540
2.383
2.2692 .181
$2.055 \quad 2.008$
$4.013 \quad 3.162$
2.769
2.537
2.380
2.266
2.178
$2.052 \quad 2.005$
$4.010 \quad 3.159$
2.766
2.534
2.377
2.263
2.175
$2.049 \quad 2.001$
$4.007 \quad 3.156$
2.764
2.531
2.374
2.260
2.172
$2.046 \quad 1.998$
$4.004 \quad 3.153$
2.761
2.528
2.371
2.257
2.169
2.0431 .995
$2.040 \quad 1.993$
$2.0377^{3.998} 1.990^{3.148}$

62
$3.996 \quad 3.145$
2.753
2.520 2.363 2.249
2.161
2.092 $2.035 \quad 1.987$
63
2.089
$3.993 \quad 3.143$
2.751
2.518
2.361
2.246
2.159
2.0321 .985
2.087
$3.991 \quad 3.140$
2.748
2.515
2.358
2.244
2.156
$2.030 \quad 1.982$
2.084

66
2.082

67
2.080

68
2.078

69
2.076

70
2.074

71
2.072

72
2.070

73
$3.989 \quad 3.138$
2.746
2.513
2.356
2.242
2.154
2.0271 .980
$3.986 \quad 3.136$
2.744
2.511
2.354
2.239
2.152 $2.025 \quad 1.977$
$3.984 \quad 3.134$
2.742
2.509
2.352
2.237
2.150
$2.023 \quad 1.975$
$3.982 \quad 3.132$
$2.021 \quad 1.973$
$3.980 \quad 3.130$
$2.019 \quad 1.971$
$3.978 \quad 3.128$
2.736
2.503
2.346
2.231
2.143
$2.017 \quad 1.969$
$3.976 \quad 3.126$
2.734
2.501
2.344
2.229
2.142
$2.015 \quad 1.967$
$2.013 \quad 1.965$
2.068

74 $2.011 \quad 1.963$
2.066

75
2.064

76
2.063

77
2.061

78
2.059

79
2.058

80
2.056

81
2.055

82
2.053

83
2.052

84
2.051
$3.970 \quad 3.120$
2.728
2.495
2.338
2.224
2.136

$$
2.009 \quad 1.961
$$

2.732
2.499
2.342
2.227
2.140

3.972	3.1
2.011	1.963
3.970	3.1

$$
2.007 \quad 1.959
$$

2.727
2.494
2.337
2.222
2.134
3.967
2.006
2.725
2.492
2.335
2.220
2.133
2.0061 .958
$3.965 \quad 3.115$
2.723
2.490
2.333
2.219
2.131 2.0041 .956
$3.963 \quad 3.114 \quad 2.722$
2.489
2.332
2.217
2.129
2.0021 .954
$3.962 \quad 3.112 \quad 2.720$
2.487
2.330
2.216
2.128
$2.001 \quad 1.953$
$3.960 \quad 3.111$
2.719
2.486
2.329
2.214
2.126
$1.999 \quad 1.951$
$3.959 \quad 3.109$
2.717
2.484
2.327
2.213
2.125
$1.998 \quad 1.950$
$3.957 \quad 3.108$
2.716
2.483
2.326
2.211
2.123
1.9961 .948
$3.956 \quad 3.107$
2.715
2.482
2.324
2.210
2.122
$1.995 \quad 1.947$
$3.955 \quad 3.105$
2.713
2.480
2.323
2.209
2.121
$85 \quad 3.953 \quad 3.104$ $2.049 \quad 1.992 \quad 1.944$

86	3.952	3.103	2.711	2.478	2.321	2.206	2.118

$2.048 \quad 1.991 \quad 1.943$
$87 \quad 3.951 \quad 3.101$
$2.7092 .4762 .3192 .205 \quad 2.117$
$2.047 \quad 1.989 \quad 1.941$ $\begin{array}{llllllll}88 & 3.949 & 3.100 & 2.708 & 2.475 & 2.318 & 2.203 & 2.115\end{array}$
$2.0451 .988 \quad 1.940$
$89 \quad 3.948 \quad 3.099$
$2.044 \quad 1.987 \quad 1.939$
$90 \quad 3.947 \quad 3.098$
2.0431 .9861 .938
$91 \quad 3.946 \quad 3.097$
2.0421 .9841 .936

	92	3.945	3.095	2.704	2.471	2.313	2.199

$2.041 \quad 1.983 \quad 1.935$

93	3.943	3.094	2.703	2.470	2.312	2.198	2.110
2.040	1. 982	1.934					
94	3.942	3.093	2.701	2.469	2.311	2.197	2.109
2.038	1. 981	1.933					
95	3.941	3.092	2.700	2.467	2.310	2.196	2.108
2.037	1. 980	1. 932					
96	3.940	3.091	2.699	2.466	2.309	2.195	2.106

$2.036 \quad 1.979 \quad 1.931$
$\begin{array}{llllllll} & 97 & 3.939 & 3.090 & 2.698 & 2.465 & 2.308 & 2.194\end{array}$
$2.035 \quad 1.978 \quad 1.930$
$\begin{array}{llllllll}98 & 3.938 & 3.089 & 2.697 & 2.465 & 2.307 & 2.193 & 2.104\end{array}$
2.0341 .9771 .929
$99 \quad 3.937 \quad 3.088$
$2.033 \quad 1.976 \quad 1.928$
$100 \quad 3.936 \quad 3.087$
2.0321 .9751 .927
$2.712 \quad 2.479$
2.322
2.207
2.119

4	5.936	5.912	5.891	5.873	5.858	5.844	5.832
5.821	5.811	5.803					
5	4.704	4.678	4.655	4.636	4.619	4.604	4.590
4.579	4.568	4.558					
6	4.027	4.000	3.976	3.956	3.938	3.922	3.908
3.896	3.884	3.874					
7	3.603	3.575	3.550	3.529	3.511	3.494	3.480
3.467	3.455	3.445					
8	3.313	3.284	3.259	3.237	3.218	3.202	3.187
3.173	3.161	3.150					
9	3.102	3.073	3.048	3.025	3.006	2.989	2.974
2.960	2.948	2.936					
10	2.943	2.913	2.887	2.865	2.845	2.828	2.812
2.798	2.785	2.774					
11	2.818	2.788	2.761	2.739	2.719	2.701	2.685
2.671	2.658	2.646					
12	2.717	2.687	2.660	2.637	2.617	2.599	2.583
2.568	2.555	2.544					
13	2.635	2.604	2.577	2.554	2.533	2.515	2.499
2.484	2.471	2.459					
14	2.565	2.534	2.507	2.484	2.463	2.445	2.428
2.413	2.400	2.388					
15	2.507	2.475	2.448	2.424	2.403	2.385	2.368
2.353	2.340	2.328					
16	2.456	2.425	2.397	2.373	2. 352	2.333	2.317
2.302	2.288	2.276					
17	2.413	2.381	2.353	2.329	2.308	2.289	2.272
2.257	2.243	2.230					
18	2.374	2.342	2.314	2.290	2.269	2.250	2.233
2.217	2.203	2.191					
19	2.340	2.308	2.280	2.256	2.234	2.215	2.198
2.182	2.168	2.155					
20	2.310	2.278	2.250	2.225	2.203	2.184	2.167
2.151	2.137	2.124					
21	2.283	2.250	2.222	2.197	2.176	2.156	2.139
2.123	2.109	2.096					
22	2.259	2.226	2.198	2.173	2.151	2.131	2.114
2.098	2.084	2.071					
23	2.236	2.204	2.175	2.150	2.128	2.109	2.091
2.075	2.061	2.048					
24	2.216	2.183	2.155	2.130	2.108	2.088	2.070
2.054	2.040	2.027					
25	2.198	2. 165	2.136	2.111	2.089	2.069	2.051
2.035	2.021	2.007					
26	2.181	2.148	2.119	2.094	2.072	2.052	2.034
2.018	2.003	1.990					

27
$2.166 \quad 2.132$
2.103
2.078
2.056 2.036 2.018 $2.002 \quad 1.987 \quad 1.974$
2.1512 .118
2.089
2.064
2.041
2.021
2.003
$1.987 \quad 1.972 \quad 1.959$
$\begin{array}{lll}29 & 2.138 & 2.104\end{array}$
$1.9731 .958 \quad 1.945$
30
1.960
$2.126 \quad 2.092$

31
1.948
2.1142 .080
1.9331 .920
$32 \quad 2.103 \quad 2.070$
1.9371 .9221 .908
$33 \quad 2.093 \quad 2.060$
1.926
$1.911 \quad 1.898$
$34 \quad 2.084 \quad 2.050$
1.917
1.9021 .888
$35 \quad 2.075 \quad 2.041$
1.907
$1.892 \quad 1.878$
36
$2.067 \quad 2.033$
2.003
1.977
1.954
1.934
1.915
1.899
1.8831 .870

37
1.890
$2.059 \quad 2.025$
1.995
1.969
1.946
1.926
1.907
1.8751 .861
1.883 39
2.051
2.017
1.988

1. 962
1.939
1.918
1.899
1.875

40
1.868
1.8671 .853

41
$2.044 \quad 2.010$
1.981
1.954
1.931
1.911
1.892
1.862

42
1.855

43
1.849
$2.038 \quad 2.003$
$1.853 \quad 1.839$

44
1.844 45
1.838 46
$\mathrm{m}_{1.846}^{2.031 \quad 1.997}$

1. 997
1.974
1.948
1.924
1.904
1.885
2.0251 .991
$1.840 \quad 1.826$
$2.020 \quad 1.985$
$1.967 \quad 1.941$
1.918
1.897
1.879
$1.834 \quad 1.820$
$2.014 \quad 1.980$
1.950
1.924
1.900
1.879
1.861
$1.828 \quad 1.814$
$2.009 \quad 1.974$
1.945
1.918
1.895
1.874
1.855
$1.823 \quad 1.808$
$2.004 \quad 1.969$
1.940
1.913
1.890
1.869
1.850
1.833
$1.817 \quad 1.803$
$1.999 \quad 1.965$
1.935
1.908
1.885
1.864
1.845
1.828
$1.812 \quad 1.798$
$1.995 \quad 1.960$
1.930
1.904
1.880
1.859
1.840
1.823

49
$1.807 \quad 1.793$
$1.990 \quad 1.956$
1.926
1.899
1.876
1.855
1.836

50
1.9861 .952
1.921
1.895
1.871
1.850
1.831 $1.8141 .798 \quad 1.784$
$\begin{array}{llr}51 & 1.982 & 1.947\end{array}$ $1.810 \quad 1.794 \quad 1.780$
$52 \quad 1.978 \quad 1.944$
$1.806 \quad 1.790 \quad 1.776$
53
1.802
$1.975 \quad 1.940$ 1.910
1.883
1.859
1.838
1.819

54 $1.786 \quad 1.772$
1.798
$1.971 \quad 1.936$
1.906
1.879
1.856
1.835
1.816

55
$1.782 \quad 1.768$
1.795
$1.968 \quad 1.933$
1.903
1.876
1.852
1.831
1.812

56
$1.779 \quad 1.764$
1.791
$1.964 \quad 1.930$
1.899
1.873
1.849
1.828
1.809

57
$1.775 \quad 1.761$
1.788
$1.961 \quad 1.926$
1.896
1.869
1.846
1.824
1.805

58
$1.772 \quad 1.757$
$1.958 \quad 1.923$
1.893
1.866
1.842
1.821
1.802
1.785
$1.769 \quad 1.754$
59
$1.955 \quad 1.920$
1.890
1.863
1.839
1.818
1.799
1.781 60
$1.766 \quad 1.751$
1.778

61
$1.952 \quad 1.917$
1.887
1.860
1.836
1.815
1.796
1.776

62
$1.763 \quad 1.748$
1.773

63
1.949
1.915
1.884
1.857
1.834
1.812
1.793
1.770
$1.760 \quad 1.745$

64
1.767
$1.947 \quad 1.912$
1.882
1.855
1.831
1.809
1.790

65
1.765 $1.757 \quad 1.742$

66
1.762

67
1.760 68
$1.944 \quad 1.909$
1.8791 .852
1.828
1.807
1.787

$$
1.754 \quad 1.739
$$

$1.942 \quad 1.907$
1.876
1.849
1.826
1.804
1.785
$1.751 \quad 1.737$
$1.939 \quad 1.904$
$1.874 \quad 1.847$
1.823
1.802
1.782
$1.749 \quad 1.734$
$1.937 \quad 1.902$
$1.871 \quad 1.845$
1.821
1.799
1.780
$1.746 \quad 1.732$
$1.935 \quad 1.900$
$1.869 \quad 1.842$
1.818
1.797
1.777
$1.932 \quad 1.897$
1.867
1.840
1.816
1.795
1.775
1.758

69
1.755
$1.930 \quad 1.895$
1.865
1.838
1.814
1.792
1.773

70
1.753
$1.928 \quad 1.893$
1.863
1.836
1.812
1.790
1.771

71
$1.737 \quad 1.722$
1.751

72
$1.926 \quad 1.891$
1.861
1.834
1.810
1.788
1.769
1.749
$1.735 \quad 1.720$
$1.924 \quad 1.889$
1.8591 .832
1.808
1.786
1.767
$73 \quad 1.922 \quad 1.887$
1.8571 .830
1.8061 .784
1.765 $1.7471 .731 \quad 1.716$
74 1.921 1.885
1.8551 .828
$1.804 \quad 1.782$
1.763
$1.745 \quad 1.729 \quad 1.714$
$75 \quad 1.919 \quad 1.884$
$1.743 \quad 1.727 \quad 1.712$
$\begin{array}{llr}76 & 1.917 & 1.882\end{array}$
$1.741 \quad 1.725 \quad 1.710$
$\begin{array}{lrr}77 & 1.915 & 1.880\end{array}$
$1.739 \quad 1.723 \quad 1.708$
$78 \quad 1.914 \quad 1.878$
1.738
$1.721 \quad 1.707$
$79 \quad 1.912 \quad 1.877$
1.736
$1.720 \quad 1.705$
$80 \quad 1.910 \quad 1.875$
1.734
$1.718 \quad 1.703$
81
$1.909 \quad 1.874$
1.843
1.816
1.792
1.770
1.750
1.733
$1.716 \quad 1.702$
82
$1.907 \quad 1.872$
1.841
1.814
1.790
1.768
1.749
1.731
$1.715 \quad 1.700$
83
$1.906 \quad 1.871$
1.729

84
1.728

85
1.726

86
1.725

87
$1.713 \quad 1.698$
1.724
$1.905 \quad 1.869$
$1.712 \quad 1.697$

88
1.722
1.9031 .868
$1.710 \quad 1.695$
1.840
1.813
1.789
1.767
1.747

89
1.721
$1.902 \quad 1.867$
1.838
1.811
1.787
1.765
1.746

90
1.720

91
1.718
$92 \quad 1.894 \quad 1.859$
1.717
$1.701 \quad 1.686$
93
1.716
$1.893 \quad 1.858$
$1.699 \quad 1.684$
94
$1.892 \quad 1.857$
$1.698 \quad 1.683$
1.715

95
$1.891 \quad 1.856$
1.713
$1.900 \quad 1.865$
$1.707 \quad 1.692$
$1.899 \quad 1.864$ $1.706 \quad 1.691$
$1.898 \quad 1.863$ $1.705 \quad 1.690$
$1.897 \quad 1.861$ $1.703 \quad 1.688$
$1.895 \quad 1.860$ $1.702 \quad 1.687$.
1.827
1.800
1.826
1.798
1.774
1.752
1.733
$\begin{array}{llllllll}96 & 1.890 & 1.854 & 1.823 & 1.796 & 1.772 & 1.750 & 1.730\end{array}$ $1.712 \quad 1.696 \quad 1.681$
$\begin{array}{llllllll}97 & 1.889 & 1.853 & 1.822 & 1.795 & 1.771 & 1.749 & 1.729\end{array}$
$1.711 \quad 1.695 \quad 1.680$
$\begin{array}{llllllll}98 & 1.888 & 1.852 & 1.821 & 1.794 & 1.770 & 1.748 & 1.728\end{array}$
$1.710 \quad 1.694 \quad 1.679$
$\begin{array}{llllllll}99 & 1.887 & 1.851 & 1.820 & 1.793 & 1.769 & 1.747 & 1.727\end{array}$
$1.709 \quad 1.693 \quad 1.678$
$\begin{array}{llllllll}100 & 1.886 & 1.850 & 1.819 & 1.792 & 1.768 & 1.746 & 1.726\end{array}$
$1.7081 .691 \quad 1.676$

Upper critical values of the \mathbf{F} distribution

for ${ }^{v_{1}}$ numerator degrees of freedom and ${ }^{\boldsymbol{v}_{2}}$ denominator degrees of freedom 10% significance level

$$
F_{.10}\left(v_{1}, v_{2}\right)
$$

	v_{1}	1	2	3	4	5	6	7	8

1
$39.863 \quad 49.500 \quad 53.593$
55.833
57.240
58.204
58.906 $59.439 \quad 59.858 \quad 60.195$
$2 \quad 8.526 \quad 9.000 \quad 9.162 \quad 9.243 \quad 9.293 \quad 9.326 \quad 9.349$
$9.367 \quad 9.381 \quad 9.392$
$\begin{array}{llllllll}3 & 5.538 & 5.462 & 5.391 & 5.343 & 5.309 & 5.285 & 5.266\end{array}$
$5.2525 .240 \quad 5.230$
$\begin{array}{llllllll}4 & 4.545 & 4.325 & 4.191 & 4.107 & 4.051 & 4.010 & 3.979\end{array}$
3.955
$3.936 \quad 3.920$
$\begin{array}{llllllll}5 & 4.060 & 3.780 & 3.619 & 3.520 & 3.453 & 3.405 & 3.368\end{array}$
3.339
$3.316 \quad 3.297$
$6 \quad 3.776 \quad 3.463$
3.289
3.181
3.108
3.055
3.014
$2.983 \quad 2.958 \quad 2.937$
$\begin{array}{llllllll}7 & 3.589 & 3.257 & 3.074 & 2.961 & 2.883 & 2.827 & 2.785\end{array}$
$2.752 \quad 2.725 \quad 2.703$
$\begin{array}{llllllll}8 & 3.458 & 3.113 & 2.924 & 2.806 & 2.726 & 2.668 & 2.624\end{array}$
$2.589 \quad 2.561 \quad 2.538$
$\begin{array}{llllllll}9 & 3.360 & 3.006 & 2.813 & 2.693 & 2.611 & 2.551 & 2.505\end{array}$
$2.4692 .440 \quad 2.416$
$10 \quad 3.285 \quad 2.924$ $2.377 \quad 2.347 \quad 2.323$
11
2.304

12
2.245

13
2.195

14
2.154

15
2.119

16
2.088

17
2.061

18
2.038

19
2.017

20
1.999

21

1. 982

22
1.967

23
1.953

24
1.941

25
1.929

26
1.919

27
1.909

28
1.900

29
1.892

30
1.884

31
1.877

32
1.870
$3.225 \quad 2.860$ $2.347 \quad 2.323$ $2.274 \quad 2.248$
$3.177 \quad 2.807$
$2.214 \quad 2.188$
$3.136 \quad 2.763$ $2.164 \quad 2.138$
$3.102 \quad 2.726$ $2.122 \quad 2.095$
$3.073 \quad 2.695$
$2.086 \quad 2.059$
$2.055^{3.048} 2.668$
2.0552 .028
$2.028 \quad 2.026$ $2.005 \quad 1.977$
2.990 2.606
1.9841 .956
$2.975 \quad 2.589$
$1.965 \quad 1.937$
1.9481 .920

$$
1.933 \quad 1.904
$$

$\begin{array}{ll}1.919 & 2.9379\end{array}$
1.9191 .890
$1.906 \quad 1.877$
1.895 2.518
$1.895 \quad 1.866$
$2.909 \quad 2.519$
$1.884 \quad 1.855$
$2.901 \quad 2.511$
$1.874 \quad 1.845$
$2.894 \quad 2.503$
$1.865 \quad 1.836$
$2.887 \quad 2.495$
$1.857 \quad 1.827$
$2.881 \quad 2.489$
$1.849 \quad 1.819$
$2.875 \quad 2.482$
$1.842 \quad 1.812$
$2.869 \quad 2.477$
2.728
2.605
2.522
2.461
2.414
2.660
2.536
2.451
2.389
2.342
2.6062 .480
2.394
2.331
2.283
$2.560 \quad 2.434$
2.347
2.283
2.234
2.522
2.395
2.307
2.243
2.193
$2.490 \quad 2.361$
2.273
2.208
2.158
2.462
2.333
2.244
2.178
2.128
2.397
2.266
2.176
2.109
2.058
2.3802 .249
2.158
2.091
2.040
2.339
2.207
2.115
2.047
1.995
2.317
2.184
2.092
2.024
1.971
2.307
2.174
2.082
2.014

1. 961
2.299
2.165
2.073
2.005
1.952
2.291
2.157
2.064
1.996
1.943
2.2832 .149
2.057
1.988
1.935
2.276
2.142
2.049
1.980
1.927
2.270
2.136
2.042
1.973
1.920
2.263
2.129
2.036
1.967
1.913

33
$2.864 \quad 2.471$
2.2582 .123
2.030

1. 961
1.907 $1.864 \quad 1.828 \quad 1.799$
$\begin{array}{llll}34 & 2.859 & 2.466 \\ 1.858 & 1.822 & 1.793\end{array}$ $1.858 \quad 1.822 \quad 1.793$
$35 \quad 2.855 \quad 2.461$
$1.852 \quad 1.817 \quad 1.787$
$\begin{array}{lrrr}36 & 2.850 & 2.456\end{array}$
$1.847 \quad 1.811 \quad 1.781$
$37 \quad 2.846 \quad 2.452$
$1.842 \quad 1.806 \quad 1.776$
$38 \quad 2.842 \quad 2.448$
$1.838 \quad 1.802 \quad 1.772$
$39 \quad 2.839 \quad 2.444$
$1.833 \quad 1.797 \quad 1.767$
$40 \quad 2.835 \quad 2.440$
$1.829 \quad 1.793 \quad 1.763$
41
$2.832 \quad 2.437$
2.222
2.087
1.993
1.923
1.869
$1.825 \quad 1.789 \quad 1.759$
42
2.8292 .434
2.219
2.084
1.989
1.919
1.865
$1.821 \quad 1.785 \quad 1.755$
43
1.817

44
$2.826 \quad 2.430$
2.216
2.080
1.986
1.916
1.861
1.814 45
1.811 46
1.808

47
1.805 48
1.802 49
1.799 50
1.796 51
1.794

52
1.791

53
1.789

54
1.787

55
1.785
$2.823 \quad 2.427$
2.213
2.077
1.983
1.913
1.858
$1.778 \quad 1.747$
$2.820 \quad 2.425$
2.210
2.074
1.980
1.909
1.855
$1.774 \quad 1.744$
$2.818 \quad 2.422$
2.2072 .071
1.977
1.906
1.852
$1.771 \quad 1.741$
$2.815 \quad 2.419$
2.2042 .068
1.974
1.903
1.849
$1.768 \quad 1.738$
$2.813 \quad 2.417$
2.202
2.066
1.971
1.901
1.846
$1.765 \quad 1.735$
$2.811 \quad 2.414$
2.199
2.063
1.968
1.898
1.843
$1.763 \quad 1.732$
$2.809 \quad 2.412$
2.197
2.061
1.966
1.895
1.840
$1.760 \quad 1.729$
$2.807 \quad 2.410$
2.194
2.058
1.964
1.893
1.838
$1.757 \quad 1.727$
$2.805 \quad 2.408$
2.192
2.056
1.961
1.891
1.836
$1.755 \quad 1.724$
$2.803 \quad 2.406$
2.190
2.054
1.959
1.888
1.833
$1.752 \quad 1.722$
$2.801 \quad 2.404$
2.188
2.052
1.957
1.886
1.831

56
$2.797 \quad 2.400$
2.1842 .048 1.953 1.882 1.827 $1.782 \quad 1.746 \quad 1.715$
$57 \quad 2.796 \quad 2.398$ $1.780 \quad 1.744 \quad 1.713$ $58 \quad 2.794 \quad 2.396$ $1.7791 .742 \quad 1.711$ $59 \quad 2.793 \quad 2.395$ $1.777 \quad 1.740 \quad 1.709$ $60 \quad 2.791 \quad 2.393$ $1.775 \quad 1.738 \quad 1.707$ $61 \quad 2.790 \quad 2.392$
$1.773 \quad 1.736 \quad 1.705$
$62 \quad 2.788 \quad 2.390$
$1.771 \quad 1.735 \quad 1.703$
$63 \quad 2.787 \quad 2.389$
$1.770 \quad 1.733 \quad 1.702$
$64 \quad 2.786 \quad 2.387$
2.171
2.170
2.033
1.938
1.867
1.811
1.768
65
1.767
$1.731 \quad 1.700$

66
$1.730 \quad 1.699$
1.765

67
$2.783 \quad 2.385$
2.169
2.032
1.937
1.865
1.810
1.764

68
$1.728 \quad 1.697$
1.762

69
1.761

70
1.760

71
1.758

72
1.757

73
1.756

74
1.755

75
1.754

76
1.752

77
1.751

78
1.750
$2.782 \quad 2.384$
2.167
2.031
1.935
1.864
1.808
$1.727 \quad 1.696$
$2.781 \quad 2.382$
2.166
2.029
1.934
1.863
1.807
$1.725 \quad 1.694$

$$
1.724 \quad 1.693
$$

2.165
2.028
1.933
1.861 1.806
2.164
2.027
1.931
1.860
1.804
$2.163 \quad 2.026 \quad 1.930 \quad 1.859 \quad 1.803$
$1.721 \quad 1.690$
$2.777 \quad 2.378$
2.161
2.025
1.929
1.858
1.802
$1.720 \quad 1.689$
$2.776 \quad 2.377$
2.160
2.024
1.928
1.856
1.801
$1.719 \quad 1.687$
$2.775 \quad 2.376$
2.159
2.022
1.927
1.855
1.800
1.7181 .686
$2.774 \quad 2.375$
2.158
2.021
1.926
1.854
1.798
$1.716 \quad 1.685$
$2.773 \quad 2.374$
2.157
2.020
1.925
1.853
1.797
2.156
2.019
1.924
1.852
1.796
$1.714 \quad 1.683$
$2.771 \quad 2.372$
2.155
2.018
1.851
1.795
$1.749 \quad 1.712 \quad 1.681$

| 80 | 2.769 | 2.370 |
| :--- | :--- | :--- | :--- |
| 1.748 | 1.711 | 1.680 | $1.748 \quad 1.711 \quad 1.680$

$$
81 \quad 2.769 \quad 2.369
$$

$$
1.747 \quad 1.710 \quad 1.679
$$

$$
82 \quad 2.768 \quad 2.368
$$

$$
1.746 \quad 1.709 \quad 1.678
$$

$$
\begin{array}{lll}
83 & 2.767 \quad 2.368
\end{array}
$$

1.745
$1.708 \quad 1.677$
84
$2.766 \quad 2.367$
2.150
2.013
1.917
1.845
1.790
1.744
$1.707 \quad 1.676$
$85 \quad 2.765 \quad 2.366$
1.744
$1.706 \quad 1.675$
86
$2.765 \quad 2.365$
2.149
2.148
2.147
2.146
2.009
1.913
1.841
1.785
1.740 90
1.739

91
1.739

92
1.738

93
1.737

94
1.736

95
1.736

96
1.735

97
1.734 98
1.734 99
1.733

100
1.732
$1.705 \quad 1.674$
$2.764 \quad 2.365$
. 148
2.011
1.915
1.843
1.787
1.742
$1.705 \quad 1.673$
88
$2.763 \quad 2.364$
2.010
1.914
1.842
1.786
1.741
$1.704 \quad 1.672$
89
$2.763 \quad 2.363$
2.146
2.008

1. 912
1.841
1.785
1.7021 .670
$2.761 \quad 2.362$
2.145
2.008
1.912
1.840
1.784
$1.701 \quad 1.670$
$2.761 \quad 2.361$
2.144
2.007
1.911
1.839
1.783
$1.701 \quad 1.669$
1.700 2.760 2.361
$1.700 \quad 1.668$

| | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 19 | \backslash | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| 20 | | | | | | | | |

1	60.473	60.705	60.903	61.073	61.220	61.350	61.464
61.566	61.658	61.740					
2	9.401	9.408	9.415	9.420	9.425	9.429	9.433
9.436	9.439	9.441					
3	5.222	5.216	5.210	5.205	5.200	5.196	5.193
5.190	5.187	5.184					
4	3.907	3.896	3.886	3.878	3.870	3.864	3.858
3.853	3.849	3.844					
5	3.282	3.268	3.257	3.247	3.238	3.230	3.223
3.217	3.212	3.207					
6	2.920	2.905	2.892	2.881	2.871	2.863	2.855
2.848	2.842	2.836					
7	2.684	2.668	2.654	2.643	2.632	2.623	2.615
2.607	2.601	2.595					
8	2.519	2.502	2.488	2.475	2.464	2.455	2.446
2.438	2.431	2.425					
9	2.396	- 2.379	2.364	2. 351	2.340	2.329	2.320
2.312	2.305	2.298					
10	2.302	2.284	2.269	2.255	2.244	2.233	2.224
2.215	2.208	2.201					
11	2.227	2.209	2.193	2.179	2.167	2.156	2.147
2.138	2.130	2.123					
12	2.166	- 2.147	2.131	2.117	2.105	2.094	2.084
2.075	2.067	2.060					
13	2.116	2.097	2.080	2.066	2.053	2.042	2.032
2.023	2.014	2.007					
14	2.073	2.054	2.037	2.022	2.010	1.998	1.988
1.978	1.970	1.962					
15	2.037	2.017	2.000	1.985	1.972	1.961	1.950
1.941	1.932	1. 924					
16	2.005	1.985	1.968	1.953	1.940	1.928	1.917
1.908	1.899	1.891					
17	1.978	1.958	1.940	1.925	1.912	1.900	1.889
1.879	1.870	1.862					
18	1.954	1.933	1.916	1.900	1.887	1.875	1.864
1.854	1.845	1.837					
19	1.932	1.912	1.894	1.878	1.865	1. 852	1.841
1.831	1.822	1.814					
20	1.913	1.892	1.875	1.859	1.845	1.833	1.821
1.811	1.802	1.794					

$21 \quad 1.896 \quad 1.875$
1.8571 .841
1.827
1.815
1.803 $1.793 \quad 1.784 \quad 1.776$
$\begin{array}{cccc}22 & 1.880 & 1.859 \\ 1.777 & 1.768 & 1.759\end{array}$
$1.777 \quad 1.768 \quad 1.759$
23
1.762

24
1.748

25
1.736

26
1.724

27
1.714 28
1.704

29
1.695

30
1.686

31
1.678

32
1.671

33
1.664

34
1.657

35
1.651

36
1.645

37
1.640

38
1.635 39
1.630 40
1.625

41
1.620

42
1.616

43
1.612 $\begin{array}{cc}1.866 & 1.845 \\ 1.753 & 1.744\end{array}$ $1.7359^{1.8} 1.832$
1.730
$1.841 \quad 1.820$
$1.726 \quad 1.718$
$1.830 \quad 1.809$
$1.715 \quad 1.706$
$1.820 \quad 1.799$
1.7041 .695
$1.811 \quad 1.790$
1.6941 .685
$1.802 \quad 1.781$
1.6851 .676
$1.676^{1.794} 1.667$
$1.787 \quad 1.765$
$1.668 \quad 1.659$
$1.661 \quad 1.652$
$1.773 \quad 1.751$
$1.654 \quad 1.645$

$$
1767
$$

$1.647 \quad 1.638$

1. 1.761 1.739
$1.641 \quad 1.632$
$1.756 \quad 1.734$
1.6351 .626
$1.751 \quad 1.729$
$1.630 \quad 1.620$
$1.746 \quad 1.724$
$1.624 \quad 1.615$
$1.741 \quad 1.719$
$1.619 \quad 1.610$
$1.737 \quad 1.715$
$1.615 \quad 1.605$
$1.733 \quad 1.710$
$1.610 \quad 1.601$
$1.729 \quad 1.706$
1.841
1.825
1.811
1.798
1.787 1.8271 .811 $1.796 \quad 1.784 \quad 1.772$ 1.8141 .797
1.783
1.770
1.759
1.8021 .785
1.771
1.758
1.746
1.790
1.774
1.760
1.747
1.735
1.780
1.764
1.749
1.736
1.724
1.771
1.754
1.740
1.726
1.715
1.762
1.745
1.731
1.717
1.705
1.7541 .737
1.722
1.709
1.697
$1.746 \quad 1.729$
1.714
1.701
1.689
1.732
1.732
1.700
1.687
1.675
1.715
1.697
1.682
1.669
1.656
1.7091 .692
1.677
1.663
1.651
1.704
1.687
1.672
2. 658
1.646
$1.700 \quad 1.682$
1.667
1.653
1.641
1.695
1.678
1.662
1.649
1.636
1.691
1.673
1.658
1.644
1.632
1.6871 .669
1.654
1.640
1.628
$44 \quad 1.721 \quad 1.699$ $1.608 \quad 1.598 \quad 1.588$

45
$1.718 \quad 1.695$
$1.605 \quad 1.594 \quad 1.585$
46
1.601

47
1.598

48
1.594 49
1.591

50
1.588

51
1.586

52
1.583

53
1.580

54
1.578 55
1.575
56
1.573 57
1.571
58
1.568 59
1.566

60
1.564

61
1.562

62
1.560 63
1.558

64	1.673	
1.557	1.546	1.536
65	1.672	
1.540		
1.555	1.544	1.534
66	1.670	
1.553	1.542	1.532

64	1.673	
1.557	1.546	1.536
65	1.672	
1.540		
1.555	1.544	1.534
66	1.670	
1.553	1.542	1.532

64	1.673	
1.557	1.546	1.536
65	1.672	
1.540		
1.555	1.544	1.534
66	1.670	
1.553	1.542	1.532

64	1.673	
1.557	1.546	1.536
65	1.672	
1.550	1.649	
1.555	1.544	1.534
66	1.670	
1.553	1.542	1.532

64	1.673	
1.557	1.546	1.536
65	1.672	
1.540		
1.555	1.544	1.534
66	1.670	
1.553	1.542	1.532

64	1.673	
1.557	1.546	1.536
65	1.672	
1.555	1.544	1.534
1.56	1.670	
1.553	1.542	1.532

$1.709 \quad 1.686$ $1.584 \quad 1.574$
$1.706 \quad 1.683$ $1.581 \quad 1.571$
$1.703 \quad 1.680$
$1.578 \quad 1.568$
$1.700 \quad 1.677$
1.5751 .565
$1.698 \quad 1.675$
$1.572 \quad 1.562$
$1.695 \quad 1.672$
$1.570 \quad 1.560$
$1.693 \quad 1.670$
$1.567 \quad 1.557$
${ }_{1.564}^{1.691} 1.555^{1.668}$
${ }_{1.562^{1.688} 1.552^{1.666}}$
1.686
$1.560 \quad 1.550$
$15^{1.684}{ }^{1.661}$
$1.558 \quad 1.548$
$1.682 \quad 1.659$ $1.555 \quad 1.546$
$1.680 \quad 1.657$ $1.553 \quad 1.543$
$1.679 \quad 1.656$
$1.551 \quad 1.541$
$1.677 \quad 1.654$
$1.549 \quad 1.540$
$1.675 \quad 1.652$
$1.548 \quad 1.538$
$1.546 \quad 1.536$
$1.544 \quad 1.534$
1.679
1.662
1.646 1.632 1.620 1.676 1.658 1.643 1.629 1.616 1.669 1.652 1.636 1.622 1.609
1.660
1.643
1.627
1.613
1.600
1.658
1.640
1.624
1.610
1.597
1.655
1.637
1.621
1.607
1.594
1.652
1.635
1.619
1.605
1.592
$1.650 \quad 1.632$
1.616
1.602
1.589
1.648
1.630
1.614
1.600
1.587
1.645
1.628
1.612
1.597
1.585
$1.639 \quad 1.621$
1.605
1.591
1.578
$1.637 \quad 1.619$
1.603
1.589
1.576
1.635
1.617
1.601
1.587
1.574
$1.634 \quad 1.616 \quad 1.600 \quad 1.585 \quad 1.572$
1.6431 .6251 .610
1.595
1.582
$1.641 \quad 1.623$
1.607
1.593
1.580

1. 63
$1.632 \quad 1.614 \quad 1.598 \quad 1.583 \quad 1.570$
671.6691 .646 $1.5521 .541 \quad 1.531$

68
1.550

69
1.548

70
1.547

71
1.545

72
1.544

73
1.543
$74 \quad 1.659 \quad 1.636$
1.541

75
1.540

76
1.539

77
1.538

78
1.536

| 79 | $1.654 \quad 1.630$ |
| :--- | :--- | :--- |
| 1.535 | $1.524 \quad 1.514$ |

80
1.534

81
1.533

82
1.532

83
1.531

84
1.530 85
1.529 86
1.528

87
1.527

88
1.526

89
1.525
$1.667 \quad 1.644$ $1.539 \quad 1.529$ $1.538^{1.666} 1.527$ 1.6651 .641 $1.536 \quad 1.526$ 1.663
1.535 1.640 1.5351 .524
$1.662 \quad 1.639$
$1.533 \quad 1.523$
$1.661 \quad 1.637$
$1.532 \quad 1.522$
$1.530 \quad 1.520$
$1.658 \quad 1.635$
$1.529 \quad 1.519$
$1.657 \quad 1.634$
$1.528 \quad 1.518$

1. 527.6561 .632
1.5271 .516
$1.525^{1.655} 1.5151^{1.631}$
$\begin{array}{ccc}1.653 & 1.629 \\ 1.523 & 1.513\end{array}$
1.6521 .628
1.522 1.512
1.651 1.627
$1.521 \quad 1.511$
$1 \begin{aligned} & 1.650 \\ & 1.620\end{aligned}$
$1.520 \quad 1.509$
$1.649 \quad 1.625$
$1.519 \quad 1.508$
$1.648 \quad 1.624$
$1.518 \quad 1.507$
$1.647 \quad 1.623$
1.5171 .506
$1.646 \quad 1.622$
$1.516 \quad 1.505$
$1.645 \quad 1.622$
1.5151 .504
$1.644 \quad 1.621$
1.5141 .503 1.624
1.606
1.590
1.575
1.562
1.617
1.599
1.583
1.568
1.555
1.614
1.596
1.580
1.565
1.552
1.613
1.595
1.579
1.564
1.551
1.612
1.594
1.578
1.563
1.550
1.611
1.593
1.576
1.562
1.548
1.605
1.592
1.575
1.561
1.547
1.610
1.609
1.590
1.574
1.559
1.546
$1.608 \quad 1.589 \quad 1.573$
1.558
1.545
1.607
1.588
1.572
1.557
1.544
1.606
1.587
1.571
1.556
1.543
1.604
1.586
1.570
1.555
1.542
1.603
1.584
1.568
1.553
1.540
1.602
1.583
1.567
1.552
1.539
1.601
1.583
1.566
1.551
1.538
$\begin{array}{llllllll}90 & 1.643 & 1.620 & 1.599 & 1.581 & 1.564 & 1.550 & 1.536\end{array}$ 1.5241 .5131 .503
$\begin{array}{llllllll} & 1.643 & 1.619 & 1.598 & 1.580 & 1.564 & 1.549 & 1.535\end{array}$
1.5231 .5121 .502
$\begin{array}{llllllll}92 & 1.642 & 1.618 & 1.598 & 1.579 & 1.563 & 1.548 & 1.534\end{array}$
$\begin{array}{ccccccccc}1.522 & 1.511 & 1.501 & & & & & \\ 93 & 1.641 & 1.617 & 1.597 & 1.578 & 1.562 & 1.547 & 1.534\end{array}$

| 1.521 | 1.510 | 1.500 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 94 | 1.640 | 1.617 | 1.596 | 1.578 | 1.561 | 1.546 | 1.533 |

| 1.521 | 1.509 | 1.499 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 95 | 1.640 | 1.616 | 1.595 | 1.577 | 1.560 | 1.545 | 1.532 |

| 1.520 | 1.509 | 1.498 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 96 | 1.639 | 1.615 | 1.594 | 1.576 | 1.560 | 1.545 | 1.531 |

| 1.519 | 1.508 | 1.497 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 97 | 1.638 | 1.614 | 1.594 | 1.575 | 1.559 | 1.544 | 1.530 |

1.518	1.507	1.497					
98	1.637	1.614	1.593	1.575	1.558	1.543	1.530

| 1.517 | 1.506 | 1.496 | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 99 | 1.637 | 1.613 | 1.592 | 1.574 | 1.557 | 1.542 | 1.529 |

1.517	1.505	1.495						
100	1.636	1.612	1.592	1.573	1.557	1.542	1.528	

1.5161 .5051 .494

Upper critical values of the \mathbf{F} distribution

for ${ }^{v_{1}}$ numerator degrees of freedom and ${ }^{\boldsymbol{v}}{ }_{2}$ denominator degrees of freedom 1% significance level

$$
F_{.01}\left(v_{1}, v_{2}\right)
$$

23
4
5
6
8

	v_{1}	1	2	3	4	5	6	7	8
10									
2									

1	4052.19	4999.52	5403.34	5624.62	5763.65	5858.97	5928.33
5981.10	6022.50	6055.85					
2	98.502	99.000	99.166	99.249	99.300	99.333	99.356
99.374	99.388	99.399					
3	34.116	30.816	29.457	28.710	28.237	27.911	27.672

27.489	$\begin{array}{r} 27.345 \\ 21.198 \end{array}$	27.229			15522		
14.799	14.659	14.546					14.976
5	16.258	13.274	12.060	11.392	10.967	10.672	10.456
10.289	10.158	10.051					
6	13.745	10.925	9.780	9.148	8.746	8.466	8.260
8.102	7.976	7.874					
7	12.246	9.547	8.451	7.847	7.460	7.191	6.993
6.840	6.719	6.620					
8	11.259	8.649	7.591	7.006	6.632	6.371	6.178
6.029	5.911	5.814					
9	10.561	8.022	6.992	6.422	6.057	5.802	5.613
5.467	5.351	5.257					
10	10.044	7.559	6.552	5.994	5.636	5.386	5.200
5.057	4.942	4.849					
11	9.646	7.206	6.217	5.668	5.316	5.069	4.886
4.744	4.632	4.539					
12	9.330	6.927	5.953	5.412	5.064	4.821	4.640
4.499	4.388	4.296					
13	9.074	6.701	5.739	5.205	4.862	4.620	4.441
4.302	4.191	4.100					
14	8.862	6.515	5.564	5.035	4.695	4.456	4.278
4.140	4.030	3.939					
15	8.683	6.359	5.417	4.893	4.556	4.318	4.142
4.004	3.895	3.805					
16	8.531	6.226	5.292	4.773	4.437	4.202	4.026
3.890	3.780	3.691					
17	8.400	6.112	5.185	4.669	4.336	4.102	3.927
3.791	3.682	3.593					
18	8.285	6.013	5.092	4.579	4.248	4.015	3.841
3.705	3.597	3.508					
19	8.185	5.926	5.010	4.500	4.171	3.939	3.765
3.631	3.523	3.434					
20	8.096	5.849	4.938	4.431	4.103	3.871	3.699
3.564	3.457	3.368					
21	8.017	5.780	4.874	4.369	4.042	3.812	3.640
3.506	3.398	3.310					
22	7.945	5.719	4.817	4.313	3.988	3.758	3.587
3.453	3.346	3.258					
23	7.881	5.664	4.765	4.264	3.939	3.710	3.539
3.406	3.299	3.211					
24	7.823	5.614	4.718	4.218	3.895	3.667	3.496
3.363	3.256	3.168					
25	7.770	5.568	4.675	4.177	3.855	3.627	3.457
3.324	3.217	3.129					
26	7.721	5.526	4.637	4.140	3.818	3.591	3.421

3.288	3.182	3.094					
27	7.677	5.488	4.601	4.106	3.785	3.558	3.388
3.256	3.149	3.062					
28	7.636	5.453	4.568	4.074	3.754	3.528	3.358
3.226	3.120	3.032					
29	7.598	5.420	4.538	4.045	3.725	3.499	3.330
3.198	3.092	3.005					
30	7.562	5.390	4.510	4.018	3.699	3.473	3.305
3.173	3.067	2.979					
31	7.530	5.362	4.484	3.993	3.675	3.449	3.281
3.149	3.043	2.955					
32	7.499	5.336	4.459	3.969	3.652	3.427	3.258
3.127	3.021	2.934					
33	7.471	5.312	4.437	3.948	3.630	3.406	3.238
3.106	3.000	2.913					
34	7.444	5.289	4.416	3.927	3.611	3.386	3.218
3.087	2. 981	2.894					
35	7.419	5.268	4.396	3.908	3.592	3.368	3.200
3.069	2.963	2.876					
36	7.396	5.248	4.377	3.890	3.574	3.351	3.183
3.052	2.946	2.859					
37	7.373	5.229	4.360	3.873	3.558	3.334	3.167
3.036	2.930	2.843					
38	7.353	5.211	4.343	3.858	3.542	3.319	3.152
3.021	2. 915	2.828					
39	7.333	5.194	4.327	3.843	3.528	3.305	3.137
3.006	2. 901	2.814					
40	7.314	5.179	4.313	3.828	3.514	3.291	3.124
2.993	2.888	2.801					
41	7.296	5.163	4.299	3.815	3.501	3.278	3.111
2.980	2.875	2.788					
42	7.280	5.149	4.285	3.802	3.488	3.266	3.099
2.968	2.863	2.776					
43	7.264	5.136	4.273	3.790	3.476	3.254	3.087
2.957	2.851	2.764					
44	7.248	5.123	4.261	3.778	3.465	3.243	3.076
2.946	2.840	2.754					
45	7.234	5.110	4.249	3.767	3.454	3.232	3.066
2.935	2.830	2.743					
46	7.220	5.099	4.238	3.757	3.444	3.222	3.056
2.925	2.820	2.733					
47	7.207	5.087	4.228	3.747	3.434	3.213	3.046
2.916	2.811	2.724					
48	7.194	5.077	4.218	3.737	3.425	3.204	3.037
2.907	2.802	2.715					
49	7.182	5.066	4.208	3.728	3.416	3.195	3.028

$2.898 \quad 2.793 \quad 2.706$

50
2.890

51
2.882

52
2.874

53
2.867

54
2.860

55
2.853

56
2.847

57
2.841

58
2.835

59
2.829

60
2.823

61
2.818

62
2.813

63
2.808

64
2.803

65
2.798

66
2.793

67
2.789

68
2.785

69
2.781

70
2.777

71
2.773

72
7.171
5.057
4.199
$2.785 \quad 2.698$

7.159	5.04
2.777	2.690

$$
2.769 \quad 2.683
$$

$7.139 \quad 5.030$
4.174
3.695
3.384
3.163
2.997

$$
2.762 \quad 2.675
$$

$$
2.755 \quad 2.668
$$

$$
2.748 \quad 2.662
$$

$$
2.742 \quad 2.655
$$

7.1024 .998
4.145

$$
2.736 \quad 2.649
$$

$$
7.093 \quad 4.991
$$

4.138

$$
2.730 \quad 2.643
$$

$7.085 \quad 4.984$
4.132 $2.724 \quad 2.637$
$7.077 \quad 4.977$
4.126
3.649
4.1203 .643
$2.713 \quad 2.626$
7.0624 .965
$2.708 \quad 2.621$
$2.703^{7.055} 2.616$
$7.048 \quad 4.953$
$2.698 \quad 2.611$

$$
\begin{array}{cc}
7.042 & 4.947 \\
2.693 & 2.607
\end{array}
$$

4.098
3.622
4.093
3.618
3.308
$3.613 \quad 3.304$
4.088
3.304
3.084
2.919

$$
2.684 \quad 2.598
$$

$$
2.680 \quad 2.593
$$

$\begin{array}{cc}7.017 & 4.927 \\ 2.676 & 2.589\end{array}$ $7.011 \quad 4.922$
$2.672 \quad 2.585$

$$
2.668 \quad 2.581
$$

$7.006 \quad 4.917$
4.070
$7.001 \quad 4.913$
3.720
3.408
3.186
3.020
4.191
3.711
3.400
3.178
3.012
$4.182 \quad 3.703 \quad 3.392 \quad 3.171 \quad 3.005$
4.167
3.688
3.377
3.156
2.990
$4.159 \quad 3.681 \quad 3.370 \quad 3.149 \quad 2.983$
$4.152 \quad 3.674 \quad 3.363 \quad 3.143 \quad 2.977$

$$
2.718 \quad 2.632
$$

$7.070 \quad 4.971$
3.333
3.113
2.948
4.114
3.638
3.328
3.108
2.942
4.109
3.632
3.323
3.103
2.937
4.103
3.627
3.318
3.098
2.932
3.313
3.093
2.928
$2.689 \quad 2.602$
$7.029 \quad 4.937$
4.083
3.608
3.299
3.080
2.914
$4.079 \quad 3.604 \quad 3.295 \quad 3.075 \quad 2.910$
$4.074 \quad 3.600 \quad 3.291 \quad 3.071 \quad 2.906$

2.769	2.664	2.578					
73	6.995	4.908	4.062	3.588	3.279	3.060	2.895
2.765	2.660	2.574					
74	6.990	4.904	4.058	3.584	3.275	3.056	2.891
2.762	2.657	2.570					
75	6.985	4.900	4.054	3.580	3.272	3.052	2.887
2.758	2.653	2.567					
76	6.981	4.896	4.050	3.577	3.268	3.049	2.884
2.755	2.650	2.563					
77	6.976	4.892	4.047	3.573	3.265	3.046	2.881
2.751	2.647	2.560					
78	6.971	4.888	4.043	3.570	3.261	3.042	2.877
2.748	2.644	2.557					
79	6.967	4.884	4.040	3.566	3.258	3.039	2.874
2.745	2.640	2.554					
80	6.963	4.881	4.036	3.563	3.255	3.036	2.871
2.742	2.637	2.551					
81	6.958	4.877	4.033	3.560	3.252	3.033	2.868
2.739	2.634	2.548					
82	6.954	4.874	4.030	3.557	3.249	3.030	2.865
2.736	2.632	2.545					
83	6.950	4.870	4.027	3.554	3.246	3.027	2.863
2.733	2.629	2.542					
84	6.947	4.867	4.024	3.551	3.243	3.025	2.860
2.731	2.626	2.539					
85	6.943	4.864	4.021	3.548	3.240	3.022	2.857
2.728	2.623	2.537					
86	6.939	4.861	4.018	3.545	3.238	3.019	2.854
2.725	2.621	2.534					
87	6.935	4.858	4.015	3.543	3.235	3.017	2.852
2.723	2.618	2.532					
88	6.932	4.855	4.012	3.540	3.233	3.014	2.849
2.720	2.616	2.529					
89	6.928	4.852	4.010	3.538	3.230	3.012	2.847
2.718	2.613	2.527					
90	6.925	4.849	4.007	3.535	3.228	3.009	2.845
2.715	2.611	2.524					
91	6.922	4.846	4.004	3.533	3.225	3.007	2.842
2.713	2.609	2.522					
92	6.919	4.844	4.002	3.530	3.223	3.004	2.840
2.711	2.606	2.520					
93	6.915	4.841	3.999	3.528	3.221	3.002	2.838
2.709	2.604	2.518					
94	6.912	4.838	3.997	3.525	3.218	3.000	2.835
2.706	2.602	2.515					
95	6.909	4.836	3.995	3.523	3.216	2.998	2.833

$2.7042 .600 \quad 2.513$

96	6.906	4.833	3.992	3.521	3.214	2.996	2.831

$2.702 \quad 2.598 \quad 2.511$

97	6.904	4.831	3.990	3.519	3.212	2.994	2.829

$2.700 \quad 2.596 \quad 2.509$

98	6.901	4.829	3.988	3.517	3.210	2.992	2.827

$2.698 \quad 2.594 \quad 2.507$
99
$6.898 \quad 4.826$
3.986
3.515
3.208
2.990
2.825
2.696
$2.592 \quad 2.505$
100
$6.895 \quad 4.824$
3.984
3.513
3.206
2.988
2.823
2.694
$2.590 \quad 2.503$

19 | v_{1} | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 20 | | | | | | | | |

1. $\quad 6083.35 \quad 6106.35 \quad 6125.86 \quad 6142.70 \quad 6157.28 \quad 6170.12 \quad 6181.42$ 6191.526200 .586208 .74

2.	99.408	99.416	99.422	99.428	99.432	99.437	99.440
99.444	99.447	99.449					
3.	27.133	27.052	26.983	26.924	26.872	26.827	26.787
26.751	26.719	26.690					
4.	14.452	14.374	14.307	14.249	14.198	14.154	14.115

5.

