
3.Production Process Characterization

The goal of this chapter is to learn how to plan and conduct a Production Process
Characterization Study (PPC) on manufacturing processes. We will learn how to model
manufacturing processes and use these models to design a data collection scheme and to
guide data analysis activities. We will look in detail at how to analyze the data collected
in characterization studies and how to interpret and report the results. The accompanying
Case Studies provide detailed examples of several process characterization studies.
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3. Production Process Characterization

3.1. Introduction to Production Process
Characterization

Overview
Section

The goal of this section is to provide an introduction to PPC. We will
define PPC and the terminology used and discuss some of the possible
uses of a PPC study. Finally, we will look at the steps involved in
designing and executing a PPC study.

Contents:
Section 1

What is PPC?1.  

What are PPC studies used for? 2.  

What terminology is used in PPC? 

Location, Spread and Shape 1.  

Process Variability 2.  
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Process Models5.  

Experiments and Experimental Design6.  

3.  
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3. Production Process Characterization
3.1. Introduction to Production Process Characterization

3.1.1.What is PPC?

In PPC, we
build
data-based
models

Process characterization is an activity in which we:

identify the key inputs and outputs of a process●   

collect data on their behavior over the entire operating range●   

estimate the steady-state behavior at optimal operating conditions●   

and build models describing the parameter relationships across
the operating range

●   

The result of this activity is a set of mathematical process models that
we can use to monitor and improve the process.

This is a
three-step
process

This activity is typically a three-step process.

The Screening Step

In this phase we identify all possible significant process inputs
and outputs and conduct a series of screening experiments in
order to reduce that list to the key inputs and outputs. These
experiments will also allow us to develop initial models of the
relationships between those inputs and outputs.

The Mapping Step

In this step we map the behavior of the key outputs over their
expected operating ranges. We do this through a series of more
detailed experiments called Response Surface experiments.

The Passive Step

In this step we allow the process to run at nominal conditions and
estimate the process stability and capability.

Not all of
the steps
need to be
performed

The first two steps are only needed for new processes or when the
process has undergone some significant engineering change.  There are,
however, many times throughout the life of a process when the third
step is needed. Examples might be: initial process qualification, control
chart development, after minor process adjustments, after schedule
equipment maintenance, etc. 
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3. Production Process Characterization
3.1. Introduction to Production Process Characterization

3.1.2.What are PPC Studies Used For?

PPC is the core
of any CI
program

Process characterization is an integral part of any continuous
improvement program. There are many steps in that program for
which process characterization is required. These might include:

When process
characterization
is required

when we are bringing a new process or tool into use.●   

when we are bringing a tool or process back up after
scheduled/unscheduled maintenance.

●   

when we want to compare tools or processes.●   

when we want to check the health of our process during the
monitoring phase.

●   

when we are troubleshooting a bad process.●   

The techniques described in this chapter are equally applicable to the
other chapters covered in this Handbook. These include:

Process
characterization
techniques are
applicable in
other areas

calibration●   

process monitoring●   

process improvement●   

process/product comparison●   

reliability●   

3.1.2. What are PPC Studies Used For?
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3. Production Process Characterization
3.1. Introduction to Production Process Characterization

3.1.3.Terminology/Concepts

There are just a few fundamental concepts needed for PPC.
This section will review these ideas briefly and provide
links to other sections in the Handbook where they are
covered in more detail. 

Distribution(location,
spread, shape)

For basic data analysis, we will need to understand how to
estimate location, spread and shape from the data. These
three measures comprise what is known as the distribution
of the data. We will look at both graphical and numerical
techniques.

Process variability We need to thoroughly understand the concept of process
variability. This includes how variation explains the
possible range of expected data values, the various
classifications of variability, and the role that variability
plays in process stability and capability.

Error propagation We also need to understand how variation propagates
through our manufacturing processes and how to
decompose the total observed variation into components
attributable to the contributing sources.

Populations and
sampling

It is important to have an understanding of the various
issues related to sampling. We will define a population and
discuss how to acquire representative random samples from
the population of interest.  We will also discuss a useful
formula for estimating the number of observations required
to answer specific questions.

Modeling For modeling, we will need to know how to identify
important factors and responses.  We will also need to know
how to graphically and quantitatively build models of the
relationships between the factors and responses. 