$9.963 \quad 9.888$
9.825
9.770
9.722
9.680
9.643
9.610 $9.580 \quad 9.553$
$\begin{array}{llllllll}6 . & 7.790 & 7.718 & 7.657 & 7.605 & 7.559 & 7.519 & 7.483\end{array}$ $7.451 \quad 7.422 \quad 7.396$
$\begin{array}{llllllll}7 . & 6.538 & 6.469 & 6.410 & 6.359 & 6.314 & 6.275 & 6.240\end{array}$
6.209
8.
6.1816 .155
5.412
$5.734 \quad 5.667$
$5.6095 .559 \quad 5.515$
5.477
5.442
$\begin{array}{llllllll}9 . & 5.178 & 5.111 & 5.055 & 5.005 & 4.962 & 4.924 & 4.890\end{array}$
$4.860 \quad 4.833 \quad 4.808$
10.
$4.772 \quad 4.706$
4.650
4.6014 .558
4.520
4.487
$4.457 \quad 4.430 \quad 4.405$
11.
$4.462 \quad 4.397$
4.3424 .293
4.251
4.213
4.180
$4.1504 .123 \quad 4.099$
12.
$4.220 \quad 4.155$
4.100
4.0524 .010
3.972
3.939
$3.909 \quad 3.883 \quad 3.858$
13.
$4.025 \quad 3.960$
3.905
3.857
3.815
3.778
3.745
$3.716 \quad 3.689 \quad 3.665$
14.
$3.864 \quad 3.800$
3.745
3.698
3.656
3.619
3.586
$3.556 \quad 3.529 \quad 3.505$
$15 . \quad 3.730 \quad 3.666$
$3.423 \quad 3.396 \quad 3.372$
16.
3.310
17.
3.212
18.
3.128
19.
3.054 20.
2.989
21.
2.931
22.
2.879
23.
2.832
24.
2.789
25.
2.751
26.
2.715
27.
2.683
28.
2.653
29.
2.626
30.
2.600
31.
2.577
32.
2.555
33.
2.534
34.
2.515
35.
2.497
36.
2.480
37.
$3.616 \quad 3.553$ $3.283 \quad 3.259$
$3.519 \quad 3.455$
$3.186 \quad 3.162$
3.434 3.371 $3.101 \quad 3.077$ $3.027^{3.360} 3.0033^{3.297}$ $3.294 \quad 3.231$ $2.962 \quad 2.938$

$$
3.236 \quad 3.173
$$

$$
2.904 \quad 2.880
$$

$$
3.184 \quad 3.121
$$

$$
2.852 \quad 2.827
$$

$$
\begin{array}{cc}
3.137 & 3.074 \\
2.805 & 2.781
\end{array}
$$

$$
2.805 \quad 2.781
$$

$2.762 \quad 2.738$
$3.056 \quad 2.993$ $2.724 \quad 2.699$
$3.021 \quad 2.958$ $2.688 \quad 2.664$
$2.988 \quad 2.926$ $2.656 \quad 2.632$
$2.959 \quad 2.896$ $2.626 \quad 2.602$
$2.931 \quad 2.868$
2.814
2.767
2.726
2.689
2.656
$2.599 \quad 2.574$
2.9062 .843
$2.573 \quad 2.549$
$2.882 \quad 2.820$
$2.550 \quad 2.525$
$2.860 \quad 2.798$
2.744
2.696
2.655
2.618
2.584
$2.527 \quad 2.503$
2. $2.840 \quad 2.777$
$2.507 \quad 2.482$
$2.488^{2.821} 2.463$
2.488 2.463
$2.803 \quad 2.740$
$2.470 \quad 2.445$
2.723
2.676
2.634
2.597
2.564
2.704
2.657
2.615
2.578
2.545
$2.686 \quad 2.639 \quad 2.597 \quad 2.560 \quad 2.527$
$2.786 \quad 2.723$ $2.453 \quad 2.428$
$2.770 \quad 2.707$
$\begin{array}{lllll}3.498 & 3.451 & 3.409 & 3.372 & 3.339\end{array}$
$3.401 \quad 3.353 \quad 3.312 \quad 3.275 \quad 3.242$
$\begin{array}{lllll}3.316 & 3.269 & 3.227 & 3.190 & 3.158\end{array}$
3.2423 .195
3.153
3.116
3.084
$3.177 \quad 3.130$
3.088
3.051
3.018
3.1193 .072
3.030
2.993
2.960
$3.067 \quad 3.019 \quad 2.978 \quad 2.941 \quad 2.908$
$3.0202 .973 \quad 2.931 \quad 2.894 \quad 2.861$
$2.977 \quad 2.930 \quad 2.889 \quad 2.852 \quad 2.819$
$2.9392 .892 \quad 2.850 \quad 2.813 \quad 2.780$
2.904
2.857
2.815
2.778
2.745
$2.871 \quad 2.82$
2.783
2.746
2.713
$2.842 \quad 2.795$
2.753
2.716
2.683
2.789
2.742
2.700
2.663
2.630
$2.765 \quad 2.718 \quad 2.677 \quad 2.640 \quad 2.606$
$\begin{array}{lllll}3.612 & 3.564 & 3.522 & 3.485 & 3.452\end{array}$
$2.464 \quad 2.437 \quad 2.412$

38 . 2.755 2.692
2.449
39.
2.434 40 .
2.421
41.
2.408 42.
2.396 43.
2.385
44.
2.374 45.
2.363 46.
2.353 47.
2.344 48.
2.335 49.
2.326 50 .
2.318
51.
2.310
52.
2. 302
53.
2.295 54.
2.288
55.
2.281
56.
2.275
57.
2.268
58.
2.262
59.
2.256
60.
$2.421 \quad 2.397$
$2.741 \quad 2.678$
$2.407 \quad 2.382$
$2.727 \quad 2.665$
$2.394 \quad 2.369$
$2.715 \quad 2.652$
$2.381 \quad 2.356$
$2.703 \quad 2.640$
$2.369 \quad 2.344$

$$
2.357^{2.691} 2.332
$$

$2.680 \quad 2.618$ $2.346 \quad 2.321$
$2.670 \quad 2.608$ $2.336 \quad 2.311$
$2.660 \quad 2.598$ $2.326 \quad 2.301$
$2.651 \quad 2.588$ $2.316 \quad 2.291$
$2.642 \quad 2.579$ $2.307 \quad 2.282$
$2.633 \quad 2.571$ 2.2992 .274
$2.625 \quad 2.562$ $2.290 \quad 2.265$
$2.617 \quad 2.555$ $2.282 \quad 2.257$
$2.610 \quad 2.547$
$2.275 \quad 2.250$
$2.602 \quad 2.540$
$2.267 \quad 2.242$
$2.595 \quad 2.533$
$2.260 \quad 2.235$
$2.589 \quad 2.526$
$2.253 \quad 2.228$
2.2532 .228
$2.247 \quad 2.222$
$2.576 \quad 2.513$
$2.241 \quad 2.215$
2.235 2.570 2.507
$2.235 \quad 2.209$
$2.564 \quad 2.502$ 2.2292 .203
2.5592 .496
$2.4592 .412 \quad 2.370$
$2.459 \quad 2.412 \quad 2.370$
2.4592 .4122 .370
2.332
2.299
2.624
2.577
2.535 $2.498 \quad 2.465$
2.611
2.563
2.522
2.484 2.451
$2.598 \quad 2.551$
2.509
2.472
2.438
2.586
2.539
2.497
2.460
2.426
2.575
2.527
2.485
2.448
2.415
2.564
2.516
2.475
2.437
2.404
2.553
2.506
2.464
2.427
2.393
2.544
2.496
2.454
2.417
2.384
2.534
2.487
2.445
2.408
2.374
2.525
2.478
2.436
2.399
2.365
$2.517 \quad 2.4692 .427 \quad 2.390 \quad 2.356$ $2.508 \quad 2.461$
2.419
2.382
2.348
2.500
2.453
2.411
2.374
2.340
2.493
2.445
2.403
2.366
2.333
2.486
2.438
2.396
2.359
2.325
2.479
2.431
2.389
2.352
2.318
2.4722 .424
2.382
2.345
2.311
$2.465 \quad 2.418 \quad 2.376 \quad 2.339 \quad 2.305$
2.4532 .4062 .364
2.326
2.293
$\begin{array}{lllll}2.447 & 2.400 & 2.358 & 2.320 & 2.287\end{array}$
2.638
2.591
2.549
2.512
2.479
61. $2.553 \quad 2.491 \quad 2.436 \quad 2.389 \quad 2.347 \quad 2.309 \quad 2.276$
$2.245 \quad 2.218 \quad 2.192$
62. $2.548 \quad 2.486$
$2.240 \quad 2.212 \quad 2.187$
63.
2.235
64.
2.230 65.
2.225
66.
2.221
67.
2.216
68.
2.212
69.
2.208
70.
2.204
71.
2.200
72.
2.196
73.
2.192
74.
2.188
75.
2.185
76.
2.181
77.
2.178
78.
2.175
79.
2.172
80.
2.169
81.
2.166
82.
2.163
83.
2.5432 .481
$2.207 \quad 2.182$
$2.538 \quad 2.476$
$2.202 \quad 2.177$
$2.534 \quad 2.471$
2.1982 .172
2.5292 .466
$2.193 \quad 2.168$
$2.525 \quad 2.462$
$2.184 \quad 2.159$
2.5162 .454 $2.176 \quad 2.150$
$2.508 \quad 2.446$ $2.172 \quad 2.146$
$2.504 \quad 2.442$ $2.168 \quad 2.143$
$2.501 \quad 2.438$
$2.164 \quad 2.139$
$2.497 \quad 2.435$ 2.161 2.135
$2.494 \quad 2.431$
$2.157 \quad 2.132$
$2.490 \quad 2.428$
$2.154 \quad 2.128$
$2.487 \quad 2.424$
$2.150 \quad 2.125$
$2.484 \quad 2.421$
$2.147 \quad 2.122$
$2.481 \quad 2.418$
2.1442 .118
$2.141 \quad 2.115$
$2.475 \quad 2.412$
$2.138 \quad 2.112$
$2.472 \quad 2.409$
$2.135 \quad 2.109$
2.4692 .406
2.421
2.374
2.332
2.294
2.260
2.417
2.369
2.327
2.289
2.256
2.408
2.360
2.318
2.280
2.247
2.403
2.356
2.314
2.276
2.242
2.399
2. 352
2.310
2.272
2.238
$2.395 \quad 2.3482 .3062 .2682 .234$
2.391
2.344
2.302
2.264
2.230
2.388
2.340
2.298
2.260
2.226
2.384
2.336
2.2942 .256
2.223
2.380
2.333
2.290
2.253
2.219
2.377
2.329
2.287
2.249
2.215
2.373
2.326
2.284
2.246
2.212
2.370
2.322
2.280
2.243
2.209
2.367
2.319
2.277
2.239
2.206
2.364
2.316
2.274
2.236
2.202
2.358
2.310
2.268
2.230
2.196
$2.355 \quad 2.307$
2.265
2.227
2.193
2.352
2.304
2.262
2.224
2.191
2.1602 .1322 .106
84.
$2.466 \quad 2.404$
2.349
2.302
2.259
2.222
2.188
2.1572 .1292 .104
85. 2.464 2.401
2.347
2.299
2.257
2.219
2.185
$2.1542 .126 \quad 2.101$
86.
2.4612 .398
2.344
2.296
2.254
2.216
2.182
$2.152 \quad 2.124 \quad 2.098$
87.
2.4592 .396
2.342
2.294
2.252
2.214
2.180
2.1492 .1212 .096 88
$2.456 \quad 2.393$
2.339
2.291
2.249
2.211
2.177
2.1472 .1192 .093 89.
2.4542 .391
2.3372 .289
2.247
2.209
2.175
2.144
90.
$2.451 \quad 2.389$
2.3342 .286
2.244
2.206
2.172
2.142 2.1142 .088
91. $2.449 \quad 2.386 \quad 2.332 \quad 2.284 \quad 2.242 \quad 2.204 \quad 2.170$
2.139
2.1112 .086
92. $2.447 \quad 2.384 \quad 2.330 \quad 2.282 \quad 2.240 \quad 2.202 \quad 2.168$
2.137
2.1092 .083
93.
$2.444 \quad 2.382$
2.3272 .280
2.237
2.200
2.166
2.135
2.1072 .081
94.
$2.442 \quad 2.380$
$2.325 \quad 2.277$
2.235
2.197
2.163
$2.1332 .105 \quad 2.079$
95.
$2.440 \quad 2.378$
2.3232 .275
2.233
2.195
2.161
2.130
$2.102 \quad 2.077$
96.
$2.438 \quad 2.375$
2.3212 .273
2.231
2.193
2.159
$2.128 \quad 2.100 \quad 2.075$
97. $2.436 \quad 2.373 \quad 2.319 \quad 2.271 \quad 2.229 \quad 2.191 \quad 2.157$
2.126
98.
$2.098 \quad 2.073$
2.4342 .371
2.317
2.269
2.227
2.189
2.155
2.12
99.
2.122
100.
2.120
$2.096 \quad 2.071$
$2.432 \quad 2.369$
2.315
2.267
2.225
2.187
2.153
$2.094 \quad 2.069$
$2.430 \quad 2.368$
2.313
2.265
2.223
2.185
2.151

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.7. Tables for Probability Distributions

1.3.6.7.4. Critical Values of the Chi-Square Distribution

How to Use
This Table

This table contains the critical values of the chi-square distribution. Because of the lack of symmetry of the chi-square distribution, separate tables are provided for the upper and lower tails of the distribution.

A test statistic with l degrees of freedom is computed from the data. For upper one-sided tests, the test statistic is compared with a value from the table of upper critical values. For two-sided tests, the test statistic is compared with values from both the table for the upper critical value and the table for the lower critical value.

The significance level, α, is demonstrated with the graph below which shows a chi-square distribution with 3 degrees of freedom for a two-sided test at significance level $\alpha=0.05$. If the test statistic is greater than the upper critical value or less than the lower critical value, we reject the null hypothesis. Specific instructions are given below.

Given a specified value for α :

1. For a two-sided test, find the column corresponding to $\alpha / \mathbf{2}$ in the table for upper critical values and reject the null hypothesis if the test statistic is greater than the tabled value. Similarly, find the
column corresponding to $\mathbf{1 - \alpha / 2}$ in the table for lower critical values and reject the null hypothesis if the test statistic is less than the tabled value.
2. For an upper one-sided test, find the column corresponding to α in the upper critical values table and reject the null hypothesis if the test statistic is greater than the tabled value.
3. For a lower one-sided test, find the column corresponding to $\mathbf{1}$ α in the lower critical values table and reject the null hypothesis if the computed test statistic is less than the tabled value.

Upper critical values of chi-square distribution with v degrees of freedom

Probability of exceeding the critical value

\boldsymbol{v}	0.10	0.05	0.025	0.01	0.001
1	2.706	3.841	5.024	6.635	10.828
2	6.251	5.991	7.378	9.210	13.816
3	7.779	9.488	11.143	13.277	18.467
4	9.236	11.070	12.833	15.086	20.515
5	10.645	12.592	14.449	16.812	22.458
6	12.017	14.067	16.013	18.475	24.322
7	13.362	15.507	17.535	20.090	26.125
8	14.684	16.919	19.023	21.666	27.877
9	15.987	18.307	20.483	23.209	29.588
10	17.275	19.675	21.920	24.725	31.264
11	18.549	21.026	23.337	26.217	32.910
12	19.812	22.362	24.736	27.688	34.528
13	21.064	23.685	26.119	29.141	36.123
14	22.307	24.996	27.488	30.578	37.697
15	23.542	26.296	28.845	32.000	39.252
16	24.769	27.587	30.191	33.409	40.790
17	25.989	28.869	31.526	34.805	42.312
18	27.204	30.144	32.852	36.191	43.820
19	28.412	31.410	34.170	37.566	45.315
20	29.615	32.671	35.479	38.932	46.797

22	30.813	33.924	36.781	40.289	48.268
23	32.007	35.172	38.076	41.638	49.728
24	33.196	36.415	39.364	42.980	51.179
25	34.382	37.652	40.646	44.314	52.620
26	35.563	38.885	41.923	45.642	54.052
27	36.741	40.113	43.195	46.963	55.476
28	37.916	41.337	44.461	48.278	56.892
29	39.087	42.557	45.722	49.588	58.301
30	40.256	43.773	46.979	50.892	59.703
31	41.422	44.985	48.232	52.191	61.098
32	42.585	46.194	49.480	53.486	62.487
33	43.745	47.400	50.725	54.776	63.870
34	44.903	48.602	51.966	56.061	65.247
35	46.059	49.802	53.203	57.342	66.619
36	47.212	50.998	54.437	58.619	67.985
37	78.363	52.192	55.668	59.893	69.347
38	79.513	53.384	56.896	61.162	70.703
39	74.514	72.630	81.381	85.654	90.802

63	77.745	82.529	86.830	92.010	103.442
64	78.860	83.675	88.004	93.217	104.716
65	79.973	84.821	89.177	94.422	105.988
66	81.085	85.965	90.349	95.626	107.258
67	82.197	87.108	91.519	96.828	108.526
68	83.308	88.250	92.689	98.028	109.791
69	84.418	89.391	93.856	99.228	111.055
70	85.527	90.531	95.023	100.425	112.317
71	86.635	91.670	96.189	101.621	113.577
72	87.743	92.808	97.353	102.816	114.835
73	88.850	93.945	98.516	104.010	116.092
74	89.956	95.081	99.678	105.202	117.346
75	91.061	96.217	100.839	106.393	118.599
76	92.166	97.351	101.999	107.583	119.850
77	93.270	98.484	103.158	108.771	121.100
78	94.374	99.617	104.316	109.958	122.348
79	95.476	100.749	105.473	111.144	123.594
80	96.578	101.879	106.629	112.329	124.839
81	97.680	103.010	107.783	113.512	126.083
82	98.780	104.139	108.937	114.695	127.324
83	99.880	105.267	110.090	115.876	128.565
84	100.980	106.395	111.242	117.057	129.804
85	102.079	107.522	112.393	118.236	131.041
86	103.177	108.648	113.544	119.414	132.277
87	104.275	109.773	114.693	120.591	133.512
88	105.372	110.898	115.841	121.767	134.746
89	106.469	112.022	116.989	122.942	135.978
90	107.565	113.145	118.136	124.116	137.208
91	108.661	114.268	119.282	125.289	138.438
92	109.756	115.390	120.427	126.462	139.666
93	110.850	116.511	121.571	127.633	140.893
94	111.944	117.632	122.715	128.803	142.119
95	113.038	118.752	123.858	129.973	143.344
96	114.131	119.871	125.000	131.141	144.567
97	115.223	120.990	126.141	132.309	145.789
98	116.315	122.108	127.282	133.476	147.010
99	117.407	123.225	128.422	134.642	148.230
100	118.498	124.342	129.561	135.807	149.449
100	118.498	124.342	129.561	135.807	149.449

Lower critical values of chi-square distribution with v degrees of freedom

Probability of exceeding the critical value

v	0.90	0.95	0.975	0.99	0.999
1.	. 016	. 004	. 001	. 000	. 000
2.	. 211	. 103	. 051	. 020	. 002
3.	. 584	. 352	. 216	. 115	. 024
4.	1.064	. 711	. 484	. 297	. 091
5.	1.610	1.145	. 831	. 554	. 210
6.	2.204	1.635	1.237	. 872	. 381
7.	2.833	2.167	1.690	1.239	. 598
8.	3.490	2.733	2.180	1.646	. 857
9.	4.168	3.325	2.700	2.088	1.152
10.	4.865	3.940	3.247	2.558	1.479
11.	5.578	4.575	3.816	3.053	1.834
12.	6.304	5.226	4.404	3.571	2.214
13.	7.042	5.892	5.009	4.107	2.617
14.	7.790	6.571	5.629	4.660	3.041
15.	8.547	7.261	6.262	5.229	3.483
16.	9.312	7.962	6.908	5.812	3.942
17.	10.085	8.672	7.564	6.408	4.416
18.	10.865	9.390	8.231	7.015	4.905
19.	11.651	10.117	8.907	7.633	5.407
20.	12.443	10.851	9.591	8.260	5.921
21.	13.240	11.591	10.283	8.897	6.447
22.	14.041	12.338	10.982	9.542	6.983
23.	14.848	13.091	11.689	10.196	7.529
24.	15.659	13.848	12.401	10.856	8.085
25.	16.473	14.611	13.120	11.524	8.649
26.	17.292	15.379	13.844	12.198	9.222
27.	18.114	16.151	14.573	12.879	9.803
28.	18.939	16.928	15.308	13.565	10.391
29.	19.768	17.708	16.047	14.256	10.986
30.	20.599	18.493	16.791	14.953	11.588

31.
32.
33.
34.
35. 36.
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15. 52. 53. 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67.
1. 69. 70. 71.

21.434
19.281
20.072
20.867
21.664
22.465
23.269
24.075
24.884
25.695
26.509
27.326
28.144
28.965
29.787
30.612
31.439
32.268
33.098
33.930
34.764
35.600
36.437
37.276
38.116
38.958
39.801
40.646
41.492
42.339
43.188
44.038
44.889
45.741
46.595
47.450
48.305
49.162
50.020
50.879
51.739
52.600
17.539
18.291
19.047
19.806
20.569
21.336
22.106
22.878
23.654
24.433
25.215
25.999
26.785
27.575
28.366
29.160
29.956
30.755
31.555
32.357
33.162
33.968
34.776
35.586
36.398
37.212
38.027
38.844
39.662
40.482
41.303
42.126
42.950
43.776
44.603
45.431
46.261
47.092
47.924
48.758
49.592

| 15.655 | 12.196 |
| :--- | :--- |
| 16.362 | 12.811 |
| 17.074 | 13.431 |
| 17.789 | 14.057 |
| 18.509 | 14.688 |
| 19.233 | 15.324 |
| 19.960 | 15.965 |
| 20.691 | 16.611 |
| 21.426 | 17.262 |
| 22.164 | 17.916 |
| 22.906 | 18.575 |
| 23.650 | 19.239 |
| 24.398 | 19.906 |
| 25.148 | 20.576 |
| 25.901 | 21.251 |
| 26.657 | 21.929 |
| 27.416 | 22.610 |
| 28.177 | 23.295 |
| 28.941 | 23.983 |
| 29.707 | 24.674 |
| 30.475 | 25.368 |
| 31.246 | 26.065 |
| 32.018 | 26.765 |
| 32.793 | 27.468 |
| 33.570 | 28.173 |
| 34.350 | 28.881 |
| 35.131 | 29.592 |
| 35.913 | 30.305 |
| 36.698 | 31.020 |
| 37.485 | 31.738 |
| 38.273 | 32.459 |
| 39.063 | 33.181 |
| 39.855 | 33.906 |
| 40.649 | 34.633 |
| 41.444 | 35.362 |
| 42.240 | 36.093 |
| 43.038 | 36.826 |
| 43.838 | 37.561 |
| 44.639 | 38.298 |
| 45.442 | 39.036 |
| 46.246 | 39.777 |
| | |

| 72. | 57.113 | 53.462 | 50.428 | 47.051 | 40.519 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 73. | 58.006 | 54.325 | 51.265 | 47.858 | 41.264 |
| 74. | 58.900 | 55.189 | 52.103 | 48.666 | 42.010 |
| 75. | 59.795 | 56.054 | 52.942 | 49.475 | 42.757 |
| 76. | 60.690 | 56.920 | 53.782 | 50.286 | 43.507 |
| 77. | 61.586 | 57.786 | 54.623 | 51.097 | 44.258 |
| 78. | 62.483 | 58.654 | 55.466 | 51.910 | 45.010 |
| 79. | 63.380 | 59.522 | 56.309 | 52.725 | 45.764 |
| 80 | 64.278 | 60.391 | 57.153 | 53.540 | 46.520 |
| 81. | 65.176 | 61.261 | 57.998 | 54.357 | 47.277 |
| 82. | 66.076 | 62.132 | 58.845 | 55.174 | 48.036 |
| 83. | 66.976 | 63.004 | 59.692 | 55.993 | 48.796 |
| 84 | 67.876 | 63.876 | 60.540 | 56.813 | 49.557 |
| 85. | 68.777 | 64.749 | 61.389 | 57.634 | 50.320 |
| 86. | 69.679 | 65.623 | 62.239 | 58.456 | 51.085 |
| 87. | 70.581 | 66.498 | 63.089 | 59.279 | 51.850 |
| 88 | 71.484 | 67.373 | 63.941 | 60.103 | 52.617 |
| 89. | 72.387 | 68.249 | 64.793 | 60.928 | 53.386 |
| 90. | 73.291 | 69.126 | 65.647 | 61.754 | 54.155 |
| 91. | 74.196 | 70.003 | 66.501 | 62.581 | 54.926 |
| 92. | 75.100 | 70.882 | 67.356 | 63.409 | 55.698 |
| 93. | 76.006 | 71.760 | 68.211 | 64.238 | 56.472 |
| 94. | 76.912 | 72.640 | 69.068 | 65.068 | 57.246 |
| 95. | 77.818 | 73.520 | 69.925 | 65.898 | 58.022 |
| 96. | 78.725 | 74.401 | 70.783 | 66.730 | 58.799 |
| 97. | 79.633 | 75.282 | 71.642 | 67.562 | 59.577 |
| 98. | 80.541 | 76.164 | 72.501 | 68.396 | 60.356 |
| 99. | 81.449 | 77.046 | 73.361 | 69.230 | 61.137 |
| 100. | 82.358 | 77.929 | 74.222 | 70.065 | 61.918 |

$\frac{\text { NIST }}{\text { SEMATECH }} \sqrt{\text { HOME }} \sqrt{\text { TOOLS \& AIDS }} \quad \sqrt{B A C K} \overline{\text { NEXT }}$

ENGINEERING STATISTICS HANDBOOK
 HOME
 TOOLS \& AIDS
 1. Exploratory Data Analysis
 1.3. EDA Techniques
 1.3.6. Probability Distributions
 1.3.6.7. Tables for Probability Distributions

 1.3.6.7.5. Critical Values of the t^{*}

 1.3.6.7.5. Critical Values of the t^{*} Distribution

 Distribution}

How to Use This Table

This table contains upper critical values of the t^{*} distribution that are appropriate for determining whether or not a calibration line is in a state of statistical control from measurements on a check standard at three points in the calibration interval. A test statistic with v degrees of freedom is compared with the critical value. If the absolute value of the test statistic exceeds the tabled value, the calibration of the instrument is judged to be out of control.

Upper critical values of \mathbf{t} * distribution at significance level 0.05 for testing the output of a linear calibration line at 3 points

| | $t_{10 s}^{*}(v)$ | v | $t_{10 s}^{*}(v)$ |
| ---: | ---: | ---: | ---: |
| | | | |
| 1 | 37.544 | 61 | 2.455 |
| 2 | 7.582 | 62 | 2.454 |
| 3 | 4.826 | 63 | 2.453 |
| 4 | 3.941 | 64 | 2.452 |
| 5 | 3.518 | 65 | 2.451 |
| 6 | 3.274 | 66 | 2.450 |
| 7 | 3.115 | 67 | 2.449 |
| 8 | 3.004 | 68 | 2.448 |
| 9 | 2.923 | 69 | 2.447 |
| 10 | 2.860 | 71 | 2.446 |
| 11 | 2.811 | 72 | 2.445 |
| 12 | 2.770 | 73 | 2.445 |
| 13 | 2.737 | 74 | 2.443 |
| 14 | 2.709 | 75 | 2.442 |
| 15 | 2.685 | | |

| 16 | 2.665 | 76 | 2.441 |
| :---: | :---: | :---: | :---: |
| 17 | 2.647 | 77 | 2.441 |
| 18 | 2.631 | 78 | 2.440 |
| 19 | 2.617 | 79 | 2.439 |
| 20 | 2.605 | 80 | 2.439 |
| 21 | 2.594 | 81 | 2.438 |
| 22 | 2.584 | 82 | 2.437 |
| 23 | 2.574 | 83 | 2.437 |
| 24 | 2.566 | 84 | 2.436 |
| 25 | 2.558 | 85 | 2.436 |
| 26 | 2.551 | 86 | 2.435 |
| 27 | 2.545 | 87 | 2.435 |
| 28 | 2.539 | 88 | 2.434 |
| 29 | 2.534 | 89 | 2.434 |
| 30 | 2.528 | 90 | 2.433 |
| 31 | 2.524 | 91 | 2.432 |
| 32 | 2.519 | 92 | 2.432 |
| 33 | 2.515 | 93 | 2.431 |
| 34 | 2.511 | 94 | 2.431 |
| 35 | 2.507 | 95 | 2.431 |
| 36 | 2.504 | 96 | 2.430 |
| 37 | 2.501 | 97 | 2.430 |
| 38 | 2.498 | 98 | 2.429 |
| 39 | 2.495 | 99 | 2.429 |
| 40 | 2.492 | 100 | 2.428 |
| 41 | 2.489 | 101 | 2.428 |
| 42 | 2.487 | 102 | 2.428 |
| 43 | 2.484 | 103 | 2.427 |
| 44 | 2.482 | 104 | 2.427 |
| 45 | 2.480 | 105 | 2.426 |
| 46 | 2.478 | 106 | 2.426 |
| 47 | 2.476 | 107 | 2.426 |
| 48 | 2.474 | 108 | 2.425 |
| 49 | 2.472 | 109 | 2.425 |
| 50 | 2.470 | 110 | 2.425 |
| 51 | 2.469 | 111 | 2.424 |
| 52 | 2.467 | 112 | 2.424 |
| 53 | 2.466 | 113 | 2.424 |
| 54 | 2.464 | 114 | 2.423 |
| 55 | 2.463 | 115 | 2.423 |
| 56 | 2.461 | 116 | 2.423 |
| 57 | 2.460 | 117 | 2.422 |
| 58 | 2.459 | 118 | 2.422 |
| 59 | 2.457 | 119 | 2.422 |
| 60 | 2.456 | 120 | 2.422 |

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.6. Probability Distributions
1.3.6.7. Tables for Probability Distributions

1.3.6.7.6. Critical Values of the Normal PPCC Distribution

How to Use This Table

This table contains the critical values of the normal probability plot correlation coefficient (PPCC) distribution that are appropriate for determining whether or not a data set came from a population with approximately a normal distribution. It is used in conjuction with a normal probability plot. The test statistic is the correlation coefficient of the points that make up a normal probability plot. This test statistic is compared with the critical value below. If the test statistic is less than the tabulated value, the null hypothesis that the data came from a population with a normal distribution is rejected.

For example, suppose a set of 50 data points had a correlation coefficient of 0.985 from the normal probability plot. At the 5\% significance level, the critical value is 0.965 . Since 0.985 is greater than 0.965 , we cannot reject the null hypothesis that the data came from a population with a normal distribution.

Since perferct normality implies perfect correlation (i.e., a correlation value of 1), we are only interested in rejecting normality for correlation values that are too low. That is, this is a lower one-tailed test.

The values in this table were determined from simulation studies by Filliben and Devaney.

Critical values of the normal PPCC for testing if data come from a normal distribution

| \mathbf{N} | 0.01 | 0.05 |
| :--- | :--- | :--- |

0.8687
0.8234
0.8240
0.8351
0.8474
0.8590
0.8689
0.8765
0.8838
0.8918
0.8974
0.9029
0.9080
0.9121
0.9160
0.9196
0.9230
0.9256
0.9285
0.9308
0.9334
0.9356
0.9370
0.9393
0.9413
0.9428
0.9441
0.9462
0.9476
0.9490
0.9505
0.9521
0.9530
0.9540
0.9551
0.9555
0.9568
0.8790
0.8666
0.8786
0.8880
0.8970
0.9043
0.9115
0.9173
0.9223
0.9267
0.9310
0.9343
0.9376
0.9405
0.9433
0.9452
0.9479
0.9498
0.9515
0.9535
0.9548
0.9564
0.9575
0.9590
0.9600
0.9615
0.9622
0.9634
0.9644
0.9652
0.9661
0.9671
0.9678
0.9686
0.9693
0.9700
0.9704

| 40 | 0.9576 | 0.9712 |
| :---: | :---: | :---: |
| 41 | 0.9589 | 0.9719 |
| 42 | 0.9593 | 0.9723 |
| 43 | 0.9609 | 0.9730 |
| 44 | 0.9611 | 0.9734 |
| 45 | 0.9620 | 0.9739 |
| 46 | 0.9629 | 0.9744 |
| 47 | 0.9637 | 0.9748 |
| 48 | 0.9640 | 0.9753 |
| 49 | 0.9643 | 0.9758 |
| 50 | 0.9654 | 0.9761 |
| 55 | 0.9683 | 0.9781 |
| 60 | 0.9706 | 0.9797 |
| 65 | 0.9723 | 0.9809 |
| 70 | 0.9742 | 0.9822 |
| 75 | 0.9758 | 0.9831 |
| 80 | 0.9771 | 0.9841 |
| 85 | 0.9784 | 0.9850 |
| 90 | 0.9797 | 0.9857 |
| 95 | 0.9804 | 0.9864 |
| 100 | 0.9814 | 0.9869 |
| 110 | 0.9830 | 0.9881 |
| 120 | 0.9841 | 0.9889 |
| 130 | 0.9854 | 0.9897 |
| 140 | 0.9865 | 0.9904 |
| 150 | 0.9871 | 0.9909 |
| 160 | 0.9879 | 0.9915 |
| 170 | 0.9887 | 0.9919 |
| 180 | 0.9891 | 0.9923 |
| 190 | 0.9897 | 0.9927 |
| 200 | 0.9903 | 0.9930 |
| 210 | 0.9907 | 0.9933 |
| 220 | 0.9910 | 0.9936 |
| 230 | 0.9914 | 0.9939 |
| 240 | 0.9917 | 0.9941 |
| 250 | 0.9921 | 0.9943 |
| 260 | 0.9924 | 0.9945 |
| 270 | 0.9926 | 0.9947 |
| 280 | 0.9929 | 0.9949 |
| 290 | 0.9931 | 0.9951 |
| 300 | 0.9933 | 0.9952 |
| 310 | 0.9936 | 0.9954 |
| 320 | 0.9937 | 0.9955 |
| 330 | 0.9939 | 0.9956 |
| 340 | 0.9941 | 0.9957 |
| 350 | 0.9942 | 0.9958 |

| 360 | 0.9944 | 0.9959 |
| :---: | :---: | :---: |
| 370 | 0.9945 | 0.9960 |
| 380 | 0.9947 | 0.9961 |
| 390 | 0.9948 | 0.9962 |
| 400 | 0.9949 | 0.9963 |
| 410 | 0.9950 | 0.9964 |
| 420 | 0.9951 | 0.9965 |
| 430 | 0.9953 | 0.9966 |
| 440 | 0.9954 | 0.9966 |
| 450 | 0.9954 | 0.9967 |
| 460 | 0.9955 | 0.9968 |
| 470 | 0.9956 | 0.9968 |
| 480 | 0.9957 | 0.9969 |
| 490 | 0.9958 | 0.9969 |
| 500 | 0.9959 | 0.9970 |
| 525 | 0.9961 | 0.9972 |
| 550 | 0.9963 | 0.9973 |
| 575 | 0.9964 | 0.9974 |
| 600 | 0.9965 | 0.9975 |
| 625 | 0.9967 | 0.9976 |
| 650 | 0.9968 | 0.9977 |
| 675 | 0.9969 | 0.9977 |
| 700 | 0.9970 | 0.9978 |
| 725 | 0.9971 | 0.9979 |
| 750 | 0.9972 | 0.9980 |
| 775 | 0.9973 | 0.9980 |
| 800 | 0.9974 | 0.9981 |
| 825 | 0.9975 | 0.9981 |
| 850 | 0.9975 | 0.9982 |
| 875 | 0.9976 | 0.9982 |
| 900 | 0.9977 | 0.9983 |
| 925 | 0.9977 | 0.9983 |
| 950 | 0.9978 | 0.9984 |
| 975 | 0.9978 | 0.9984 |
| 1000 | 0.9979 | 0.9984 |

HOME
TOOLS \& AIDS
SEARCH
BACK NEXT

1.4. EDA Case Studies

Abstract

Summary This section presents a series of case studies that demonstrate the application of EDA methods to specific problems. In some cases, we have focused on just one EDA technique that uncovers virtually all there is to know about the data. For other case studies, we need several EDA techniques, the selection of which is dictated by the outcome of the previous step in the analaysis sequence. Note in these case studies how the flow of the analysis is motivated by the focus on underlying assumptions and general EDA principles.

Table of
Contents for
Section 4

NIST
SEMATECH

1. Introduction
2. By Problem Category

BACK NEXT

1. Exploratory Data Analysis

1.4. EDA Case Studies

1.4.1. Case Studies Introduction

Purpose \quad The purpose of the first eight case studies is to show how EDA graphics and quantitative measures and tests are applied to data from scientific processes and to critique those data with regard to the following assumptions that typically underlie a measurement process; namely, that the data behave like:

- random drawings
- from a fixed distribution
- with a fixed location
- with a fixed standard deviation

Case studies 9 and 10 show the use of EDA techniques in distributional modeling and the analysis of a designed experiment, respectively.

$$
Y_{i}=C+E_{i}
$$

If the above assumptions are satisfied, the process is said to be statistically "in control" with the core characteristic of having "predictability". That is, probability statements can be made about the process, not only in the past, but also in the future.

An appropriate model for an "in control" process is

$$
Y_{i}=C+E_{i}
$$

where \boldsymbol{C} is a constant (the "deterministic" or "structural" component), and where $\boldsymbol{E}_{\boldsymbol{i}}$ is the error term (or "random" component).

The constant \boldsymbol{C} is the average value of the process--it is the primary summary number which shows up on any report. Although \boldsymbol{C} is (assumed) fixed, it is unknown, and so a primary analysis objective of the engineer is to arrive at an estimate of \boldsymbol{C}.

This goal partitions into 4 sub-goals:

1. Is the most common estimator of \boldsymbol{C}, \bar{Y}, the best estimator for \boldsymbol{C} ? What does "best" mean?
2. If \bar{Y} is best, what is the uncertainty $s_{\bar{Y}}$ for \bar{Y}. In particular, is
the usual formula for the uncertainty of \bar{Y} :

$$
s_{\bar{Y}}=s / \sqrt{N}
$$

valid? Here, s is the standard deviation of the data and N is the sample size.
3. If \bar{Y} is not the best estimator for \boldsymbol{C}, what is a better estimator for \boldsymbol{C} (for example, median, midrange, midmean)?
4. If there is a better estimator, \hat{C}, what is its uncertainty? That is, what is $s_{\hat{C}}$?
EDA and the routine checking of underlying assumptions provides insight into all of the above.

1. Location and variation checks provide information as to whether \boldsymbol{C} is really constant.
2. Distributional checks indicate whether \bar{Y} is the best estimator. Techniques for distributional checking include histograms, normal probability plots, and probability plot correlation coefficient plots.
3. Randomness checks ascertain whether the usual

$$
s_{\bar{Y}}=s / \sqrt{N}
$$

is valid.
4. Distributional tests assist in determining a better estimator, if needed.
5. Simulator tools (namely bootstrapping) provide values for the uncertainty of alternative estimators.

Assumptions not satisfied

If one or more of the above assumptions is not satisfied, then we use EDA techniques, or some mix of EDA and classical techniques, to find a more appropriate model for the data. That is,

$$
Y_{i}=D+E_{i}
$$

where \boldsymbol{D} is the deterministic part and \boldsymbol{E} is an error component.
If the data are not random, then we may investigate fitting some simple time series models to the data. If the constant location and scale assumptions are violated, we may need to investigate the measurement process to see if there is an explanation.

The assumptions on the error term are still quite relevant in the sense that for an appropriate model the error component should follow the assumptions. The criterion for validating the model, or comparing competing models, is framed in terms of these assumptions.

Multivariable data

First three
case studies utilize data with known characteristics

Graphical methods that are applied to the data

Although the case studies in this chapter utilize univariate data, the assumptions above are relevant for multivariable data as well.

If the data are not univariate, then we are trying to find a model

$$
Y_{i}=F\left(X_{1}, \ldots, X_{k}\right)+E_{i}
$$

where \boldsymbol{F} is some function based on one or more variables. The error component, which is a univariate data set, of a good model should satisfy the assumptions given above. The criterion for validating and comparing models is based on how well the error component follows these assumptions.

The load cell calibration case study in the process modeling chapter shows an example of this in the regression context.

The first three case studies utilize data that are randomly generated from the following distributions:

- normal distribution with mean 0 and standard deviation 1
- uniform distribution with mean 0 and standard deviation $\sqrt{1 / 12}$ (uniform over the interval $(0,1)$)
- random walk

The other univariate case studies utilize data from scientific processes. The goal is to determine if

$$
Y_{i}=C+E_{i}
$$

is a reasonable model. This is done by testing the underlying assumptions. If the assumptions are satisfied, then an estimate of \boldsymbol{C} and an estimate of the uncertainty of \boldsymbol{C} are computed. If the assumptions are not satisfied, we attempt to find a model where the error component does satisfy the underlying assumptions.

To test the underlying assumptions, each data set is analyzed using four graphical methods that are particularly suited for this purpose:

1. run sequence plot which is useful for detecting shifts of location or scale
2. lag plot which is useful for detecting non-randomness in the data
3. histogram which is useful for trying to determine the underlying distribution
4. normal probability plot for deciding whether the data follow the normal distribution
There are a number of other techniques for addressing the underlying
assumptions. However, the four plots listed above provide an excellent opportunity for addressing all of the assumptions on a single page of graphics.

Additional graphical techniques are used in certain case studies to develop models that do have error components that satisfy the underlying assumptions.

Quantitative methods that are applied to the data

The normal and uniform random number data sets are also analyzed with the following quantitative techniques, which are explained in more detail in an earlier section:

1. Summary statistics which include:

O mean

- standard deviation
- autocorrelation coefficient to test for randomness
- normal and uniform probability plot correlation coefficients (ppcc) to test for a normal or uniform distribution, respectively
- Wilk-Shapiro test for a normal distribution

2. Linear fit of the data as a function of time to assess drift (test for fixed location)
3. Bartlett test for fixed variance
4. Autocorrelation plot and coefficient to test for randomness
5. Runs test to test for lack of randomness
6. Anderson-Darling test for a normal distribution
7. Grubbs test for outliers
8. Summary report

Although the graphical methods applied to the normal and uniform random numbers are sufficient to assess the validity of the underlying assumptions, the quantitative techniques are used to show the different flavor of the graphical and quantitative approaches.

The remaining case studies intermix one or more of these quantitative techniques into the analysis where appropriate.

HOME
TOOLS \& AIDS
SEARCH
BACK NEXT|

1. Exploratory Data Analysis
1.4. EDA Case Studies

1.4.2. Case Studies

Univariate

$Y_{i}=C+E_{i}$

Random Walk

Filter Transmittance

Standard Resistor

Heat Flow Meter 1

Reliability

Airplane Glass
Failure Time

Multi-Factor

Ceramic Strength

NIST
 SEMATECH

HOME
TOOLS \& AIDS SEARCH
BACK NEXT

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies

1.4.2.1. Normal Random Numbers

Normal
Random
Numbers

This example illustrates the univariate analysis of a set of normal random numbers.

1. Background and Data
2. Graphical Output and Interpretation
3. Quantitative Output and Interpretation
4. Work This Example Yourself

NIST
$\overline{\text { SEMATECH }}$

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.1. Normal Random Numbers

1.4.2.1.1. Background and Data

Generation The normal random numbers used in this case study are from a Rand Corporation publication.

The motivation for studying a set of normal random numbers is to illustrate the ideal case where all four underlying assumptions hold.

Software

Resulting
Data

Most general purpose statistical software programs, including Dataplot, can generate normal random numbers.

The following is the set of normal random numbers used for this case study.

$$
\begin{array}{rrrrr}
-1.2760 & -1.2180 & -0.4530 & -0.3500 & 0.7230 \\
0.6760 & -1.0990 & -0.3140 & -0.3940 & -0.6330 \\
-0.3180 & -0.7990 & -1.6640 & 1.3910 & 0.3820 \\
0.7330 & 0.6530 & 0.2190 & -0.6810 & 1.1290 \\
-1.3770 & -1.2570 & 0.4950 & -0.1390 & -0.8540 \\
0.4280 & -1.3220 & -0.3150 & -0.7320 & -1.3480 \\
2.3340 & -0.3370 & -1.9550 & -0.6360 & -1.3180 \\
-0.4330 & 0.5450 & 0.4280 & -0.2970 & 0.2760 \\
-1.1360 & 0.6420 & 3.4360 & -1.6670 & 0.8470 \\
-1.1730 & -0.3550 & 0.0350 & 0.3590 & 0.9300 \\
0.4140 & -0.0110 & 0.6660 & -1.1320 & -0.4100 \\
-1.0770 & 0.7340 & 1.4840 & -0.3400 & 0.7890 \\
-0.4940 & 0.3640 & -1.2370 & -0.0440 & -0.1110 \\
-0.2100 & 0.9310 & 0.6160 & -0.3770 & -0.4330 \\
1.0480 & 0.0370 & 0.7590 & 0.6090 & -2.0430 \\
-0.2900 & 0.4040 & -0.5430 & 0.4860 & 0.8690 \\
0.3470 & 2.8160 & -0.4640 & -0.6320 & -1.6140 \\
0.3720 & -0.0740 & -0.9160 & 1.3140 & -0.0380 \\
0.6370 & 0.5630 & -0.1070 & 0.1310 & -1.8080 \\
-1.1260 & 0.3790 & 0.6100 & -0.3640 & -2.6260
\end{array}
$$

| 2.1760 | 0.3930 | -0.9240 | 1.9110 | -1.0400 |
| ---: | ---: | ---: | ---: | ---: |
| -1.1680 | 0.4850 | 0.0760 | -0.7690 | 1.6070 |
| -1.1850 | -0.9440 | -1.6040 | 0.1850 | -0.2580 |
| -0.3000 | -0.5910 | -0.5450 | 0.0180 | -0.4850 |
| 0.9720 | 1.7100 | 2.6820 | 2.8130 | -1.5310 |
| -0.4900 | 2.0710 | 1.4440 | -1.0920 | 0.4780 |
| 1.2100 | 0.2940 | -0.2480 | 0.7190 | 1.1030 |
| 1.0900 | 0.2120 | -1.1850 | -0.3380 | -1.1340 |
| 2.6470 | 0.7770 | 0.4500 | 2.2470 | 1.1510 |
| -1.6760 | 0.3840 | 1.1330 | 1.3930 | 0.8140 |
| 0.3980 | 0.3180 | -0.9280 | 2.4160 | -0.9360 |
| 1.0360 | 0.0240 | -0.5600 | 0.2030 | -0.8710 |
| 0.8460 | -0.6990 | -0.3680 | 0.3440 | -0.9260 |
| -0.7970 | -1.4040 | -1.4720 | -0.1180 | 1.4560 |
| 0.6540 | -0.9550 | 2.9070 | 1.6880 | 0.7520 |
| -0.4340 | 0.7460 | 0.1490 | -0.1700 | -0.4790 |
| 0.5220 | 0.2310 | -0.6190 | -0.2650 | 0.4190 |
| 0.5580 | -0.5490 | 0.1920 | -0.3340 | 1.3730 |
| -1.2880 | -0.5390 | -0.8240 | 0.2440 | -1.0700 |
| 0.0100 | 0.4820 | -0.4690 | -0.0900 | 1.1710 |
| 1.3720 | 1.7690 | -1.0570 | 1.6460 | 0.4810 |
| -0.6000 | -0.5920 | 0.6100 | -0.0960 | -1.3750 |
| 0.8540 | -0.5350 | 1.6070 | 0.4280 | -0.6150 |
| 0.3310 | -0.3360 | -1.1520 | 0.5330 | -0.8330 |
| -0.1480 | -1.1440 | 0.9130 | 0.6840 | 1.0430 |
| 0.5540 | -0.0510 | -0.9440 | -0.4400 | -0.2120 |
| -1.1480 | -1.0560 | 0.6350 | -0.3280 | -1.2210 |
| 0.1180 | -2.0450 | -1.9770 | -1.1330 | 0.3380 |
| 0.3480 | 0.9700 | -0.0170 | 1.2170 | -0.9740 |
| -1.2910 | -0.3990 | -1.2090 | -0.2480 | 0.4800 |
| 0.2840 | 0.4580 | 1.3070 | -1.6250 | -0.6290 |
| -0.5040 | -0.0560 | -0.1310 | 0.0480 | 1.8790 |
| -1.0160 | 0.3600 | -0.1190 | 2.3310 | 1.6720 |
| -1.0530 | 0.8400 | -0.2460 | 0.2370 | -1.3120 |
| 1.6030 | -0.9520 | -0.5660 | 1.6000 | 0.4650 |
| 1.9510 | 0.1100 | 0.2510 | 0.1160 | -0.9570 |
| -0.1900 | 1.4790 | -0.9860 | 1.2490 | 1.9340 |
| 0.0700 | -1.3580 | -1.2460 | -0.9590 | -1.2970 |
| -0.7220 | 0.9250 | 0.7830 | -0.4020 | 0.6190 |
| 1.8260 | 1.2720 | -0.9450 | 0.4940 | 0.0500 |
| -1.6960 | 1.8790 | 0.0630 | 0.1320 | 0.6820 |
| 0.5440 | -0.4170 | -0.6660 | -0.1040 | -0.2530 |
| -2.5430 | -1.3330 | 1.9870 | 0.6680 | 0.3600 |
| 1.9270 | 1.1830 | 1.2110 | 1.7650 | 0.3500 |
| -0.3590 | 0.1930 | -1.0230 | -0.2220 | -0.6160 |
| -0.0600 | -1.3190 | 0.7850 | -0.4300 | -0.2980 |

| 0.2480 | -0.0880 | -1.3790 | 0.2950 | -0.1150 |
| ---: | ---: | ---: | ---: | ---: |
| -0.6210 | -0.6180 | 0.2090 | 0.9790 | 0.9060 |
| -0.0990 | -1.3760 | 1.0470 | -0.8720 | -2.2000 |
| -1.3840 | 1.4250 | -0.8120 | 0.7480 | -1.0930 |
| -0.4630 | -1.2810 | -2.5140 | 0.6750 | 1.1450 |
| 1.0830 | -0.6670 | -0.2230 | -1.5920 | -1.2780 |
| 0.5030 | 1.4340 | 0.2900 | 0.3970 | -0.8370 |
| -0.9730 | -0.1200 | -1.5940 | -0.9960 | -1.2440 |
| -0.8570 | -0.3710 | -0.2160 | 0.1480 | -2.1060 |
| -1.4530 | 0.6860 | -0.0750 | -0.2430 | -0.1700 |
| -0.1220 | 1.1070 | -1.0390 | -0.6360 | -0.8600 |
| -0.8950 | -1.4580 | -0.5390 | -0.1590 | -0.4200 |
| 1.6320 | 0.5860 | -0.4680 | -0.3860 | -0.3540 |
| 0.2030 | -1.2340 | 2.3810 | -0.3880 | -0.0630 |
| 2.0720 | -1.4450 | -0.6800 | 0.2240 | -0.1200 |
| 1.7530 | -0.5710 | 1.2230 | -0.1260 | 0.0340 |
| -0.4350 | -0.3750 | -0.9850 | -0.5850 | -0.2030 |
| -0.5560 | 0.0240 | 0.1260 | 1.2500 | -0.6150 |
| 0.8760 | -1.2270 | -2.6470 | -0.7450 | 1.7970 |
| -1.2310 | 0.5470 | -0.6340 | -0.8360 | -0.7190 |
| 0.8330 | 1.2890 | -0.0220 | -0.4310 | 0.5820 |
| 0.7660 | -0.5740 | -1.1530 | 0.5200 | -1.0180 |
| -0.8910 | 0.3320 | -0.4530 | -1.1270 | 2.0850 |
| -0.7220 | -1.5080 | 0.4890 | -0.4960 | -0.0250 |
| 0.6440 | -0.2330 | -0.1530 | 1.0980 | 0.7570 |
| -0.0390 | -0.4600 | 0.3930 | 2.0120 | 1.3560 |
| 0.1050 | -0.1710 | -0.1100 | -1.1450 | 0.8780 |
| -0.9090 | -0.3280 | 1.0210 | -1.6130 | 1.5600 |
| -1.1920 | 1.7700 | -0.0030 | 0.3690 | 0.0520 |
| 0.6470 | 1.0290 | 1.5260 | 0.2370 | -1.3280 |
| -0.0420 | 0.5530 | 0.7700 | 0.3240 | -0.4890 |
| -0.3670 | 0.3780 | 0.6010 | -1.9960 | -0.7380 |
| 0.4980 | 1.0720 | 1.5670 | 0.3020 | 1.1570 |
| -0.7200 | 1.4030 | 0.6980 | -0.3700 | -0.5510 |
| | 0.00 | | | |

$\frac{\text { NIST }}{\text { SEMATECH }}$

HOME
TOOLS \& AIDS
SEARCH
BACK NEXT

ENGINEERING STATISTICS HANDBOOK
 HOME
 TOOLS \& AIDS
 SEARCH
 1. Exploratory Data Analysis
 1.4. EDA Case Studies
 1.4.2. Case Studies
 1.4.2.1. Normal Random Numbers

 1.4.2.1.2. Graphical Output and

 1.4.2.1.2. Graphical Output and Interpretation

 Interpretation}

BACK NEXT

Goal The goal of this analysis is threefold:

1. Determine if the univariate model:

$$
Y_{i}=C+E_{i}
$$

is appropriate and valid.
2. Determine if the typical underlying assumptions for an "in control" measurement process are valid. These assumptions are:

1. random drawings;
2. from a fixed distribution;
3. with the distribution having a fixed location; and
4. the distribution having a fixed scale.
5. Determine if the confidence interval

$$
\bar{Y} \pm 2 s / \sqrt{N}
$$

is appropriate and valid where s is the standard deviation of the original data.

4-Plot of

 DataInterpretation

The assumptions are addressed by the graphics shown above:

1. The run sequence plot (upper left) indicates that the data do not have any significant shifts in location or scale over time. The run sequence plot does not show any obvious outliers.
2. The lag plot (upper right) does not indicate any non-random pattern in the data.
3. The histogram (lower left) shows that the data are reasonably symmetric, there do not appear to be significant outliers in the tails, and that it is reasonable to assume that the data are from approximately a normal distribution.
4. The normal probability plot (lower right) verifies that an assumption of normality is in fact reasonable.

From the above plots, we conclude that the underlying assumptions are valid and the data follow approximately a normal distribution. Therefore, the confidence interval form given previously is appropriate for quantifying the uncertainty of the population mean. The numerical values for this model are given in the Quantitative Output and Interpretation section.

Individual

Plots

Although it is usually not necessary, the plots can be generated individually to give more detail.

Run

Sequence
Plot

Lag Plot

Histogram
(with
overlaid
Normal PDF)

Normal
Probability
Plot

Fitted line: Intercept $=\mathbf{- 0 . 0 0 2 9 4}$, Slope $=1.021307$

HOME
TOOLS \& AIDS
SEARCH
BACK NEXT

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.1. Normal Random Numbers

1.4.2.1.3. Quantitative Output and Interpretation

Summary
Statistics

As a first step in the analysis, a table of summary statistics is computed from the data. The following table, generated by Dataplot, shows a typical set of statistics.

SUMMARY

NUMBER OF OBSERVATIONS =
500

Location One way to quantify a change in location over time is to fit a straight line to the data set, using the index variable $\mathrm{X}=1,2, \ldots, \mathrm{~N}$, with N denoting the number of observations. If there is no significant drift in the location, the slope parameter should be zero. For this data set, Dataplot generated the following output:

```
LEAST SQUARES MULTILINEAR FIT
SAMPLE SIZE N = 500
NUMBER OF VARIABLES = 1
NO REPLICATION CASE
```

| | | PARAMETER ESTIMATES | (APPROX. ST. DEV.) | T VALUE | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 A0 | $0.699127 \mathrm{E}-02$ | $(0.9155 \mathrm{E}-01)$ | $0.7636 \mathrm{E}-01$ | | |
| 2 | A1 | X | $-0.396298 \mathrm{E}-04$ | $(0.3167 \mathrm{E}-03)$ | -0.1251 |
| | | | | | |
| RESIDUAL | STANDARD DEVIATION $=$ | 1.02205 | | | |
| RESIDUAL | DEGREES OF FREEDOM $=$ | 498 | | | |

The slope parameter, A1, has a t value of -0.13 which is statistically not significant. This indicates that the slope can in fact be considered zero.

Variation
One simple way to detect a change in variation is with a Bartlett test, after dividing the data set into several equal-sized intervals. The choice of the number of intervals is somewhat arbitrary, although values of 4 or 8 are reasonable. Dataplot generated the following output for the Bartlett test.

```
                                    BARTLETT TEST
    (STANDARD DEFINITION)
NULL HYPOTHESIS UNDER TEST--ALL SIGMA(I) ARE EQUAL
TEST:
    DEGREES OF FREEDOM = 3.000000
    TEST STATISTIC VALUE = 2.373660
    CUTOFF: 95% PERCENT POINT = 7.814727
    CUTOFF: 99% PERCENT POINT = 11.34487
    CHI-SQUARE CDF VALUE = 0.501443
    NULL NULL HYPOTHESIS NULL HYPOTHESIS
    HYPOTHESIS ACCEPTANCE INTERVAL CONCLUSION
ALL SIGMA EQUAL (0.000,0.950) ACCEPT
```

In this case, the Bartlett test indicates that the standard deviations are not significantly different in the 4 intervals.

There are many ways in which data can be non-random. However, most common forms of non-randomness can be detected with a few simple tests. The lag plot in the 4-plot above is a simple graphical technique.

Another check is an autocorrelation plot that shows the autocorrelations for various lags. Confidence bands can be plotted at the 95% and 99% confidence levels. Points outside this band indicate statistically significant values (lag 0 is always 1). Dataplot generated the following autocorrelation plot.

The lag 1 autocorrelation, which is generally the one of most interest, is 0.045 . The critical values at the 5% significance level are -0.087 and 0.087 . Thus, since 0.045 is in the interval, the lag 1 autocorrelation is not statistically significant, so there is no evidence of non-randomness.

A common test for randomness is the runs test.

1.4.2.1.3. Quantitative Output and Interpretation

| 1 | 161.0 | 166.5000 | 6.6546 | -0.83 |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 63.0 | 62.2917 | 4.4454 | 0.16 |
| 3 | 20.0 | 16.5750 | 3.4338 | 1.00 |
| 4 | 7.0 | 3.4458 | 1.7786 | 2.00 |
| 5 | 1.0 | 0.5895 | 0.7609 | 0.54 |
| 6 | 0.0 | 0.0858 | 0.2924 | -0.29 |
| 7 | 0.0 | 0.0109 | 0.1042 | -0.10 |
| 8 | 0.0 | 0.0012 | 0.0349 | -0.03 |
| 9 | 0.0 | 0.0001 | 0.0111 | -0.01 |
| 10 | 0.0 | 0.0000 | 0.0034 | 0.00 |
| RUNS DOWN | | | | |
| STATISTIC = NUMBER OF RUNS DOWN OF LENGTH EXACTLY I | | | | |
| | | | | |
| I | STAT | EXP (ST | SD (STAT) | Z |
| 1 | 91.0 | 104.2083 | 10.2792 | -1.28 |
| 2 | 55.0 | 45.7167 | 5.2996 | 1.75 |
| 3 | 14.0 | 13.1292 | 3.2297 | 0.27 |
| 4 | 1.0 | 2.8563 | 1.6351 | -1.14 |
| 5 | 0.0 | 0.5037 | 0.7045 | -0.71 |
| 6 | 0.0 | 0.0749 | 0.2733 | -0.27 |
| 7 | 0.0 | 0.0097 | 0.0982 | -0.10 |
| 8 | 0.0 | 0.0011 | 0.0331 | -0.03 |
| 9 | 0.0 | 0.0001 | 0.0106 | -0.01 |
| 10 | 0.0 | 0.0000 | 0.0032 | 0.00 |
| STATISTIC = NUMBER OF RUNS DOWN OF LENGTH I OR MORE | | | | |
| | | | | |
| I | STAT | EXP (ST | SD (STAT) | Z |
| 1 | 161.0 | 166.5000 | 6.6546 | -0.83 |
| 2 | 70.0 | 62.2917 | 4.4454 | 1.73 |
| 3 | 15.0 | 16.5750 | 3.4338 | -0.46 |
| 4 | 1.0 | 3.4458 | 1.7786 | -1.38 |
| 5 | 0.0 | 0.5895 | 0.7609 | -0.77 |
| 6 | 0.0 | 0.0858 | 0.2924 | -0.29 |
| 7 | 0.0 | 0.0109 | 0.1042 | -0.10 |
| 8 | 0.0 | 0.0012 | 0.0349 | -0.03 |
| 9 | 0.0 | 0.0001 | 0.0111 | -0.01 |
| 10 | 0.0 | 0.0000 | 0.0034 | 0.00 |
| | | | | |
| STATISTIC = NUMBER OF RUNS TOTAL OF LENGTH EXACTLY I | | | | |
| | | | | |
| I | STAT | EXP (ST | SD (STAT) | Z |
| 1 | 189.0 | 208.4167 | 14.5370 | -1.34 |
| 2 | 98.0 | 91.4333 | 7.4947 | 0.88 |
| 3 | 27.0 | 26.2583 | 4.5674 | 0.16 |
| 4 | 7.0 | 5.7127 | 2.3123 | 0.56 |
| 5 | 1.0 | 1.0074 | 0.9963 | -0.01 |
| 6 | 0.0 | 0.1498 | 0.3866 | -0.39 |
| 7 | 0.0 | 0.0193 | 0.1389 | -0.14 |
| 8 | 0.0 | 0.0022 | 0.0468 | -0.05 |
| 9 | 0.0 | 0.0002 | 0.0150 | -0.01 |
| 1 | 0.0 | 0.0000 | 0.0045 | 0.00 |
| STATISTIC = NUMBER OF RUNS TOTAL OF LENGTH I OR MORE | | | | |
| | | | | |
| I | STAT | EXP (STAT) SD (STAT) | | Z |
| 1 | 322.0 | 333.0000 | 9.4110 | -1.17 |
| 2 | 133.0 | 124.5833 | 6.2868 | 1.34 |
| 3 | 35.0 | 33.1500 | 4.8561 | 0.38 |
| 4 | 8.0 | 6.8917 | 2.5154 | 0.44 |

1.4.2.1.3. Quantitative Output and Interpretation

| 5 | 1.0 | 1.1790 | 1.0761 | -0.17 |
| ---: | :---: | :---: | :---: | :---: |
| 6 | 0.0 | 0.1716 | 0.4136 | -0.41 |
| 7 | 0.0 | 0.0217 | 0.1474 | -0.15 |
| 8 | 0.0 | 0.0024 | 0.0494 | -0.05 |
| 9 | 0.0 | 0.0002 | 0.0157 | -0.02 |
| 10 | 0.0 | 0.0000 | 0.0047 | 0.00 |
| | LENGTH OF THE LONGEST RUN UP | $=$ | 5 | |
| | LENGTH OF THE LONGEST RUN DOWN | $=$ | 4 | |
| | LENGTH OF THE LONGEST RUN UP OR DOWN | $=$ | 5 | |

NUMBER OF POSITIVE DIFFERENCES = 252
NUMBER OF NEGATIVE DIFFERENCES $=247$
NUMBER OF ZERO DIFFERENCES = 0

Values in the column labeled "Z" greater than 1.96 or less than -1.96 are statistically significant at the 5% level. The runs test does not indicate any significant non-randomness.

Distributional Probability plots are a graphical test for assessing if a particular distribution provides an Analysis adequate fit to a data set.

A quantitative enhancement to the probability plot is the correlation coefficient of the points on the probability plot. For this data set the correlation coefficient is 0.996 . Since this is greater than the critical value of 0.987 (this is a tabulated value), the normality assumption is not rejected.

Chi-square and Kolmogorov-Smirnov goodness-of-fit tests are alternative methods for assessing distributional adequacy. The Wilk-Shapiro and Anderson-Darling tests can be used to test for normality. Dataplot generates the following output for the Anderson-Darling normality test.

ANDERSON-DARLING 1-SAMPLE TEST
THAT THE DATA CAME FROM A NORMAL DISTRIBUTION

1. STATISTICS:
$\begin{array}{llr}\text { NUMBER OF OBSERVATIONS } & = & 500 \\ \text { MEAN } & & =-0.2935997 E-02\end{array}$
STANDARD DEVIATION $=1.021041$
ANDERSON-DARLING TEST STATISTIC VALUE $=1.061249$
ADJUSTED TEST STATISTIC VALUE $=1.069633$
2. CRITICAL VALUES:

90 \% POINT $=0.6560000$
95 \%POINT $=0.7870000$
97.5% POINT $=0.9180000$
99 \% POINT $=1.092000$
3. CONCLUSION (AT THE 5\% LEVEL):

THE DATA DO NOT COME FROM A NORMAL DISTRIBUTION.
The Anderson-Darling test rejects the normality assumption at the 5% level but accepts it at the 1% level.

Outlier
Analysis

Model

Univariate Report

A test for outliers is the Grubbs test. Dataplot generated the following output for Grubbs' test.

GRUBBS TEST FOR OUTLIERS
(ASSUMPTION: NORMALITY)

1. STATISTICS:
NUMBER OF OBSERVATIONS $=500$
MINIMUM $=-2.647000$
MEAN $=-0.2935997 \mathrm{E}$
MAXIMUM $=3.436000$
STANDARD DEVIATION = 1.021041
GRUBBS TEST STATISTIC = 3.368068
2. PERCENT POINTS OF THE REFERENCE DISTRIBUTION FOR GRUBBS TEST STATISTIC

0 \% POINT $=0.0000000 \mathrm{E}+00$
50 \% POINT $=3.274338$
75 \% POINT $=3.461431$
90 \% POINT $=3.695134$
95 \% POINT $=3.863087$
99 \% POINT $=4.228033$
3. CONCLUSION (AT THE 5\% LEVEL):

THERE ARE NO OUTLIERS.
For this data set, Grubbs' test does not detect any outliers at the $25 \%, 10 \%, 5 \%$, and 1% significance levels.

Since the underlying assumptions were validated both graphically and analytically, we conclude that a reasonable model for the data is:

$$
Y_{i}=-0.00294+E_{i}
$$

We can express the uncertainty for \boldsymbol{C} as the 95% confidence interval ($-0.09266,0.086779$).

It is sometimes useful and convenient to summarize the above results in a report. The report for the 500 normal random numbers follows.

```
Analysis for 500 normal random numbers
1: Sample Size = 500
2: Location
    Mean = -0.00294
    Standard Deviation of Mean = 0.045663
    95% Confidence Interval for Mean = (-0.09266,0.086779)
    Drift with respect to location? = NO
3: Variation
    Standard Deviation = 1.021042
    95% Confidence Interval for SD = (0.961437,1.088585)
    Drift with respect to variation?
        (based on Bartletts test on quarters
    of the data) = NO
4: Distribution
    Normal PPCC = 0.996173
```

1.4.2.1.3. Quantitative Output and Interpretation

Data are Normal? (as measured by Normal PPCC) = YES

5: Randomness
Autocorrelation $=0.045059$
Data are Random?
(as measured by autocorrelation) = YES
6: Statistical Control
(i.e., no drift in location or scale, data are random, distribution is fixed, here we are testing only for fixed normal)
Data Set is in Statistical Control? = YES

7: Outliers?
(as determined by Grubbs' test) = NO

NIST
 SEMATECH

$\overline{\text { HOME }} \sqrt{T O O L S}$ \& AIDS \quad SEARCH $\quad \sqrt{B A C K}$ NEXT

ENGINEERING STATISTICS HANDBOOK
TOOLS \& AIDS
SEARCH
BACK NEXT

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.1. Normal Random Numbers

1.4.2.1.4. Work This Example Yourself

 DataplotMacro for
this Case
Study

View This page allows you to repeat the analysis outlined in the case study description on the previous page using Dataplot. It is required that you have already downloaded and installed Dataplot and configured your browser. to run Dataplot. Output from each analysis step below will be displayed in one or more of the Dataplot windows. The four main windows are the Output window, the Graphics window, the Command History window, and the data sheet window. Across the top of the main windows there are menus for executing Dataplot commands. Across the bottom is a command entry window where commands can be typed in.

| Data Analysis Steps | Results and Conclusions |
| :---: | :---: |
| | |

Click on the links below to start Dataplot and run this case study yourself. Each step may use results from previous steps, so please be patient. Wait until the software verifies that the current step is complete before clicking on the next step.

1. Invoke Dataplot and read data.
2. Generate the individual plots.
3. Generate a run sequence plot.
4. Generate a lag plot.
5. Generate a histogram with an overlaid normal pdf.
6. Read in the data.
7. 4-plot of the data.
8. 4-plot of Y.

The links in this column will connect you with more detailed information about each analysis step from the case study description.

1. Based on the 4-plot, there are no shifts in location or scale, and the data seem to follow a normal distribution.
2. The run sequence plot indicates that there are no shifts of location or scale.
3. The lag plot does not indicate any significant patterns (which would show the data were not random).
4. The histogram indicates that a

1.4.2.1.4. Work This Example Yourself

4. Generate a normal probability plot.
normal distribution is a good distribution for these data.
5. The normal probability plot verifies that the normal distribution is a reasonable distribution for these data.
6. Generate summary statistics, quantitative analysis, and print a univariate report.
7. Generate a table of summary statistics.
8. Generate the mean, a confidence interval for the mean, and compute a linear fit to detect drift in location.
9. The summary statistics table displays $25+$ statistics.
10. The mean is -0.00294 and a 95\% confidence interval is ($-0.093,0.087$). The linear fit indicates no drift in location since the slope parameter is statistically not significant.
11. The standard deviation is 1.02 with a 95\% confidence interval of ($0.96,1.09$). Bartlett's test indicates no significant change in variation.
12. The lag 1 autocorrelation is 0.04 . From the autocorrelation plot, this is within the 95\% confidence interval bands.
13. The normal probability plot correlation coefficient is 0.996. At the 5\% level, normal probability plot correlation coefficient.
14. Check for outliers using Grubbs' test.
15. Print a univariate report (this assumes steps 2 thru 6 have already been run).
16. The results are summarized in a
17. Grubbs' test detects no outliers at the 5\% level.
> convenient report.

NIST SEMATECH

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies

1.4.2.2. Uniform Random Numbers

Uniform Random Numbers

This example illustrates the univariate analysis of a set of uniform random numbers.

1. Background and Data
2. Graphical Output and Interpretation
3. Quantitative Output and Interpretation
4. Work This Example Yourself
5. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.2. Uniform Random Numbers

1.4.2.2.1. Background and Data

Generation The uniform random numbers used in this case study are from a Rand Corporation publication.

The motivation for studying a set of uniform random numbers is to illustrate the effects of a known underlying non-normal distribution.

Software Most general purpose statistical software programs, including Dataplot, can generate uniform random numbers.

Resulting The following is the set of uniform random numbers used for this case Data study.

| .100973 | .253376 | .520135 | .863467 | .354876 |
| :--- | :--- | :--- | :--- | :--- |
| .809590 | .911739 | .292749 | .375420 | .480564 |
| .894742 | .962480 | .524037 | .206361 | .040200 |
| .822916 | .084226 | .895319 | .645093 | .032320 |
| .902560 | .159533 | .476435 | .080336 | .990190 |
| .252909 | .376707 | .153831 | .131165 | .886767 |
| .439704 | .436276 | .128079 | .997080 | .157361 |
| .476403 | .236653 | .989511 | .687712 | .171768 |
| .660657 | .471734 | .072768 | .503669 | .736170 |
| .658133 | .988511 | .199291 | .310601 | .080545 |
| .571824 | .063530 | .342614 | .867990 | .743923 |
| .403097 | .852697 | .760202 | .051656 | .926866 |
| .574818 | .730538 | .524718 | .623885 | .635733 |
| .213505 | .325470 | .489055 | .357548 | .284682 |
| .870983 | .491256 | .737964 | .575303 | .529647 |
| .783580 | .834282 | .609352 | .034435 | .273884 |
| .985201 | .776714 | .905686 | .072210 | .940558 |
| .609709 | .343350 | .500739 | .118050 | .543139 |
| .808277 | .325072 | .568248 | .294052 | .420152 |
| .775678 | .834529 | .963406 | .288980 | .831374 |

| . 670078 | . 184754 | . 061068 | . 711778 | . 886854 |
| :---: | :---: | :---: | :---: | :---: |
| . 020086 | . 507584 | . 013676 | . 667951 | . 903647 |
| . 649329 | . 609110 | . 995946 | . 734887 | . 517649 |
| . 699182 | . 608928 | . 937856 | . 136823 | . 478341 |
| . 654811 | . 767417 | . 468509 | . 505804 | . 776974 |
| . 730395 | . 718640 | . 218165 | . 801243 | . 563517 |
| . 727080 | . 154531 | . 822374 | . 211157 | . 825314 |
| . 385537 | . 743509 | . 981777 | . 402772 | . 144323 |
| . 600210 | . 455216 | . 423796 | . 286026 | . 699162 |
| . 680366 | . 252291 | . 483693 | . 687203 | . 766211 |
| . 399094 | . 400564 | . 098932 | . 050514 | . 225685 |
| . 144642 | . 756788 | . 962977 | . 882254 | . 382145 |
| . 914991 | . 452368 | . 479276 | . 864616 | . 283554 |
| . 947508 | . 992337 | . 089200 | . 803369 | . 459826 |
| . 940368 | . 587029 | . 734135 | . 531403 | . 334042 |
| . 050823 | . 441048 | . 194985 | . 157479 | . 543297 |
| . 926575 | . 576004 | . 088122 | . 222064 | . 125507 |
| . 374211 | .100020 | . 401286 | . 074697 | . 966448 |
| . 943928 | . 707258 | . 636064 | . 932916 | . 505344 |
| . 844021 | . 952563 | . 436517 | . 708207 | . 207317 |
| . 611969 | . 044626 | . 457477 | . 745192 | . 433729 |
| . 653945 | . 959342 | . 582605 | . 154744 | . 526695 |
| . 270799 | . 535936 | . 783848 | . 823961 | . 011833 |
| . 211594 | . 945572 | . 857367 | . 897543 | . 875462 |
| . 244431 | . 911904 | . 259292 | . 927459 | . 424811 |
| . 621397 | . 344087 | . 211686 | . 848767 | . 030711 |
| . 205925 | . 701466 | . 235237 | . 831773 | . 208898 |
| . 376893 | . 591416 | . 262522 | . 966305 | . 522825 |
| . 044935 | . 249475 | . 246338 | . 244586 | . 251025 |
| . 619627 | . 933565 | . 337124 | . 005499 | . 765464 |
| . 051881 | . 599611 | . 963896 | . 546928 | . 239123 |
| . 287295 | . 359631 | . 530726 | . 898093 | . 543335 |
| . 135462 | . 779745 | . 002490 | . 103393 | . 598080 |
| . 839145 | . 427268 | . 428360 | . 949700 | . 130212 |
| . 489278 | . 565201 | . 460588 | . 523601 | . 390922 |
| . 867728 | . 144077 | . 939108 | . 364770 | . 617429 |
| . 321790 | . 059787 | . 379252 | . 410556 | . 707007 |
| . 867431 | . 715785 | . 394118 | . 692346 | . 140620 |
| . 117452 | . 041595 | . 660000 | . 187439 | . 242397 |
| . 118963 | . 195654 | . 143001 | . 758753 | . 794041 |
| . 921585 | . 666743 | . 680684 | . 962852 | . 451551 |
| . 493819 | . 476072 | . 464366 | . 794543 | . 590479 |
| . 003320 | . 826695 | . 948643 | . 199436 | . 168108 |
| . 513488 | . 881553 | . 015403 | . 545605 | . 014511 |
| . 980862 | . 482645 | . 240284 | . 044499 | . 908896 |
| . 390947 | . 340735 | . 441318 | . 331851 | . 623241 |

| .941509 | .498943 | .548581 | .886954 | .199437 |
| :--- | :--- | :--- | :--- | :--- |
| .548730 | .809510 | .040696 | .382707 | .742015 |
| .123387 | .250162 | .529894 | .624611 | .797524 |
| .914071 | .961282 | .966986 | .102591 | .748522 |
| .053900 | .387595 | .186333 | .253798 | .145065 |
| .713101 | .024674 | .054556 | .142777 | .938919 |
| .740294 | .390277 | .557322 | .709779 | .017119 |
| .525275 | .802180 | .814517 | .541784 | .561180 |
| .993371 | .430533 | .512969 | .561271 | .925536 |
| .040903 | .116644 | .988352 | .079848 | .275938 |
| .171539 | .099733 | .344088 | .461233 | .483247 |
| .792831 | .249647 | .100229 | .536870 | .323075 |
| .754615 | .020099 | .690749 | .413887 | .637919 |
| .763558 | .404401 | .105182 | .161501 | .848769 |
| .091882 | .009732 | .825395 | .270422 | .086304 |
| .833898 | .737464 | .278580 | .900458 | .549751 |
| .981506 | .549493 | .881997 | .918707 | .615068 |
| .476646 | .731895 | .020747 | .677262 | .696229 |
| .064464 | .271246 | .701841 | .361827 | .757687 |
| .649020 | .971877 | .499042 | .912272 | .953750 |
| .587193 | .823431 | .540164 | .405666 | .281310 |
| .030068 | .227398 | .207145 | .329507 | .706178 |
| .083586 | .991078 | .542427 | .851366 | .158873 |
| .046189 | .755331 | .223084 | .283060 | .326481 |
| .333105 | .914051 | .007893 | .326046 | .047594 |
| .119018 | .538408 | .623381 | .594136 | .285121 |
| .590290 | .284666 | .879577 | .762207 | .917575 |
| .374161 | .613622 | .695026 | .390212 | .557817 |
| .651483 | .483470 | .894159 | .269400 | .397583 |
| .911260 | .717646 | .489497 | .230694 | .541374 |
| .775130 | .382086 | .864299 | .016841 | .482774 |
| .519081 | .398072 | .893555 | .195023 | .717469 |
| .979202 | .885521 | .029773 | .742877 | .525165 |
| .344674 | .218185 | .931393 | .278817 | .570568 |

NIST
 SEMATECH

HOME
TOOLS \& AIDS
SEARCH
BACK NEXT

ENGINEERING STATISTICS HANDBOOK
TOOLS \& AIDS
SEARCH
BACK NEXT

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.2. Uniform Random Numbers

1.4.2.2.2. Graphical Output and Interpretation

Goal The goal of this analysis is threefold:

1. Determine if the univariate model:

$$
Y_{i}=C+E_{i}
$$

is appropriate and valid.
2. Determine if the typical underlying assumptions for an "in control" measurement process are valid. These assumptions are:

1. random drawings;
2. from a fixed distribution;
3. with the distribution having a fixed location; and
4. the distribution having a fixed scale.
5. Determine if the confidence interval

$$
\bar{Y} \pm 2 s / \sqrt{N}
$$

is appropriate and valid where s is the standard deviation of the original data.

4-Plot of Data

Interpretation

Individual Plots

The assumptions are addressed by the graphics shown above:

1. The run sequence plot (upper left) indicates that the data do not have any significant shifts in location or scale over time.
2. The lag plot (upper right) does not indicate any non-random pattern in the data.
3. The histogram shows that the frequencies are relatively flat across the range of the data. This suggests that the uniform distribution might provide a better distributional fit than the normal distribution.
4. The normal probability plot verifies that an assumption of normality is not reasonable. In this case, the 4-plot should be followed up by a uniform probability plot to determine if it provides a better fit to the data. This is shown below.
From the above plots, we conclude that the underlying assumptions are valid. Therefore, the model $\boldsymbol{Y}_{\boldsymbol{i}}=\boldsymbol{C}+\boldsymbol{E}_{\boldsymbol{i}}$ is valid. However, since the data are not normally distributed, using the mean as an estimate of C and the confidence interval cited above for quantifying its uncertainty are not valid or appropriate.

Although it is usually not necessary, the plots can be generated individually to give more detail.

Run

Sequence
Plot

Lag Plot

Histogram
(with overlaid
Normal PDF)

This plot shows that a normal distribution is a poor fit. The flatness of the histogram suggests that a uniform distribution might be a better fit.

Histogram
(with
overlaid
Uniform
PDF)

Since the histogram from the 4-plot suggested that the uniform distribution might be a good fit, we overlay a uniform distribution on top of the histogram. This indicates a much better fit than a normal distribution.

Normal

Probability
Plot

As with the histogram, the normal probability plot shows that the normal distribution does not fit these data well.

Uniform Probability
Plot

Since the above plots suggested that a uniform distribution might be appropriate, we generate a uniform probability plot. This plot shows that the uniform distribution provides an excellent fit to the data.

Better Model Since the data follow the underlying assumptions, but with a uniform distribution rather than a normal distribution, we would still like to characterize \boldsymbol{C} by a typical value plus or minus a confidence interval. In this case, we would like to find a location estimator with the smallest variability.

The bootstrap plot is an ideal tool for this purpose. The following plots show the bootstrap plot, with the corresponding histogram, for the mean, median, mid-range, and median absolute deviation.

Bootstrap

Plots

Mid-Range is Best

From the above histograms, it is obvious that for these data, the mid-range is far superior to the mean or median as an estimate for location.

Using the mean, the location estimate is 0.507 and a 95% confidence interval for the mean is $(0.482,0.534)$. Using the mid-range, the location estimate is 0.499 and the 95% confidence interval for the mid-range is $(0.497,0.503)$.

Although the values for the location are similar, the difference in the uncertainty intervals is quite large.

Note that in the case of a uniform distribution it is known theoretically that the mid-range is the best linear unbiased estimator for location. However, in many applications, the most appropriate estimator will not be known or it will be mathematically intractable to determine a valid condfidence interval. The bootstrap provides a method for determining
(and comparing) confidence intervals in these cases.

NIST SEMATECH

HOME

 TOOLS \& AIDS SEARCHBACK NEXT

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.2. Uniform Random Numbers

1.4.2.2.3. Quantitative Output and Interpretation

Summary
Statistics

As a first step in the analysis, a table of summary statistics is computed from the data. The following table, generated by Dataplot, shows a typical set of statistics.

SUMMARY

NUMBER OF OBSERVATIONS =
500

Note that under the distributional measures the uniform probability plot correlation coefficient (PPCC) value is significantly larger than the normal PPCC value. This is evidence that the uniform distribution fits these data better than does a normal distribution.

Location One way to quantify a change in location over time is to fit a straight line to the data set using the index variable $\mathrm{X}=1,2, \ldots, \mathrm{~N}$, with N denoting the number of observations. If there is no significant drift in the location, the slope parameter should be zero. For this data set, Dataplot generated the following output:

```
LEAST SQUARES MULTILINEAR FIT
SAMPLE SIZE N = 500
NUMBER OF VARIABLES = 1
NO REPLICATION CASE
```

| | | PARAMETER ESTIMATES | (APPROX. ST. DEV.) | T VALUE |
| :---: | :---: | :---: | :---: | :---: |
| 1 AO | 0.522923 | $(0.2638 \mathrm{E}-01)$ | 19.82 | |
| 2 A1 | X | $-0.602478 \mathrm{E}-04$ | $(0.9125 \mathrm{E}-04)$ | -0.6603 |
| | | | | |
| RESIDUAL | STANDARD DEVIATION $=$ | 0.2944917 | | |
| RESIDUAL | DEGREES OF FREEDOM $=$ | 498 | | |

The slope parameter, A1, has a t value of -0.66 which is statistically not significant. This indicates that the slope can in fact be considered zero.

Variation
One simple way to detect a change in variation is with a Bartlett test after dividing the data set into several equal-sized intervals. However, the Bartlett test is not robust for non-normality. Since we know this data set is not approximated well by the normal distribution, we use the alternative Levene test. In partiuclar, we use the Levene test based on the median rather the mean. The choice of the number of intervals is somewhat arbitrary, although values of 4 or 8 are reasonable. Dataplot generated the following output for the Levene test.

> LEVENE F-TEST FOR SHIFT IN VARIATION
(ASSUMPTION: NORMALITY)

1. STATISTICS

NUMBER OF OBSERVATIONS = 500
NUMBER OF GROUPS $=\quad 4$
LEVENE F TEST STATISTIC $=0.7983007 \mathrm{E}-01$

FOR LEVENE TEST STATISTIC
0 \% POINT $=0.0000000 \mathrm{E}+00$
50 \% POINT $=0.7897459$
75 \% POINT $=1.373753$
90 \% POINT $=2.094885$
95 \% POINT $=2.622929$
99 \%POINT $=3.821479$
99.9 \% POINT $=5.506884$

```
2.905608 % Point: 0.7983007E-01
```

3. CONCLUSION (AT THE 5\% LEVEL):

THERE IS NO SHIFT IN VARIATION.
THUS: HOMOGENEOUS WITH RESPECT TO VARIATION.

In this case, the Levene test indicates that the standard deviations are not significantly different in the 4 intervals.

Randomness

There are many ways in which data can be non-random. However, most common forms of non-randomness can be detected with a few simple tests. The lag plot in the 4-plot in the previous section is a simple graphical technique.

Another check is an autocorrelation plot that shows the autocorrelations for various lags. Confidence bands can be plotted using 95% and 99% confidence levels. Points outside this band indicate statistically significant values (lag 0 is always 1). Dataplot generated the following autocorrelation plot.

The lag 1 autocorrelation, which is generally the one of most interest, is 0.03 . The critical values at the 5% significance level are -0.087 and 0.087 . This indicates that the lag 1 autocorrelation is not statistically significant, so there is no evidence of non-randomness.

A common test for randomness is the runs test.

| | | RUNS UP | | |
| :---: | :---: | :---: | :---: | :---: |
| | STATIS | IC = NUMBER OF | RUNS UP | |
| | OF | LENGTH EXACTLY | I | |
| I | STAT | EXP (STAT) | SD (STAT) | Z |
| 1 | 103.0 | 104.2083 | 10.2792 | -0.12 |
| 2 | 48.0 | 45.7167 | 5.2996 | 0.43 |
| 3 | 11.0 | 13.1292 | 3.2297 | -0.66 |
| 4 | 6.0 | 2.8563 | 1.6351 | 1.92 |
| 5 | 0.0 | 0.5037 | 0.7045 | -0.71 |
| 6 | 0.0 | 0.0749 | 0.2733 | -0.27 |
| 7 | 1.0 | 0.0097 | 0.0982 | 10.08 |
| 8 | 0.0 | 0.0011 | 0.0331 | -0.03 |
| 9 | 0.0 | 0.0001 | 0.0106 | -0.01 |
| 10 | 0.0 | 0.0000 | 0.0032 | 0.00 |
| | STATIS | IC = NUMBER OF | RUNS UP | |
| | OF | LENGTH I OR MO | | |
| I | STAT | EXP (STAT) | SD (STAT) | Z |

| 1 | 169.0 | 166.5000 | 6.6546 | 0.38 |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 66.0 | 62.2917 | 4.4454 | 0.83 |
| 3 | 18.0 | 16.5750 | 3.4338 | 0.41 |
| 4 | 7.0 | 3.4458 | 1.7786 | 2.00 |
| 5 | 1.0 | 0.5895 | 0.7609 | 0.54 |
| 6 | 1.0 | 0.0858 | 0.2924 | 3.13 |
| 7 | 1.0 | 0.0109 | 0.1042 | 9.49 |
| 8 | 0.0 | 0.0012 | 0.0349 | -0.03 |
| 9 | 0.0 | 0.0001 | 0.0111 | -0.01 |
| 10 | 0.0 | 0.0000 | 0.0034 | 0.00 |
| RUNS DOWN | | | | |
| STATISTIC = NUMBER OF RUNS DOWN OF LENGTH EXACTLY I | | | | |
| | | | | |
| I | STAT | EXP (ST | SD (STAT) | Z |
| 1 | 113.0 | 104.2083 | 10.2792 | 0.86 |
| 2 | 43.0 | 45.7167 | 5.2996 | -0.51 |
| 3 | 11.0 | 13.1292 | 3.2297 | -0.66 |
| 4 | 1.0 | 2.8563 | 1.6351 | -1.14 |
| 5 | 0.0 | 0.5037 | 0.7045 | -0.71 |
| 6 | 0.0 | 0.0749 | 0.2733 | -0.27 |
| 7 | 0.0 | 0.0097 | 0.0982 | -0.10 |
| 8 | 0.0 | 0.0011 | 0.0331 | -0.03 |
| 9 | 0.0 | 0.0001 | 0.0106 | -0.01 |
| 10 | 0.0 | 0.0000 | 0.0032 | 0.00 |
| STATISTIC = NUMBER OF RUNS DOWN OF LENGTH I OR MORE | | | | |
| | | | | |
| I | STAT | EXP (ST | SD (STAT) | Z |
| 1 | 168.0 | 166.5000 | 6.6546 | 0.23 |
| 2 | 55.0 | 62.2917 | 4.4454 | -1.64 |
| 3 | 12.0 | 16.5750 | 3.4338 | -1.33 |
| 4 | 1.0 | 3.4458 | 1.7786 | -1.38 |
| 5 | 0.0 | 0.5895 | 0.7609 | -0.77 |
| 6 | 0.0 | 0.0858 | 0.2924 | -0.29 |
| 7 | 0.0 | 0.0109 | 0.1042 | -0.10 |
| 8 | 0.0 | 0.0012 | 0.0349 | -0.03 |
| 9 | 0.0 | 0.0001 | 0.0111 | -0.01 |
| 10 | 0.0 | 0.0000 | 0.0034 | 0.00 |
| | RUNS T | L = RUNS | + RUNS DOWN | |
| STATISTIC = NUMBER OF RUNS TOTAL OF LENGTH EXACTLY I | | | | |
| | | | | |
| I | STAT | EXP (ST | SD (STAT) | Z |
| 1 | 216.0 | 208.4167 | 14.5370 | 0.52 |
| 2 | 91.0 | 91.4333 | 7.4947 | -0.06 |
| 3 | 22.0 | 26.2583 | 4.5674 | -0.93 |
| 4 | 7.0 | 5.7127 | 2.3123 | 0.56 |
| 5 | 0.0 | 1.0074 | 0.9963 | -1.01 |
| 6 | 0.0 | 0.1498 | 0.3866 | -0.39 |
| 7 | 1.0 | 0.0193 | 0.1389 | 7.06 |
| 8 | 0.0 | 0.0022 | 0.0468 | -0.05 |
| 9 | 0.0 | 0.0002 | 0.0150 | -0.01 |
| 10 | 0.0 | 0.0000 | 0.0045 | 0.00 |
| STATISTIC $=$ NUMBER OF RUNS TOTALOF LENGTH I OR MORE | | | | |
| | | | | |
| I | STAT | EXP (ST | SD (STAT) | Z |
| 1 | 337.0 | 333.0000 | 9.4110 | 0.43 |
| 2 | 121.0 | 124.5833 | 6.2868 | -0.57 |
| 3 | 30.0 | 33.1500 | 4.8561 | -0.65 |

1.4.2.2.3. Quantitative Output and Interpretation

| 4 | 8.0 | | 6.8917 | 2.5154 | | 0.44 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 1.0 | | 1.1790 | 1.0761 | | -0.17 |
| 6 | 1.0 | | 0.1716 | 0.4136 | | 2.00 |
| 7 | 1.0 | | 0.0217 | 0.1474 | | 6.64 |
| 8 | 0.0 | | 0.0024 | 0.0494 | | -0.05 |
| 9 | 0.0 | | 0.0002 | 0.0157 | | -0.02 |
| 10 | 0.0 | | 0.0000 | 0.0047 | | 0.00 |
| | LENGTH | OF | THE LONGES | RUN UP | | = |
| | LENGTH | OF | THE LONGES | RUN DOWN | | = |
| | LENGTH | OF | THE LONGES | RUN UP OR | Down | $=$ |
| | NUMBER | OF | POSITIVE DI | FERENCES | 2 | |
| | NUMBER | OF | NEGATIVE DI | FERENCES | 2 | |
| | NUMBER | OF | ZERO DI | FERENCES | $=$ | 0 |

Values in the column labeled "Z" greater than 1.96 or less than -1.96 are statistically significant at the 5% level. This runs test does not indicate any significant non-randomness. There is a statistically significant value for runs of length 7 . However, further examination of the table shows that there is in fact a single run of length 7 when near 0 are expected. This is not sufficient evidence to conclude that the data are non-random.

Distributional Analysis

Probability plots are a graphical test of assessing whether a particular distribution provides an adequate fit to a data set.

A quantitative enhancement to the probability plot is the correlation coefficient of the points on the probability plot. For this data set the correlation coefficient, from the summary table above, is 0.977 . Since this is less than the critical value of 0.987 (this is a tabulated value), the normality assumption is rejected.

Chi-square and Kolmogorov-Smirnov goodness-of-fit tests are alternative methods for assessing distributional adequacy. The Wilk-Shapiro and Anderson-Darling tests can be used to test for normality. Dataplot generates the following output for the Anderson-Darling normality test.

```
ANDERSON-DARLING 1-SAMPLE TEST
THAT THE DATA CAME FROM A NORMAL DISTRIBUTION
```

1. STATISTICS:
NUMBER OF OBSERVATIONS $=500$
MEAN $=0.5078304$
STANDARD DEVIATION $=0.2943252$
ANDERSON-DARLING TEST STATISTIC VALUE = 5.719849
ADJUSTED TEST STATISTIC VALUE $=5.765036$
2. CRITICAL VALUES:

| 90 | $\%$ POINT | $=0.6560000$ |
| :--- | :--- | :--- |
| 95 | $\%$ POINT | $=0.7870000$ |
| 97.5 | $\%$ POINT | $=0.9180000$ |
| 99 | $\%$ POINT | $=1.092000$ |

3. CONCLUSION (AT THE 5\% LEVEL) :

THE DATA DO NOT COME FROM A NORMAL DISTRIBUTION.
The Anderson-Darling test rejects the normality assumption because the value of the test statistic, 5.72, is larger than the critical value of 1.092 at the 1% significance level.

Model Based on the graphical and quantitative analysis, we use the model

$$
Y_{i}=C+E_{i}
$$

where \boldsymbol{C} is estimated by the mid-range and the uncertainty interval for \boldsymbol{C} is based on a bootstrap analysis. Specifically,

$$
\boldsymbol{C}=0.499
$$

95% confidence limit for $\boldsymbol{C}=(0.497,0.503)$
Univariate It is sometimes useful and convenient to summarize the above results in a report. The report Report for the 500 uniform random numbers follows.

```
Analysis for 500 uniform random numbers
1: Sample Size = 500
2: Location
    Mean = 0.50783
    Standard Deviation of Mean = 0.013163
    95% Confidence Interval for Mean = (0.48197,0.533692)
    Drift with respect to location? = NO
3: Variation
    Standard Deviation = 0.294326
    95% Confidence Interval for SD = (0.277144,0.313796)
    Drift with respect to variation?
    (based on Levene's test on quarters
    of the data) = NO
4: Distribution
    Normal PPCC = 0.999569
    Data are Normal?
        (as measured by Normal PPCC) = NO
    Uniform PPCC = 0.9995
    Data are Uniform?
        (as measured by Uniform PPCC) = YES
5: Randomness
    Autocorrelation = -0.03099
    Data are Random?
        (as measured by autocorrelation) = YES
6: Statistical Control
    (i.e., no drift in location or scale,
    data is random, distribution is
    fixed, here we are testing only for
    fixed uniform)
    Data Set is in Statistical Control? = YES
```

$\boxed{\text { HOME }} \sqrt{\text { TOOLS \& AIDS }} \quad \sqrt{\text { SEARCH }} \quad \sqrt{B A C K} \overline{\text { NEXT }}$

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.2. Uniform Random Numbers

1.4.2.2.4. Work This Example Yourself

Dataplot
Macro for
this Case
Study

View This page allows you to repeat the analysis outlined in the case study description on the previous page using Dataplot. It is required that you have already downloaded and installed Dataplot and configured your browser. to run Dataplot. Output from each analysis step below will be displayed in one or more of the Dataplot windows. The four main windows are the Output window, the Graphics window, the Command History window, and the data sheet window. Across the top of the main windows there are menus for executing Dataplot commands. Across the bottom is a command entry window where commands can be typed in.

| Data Analysis Steps | Results and Conclusions |
| :--- | :--- |
| | |
| Click on the links below to start Dataplot and run this case study
 yourself. Each step may use results from previous steps, so please be
 patient. Wait until the software verifies that the current step is
 complete before clicking on the next step. | The links in this column will connect you with more detailed
 information about each analysis step from the case study description. |

1. Invoke Dataplot and read data.
2. Read in the data.
3. You have read 1 column of numbers into Dataplot, variable Y.
4. 4-plot of the data.
5. 4-plot of Y.
6. Based on the 4-plot, there are no shifts in location or scale, and the data do not seem to follow a normal distribution.
7. The run sequence plot indicates that there are no shifts of location or scale.
8. The lag plot does not indicate any significant patterns (which would show the data were not random).
9. The histogram indicates that a normal distribution is not a good

1.4.2.2.4. Work This Example Yourself

4. Generate a histogram with an overlaid uniform pdf.
5. Generate a normal probability plot.
6. Generate a uniform probability plot.
7. The histogram indicates that a uniform distribution is a good distribution for these data.
8. The normal probability plot verifies that the normal distribution is not a reasonable distribution for these data.
9. The uniform probability plot verifies that the uniform distribution is a reasonable distribution for these data.
10. The bootstrap plot clearly shows the superiority of the mid-range over the mean and median as the location estimator of choice for this problem.
11. Generate summary statistics, quantitative analysis, and print a univariate report.
12. Generate a table of summary statistics.
13. Generate the mean, a confidence interval for the mean, and compute a linear fit to detect drift in location.
14. Generate the standard deviation, a confidence interval for the standard deviation, and detect drift in variation by dividing the data into quarters and computing Barltetts test for equal standard deviations.
15. Check for randomness by generating an autocorrelation plot and a runs test.
16. Check for normality by computing the normal probability plot correlation coefficient.
17. The summary statistics table displays $25+$ statistics.
18. The mean is 0.5078 and a 95%
confidence interval is ($0.482,0.534$).
The linear fit indicates no drift in
location since the slope parameter is statistically not significant.
19. The standard deviation is 0.29 with a 95\% confidence interval of (0.277,0.314). Levene's test indicates no significant drift in variation.
20. The lag 1 autocorrelation is -0.03 . From the autocorrelation plot, this is within the 95\% confidence interval bands.
21. The uniform probability plot correlation coefficient is 0.9995 . This indicates that the uniform distribution is a good fit.
1.4.2.2.4. Work This Example Yourself
22. Print a univariate report (this assumes steps 2 thru 6 have already been run).
23. The results are summarized in a convenient report.

NIST SEMATECH

\section*{$\boxed{H O M E} \quad$| TOOLS \& AIDS |
| :---: |
| SEARCH |}

$\overline{\text { BACK }}$ NEXT

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies

1.4.2.3. Random Walk

Random This example illustrates the univariate analysis of a set of numbers derived from a random walk.

1. Background and Data
2. Test Underlying Assumptions
3. Develop Better Model
4. Validate New Model
5. Work This Example Yourself

NIST
$\overline{\text { SEMATECH }}$
HOME

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.3. Random Walk

1.4.2.3.1. Background and Data

Generation A random walk can be generated from a set of uniform random numbers by the formula:

$$
R_{i}=\sum_{j=1}^{i}\left(U_{j}-0.5\right)
$$

where U is a set of uniform random numbers.
The motivation for studying a set of random walk data is to illustrate the effects of a known underlying autocorrelation structure (i.e., non-randomness) in the data.

Software Most general purpose statistical software programs, including Dataplot, can generate data for a random walk.

Resulting The following is the set of random walk numbers used for this case Data study.

$$
\begin{array}{r}
-0.399027 \\
-0.645651 \\
-0.625516 \\
-0.262049 \\
-0.407173 \\
-0.097583 \\
0.314156 \\
0.106905 \\
-0.017675 \\
-0.037111 \\
0.357631 \\
0.820111 \\
0.844148 \\
0.550509 \\
0.090709
\end{array}
$$

$$
\begin{array}{r}
0.413625 \\
-0.002149 \\
0.393170 \\
0.538263 \\
0.070583 \\
0.473143 \\
0.132676 \\
0.109111 \\
-0.310553 \\
0.179637 \\
-0.067454 \\
-0.190747 \\
-0.536916 \\
-0.905751 \\
-0.518984 \\
-0.579280 \\
-0.643004 \\
-1.014925 \\
-0.517845 \\
-0.860484 \\
-0.884081 \\
-1.147428 \\
-0.657917 \\
-0.470205 \\
-0.798437 \\
-0.637780 \\
-0.666046 \\
-1.093278 \\
-1.089609 \\
-0.853439 \\
-0.695306 \\
-0.206795 \\
-0.958825 \\
-0.531959 \\
-0.457141
\end{array}
$$

$$
\begin{array}{r}
-0.226603 \\
-0.201885 \\
-0.078000 \\
0.057733 \\
-0.228762 \\
-0.403292 \\
-0.414237 \\
-0.556689 \\
-0.772007 \\
-0.401024 \\
-0.409768 \\
-0.171804 \\
-0.096501 \\
-0.066854 \\
0.216726 \\
0.551008 \\
0.660360 \\
0.194795 \\
-0.031321 \\
0.453880 \\
0.730594 \\
1.136280 \\
0.708490 \\
1.149048 \\
1.258757 \\
1.102107 \\
1.102846 \\
0.720896 \\
0.764035 \\
1.072312 \\
0.897384 \\
0.965632 \\
0.759684 \\
0.679836 \\
1.888335 \\
1.408421 \\
1.416005
\end{array}
$$

0.929681
1.097632
1.501279
1.650608
1.759718
2.255664
2.490551
2.508200
2.707382
2.816310
3.254166
2.890989
2.869330
3.024141
3.291558
3.260067
3.265871
3.542845
3.773240
3.991880
3.710045
4.011288
4.074805
4.301885
3.956416
4.278790
3.989947
4.315261
4.200798
4.444307
4.926084
4.828856
4.473179
4.573389
4.528605
4.452401
4.238427
4.437589
4.617955
4.370246
4.353939
4.541142
4.807353
4.706447
4.607011
4.205943
1.4.2.3.1. Background and Data
3.756457
3.482142
3.126784
3.383572
3.846550
4.228803
4.110948
4.525939
4.478307
4.457582
4.822199
4.605752
5.053262
5.545598
5.134798
5.438168
5.397993
5.838361
5.925389
6.159525
6.190928
6.024970
5.575793
5.516840
5.211826
4.869306
4.912601
5.339177
5.415182
5.003303
4.725367
4.350873
4.225085
3.825104
3.726391
3.301088
3.767535
4.211463
4.418722
4.554786
4.987701
4.993045
5.337067
5.789629
5.726147
5.934353
1.4.2.3.1. Background and Data
5.641670
5.753639
5.298265
5.255743
5.500935
5.434664
5.588610
6.047952
6.130557
5.785299
5.811995
5.582793
5.618730
5.902576
6.226537
5.738371
5.449965
5.895537
6.252904
6.650447
7.025909
6.770340
7.182244
6.941536
7.368996
7.293807
7.415205
7.259291
6.970976
7.319743
6.850454
6.556378
6.757845
6.493083
6.824855
6.533753
6.410646
6.502063
6.264585
6.730889
6.753715
6.298649
6.048126
5.794463
5.539049
5.290072
5.409699
5.843266
5.680389
5.185889
5.451353
5.003233
5.102844
5.566741
5.613668
5.352791
5.140087
4.999718
5.030444
5.428537
5.471872
5.107334
5.387078
4.889569
4.492962
4.591042
4.930187
4.857455
4.785815
5.235515
4.865727
4.855005
4.920206
4.880794
4.904395
4.795317
5.163044
4.807122
5.246230
5.111000
5.228429
5.050220
4.610006
4.489258
4.399814
4.606821
4.974252
5.190037
5.084155
5.276501
4.917121
4.534573
1.4.2.3.1. Background and Data
4.076168
4.236168
3.923607
3.666004
3.284967
2.980621
2.623622
2.882375
3.176416
3.598001
3.764744
3.945428
4.408280
4.359831
4.353650
4.329722
4.294088
4.588631
4.679111
4.182430
4.509125
4.957768
4.657204
4.325313
4.338800
4.720353
4.235756
4.281361
3.795872
4.276734
4.259379
3.999663
3.544163
3.953058
3.844006
3.684740
3.626058
3.457909
3.581150
4.022659
4.021602
4.070183
4.457137
4.156574
4.205304
4.514814
1.4.2.3.1. Background and Data
4.055510
3.938217
4.180232
3.803619
3.553781
3.583675
3.708286
4.005810
4.419880
4.881163
5.348149
4.950740
5.199262
4.753162
4.640757
4.327090
4.080888
3.725953
3.939054
3.463728
3.018284
2.661061
3.099980
3.340274
3.230551
3.287873
3.497652
3.014771
3.040046
3.342226
3.656743
3.698527
3.759707
4.253078
4.183611
4.196580
4.257851
4.683387
4.224290
3.840934
4.329286
3.909134
3.685072
3.356611
2.956344
2.800432
1.4.2.3.1. Background and Data

$$
\begin{aligned}
& 2.761665 \\
& 2.744913 \\
& 3.037743 \\
& 2.787390 \\
& 2.387619 \\
& 2.424489 \\
& 2.247564 \\
& 2.502179 \\
& 2.022278 \\
& 2.213027 \\
& 2.126914 \\
& 2.264833 \\
& 2.528391 \\
& 2.432792 \\
& 2.037974 \\
& 1.699475 \\
& 2.048244 \\
& 1.640126 \\
& 1.149858 \\
& 1.475253 \\
& 1.245675 \\
& 0.831979 \\
& 1.165877 \\
& 1.403341 \\
& 1.181921 \\
& 1.582379 \\
& 2.7 \\
& 2.831058 \\
& 2.987765 \\
& 3.459642 \\
& 3.458684 \\
& 3.870956
\end{aligned}
$$

1.4.2.3.1. Background and Data

$$
\begin{aligned}
& 4.324706 \\
& 4.411899 \\
& 4.735330 \\
& 4.775494 \\
& 4.681160 \\
& 4.462470 \\
& 3.992538 \\
& 3.719936 \\
& 3.427081 \\
& 3.256588 \\
& 3.462766 \\
& 3.046353 \\
& 3.537430 \\
& 3.579857 \\
& 3.931223 \\
& 3.590096 \\
& 3.136285 \\
& 3.391616 \\
& 3.114700 \\
& 2.897760 \\
& 2.724241 \\
& 2.557346 \\
& 2.971397 \\
& 2.479290 \\
& 2.305336 \\
& 1.852930 \\
& 1.471948 \\
& 1.510356 \\
& 1.633737 \\
& 1.727873 \\
& 1.512994 \\
& 1.603284 \\
& 1.387950 \\
& 1.767527 \\
& 2.029734 \\
& 2.447309 \\
& 2.321470 \\
& 2.435092 \\
& 2.630118 \\
& 2.520330 \\
& 2.578147 \\
& 2.729630 \\
& 2.713100 \\
& 3.107260 \\
& 2.876659 \\
& 2.774242
\end{aligned}
$$

1.4.2.3.1. Background and Data
3.185503
3.403148
3.392646
3.123339
3.164713
3.439843
3.321929
3.686229
3.203069
3.185843
3.204924
3.102996
3.496552
3.191575
3.409044
3.888246
4.273767
3.803540
4.046417
4.071581
3.916256
3.634441
4.065834
3.844651
3.915219

HOME

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.3. Random Walk

1.4.2.3.2. Test Underlying Assumptions

Goal
The goal of this analysis is threefold:

1. Determine if the univariate model:

$$
Y_{i}=C+E_{\tilde{i}}
$$

is appropriate and valid.
2. Determine if the typical underlying assumptions for an "in control" measurement process are valid. These assumptions are:

1. random drawings;
2. from a fixed distribution;
3. with the distribution having a fixed location; and
4. the distribution having a fixed scale.
5. Determine if the confidence interval

$$
\bar{Y} \pm 2 s / \sqrt{N}
$$

is appropriate and valid, with s denoting the standard deviation of the original data.
4-Plot of Data

Interpretation The assumptions are addressed by the graphics shown above:

1. The run sequence plot (upper left) indicates significant shifts in location over time.
2. The lag plot (upper right) indicates significant non-randomness in the data.
3. When the assumptions of randomness and constant location and scale are not satisfied, the distributional assumptions are not meaningful. Therefore we do not attempt to make any interpretation of the histogram (lower left) or the normal probability plot (lower right).
From the above plots, we conclude that the underlying assumptions are seriously violated. Therefore the $\boldsymbol{Y}_{\boldsymbol{i}}=\boldsymbol{C}+\boldsymbol{E}_{\boldsymbol{i}}$ model is not valid.

When the randomness assumption is seriously violated, a time series model may be appropriate. The lag plot often suggests a reasonable model. For example, in this case the strongly linear appearance of the lag plot suggests a model fitting $\boldsymbol{Y}_{\boldsymbol{i}}$ versus $\boldsymbol{Y}_{\boldsymbol{i}-\boldsymbol{1}}$ might be appropriate. When the data are non-random, it is helpful to supplement the lag plot with an autocorrelation plot and a spectral plot. Although in this case the lag plot is enough to suggest an appropriate model, we provide the autocorrelation and spectral plots for comparison.

Autocorrelation When the lag plot indicates significant non-randomness, it can be helpful to follow up with a Plot an autocorrelation plot.

This autocorrelation plot shows significant autocorrelation at lags 1 through 100 in a linearly decreasing fashion.

Spectral Plot Another useful plot for non-random data is the spectral plot.

This spectral plot shows a single dominant low frequency peak.

Quantitative

Output

Summary
Statistics

Although the 4-plot above clearly shows the violation of the assumptions, we supplement the graphical output with some quantitative measures.

As a first step in the analysis, a table of summary statistics is computed from the data. The following table, generated by Dataplot, shows a typical set of statistics.

The value of the autocorrelation statistic, 0.987 , is evidence of a very strong autocorrelation.

Location One way to quantify a change in location over time is to fit a straight line to the data set using the index variable $\mathrm{X}=1,2, \ldots, \mathrm{~N}$, with N denoting the number of observations. If there is no significant drift in the location, the slope parameter should be zero. For this data set, Dataplot generates the following output:

```
LEAST SQUARES MULTILINEAR FIT
    SAMPLE SIZE N = 500
    NUMBER OF VARIABLES = 1
    NO REPLICATION CASE
            PARAMETER ESTIMATES
        1 AO 1.83351
        2 A1 X 0.552164E-02
    RESIDUAL STANDARD DEVIATION = 1.921416
    RESIDUAL DEGREES OF FREEDOM = 498
    COEF AND SD(COEF) WRITTEN OUT TO FILE DPST1F.DAT
    SD (PRED),95LOWER,95UPPER,99LOWER,99UPPER
            WRITTEN OUT TO FILE DPST2F.DAT
    REGRESSION DIAGNOSTICS WRITTEN OUT TO FILE DPST3F.DAT
    PARAMETER VARIANCE-COVARIANCE MATRIX AND
    INVERSE OF X-TRANSPOSE X MATRIX
    WRITTEN OUT TO FILE DPST4F.DAT
```

The slope parameter, A1, has a t value of 9.3 which is statistically significant. This indicates that the slope cannot in fact be considered zero and so the conclusion is that we do not have constant location.

Variation
One simple way to detect a change in variation is with a Bartlett test after dividing the data set into several equal-sized intervals. However, the Bartlett test is not robust for non-normality. Since we know this data set is not approximated well by the normal distribution, we use the alternative Levene test. In partiuclar, we use the Levene test based on the median rather the mean. The choice of the number of intervals is somewhat arbitrary, although values of 4 or 8 are reasonable. Dataplot generated the following output for the Levene test.

LEVENE F-TEST FOR SHIFT IN VARIATION
(ASSUMPTION: NORMALITY)

1. STATISTICS

| NUMBER OF OBSERVATIONS | $=$ | 500 |
| :--- | :--- | :---: |
| NUMBER OF GROUPS | $=$ | 4 |
| LEVENE F TEST STATISTIC | $=$ | 10.45940 |

| FOR LEVENE TEST STATISTIC | | | | |
| :---: | :---: | :---: | :---: | :---: |
| 0 | \% | POINT | $=$ | $0.0000000 \mathrm{E}+00$ |
| 50 | \% | POINT | = | 0.7897459 |
| 75 | \% | POINT | = | 1.373753 |
| 90 | \% | POINT | = | 2.094885 |
| 95 | \% | POINT | = | 2.622929 |
| 99 | \% | POINT | = | 3.821479 |
| 99.9 | \% | POINT | = | 5.506884 |

1.4.2.3.2. Test Underlying Assumptions

```
3. CONCLUSION (AT THE 5% LEVEL):
    THERE IS A SHIFT IN VARIATION.
    THUS: NOT HOMOGENEOUS WITH RESPECT TO VARIATION.
```

In this case, the Levene test indicates that the standard deviations are significantly different in the 4 intervals since the test statistic of 10.46 is greater than the 95% critical value of 2.62 . Therefore we conclude that the scale is not constant.

Randomness

Although the lag 1 autocorrelation coefficient above clearly shows the non-randomness, we show the output from a runs test as well.

| I | STAT | EXP (STAT) | SD (STAT) | Z |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 127.0 | 166.5000 | 6.6546 | -5.94 |
| 2 | 64.0 | 62.2917 | 4.4454 | 0.38 |
| 3 | 30.0 | 16.5750 | 3.4338 | 3.91 |
| 4 | 13.0 | 3.4458 | 1.7786 | 5.37 |
| 5 | 9.0 | 0.5895 | 0.7609 | 11.05 |
| 6 | 8.0 | 0.0858 | 0.2924 | 27.06 |
| 7 | 3.0 | 0.0109 | 0.1042 | 28.67 |
| 8 | 2.0 | 0.0012 | 0.0349 | 57.21 |
| 9 | 1.0 | 0.0001 | 0.0111 | 90.14 |
| 10 | 1.0 | 0.0000 | 0.0034 | 298.08 |
| | RUNS DOWN | | | |
| | STATISTIC $=$ NUMBER OF RUNS DOWN OF LENGTH EXACTLY I | | | |
| I | STAT | EXP (STAT) | SD (STAT) | Z |
| 1 | 69.0 | 104.2083 | 10.2792 | -3.43 |
| 2 | 32.0 | 45.7167 | 5.2996 | -2.59 |
| 3 | 11.0 | 13.1292 | 3.2297 | -0.66 |
| 4 | 6.0 | 2.8563 | 1.6351 | 1.92 |
| 5 | 5.0 | 0.5037 | 0.7045 | 6.38 |
| 6 | 2.0 | 0.0749 | 0.2733 | 7.04 |

1.4.2.3.2. Test Underlying Assumptions

| 7 | 2.0 | 0.0097 | 0.0982 | 20.26 |
| ---: | ---: | ---: | ---: | ---: |
| 8 | 0.0 | 0.0011 | 0.0331 | -0.03 |
| 9 | 0.0 | 0.0001 | 0.0106 | -0.01 |
| 10 | 0.0 | 0.0000 | 0.0032 | 0.00 |

STATISTIC = NUMBER OF RUNS DOWN OF LENGTH I OR MORE

| I | STAT | EXP (STAT) | SD (STAT) | Z |
| ---: | ---: | ---: | :---: | ---: |
| | | | | |
| 1 | 127.0 | 166.5000 | 6.6546 | -5.94 |
| 2 | 58.0 | 62.2917 | 4.4454 | -0.97 |
| 3 | 26.0 | 16.5750 | 3.4338 | 2.74 |
| 4 | 15.0 | 3.4458 | 1.7786 | 6.50 |
| 5 | 9.0 | 0.5895 | 0.7609 | 11.05 |
| 6 | 4.0 | 0.0858 | 0.2924 | 13.38 |
| 7 | 2.0 | 0.0109 | 0.1042 | 19.08 |
| 8 | 0.0 | 0.0012 | 0.0349 | -0.03 |
| 9 | 0.0 | 0.0001 | 0.0111 | -0.01 |
| 10 | 0.0 | 0.0000 | 0.0034 | 0.00 |

I

1
2
3
4
5
6
7
8
9
10

| STAT | EXP (STAT) | SD (STAT) | Z |
| :---: | :---: | :---: | :---: |
| 254.0 | 333.0000 | 9.4110 | -8.39 |
| 122.0 | 124.5833 | 6.2868 | -0.41 |
| 56.0 | 33.1500 | 4.8561 | 4.71 |
| 28.0 | 6.8917 | 2.5154 | 8.39 |
| 18.0 | 1.1790 | 1.0761 | 15.63 |
| 12.0 | 0.1716 | 0.4136 | 28.60 |
| 5.0 | 0.0217 | 0.1474 | 33.77 |
| 2.0 | 0.0024 | 0.0494 | 40.43 |
| 1.0 | 0.0002 | 0.0157 | 63.73 |
| 1.0 | 0.0000 | 0.0047 | 210.77 |

| LENGTH OF THE LONGEST RUN UP | $=$ | 10 |
| :--- | :--- | :--- | :--- | :--- | ---: |
| LENGTH OF THE LONGEST RUN DOWN | $=$ | 7 |
| LENGTH OF THE LONGEST RUN UP OR DOWN | $=$ | 10 |
| | | |
| NUMBER OF POSITIVE DIFFERENCES $=$ | 258 | |

```
NUMBER OF NEGATIVE DIFFERENCES = 241
NUMBER OF ZERO DIFFERENCES = 0
```

Values in the column labeled " Z " greater than 1.96 or less than -1.96 are statistically significant at the 5% level. Numerous values in this column are much larger than $+/-1.96$, so we conclude that the data are not random.

Distributional Assumptions

Since the quantitative tests show that the assumptions of randomness and constant location and scale are not met, the distributional measures will not be meaningful. Therefore these quantitative tests are omitted.
$\frac{\text { NIST }}{\text { SEMATECH }} \sqrt{\text { HOME }} \sqrt{\text { TOOLS \& AIDS }} \quad \sqrt{B A C K}$ NEXT

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.3. Random Walk

1.4.2.3.3. Develop A Better Model

Lag Plot Since the underlying assumptions did not hold, we need to develop a better model.

Suggests
Better
Model

Fit

Output

The slope parameter, A1, has a t value of 156.4 which is statistically significant. Also, the residual standard deviation is 0.29 . This can be compared to the standard deviation shown in the summary table, which is 2.08 . That is, the fit to the autoregressive model has reduced the variability by a factor of 7 .

Time This model is an example of a time series model. More extensive discussion of time series is
Series given in the Process Monitoring chapter.
Model

```
```

LEAST SQUARES MULTILINEAR FIT

```
```

LEAST SQUARES MULTILINEAR FIT
SAMPLE SIZE N = 499
SAMPLE SIZE N = 499
NUMBER OF VARIABLES = 1
NUMBER OF VARIABLES = 1
NO REPLICATION CASE

```
```

 NO REPLICATION CASE
    ```
```

The lag plot showed a distinct linear pattern. Given the definition of the lag plot, $\boldsymbol{Y}_{\boldsymbol{i}}$ versus $\boldsymbol{Y}_{\boldsymbol{i}-1}$, a good candidate model is a model of the form

$$
Y_{i}=A_{0}+A_{1} * Y_{i-1}+E_{i}
$$

A linear fit of this model generated the following output.
PARAMETER ESTIMATES (APPROX. ST. DEV.)

| $(0.2417 \mathrm{E}-01)$ | 2.075 |
| :--- | :--- |
| $(0.6313 \mathrm{E}-02)$ | 156.4 |

 RESIDUAL STANDARD DEVIATION = 0.2931194
 RESIDUAL DEGREES OF FREEDOM = 497
 \(0.501650 \mathrm{E}-01\)
 YIM1 0.987087
 (0.6313E-02)
 156.4
 1 A0
 2 A1
 T VALUE
156.4

RESIDUAL STANDARD DEVIATION = 0.2931194
RESIDUAL DEGREES OF FREEDOM $=\quad 497$

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.3. Random Walk

1.4.2.3.4. Validate New Model

Plot
Predicted with Original

Data

The first step in verifying the model is to plot the predicted values from the fit with the original data.

This plot indicates a reasonably good fit.
Test In addition to the plot of the predicted values, the residual standard
Underlying
Assumptions on the Residuals
deviation from the fit also indicates a significant improvement for the model. The next step is to validate the underlying assumptions for the error component, or residuals, from this model.

4-Plot of

 Residuals

Interpretation
The assumptions are addressed by the graphics shown above:

1. The run sequence plot (upper left) indicates no significant shifts in location or scale over time.
2. The lag plot (upper right) exhibits a random appearance.
3. The histogram shows a relatively flat appearance. This indicates that a uniform probability distribution may be an appropriate model for the error component (or residuals).
4. The normal probability plot clearly shows that the normal distribution is not an appropriate model for the error component.
A uniform probability plot can be used to further test the suggestion that a uniform distribution might be a good model for the error component.

Uniform

 ProbabilityPlot of Residuals

Since the uniform probability plot is nearly linear, this verifies that a uniform distribution is a good model for the error component.

Using Scientific and Engineering Knowledge

Conclusions
Since the residuals from our model satisfy the underlying assumptions, we conlude that

$$
Y_{i}=0.0502+0.987 * Y_{i-1}+E_{i}
$$

where the $\boldsymbol{E}_{\boldsymbol{i}}$ follow a uniform distribution is a good model for this data set. We could simplify this model to

$$
Y_{i}=1.0 * Y_{i-1}+E_{i}
$$

This has the advantage of simplicity (the current point is simply the previous point plus a uniformly distributed error term).

In this case, the above model makes sense based on our definition of the random walk. That is, a random walk is the cumulative sum of uniformly distributed data points. It makes sense that modeling the current point as the previous point plus a uniformly distributed error term is about as good as we can do. Although this case is a bit artificial in that we knew how the data were constructed, it is common and desirable to use scientific and engineering knowledge of the process that generated the data in formulating and testing models for the data. Quite often, several competing models will produce nearly equivalent mathematical results. In this case, selecting the model that best approximates the scientific understanding of the process is a reasonable choice.

Time Series \quad This model is an example of a time series model. More extensive Model discussion of time series is given in the Process Monitoring chapter.

HOME TOOLS \& AIDS $\longdiv { \text { SEARCH } }$
$\overline{\text { BACK }}$ NEXT|

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.3. Random Walk

1.4.2.3.5. Work This Example Yourself

Dataplot
Macro for
this Case
Study

View This page allows you to repeat the analysis outlined in the case study description on the previous page using Dataplot. It is required that you have already downloaded and installed Dataplot and configured your browser. to run Dataplot. Output from each analysis step below will be displayed in one or more of the Dataplot windows. The four main windows are the Output window, the Graphics window, the Command History window, and the data sheet window. Across the top of the main windows there are menus for executing Dataplot commands. Across the bottom is a command entry window where commands can be typed in.

| Data Analysis Steps | Results and Conclusions |
| :---: | :---: |
| Click on the links below to start Dataplot and run this case study yourself. Each step may use results from previous steps, so please be patient. Wait until the software verifies that the current step is complete before clicking on the next step. | The links in this column will connect you with more detailed information about each analysis step from the case study description. |
| 1. Invoke Dataplot and read data.
 1. Read in the data. | 1. You have read 1 column of numbers into Dataplot, variable Y. |
| 2. Validate assumptions.
 1. 4-plot of Y.
 2. Generate a table of summary statistics.
 3. Generate a linear fit to detect drift in location.
 4. Detect drift in variation by dividing the data into quarters and computing Levene's test for equal | 1. Based on the 4-plot, there are shifts in location and scale and the data are not random.
 2. The summary statistics table displays $25+$ statistics.
 3. The linear fit indicates drift in location since the slope parameter is statistically significant.
 4. Levene's test indicates significant drift in variation. |

1.4.2.3.5. Work This Example Yourself standard deviations.
5. Check for randomness by generating 5. The runs test indicates significant a runs test.
3. Generate the randomness plots.

1. Generate an autocorrelation plot.
2. Generate a spectral plot.
3. The autocorrelation plot shows significant autocorrelation at lag 1.
4. The spectral plot shows a single dominant low frequency peak.
5. Fit $Y_{i}=A 0+A 1 * Y_{i-1}+E_{i}$ and validate.
6. Generate the fit.
7. The residual standard deviation from the fit is 0.29 (compared to the standard deviation of 2.08 from the original data).
8. Plot fitted line with original data.
9. Generate a 4-plot of the residuals from the fit.
10. The 4-plot indicates that the assumptions of constant location and scale are valid. The lag plot indicates that the data are random. However, the histogram and normal probability plot indicate that the uniform disribution might be a better model for the residuals than the normal distribution.
11. Generate a uniform probability plot of the residuals.
12. The uniform probability plot verifies that the residuals can be fit by a uniform distribution.

NIST

$\overline{\text { SEMATECH }}$

HOME
TOOLS \& AIDS
SEARCH
[BACK $\overline{\text { NEXT }}$

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies

1.4.2.4.Josephson Junction Cryothermometry

Josephson Junction Cryothermometry

This example illustrates the univariate analysis of Josephson junction cyrothermometry.

1. Background and Data
2. Graphical Output and Interpretation
3. Quantitative Output and Interpretation
4. Work This Example Yourself
$\frac{\text { NIST }}{\text { SEMATECH }}$

HOME
TOOLS \& AIDS
SEARCH
BACK NEXT

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.4. Josephson Junction Cryothermometry

1.4.2.4.1. Background and Data

Generation This data set was collected by Bob Soulen of NIST in October, 1971 as a sequence of observations collected equi-spaced in time from a volt meter to ascertain the process temperature in a Josephson junction cryothermometry (low temperature) experiment. The response variable is voltage counts.

Motivation The motivation for studying this data set is to illustrate the case where there is discreteness in the measurements, but the underlying assumptions hold. In this case, the discreteness is due to the data being integers.

This file can be read by Dataplot with the following commands:

```
SKIP 25
SET READ FORMAT 5F5.0
READ SOULEN.DAT Y
SET READ FORMAT
```

Resulting The following are the data used for this case study.

Data

| 2899 | 2898 | 2898 | 2900 | 2898 |
| :--- | :--- | :--- | :--- | :--- |
| 2901 | 2899 | 2901 | 2900 | 2898 |
| 2898 | 2898 | 2898 | 2900 | 2898 |
| 2897 | 2899 | 2897 | 2899 | 2899 |
| 2900 | 2897 | 2900 | 2900 | 2899 |
| 2898 | 2898 | 2899 | 2899 | 2899 |
| 2899 | 2899 | 2898 | 2899 | 2899 |
| 2899 | 2902 | 2899 | 2900 | 2898 |
| 2899 | 2899 | 2899 | 2899 | 2899 |
| 2899 | 2900 | 2899 | 2900 | 2898 |
| 2901 | 2900 | 2899 | 2899 | 2899 |
| 2899 | 2899 | 2900 | 2899 | 2898 |
| 2898 | 2898 | 2900 | 2896 | 2897 |

| 2899 | 2899 | 2900 | 2898 | 2900 |
| :--- | :--- | :--- | :--- | :--- |
| 2901 | 2898 | 2899 | 2901 | 2900 |
| 2898 | 2900 | 2899 | 2899 | 2897 |
| 2899 | 2898 | 2899 | 2899 | 2898 |
| 2899 | 2897 | 2899 | 2899 | 2897 |
| 2899 | 2897 | 2899 | 2897 | 2897 |
| 2899 | 2897 | 2898 | 2898 | 2899 |
| 2897 | 2898 | 2897 | 2899 | 2899 |
| 2898 | 2898 | 2897 | 2898 | 2895 |
| 2897 | 2898 | 2898 | 2896 | 2898 |
| 2898 | 2897 | 2896 | 2898 | 2898 |
| 2897 | 2897 | 2898 | 2898 | 2896 |
| 2898 | 2898 | 2896 | 2899 | 2898 |
| 2898 | 2898 | 2899 | 2899 | 2898 |
| 2898 | 2899 | 2899 | 2899 | 2900 |
| 2900 | 2901 | 2899 | 2898 | 2898 |
| 2900 | 2899 | 2898 | 2901 | 2897 |
| 2898 | 2898 | 2900 | 2899 | 2899 |
| 2898 | 2898 | 2899 | 2898 | 2901 |
| 2900 | 2897 | 2897 | 2898 | 2898 |
| 2900 | 2898 | 2899 | 2898 | 2898 |
| 2898 | 2896 | 2895 | 2898 | 2898 |
| 2898 | 2898 | 2897 | 2897 | 2895 |
| 2897 | 2897 | 2900 | 2898 | 2896 |
| 2897 | 2898 | 2898 | 2899 | 2898 |
| 2897 | 2898 | 2898 | 2896 | 2900 |
| 2899 | 2898 | 2896 | 2898 | 2896 |
| 2896 | 2896 | 2897 | 2897 | 2896 |
| 2897 | 2897 | 2896 | 2898 | 2896 |
| 2898 | 2896 | 2897 | 2896 | 2897 |
| 2897 | 2898 | 2897 | 2896 | 2895 |
| 2898 | 2896 | 2896 | 2898 | 2896 |
| 2898 | 2898 | 2897 | 2897 | 2898 |
| 2897 | 2899 | 2896 | 2897 | 2899 |
| 2900 | 2898 | 2898 | 2897 | 2898 |
| 2899 | 2899 | 2900 | 2900 | 2900 |
| 2900 | 2899 | 2899 | 2899 | 2898 |
| 2900 | 2901 | 2899 | 2898 | 2900 |
| 2901 | 2901 | 2900 | 2899 | 2898 |
| 2901 | 2899 | 2901 | 2900 | 2901 |
| 2898 | 2900 | 2900 | 2898 | 2900 |
| 2900 | 2898 | 2899 | 2901 | 2900 |
| 2899 | 2899 | 2900 | 2900 | 2899 |
| 2899 | 2896 | 2898 | 2897 | 2898 |
| 2897 | 2897 | 2897 | 2898 | |

| 2897 | 2899 | 2900 | 2899 | 2897 |
| :--- | :--- | :--- | :--- | :--- |
| 2898 | 2900 | 2900 | 2898 | 2898 |
| 2899 | 2900 | 2898 | 2900 | 2900 |
| 2898 | 2900 | 2898 | 2898 | 2898 |
| 2898 | 2898 | 2899 | 2898 | 2900 |
| 2897 | 2899 | 2898 | 2899 | 2898 |
| 2897 | 2900 | 2901 | 2899 | 2898 |
| 2898 | 2901 | 2898 | 2899 | 2897 |
| 2899 | 2897 | 2896 | 2898 | 2898 |
| 2899 | 2900 | 2896 | 2897 | 2897 |
| 2898 | 2899 | 2899 | 2898 | 2898 |
| 2897 | 2897 | 2898 | 2897 | 2897 |
| 2898 | 2898 | 2898 | 2896 | 2895 |
| 2898 | 2898 | 2898 | 2896 | 2898 |
| 2898 | 2898 | 2897 | 2897 | 2899 |
| 2896 | 2900 | 2897 | 2897 | 2898 |
| 2896 | 2897 | 2898 | 2898 | 2898 |
| 2897 | 2897 | 2898 | 2899 | 2897 |
| 2898 | 2899 | 2897 | 2900 | 2896 |
| 2899 | 2897 | 2898 | 2897 | 2900 |
| 2899 | 2900 | 2897 | 2897 | 2898 |
| 2897 | 2899 | 2899 | 2898 | 2897 |
| 2901 | 2900 | 2898 | 2901 | 2899 |
| 2900 | 2899 | 2898 | 2900 | 2900 |
| 2899 | 2898 | 2897 | 2900 | 2898 |
| 2898 | 2897 | 2899 | 2898 | 2900 |
| 2899 | 2898 | 2899 | 2897 | 2900 |
| 2898 | 2902 | 2897 | 2898 | 2899 |
| 2899 | 2899 | 2898 | 2897 | 2898 |
| 2897 | 2898 | 2899 | 2900 | 2900 |
| 2899 | 2898 | 2899 | 2900 | 2899 |
| 2900 | 2899 | 2899 | 2899 | 2899 |
| 2899 | 2898 | 2899 | 2899 | 2900 |
| 2902 | 2899 | 2900 | 2900 | 2901 |
| 2899 | 2901 | 2899 | 2899 | 2902 |
| 2898 | 2898 | 2898 | 2898 | 2899 |
| 28999 | 2898 | 2899 | 2897 | 2897 |
| 28999 | 2897 | 2899 | 2898 | 2897 |
| 2898 | 2898 | 2897 | 2898 | 2899 |

| 2899 | 2899 | 2899 | 2900 | 2899 |
| :--- | :--- | :--- | :--- | :--- |
| 2899 | 2897 | 2898 | 2899 | 2900 |
| 2898 | 2897 | 2901 | 2899 | 2901 |
| 2898 | 2899 | 2901 | 2900 | 2900 |
| 2899 | 2900 | 2900 | 2900 | 2900 |
| 2901 | 2900 | 2901 | 2899 | 2897 |
| 2900 | 2900 | 2901 | 2899 | 2898 |
| 2900 | 2899 | 2899 | 2900 | 2899 |
| 2900 | 2899 | 2900 | 2899 | 2901 |
| 2900 | 2900 | 2899 | 2899 | 2898 |
| 2899 | 2900 | 2898 | 2899 | 2899 |
| 2901 | 2898 | 2898 | 2900 | 2899 |
| 2899 | 2898 | 2897 | 2898 | 2897 |
| 2899 | 2899 | 2899 | 2898 | 2898 |
| 2897 | 2898 | 2899 | 2897 | 2897 |
| 2899 | 2898 | 2898 | 2899 | 2899 |
| 2901 | 2899 | 2899 | 2899 | 2897 |
| 2900 | 2896 | 2898 | 2898 | 2900 |
| 2897 | 2899 | 2897 | 2896 | 2898 |
| 2897 | 2898 | 2899 | 2896 | 2899 |
| 2901 | 2898 | 2898 | 2896 | 2897 |
| 2899 | 2897 | 2898 | 2899 | 2898 |
| 2898 | 2898 | 2898 | 2898 | 2898 |
| 2899 | 2900 | 2899 | 2901 | 2898 |
| 2899 | 2899 | 2898 | 2900 | 2898 |
| 2899 | 2899 | 2901 | 2900 | 2901 |
| 2899 | 2901 | 2899 | 2901 | 2899 |
| 2900 | 2902 | 2899 | 2898 | 2899 |
| 2900 | 2899 | 2900 | 2900 | 2901 |
| 2900 | 2899 | 2901 | 2901 | 2899 |
| 2898 | 2901 | 2897 | 2898 | 2901 |
| 2900 | 2902 | 2899 | 2900 | 2898 |
| 2900 | 2899 | 2900 | 2899 | 2899 |
| 2899 | 2898 | 2900 | 2898 | 2899 |
| 2899 | 2899 | 2899 | 2898 | 2900 |

NIST
HOME $\longdiv { \text { TOOLS \& AIDS } } \quad \longdiv { \text { SEARCH } }$

BACK NEXT

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.4. Josephson Junction Cryothermometry

1.4.2.4.2. Graphical Output and Interpretation

Goal The goal of this analysis is threefold:

1. Determine if the univariate model:

$$
Y_{i}=C+E_{i}
$$

is appropriate and valid.
2. Determine if the typical underlying assumptions for an "in control" measurement process are valid. These assumptions are:

1. random drawings;
2. from a fixed distribution;
3. with the distribution having a fixed location; and
4. the distribution having a fixed scale.
5. Determine if the confidence interval

$$
\bar{Y} \pm 2 s / \sqrt{N}
$$

is appropriate and valid where s is the standard deviation of the original data.

4-Plot of

 DataInterpretation

The assumptions are addressed by the graphics shown above:

1. The run sequence plot (upper left) indicates that the data do not have any significant shifts in location or scale over time.
2. The lag plot (upper right) does not indicate any non-random pattern in the data.
3. The histogram (lower left) shows that the data are reasonably symmetric, there does not appear to be significant outliers in the tails, and that it is reasonable to assume that the data can be fit with a normal distribution.
4. The normal probability plot (lower right) is difficult to interpret due to the fact that there are only a few distinct values with many repeats.
The integer data with only a few distinct values and many repeats accounts for the discrete appearance of several of the plots (e.g., the lag plot and the normal probability plot). In this case, the nature of the data makes the normal probability plot difficult to interpret, especially since each number is repeated many times. However, the histogram indicates that a normal distribution should provide an adequate model for the data.

From the above plots, we conclude that the underlying assumptions are valid and the data can be reasonably approximated with a normal distribution. Therefore, the commonly used uncertainty standard is valid and appropriate. The numerical values for this model are given in
the Quantitative Output and Interpretation section.

Individual
Plots

Run
Sequence
Plot

Lag Plot

Histogram
(with overlaid
Normal PDF)

Normal
Probability
Plot

Fitted line: Intercept $=\mathbf{2 8 9 8} \mathbf{. 7 2 2}$, Slope $=\mathbf{1 . 2 1 2 5 1 3}$

NIST
$\overline{\text { SEMATECH }}$
HOME
TOOLS \& AIDS
SEARCH
BACK NEXT

1. Exploratory Data Analysis

1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.4. Josephson Junction Cryothermometry

1.4.2.4.3. Quantitative Output and Interpretation

Summary
Statistics

As a first step in the analysis, a table of summary statistics is computed from the data. The following table, generated by Dataplot, shows a typical set of statistics.

SUMMARY

Location One way to quantify a change in location over time is to fit a straight line to the data set using the index variable $\mathrm{X}=1,2, \ldots, \mathrm{~N}$, with N denoting the number of observations. If there is no significant drift in the location, the slope parameter should be zero. For this data set, Dataplot generates the following output:

```
LEAST SQUARES MULTILINEAR FIT
    SAMPLE SIZE N = 140
    NUMBER OF VARIABLES = 1
    NO REPLICATION CASE
```

```
RESIDUAL STANDARD DEVIATION = 1.220212
RESIDUAL DEGREES OF FREEDOM = 138
COEF AND SD(COEF) WRITTEN OUT TO FILE DPST1F.DAT
SD(PRED),95LOWER,95UPPER,99LOWER, 99UPPER
    WRITTEN OUT TO FILE DPST2F.DAT
REGRESSION DIAGNOSTICS WRITTEN OUT TO FILE DPST3F.DAT
PARAMETER VARIANCE-COVARIANCE MATRIX AND
INVERSE OF X-TRANSPOSE X MATRIX
WRITTEN OUT TO FILE DPST4F.DAT
```

The slope parameter, A1, has a t value of 2.1 which is statistically significant (the critical value is 1.98). However, the value of the slope is 0.0054 . Given that the slope is nearly zero, the assumption of constant location is not seriously violated even though it is (just barely) statistically significant.

Variation One simple way to detect a change in variation is with a Bartlett test after dividing the data set into several equal-sized intervals. However, the Bartlett test is not robust for non-normality. Since the nature of the data (a few distinct points repeated many times) makes the normality assumption questionable, we use the alternative Levene test. In partiuclar, we use the Levene test based on the median rather the mean. The choice of the number of intervals is somewhat arbitrary, although values of 4 or 8 are reasonable. Dataplot generated the following output for the Levene test.

```
LEVENE F-TEST FOR SHIFT IN VARIATION
    (ASSUMPTION: NORMALITY)
```

```
1. STATISTICS
    NUMBER OF OBSERVATIONS = 140
    NUMBER OF GROUPS = 4
    LEVENE F TEST STATISTIC = 0.4128718
    FOR LEVENE TEST STATISTIC
    0 % POINT = 0.0000000E+00
    50 % POINT = 0.7926317
    75 % POINT = 1.385201
    90 % POINT = 2.124494
    95 % POINT = 2.671178
    99 % POINT = 3.928924
    99.9 % POINT = 5.737571
        25.59809 % Point: 0.4128718
3. CONCLUSION (AT THE 5% LEVEL):
    THERE IS NO SHIFT IN VARIATION.
    THUS: HOMOGENEOUS WITH RESPECT TO VARIATION.
```

Since the Levene test statistic value of 0.41 is less than the 95% critical value of 2.67 , we conclude that the standard deviations are not significantly different in the 4 intervals.

Randomness

There are many ways in which data can be non-random. However, most common forms of non-randomness can be detected with a few simple tests. The lag plot in the previous section is a simple graphical technique.

Another check is an autocorrelation plot that shows the autocorrelations for various lags. Confidence bands can be plotted at the 95% and 99% confidence levels. Points outside this band indicate statistically significant values (lag 0 is always 1). Dataplot generated the following autocorrelation plot.

The lag 1 autocorrelation, which is generally the one of most interest, is 0.29 . The critical values at the 5% level of significance are -0.087 and 0.087 . This indicates that the lag 1 autocorrelation is statistically significant, so there is some evidence for non-randomness.

A common test for randomness is the runs test.

| RUNS UP | | | | |
| :---: | :---: | :---: | :---: | :---: |
| | STATISTIC $=$ NUMBER OF RUNS UP OF LENGTH EXACTLY I | | | |
| I | STAT | EXP (STAT) | SD (STAT) | Z |
| 1 | 15.0 | 29.2083 | 5.4233 | -2.62 |
| 2 | 10.0 | 12.7167 | 2.7938 | -0.97 |
| 3 | 2.0 | 3.6292 | 1.6987 | -0.96 |
| 4 | 4.0 | 0.7849 | 0.8573 | 3.75 |
| 5 | 2.0 | 0.1376 | 0.3683 | 5.06 |
| 6 | 0.0 | 0.0204 | 0.1425 | -0.14 |
| 7 | 1.0 | 0.0026 | 0.0511 | 19.54 |
| 8 | 0.0 | 0.0003 | 0.0172 | -0.02 |
| 9 | 0.0 | 0.0000 | 0.0055 | -0.01 |
| 10 | 0.0 | 0.0000 | 0.0017 | 0.00 |

1.4.2.4.3. Quantitative Output and Interpretation

| I | STAT | EXP $($ STAT $)$ | SD $($ STAT $)$ | Z |
| ---: | ---: | ---: | :---: | ---: |
| 1 | | | | |
| 2 | 34.0 | 46.5000 | 3.5048 | -3.57 |
| 3 | 19.0 | 17.2917 | 2.3477 | 0.73 |
| 4 | 9.0 | 4.5750 | 1.8058 | 2.45 |
| 5 | 7.0 | 0.9458 | 0.9321 | 6.49 |
| 6 | 3.0 | 0.1609 | 0.3976 | 7.14 |
| 7 | 1.0 | 0.0233 | 0.1524 | 6.41 |
| 8 | 1.0 | 0.0029 | 0.0542 | 18.41 |
| 9 | 0.0 | 0.0003 | 0.0181 | -0.02 |
| 10 | 0.0 | 0.0000 | 0.0057 | -0.01 |
| | 0.0 | 0.0000 | 0.0017 | 0.00 |

EXP (STAT)
SD (STAT)
Z
$18.0 \quad 17.2917$
3.5048
-3. 57

8

| 3.0 | 0.9458 | 0.9321 | 2.20 |
| :--- | :--- | :--- | :--- |

$2.0 \quad 0.1609 \quad 0.3976 \quad 4.63$

| 0.0 | 0.0233 | 0.1524 | -0.15 |
| :--- | :--- | :--- | :--- |

| 0.0 | 0.0029 | 0.0542 | -0.05 |
| :--- | :--- | :--- | :--- |

| 0.0 | 0.0003 | 0.0181 | -0.02 |
| :--- | :--- | :--- | :--- |
| 0.0 | 0.0000 | 0.0057 | -0.01 |

| 0.0 | 0.0000 | 0.0057 | -0.01 |
| :--- | :--- | :--- | :--- |
| 0.0 | 0.0000 | 0.0017 | 0.00 |

| 0.0 | 0.0000 | 0.0017 | 0.00 |
| :--- | :--- | :--- | :--- |

RUNS TOTAL $=$ RUNS UP + RUNS DOWN
STATISTIC = NUMBER OF RUNS TOTAL
OF LENGTH EXACTLY I
STAT EXP (STAT) SD (STAT) Z

| 31.0 | 58.4167 | 7.6697 | -3.57 |
| ---: | ---: | ---: | ---: |
| 20.0 | 25.4333 | 3.9510 | -1.38 |
| 7.0 | 7.2583 | 2.4024 | -0.11 |
| 5.0 | 1.5698 | 1.2124 | 2.83 |
| 4.0 | 0.2752 | 0.5208 | 7.15 |
| 0.0 | 0.0407 | 0.2015 | -0.20 |

1.4.2.4.3. Quantitative Output and Interpretation

| 7 | 1.0 | 0.0052 | 0.0722 | 13.78 |
| ---: | ---: | ---: | ---: | ---: |
| 8 | 0.0 | 0.0006 | 0.0243 | -0.02 |
| 9 | 0.0 | 0.0001 | 0.0077 | -0.01 |
| 10 | 0.0 | 0.0000 | 0.0023 | 0.00 |

Values in the column labeled "Z" greater than 1.96 or less than -1.96 are statistically significant at the 5% level. The runs test indicates some mild non-randomness.

Although the runs test and lag 1 autocorrelation indicate some mild non-randomness, it is not sufficient to reject the $\boldsymbol{Y}_{\boldsymbol{i}} \boldsymbol{=} \boldsymbol{C}+\boldsymbol{E}_{\boldsymbol{i}}$ model. At least part of the non-randomness can be explained by the discrete nature of the data.

Distributional Analysis

Probability plots are a graphical test for assessing if a particular distribution provides an adequate fit to a data set.

A quantitative enhancement to the probability plot is the correlation coefficient of the points on the probability plot. For this data set the correlation coefficient is 0.970 . Since this is less than the critical value of 0.987 (this is a tabulated value), the normality assumption is rejected.

Chi-square and Kolmogorov-Smirnov goodness-of-fit tests are alternative methods for assessing distributional adequacy. The Wilk-Shapiro and Anderson-Darling tests can be used to test for normality. Dataplot generates the following output for the Anderson-Darling normality test.

```
ANDERSON-DARLING 1-SAMPLE TEST
THAT THE DATA CAME FROM A NORMAL DISTRIBUTION
```

1. STATISTICS:

| NUMBER OF OBSERVATIONS | $=$ | 140 |
| :--- | :--- | ---: |
| MEAN | | 2898.721 |
| STANDARD DEVIATION | | 1.235377 |
| | | |
| ANDERSON-DARLING TEST STATISTIC VALUE | $=$ | 3.839233 |
| ADJUSTED TEST STATISTIC VALUE | $=$ | 3.944029 |

1.4.2.4.3. Quantitative Output and Interpretation

```
2. CRITICAL VALUES:
\begin{tabular}{lll}
90 & \(\%\) POINT & \(=0.6560000\) \\
95 & \(\%\) POINT & \(=0.7870000\) \\
97.5 & \(\%\) POINT & \(=0.9180000\) \\
99 & \(\%\) POINT & \(=1.092000\)
\end{tabular}
```

3. CONCLUSION (AT THE 5\% LEVEL) :

THE DATA DO NOT COME FROM A NORMAL DISTRIBUTION.
The Anderson-Darling test rejects the normality assumption because the test statistic, 3.84 , is greater than the 99% critical value 1.092 .

Although the data are not strictly normal, the violation of the normality assumption is not severe enough to conclude that the $\boldsymbol{Y}_{\boldsymbol{i}}=\boldsymbol{C}+\boldsymbol{E}_{\boldsymbol{i}}$ model is unreasonable. At least part of the non-normality can be explained by the discrete nature of the data.

Outlier
Analysis

Model
Although the randomness and normality assumptions were mildly violated, we conclude that a reasonable model for the data is:

$$
Y_{i}=2898.7+E_{i}
$$

In addition, a 95% confidence interval for the mean value is $(2898.515,2898.928)$.
1.4.2.4.3. Quantitative Output and Interpretation

Univariate It is sometimes useful and convenient to summarize the above results in a report.
Report

```
Analysis for Josephson Junction Cryothermometry Data
1: Sample Size = 140
2: Location
    Mean = 2898.722
    Standard Deviation of Mean = 0.104409
    95% Confidence Interval for Mean = (2898.515,2898.928)
    Drift with respect to location? = YES
    (Further analysis indicates that
    the drift, while statistically
    significant, is not practically
    significant)
3: Variation
    Standard Deviation = 1.235377
    95% Confidence Interval for SD = (1.105655,1.399859)
    Drift with respect to variation?
    (based on Levene's test on quarters
    of the data) = NO
4: Distribution
    Normal PPCC = 0.970145
    Data are Normal?
        (as measured by Normal PPCC) = NO
5: Randomness
    Autocorrelation = 0.29254
    Data are Random?
        (as measured by autocorrelation) = NO
6: Statistical Control
    (i.e., no drift in location or scale,
    data are random, distribution is
    fixed, here we are testing only for
    fixed normal)
    Data Set is in Statistical Control? = NO
    Note: Although we have violations of
    the assumptions, they are mild enough,
    and at least partially explained by the
    discrete nature of the data, so we may model
    the data as if it were in statistical
    control
7: Outliers?
    (as determined by Grubbs test) = NO
```

ENGINEERING STATISTICS HANDBOOK
$\boxed{\text { TOOLS \& AIDS }} \quad \overline{\text { SEARCH }} \quad \overline{\text { BACK }} \overline{\text { NEXT }}$

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.4. Josephson Junction Cryothermometry

1.4.2.4.4. Work This Example Yourself

| $\underline{\text { View }}$ | |
| :--- | :--- |
| $\underline{\text { Dataplot }}$ | This page allows you to repeat the analysis outlined in the case study
 description on the previous page using $\underline{\text { Dataplot }}$. It is required that you
 have already downloaded and installed Dataplot and configured your
 $\underline{\text { this Case }}$ |
| $\underline{\underline{\text { Study }}}$ | browser. to run Dataplot. Output from each analysis step below will be
 displayed in one or more of the Dataplot windows. The four main
 windows are the Output window, the Graphics window, the Command |
| History window, and the data sheet window. Across the top of the main
 windows there are menus for executing Dataplot commands. Across the
 bottom is a command entry window where commands can be typed in. | |

| Data Analysis Steps | Results and Conclusions |
| :---: | :---: |
| Click on the links below to start Dataplot and run this case study yourself. Each step may use results from previous steps, so please be patient. Wait until the software verifies that the current step is complete before clicking on the next step. | The links in this column will connect you with more detailed information about each analysis step from the case study description. |
| 1. Invoke Dataplot and read data.
 1. Read in the data. | 1. You have read 1 column of numbers into Dataplot, variable Y. |
| 2. 4-plot of the data. 1. 4-plot of Y . | 1. Based on the 4-plot, there are no shifts in location or scale. Due to the nature of the data (a few distinct points with many repeats), the normality assumption is questionable. |
| 3. Generate the individual plots.
 1. Generate a run sequence plot.
 2. Generate a lag plot.
 3. Generate a histogram with an | 1. The run sequence plot indicates that there are no shifts of location or scale.
 2. The lag plot does not indicate any significant patterns (which would show the data were not random). |

1.4.2.4.4. Work This Example Yourself
overlaid normal pdf.
4. Generate a normal probability plot.
3. The histogram indicates that a normal distribution is a good distribution for these data.
4. The discrete nature of the data masks the normality or non-normality of the data somewhat. The plot indicates that a normal distribution provides a rough approximation for the data.
4. Generate summary statistics, quantitative analysis, and print a univariate report.

1. Generate a table of summary statistics.
2. Generate the mean, a confidence interval for the mean, and compute a linear fit to detect drift in location.
3. Generate the standard deviation, a confidence interval for the standard deviation, and detect drift in variation by dividing the data into quarters and computing Levene's test for equal standard deviations.
4. Check for randomness by generating an autocorrelation plot and a runs test.
5. Check for normality by computing the normal probability plot correlation coefficient.
6. Check for outliers using Grubbs' test.
7. Print a univariate report (this assumes steps 2 thru 6 have already been run).
8. The summary statistics table displays $25+$ statistics.
9. The mean is 2898.27 and a 95\% confidence interval is $(2898.52,2898.93)$.
The linear fit indicates no meaningful drift in location since the value of the slope parameter is near zero.
10. The standard devaition is 1.24 with a 95% confidence interval of (1.11,1.40). Levene's test indicates no significant drift in variation.
11. The lag 1 autocorrelation is 0.29 . This indicates some mild non-randomness.
12. The normal probability plot correlation coefficient is 0.970. At the 5% level,
we reject the normality assumption.
13. Grubbs' test detects no outliers at the 5\% level.
14. The results are summarized in a convenient report.

NIST

 SEMATECH
HOME

TOOLS \& AIDS
$\longdiv { \text { SEARCH } }$
BACK $\overline{\text { NEXT }}$

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies

1.4.2.5. Beam Deflections

Beam

Deflection
This example illustrates the univariate analysis of beam deflection data.

1. Background and Data
2. Test Underlying Assumptions
3. Develop a Better Model
4. Validate New Model
5. Work This Example Yourself

NIST $\overline{\text { SEMATECH }}$

HOME TOOLS \& AIDS SEARCH

BACK NEXT

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.5. Beam Deflections

1.4.2.5.1. Background and Data

Generation This data set was collected by H. S. Lew of NIST in 1969 to measure steel-concrete beam deflections. The response variable is the deflection of a beam from the center point.

The motivation for studying this data set is to show how the underlying assumptions are affected by periodic data.

This file can be read by Dataplot with the following commands:
SKIP 25
READ LEW.DAT Y

Resulting The following are the data used for this case study.
Data
-213
-564
-35
-15
141
115
-420
-360
203
-338
-431
194
-220
-513
154
-125
-559
1.4.2.5.1. Background and Data

$$
\begin{array}{r}
-52 \\
99 \\
-543 \\
-175 \\
162 \\
-457 \\
-346 \\
204 \\
-300 \\
-474 \\
164 \\
-107 \\
-572 \\
-8 \\
83 \\
-541 \\
-224 \\
180 \\
-420 \\
-374 \\
201 \\
-236 \\
-531 \\
83 \\
27 \\
-2769 \\
-124 \\
-568
\end{array}
$$

1.4.2.5.1. Background and Data

$$
\begin{array}{r}
17 \\
48 \\
-568 \\
-135 \\
162 \\
-430 \\
-422 \\
172 \\
-74 \\
-577 \\
-13 \\
92 \\
-534 \\
-243 \\
194 \\
-355 \\
-465 \\
156 \\
-81 \\
-578 \\
-64 \\
139 \\
-449 \\
-384 \\
193 \\
-198 \\
-538 \\
110 \\
-576 \\
-118 \\
-456 \\
-437
\end{array}
$$

1.4.2.5.1. Background and Data
-381
200
-220
-540
83
11
-568
-160
172
-414
-408
188
-125
-572
-32
139
-492
-321
205
-262
-504
142
-83
-574
0
48
-571
-106
137
-501
-266
190
-391
-406
194
-186
-553
83
-13
-577
-49
103
-515
-280
201

300
http://www.itl.nist.gov/div898/handbook/eda/section4/eda4251.htm (4 of 6) [11/13/2003 5:33:24 PM]
1.4.2.5.1. Background and Data
-506
131
-45
-578
-80
138
-462
-361
201
-211
-554
32
74
-533
-235
187
-372
-442
182
-147
-566
25
68
-535
-244
194
-351
-463
174
-125
-570
15
72
-550
-190
172
-424
-385
198
-218
-536
1.4.2.5.1. Background and Data

NIST

SEMATECH

1.4.2.5.2. Test Underlying Assumptions

Goal

The goal of this analysis is threefold:

1. Determine if the univariate model:

$$
Y_{i}=C+E_{\tilde{i}}
$$

is appropriate and valid.
2. Determine if the typical underlying assumptions for an "in control" measurement process are valid. These assumptions are:

1. random drawings;
2. from a fixed distribution;
3. with the distribution having a fixed location; and
4. the distribution having a fixed scale.
5. Determine if the confidence interval

$$
\bar{Y} \pm 2 s / \sqrt{N}
$$

is appropriate and valid where \boldsymbol{s} is the standard deviation of the original data.

4-Plot of Data

Interpretation

Individual Plots

Run Sequence Plot

The assumptions are addressed by the graphics shown above:

1. The run sequence plot (upper left) indicates that the data do not have any significant shifts in location or scale over time.
2. The lag plot (upper right) shows that the data are not random. The lag plot further indicates the presence of a few outliers.
3. When the randomness assumption is thus seriously violated, the histogram (lower left) and normal probability plot (lower right) are ignored since determining the distribution of the data is only meaningful when the data are random.
From the above plots we conclude that the underlying randomness assumption is not valid. Therefore, the model

$$
Y_{i}=C+E_{i}
$$

is not appropriate.
We need to develop a better model. Non-random data can frequently be modeled using time series mehtodology. Specifically, the circular pattern in the lag plot indicates that a sinusoidal model might be appropriate. The sinusoidal model will be developed in the next section.

The plots can be generated individually for more detail. In this case, only the run sequence plot and the lag plot are drawn since the distributional plots are not meaningful.

We have drawn some lines and boxes on the plot to better isolate the outliers. The following output helps identify the points that are generating the outliers on the lag plot.

That is, the third, fifth, and 158th points appear to be outliers.

Autocorrelation Plot

Spectral Plot

Quantitative Output

When the lag plot indicates significant non-randomness, it can be helpful to follow up with a an autocorrelation plot.

This autocorrelation plot shows a distinct cyclic pattern. As with the lag plot, this suggests a sinusoidal model.

Another useful plot for non-random data is the spectral plot.

This spectral plot shows a single dominant peak at a frequency of 0.3 . This frequency of 0.3 will be used in fitting the sinusoidal model in the next section.

Although the lag plot, autocorrelation plot, and spectral plot clearly show the violation of the randomness assumption, we supplement the graphical output with some quantitative measures.

Summary

Statistics

As a first step in the analysis, a table of summary statistics is computed from the data. The following table, generated by Dataplot, shows a typical set of statistics.

SUMMARY
NUMBER OF OBSERVATIONS =
200

Location One way to quantify a change in location over time is to fit a straight line to the data set using the index variable $\mathrm{X}=1,2, \ldots, \mathrm{~N}$, with N denoting the number of observations. If there is no significant drift in the location, the slope parameter should be zero. For this data set, Dataplot generates the following output:

```
LEAST SQUARES MULTILINEAR FIT
    SAMPLE SIZE N = 200
    NUMBER OF VARIABLES = 1
    NO REPLICATION CASE
            PARAMETER ESTIMATES
\begin{tabular}{lccc}
1 & A0 & & -178.175 \\
2 & A1 & \(X\) & \(0.736593 \mathrm{E}-02\)
\end{tabular}
    RESIDUAL STANDARD DEVIATION = 278.0313
    RESIDUAL DEGREES OF FREEDOM = 198
\begin{tabular}{lll} 
(APPROX. ST. DEV.) & \multicolumn{1}{c}{ T VALUE } \\
\((39.47\) & ) & -4.514 \\
\((0.3405\) & \()\) & \(0.2163 \mathrm{E}-01\)
\end{tabular}
```

The slope parameter, A1, has a t value of 0.022 which is statistically not significant. This indicates that the slope can in fact be considered zero.

Variation One simple way to detect a change in variation is with a Bartlett test after dividing the data set into several equal-sized intervals. However, the Bartlett the non-randomness of this data does not allows us to assume normality, we use the alternative Levene test. In partiuclar, we use the Levene test based on the median rather the mean. The choice of the number of intervals is somewhat arbitrary, although values of 4 or 8 are reasonable. Dataplot generated the following output for the Levene test.

```
LEVENE F-TEST FOR SHIFT IN VARIATION
(ASSUMPTION: NORMALITY)
```

1. STATISTICS

NUMBER OF OBSERVATIONS = 200 NUMBER OF GROUPS $=$ 4 LEVENE F TEST STATISTIC $=0.9378599 \mathrm{E}-01$

FOR LEVENE TEST STATISTIC

| 0 | $\%$ POINT | $=$ | $0.0000000 \mathrm{E}+00$ |
| :--- | :--- | :--- | :--- |
| 50 | $\%$ POINT | $=$ | 0.7914120 |
| 75 | $\%$ POINT | $=$ | 1.380357 |
| 90 | $\%$ POINT | $=$ | 2.111936 |
| 95 | $\%$ POINT | $=$ | 2.650676 |
| 99 | $\%$ POINT | $=$ | 3.883083 |
| 99.9 | $\%$ POINT | $=$ | 5.638597 |

```
3.659895 % Point: 0.9378599E-01
```

3. CONCLUSION (AT THE 5\% LEVEL):

THERE IS NO SHIFT IN VARIATION.
THUS: HOMOGENEOUS WITH RESPECT TO VARIATION.
In this case, the Levene test indicates that the standard deviations are significantly different in the 4 intervals since the test statistic of 13.2 is greater than the 95% critical value of 2.6 . Therefore we conclude that the scale is not constant.

Randomness A runs test is used to check for randomness

1.4.2.5.2. Test Underlying Assumptions

I
1
1
2
3
4
5
6
7
8
9
10

| STAT | EXP (STAT) | SD $($ STAT $)$ | Z |
| ---: | ---: | ---: | ---: |
| | | | |
| 127.0 | 166.5000 | 6.6546 | -5.94 |
| 64.0 | 62.2917 | 4.4454 | 0.38 |
| 30.0 | 16.5750 | 3.4338 | 3.91 |
| 13.0 | 3.4458 | 1.7786 | 5.37 |
| 9.0 | 0.5895 | 0.7609 | 11.05 |
| 8.0 | 0.0858 | 0.2924 | 27.06 |
| 3.0 | 0.0109 | 0.1042 | 28.67 |
| 2.0 | 0.0012 | 0.0349 | 57.21 |
| 1.0 | 0.0001 | 0.0111 | 90.14 |
| 1.0 | 0.0000 | 0.0034 | 298.08 |

RUNS DOWN

STATISTIC = NUMBER OF RUNS DOWN OF LENGTH EXACTLY I

| STAT | EXP (STAT) | SD (STAT) | Z |
| ---: | ---: | ---: | ---: |
| | | | |
| 69.0 | 104.2083 | 10.2792 | -3.43 |
| 32.0 | 45.7167 | 5.2996 | -2.59 |
| 11.0 | 13.1292 | 3.2297 | -0.66 |
| 6.0 | 2.8563 | 1.6351 | 1.92 |
| 5.0 | 0.5037 | 0.7045 | 6.38 |
| 2.0 | 0.0749 | 0.2733 | 7.04 |
| 2.0 | 0.0097 | 0.0982 | 20.26 |
| 0.0 | 0.0011 | 0.0331 | -0.03 |
| 0.0 | 0.0001 | 0.0106 | -0.01 |
| 0.0 | 0.0000 | 0.0032 | 0.00 |

STATISTIC = NUMBER OF RUNS DOWN OF LENGTH I OR MORE

STAT EXP (STAT) SD (STAT) Z

| 127.0 | 166.5000 | 6.6546 | -5.94 |
| ---: | ---: | ---: | ---: |
| 58.0 | 62.2917 | 4.4454 | -0.97 |
| 26.0 | 16.5750 | 3.4338 | 2.74 |
| 15.0 | 3.4458 | 1.7786 | 6.50 |
| 9.0 | 0.5895 | 0.7609 | 11.05 |
| 4.0 | 0.0858 | 0.2924 | 13.38 |
| 2.0 | 0.0109 | 0.1042 | 19.08 |
| 0.0 | 0.0012 | 0.0349 | -0.03 |
| 0.0 | 0.0001 | 0.0111 | -0.01 |
| 0.0 | 0.0000 | 0.0034 | 0.00 |

RUNS TOTAL $=$ RUNS UP + RUNS DOWN

STATISTIC = NUMBER OF RUNS TOTAL OF LENGTH EXACTLY I

STAT EXP (STAT) SD (STAT)

| 14.5370 | -5.26 |
| ---: | ---: |
| 7.4947 | -3.39 |
| 4.5674 | 0.38 |
| 2.3123 | 1.85 |
| 0.9963 | 5.01 |
| 0.3866 | 17.72 |
| 0.1389 | 21.46 |

1.4.2.5.2. Test Underlying Assumptions

| 8 | 1.0 | 0.0022 | 0.0468 | 21.30 |
| ---: | ---: | ---: | ---: | ---: |
| 9 | 0.0 | 0.0002 | 0.0150 | -0.01 |
| 10 | 1.0 | 0.0000 | 0.0045 | 220.19 |

| I | STAT | EXP (STAT) | SD (STAT) | Z |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 254.0 | 333.0000 | 9.4110 | -8.39 |
| 2 | 122.0 | 124.5833 | 6.2868 | -0.41 |
| 3 | 56.0 | 33.1500 | 4.8561 | 4.71 |
| 4 | 28.0 | 6.8917 | 2.5154 | 8.39 |
| 5 | 18.0 | 1.1790 | 1.0761 | 15.63 |
| 6 | 12.0 | 0.1716 | 0.4136 | 28.60 |
| 7 | 5.0 | 0.0217 | 0.1474 | 33.77 |
| 8 | 2.0 | 0.0024 | 0.0494 | 40.43 |
| 9 | 1.0 | 0.0002 | 0.0157 | 63.73 |
| 10 | 1.0 | 0.0000 | 0.0047 | 210.77 |

```
LENGTH OF THE LONGEST RUN UP = 10
LENGTH OF THE LONGEST RUN DOWN = 7
LENGTH OF THE LONGEST RUN UP OR DOWN = 10
NUMBER OF POSITIVE DIFFERENCES = 258
NUMBER OF NEGATIVE DIFFERENCES = 241
NUMBER OF ZERO DIFFERENCES = 0
```

Values in the column labeled "Z" greater than 1.96 or less than -1.96 are statistically significant at the 5% level. Numerous values in this column are much larger than $+/-1.96$, so we conclude that the data are not random.

Distributional Assumptions

Since the quantitative tests show that the assumptions of constant scale and non-randomness are not met, the distributional measures will not be meaningful. Therefore these quantitative tests are omitted.

NIST

SEMATECH

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.5. Beam Deflections

1.4.2.5.3. Develop a Better Model

Sinusoidal
Model

The lag plot and autocorrelation plot in the previous section strongly suggested a sinusoidal model might be appropriate. The basic sinusoidal model is:

$$
Y_{i}=C+\alpha \sin \left(2 \pi \omega T_{i}+\phi\right)+E_{i}
$$

where \boldsymbol{C} is constant defining a mean level, α is an amplitude for the sine function, ω is the frequency, $\boldsymbol{T}_{\boldsymbol{i}}$ is a time variable, and ϕ is the phase. This sinusoidal model can be fit using non-linear least squares.

To obtain a good fit, sinusoidal models require good starting values for \boldsymbol{C}, the amplitude, and the frequency.

Good Starting Value for \boldsymbol{C}

A good starting value for \boldsymbol{C} can be obtained by calculating the mean of the data. If the data show a trend, i.e., the assumption of constant location is violated, we can replace \boldsymbol{C} with a linear or quadratic least squares fit. That is, the model becomes

$$
Y_{i}=\left(B_{0}+B_{1} * T_{i}\right)+\alpha \sin \left(2 \pi \omega T_{i}+\phi\right)+E_{i}
$$

or

$$
Y_{i}=\left(B_{0}+B_{1} * T_{i}+B 2 * T_{i}^{2}\right)+\alpha \sin \left(2 \pi \omega T_{i}+\phi\right)+E_{i}
$$

Since our data did not have any meaningful change of location, we can fit the simpler model with \boldsymbol{C} equal to the mean. From the summary output in the previous page, the mean is -177.44 .

Good Starting The starting value for the frequency can be obtained from the spectral plot, Value for
Frequency which shows the dominant frequency is about 0.3 .

Complex Demodulation Phase Plot

The complex demodulation phase plot can be used to refine this initial estimate for the frequency.

For the complex demodulation plot, if the lines slope from left to right, the frequency should be increased. If the lines slope from right to left, it should be decreased. A relatively flat (i.e., horizontal) slope indicates a good frequency. We could generate the demodulation phase plot for 0.3 and then use trial and error to obtain a better estimate for the frequency. To simplify this, we generate 16 of these plots on a single page starting with a frequency of 0.28 , increasing in increments of 0.0025 , and stopping at 0.3175 .

Interpretation
The plots start with lines sloping from left to right but gradually change to a right to left slope. The relatively flat slope occurs for frequency 0.3025 (third row, second column). The complex demodulation phase plot restricts the range from $\pi / 2$ to $-\pi / 2$. This is why the plot appears to show some breaks.

Good Starting Values for Amplitude

The complex demodulation amplitude plot is used to find a good starting value for the amplitude. In addition, this plot indicates whether or not the amplitude is constant over the entire range of the data or if it varies. If the plot is essentially flat, i.e., zero slope, then it is reasonable to assume a constant amplitude in the non-linear model. However, if the slope varies over the range of the plot, we may need to adjust the model to be:

$$
Y_{i}=C+\left(B_{0}+B_{1} * T_{i}\right) \sin \left(2 \pi \omega T_{i}+\phi\right)+E_{i}
$$

That is, we replace α with a function of time. A linear fit is specified in the model above, but this can be replaced with a more elaborate function if needed.

Complex

 Demodulation Amplitude Plot

The complex demodulation amplitude plot for this data shows that:

1. The amplitude is fixed at approximately 390 .
2. There is a short start-up effect.
3. There is a change in amplitude at around $x=160$ that should be investigated for an outlier.
In terms of a non-linear model, the plot indicates that fitting a single constant for α should be adequate for this data set.

Fit Output Using starting estimates of 0.3025 for the frequency, 390 for the amplitude, and -177.44 for C, Dataplot generated the following output for the fit.

```
LEAST SQUARES NON-LINEAR FIT
    SAMPLE SIZE N = 200
    MODEL--Y =C + AMP*SIN(2*3.14159*FREQ*T + PHASE)
    NO REPLICATION CASE
\begin{tabular}{|c|c|c|c|c|c|}
\hline ITERATION NUMBER & CONVERGENCE MEASURE & RESIDUAL STANDARD DEVIATION & \[
\begin{array}{ll}
* & \text { PARAMETER } \\
\text { * } & \text { ESTIMATES } \\
\text { * } &
\end{array}
\] & & \\
\hline 1-- & \(0.10000 \mathrm{E}-01\) & \(0.52903 \mathrm{E}+03\) & *-0.17743E+03 0.39000E+03 & \(0.30250 \mathrm{E}+00\) & \(0.10000 \mathrm{E}+01\) \\
\hline 2-- & \(0.50000 \mathrm{E}-02\) & \(0.22218 \mathrm{E}+03\) & *-0.17876E+03-0.33137E+03 & \(0.30238 \mathrm{E}+00\) & \(0.71471 \mathrm{E}+00\) \\
\hline 3-- & \(0.25000 \mathrm{E}-02\) & \(0.15634 \mathrm{E}+03\) & *-0.17886E+03-0.24523E+03 & \(0.30233 \mathrm{E}+00\) & \(0.14022 \mathrm{E}+01\) \\
\hline 4-- & \(0.96108 \mathrm{E}-01\) & \(0.15585 \mathrm{E}+03\) & *-0.17879E+03-0.36177E+03 & \(0.30260 \mathrm{E}+00\) & \(0.14654 \mathrm{E}+01\) \\
\hline
\end{tabular}
\begin{tabular}{lrrrrr}
\multicolumn{2}{c}{ FINAL PARAMETER ESTIMATES } & (APPROX. ST. DEV.) & T VALUE \\
1 & C & -178.786 & \((11.02\) & \()\) & -16.22 \\
2 & AMP & -361.766 & \((26.19\) & \()\) & -13.81
\end{tabular}
```

1.4.2.5.3. Develop a Better Model

| 3 | FREQ | 0.302596 | $(0.1510 \mathrm{E}-03)$ | 2005. |
| :--- | :--- | ---: | ---: | ---: |
| 4 | 1.46536 | $(0.4909 \mathrm{E}-01)$ | 29.85 | |

RESIDUAL STANDARD DEVIATION = 155.8484
RESIDUAL DEGREES OF FREEDOM =
196

Model From the fit output, our proposed model is:

$$
Y_{i}=-178.79-361.77 *\left(2 \pi * 0.302596 T_{i}+1.465\right)+E_{i}
$$

We will evaluate the adequacy of this model in the next section.

NIST
 SEMATECH

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.5. Beam Deflections

1.4.2.5.4. Validate New Model

4-Plot of Residuals

Interpretation

The first step in evaluating the fit is to generate a 4 -plot of the residuals.

The assumptions are addressed by the graphics shown above:

1. The run sequence plot (upper left) indicates that the data do not have any significant shifts in location. There does seem to be some shifts in scale. A start-up effect was detected previously by the complex demodulation amplitude plot. There does appear to be a few outliers.
2. The lag plot (upper right) shows that the data are random. The outliers also appear in the lag plot.
3. The histogram (lower left) and the normal probability plot (lower right) do not show any serious non-normality in the residuals. However, the bend in the left portion of the normal probability plot shows some cause for concern.
The 4-plot indicates that this fit is reasonably good. However, we will attempt to improve the fit by removing the outliers.

Fit Output with Outliers Removed

Dataplot generated the following fit output after removing 3 outliers.
SAMPLE SIZE N = 197
MODEL--Y $=\mathrm{C}+$ AMP*SIN (2*3.14159*FREQ*T + PHASE)
NO REPLICATION CASE

| ITERATION | CONVERGENCE | RESIDUAL * | PARAMETER |
| :---: | :---: | :--- | :--- | :--- |
| NUMBER | MEASURE | STANDARD * | ESTIMATES |

$1--0.10000 \mathrm{E}-01 \quad 0.14834 \mathrm{E}+03 *-0.17879 \mathrm{E}+03-0.36177 \mathrm{E}+03 \quad 0.30260 \mathrm{E}+00 \quad 0.14654 \mathrm{E}+01$
$2--0.37409 \mathrm{E}+020.14834 \mathrm{E}+03 *-0.17879 \mathrm{E}+03-0.36176 \mathrm{E}+03 \quad 0.30260 \mathrm{E}+00 \quad 0.14653 \mathrm{E}+01$
FINAL PARAMETER ESTIMATES (APPROX. ST. DEV.) T VALUE

| 1 | C | -178.788 | $(10.57$ | -16.91 |
| :--- | :--- | ---: | :--- | :--- |
| 2 | AMP | -361.759 | (25.45) | -14.22 |
| 3 | FREQ | 0.302597 | $(0.1457 \mathrm{E}-03)$ | 2077. |
| 4 | 1.46533 | $(0.4715 \mathrm{E}-01)$ | 31.08 | |
| | | | | |
| RESIDUSE | | 148.3398 | | |
| RESIDUAL | STANDARD DEVIATION $=$ | 193 | | |

New The original fit, with a residual standard deviation of 155.84, was:
Fit to Edited

$$
Y_{i}=-178.79-361.77 *\left(2 \pi * 0.302596 T_{i}+1.46 \overline{5}\right)+E_{i}
$$

Data The new fit, with a residual standard deviation of 148.34 , is:

$$
Y_{i}=-178.79-361.76 *\left(2 \pi * 0.302597 T_{i}+1.465\right)+E_{i}
$$

There is minimal change in the parameter estimates and about a 5% reduction in the residual standard deviation. In this case, removing the residuals has a modest benefit in terms of reducing the variability of the model.

4-Plot

for
New
Fit

This plot shows that the underlying assumptions are satisfied and therefore the new fit is a good descriptor of the data.

In this case, it is a judgment call whether to use the fit with or without the outliers removed.
$\frac{\text { NIST }}{\text { SEMATECH }} \sqrt{\text { HOME }} \sqrt{\text { TOOLS \& AIDS }} \quad \sqrt{B A C K} \overline{\text { NEXT }}$

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.5. Beam Deflections

1.4.2.5.5. Work This Example Yourself

View This page allows you to repeat the analysis outlined in the case study
Dataplot
Macro for
this Case
Study description on the previous page using Dataplot. It is required that you have already downloaded and installed Dataplot and configured your browser. to run Dataplot. Output from each analysis step below will be displayed in one or more of the Dataplot windows. The four main windows are the Output window, the Graphics window, the Command History window, and the data sheet window. Across the top of the main windows there are menus for executing Dataplot commands. Across the bottom is a command entry window where commands can be typed in.

| Data Analysis Steps | Results and Conclusions |
| :---: | :---: |
| | |

Click on the links below to start Dataplot and run this case study yourself. Each step may use results from previous steps, so please be patient. Wait until the software verifies that the current step is complete before clicking on the next step.

1. Invoke Dataplot and read data.
2. Read in the data.
3. Validate assumptions.
4. 4-plot of Y.
5. Generate a run sequence plot.
6. Generate a lag plot.
7. Generate an autocorrelation plot.

The links in this column will connect you with more detailed information about each analysis step from the case study description.

1. You have read 1 column of numbers into Dataplot, variable Y.
2. Based on the 4-plot, there are no obvious shifts in location and scale, but the data are not random.
3. Based on the run sequence plot, there are no obvious shifts in location and scale.
4. Based on the lag plot, the data are not random.
5. The autocorrelation plot shows significant autocorrelation at lag 1.
6. The spectral plot shows a single dominant

1.4.2.5.5. Work This Example Yourself

5. Generate a spectral plot.
low frequency peak.
6. Generate a table of summary statistics.
7. Generate a linear fit to detect drift in location.
8. Detect drift in variation by dividing the data into quarters and computing Levene's test statistic for equal standard deviations.
9. Check for randomness by generating a runs test.
\qquad
10. Fit
11. Fit the non-linear model.

12. Generate a complex demodulation phase plot.
13. Generate a complex demodulation amplitude plot.
14. The summary statistics table displays $25+$ statistics.
15. The linear fit indicates no drift in location since the slope parameter is not statistically significant.
16. Levene's test indicates no significant drift in variation.
17. The runs test indicates significant non-randomness.
18. Complex demodulation phase plot indicates a starting frequency of 0.3025 .
19. Complex demodulation amplitude plot indicates an amplitude of 390 (but there is a short start-up effect).
20. Non-linear fit generates final parameter estimates. The residual standard deviation from the fit is 155.85 (compared to the standard deviation of 277.73 from the original data).
21. Validate fit.
22. Generate a 4-plot of the residuals from the fit.
23. The 4-plot indicates that the assumptions of constant location and scale are valid. The lag plot indicates that the data are random. The histogram and normal probability plot indicate that the residuals that the normality assumption for the residuals are not seriously violated, although there is a bend on the probablity plot that warrants attention.
24. The fit after removing 3 outliers shows some marginal improvement in the model (a 5\% reduction in the residual standard deviation).
25. The 4 -plot of the model fit after 3 outliers removed shows marginal improvement in satisfying model assumptions.
$\frac{\text { NIST }}{\text { SEMATECH }} \sqrt{\text { TOME }} \sqrt{\text { SEARCH }}$ BAIDS $\quad \sqrt{B A C K} \frac{\text { NEXT }}{}$
26. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies

1.4.2.6. Filter Transmittance

Filter

Transmittance This example illustrates the univariate analysis of filter transmittance data.

1. Background and Data
2. Graphical Output and Interpretation
3. Quantitative Output and Interpretation
4. Work This Example Yourself

HOME TOOLS \& AIDS SEARCH

BACK NEXT

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.6. Filter Transmittance

1.4.2.6.1. Background and Data

Generation This data set was collected by NIST chemist Radu Mavrodineaunu in the 1970's from an automatic data acquisition system for a filter transmittance experiment. The response variable is transmittance.

The motivation for studying this data set is to show how the underlying autocorrelation structure in a relatively small data set helped the scientist detect problems with his automatic data acquisition system.

This file can be read by Dataplot with the following commands:
SKIP 25
READ MAVRO.DAT Y

Resulting The following are the data used for this case study. Data
2.00180
2.00170
2.00180
2.00190
2.00180
2.00170
2.00150
2.00140
2.00150
2.00150
2.00170
2.00180
2.00180
2.00190
2.00190
2.00210
2.00200
2.00160
2.00140
2.00130
2.00130
2.00150
2.00150
2.00160
2.00150
2.00140
2.00130
2.00140
2.00150
2.00140
2.00150
2.00160
2.00150
2.00160
2.00190
2.00200
2.00200
2.00210
2.00220
2.00230
2.00240
2.00250
2.00270
2.00260
2.00260
2.00260
2.00270
2.00260
2.00250
2.00240

HOME
TOOLS \& AIDS SEARCH
BACK NEXT

ENGINEERING STATISTICS HANDBOOK

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.6. Filter Transmittance

1.4.2.6.2. Graphical Output and Interpretation

Goal The goal of this analysis is threefold:

1. Determine if the univariate model:

$$
Y_{i}=C+E_{i}
$$

is appropriate and valid.
2. Determine if the typical underlying assumptions for an "in control" measurement process are valid. These assumptions are:

1. random drawings;
2. from a fixed distribution;
3. with the distribution having a fixed location; and
4. the distribution having a fixed scale.
5. Determine if the confidence interval

$$
\bar{Y} \pm 2 s / \sqrt{N}
$$

is appropriate and valid where s is the standard deviation of the original data.

4-Plot of Data

Interpretation

The assumptions are addressed by the graphics shown above:

1. The run sequence plot (upper left) indicates a significant shift in location around $x=35$.
2. The linear appearance in the lag plot (upper right) indicates a non-random pattern in the data.
3. Since the lag plot indicates significant non-randomness, we do not make any interpretation of either the histogram (lower left) or the normal probability plot (lower right).
The serious violation of the non-randomness assumption means that the univariate model

$$
Y_{i}=C+E_{i}
$$

is not valid. Given the linear appearance of the lag plot, the first step might be to consider a model of the type

$$
Y_{i}=A_{0}+A_{1} * Y_{i-1}+E_{i}
$$

However, in this case discussions with the scientist revealed that non-randomness was entirely unexpected. An examination of the experimental process revealed that the sampling rate for the automatic data acquisition system was too fast. That is, the equipment did not have sufficient time to reset before the next sample started, resulting in the current measurement being contaminated by the previous measurement. The solution was to rerun the experiment allowing more time between samples.

Simple graphical techniques can be quite effective in revealing unexpected results in the data. When this occurs, it is important to investigate whether the unexpected result is due to problems in the experiment and data collection or is indicative of unexpected underlying structure in the data. This determination cannot be made on the basis of statistics alone. The role of the graphical and statistical analysis is to detect problems or unexpected results in the data. Resolving the issues requires the knowledge of the scientist or engineer.

Individual Plots

Sequence Plot

Although it is generally unnecessary, the plots can be generated individually to give more detail. Since the lag plot indicates significant non-randomness, we omit the distributional plots.

Lag Plot

1.4.2.6.3. Quantitative Output and Interpretation

Summary
Statistics

As a first step in the analysis, a table of summary statistics is computed from the data. The following table, generated by Dataplot, shows a typical set of statistics.

SUMMARY
NUMBER OF OBSERVATIONS =

| LOCATION MEASURES | | | | DISPERSIO | | | N MEASURES | | | * |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | |
| * | MIDRANGE | = | $0.2002000 \mathrm{E}+01$ | * | RANGE | = | | 0.13999 | $994 \mathrm{E}-02$ | * |
| * | MEAN | = | $0.2001856 \mathrm{E}+01$ | * | STAND. DEV. | = | | 0.42913 | 329E-03 | * |
| * | MIDMEAN | = | $0.2001638 \mathrm{E}+01$ | * | AV. AB. DEV. | = | | 0.34801 | $196 \mathrm{E}-03$ | * |
| * | MEDIAN | = | $0.2001800 \mathrm{E}+01$ | * | MINIMUM | = | | 0.20013 | $300 \mathrm{E}+01$ | |
| * | | $=$ | | * | LOWER QUART. | = | | 0.20015 | $500 \mathrm{E}+01$ | * |
| * | | = | | * | LOWER HINGE | $=$ | | 0.20015 | $500 \mathrm{E}+01$ | |
| * | | = | | * | UPPER HINGE | $=$ | | 0.20021 | $100 \mathrm{E}+01$ | * |
| * | | = | | * | UPPER QUART. | = | | 0.20021 | $175 \mathrm{E}+01$ | * |
| * | | $=$ | | * | MAXIMUM | = | | 0.20027 | $700 \mathrm{E}+01$ | * |
| | | | | | | | | | | |
| \star | RANDOMNESS MEASURES | | | * DISTRIBUTI | | ONAL MEASURES | | | | * |
| | ********* | | ************** | | ************* | *** | | ******* | ** | |
| * | AUTOCO CO | = | $0.9379919 \mathrm{E}+00$ | * | ST. 3RD MOM. | | | 0.61916 | $616 \mathrm{E}+00$ | * |
| * | | = | $0.0000000 \mathrm{E}+00$ | * | ST. 4TH MOM. | | | 0.20987 | $746 \mathrm{E}+01$ | * |
| * | | = | $0.0000000 \mathrm{E}+00$ | * | ST. WILK-SHA | | | 0.49955 | $516 \mathrm{E}+01$ | |
| * | | = | | * | UNIFORM PPCC | | | 0.96666 | $610 \mathrm{E}+00$ | * |
| * | | = | | * | NORMAL PPCC | | | 0.95580 | 001E+00 | * |
| * | | = | | * | TUK -. 5 PPCC | $=$ | | 0.84625 | $552 \mathrm{E}+00$ | * |
| * | | $=$ | | * | CAUCHY PPCC | | | 0.68220 | 084E+00 | |

Location One way to quantify a change in location over time is to fit a straight line to the data set using the index variable $\mathrm{X}=1,2, \ldots, \mathrm{~N}$, with N denoting the number of observations. If there is no significant drift in the location, the slope parameter should be zero. For this data set, Dataplot generates the following output:

```
LEAST SQUARES MULTILINEAR FIT
    SAMPLE SIZE N = 50
    NUMBER OF VARIABLES = 1
    NO REPLICATION CASE
```

| PARAMETER ESTIMATES | (APPROX. ST. DEV.) | T VALUE | |
| :---: | :---: | :---: | :---: |
| | 2.00138 | $(0.9695 \mathrm{E}-04)$ | $0.2064 \mathrm{E}+05$ |
| X | $0.184685 \mathrm{E}-04$ | $(0.3309 \mathrm{E}-05)$ | 5.582 |
| | | | |
| | | | |
| | STANDARD DEVIATION $=$ | 48 | |

The slope parameter, A1, has a t value of 5.6 , which is statistically significant. The value of the slope parameter is 0.0000185 . Although this number is nearly zero, we need to take into account that the original scale of the data is from about 2.0012 to 2.0028 . In this case, we conclude that there is a drift in location, although by a relatively minor amount.

Variation One simple way to detect a change in variation is with a Bartlett test after dividing the data set into several equal sized intervals. However, the Bartlett test is not robust for non-normality. Since the normality assumption is questionable for these data, we use the alternative Levene test. In partiuclar, we use the Levene test based on the median rather the mean. The choice of the number of intervals is somewhat arbitrary, although values of 4 or 8 are reasonable. Dataplot generated the following output for the Levene test.

```
LEVENE F-TEST FOR SHIFT IN VARIATION
(ASSUMPTION: NORMALITY)
```

```
1. STATISTICS
    NUMBER OF OBSERVATIONS = 50
    NUMBER OF GROUPS = 4
    LEVENE F TEST STATISTIC = 0.9714893
    FOR LEVENE TEST STATISTIC
    0 %POINT = 0.0000000E+00
    50 % POINT = 0.8004835
    75 % POINT = 1.416631
    90 % POINT = 2.206890
    95 % POINT = 2.806845
    99 % POINT = 4.238307
    99.9 % POINT = 6.424733
        58.56597 % Point: 0.9714893
3. CONCLUSION (AT THE 5% LEVEL):
    THERE IS NO SHIFT IN VARIATION.
    THUS: HOMOGENEOUS WITH RESPECT TO VARIATION.
```

In this case, since the Levene test statistic value of 0.971 is less than the critical value of 2.806 at the 5% level, we conclude that there is no evidence of a change in variation.

Randomness

There are many ways in which data can be non-random. However, most common forms of non-randomness can be detected with a few simple tests. The lag plot in the 4-plot in the previous seciton is a simple graphical technique.

One check is an autocorrelation plot that shows the autocorrelations for various lags. Confidence bands can be plotted at the 95% and 99% confidence levels. Points outside this band indicate statistically significant values (lag 0 is always 1). Dataplot generated the following autocorrelation plot.

The lag 1 autocorrelation, which is generally the one of most interest, is 0.93 . The critical values at the 5% level are -0.277 and 0.277 . This indicates that the lag 1 autocorrelation is statistically significant, so there is strong evidence of non-randomness.

A common test for randomness is the runs test.

1.4.2.6.3. Quantitative Output and Interpretation

| I | STAT | EXP (STAT) | SD (STAT) | Z |
| ---: | ---: | ---: | ---: | ---: |
| | | | | |
| 1 | 7.0 | 16.5000 | 2.0696 | -4.59 |
| 2 | 6.0 | 6.0417 | 1.3962 | -0.03 |
| 3 | 3.0 | 1.5750 | 1.0622 | 1.34 |
| 4 | 2.0 | 0.3208 | 0.5433 | 3.09 |
| 5 | 2.0 | 0.0538 | 0.2299 | 8.47 |
| 6 | 2.0 | 0.0077 | 0.0874 | 22.79 |
| 7 | 2.0 | 0.0010 | 0.0308 | 64.85 |
| 8 | 2.0 | 0.0001 | 0.0102 | 195.70 |
| 9 | 1.0 | 0.0000 | 0.0032 | 311.64 |
| 10 | 1.0 | 0.0000 | 0.0010 | 1042.19 |

RUNS DOWN
STATISTIC $=$ NUMBER OF RUNS DOWN OF LENGTH EXACTLY I
STAT EXP (STAT) SD (STAT) Z

| 3.0 | 10.4583 | 3.2170 | -2.32 |
| ---: | ---: | ---: | ---: |
| 0.0 | 4.4667 | 1.6539 | -2.70 |
| 3.0 | 1.2542 | 0.9997 | 1.75 |
| 1.0 | 0.2671 | 0.5003 | 1.46 |
| 1.0 | 0.0461 | 0.2132 | 4.47 |
| 0.0 | 0.0067 | 0.0818 | -0.08 |
| 0.0 | 0.0008 | 0.0291 | -0.03 |
| 0.0 | 0.0001 | 0.0097 | -0.01 |
| 0.0 | 0.0000 | 0.0031 | 0.00 |
| 0.0 | 0.0000 | 0.0009 | 0.00 |

STATISTIC $=$ NUMBER OF RUNS DOWN OF LENGTH I OR MORE

| STAT | EXP (STAT) | SD (STAT) | Z |
| :--- | ---: | ---: | ---: |
| 8.0 | 16.5000 | 2.0696 | -4.11 |
| 5.0 | 6.0417 | 1.3962 | -0.75 |
| 5.0 | 1.5750 | 1.0622 | 3.22 |
| 2.0 | 0.3208 | 0.5433 | 3.09 |
| 1.0 | 0.0538 | 0.2299 | 4.12 |
| 0.0 | 0.0077 | 0.0874 | -0.09 |
| 0.0 | 0.0010 | 0.0308 | -0.03 |
| 0.0 | 0.0001 | 0.0102 | -0.01 |
| 0.0 | 0.0000 | 0.0032 | 0.00 |
| 0.0 | 0.0000 | 0.0010 | 0.00 |

RUNS TOTAL $=$ RUNS UP + RUNS DOWN

STATISTIC = NUMBER OF RUNS TOTAL OF LENGTH EXACTLY I

| I | STAT | EXP $($ STAT $)$ | SD $($ STAT $)$ | Z |
| ---: | ---: | ---: | ---: | ---: |
| 1 | | | | |
| 2 | 4.0 | 20.9167 | 4.5496 | -3.72 |
| 3 | 4.0 | 8.9333 | 2.3389 | -2.54 |
| 4 | 1.0 | 2.5083 | 1.4138 | 1.06 |
| 5 | 1.0 | 0.5341 | 0.7076 | 0.66 |
| | 0.0922 | 0.3015 | 3.01 | |

1.4.2.6.3. Quantitative Output and Interpretation

| 6 | 0.0 | 0.0134 | 0.1157 | -0.12 |
| ---: | ---: | ---: | ---: | ---: |
| 7 | 0.0 | 0.0017 | 0.0411 | -0.04 |
| 8 | 1.0 | 0.0002 | 0.0137 | 72.86 |
| 9 | 0.0 | 0.0000 | 0.0043 | 0.00 |
| 10 | 1.0 | 0.0000 | 0.0013 | 769.07 |

```
STATISTIC = NUMBER OF RUNS TOTAL
                OF LENGTH I OR MORE
```

| I | STAT | EXP (STAT) | SD (STAT) | Z |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 15.0 | 33.0000 | 2.9269 | -6.15 |
| 2 | 11.0 | 12.0833 | 1.9745 | -0.55 |
| 3 | 8.0 | 3.1500 | 1.5022 | 3.23 |
| 4 | 4.0 | 0.6417 | 0.7684 | 4.37 |
| 5 | 3.0 | 0.1075 | 0.3251 | 8.90 |
| 6 | 2.0 | 0.0153 | 0.1236 | 16.05 |
| 7 | 2.0 | 0.0019 | 0.0436 | 45.83 |
| 8 | 2.0 | 0.0002 | 0.0145 | 138.37 |
| 9 | 1.0 | 0.0000 | 0.0045 | 220.36 |
| 10 | 1.0 | 0.0000 | 0.0014 | 736.94 |

```
LENGTH OF THE LONGEST RUN UP = 10
LENGTH OF THE LONGEST RUN DOWN = 5
LENGTH OF THE LONGEST RUN UP OR DOWN = 10
NUMBER OF POSITIVE DIFFERENCES = 23
NUMBER OF NEGATIVE DIFFERENCES = 18
NUMBER OF ZERO DIFFERENCES = 8
```

Values in the column labeled " Z " greater than 1.96 or less than -1.96 are statistically significant at the 5% level. Due to the number of values that are much larger than the 1.96 cut-off, we conclude that the data are not random.

Distributional Analysis

Since we rejected the randomness assumption, the distributional tests are not meaningful. Therefore, these quantitative tests are omitted. We also omit Grubbs' outlier test since it also assumes the data are approximately normally distributed.

Univariate It is sometimes useful and convenient to summarize the above results in a report.
Report

```
Analysis for filter transmittance data
1: Sample Size = 50
2: Location
    Mean = 2.001857
    Standard Deviation of Mean = 0.00006
    95% Confidence Interval for Mean = (2.001735,2.001979)
    Drift with respect to location? = NO
3: Variation
    Standard Deviation = 0.00043
    95% Confidence Interval for SD = (0.000359,0.000535)
    Change in variation?
    (based on Levene's test on quarters
    of the data) = NO
```

1.4.2.6.3. Quantitative Output and Interpretation

```
4: Distribution
    Distributional tests omitted due to
    non-randomness of the data
```

5: Randomness
Lag One Autocorrelation $=0.937998$
Data are Random?
(as measured by autocorrelation) $=$ NO
6: Statistical Control
(i.e., no drift in location or scale,
data are random, distribution is
fixed, here we are testing only for
normal)
Data Set is in Statistical Control? = NO
7: Outliers?
(Grubbs' test omitted) $=\mathrm{NO}$

NIST

SEMATECH

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.6. Filter Transmittance

1.4.2.6.4. Work This Example Yourself

View This page allows you to repeat the analysis outlined in the case study
Dataplot
Macro for
this Case
Study description on the previous page using Dataplot. It is required that you have already downloaded and installed Dataplot and configured your browser. to run Dataplot. Output from each analysis step below will be displayed in one or more of the Dataplot windows. The four main windows are the Output window, the Graphics window, the Command History window, and the data sheet window. Across the top of the main windows there are menus for executing Dataplot commands. Across the bottom is a command entry window where commands can be typed in.

| Data Analysis Steps | Results and Conclusions |
| :---: | :---: |
| | |

Click on the links below to start Dataplot and run this case study yourself. Each step may use results from previous steps, so please be patient. Wait until the software verifies that the current step is complete before clicking on the next step.

1. Invoke Dataplot and read data.
2. Read in the data.
3. 4-plot of the data.
4. 4-plot of Y.
5. Generate the individual plots.
6. Generate a run sequence plot.
7. Generate a lag plot.

The links in this column will connect you with more detailed information about each analysis step from the case study description.

1. You have read 1 column of numbers into Dataplot, variable Y.
2. Based on the 4-plot, there is a shift in location and the data are not random.
3. The run sequence plot indicates that there is a shift in location.
4. The strong linear pattern of the lag plot indicates significant non-randomness.
5. Generate summary statistics, quantitative analysis, and print a univariate report.
6. Generate a table of summary statistics.
7. Compute a linear fit based on quarters of the data to detect drift in location.
8. Compute Levene's test based on quarters of the data to detect changes in variation.
9. Check for randomness by generating an autocorrelation plot and a runs test.
10. Print a univariate report (this assumes steps 2 thru 4 have already been run).
11. The summary statistics table displays 25+ statistics.
12. The linear fit indicates a slight drift in location since the slope parameter is statistically significant, but small.
13. Levene's test indicates no significant drift in variation.
14. The lag 1 autocorrelation is 0.94 . This is outside the 95\% confidence interval bands which indicates significant non-randomness.
15. The results are summarized in a convenient report.

NIST

SEMATECH

HOME
TOOLS \& AIDS
$\longdiv { \text { SEARCH } }$
BACK NEXT

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies

1.4.2.7.Standard Resistor

Standard This example illustrates the univariate analysis of standard resistor data. Resistor

1. Background and Data
2. Graphical Output and Interpretation
3. Quantitative Output and Interpretation
4. Work This Example Yourself
5. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.7. Standard Resistor

1.4.2.7.1. Background and Data

Generation This data set was collected by Ron Dziuba of NIST over a 5-year period from 1980 to 1985. The response variable is resistor values.

The motivation for studying this data set is to illustrate data that violate the assumptions of constant location and scale.

This file can be read by Dataplot with the following commands:
SKIP 25
COLUMN LIMITS 1080
READ DZIUBA1.DAT Y
COLUMN LIMITS
Resulting The following are the data used for this case study.
Data
27.8680
27.8929
27.8773
27.8530
27.8876
27.8725
27.8743
27.8879
27.8728
27.8746
27.8863
27.8716
27.8818
27.8872
27.8885
27.8945
27.8797
27.8627
27.8870
27.8895
27.9138
27.8931
27.8852
27.8788
27.8827
27.8939
27.8558
27.8814
27.8479
27.8479
27.8848
27.8809
27.8479
27.8611
27.8630
27.8679
27.8637
27.8985
27.8900
27.8577
27.8848
27.8869
27.8976
27.8610
27.8567
27.8417
27.8280
27.8555
27.8639
27.8702
27.8582
27.8605
27.8900
27.8758
27.8774
27.9008
27.8988
27.8897
27.8990
27.8958
27.8830
27.8967
27.9105
27.9028
27.8977
27.8953
27.8970
27.9190
27.9180
27.8997
27.9204
27.9234
27.9072
27.9152
27.9091
27.8882
27.9035
27.9267
27.9138
27.8955
27.9203
27.9239
27.9199
27.9646
27.9411
27.9345
27.8712
27.9145
27.9259
27.9317
27.9239
27.9247
27.9150
27.9444
27.9457
27.9166
27.9066
27.9088
27.9255
27.9312
27.9439
27.9210
27.9102
27.9083
27.9121
27.9113
27.9091
27.9235
27.9291
27.9253
27.9092
27.9117
27.9194
27.9039
27.9515
27.9143
27.9124
27.9128
27.9260
27.9339
27.9500
27.9530
27.9430
27.9400
27.8850
27.9350
27.9120
27.9260
27.9660
27.9280
27.9450
27.9390
27.9429
27.9207
27.9205
27.9204
27.9198
27.9246
27.9366
27.9234
27.9125
27.9032
27.9285
27.9561
27.9616
27.9530
27.9280
27.9060
27.9380
27.9310
27.9347
27.9339
27.9410
27.9397
27.9472
27.9235
27.9315
27.9368
27.9403
27.9529
27.9263
27.9347
27.9371
27.9129
27.9549
27.9422
27.9423
27.9750
27.9339
27.9629
27.9587
27.9503
27.9573
27.9518
27.9527
27.9589
27.9300
27.9629
27.9630
27.9660
27.9730
27.9660
27.9630
27.9570
27.9650
27.9520
27.9820
27.9560
27.9670
27.9520
27.9470
27.9720
27.9610
27.9437
27.9660
27.9580
27.9660
27.9700
27.9600
27.9660
27.9770
27.9110
27.9690
27.9698
27.9616
27.9371
27.9700
27.9265
27.9964
27.9842
27.9667
27.9610
27.9943
27.9616
27.9397
27.9799
28.0086
27.9709
27.9741
27.9675
27.9826
27.9676
27.9703
27.9789
27.9786
27.9722
27.9831
28.0043
27.9548
27.9875
27.9495
27.9549
27.9469
27.9744
27.9744
27.9449
27.9837
27.9585
28.0096
27.9762
27.9641
27.9854
27.9877
27.9839
27.9817
27.9845
27.9877
27.9880
27.9822
27.9836
28.0030
27.9678
28.0146
27.9945
27.9805
27.9785
27.9791
27.9817
27.9805
27.9782
27.9753
27.9792
27.9704
27.9794
27.9814
27.9794
27.9795
27.9881
27.9772
27.9796
27.9736
27.9772
27.9960
27.9795
27.9779
27.9829
27.9829
27.9815
27.9811
27.9773
27.9778
27.9724
27.9756
27.9699
27.9724
27.9666
27.9666
27.9739
27.9684
27.9861
27.9901
27.9879
27.9865
27.9876
27.9814
27.9842
27.9868
27.9834
27.9892
27.9864
27.9843
27.9838
27.9847
27.9860
27.9872
27.9869
27.9602
27.9852
27.9860
27.9836
27.9813
27.9623
27.9843
27.9802
27.9863
27.9813
27.9881
27.9850
27.9850
27.9830
27.9866
27.9888
27.9841
27.9863
27.9903
27.9961
27.9905
27.9945
27.9878
27.9929
27.9914
27.9914
27.9997
28.0006
27.9999
28.0004
28.0020
28.0029
28.0008
28.0040
28.0078
28.0065
27.9959
28.0073
28.0017
28.0042
28.0036
28.0055
28.0007
28.0066
28.0011
27.9960
28.0083
27.9978
28.0108
28.0088
28.0088
28.0139
28.0092
28.0092
28.0049
28.0111
28.0120
28.0093
28.0116
28.0102
28.0139
28.0113
28.0158
28.0156
28.0137
28.0236
28.0171
28.0224
28.0184
28.0199
28.0190
28.0204
28.0170
28.0183
28.0201
28.0182
28.0183
28.0175
28.0127
28.0211
28.0057

$$
\begin{aligned}
& 28.0180 \\
& 28.0183 \\
& 28.0149 \\
& 28.0185 \\
& 28.0182 \\
& 28.0192 \\
& 28.0213 \\
& 28.0216 \\
& 28.0169 \\
& 28.0162 \\
& 28.0167 \\
& 28.0167 \\
& 28.0169 \\
& 28.0169 \\
& 28.0161 \\
& 28.0152 \\
& 28.0179 \\
& 28.0215 \\
& 28.0194 \\
& 28.0115 \\
& 28.0174 \\
& 28.0178 \\
& 28.0202 \\
& 28.0240 \\
& 28.0198 \\
& 28.0194 \\
& 28.0171 \\
& 28.0134 \\
& 28.0121 \\
& 28.0121 \\
& 28.0141 \\
& 28.0101 \\
& 28.0114 \\
& 28.0122 \\
& 28.0124 \\
& 28.0171 \\
& 28.0116 \\
& 28.0165 \\
& 28.0166 \\
& 28.0159 \\
& 28.0181
\end{aligned}
$$

28.0169
28.0105
28.0136
28.0138
28.0114
28.0122
28.0122
28.0116
28.0025
28.0097
28.0066
28.0072
28.0066
28.0068
28.0067
28.0130
28.0091
28.0088
28.0091
28.0091
28.0115
28.0087
28.0128
28.0139
28.0095
28.0115
28.0101
28.0121
28.0114
28.0121
28.0122
28.0121
28.0168
28.0212
28.0219
28.0221
28.0204
28.0169
28.0141
28.0142
28.0147
28.0159
28.0165
28.0144
28.0182
28.0155

$$
\begin{aligned}
& 28.0155 \\
& 28.0192 \\
& 28.0204 \\
& 28.0185 \\
& 28.0248 \\
& 28.0185 \\
& 28.0226 \\
& 28.0271 \\
& 28.0290 \\
& 28.0240 \\
& 28.0302 \\
& 28.0243 \\
& 28.0288 \\
& 28.0287 \\
& 28.0301 \\
& 28.0273 \\
& 28.0313 \\
& 28.0293 \\
& 28.0300 \\
& 28.0344 \\
& 28.0308 \\
& 28.0291 \\
& 28.0287 \\
& 28.0358 \\
& 28.0309 \\
& 28.0286 \\
& 28.0308 \\
& 28.0291 \\
& 28.0380 \\
& 28.0411 \\
& 28.0420 \\
& 28.0359 \\
& 28.0368 \\
& 28.0327 \\
& 28.0361 \\
& 28.0334 \\
& 28.0300 \\
& 28.0347 \\
& 28.0359 \\
& 28.0344 \\
& 28.0370 \\
& 28.0355 \\
& 28.0371 \\
& 28.0318 \\
& 28.0390 \\
& 28.0390
\end{aligned}
$$

$$
\begin{aligned}
& 28.0390 \\
& 28.0376 \\
& 28.0376 \\
& 28.0377 \\
& 28.0345 \\
& 28.0333 \\
& 28.0429 \\
& 28.0379 \\
& 28.0401 \\
& 28.0401 \\
& 28.0423 \\
& 28.0393 \\
& 28.0382 \\
& 28.0424 \\
& 28.0386 \\
& 28.0386 \\
& 28.0373 \\
& 28.0397 \\
& 28.0412 \\
& 28.0565 \\
& 28.0419 \\
& 28.0456 \\
& 28.0426 \\
& 28.0423 \\
& 28.0391 \\
& 28.0403 \\
& 28.0388 \\
& 28.0408 \\
& 28.0457 \\
& 28.0455 \\
& 28.0460 \\
& 28.0456 \\
& 28.0464 \\
& 28.0442 \\
& 28.0416 \\
& 28.0451 \\
& 28.0432 \\
& 28.0434 \\
& 28.0448 \\
& 28.0448 \\
& 28.0373 \\
& 28.0429 \\
& 28.0392 \\
& 28.0469
\end{aligned}
$$

$$
\begin{aligned}
& 28.0474 \\
& 28.0446 \\
& 28.0348 \\
& 28.0368 \\
& 28.0418 \\
& 28.0445 \\
& 28.0533 \\
& 28.0439 \\
& 28.0474 \\
& 28.0435 \\
& 28.0419 \\
& 28.0538 \\
& 28.0538 \\
& 28.0463 \\
& 28.0491 \\
& 28.0441 \\
& 28.0411 \\
& 28.0507 \\
& 28.0459 \\
& 28.0519 \\
& 28.0554 \\
& 28.0512 \\
& 28.0507 \\
& 28.0582 \\
& 28.0471 \\
& 28.0539 \\
& 28.0530 \\
& 28.0502 \\
& 28.0422 \\
& 28.0431 \\
& 28.0395 \\
& 28.0177 \\
& 28.0425 \\
& 28.0484 \\
& 28.0693 \\
& 28.0490 \\
& 28.0453 \\
& 28.0494 \\
& 28.0522 \\
& 28.0393 \\
& 28.0443 \\
& 28.0465 \\
& 28.0450 \\
& 28.0539
\end{aligned}
$$

$$
\begin{aligned}
& 28.0486 \\
& 28.0427 \\
& 28.0548 \\
& 28.0616 \\
& 28.0298 \\
& 28.0726 \\
& 28.0695 \\
& 28.0629 \\
& 28.0503 \\
& 28.0493 \\
& 28.0537 \\
& 28.0613 \\
& 28.0643 \\
& 28.0678 \\
& 28.0564 \\
& 28.0703 \\
& 28.0647 \\
& 28.0579 \\
& 28.0630 \\
& 28.0716 \\
& 28.0586 \\
& 28.0607 \\
& 28.0601 \\
& 28.0611 \\
& 28.0606 \\
& 28.0611 \\
& 28.0066 \\
& 28.0412 \\
& 28.0558 \\
& 28.0590 \\
& 28.0750 \\
& 28.0483 \\
& 28.0599 \\
& 28.0490 \\
& 28.0499 \\
& 28.0565 \\
& 28.0612 \\
& 28.0634 \\
& 28.0627 \\
& 28.0519 \\
& 28.0551 \\
& 28.0696 \\
& 28.0581 \\
& 28.0568 \\
& 28.0572 \\
& 28.0529
\end{aligned}
$$

$$
\begin{aligned}
& 28.0421 \\
& 28.0432 \\
& 28.0211 \\
& 28.0363 \\
& 28.0436 \\
& 28.0619 \\
& 28.0573 \\
& 28.0499 \\
& 28.0340 \\
& 28.0474 \\
& 28.0534 \\
& 28.0589 \\
& 28.0466 \\
& 28.0448 \\
& 28.0576 \\
& 28.0558 \\
& 28.0522 \\
& 28.0480 \\
& 28.0444 \\
& 28.0429 \\
& 28.0624 \\
& 28.0610 \\
& 28.0461 \\
& 28.0564 \\
& 28.0734 \\
& 28.0565 \\
& 28.0503 \\
& 28.0581 \\
& 28.0519 \\
& 28.0625 \\
& 28.0583 \\
& 28.0645 \\
& 28.0642 \\
& 28.0535 \\
& 28.0510 \\
& 28.0542 \\
& 28.0677 \\
& 28.0416 \\
& 28.0676 \\
& 28.0596 \\
& 28.0635 \\
& 28.0558 \\
& 28.0623 \\
& 28.0718
\end{aligned}
$$

28.0684
28.0646
28.0590
28.0465
28.0594
28.0303
28.0533
28.0561
28.0585
28.0497
28.0582
28.0507
28.0562
28.0715
28.0468
28.0411
28.0587
28.0456
28.0705
28.0534
28.0558
28.0536
28.0552
28.0461
28.0598
28.0598
28.0650
28.0423
28.0442
28.0449
28.0660
28.0506
28.0655
28.0512
28.0407
28.0475
28.0411
28.0512
28.1036
28.0641
28.0572
28.0700
28.0577
28.0637
28.0534
28.0461

$$
\begin{aligned}
& 28.0701 \\
& 28.0631 \\
& 28.0575 \\
& 28.0444 \\
& 28.0592 \\
& 28.0684 \\
& 28.0593 \\
& 28.0677 \\
& 28.0512 \\
& 28.0644 \\
& 28.0660 \\
& 28.0542 \\
& 28.0768 \\
& 28.0515 \\
& 28.0579 \\
& 28.0538 \\
& 28.0526 \\
& 28.0833 \\
& 28.0637 \\
& 28.0529 \\
& 28.0535 \\
& 28.0561 \\
& 28.0736 \\
& 28.0635 \\
& 28.0600 \\
& 28.0520 \\
& 28.0695 \\
& 28.0608 \\
& 28.0608 \\
& 28.0590 \\
& 28.0290 \\
& 28.0939 \\
& 28.0618 \\
& 28.0551 \\
& 28.0757 \\
& 28.0698 \\
& 28.0717 \\
& 28.0529 \\
& 28.0644 \\
& 28.0613 \\
& 28.0759 \\
& 28.0745 \\
& 28.0736 \\
& 28.0611 \\
& 28.0732 \\
& 28.0782
\end{aligned}
$$

$$
\begin{aligned}
& 28.0682 \\
& 28.0756 \\
& 28.0857 \\
& 28.0739 \\
& 28.0840 \\
& 28.0862 \\
& 28.0724 \\
& 28.0727 \\
& 28.0752 \\
& 28.0732 \\
& 28.0703 \\
& 28.0849 \\
& 28.0795 \\
& 28.0902 \\
& 28.0874 \\
& 28.0971 \\
& 28.0638 \\
& 28.0877 \\
& 28.0751 \\
& 28.0904 \\
& 28.0971 \\
& 28.0661 \\
& 28.0711 \\
& 28.0754 \\
& 28.0516 \\
& 28.0961 \\
& 28.0689 \\
& 28.1110 \\
& 28.1062 \\
& 28.0726 \\
& 28.1141 \\
& 28.0913 \\
& 28.0982 \\
& 28.0703 \\
& 28.0654 \\
& 28.0760 \\
& 28.0727 \\
& 28.0850 \\
& 28.0877 \\
& 28.0967 \\
& 28.1185 \\
& 28.0945 \\
& 28.0834
\end{aligned}
$$

28.0707
28.1008
28.0971
28.0826
28.0857
28.0984
28.0869
28.0795
28.0875
28.1184
28.0746
28.0816
28.0879
28.0888
28.0924
28.0979
28.0702
28.0847
28.0917
28.0834
28.0823
28.0917
28.0779
28.0852
28.0863
28.0942
28.0801
28.0817
28.0922
28.0914
28.0868
28.0832
28.0881
28.0910
28.0886
28.0961
28.0857
28.0859
28.1086
28.0838
28.0921
28.0945
28.0839
28.0877
28.0803
28.0928

$$
\begin{aligned}
& 28.0885 \\
& 28.0940 \\
& 28.0856 \\
& 28.0849 \\
& 28.0955 \\
& 28.0955 \\
& 28.0846 \\
& 28.0871 \\
& 28.0872 \\
& 28.0917 \\
& 28.0931 \\
& 28.0865 \\
& 28.0900 \\
& 28.0915 \\
& 28.0963 \\
& 28.0917 \\
& 28.0950 \\
& 28.0898 \\
& 28.0902 \\
& 28.0867 \\
& 28.0843 \\
& 28.0939 \\
& 28.0902 \\
& 28.0911 \\
& 28.0909 \\
& 28.0949 \\
& 28.0867 \\
& 28.0932 \\
& 28.0891 \\
& 28.0932 \\
& 28.0887 \\
& 28.0925 \\
& 28.0928 \\
& 28.0883 \\
& 28.0946 \\
& 28.0977 \\
& 28.0914 \\
& 28.0959 \\
& 28.0926 \\
& 28.0923 \\
& 28.0950 \\
& 28.1006 \\
& 28.0924 \\
& 28.0963 \\
& 28.0893 \\
& 28.0956
\end{aligned}
$$

28.0980
28.0928
28.0951
28.0958
28.0912
28.0990
28.0915
28.0957
28.0976
28.0888
28.0928
28.0910
28.0902
28.0950
28.0995
28.0965
28.0972
28.0963
28.0946
28.0942
28.0998
28.0911
28.1043
28.1002
28.0991
28.0959
28.0996
28.0926
28.1002
28.0961
28.0983
28.0997
28.0959
28.0988
28.1029
28.0989
28.1000
28.0944
28.0979
28.1005
28.1012
28.1013
28.0999
28.0991
28.1059
28.0961
1.4.2.7.1. Background and Data
28.0981
28.1045
28.1047
28.1042
28.1146
28.1113
28.1051
28.1065
28.1065
28.0985
28.1000
28.1066
28.1041
28.0954
28.1090

NIST SEMATECH

HOME

 TOOLS \& AIDSSEARCH
BACK $\overline{\text { NEXT }}$

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.7. Standard Resistor

1.4.2.7.2. Graphical Output and Interpretation

Goal The goal of this analysis is threefold:

1. Determine if the univariate model:

$$
Y_{i}=C+E_{i}
$$

is appropriate and valid.
2. Determine if the typical underlying assumptions for an "in control" measurement process are valid. These assumptions are:

1. random drawings;
2. from a fixed distribution;
3. with the distribution having a fixed location; and
4. the distribution having a fixed scale.
5. Determine if the confidence interval

$$
\bar{Y} \pm 2 s / \sqrt{N}
$$

is appropriate and valid where s is the standard deviation of the original data.

4-Plot of

 DataInterpretation

The assumptions are addressed by the graphics shown above:

1. The run sequence plot (upper left) indicates significant shifts in both location and variation. Specifically, the location is increasing with time. The variability seems greater in the first and last third of the data than it does in the middle third.
2. The lag plot (upper right) shows a significant non-random pattern in the data. Specifically, the strong linear appearance of this plot is indicative of a model that relates $\boldsymbol{Y}_{\boldsymbol{t}}$ to $\boldsymbol{Y}_{\boldsymbol{t}-\mathbf{1}}$.
3. The distributional plots, the histogram (lower left) and the normal probability plot (lower right), are not interpreted since the randomness assumption is so clearly violated.
The serious violation of the non-randomness assumption means that the univariate model

$$
Y_{i}=C+E_{i}
$$

is not valid. Given the linear appearance of the lag plot, the first step might be to consider a model of the type

$$
Y_{i}=A_{0}+A_{1} * Y_{i-1}+E_{i}
$$

However, discussions with the scientist revealed the following:

1. the drift with respect to location was expected.
2. the non-constant variability was not expected.

The scientist examined the data collection device and determined that the non-constant variation was a seasonal effect. The high variability
data in the first and last thirds was collected in winter while the more stable middle third was collected in the summer. The seasonal effect was determined to be caused by the amount of humidity affecting the measurement equipment. In this case, the solution was to modify the test equipment to be less sensitive to enviromental factors.

Simple graphical techniques can be quite effective in revealing unexpected results in the data. When this occurs, it is important to investigate whether the unexpected result is due to problems in the experiment and data collection, or is it in fact indicative of an unexpected underlying structure in the data. This determination cannot be made on the basis of statistics alone. The role of the graphical and statistical analysis is to detect problems or unexpected results in the data. Resolving the issues requires the knowledge of the scientist or engineer.

Individual Plots

Run

Sequence Plot

Although it is generally unnecessary, the plots can be generated individually to give more detail. Since the lag plot indicates significant non-randomness, we omit the distributional plots.

1.4.2.7.2. Graphical Output and Interpretation

Lag Plot

HOME TOOLS \& AIDS

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.7. Standard Resistor

1.4.2.7.3. Quantitative Output and Interpretation

Summary
Statistics

As a first step in the analysis, a table of summary statistics is computed from the data. The following table, generated by Dataplot, shows a typical set of statistics.

SUMMARY
NUMBER OF OBSERVATIONS =
1000

The autocorrelation coefficient of 0.972 is evidence of significant non-randomness.

Location One way to quantify a change in location over time is to fit a straight line to the data set using the index variable $\mathrm{X}=1,2, \ldots, \mathrm{~N}$, with N denoting the number of observations. If there is no significant drift in the location, the slope parameter estimate should be zero. For this data set, Dataplot generates the following output:

```
LEAST SQUARES MULTILINEAR FIT
SAMPLE SIZE N = 1000
NUMBER OF VARIABLES = 1
NO REPLICATION CASE
```


The slope parameter, A1, has a t value of 100 which is statistically significant. The value of the slope parameter estimate is 0.00021 . Although this number is nearly zero, we need to take into account that the original scale of the data is from about 27.8 to 28.2. In this case, we conclude that there is a drift in location.

Variation
One simple way to detect a change in variation is with a Bartlett test after dividing the data set into several equal-sized intervals. However, the Bartlett test is not robust for non-normality. Since the normality assumption is questionable for these data, we use the alternative Levene test. In partiuclar, we use the Levene test based on the median rather the mean. The choice of the number of intervals is somewhat arbitrary, although values of 4 or 8 are reasonable. Dataplot generated the following output for the Levene test.

```
LEVENE F-TEST FOR SHIFT IN VARIATION
(ASSUMPTION: NORMALITY)
```

1. STATISTICS

| NUMBER OF OBSERVATIONS | $=$ | 1000 |
| :--- | :--- | :---: |
| NUMBER OF GROUPS | $=$ | 4 |
| LEVENE F TEST STATISTIC | $=$ | 140.8509 |

| FOR LEVENE | TEST | STATIS | | |
| :---: | :---: | :---: | :---: | :---: |
| 0 | \% | POINT | = | $0.0000000 \mathrm{E}+00$ |
| 50 | \% | POINT | = | 0.7891988 |
| 75 | \% | POINT | = | 1.371589 |
| 90 | \% | POINT | = | 2.089303 |
| 95 | \% | POINT | = | 2.613852 |
| 99 | \% | POINT | = | 3.801369 |
| 99.9 | \% | POINT | = | 5.463994 |

100.0000 \% Point: 140.8509

```
3. CONCLUSION (AT THE 5% LEVEL):
    THERE IS A SHIFT IN VARIATION.
    THUS: NOT HOMOGENEOUS WITH RESPECT TO VARIATION.
```

In this case, since the Levene test statistic value of 140.9 is greater than the 5% significance level critical value of 2.6 , we conclude that there is significant evidence of nonconstant variation.

Randomness

There are many ways in which data can be non-random. However, most common forms of non-randomness can be detected with a few simple tests. The lag plot in the 4-plot in the previous section is a simple graphical technique.

One check is an autocorrelation plot that shows the autocorrelations for various lags. Confidence bands can be plotted at the 95% and 99% confidence levels. Points outside this band indicate statistically significant values (lag 0 is always 1). Dataplot generated the following autocorrelation plot.

The lag 1 autocorrelation, which is generally the one of greatest interest, is 0.97 . The critical values at the 5% significance level are -0.062 and 0.062 . This indicates that the lag 1 autocorrelation is statistically significant, so there is strong evidence of non-randomness.

A common test for randomness is the runs test.

1.4.2.7.3. Quantitative Output and Interpretation

| 7 | 0.0 | 0.0194 | 0.1394 | -0.14 |
| ---: | ---: | ---: | ---: | ---: |
| 8 | 0.0 | 0.0022 | 0.0470 | -0.05 |
| 9 | 0.0 | 0.0002 | 0.0150 | -0.02 |
| 10 | 0.0 | 0.0000 | 0.0046 | 0.00 |

STATISTIC = NUMBER OF RUNS UP OF LENGTH I OR MORE

STAT EXP (STAT) SD (STAT)
Z

| 315.0 | 333.1667 | 9.4195 | -1.93 |
| ---: | ---: | ---: | ---: |
| 137.0 | 124.7917 | 6.2892 | 1.94 |
| 47.0 | 33.2417 | 4.8619 | 2.83 |
| 18.0 | 6.9181 | 2.5200 | 4.40 |
| 2.0 | 1.1847 | 1.0787 | 0.76 |
| 0.0 | 0.1726 | 0.4148 | -0.42 |
| 0.0 | 0.0219 | 0.1479 | -0.15 |
| 0.0 | 0.0025 | 0.0496 | -0.05 |
| 0.0 | 0.0002 | 0.0158 | -0.02 |
| 0.0 | 0.0000 | 0.0048 | 0.00 |

RUNS DOWN
STATISTIC = NUMBER OF RUNS DOWN OF LENGTH EXACTLY I

EXP (STAT)
Z

| 195.0 | 208.3750 | 14.5453 | -0.92 |
| ---: | ---: | ---: | ---: |
| 81.0 | 91.5500 | 7.5002 | -1.41 |
| 32.0 | 26.3236 | 4.5727 | 1.24 |
| 4.0 | 5.7333 | 2.3164 | -0.75 |
| 1.0 | 1.0121 | 0.9987 | -0.01 |
| 1.0 | 0.1507 | 0.3877 | 2.19 |
| 0.0 | 0.0194 | 0.1394 | -0.14 |
| 0.0 | 0.0022 | 0.0470 | -0.05 |
| 0.0 | 0.0002 | 0.0150 | -0.02 |
| 0.0 | 0.0000 | 0.0046 | 0.00 |

STATISTIC = NUMBER OF RUNS DOWN OF LENGTH I OR MORE

| I | STAT | EXP (STAT) | SD (STAT) | Z |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 314.0 | 333.1667 | 9.4195 | -2.03 |
| 2 | 119.0 | 124.7917 | 6.2892 | -0.92 |
| 3 | 38.0 | 33.2417 | 4.8619 | 0.98 |
| 4 | 6.0 | 6.9181 | 2.5200 | -0.36 |
| 5 | 2.0 | 1.1847 | 1.0787 | 0.76 |
| 6 | 1.0 | 0.1726 | 0.4148 | 1.99 |
| 7 | 0.0 | 0.0219 | 0.1479 | -0.15 |
| 8 | 0.0 | 0.0025 | 0.0496 | -0.05 |
| 9 | 0.0 | 0.0002 | 0.0158 | -0.02 |
| 10 | 0.0 | 0.0000 | 0.0048 | 0.00 |

RUNS TOTAL $=$ RUNS UP + RUNS DOWN
STATISTIC $=$ NUMBER OF RUNS TOTAL OF LENGTH EXACTLY I
1.4.2.7.3. Quantitative Output and Interpretation

| I | STAT | EXP (STAT) | SD (STAT) | Z |
| ---: | ---: | ---: | ---: | ---: |
| | | | | |
| 1 | 373.0 | 416.7500 | 20.5701 | -2.13 |
| 2 | 171.0 | 183.1000 | 10.6068 | -1.14 |
| 3 | 61.0 | 52.6472 | 6.4668 | 1.29 |
| 4 | 20.0 | 11.4667 | 3.2759 | 2.60 |
| 5 | 3.0 | 2.0243 | 1.4123 | 0.69 |
| 6 | 1.0 | 0.3014 | 0.5483 | 1.27 |
| 7 | 0.0 | 0.0389 | 0.1971 | -0.20 |
| 8 | 0.0 | 0.0044 | 0.0665 | -0.07 |
| 9 | 0.0 | 0.0005 | 0.0212 | -0.02 |
| 10 | 0.0 | 0.0000 | 0.0065 | -0.01 |

STATISTIC $=$ NUMBER OF RUNS TOTAL OF LENGTH I OR MORE

| I | STAT | EXP (STAT) | SD (STAT) | Z |
| ---: | ---: | ---: | ---: | ---: |
| | | | | |
| 1 | 629.0 | 666.3333 | 13.3212 | -2.80 |
| 2 | 256.0 | 249.5833 | 8.8942 | 0.72 |
| 3 | 85.0 | 66.4833 | 6.8758 | 2.69 |
| 4 | 24.0 | 13.8361 | 3.5639 | 2.85 |
| 5 | 4.0 | 2.3694 | 1.5256 | 1.07 |
| 6 | 1.0 | 0.3452 | 0.5866 | 1.12 |
| 7 | 0.0 | 0.0438 | 0.2092 | -0.21 |
| 8 | 0.0 | 0.0049 | 0.0701 | -0.07 |
| 9 | 0.0 | 0.0005 | 0.0223 | -0.02 |
| 10 | 0.0 | 0.0000 | 0.0067 | -0.01 |

| LENGTH OF THE LONGEST RUN UP | $=$ | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| LENGTH OF THE LONGEST RUN DOWN | $=$ | 6 |
| LENGTH OF THE LONGEST RUN UP OR DOWN | $=$ | 6 |

```
NUMBER OF POSITIVE DIFFERENCES = 505
NUMBER OF NEGATIVE DIFFERENCES = 469
```

NUMBER OF ZERO DIFFERENCES = 25

Values in the column labeled "Z" greater than 1.96 or less than -1.96 are statistically significant at the 5% level. Due to the number of values that are larger than the 1.96 cut-off, we conclude that the data are not random. However, in this case the evidence from the runs test is not nearly as strong as it is from the autocorrelation plot.

Distributional Analysis

Since we rejected the randomness assumption, the distributional tests are not meaningful. Therefore, these quantitative tests are omitted. Since the Grubbs' test for outliers also assumes the approximate normality of the data, we omit Grubbs' test as well.
1.4.2.7.3. Quantitative Output and Interpretation

Univariate It is sometimes useful and convenient to summarize the above results in a report. Report

```
Analysis for resistor case study
1: Sample Size = 1000
2: Location
    Mean = 28.01635
    Standard Deviation of Mean = 0.002008
    95% Confidence Interval for Mean = (28.0124,28.02029)
    Drift with respect to location? = NO
3: Variation
    Standard Deviation = 0.063495
    95% Confidence Interval for SD = (0.060829,0.066407)
    Change in variation?
    (based on Levene's test on quarters
    of the data) = YES
4: Randomness
    Autocorrelation = 0.972158
    Data Are Random?
        (as measured by autocorrelation) = NO
5: Distribution
    Distributional test omitted due to
    non-randomness of the data
6: Statistical Control
    (i.e., no drift in location or scale,
    data are random, distribution is
    fixed)
    Data Set is in Statistical Control? = NO
7: Outliers?
    (Grubbs' test omitted due to
    non-randomness of the data
```

NIST
SEMATECH

HOME
TOOLS \& AIDS
SEARCH

BACK NEXT

ENGINEERING STATISTICS HANDBOOK
$\boxed{\text { TOOLS \& AIDS }} \quad \sqrt{\text { SEARCH }} \quad \sqrt{\text { BACK }} \overline{\text { NEXT }}$

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.7. Standard Resistor

1.4.2.7.4. Work This Example Yourself

| $\frac{\text { View }}{\text { Dataplot }}$ | This page allows you to repeat the analysis outlined in the case study
 description on the previous page using $\underline{\text { Dataplot. It is required that you }}$ |
| :--- | :--- |
| $\underline{\text { Macro for }}$ | |
| $\underline{\text { this Case already downloaded and installed }}$Dataplot and configured your | |
| $\underline{\text { Study }}$ | browser. to run Dataplot. Output from each analysis step below will be
 displayed in one or more of the Dataplot windows. The four main
 windows are the Output window, the Graphics window, the Command |
| History window, and the data sheet window. Across the top of the main
 windows there are menus for executing Dataplot commands. Across the
 bottom is a command entry window where commands can be typed in. | |

| Data Analysis Steps | Results and Conclusions |
| :---: | :---: |
| Click on the links below to start Dataplot and run this case study yourself. Each step may use results from previous steps, so please be patient. Wait until the software verifies that the current step is complete before clicking on the next step.
 NOTE: This case study has 1,000 points. For better performance, it is highly recommended that you check the "No Update" box on the Spreadsheet window for this case study. This will suppress subsequent updating of the Spreadsheet window as the data are created or modified. | The links in this column will connect you with more detailed information about each analysis step from the case study description. |
| 1. Invoke Dataplot and read data.
 1. Read in the data. | 1. You have read 1 column of numbers into Dataplot, variable Y. |
| 2. 4-plot of the data.
 1. 4-plot of Y. | 1. Based on the 4-plot, there are shifts in location and variation and the data are not random. |
| 3. Generate the individual plots.
 1. Generate a run sequence plot.
 2. Generate a lag plot. | 1. The run sequence plot indicates that there are shifts of location and variation.
 2. The lag plot shows a strong linear pattern, which indicates significant non-randomness. |

4. Generate summary statistics, quantitative analysis, and print a univariate report.
5. Generate a table of summary statistics.
6. Generate the sample mean, a confidence interval for the population mean, and compute a linear fit to detect drift in location.
7. Generate the sample standard deviation, a confidence interval for the population standard deviation, and detect drift in variation by dividing the data into quarters and computing Levene's test for equal standard deviations.
8. Check for randomness by generating an autocorrelation plot and a runs test.
9. Print a univariate report (this assumes steps 2 thru 5 have already been run).
10. The summary statistics table displays $25+$ statistics.
11. The mean is 28.0163 and a 95\%
confidence interval is $(28.0124,28.02029)$.
The linear fit indicates drift in location since the slope parameter estimate is statistically significant.
12. The standard deviation is 0.0635 with a 95% confidence interval of ($0.060829,0.066407$). Levene's test indicates significant change in variation.
13. The lag 1 autocorrelation is 0.97 . From the autocorrelation plot, this is outside the 95\% confidence interval bands, indicating significant non-randomness.
14. The results are summarized in a convenient report.
$\frac{\text { NIST }}{\text { SEMATECH }} \sqrt{\text { HOME }} \sqrt{\text { TOOLS \& AIDS }} \sqrt{\text { SEARCH }} \quad$ BACK \quad NEXT
15. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies

1.4.2.8. Heat Flow Meter 1

Heat Flow This example illustrates the univariate analysis of standard resistor data. Meter Calibration and Stability

1. Background and Data
2. Graphical Output and Interpretation
3. Quantitative Output and Interpretation
4. Work This Example Yourself

HOME
TOOLS \& AIDS
SEARCH
BACK NEXT

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.8. Heat Flow Meter 1

1.4.2.8.1. Background and Data

Generation This data set was collected by Bob Zarr of NIST in January, 1990 from a heat flow meter calibration and stability analysis. The response variable is a calibration factor.

The motivation for studying this data set is to illustrate a well-behaved process where the underlying assumptions hold and the process is in statistical control.

This file can be read by Dataplot with the following commands:
SKIP 25
READ ZARR13.DAT Y

Resulting The following are the data used for this case study.
Data

$$
9.206343
$$

$$
9.299992
$$

$$
9.277895
$$

$$
9.305795
$$

$$
9.275351
$$

$$
9.288729
$$

$$
9.287239
$$

$$
9.260973
$$

$$
9.303111
$$

$$
9.275674
$$

$$
9.272561
$$

$$
9.288454
$$

$$
9.255672
$$

$$
9.252141
$$

$$
9.297670
$$

$$
9.266534
$$

$$
9.256689
$$

$$
9.277542
$$

$$
9.248205
$$

9.252107
9.276345
9.278694
9.267144
9.246132
9.238479
9.269058
9.248239
9.257439
9.268481
9.288454
9.258452
9.286130
9.251479
9.257405
9.268343
9.291302
9.219460
9.270386
9.218808
9.241185
9.269989
9.226585
9.258556
9.286184
9.320067
9.327973
9.262963
9.248181
9.238644
9.225073
9.220878
9.271318
9.252072
9.281186
9.270624
9.294771
9.301821
9.278849
9.236680
9.233988
9.244687
9.221601
9.207325
9.258776
9.275708
1.4.2.8.1. Background and Data
9.268955
9.257269
9.264979
9.295500
9.292883
9.264188
9.280731
9.267336
9.300566
9.253089
9.261376
9.238409
9.225073
9.235526
9.239510
9.264487
9.244242
9.277542
9.310506
9.261594
9.259791
9.253089
9.245735
9.284058
9.251122
9.275385
9.254619
9.279526
9.275065
9.261952
9.275351
9.252433
9.230263
9.255150
9.268780
9.290389
9.274161
9.255707
9.261663
9.250455
9.261952
9.264041
9.264509
9.242114
9.239674
9.221553
9.241935
9.215265
9.285930
9.271559
9.266046
9.285299
9.268989
9.267987
9.246166
9.231304
9.240768
9.260506
9.274355
9.292376
9.271170
9.267018
9.308838
9.264153
9.278822
9.255244
9.229221
9.253158
9.256292
9.262602
9.219793
9.258452
9.267987
9.267987
9.248903
9.235153
9.242933
9.253453
9.262671
9.242536
9.260803
9.259825
9.253123
9.240803
9.238712
9.263676
9.243002
9.246826
9.252107
9.261663
9.247311
9.306055
9.237646
9.248937
9.256689
9.265777
9.299047
9.244814
9.287205
9.300566
9.256621
9.271318
9.275154
9.281834
9.253158
9.269024
9.282077
9.277507
9.284910
9.239840
9.268344
9.247778
9.225039
9.230750
9.270024
9.265095
9.284308
9.280697
9.263032
9.291851
9.252072
9.244031
9.283269
9.196848
9.231372
9.232963
9.234956
9.216746
9.274107
9.273776

HOME

ENGINEERING STATISTICS HANDBOOK

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.8. Heat Flow Meter 1

1.4.2.8.2. Graphical Output and Interpretation

Goal The goal of this analysis is threefold:

1. Determine if the univariate model:

$$
Y_{i}=C+E_{i}
$$

is appropriate and valid.
2. Determine if the typical underlying assumptions for an "in control" measurement process are valid. These assumptions are:

1. random drawings;
2. from a fixed distribution;
3. with the distribution having a fixed location; and
4. the distribution having a fixed scale.
5. Determine if the confidence interval

$$
\bar{Y} \pm 2 s / \sqrt{N}
$$

is appropriate and valid where s is the standard deviation of the original data.

Interpretation
The assumptions are addressed by the graphics shown above:

1. The run sequence plot (upper left) indicates that the data do not have any significant shifts in location or scale over time.
2. The lag plot (upper right) does not indicate any non-random pattern in the data.
3. The histogram (lower left) shows that the data are reasonably symmetric, there does not appear to be significant outliers in the tails, and it seems reasonable to assume that the data are from approximately a normal distribution.
4. The normal probability plot (lower right) verifies that an assumption of normality is in fact reasonable.

Individual Plots

Although it is generally unnecessary, the plots can be generated individually to give more detail.
1.4.2.8.2. Graphical Output and Interpretation

Lag Plot

Histogram
(with overlaid
Normal PDF)

Normal
Probability
Plot

Fitted line: Intercept $=9.26146$, Slope $=0.022969$

HOME
TOOLS \& AIDS
SEARCH
BACK NEXT

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.8. Heat Flow Meter 1

1.4.2.8.3. Quantitative Output and Interpretation

Summary
Statistics

As a first step in the analysis, a table of summary statistics is computed from the data. The following table, generated by Dataplot, shows a typical set of statistics.

SUMMARY

NUMBER OF OBSERVATIONS =
195

| * LOCATION MEASURES $\quad * \quad$ DISPERSION MEASURES | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | | | | | | |
| * | MIDRANGE | $=$ | $0.9262411 \mathrm{E}+01$ | * | RANGE | = | | 0.1311255 | $5 \mathrm{E}+00$ | * |
| * | MEAN | = | $0.9261460 \mathrm{E}+01$ | * | STAND. DEV. | | | 0.2278881 | $1 \mathrm{E}-01$ | * |
| * | MIDMEAN | = | $0.9259412 \mathrm{E}+01$ | * | AV. AB. DEV. | | | 0.1788945 | 5E-01 | * |
| * | MEDIAN | = | $0.9261952 \mathrm{E}+01$ | * | MINIMUM | = | | 0.9196848 | $8 \mathrm{E}+01$ | * |
| * | | = | | * | LOWER QUART. | = | | 0.9246826 | $6 \mathrm{E}+01$ | * |
| * | | = | | * | LOWER HINGE | = | | 0.9246496 | 6E+01 | * |
| * | | = | | * | UPPER HINGE | = | | 0.9275530 | 0E+01 | * |
| * | | = | | * | UPPER QUART. | | | 0.9275708 | $8 \mathrm{E}+01$ | * |
| * | | $=$ | | * | MAXIMUM | | | 0.9327973 | $3 \mathrm{E}+01$ | * |
| | | | | | | | | | | |
| * | RANDOMNESS MEASURES | | | * | DISTRIBUTIONAL MEASURES | | | | | * |
| | **** | ** | *********** | | ********* | | *** | ******** | **** | |
| * | AUTOCO CO | = | $0.2805789 \mathrm{E}+00$ | * | ST. 3RD MOM. | | | 0.8537455 | $5 \mathrm{E}-02$ | * |
| * | | = | $0.0000000 \mathrm{E}+00$ | * | ST. 4TH MOM. | | | 0.3049067 | 7E+01 | * |
| * | | = | $0.0000000 \mathrm{E}+00$ | * | ST. WILK-SHA | | | 0.9458605 | $5 \mathrm{E}+01$ | * |
| * | | = | | * | UNIFORM PPCC | $=$ | | 0.9735289 | 9E+00 | * |
| * | | = | | * | NORMAL PPCC | - | | 0.9989640 | 0E+00 | * |
| * | | = | | | TUK -. 5 PPCC | | | 0.8927904 | $4 \mathrm{E}+00$ | * |
| * | | = | | * | CAUCHY PPCC | | | 0.6360204 | $4 \mathrm{E}+00$ | * |

Location One way to quantify a change in location over time is to fit a straight line to the data set using the index variable $\mathrm{X}=1,2, \ldots, \mathrm{~N}$, with N denoting the number of observations. If there is no significant drift in the location, the slope parameter should be zero. For this data set, Dataplot generates the following output:

```
LEAST SQUARES MULTILINEAR FIT
    SAMPLE SIZE N = 195
    NUMBER OF VARIABLES = 1
    NO REPLICATION CASE
```

| | | PARAMETER ESTIMATES | (APPROX. ST. DEV.) | T VALUE |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 AO | | 9.26699 | $(0.3253 \mathrm{E}-02)$ | 2849. |
| 2 A1 | X | $-0.564115 \mathrm{E}-04$ | $(0.2878 \mathrm{E}-04)$ | -1.960 |
| | | | | |
| RESIDUAL | STANDARD DEVIATION $=$ | $0.2262372 \mathrm{E}-01$ | | |
| RESIDUAL | DEGREES OF FREEDOM $=$ | 193 | | |

The slope parameter, A1, has a t value of -1.96 which is (barely) statistically significant since it is essentially equal to the 95% level cutoff of -1.96 . However, notice that the value of the slope parameter estimate is -0.00056 . This slope, even though statistically significant, can essentially be considered zero.

Variation One simple way to detect a change in variation is with a Bartlett test after dividing the data set into several equal-sized intervals. The choice of the number of intervals is somewhat arbitrary, although values of 4 or 8 are reasonable. Dataplot generated the following output for the Bartlett test.

```
            BARTLETT TEST
                (STANDARD DEFINITION)
NULL HYPOTHESIS UNDER TEST--ALL SIGMA(I) ARE EQUAL
TEST:
DEGREES OF FREEDOM = 3.000000
    TEST STATISTIC VALUE = 3.147338
    CUTOFF: 95% PERCENT POINT = 7.814727
    CUTOFF: 99% PERCENT POINT = 11.34487
    CHI-SQUARE CDF VALUE = 0.630538
    NULL NULL HYPOTHESIS NULL HYPOTHESIS
    HYPOTHESIS ACCEPTANCE INTERVAL CONCLUSION
ALL SIGMA EQUAL (0.000,0.950) ACCEPT
```

In this case, since the Bartlett test statistic of 3.14 is less than the critical value at the 5% significance level of 7.81 , we conclude that the standard deviations are not significantly different in the 4 intervals. That is, the assumption of constant scale is valid.

Randomness

There are many ways in which data can be non-random. However, most common forms of non-randomness can be detected with a few simple tests. The lag plot in the previous section is a simple graphical technique.

Another check is an autocorrelation plot that shows the autocorrelations for various lags. Confidence bands can be plotted at the 95% and 99% confidence levels. Points outside this band indicate statistically significant values (lag 0 is always 1). Dataplot generated the following autocorrelation plot.

The lag 1 autocorrelation, which is generally the one of greatest interest, is 0.281 . The critical values at the 5% significance level are -0.087 and 0.087 . This indicates that the lag 1 autocorrelation is statistically significant, so there is evidence of non-randomness.

A common test for randomness is the runs test.

1.4.2.8.3. Quantitative Output and Interpretation

| I | STAT | EXP (STAT) | SD (STAT) | Z |
| ---: | ---: | ---: | ---: | ---: |
| | | | | |
| 1 | 58.0 | 64.8333 | 4.1439 | -1.65 |
| 2 | 23.0 | 24.1667 | 2.7729 | -0.42 |
| 3 | 15.0 | 6.4083 | 2.1363 | 4.02 |
| 4 | 3.0 | 1.3278 | 1.1043 | 1.51 |
| 5 | 0.0 | 0.2264 | 0.4716 | -0.48 |
| 6 | 0.0 | 0.0328 | 0.1809 | -0.18 |
| 7 | 0.0 | 0.0041 | 0.0644 | -0.06 |
| 8 | 0.0 | 0.0005 | 0.0215 | -0.02 |
| 9 | 0.0 | 0.0000 | 0.0068 | -0.01 |
| 10 | 0.0 | 0.0000 | 0.0021 | 0.00 |

RUNS DOWN

STATISTIC = NUMBER OF RUNS DOWN OF LENGTH EXACTLY I

| I | STAT | EXP (STAT) | SD (STAT) | Z |
| ---: | ---: | ---: | ---: | ---: |
| | | | | |
| 1 | 33.0 | 40.6667 | 6.4079 | -1.20 |
| 2 | 18.0 | 17.7583 | 3.3021 | 0.07 |
| 3 | 3.0 | 5.0806 | 2.0096 | -1.04 |
| 4 | 3.0 | 1.1014 | 1.0154 | 1.87 |
| 5 | 1.0 | 0.1936 | 0.4367 | 1.85 |
| 6 | 0.0 | 0.0287 | 0.1692 | -0.17 |
| 7 | 0.0 | 0.0037 | 0.0607 | -0.06 |
| 8 | 0.0 | 0.0004 | 0.0204 | -0.02 |
| 9 | 0.0 | 0.0000 | 0.0065 | -0.01 |
| 10 | 0.0 | 0.0000 | 0.0020 | 0.00 |

STATISTIC = NUMBER OF RUNS DOWN

 OF LENGTH I OR MORE| I | STAT | EXP (STAT) | SD (STAT) | Z |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 58.0 | 64.8333 | 4.1439 | -1.65 |
| 2 | 25.0 | 24.1667 | 2.7729 | 0.30 |
| 3 | 7.0 | 6.4083 | 2.1363 | 0.28 |
| 4 | 4.0 | 1.3278 | 1.1043 | 2.42 |
| 5 | 1.0 | 0.2264 | 0.4716 | 1.64 |
| 6 | 0.0 | 0.0328 | 0.1809 | -0.18 |
| 7 | 0.0 | 0.0041 | 0.0644 | -0.06 |
| 8 | 0.0 | 0.0005 | 0.0215 | -0.02 |
| 9 | 0.0 | 0.0000 | 0.0068 | -0.01 |
| 10 | 0.0 | 0.0000 | 0.0021 | 0.00 |
| RUNS TOTAL $=$ RUNS UP + RUNS DOWN | | | | |
| STATISTIC = NUMBER OF RUNS TOTAL of LENGTH EXACTLY I | | | | |
| I | StAT | EXP (STAT) | SD (STAT) | z |
| 1 | 68.0 | 81.3333 | 9.0621 | -1.47 |
| 2 | 26.0 | 35.5167 | 4.6698 | -2.04 |
| 3 | 15.0 | 10.1611 | 2.8420 | 1.70 |
| 4 | 6.0 | 2.2028 | 1.4360 | 2.64 |
| 5 | 1.0 | 0.3871 | 0.6176 | 0.99 |

1.4.2.8.3. Quantitative Output and Interpretation

| 6 | 0.0 | 0.0574 | 0.2392 | -0.24 |
| ---: | ---: | ---: | ---: | ---: |
| 7 | 0.0 | 0.0074 | 0.0858 | -0.09 |
| 8 | 0.0 | 0.0008 | 0.0289 | -0.03 |
| 9 | 0.0 | 0.0001 | 0.0092 | -0.01 |
| 10 | 0.0 | 0.0000 | 0.0028 | 0.00 |

STATISTIC $=$ NUMBER OF RUNS TOTAL
OF LENGTH I OR MORE

| I | STAT | EXP (STAT) | SD (STAT) | Z |
| ---: | ---: | ---: | ---: | ---: |
| 1 | 116.0 | 129.6667 | 5.8604 | -2.33 |
| 2 | 48.0 | 48.3333 | 3.9215 | -0.09 |
| 3 | 22.0 | 12.8167 | 3.0213 | 3.04 |
| 4 | 7.0 | 2.6556 | 1.5617 | 2.78 |
| 5 | 1.0 | 0.4528 | 0.6669 | 0.82 |
| 6 | 0.0 | 0.0657 | 0.2559 | -0.26 |
| 7 | 0.0 | 0.0083 | 0.0911 | -0.09 |
| 8 | 0.0 | 0.0009 | 0.0305 | -0.03 |
| 9 | 0.0 | 0.0001 | 0.0097 | -0.01 |
| 10 | 0.0 | 0.0000 | 0.0029 | 0.00 |

```
LENGTH OF THE LONGEST RUN UP = 4
LENGTH OF THE LONGEST RUN DOWN = 5
LENGTH OF THE LONGEST RUN UP OR DOWN = 5
NUMBER OF POSITIVE DIFFERENCES = 98
NUMBER OF NEGATIVE DIFFERENCES = 95
NUMBER OF ZERO DIFFERENCES = 1
```

Values in the column labeled "Z" greater than 1.96 or less than -1.96 are statistically significant at the 5% level. The runs test does indicate some non-randomness.

Although the autocorrelation plot and the runs test indicate some mild non-randomness, the violation of the randomness assumption is not serious enough to warrant developing a more sophisticated model. It is common in practice that some of the assumptions are mildly violated and it is a judgement call as to whether or not the violations are serious enough to warrant developing a more sophisticated model for the data.

Distributional Analysis

Probability plots are a graphical test for assessing if a particular distribution provides an adequate fit to a data set.

A quantitative enhancement to the probability plot is the correlation coefficient of the points on the probability plot. For this data set the correlation coefficient is 0.996 . Since this is greater than the critical value of 0.987 (this is a tabulated value), the normality assumption is not rejected.

Chi-square and Kolmogorov-Smirnov goodness-of-fit tests are alternative methods for assessing distributional adequacy. The Wilk-Shapiro and Anderson-Darling tests can be used to test for normality. Dataplot generates the following output for the Anderson-Darling normality test.

```
ANDERSON-DARLING 1-SAMPLE TEST
THAT THE DATA CAME FROM A NORMAL DISTRIBUTION
```

1.4.2.8.3. Quantitative Output and Interpretation

| NUMBER OF OBSERVATIONS | $=$ | 195 |
| :--- | :--- | :---: |
| MEAN | | $=$ |
| STANDARD DEVIATION | | 9.261460 |
| | | $0.2278881 \mathrm{E}-01$ |
| ANDERSON-DARLING TEST STATISTIC VALUE | $=$ | 0.1264954 |
| ADJUSTED TEST STATISTIC VALUE | $=$ | 0.1290070 |

2. CRITICAL VALUES:

| 90 | $\%$ POINT | $=0.6560000$ |
| :--- | :--- | :--- |
| 95 | $\%$ POINT | $=0.7870000$ |
| 97.5 | $\%$ POINT | $=0.9180000$ |
| 99 | $\%$ POINT | $=1.092000$ |

3. CONCLUSION (AT THE 5\% LEVEL):

THE DATA DO COME FROM A NORMAL DISTRIBUTION.

The Anderson-Darling test also does not reject the normality assumption because the test statistic, 0.129 , is less than the critical value at the 5% significance level of 0.918 .

Outlier
Analysis

A test for outliers is the Grubbs' test. Dataplot generated the following output for Grubbs' test.

> GRUBBS TEST FOR OUTLIERS
> (ASSUMPTION: NORMALITY)

1. STATISTICS:

NUMBER OF OBSERVATIONS $=195$
MINIMUM $=9.196848$
MEAN $=9.261460$
MAXIMUM $=9.327973$
STANDARD DEVIATION $=0.2278881 \mathrm{E}-01$
GRUBBS TEST STATISTIC $=2.918673$
2. PERCENT POINTS OF THE REFERENCE DISTRIBUTION FOR GRUBBS TEST STATISTIC

0 \% POINT $=0.0000000 \mathrm{E}+00$
50 \% POINT $=2.984294$
75 \% POINT $=3.181226$
90 \% POINT $=3.424672$
95 \% POINT $=3.597898$
99 \% POINT $=3.970215$
3. CONCLUSION (AT THE 5\% LEVEL):

THERE ARE NO OUTLIERS.

For this data set, Grubbs' test does not detect any outliers at the $25 \%, 10 \%, 5 \%$, and 1% significance levels.

Model

Since the underlying assumptions were validated both graphically and analytically, with a mild violation of the randomness assumption, we conclude that a reasonable model for the data is:

$$
Y_{i}=9.26146+E_{i}
$$

We can express the uncertainty for \boldsymbol{C}, here estimated by 9.26146 , as the 95% confidence interval (9.258242,9.26479).

Univariate It is sometimes useful and convenient to summarize the above results in a report. The report Report for the heat flow meter data follows.

```
Analysis for heat flow meter data
1: Sample Size \(=195\)
2: Location
    Mean \(=9.26146\)
    Standard Deviation of Mean \(=0.001632\)
    95\% Confidence Interval for Mean \(\quad=\quad(9.258242,9.264679)\)
    Drift with respect to location? \(=\mathrm{NO}\)
3: Variation
    Standard Deviation \(=0.022789\)
    95\% Confidence Interval for \(S D=(0.02073,0.025307)\)
    Drift with respect to variation?
    (based on Bartlett's test on quarters
    of the data) \(=\mathrm{NO}\)
4: Randomness
    Autocorrelation \(=0.280579\)
    Data are Random?
        (as measured by autocorrelation) = NO
5: Distribution
        Normal PPCC \(=0.998965\)
        Data are Normal?
            (as measured by Normal PPCC) = YES
6: Statistical Control
    (i.e., no drift in location or scale,
    data are random, distribution is
    fixed, here we are testing only for
    fixed normal)
    Data Set is in Statistical Control? = YES
7: Outliers?
    (as determined by Grubbs' test) = NO
```

NIST

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.8. Heat Flow Meter 1

1.4.2.8.4.Work This Example Yourself

Dataplot
Macro for
this Case
Study

View This page allows you to repeat the analysis outlined in the case study
This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot. It is required that you have already downloaded and installed Dataplot and configured your browser. to run Dataplot. Output from each analysis step below will be displayed in one or more of the Dataplot windows. The four main windows are the Output window, the Graphics window, the Command History window, and the data sheet window. Across the top of the main windows there are menus for executing Dataplot commands. Across the bottom is a command entry window where commands can be typed in.

| Data Analysis Steps | Results and Conclusions |
| :--- | :--- |
| Click on the links below to start Dataplot and run this case study
 yourself. Each step may use results from previous steps, so please be
 patient. Wait until the software verifies that the current step is
 complete before clicking on the next step. | The links in this column will connect you with more detailed information
 about each analysis step from the case study description. |

1. Invoke Dataplot and read data.
2. Read in the data.
3. You have read 1 column of numbers into Dataplot, variable Y.
4. 4-plot of the data.
5. 4-plot of Y.
6. Based on the 4-plot, there are no shifts in location or scale, and the data seem to follow a normal distribution.
7. Generate the individual plots.
8. Generate a run sequence plot.
9. Generate a lag plot.
10. The run sequence plot indicates that there are no shifts of location or scale.
11. The lag plot does not indicate any significant patterns (which would show the data were not random).
12. The histogram indicates that a normal distribution is a good distribution for these data.

1.4.2.8.4. Work This Example Yourself

4. Generate a normal probability plot.
5. The normal probability plot verifies that the normal distribution is a reasonable distribution for these data.
6. The summary statistics table displays $25+$ statistics.
7. The mean is 9.261 and a 95%
confidence interval is (9.258,9.265). The linear fit indicates no drift in location since the slope parameter estimate is essentially zero.
8. The standard deviation is 0.023 with a 95% confidence interval of ($0.0207,0.0253$). Bartlett's test indicates no significant change in variation.
9. The lag 1 autocorrelation is 0.28 . From the autocorrelation plot, this is statistically significant at the 95\%
level.
10. The normal probability plot correlation coefficient is 0.999. At the 5\% level, normal probability plot correlation coefficient.
11. Check for outliers using Grubbs' test.
12. Print a univariate report (this assumes steps 2 thru 6 have already been run).
13. Grubbs' test detects no outliers at the 5\% level.
14. The results are summarized in a convenient report.

NIST SEMATECH

HOME
TOOLS \& AIDS
SEARCH
$\overline{\text { BACK }}$ NEXT

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies

1.4.2.9. Airplane Glass Failure Time

Airplane \quad This example illustrates the univariate analysis of airplane glass failure Glass
Failure
Time time data.

1. Background and Data
2. Graphical Output and Interpretation
3. Weibull Analysis
4. Lognormal Analysis
5. Gamma Analysis
6. Power Normal Analysis
7. Power Lognormal Analysis
8. Work This Example Yourself
9. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.9. Airplane Glass Failure Time

1.4.2.9.1. Background and Data

Generation
This data set was collected by Ed Fuller of NIST in December, 1993. The response variable is time to failure for airplane glass under test.

Purpose of The goal of this case study is to find a good distributional model for the Analysis data. Once a good distributional model has been determined, various percent points for glass failure will be computed.

Since the data are failure times, this case study is a form of reliability analysis. The assessing product reliability chapter contains a more complete discussion of reliabilty methods. This case study is meant to complement that chapter by showing the use of graphical techniques in one aspect of reliability modeling.

Failure times are basically extreme values that do not follow a normal distribution; non-parametric methods (techniques that do not rely on a specific distribution) are frequently recommended for developing confidence intervals for failure data. One problem with this approach is that sample sizes are often small due to the expense involved in collecting the data, and non-parametric methods do not work well for small sample sizes. For this reason, a parametric method based on a specific distributional model of the data is preferred if the data can be shown to follow a specific distribution. Parametric models typically have greater efficiency at the cost of more specific assumptions about the data, but, it is important to verify that the distributional assumption is indeed valid. If the distributional assumption is not justified, then the conclusions drawn from the model may not be valid.

This file can be read by Dataplot with the following commands:
SKIP 25
READ FULLER2.DAT Y

Resulting The following are the data used for this case study. Data
18.830
20.800
21.657
23.030
23.230
24.050
24.321
25.500
25.520
25.800
26.690
26.770
26.780
27.050
27.670
29.900
31.110
33.200
33.730
33.760
33.890
34.760
35.750
35.910
36.980
37.080
37.090
39.580
44.045
45.290
45.381

HOME
$\longdiv { \text { TOOLS \& AIDS } }$
SEARCH
BACK NEXT

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.9. Airplane Glass Failure Time

1.4.2.9.2. Graphical Output and Interpretation

Goal
The goal of this analysis is to determine a good distributional model for these failure time data. A secondary goal is to provide estimates for various percent points of the data. Percent points provide an answer to questions of the type "At what time do we expect 5% of the airplane glass to have failed?".

Initial Plots of the

Data
The first step is to generate a histogram to get an overall feel for the data.

The histogram shows the following:

- The failure times range between slightly greater than 15 to slightly less than 50 .
- There are modes at approximately 28 and 38 with a gap in-between.
- The data are somewhat symmetric, but with a gap in the middle.

We next generate a normal probability plot.

The normal probability plot has a correlation coefficient of 0.980 . We can use this number as a reference baseline when comparing the performance of other distributional fits.

Other Potential Distributions

There is a large number of distributions that would be distributional model candidates for the data. However, we will restrict ourselves to consideration of the following distributional models because these have proven to be useful in reliability studies.

1. Normal distribution
2. Exponential distribution
3. Weibull distribution
4. Lognormal distribution
5. Gamma distribution
6. Power normal distribution
7. Power lognormal distribution

Approach

Analyses for Specific Distributions

There are two basic questions that need to be addressed.

1. Does a given distributional model provide an adequate fit to the data?
2. Of the candidate distributional models, is there one distribution that fits the data better than the other candidate distributional models?
The use of probability plots and probability plot correlation coefficient (PPCC) plots provide answers to both of these questions.

If the distribution does not have a shape parameter, we simply generate a probability plot.

1. If we fit a straight line to the points on the probability plot, the intercept and slope of that line provide estimates of the location and scale parameters, respectively.
2. Our critierion for the "best fit" distribution is the one with the most linear probability plot. The correlation coefficient of the fitted line of the points on the probability plot, referred to as the PPCC value, provides a measure of the linearity of the probability plot, and thus a measure of how well the distribution fits the data. The PPCC values for multiple distributions can be compared to address the second question above.

If the distribution does have a shape parameter, then we are actually addressing a family of distributions rather than a single distribution. We first need to find the optimal value of the shape parameter. The PPCC plot can be used to determine the optimal parameter. We will use the PPCC plots in two stages. The first stage will be over a broad range of parameter values while the second stage will be in the neighborhood of the largest values. Although we could go further than two stages, for practical purposes two stages is sufficient. After determining an optimal value for the shape parameter, we use the probability plot as above to obtain estimates of the location and scale parameters and to determine the PPCC value. This PPCC value can be compared to the PPCC values obtained from other distributional models.

We analyzed the data using the approach described above for the following distributional models:

1. Normal distribution - from the 4-plot above, the PPCC value was 0.980 .
2. Exponential distribution - the exponential distribution is a special case of the Weibull with shape parameter equal to 1 . If the Weibull analysis yields a shape parameter close to 1 , then we would consider using the simpler exponential model.
3. Weibull distribution
4. Lognormal distribution
5. Gamma distribution
6. Power normal distribution
7. Power lognormal distribution

Summary of Results

The results are summarized below.
Normal Distribution
Max PPCC $=0.980$
Estimate of location $=30.81$
Estimate of scale $=7.38$
Weibull Distribution
Max PPCC = 0.988
Estimate of shape $=2.13$
Estimate of location $=15.9$
Estimate of scale $=16.92$
Lognormal Distribution
Max PPCC $=0.986$
Estimate of shape $=0.18$
Estimate of location $=-9.96$
Estimate of scale $=40.17$
Gamma Distribution
Max PPCC = 0.987
Estimate of shape $=11.8$
Estimate of location $=5.19$
Estimate of scale $=2.17$
Power Normal Distribution
Max PPCC = 0.987
Estimate of shape $=0.11$
Estimate of location $=20.9$
Estimate of scale $=3.3$
Power Lognormal Distribution
Max PPCC = 0.988
Estimate of shape $=50$
Estimate of location $=13.5$
Estimate of scale $=150.8$
These results indicate that several of these distributions provide an adequate distributional model for the data. We choose the 3-parameter Weibull distribution as the most appropriate model because it provides the best balance between simplicity and best fit.

Percent Point Estimates

Quantitative

Measures of
Goodness of Fit

The final step in this analysis is to compute percent point estimates for the 1%, $2.5 \%, 5 \%, 95 \%, 97.5 \%$, and 99% percent points. A percent point estimate is an estimate of the time by which a given percentage of the units will have failed. For example, the 5% point is the time at which we estimate 5% of the units will have failed.

To calculate these values, we use the Weibull percent point function with the appropriate estimates of the shape, location, and scale parameters. The Weibull percent point function can be computed in many general purpose statistical software programs, including Dataplot.

Dataplot generated the following estimates for the percent points:

```
Estimated percent points using Weibull Distribution
PERCENT POINT FAILURE TIME
0.01 17.86
0.02 18.92
0.05 20.10
0.95 44.21
0.97 47.11
0.99 50.53
```

Although it is generally unnecessary, we can include quantitative measures of distributional goodness-of-fit. Three of the commonly used measures are:

1. Chi-square goodness-of-fit.
2. Kolmogorov-Smirnov goodness-of-fit.
3. Anderson-Darling goodness-of-fit.

In this case, the sample size of 31 precludes the use of the chi-square test since the chi-square approximation is not valid for small sample sizes. Specifically, the smallest expected frequency should be at least 5 . Although we could combine classes, we will instead use one of the other tests. The Kolmogorov-Smirnov test requires a fully specified distribution. Since we need to use the data to estimate the shape, location, and scale parameters, we do not use this test here. The Anderson-Darling test is a refinement of the Kolmogorov-Smirnov test. We run this test for the normal, lognormal, and Weibull distributions.

Normal

Anderson-Darling
Output

ANDERSON-DARLING 1-SAMPLE TEST
THAT THE DATA CAME FROM A NORMAL DISTRIBUTION

1. STATISTICS:

| NUMBER OF OBSERVATIONS | $=$ | 31 |
| :--- | :--- | ---: |
| MEAN | $=$ | 30.81142 |
| STANDARD DEVIATION | $=$ | 7.253381 |
| | | |
| ANDERSON-DARLING TEST STATISTIC VALUE | $=$ | 0.5321903 |
| ADJUSTED TEST STATISTIC VALUE | $=$ | 0.5870153 |

2. CRITICAL VALUES:

| 90 | $\%$ POINT | $=0.6160000$ |
| :--- | :--- | :--- |
| 95 | $\%$ POINT | $=0.7350000$ |
| 97.5 | $\%$ POINT | $=0.8610000$ |
| 99 | $\%$ POINT | $=1.021000$ |

3. CONCLUSION (AT THE 5\% LEVEL) :

THE DATA DO COME FROM A NORMAL DISTRIBUTION.

Lognormal

Anderson-Darling
Output

```
** Anderson-Darling lognormal test y **
*****************************************
ANDERSON-DARLING 1-SAMPLE TEST
THAT THE DATA CAME FROM A LOGNORMAL DISTRIBUTION
```

1. STATISTICS:

| NUMBER OF OBSERVATIONS | $=$ | 31 |
| :--- | :--- | ---: |
| MEAN | $=$ | 3.401242 |
| STANDARD DEVIATION | $=$ | 0.2349026 |
| | | |
| ANDERSON-DARLING TEST STATISTIC VALUE | $=$ | 0.3888340 |
| ADJUSTED TEST STATISTIC VALUE | | $=0.4288908$ |

2. CRITICAL VALUES:

| 90 | $\%$ POINT | $=0.6160000$ |
| :--- | :--- | :--- |
| 95 | $\%$ POINT | $=0.7350000$ |
| 97.5 | $\%$ POINT | $=0.8610000$ |
| 99 | $\%$ POINT | $=1.021000$ |

3. CONCLUSION (AT THE 5\% LEVEL) :

THE DATA DO COME FROM A LOGNORMAL DISTRIBUTION.

Weibull

Anderson-Darling
Output

```
ANDERSON-DARLING 1-SAMPLE TEST
THAT THE DATA CAME FROM A WEIBULL DISTRIBUTION
```

1. STATISTICS:

| NUMBER OF OBSERVATIONS | $=$ | 31 |
| :--- | :--- | :---: |
| MEAN | $=$ | 30.81142 |

STANDARD DEVIATION = 7.253381
SHAPE PARAMETER $=4.635379$
SCALE PARAMETER $=33.67423$
ANDERSON-DARLING TEST STATISTIC VALUE $=0.5973396$
ADJUSTED TEST STATISTIC VALUE $=0.6187967$
2. CRITICAL VALUES:

| 90 | \circ POINT | $=$ | 0.6370000 |
| :--- | :--- | :--- | :--- |
| 95 | \% POINT | $=$ | 0.7570000 |
| 97.5 | \% POINT | $=$ | 0.8770000 |
| 99 | \% POINT | $=$ | 1.038000 |

3. CONCLUSION (AT THE 5\% LEVEL):
```
THE DATA DO COME FROM A WEIBULL DISTRIBUTION.
```

Note that for the Weibull distribution, the Anderson-Darling test is actually testing the 2-parameter Weibull distribution (based on maximum likelihood estimates), not the 3-parameter Weibull distribution. However, passing the 2-parameter Weibull distribution does give evidence that the Weibull is an appropriate distributional model even though we used a different parameter estimation method.

Conclusions The Anderson-Darling test passes all three of these distributions.
$\frac{\text { NIST }}{\text { SEMATECH }} \sqrt{\text { HOME }} \sqrt{\text { TOOLS \& AIDS }} \quad \sqrt{\text { SEARCH }} \quad \overline{\text { NEXT }}$

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.9. Airplane Glass Failure Time

1.4.2.9.3. Weibull Analysis

Plots for
Weibull
Distribution

Conclusions We can make the following conclusions from these plots.

1. The optimal value, in the sense of having the most linear probability plot, of the shape parameter gamma is 2.13 .
2. At the optimal value of the shape parameter, the PPCC value is 0.988 .
3. At the optimal value of the shape parameter, the estimate of the location parameter is 15.90 and the estimate of the scale parameter is 16.92 .
4. Fine tuning the estimate of gamma (from 2 to 2.13) has minimal impact on the PPCC value.

Alternative Plots

The Weibull plot and the Weibull hazard plot are alternative graphical analysis procedures to the PPCC plots and probability plots.

These two procedures, especially the Weibull plot, are very commonly employed. That not withstanding, the disadvantage of these two procedures is that they both assume that the location parameter (i.e., the lower bound) is zero and that we are fitting a 2-parameter Weibull instead of a 3-parameter Weibull. The advantage is that there is an extensive literature on these methods and they have been designed to work with either censored or uncensored data.

Weibull Plot

This Weibull plot shows the following

1. The Weibull plot is approximately linear indicating that the 2-parameter Weibull provides an adequate fit to the data.
2. The estimate of the shape parameter is 5.28 and the estimate of the scale parameter is 33.32 .

Weibull Hazard Plot

The construction and interpretation of the Weibull hazard plot is discussed in the Assessing Product Reliability chapter.

HOME
TOOLS \& AIDS
SEARCH
BACK NEXT

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.9. Airplane Glass Failure Time

1.4.2.9.4. Lognormal Analysis

Plots for Lognormal
Distribution

Conclusions We can make the following conclusions from these plots.

1. The optimal value, in the sense of having the most linear probability plot, of the shape parameter σ is 0.18 .
2. At the optimal value of the shape parameter, the PPCC value is 0.986 .
3. At the optimal value of the shape parameter, the estimate of the location parameter is -9.96 and the estimate of the scale parameter is 40.17 .
4. Fine tuning the estimate of the shape parameter (from 0.2 to 0.18) has minimal impact on the PPCC value.

NIST

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.9. Airplane Glass Failure Time

1.4.2.9.5. Gamma Analysis

Plots for
Gamma
Distribution

Conclusions We can make the following conclusions from these plots.

1. The optimal value, in the sense of having the most linear probability plot, of the shape parameter γ is 11.8 .
2. At the optimal value of the shape parameter, the PPCC value is 0.987.
3. At the optimal value of the shape parameter, the estimate of the location parameter is 5.19 and the estimate of the scale parameter is 2.17 .
4. Fine tuning the estimate of γ (from 12 to 11.8) has some impact on the PPCC value (from 0.978 to 0.987).

NIST

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.9. Airplane Glass Failure Time

1.4.2.9.6. Power Normal Analysis

Plots for
Power
Normal
Distribution

Conclusions We can make the following conclusions from these plots.

1. A reasonable value, in the sense of having the most linear probability plot, of the shape parameter p is 0.11 .
2. At the this value of the shape parameter, the PPCC value is 0.987 .
3. At the optimal value of the shape parameter, the estimate of the location parameter is 20.9 and the estimate of the scale parameter is 3.3 .
4. Fine tuning the estimate of p (from 1 to 0.11) results in a slight improvement of the the computed PPCC value (from 0.980 to 0.987).
1.4.2.9.6. Power Normal Analysis

NIST

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.9. Airplane Glass Failure Time

1.4.2.9.7. Power Lognormal Analysis

Plots for
Power
Lognormal
Distribution

Conclusions We can make the following conclusions from these plots.

1. A reasonable value, in the sense of having the most linear probability plot, of the shape parameter p is 100 (i.e., p is asymptotically increasing).
2. At this value of the shape parameter, the PPCC value is 0.987 .
3. At this value of the shape parameter, the estimate of the location parameter is 12.01 and the estimate of the scale parameter is 212.92.
4. Fine tuning the estimate of p (from 50 to 100) has minimal impact on the PPCC value.
1.4.2.9.7. Power Lognormal Analysis

NIST

SEMATECH
HOME
BACK NEXT

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.9. Airplane Glass Failure Time

1.4.2.9.8. Work This Example Yourself

Dataplot
Macro for
this Case
Study

View This page allows you to repeat the analysis outlined in the case study description on the previous page using Dataplot. It is required that you have already downloaded and installed Dataplot and configured your browser. to run Dataplot. Output from each analysis step below will be displayed in one or more of the Dataplot windows. The four main windows are the Output window, the Graphics window, the Command History window, and the data sheet window. Across the top of the main windows there are menus for executing Dataplot commands. Across the bottom is a command entry window where commands can be typed in.

| Data Analysis Steps | Results and Conclusions |
| :--- | :---: |
| Click on the links below to start Dataplot and run this case study
 yourself. Each step may use results from previous steps, so please be
 patient. Wait until the software verifies that the current step is
 complete before clicking on the next step. | The links in this column will connect you with more detailed information
 about each analysis step from the case study description. |

1. Invoke Dataplot and read data.
2. Read in the data.
3. You have read 1 column of numbers into Dataplot, variable Y.
4. 4-plot of the data.

The links in this column will connect you with more detailed information about each analysis step from the case study description.

| 2. 4-plot of the data. |
| :--- |
| 1. 4-plot of Y. |

1. 4-plot of Y.
2. The failure times are in the range 15 to 50. The histogram and normal probability plot indicate a normal distribution fits the data reasonably well, but we can probably do better.
3. Generate the Weibull analysis.
4. Generate 2 iterations of the Weibull PPCC plot, a Weibull probability plot, and estimate some percent points.
5. Generate a Weibull plot.
6. The Weibull analysis results in a maximum PPCC value of 0.988 .
7. The Weibull plot permits the estimation of a 2-parameter Weibull model.

1.4.2.9.8. Work This Example Yourself

3. Generate a Weibull hazard plot.
4. Generate the lognormal analysis.
5. Generate 2 iterations of the lognormal PPCC plot and a lognormal probability plot.
6. The Weibull hazard plot is approximately linear, indicating
that the Weibull provides a good distributional model for these data.
7. The lognormal analysis results in a maximum PPCC value of 0.986 .
8. Generate the gamma analysis.
9. Generate 2 iterations of the gamma PPCC plot and a gamma probability plot.
10. The gamma analysis results in a maximum PPCC value of 0.987 .
11. Generate the power normal analysis.
12. Generate 2 iterations of the power normal PPCC plot and a power normal probability plot.
13. Generate the power lognormal analysis.
14. Generate 2 iterations of the power lognormal PPCC plot and a power lognormal probability plot.
15. Generate quantitative goodness of fit tests
16. Generate Anderson-Darling test
for normality.
17. Generate Anderson-Darling test for lognormal distribution.
18. Generate Anderson-Darling test for Weibull distribution.
19. The power lognormal analysis results in a maximum PPCC value of 0.987 .
20. The Anderson-Darling normality test indicates the normal distribution provides an adequate fit to the data.
21. The Anderson-Darling lognormal test indicates the lognormal distribution provides an adequate fit to the data.
22. The Anderson-Darling Weibull test indicates the lognormal distribution provides an adequate fit to the data.
NIST $\sqrt{\text { HOME }}$ TOOLS \& AIDS $\sqrt{\text { SEARCH }}$ BACK $\overline{\text { NEXT }}$
23. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies

1.4.2.10. Ceramic Strength

Ceramic This case study analyzes the effect of machining factors on the strength Strength of ceramics.

1. Background and Data
2. Analysis of the Response Variable
3. Analysis of Batch Effect
4. Analysis of Lab Effect
5. Analysis of Primary Factors
6. Work This Example Yourself

HOME
BACK NEXT

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.10. Ceramic Strength

1.4.2.10.1. Background and Data

Generation The data for this case study were collected by Said Jahanmir of the NIST Ceramics Division in 1996 in connection with a NIST/industry ceramics consortium for strength optimization of ceramic strength

The motivation for studying this data set is to illustrate the analysis of multiple factors from a designed experiment

This case study will utilize only a subset of a full study that was conducted by Lisa Gill and James Filliben of the NIST Statistical Engineering Division

The response variable is a measure of the strength of the ceramic material (bonded S_{i} nitrate). The complete data set contains the following variables:

1. Factor $1=$ Observation ID, i.e., run number (1 to 960)
2. Factor $2=\mathrm{Lab}$ (1 to 8)
3. Factor $3=$ Bar ID within lab (1 to 30)
4. Factor $4=$ Test number (1 to 4)
5. Response Variable $=$ Strength of Ceramic
6. Factor $5=$ Table speed (2 levels: 0.025 and 0.125)
7. Factor $6=$ Down feed rate (2 levels: 0.050 and 0.125)
8. Factor $7=$ Wheel grit size (2 levels: 150 and 80)
9. Factor $8=$ Direction (2 levels: longitudinal and transverse)
10. Factor $9=$ Treatment (1 to 16)
11. Factor $10=$ Set of 15 within lab (2 levels: 1 and 2)
12. Factor $11=$ Replication (2 levels: 1 and 2)
13. Factor $12=$ Bar Batch (1 and 2)

The four primary factors of interest are:

1. Table speed (X1)
2. Down feed rate (X2)
3. Wheel grit size (X3)

4. Direction (X4)

For this case study, we are using only half the data. Specifically, we are using the data with the direction longitudinal. Therefore, we have only three primary factors

In addtion, we are interested in the nuisance factors

1. Lab
2. Batch

The complete file can be read into Dataplot with the following commands:

```
DIMENSION 20 VARIABLES
SKIP 50
READ JAHANMI2.DAT RUN RUN LAB BAR SET Y X1 TO X8 BATCH
```

Purpose of The goals of this case study are:
Analysis

Resulting The following are the data used for this case study

Data

| Run | Lab | Batch | Y | X1 | X2 | X3 |
| ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 608.781 | -1 | -1 | -1 |
| 2 | 1 | 2 | 569.670 | -1 | -1 | -1 |
| 3 | 1 | 1 | 689.556 | -1 | -1 | -1 |
| 4 | 1 | 2 | 747.541 | -1 | -1 | -1 |
| 5 | 1 | 1 | 618.134 | -1 | -1 | -1 |
| 6 | 1 | 2 | 612.182 | -1 | -1 | -1 |
| 7 | 1 | 1 | 680.203 | -1 | -1 | -1 |
| 8 | 1 | 2 | 607.766 | -1 | -1 | -1 |
| 9 | 1 | 1 | 726.232 | -1 | -1 | -1 |
| 10 | 1 | 2 | 605.380 | -1 | -1 | -1 |
| 11 | 1 | 1 | 518.655 | -1 | -1 | -1 |
| 12 | 1 | 2 | 589.226 | -1 | -1 | -1 |

| 13 | 1 | 1 | 740.447 | -1 | -1 | -1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | 1 | 2 | 588.375 | -1 | -1 | -1 |
| 15 | 1 | 1 | 666.830 | -1 | -1 | -1 |
| 16 | 1 | 2 | 531.384 | -1 | -1 | -1 |
| 17 | 1 | 1 | 710.272 | -1 | -1 | -1 |
| 18 | 1 | 2 | 633.417 | -1 | -1 | -1 |
| 19 | 1 | 1 | 751.669 | -1 | -1 | -1 |
| 20 | 1 | 2 | 619.060 | -1 | -1 | -1 |
| 21 | 1 | 1 | 697.979 | -1 | -1 | -1 |
| 22 | 1 | 2 | 632.447 | -1 | -1 | -1 |
| 23 | 1 | 1 | 708.583 | -1 | -1 | -1 |
| 24 | 1 | 2 | 624.256 | -1 | -1 | -1 |
| 25 | 1 | 1 | 624.972 | -1 | -1 | -1 |
| 26 | 1 | 2 | 575.143 | -1 | -1 | -1 |
| 27 | 1 | 1 | 695.070 | -1 | -1 | -1 |
| 28 | 1 | 2 | 549.278 | -1 | -1 | -1 |
| 29 | 1 | 1 | 769.391 | -1 | -1 | -1 |
| 30 | 1 | 2 | 624.972 | -1 | -1 | -1 |
| 61 | 1 | 1 | 720.186 | -1 | 1 | 1 |
| 62 | 1 | 2 | 587.695 | -1 | 1 | 1 |
| 63 | 1 | 1 | 723.657 | -1 | 1 | 1 |
| 64 | 1 | 2 | 569.207 | -1 | 1 | 1 |
| 65 | 1 | 1 | 703.700 | -1 | 1 | 1 |
| 66 | 1 | 2 | 613.257 | -1 | 1 | 1 |
| 67 | 1 | 1 | 697.626 | -1 | 1 | 1 |
| 68 | 1 | 2 | 565.737 | -1 | 1 | 1 |
| 69 | 1 | 1 | 714.980 | -1 | 1 | 1 |
| 70 | 1 | 2 | 662.131 | -1 | 1 | 1 |
| 71 | 1 | 1 | 657.712 | -1 | 1 | 1 |
| 72 | 1 | 2 | 543.177 | -1 | 1 | 1 |
| 73 | 1 | 1 | 609.989 | -1 | 1 | 1 |
| 74 | 1 | 2 | 512.394 | -1 | 1 | 1 |
| 75 | 1 | 1 | 650.771 | -1 | 1 | 1 |
| 76 | 1 | 2 | 611.190 | -1 | 1 | 1 |
| 77 | 1 | 1 | 707.977 | -1 | 1 | 1 |
| 78 | 1 | 2 | 659.982 | -1 | 1 | 1 |
| 79 | 1 | 1 | 712.199 | -1 | 1 | 1 |
| 80 | 1 | 2 | 569.245 | -1 | 1 | 1 |
| 81 | 1 | 1 | 709.631 | -1 | 1 | 1 |
| 82 | 1 | 2 | 725.792 | -1 | 1 | 1 |
| 83 | 1 | 1 | 703.160 | -1 | 1 | 1 |
| 84 | 1 | 2 | 608.960 | -1 | 1 | 1 |
| 85 | 1 | 1 | 744.822 | -1 | 1 | 1 |
| 86 | 1 | 2 | 586.060 | -1 | 1 | 1 |
| 87 | 1 | 1 | 719.217 | -1 | 1 | 1 |
| 88 | 1 | 2 | 617.441 | -1 | 1 | 1 |

1.4.2.10.1. Background and Data

| 89 | 1 | 1 | 619.137 | -1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 90 | 1 | 2 | 592.845 | -1 | 1 | 1 |
| 151 | 2 | 1 | 753.333 | 1 | 1 | 1 |
| 152 | 2 | 2 | 631.754 | 1 | 1 | 1 |
| 153 | 2 | 1 | 677.933 | 1 | 1 | 1 |
| 154 | 2 | 2 | 588.113 | 1 | 1 | 1 |
| 155 | 2 | 1 | 735.919 | 1 | 1 | 1 |
| 156 | 2 | 2 | 555.724 | 1 | 1 | 1 |
| 157 | 2 | 1 | 695.274 | 1 | 1 | 1 |
| 158 | 2 | 2 | 702.411 | 1 | 1 | 1 |
| 159 | 2 | 1 | 504.167 | 1 | 1 | 1 |
| 160 | 2 | 2 | 631.754 | 1 | 1 | 1 |
| 161 | 2 | 1 | 693.333 | 1 | 1 | 1 |
| 162 | 2 | 2 | 698.254 | 1 | 1 | 1 |
| 163 | 2 | 1 | 625.000 | 1 | 1 | 1 |
| 164 | 2 | 2 | 616.791 | 1 | 1 | 1 |
| 165 | 2 | 1 | 596.667 | 1 | 1 | 1 |
| 166 | 2 | 2 | 551.953 | 1 | 1 | 1 |
| 167 | 2 | 1 | 640.898 | 1 | 1 | 1 |
| 168 | 2 | 2 | 636.738 | 1 | 1 | 1 |
| 169 | 2 | 1 | 720.506 | 1 | 1 | 1 |
| 170 | 2 | 2 | 571.551 | 1 | 1 | 1 |
| 171 | 2 | 1 | 700.748 | 1 | 1 | 1 |
| 172 | 2 | 2 | 521.667 | 1 | 1 | 1 |
| 173 | 2 | 1 | 691.604 | 1 | 1 | 1 |
| 174 | 2 | 2 | 587.451 | 1 | 1 | 1 |
| 175 | 2 | 1 | 636.738 | 1 | 1 | 1 |
| 176 | 2 | 2 | 700.422 | 1 | 1 | 1 |
| 177 | 2 | 1 | 731.667 | 1 | 1 | 1 |
| 178 | 2 | 2 | 595.819 | 1 | 1 | 1 |
| 179 | 2 | 1 | 635.079 | 1 | 1 | 1 |
| 180 | 2 | 2 | 534.236 | 1 | 1 | 1 |
| 181 | 2 | 1 | 716.926 | 1 | -1 | -1 |
| 182 | 2 | 2 | 606.188 | 1 | -1 | -1 |
| 183 | 2 | 1 | 759.581 | 1 | -1 | -1 |
| 184 | 2 | 2 | 575.303 | 1 | -1 | -1 |
| 185 | 2 | 1 | 673.903 | 1 | -1 | -1 |
| 186 | 2 | 2 | 590.628 | 1 | -1 | -1 |
| 187 | 2 | 1 | 736.648 | 1 | -1 | -1 |
| 188 | 2 | 2 | 729.314 | 1 | -1 | -1 |
| 189 | 2 | 1 | 675.957 | 1 | -1 | -1 |
| 190 | 2 | 2 | 619.313 | 1 | -1 | -1 |
| 191 | 2 | 1 | 729.230 | 1 | -1 | -1 |
| 192 | 2 | 2 | 624.234 | 1 | -1 | -1 |
| 193 | 2 | 1 | 697.239 | 1 | -1 | -1 |
| 194 | 2 | 2 | 651.304 | 1 | -1 | -1 |

| 195 | 2 | 1 | 728.499 | 1 | -1 | -1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 196 | 2 | 2 | 724.175 | 1 | -1 | -1 |
| 197 | 2 | 1 | 797.662 | 1 | -1 | -1 |
| 198 | 2 | 2 | 583.034 | 1 | -1 | -1 |
| 199 | 2 | 1 | 668.530 | 1 | -1 | -1 |
| 200 | 2 | 2 | 620.227 | 1 | -1 | -1 |
| 201 | 2 | 1 | 815.754 | 1 | -1 | -1 |
| 202 | 2 | 2 | 584.861 | 1 | -1 | -1 |
| 203 | 2 | 1 | 777.392 | 1 | -1 | -1 |
| 204 | 2 | 2 | 565.391 | 1 | -1 | -1 |
| 205 | 2 | 1 | 712.140 | 1 | -1 | -1 |
| 206 | 2 | 2 | 622.506 | 1 | -1 | -1 |
| 207 | 2 | 1 | 663.622 | 1 | -1 | -1 |
| 208 | 2 | 2 | 628.336 | 1 | -1 | -1 |
| 209 | 2 | 1 | 684.181 | 1 | -1 | -1 |
| 210 | 2 | 2 | 587.145 | 1 | -1 | -1 |
| 271 | 3 | 1 | 629.012 | 1 | -1 | 1 |
| 272 | 3 | 2 | 584.319 | 1 | -1 | 1 |
| 273 | 3 | 1 | 640.193 | 1 | -1 | 1 |
| 274 | 3 | 2 | 538.239 | 1 | -1 | 1 |
| 275 | 3 | 1 | 644.156 | 1 | -1 | 1 |
| 276 | 3 | 2 | 538.097 | 1 | -1 | 1 |
| 277 | 3 | 1 | 642.469 | 1 | -1 | 1 |
| 278 | 3 | 2 | 595.686 | 1 | -1 | 1 |
| 279 | 3 | 1 | 639.090 | 1 | -1 | 1 |
| 280 | 3 | 2 | 648.935 | 1 | -1 | 1 |
| 281 | 3 | 1 | 439.418 | 1 | -1 | 1 |
| 282 | 3 | 2 | 583.827 | 1 | -1 | 1 |
| 283 | 3 | 1 | 614.664 | 1 | -1 | 1 |
| 284 | 3 | 2 | 534.905 | 1 | -1 | 1 |
| 285 | 3 | 1 | 537.161 | 1 | -1 | 1 |
| 286 | 3 | 2 | 569.858 | 1 | -1 | 1 |
| 287 | 3 | 1 | 656.773 | 1 | -1 | 1 |
| 288 | 3 | 2 | 617.246 | 1 | -1 | 1 |
| 289 | 3 | 1 | 659.534 | 1 | -1 | 1 |
| 290 | 3 | 2 | 610.337 | 1 | -1 | 1 |
| 291 | 3 | 1 | 695.278 | 1 | -1 | 1 |
| 292 | 3 | 2 | 584.192 | 1 | -1 | 1 |
| 293 | 3 | 1 | 734.040 | 1 | -1 | 1 |
| 294 | 3 | 2 | 598.853 | 1 | -1 | 1 |
| 295 | 3 | 1 | 687.665 | 1 | -1 | 1 |
| 296 | 3 | 2 | 554.774 | 1 | -1 | 1 |
| 297 | 3 | 1 | 710.858 | 1 | -1 | 1 |
| 298 | 3 | 2 | 605.694 | 1 | -1 | 1 |
| 299 | 3 | 1 | 701.716 | 1 | -1 | 1 |
| 300 | 3 | 2 | 627.516 | 1 | -1 | 1 |

| 301 | 3 | 1 | 382.133 | 1 | 1 | -1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 302 | 3 | 2 | 574.522 | 1 | 1 | -1 |
| 303 | 3 | 1 | 719.744 | 1 | 1 | -1 |
| 304 | 3 | 2 | 582.682 | 1 | 1 | -1 |
| 305 | 3 | 1 | 756.820 | 1 | 1 | -1 |
| 306 | 3 | 2 | 563.872 | 1 | 1 | -1 |
| 307 | 3 | 1 | 690.978 | 1 | 1 | -1 |
| 308 | 3 | 2 | 715.962 | 1 | 1 | -1 |
| 309 | 3 | 1 | 670.864 | 1 | 1 | -1 |
| 310 | 3 | 2 | 616.430 | 1 | 1 | -1 |
| 311 | 3 | 1 | 670.308 | 1 | 1 | -1 |
| 312 | 3 | 2 | 778.011 | 1 | 1 | -1 |
| 313 | 3 | 1 | 660.062 | 1 | 1 | -1 |
| 314 | 3 | 2 | 604.255 | 1 | 1 | -1 |
| 315 | 3 | 1 | 790.382 | 1 | 1 | -1 |
| 316 | 3 | 2 | 571.906 | 1 | 1 | -1 |
| 317 | 3 | 1 | 714.750 | 1 | 1 | -1 |
| 318 | 3 | 2 | 625.925 | 1 | 1 | -1 |
| 319 | 3 | 1 | 716.959 | 1 | 1 | -1 |
| 320 | 3 | 2 | 682.426 | 1 | 1 | -1 |
| 321 | 3 | 1 | 603.363 | 1 | 1 | -1 |
| 322 | 3 | 2 | 707.604 | 1 | 1 | -1 |
| 323 | 3 | 1 | 713.796 | 1 | 1 | -1 |
| 324 | 3 | 2 | 617.400 | 1 | 1 | -1 |
| 325 | 3 | 1 | 444.963 | 1 | 1 | -1 |
| 326 | 3 | 2 | 689.576 | 1 | 1 | -1 |
| 327 | 3 | 1 | 723.276 | 1 | 1 | -1 |
| 328 | 3 | 2 | 676.678 | 1 | 1 | -1 |
| 329 | 3 | 1 | 745.527 | 1 | 1 | -1 |
| 330 | 3 | 2 | 563.290 | 1 | 1 | -1 |
| 361 | 4 | 1 | 778.333 | -1 | -1 | 1 |
| 362 | 4 | 2 | 581.879 | -1 | -1 | 1 |
| 363 | 4 | 1 | 723.349 | -1 | -1 | 1 |
| 364 | 4 | 2 | 447.701 | -1 | -1 | 1 |
| 365 | 4 | 1 | 708.229 | -1 | -1 | 1 |
| 366 | 4 | 2 | 557.772 | -1 | -1 | 1 |
| 367 | 4 | 1 | 681.667 | -1 | -1 | 1 |
| 368 | 4 | 2 | 593.537 | -1 | -1 | 1 |
| 369 | 4 | 1 | 566.085 | -1 | -1 | 1 |
| 370 | 4 | 2 | 632.585 | -1 | -1 | 1 |
| 371 | 4 | 1 | 687.448 | -1 | -1 | 1 |
| 372 | 4 | 2 | 671.350 | -1 | -1 | 1 |
| 373 | 4 | 1 | 597.500 | -1 | -1 | 1 |
| 374 | 4 | 2 | 569.530 | -1 | -1 | 1 |
| 375 | 4 | 1 | 637.410 | -1 | -1 | 1 |
| 376 | 4 | 2 | 581.667 | -1 | -1 | 1 |

1.4.2.10.1. Background and Data

| 377 | 4 | 1 | 755.864 | -1 | -1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 378 | 4 | 2 | 643.449 | -1 | -1 | 1 |
| 379 | 4 | 1 | 692.945 | -1 | -1 | 1 |
| 380 | 4 | 2 | 581.593 | -1 | -1 | 1 |
| 381 | 4 | 1 | 766.532 | -1 | -1 | 1 |
| 382 | 4 | 2 | 494.122 | -1 | -1 | 1 |
| 383 | 4 | 1 | 725.663 | -1 | -1 | 1 |
| 384 | 4 | 2 | 620.948 | -1 | -1 | 1 |
| 385 | 4 | 1 | 698.818 | -1 | -1 | 1 |
| 386 | 4 | 2 | 615.903 | -1 | -1 | 1 |
| 387 | 4 | 1 | 760.000 | -1 | -1 | 1 |
| 388 | 4 | 2 | 606.667 | -1 | -1 | 1 |
| 389 | 4 | 1 | 775.272 | -1 | -1 | 1 |
| 390 | 4 | 2 | 579.167 | -1 | -1 | 1 |
| 421 | 4 | 1 | 708.885 | -1 | 1 | -1 |
| 422 | 4 | 2 | 662.510 | -1 | 1 | -1 |
| 423 | 4 | 1 | 727.201 | -1 | 1 | -1 |
| 424 | 4 | 2 | 436.237 | -1 | 1 | -1 |
| 425 | 4 | 1 | 642.560 | -1 | 1 | -1 |
| 426 | 4 | 2 | 644.223 | -1 | 1 | -1 |
| 427 | 4 | 1 | 690.773 | -1 | 1 | -1 |
| 428 | 4 | 2 | 586.035 | -1 | 1 | -1 |
| 429 | 4 | 1 | 688.333 | -1 | 1 | -1 |
| 430 | 4 | 2 | 620.833 | -1 | 1 | -1 |
| 431 | 4 | 1 | 743.973 | -1 | 1 | -1 |
| 432 | 4 | 2 | 652.535 | -1 | 1 | -1 |
| 433 | 4 | 1 | 682.461 | -1 | 1 | -1 |
| 434 | 4 | 2 | 593.516 | -1 | 1 | -1 |
| 435 | 4 | 1 | 761.430 | -1 | 1 | -1 |
| 436 | 4 | 2 | 587.451 | -1 | 1 | -1 |
| 437 | 4 | 1 | 691.542 | -1 | 1 | -1 |
| 438 | 4 | 2 | 570.964 | -1 | 1 | -1 |
| 439 | 4 | 1 | 643.392 | -1 | 1 | -1 |
| 440 | 4 | 2 | 645.192 | -1 | 1 | -1 |
| 441 | 4 | 1 | 697.075 | -1 | 1 | -1 |
| 442 | 4 | 2 | 540.079 | -1 | 1 | -1 |
| 443 | 4 | 1 | 708.229 | -1 | 1 | -1 |
| 444 | 4 | 2 | 707.117 | -1 | 1 | -1 |
| 445 | 4 | 1 | 746.467 | -1 | 1 | -1 |
| 446 | 4 | 2 | 621.779 | -1 | 1 | -1 |
| 447 | 4 | 1 | 744.819 | -1 | 1 | -1 |
| 448 | 4 | 2 | 585.777 | -1 | 1 | -1 |
| 449 | 4 | 1 | 655.029 | -1 | 1 | -1 |
| 450 | 4 | 2 | 703.980 | -1 | 1 | -1 |
| 541 | 5 | 1 | 715.224 | -1 | -1 | -1 |
| 542 | 5 | 2 | 698.237 | -1 | -1 | -1 |

| 543 | 5 | 1 | 614.417 | -1 | -1 | -1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 544 | 5 | 2 | 757.120 | -1 | -1 | -1 |
| 545 | 5 | 1 | 761.363 | -1 | -1 | -1 |
| 546 | 5 | 2 | 621.751 | -1 | -1 | -1 |
| 547 | 5 | 1 | 716.106 | -1 | -1 | -1 |
| 548 | 5 | 2 | 472.125 | -1 | -1 | -1 |
| 549 | 5 | 1 | 659.502 | -1 | -1 | -1 |
| 550 | 5 | 2 | 612.700 | -1 | -1 | -1 |
| 551 | 5 | 1 | 730.781 | -1 | -1 | -1 |
| 552 | 5 | 2 | 583.170 | -1 | -1 | -1 |
| 553 | 5 | 1 | 546.928 | -1 | -1 | -1 |
| 554 | 5 | 2 | 599.771 | -1 | -1 | -1 |
| 555 | 5 | 1 | 734.203 | -1 | -1 | -1 |
| 556 | 5 | 2 | 549.227 | -1 | -1 | -1 |
| 557 | 5 | 1 | 682.051 | -1 | -1 | -1 |
| 558 | 5 | 2 | 605.453 | -1 | -1 | -1 |
| 559 | 5 | 1 | 701.341 | -1 | -1 | -1 |
| 560 | 5 | 2 | 569.599 | -1 | -1 | -1 |
| 561 | 5 | 1 | 759.729 | -1 | -1 | -1 |
| 562 | 5 | 2 | 637.233 | -1 | -1 | -1 |
| 563 | 5 | 1 | 689.942 | -1 | -1 | -1 |
| 564 | 5 | 2 | 621.774 | -1 | -1 | -1 |
| 565 | 5 | 1 | 769.424 | -1 | -1 | -1 |
| 566 | 5 | 2 | 558.041 | -1 | -1 | -1 |
| 567 | 5 | 1 | 715.286 | -1 | -1 | -1 |
| 568 | 5 | 2 | 583.170 | -1 | -1 | -1 |
| 569 | 5 | 1 | 776.197 | -1 | -1 | -1 |
| 570 | 5 | 2 | 345.294 | -1 | -1 | -1 |
| 571 | 5 | 1 | 547.099 | 1 | -1 | 1 |
| 572 | 5 | 2 | 570.999 | 1 | -1 | 1 |
| 573 | 5 | 1 | 619.942 | 1 | -1 | 1 |
| 574 | 5 | 2 | 603.232 | 1 | -1 | 1 |
| 575 | 5 | 1 | 696.046 | 1 | -1 | 1 |
| 576 | 5 | 2 | 595.335 | 1 | -1 | 1 |
| 577 | 5 | 1 | 573.109 | 1 | -1 | 1 |
| 578 | 5 | 2 | 581.047 | 1 | -1 | 1 |
| 579 | 5 | 1 | 638.794 | 1 | -1 | 1 |
| 580 | 5 | 2 | 455.878 | 1 | -1 | 1 |
| 581 | 5 | 1 | 708.193 | 1 | -1 | 1 |
| 582 | 5 | 2 | 627.880 | 1 | -1 | 1 |
| 583 | 5 | 1 | 502.825 | 1 | -1 | 1 |
| 584 | 5 | 2 | 464.085 | 1 | -1 | 1 |
| 585 | 5 | 1 | 632.633 | 1 | -1 | 1 |
| 586 | 5 | 2 | 596.129 | 1 | -1 | 1 |
| 587 | 5 | 1 | 683.382 | 1 | -1 | 1 |
| 588 | 5 | 2 | 640.371 | 1 | -1 | 1 |

| 589 | 5 | 1 | 684.812 | 1 | -1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 590 | 5 | 2 | 621.471 | 1 | -1 | 1 |
| 591 | 5 | 1 | 738.161 | 1 | -1 | 1 |
| 592 | 5 | 2 | 612.727 | 1 | -1 | 1 |
| 593 | 5 | 1 | 671.492 | 1 | -1 | 1 |
| 594 | 5 | 2 | 606.460 | 1 | -1 | 1 |
| 595 | 5 | 1 | 709.771 | 1 | -1 | 1 |
| 596 | 5 | 2 | 571.760 | 1 | -1 | 1 |
| 597 | 5 | 1 | 685.199 | 1 | -1 | 1 |
| 598 | 5 | 2 | 599.304 | 1 | -1 | 1 |
| 599 | 5 | 1 | 624.973 | 1 | -1 | 1 |
| 600 | 5 | 2 | 579.459 | 1 | -1 | 1 |
| 601 | 6 | 1 | 757.363 | 1 | 1 | 1 |
| 602 | 6 | 2 | 761.511 | 1 | 1 | 1 |
| 603 | 6 | 1 | 633.417 | 1 | 1 | 1 |
| 604 | 6 | 2 | 566.969 | 1 | 1 | 1 |
| 605 | 6 | 1 | 658.754 | 1 | 1 | 1 |
| 606 | 6 | 2 | 654.397 | 1 | 1 | 1 |
| 607 | 6 | 1 | 664.666 | 1 | 1 | 1 |
| 608 | 6 | 2 | 611.719 | 1 | 1 | 1 |
| 609 | 6 | 1 | 663.009 | 1 | 1 | 1 |
| 610 | 6 | 2 | 577.409 | 1 | 1 | 1 |
| 611 | 6 | 1 | 773.226 | 1 | 1 | 1 |
| 612 | 6 | 2 | 576.731 | 1 | 1 | 1 |
| 613 | 6 | 1 | 708.261 | 1 | 1 | 1 |
| 614 | 6 | 2 | 617.441 | 1 | 1 | 1 |
| 615 | 6 | 1 | 739.086 | 1 | 1 | 1 |
| 616 | 6 | 2 | 577.409 | 1 | 1 | 1 |
| 617 | 6 | 1 | 667.786 | 1 | 1 | 1 |
| 618 | 6 | 2 | 548.957 | 1 | 1 | 1 |
| 619 | 6 | 1 | 674.481 | 1 | 1 | 1 |
| 620 | 6 | 2 | 623.315 | 1 | 1 | 1 |
| 621 | 6 | 1 | 695.688 | 1 | 1 | 1 |
| 622 | 6 | 2 | 621.761 | 1 | 1 | 1 |
| 623 | 6 | 1 | 588.288 | 1 | 1 | 1 |
| 624 | 6 | 2 | 553.978 | 1 | 1 | 1 |
| 625 | 6 | 1 | 545.610 | 1 | 1 | 1 |
| 626 | 6 | 2 | 657.157 | 1 | 1 | 1 |
| 627 | 6 | 1 | 752.305 | 1 | 1 | 1 |
| 628 | 6 | 2 | 610.882 | 1 | 1 | 1 |
| 629 | 6 | 1 | 684.523 | 1 | 1 | 1 |
| 630 | 6 | 2 | 552.304 | 1 | 1 | 1 |
| 631 | 6 | 1 | 717.159 | -1 | 1 | -1 |
| 632 | 6 | 2 | 545.303 | -1 | 1 | -1 |
| 633 | 6 | 1 | 721.343 | -1 | 1 | -1 |
| 634 | 6 | 2 | 651.934 | -1 | 1 | -1 |

| 635 | 6 | 1 | 750.623 | -1 | 1 | -1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 636 | 6 | 2 | 635.240 | -1 | 1 | -1 |
| 637 | 6 | 1 | 776.488 | -1 | 1 | -1 |
| 638 | 6 | 2 | 641.083 | -1 | 1 | -1 |
| 639 | 6 | 1 | 750.623 | -1 | 1 | -1 |
| 640 | 6 | 2 | 645.321 | -1 | 1 | -1 |
| 641 | 6 | 1 | 600.840 | -1 | 1 | -1 |
| 642 | 6 | 2 | 566.127 | -1 | 1 | -1 |
| 643 | 6 | 1 | 686.196 | -1 | 1 | -1 |
| 644 | 6 | 2 | 647.844 | -1 | 1 | -1 |
| 645 | 6 | 1 | 687.870 | -1 | 1 | -1 |
| 646 | 6 | 2 | 554.815 | -1 | 1 | -1 |
| 647 | 6 | 1 | 725.527 | -1 | 1 | -1 |
| 648 | 6 | 2 | 620.087 | -1 | 1 | -1 |
| 649 | 6 | 1 | 658.796 | -1 | 1 | -1 |
| 650 | 6 | 2 | 711.301 | -1 | 1 | -1 |
| 651 | 6 | 1 | 690.380 | -1 | 1 | -1 |
| 652 | 6 | 2 | 644.355 | -1 | 1 | -1 |
| 653 | 6 | 1 | 737.144 | -1 | 1 | -1 |
| 654 | 6 | 2 | 713.812 | -1 | 1 | -1 |
| 655 | 6 | 1 | 663.851 | -1 | 1 | -1 |
| 656 | 6 | 2 | 696.707 | -1 | 1 | -1 |
| 657 | 6 | 1 | 766.630 | -1 | 1 | -1 |
| 658 | 6 | 2 | 589.453 | -1 | 1 | -1 |
| 659 | 6 | 1 | 625.922 | -1 | 1 | -1 |
| 660 | 6 | 2 | 634.468 | -1 | 1 | -1 |
| 721 | 7 | 1 | 694.430 | 1 | 1 | -1 |
| 722 | 7 | 2 | 599.751 | 1 | 1 | -1 |
| 723 | 7 | 1 | 730.217 | 1 | 1 | -1 |
| 724 | 7 | 2 | 624.542 | 1 | 1 | -1 |
| 725 | 7 | 1 | 700.770 | 1 | 1 | -1 |
| 726 | 7 | 2 | 723.505 | 1 | 1 | -1 |
| 727 | 7 | 1 | 722.242 | 1 | 1 | -1 |
| 728 | 7 | 2 | 674.717 | 1 | 1 | -1 |
| 729 | 7 | 1 | 763.828 | 1 | 1 | -1 |
| 730 | 7 | 2 | 608.539 | 1 | 1 | -1 |
| 731 | 7 | 1 | 695.668 | 1 | 1 | -1 |
| 732 | 7 | 2 | 612.135 | 1 | 1 | -1 |
| 733 | 7 | 1 | 688.887 | 1 | 1 | -1 |
| 734 | 7 | 2 | 591.935 | 1 | 1 | -1 |
| 735 | 7 | 1 | 531.021 | 1 | 1 | -1 |
| 736 | 7 | 2 | 676.656 | 1 | 1 | -1 |
| 737 | 7 | 1 | 698.915 | 1 | 1 | -1 |
| 738 | 7 | 2 | 647.323 | 1 | 1 | -1 |
| 739 | 7 | 1 | 735.905 | 1 | 1 | -1 |
| 740 | 7 | 2 | 811.970 | 1 | 1 | -1 |

| 741 | 7 | 1 | 732.039 | 1 | 1 | -1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 742 | 7 | 2 | 603.883 | 1 | 1 | -1 |
| 743 | 7 | 1 | 751.832 | 1 | 1 | -1 |
| 744 | 7 | 2 | 608.643 | 1 | 1 | -1 |
| 745 | 7 | 1 | 618.663 | 1 | 1 | -1 |
| 746 | 7 | 2 | 630.778 | 1 | 1 | -1 |
| 747 | 7 | 1 | 744.845 | 1 | 1 | -1 |
| 748 | 7 | 2 | 623.063 | 1 | 1 | -1 |
| 749 | 7 | 1 | 690.826 | 1 | 1 | -1 |
| 750 | 7 | 2 | 472.463 | 1 | 1 | -1 |
| 811 | 7 | 1 | 666.893 | -1 | 1 | 1 |
| 812 | 7 | 2 | 645.932 | -1 | 1 | 1 |
| 813 | 7 | 1 | 759.860 | -1 | 1 | 1 |
| 814 | 7 | 2 | 577.176 | -1 | 1 | 1 |
| 815 | 7 | 1 | 683.752 | -1 | 1 | 1 |
| 816 | 7 | 2 | 567.530 | -1 | 1 | 1 |
| 817 | 7 | 1 | 729.591 | -1 | 1 | 1 |
| 818 | 7 | 2 | 821.654 | -1 | 1 | 1 |
| 819 | 7 | 1 | 730.706 | -1 | 1 | 1 |
| 820 | 7 | 2 | 684.490 | -1 | 1 | 1 |
| 821 | 7 | 1 | 763.124 | -1 | 1 | 1 |
| 822 | 7 | 2 | 600.427 | -1 | 1 | 1 |
| 823 | 7 | 1 | 724.193 | -1 | 1 | 1 |
| 824 | 7 | 2 | 686.023 | -1 | 1 | 1 |
| 825 | 7 | 1 | 630.352 | -1 | 1 | 1 |
| 826 | 7 | 2 | 628.109 | -1 | 1 | 1 |
| 827 | 7 | 1 | 750.338 | -1 | 1 | 1 |
| 828 | 7 | 2 | 605.214 | -1 | 1 | 1 |
| 829 | 7 | 1 | 752.417 | -1 | 1 | 1 |
| 830 | 7 | 2 | 640.260 | -1 | 1 | 1 |
| 831 | 7 | 1 | 707.899 | -1 | 1 | 1 |
| 832 | 7 | 2 | 700.767 | -1 | 1 | 1 |
| 833 | 7 | 1 | 715.582 | -1 | 1 | 1 |
| 834 | 7 | 2 | 665.924 | -1 | 1 | 1 |
| 835 | 7 | 1 | 728.746 | -1 | 1 | 1 |
| 836 | 7 | 2 | 555.926 | -1 | 1 | 1 |
| 837 | 7 | 1 | 591.193 | -1 | 1 | 1 |
| 838 | 7 | 2 | 543.299 | -1 | 1 | 1 |
| 839 | 7 | 1 | 592.252 | -1 | 1 | 1 |
| 840 | 7 | 2 | 511.030 | -1 | 1 | 1 |
| 901 | 8 | 1 | 740.833 | -1 | -1 | 1 |
| 902 | 8 | 2 | 583.994 | -1 | -1 | 1 |
| 903 | 8 | 1 | 786.367 | -1 | -1 | 1 |
| 904 | 8 | 2 | 611.048 | -1 | -1 | 1 |
| 905 | 8 | 1 | 712.386 | -1 | -1 | 1 |
| 906 | 8 | 2 | 623.338 | -1 | -1 | 1 |

1.4.2.10.1. Background and Data

| 907 | 8 | 1 | 738.333 | -1 | -1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 908 | 8 | 2 | 679.585 | -1 | -1 | 1 |
| 909 | 8 | 1 | 741.480 | -1 | -1 | 1 |
| 910 | 8 | 2 | 665.004 | -1 | -1 | 1 |
| 911 | 8 | 1 | 729.167 | -1 | -1 | 1 |
| 912 | 8 | 2 | 655.860 | -1 | -1 | 1 |
| 913 | 8 | 1 | 795.833 | -1 | -1 | 1 |
| 914 | 8 | 2 | 715.711 | -1 | -1 | 1 |
| 915 | 8 | 1 | 723.502 | -1 | -1 | 1 |
| 916 | 8 | 2 | 611.999 | -1 | -1 | 1 |
| 917 | 8 | 1 | 718.333 | -1 | -1 | 1 |
| 918 | 8 | 2 | 577.722 | -1 | -1 | 1 |
| 919 | 8 | 1 | 768.080 | -1 | -1 | 1 |
| 920 | 8 | 2 | 615.129 | -1 | -1 | 1 |
| 921 | 8 | 1 | 747.500 | -1 | -1 | 1 |
| 922 | 8 | 2 | 540.316 | -1 | -1 | 1 |
| 923 | 8 | 1 | 775.000 | -1 | -1 | 1 |
| 924 | 8 | 2 | 711.667 | -1 | -1 | 1 |
| 925 | 8 | 1 | 760.599 | -1 | -1 | 1 |
| 926 | 8 | 2 | 639.167 | -1 | -1 | 1 |
| 927 | 8 | 1 | 758.333 | -1 | -1 | 1 |
| 928 | 8 | 2 | 549.491 | -1 | -1 | 1 |
| 929 | 8 | 1 | 682.500 | -1 | -1 | 1 |
| 930 | 8 | 2 | 684.167 | -1 | -1 | 1 |
| 931 | 8 | 1 | 658.116 | 1 | -1 | -1 |
| 932 | 8 | 2 | 672.153 | 1 | -1 | -1 |
| 933 | 8 | 1 | 738.213 | 1 | -1 | -1 |
| 934 | 8 | 2 | 594.534 | 1 | -1 | -1 |
| 935 | 8 | 1 | 681.236 | 1 | -1 | -1 |
| 936 | 8 | 2 | 627.650 | 1 | -1 | -1 |
| 937 | 8 | 1 | 704.904 | 1 | -1 | -1 |
| 938 | 8 | 2 | 551.870 | 1 | -1 | -1 |
| 939 | 8 | 1 | 693.623 | 1 | -1 | -1 |
| 940 | 8 | 2 | 594.534 | 1 | -1 | -1 |
| 941 | 8 | 1 | 624.993 | 1 | -1 | -1 |
| 942 | 8 | 2 | 602.660 | 1 | -1 | -1 |
| 943 | 8 | 1 | 700.228 | 1 | -1 | -1 |
| 944 | 8 | 2 | 585.450 | 1 | -1 | -1 |
| 945 | 8 | 1 | 611.874 | 1 | -1 | -1 |
| 946 | 8 | 2 | 555.724 | 1 | -1 | -1 |
| 947 | 8 | 1 | 579.167 | 1 | -1 | -1 |
| 948 | 8 | 2 | 574.934 | 1 | -1 | -1 |
| 949 | 8 | 1 | 720.872 | 1 | -1 | -1 |
| 950 | 8 | 2 | 584.625 | 1 | -1 | -1 |
| 951 | 8 | 1 | 690.320 | 1 | -1 | -1 |
| 952 | 8 | 2 | 555.724 | 1 | -1 | -1 |

1.4.2.10.1. Background and Data

| 953 | 8 | 1 | 677.933 | 1 | -1 | -1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 954 | 8 | 2 | 611.874 | 1 | -1 | -1 |
| 955 | 8 | 1 | 674.600 | 1 | -1 | -1 |
| 956 | 8 | 2 | 698.254 | 1 | -1 | -1 |
| 957 | 8 | 1 | 611.999 | 1 | -1 | -1 |
| 958 | 8 | 2 | 748.130 | 1 | -1 | -1 |
| 959 | 8 | 1 | 530.680 | 1 | -1 | -1 |
| 960 | 8 | 2 | 689.942 | 1 | -1 | -1 |

$\frac{\text { NIST }}{\text { SEMATECH }}$

HOME TOOLS \& AIDS

SEARCH
BACK $\overline{\text { NEXT }}$

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.10. Ceramic Strength

1.4.2.10.2. Analysis of the Response Variable

Numerical
Summary

As a first step in the analysis, a table of summary statistics is computed for the response variable. The following table, generated by Dataplot, shows a typical set of statistics.

SUMMARY

NUMBER OF OBSERVATIONS =
480

From the above output, the mean strength is 650.08 and the standard deviation of the strength is 74.64 .

4-Plot \quad The next step is generate a 4-plot of the response variable.

This 4-plot shows:

1. The run sequence plot (upper left corner) shows that the location and scale are relatively constant. It also shows a few outliers on the low side. Most of the points are in the range 500 to 750 . However, there are about half a dozen points in the 300 to 450 range that may require special attention.

A run sequence plot is useful for designed experiments in that it can reveal time effects. Time is normally a nuisance factor. That is, the time order on which runs are made should not have a significant effect on the response. If a time effect does appear to exist, this means that there is a potential bias in the experiment that needs to be investigated and resolved.
2. The lag plot (the upper right corner) does not show any significant structure. This is another tool for detecting any potential time effect.
3. The histogram (the lower left corner) shows the response appears to be reasonably symmetric, but with a bimodal distribution.
4. The normal probability plot (the lower right corner) shows some curvature indicating that distributions other than the normal may provide a better fit.

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.10. Ceramic Strength

1.4.2.10.3. Analysis of the Batch Effect

Batch is a Nuisance Factor

The two nuisance factors in this experiment are the batch number and the lab. There are 2 batches and 8 labs. Ideally, these factors will have minimal effect on the response variable.

We will investigate the batch factor first.

Bihistogram

This bihistogram shows the following.

1. There does appear to be a batch effect.
2. The batch 1 responses are centered at 700 while the batch 2 responses are centered at 625 . That is, the batch effect is approximately 75 units.
3. The variability is comparable for the 2 batches.
4. Batch 1 has some skewness in the lower tail. Batch 2 has some skewness in the center of the distribution, but not as much in the tails compared to batch 1.
5. Both batches have a few low-lying points.

Although we could stop with the bihistogram, we will show a few other commonly used two-sample graphical techniques for comparison.

Quantile-Quantile Plot

This q-q plot shows the following.

1. Except for a few points in the right tail, the batch 1 values have higher quantiles than the batch 2 values. This implies that batch 1 has a greater location value than batch 2 .
2. The $\mathrm{q}-\mathrm{q}$ plot is not linear. This implies that the difference between the batches is not explained simply by a shift in location. That is, the variation and/or skewness varies as well. From the bihistogram, it appears that the skewness in batch 2 is the most likely explanation for the non-linearity in the q-q plot.

Box Plot

This box plot shows the following.

1. The median for batch 1 is approximately 700 while the median for batch 2 is approximately 600.
2. The spread is reasonably similar for both batches, maybe slightly larger for batch 1.
3. Both batches have a number of outliers on the low side. Batch 2 also has a few outliers on the high side. Box plots are a particularly effective method for identifying the presence of outliers.

Block Plots

Quantitative Techniques

A block plot is generated for each of the eight labs, with " 1 " and " 2 " denoting the batch numbers. In the first plot, we do not include any of the primary factors. The next 3 block plots include one of the primary factors. Note that each of the 3 primary factors (table speed $=\mathrm{X} 1$, down feed rate $=\mathrm{X} 2$, wheel grit size $=\mathrm{X} 3$) has 2 levels. With 8 labs and 2 levels for the primary factor, we would expect 16 separate blocks on these plots. The fact that some of these blocks are missing indicates that some of the combinations of lab and primary factor are empty.

These block plots show the following.

1. The mean for batch 1 is greater than the mean for batch 2 in all of the cases above. This is strong evidence that the batch effect is real and consistent across labs and primary factors.

We can confirm some of the conclusions drawn from the above graphics by using quantitative techniques. The two sample t-test can be used to test whether or not the means from the two batches are equal and the F-test can be used to test whether or not the standard deviations from the two batches are equal.

Two Sample The following is the Dataplot output from the two sample t-test.
T-Test

```
                                    T-TEST
                                    (2-SAMPLE)
NULL HYPOTHESIS UNDER TEST--POPULATION MEANS MU1 = MU2
SAMPLE 1:
    NUMBER OF OBSERVATIONS = 240
    MEAN = 688.9987
    STANDARD DEVIATION = 65.54909
    STANDARD DEVIATION OF MEAN = 4.231175
SAMPLE 2:
    NUMBER OF OBSERVATIONS =
    MEAN = 611.1559
    STANDARD DEVIATION =}61.8542
    STANDARD DEVIATION OF MEAN = 3.992675
IF ASSUME SIGMA1 = SIGMA2:
    POOLED STANDARD DEVIATION = 63.72845
    DIFFERENCE (DELTA) IN MEANS = 77.84271
    STANDARD DEVIATION OF DELTA = 5.817585
    T-TEST STATISTIC VALUE = 13.38059
    DEGREES OF FREEDOM = 478.0000
    T-TEST STATISTIC CDF VALUE = 1.000000
IF NOT ASSUME SIGMA1 = SIGMA2:
    STANDARD DEVIATION SAMPLE 1 = 65.54909
    STANDARD DEVIATION SAMPLE 2 = 61.85425
    BARTLETT CDF VALUE = 0.629618
    DIFFERENCE (DELTA) IN MEANS = 77.84271
    STANDARD DEVIATION OF DELTA = 5.817585
    T-TEST STATISTIC VALUE = 13.38059
    EQUIVALENT DEG. OF FREEDOM = 476.3999
    T-TEST STATISTIC CDF VALUE = 1.000000
```

| | ALTERNATIVE-HYPOTHESIS | | ALTERNATIVE- |
| :---: | :---: | :---: | :---: |
| ALTERNATIVE- | | | HYPOTHESIS |
| HYPOTHESIS | ACCEPTANCE | INTERVAL | CONCLUSION |
| MU1 <> MU2 | (0,0.025) | (0.975,1) | ACCEPT |
| MU1 < MU2 | (0,0.05) | | REJECT |
| MU1 > MU2 | (0.95, 1) | | ACCEPT |

The t-test indicates that the mean for batch 1 is larger than the mean for batch 2 (at the 5\% confidence level).

F-Test The following is the Dataplot output from the F-test.

```
            F-TEST
NULL HYPOTHESIS UNDER TEST--SIGMA1 = SIGMA2
ALTERNATIVE HYPOTHESIS UNDER TEST--SIGMA1 NOT EQUAL SIGMA2
SAMPLE 1:
    NUMBER OF OBSERVATIONS = 240
    MEAN = 688.9987
    STANDARD DEVIATION = 65.54909
SAMPLE 2:
    NUMBER OF OBSERVATIONS = 240
    MEAN = 611.1559
    STANDARD DEVIATION = 61.85425
TEST:
    STANDARD DEV. (NUMERATOR) = 65.54909
    STANDARD DEV. (DENOMINATOR) = 61.85425
    F-TEST STATISTIC VALUE = 1.123037
    DEG. OF FREEDOM (NUMER.) = 239.0000
    DEG. OF FREEDOM (DENOM.) = 239.0000
    F-TEST STATISTIC CDF VALUE = 0.814808
    NULL NULL HYPOTHESIS NULL HYPOTHESIS
    HYPOTHESIS ACCEPTANCE INTERVAL CONCLUSION
SIGMA1 = SIGMA2 (0.000,0.950) ACCEPT
```

The F-test indicates that the standard deviations for the two batches are not significantly different at the 5\% confidence level.

Conclusions We can draw the following conclusions from the above analysis.

1. There is in fact a significant batch effect. This batch effect is consistent across labs and primary factors.
2. The magnitude of the difference is on the order of 75 to 100 (with batch 2 being smaller than batch 1). The standard deviations do not appear to be significantly different.
3. There is some skewness in the batches.

This batch effect was completely unexpected by the scientific investigators in this study.

Note that although the quantitative techniques support the conclusions of unequal means and equal standard deviations, they do not show the more subtle features of the data such as the presence of outliers and the skewness of the batch 2 data.

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.10. Ceramic Strength

1.4.2.10.4. Analysis of the Lab Effect

Box Plot The next matter is to determine if there is a lab effect. The first step is to generate a box plot for the ceramic strength based on the lab.

This box plot shows the following.

1. There is minor variation in the medians for the 8 labs.
2. The scales are relatively constant for the labs.
3. Two of the labs (3 and 5) have outliers on the low side.

Box Plot for Batch 1

Given that the previous section showed a distinct batch effect, the next step is to generate the box plots for the two batches separately.

This box plot shows the following.

1. Each of the labs has a median in the 650 to 700 range.
2. The variability is relatively constant across the labs.
3. Each of the labs has at least one outlier on the low side.

Box Plot for Batch 2

This box plot shows the following.

1. The medians are in the range 550 to 600 .
2. There is a bit more variability, across the labs, for batch2 compared to batch 1.
3. Six of the eight labs show outliers on the high side. Three of the labs show outliers on the low side.

Conclusions We can draw the following conclusions about a possible lab effect from the above box plots.

1. The batch effect (of approximately 75 to 100 units) on location dominates any lab effects.
2. It is reasonable to treat the labs as homogeneous.

HOME
TOOLS \& AIDS
SEARCH
BACK NEXT|

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.10. Ceramic Strength

1.4.2.10.5. Analysis of Primary Factors

Main effects The first step in analyzing the primary factors is to determine which factors are the most significant. The dex scatter plot, dex mean plot, and the dex standard deviation plots will be the primary tools, with "dex" being short for "design of experiments".

Since the previous pages showed a significant batch effect but a minimal lab effect, we will generate separate plots for batch 1 and batch 2 . However, the labs will be treated as equivalent.

Dex Scatter Plot for
Batch 1

This dex scatter plot shows the following for batch 1 .

1. Most of the points are between 500 and 800 .
2. There are about a dozen or so points between 300 and 500 .
3. Except for the outliers on the low side (i.e., the points between 300 and 500), the distribution of the points is comparable for the

3 primary factors in terms of location and spread.

Dex Mean Plot for Batch 1

This dex mean plot shows the following for batch 1 .

1. The table speed factor (X1) is the most significant factor with an effect, the difference between the two points, of approximately 35 units.
2. The wheel grit factor (X3) is the next most significant factor with an effect of approximately 10 units.
3. The feed rate factor (X2) has minimal effect.

This dex standard deviation plot shows the following for batch 1.

1. The table speed factor (X1) has a significant difference in variability between the levels of the factor. The difference is approximately 20 units.
2. The wheel grit factor (X3) and the feed rate factor (X2) have minimal differences in variability.

Dex Scatter
Plot for
Batch 2

This dex scatter plot shows the following for batch 2 .

1. Most of the points are between 450 and 750 .
2. There are a few outliers on both the low side and the high side.
3. Except for the outliers (i.e., the points less than 450 or greater than 750), the distribution of the points is comparable for the 3 primary factors in terms of location and spread.

Dex Mean Plot for Batch 2

This dex mean plot shows the following for batch 2 .

1. The feed rate (X2) and wheel grit (X3) factors have an approximately equal effect of about 15 or 20 units.
2. The table speed factor (X1) has a minimal effect.

Dex SD Plot for Batch 2

This dex standard deviation plot shows the following for batch 2.

1. The difference in the standard deviations is roughly comparable for the three factors (slightly less for the feed rate factor).

Interaction Effects

The above plots graphically show the main effects. An additonal concern is whether or not there any significant interaction effects.

Main effects and 2-term interaction effects are discussed in the chapter on Process Improvement.

In the following dex interaction plots, the labels on the plot give the variables and the estimated effect. For example, factor 1 is TABLE SPEED and it has an estimated effect of 30.77 (it is actually - 30.77 if the direction is taken into account).

DEX

Interaction
Plot for
Batch 1

The ranked list of factors for batch 1 is:

1. Table speed (X1) with an estimated effect of -30.77 .
2. The interaction of table speed (X1) and wheel grit (X3) with an estimated effect of -20.25 .
3. The interaction of table speed (X1) and feed rate (X2) with an estimated effect of 9.7.
4. Wheel grit (X3) with an estimated effect of -7.18.
5. Down feed (X2) and the down feed interaction with wheel grit (X3) are essentially zero.

DEX

Interaction
Plot for
Batch 2

The ranked list of factors for batch 2 is:

1. Down feed (X2) with an estimated effect of 18.22 .
2. The interaction of table speed (X1) and wheel grit (X3) with an estimated effect of -16.71 .
3. Wheel grit (X3) with an estimated effect of -14.71
4. Remaining main effect and 2 -factor interaction effects are essentially zero.

Conclusions From the above plots, we can draw the following overall conclusions.

1. The batch effect (of approximately 75 units) is the dominant primary factor.
2. The most important factors differ from batch to batch. See the above text for the ranked list of factors with the estimated effects.

HOME
TOOLS \& AIDS
SEARCH
BACK NEXT

1. Exploratory Data Analysis
1.4. EDA Case Studies
1.4.2. Case Studies
1.4.2.10. Ceramic Strength

1.4.2.10.6. Work This Example Yourself

View This page allows you to use Dataplot to repeat the analysis outlined in

Dataplot
Macro for this Case Study
the case study description on the previous page. It is required that you have already downloaded and installed Dataplot and configured your browser. to run Dataplot. Output from each analysis step below will be displayed in one or more of the Dataplot windows. The four main windows are the Output window, the Graphics window, the Command History window, and the data sheet window. Across the top of the main windows there are menus for executing Dataplot commands. Across the bottom is a command entry window where commands can be typed in.

| Data Analysis Steps | Results and Conclusions |
| :---: | :---: |
| Click on the links below to start Dataplot and run this case study yourself. Each step may use results from previous steps, so please be patient. Wait until the software verifies that the current step is complete before clicking on the next step. | The links in this column will connect you with more detailed information about each analysis step from the case study description. |
| 1. Invoke Dataplot and read data.
 1. Read in the data. | 1. You have read 1 column of numbers into Dataplot, variable Y. |
| 2. Plot of the response variable \qquad
 1. Numerical summary of Y.
 2. 4-plot of Y. | 1. The summary shows the mean strength is 650.08 and the standard deviation of the strength is 74.64.
 2. The 4 -plot shows no drift in the location and scale and a bimodal distribution. |

3. Determine if there is a batch effect.
4. Generate a bihistogram based on the 2 batches.
5. The bihistogram shows a distinct batch effect of approximately
75 units.
6. The $q-q$ plot shows that batch 1 and batch 2 do not come from a common distribution.
7. Generate a box plot.
8. Generate block plots.
9. Perform a 2 -sample t-test for equal means.
10. Perform an F-test for equal standard deviations.
11. Determine if there is a lab effect.
12. Generate a box plot for the labs with the 2 batches combined.
13. Generate a box plot for the labs for batch 1 only.
14. Generate a box plot for the labs for batch 2 only.
15. The box plot does not show a significant lab effect.
16. The box plot does not show a significant lab effect for batch 1.
17. The box plot does not show a significant lab effect for batch 2.
18. Analysis of primary factors.
19. Generate a dex scatter plot for batch 1.
20. Generate a dex mean plot for batch 1.
21. Generate a dex sd plot for batch 1.
22. Generate a dex scatter plot for batch 2.
23. Generate a dex mean plot for batch 2.
24. Generate a dex sd plot for batch 2.
25. Generate a dex interaction effects matrix plot for batch 1 .
26. Generate a dex interaction effects matrix plot for batch 2.
27. The dex scatter plot shows the range of the points and the presence of outliers.
28. The dex mean plot shows that table speed is the most significant factor for batch 1.
29. The dex sd plot shows that table speed has the most variability for batch 1.
30. The dex scatter plot shows the range of the points and the presence of outliers.
31. The dex mean plot shows that feed rate and wheel grit are the most significant factors for batch 2 .
32. The dex sd plot shows that the variability is comparable for all 3 factors for batch 2 .
33. The dex interaction effects matrix plot provides a ranked list of factors with the estimated effects.
34. The dex interaction effects matrix plot provides a ranked list of factors with the estimated effects.

NIST

 SEMATECH$\boxed{\text { HOME }} \quad$ TOOLS \& AIDS \quad SEARCH
BACK NEXT

1. Exploratory Data Analysis

1.4. EDA Case Studies

1.4.3. References For Chapter 1: Exploratory Data Analysis

Anscombe, Francis (1973), Graphs in Statistical Analysis, The American Statistician, pp. 195-199.

Anscombe, Francis and Tukey, J. W. (1963), The Examination and Analysis of Residuals, Technometrics, pp. 141-160.

Bloomfield, Peter (1976), Fourier Analysis of Time Series, John Wiley and Sons.

Box, G. E. P. and Cox, D. R. (1964), An Analysis of Transformations, Journal of the Royal Statistical Society, 211-243, discussion 244-252.

Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978), Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building, John Wiley and Sons.

Box, G. E. P., and Jenkins, G. (1976), Time Series Analysis: Forecasting and Control, Holden-Day.

Bradley, (1968). Distribution-Free Statistical Tests, Chapter 12.

Brown, M. B. and Forsythe, A. B. (1974), Journal of the American Statistical Association, 69, 364-367.

Chakravarti, Laha, and Roy, (1967). Handbook of Methods of Applied Statistics, Volume I, John Wiley and Sons, pp. 392-394.

Chambers, John, William Cleveland, Beat Kleiner, and Paul Tukey, (1983), Graphical Methods for Data Analysis, Wadsworth.

Cleveland, William (1985), Elements of Graphing Data, Wadsworth.

Cleveland, William and Marylyn McGill, Editors (1988), Dynamic Graphics for Statistics, Wadsworth.

Cleveland, William (1993), Visualizing Data, Hobart Press.
Devaney, Judy (1997), Equation Discovery Through Global Self-Referenced Geometric Intervals and Machine Learning, Ph.d thesis, George Mason University, Fairfax, VA. Coefficient Test for Normality , Technometrics, pp. 111-117.

Draper and Smith, (1981). Applied Regression Analysis, 2nd ed., John Wiley and Sons. du Toit, Steyn, and Stumpf (1986), Graphical Exploratory Data Analysis, Springer-Verlag.

Evans, Hastings, and Peacock (2000), Statistical Distributions, 3rd. Ed., John Wiley and Sons.

Everitt, Brian (1978), Multivariate Techniques for Multivariate Data, North-Holland.
Efron and Gong (February 1983), A Leisurely Look at the Bootstrap, the Jackknife, and Cross Validation, The American Statistician.

Filliben, J. J. (February 1975), The Probability Plot Correlation Coefficient Test for Normality, Technometrics, pp. 111-117.

Gill, Lisa (April 1997), Summary Analysis: High Performance Ceramics Experiment to Characterize the Effect of Grinding Parameters on Sintered Reaction Bonded Silicon Nitride, Reaction Bonded Silicon Nitride, and Sintered Silicon Nitride, presented at the NIST - Ceramic Machining Consortium, 10th Program Review Meeting, April 10, 1997.

Granger and Hatanaka (1964). Spectral Analysis of Economic Time Series, Princeton University Press.

Grubbs, Frank (February 1969), Procedures for Detecting Outlying Observations in Samples, Technometrics, Vol. 11, No. 1, pp. 1-21.

Harris, Robert L. (1996), Information Graphics, Management Graphics.
Jenkins and Watts, (1968), Spectral Analysis and Its Applications, Holden-Day.
Johnson, Kotz, and Balakrishnan, (1994), Continuous Univariate Distributions, Volumes I and II, 2nd. Ed., John Wiley and Sons.

Johnson, Kotz, and Kemp, (1992), Univariate Discrete Distributions, 2nd. Ed., John Wiley and Sons.

Kuo, Way and Pierson, Marcia Martens, Eds. (1993), Quality Through Engineering Design", specifically, the article Filliben, Cetinkunt, Yu, and Dommenz (1993), Exploratory Data Analysis Techniques as Applied to a High-Precision Turning Machine, Elsevier, New York, pp. 199-223.

Levene, H. (1960). In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, I. Olkin et al. eds., Stanford University Press, pp. 278-292.

McNeil, Donald (1977), Interactive Data Analysis, John Wiley and Sons.
Mosteller, Frederick and Tukey, John (1977), Data Analysis and Regression, Addison-Wesley.

Nelson, Wayne (1982), Applied Life Data Analysis, Addison-Wesley.
Neter, Wasserman, and Kunter (1990). Applied Linear Statistical Models, 3rd ed., Irwin.
Nelson, Wayne and Doganaksoy, Necip (1992), A Computer Program POWNOR for Fitting the Power-Normal and-Lognormal Models to Life or Strength Data from Specimens of Various Sizes, NISTIR 4760, U.S. Department of Commerce, National Institute of Standards and Technology.

The RAND Corporation (1955), A Million Random Digits with 100,000 Normal Deviates, Free Press.

Ryan, Thomas (1997). Modern Regression Methods, John Wiley.
Scott, David (1992), Multivariate Density Estimation: Theory, Practice, and Visualization, John Wiley and Sons.

Snedecor, George W. and Cochran, William G. (1989), Statistical Methods, Eighth Edition, Iowa State University Press.

Stefansky, W. (1972), Rejecting Outliers in Factorial Designs, Technometrics, Vol. 14, pp. 469-479.

Stephens, M. A. (1974). EDF Statistics for Goodness of Fit and Some Comparisons, Journal of the American Statistical Association, Vol. 69, pp. 730-737.

Stephens, M. A. (1976). Asymptotic Results for Goodness-of-Fit Statistics with Unknown Parameters, Annals of Statistics, Vol. 4, pp. 357-369.

Stephens, M. A. (1977). Goodness of Fit for the Extreme Value Distribution, Biometrika, Vol. 64, pp. 583-588.

Stephens, M. A. (1977). Goodness of Fit with Special Reference to Tests for Exponentiality, Technical Report No. 262, Department of Statistics, Stanford University, Stanford, CA.

Stephens, M. A. (1979). Tests of Fit for the Logistic Distribution Based on the Empirical Distribution Function, Biometrika, Vol. 66, pp. 591-595.

Tukey, John (1977), Exploratory Data Analysis, Addison-Wesley.
Tufte, Edward (1983), The Visual Display of Quantitative Information, Graphics Press.

Velleman, Paul and Hoaglin, David (1981), The ABC's of EDA: Applications, Basics, and Computing of Exploratory Data Analysis, Duxbury.

Wainer, Howard (1981), Visual Revelations, Copernicus.

HOME $\longdiv { \text { TOOLS \& AIDS } }$ SEARCH BACK NEXT