3.1.3. Terminology/Concepts
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Experiments Finally, we will need to know about the basics of designed
experiments including screening designs and response
surface designs so that we can quantify these relationships.
This topic will receive only a cursory treatment in this
chapter. It is covered in detail in the process improvement
chapter. However, examples of its use are in the case
studies.
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3. Production Process Characterization
3.1. Introduction to Production Process Characterization
3.1.3. Terminology/Concepts

3.1.3.1.Distribution (Location, Spread and
Shape)

Distributions
are
characterized
by location,
spread and
shape

A fundamental concept in representing any of the outputs from a
production process is that of a distribution. Distributions arise because
any manufacturing process output will not yield the same value every
time it is measured. There will be a natural scattering of the measured
values about some central tendency value. This scattering about a
central value is known as a distribution. A distribution is characterized
by three values:

Location
The location is the expected value of the output being measured.
For a stable process, this is the value around which the process
has stabilized.

Spread
The spread is the expected amount of variation associated with
the output. This tells us the range of possible values that we
would expect to see.

Shape
The shape shows how the variation is distributed about the
location. This tells us if our variation is symmetric about the
mean or if it is skewed or possibly multimodal.

A primary
goal of PPC
is to estimate
the
distributions
of the
process
outputs

One of the primary goals of a PPC study is to characterize our process
outputs in terms of these three measurements. If we can demonstrate
that our process is stabilized about a constant location, with a constant
variance and a known stable shape, then we have a process that is both
predictable and controllable. This is required before we can set up
control charts or conduct experiments.

3.1.3.1. Distribution (Location, Spread and Shape)
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Click on
each item to
read more
detail

The table below shows the most common numerical and graphical
measures of location, spread and shape.

Parameter Numerical Graphical

Location
mean
median

scatter plot
boxplot
histogram

Spread
variance
range
inter-quartile range 

boxplot 
histogram

Shape
skewness
kurtosis

boxplot 
histogram 
probability plot

3.1.3.1. Distribution (Location, Spread and Shape)
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3. Production Process Characterization
3.1. Introduction to Production Process Characterization
3.1.3. Terminology/Concepts

3.1.3.2.Process Variability

Variability
is present
everywhere

All manufacturing and measurement processes exhibit variation. For example, when we take sample
data on the output of a process, such as critical dimensions, oxide thickness, or resistivity, we
observe that all the values are NOT the same. This results in a collection of observed values
distributed about some location value. This is what we call spread or variability. We represent
variability numerically with the variance calculation and graphically with a  histogram.

How does
the
standard
deviation
describe the
spread of
the data?

The standard deviation (square root of the variance) gives insight into the spread of the data through
the use of what is known as the Empirical Rule. This rule (shown in the graph below) is:

Approximately 60-78% of the data are within a distance of one standard deviation from the average
( -s, +s).

Approximately 90-98% of the data are within a distance of two standard deviations from the
average ( -2s, +2s).

More than 99% of the data are within a distance of three standard deviations from the average (
-3s, +3s).

3.1.3.2. Process Variability
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Variability
accumulates
from many
sources

This observed variability is an accumulation of many different sources of variation that have
occurred throughout the manufacturing process. One of the more important activities of process
characterization is to identify and quantify these various sources of variation so that they may be
minimized.

There are
also
different
types

There are not only different sources of variation, but there are also different types of variation. Two
important classifications of variation for the purposes of PPC are controlled variation and
uncontrolled variation.

Click here
to see
examples

CONTROLLED VARIATION

Variation that is characterized by a stable and consistent pattern of variation over time. This
type of variation will be random in nature and will be exhibited by a uniform fluctuation
about a constant level.

UNCONTROLLED VARIATION

Variation that is characterized by a pattern of variation that changes over time and hence is
unpredictable. This type of variation will typically contain some structure.

Stable
processes
only exhibit
controlled
variation

This concept of controlled/uncontrolled variation is important in determining if a process is stable.
A process is deemed stable if it runs in a consistent and predictable manner. This means that the
average process value is constant and the variability is controlled. If the variation is uncontrolled,
then either the process average is changing or the process variation is changing or both. The first
process in the example above is stable; the second is not.

3.1.3.2. Process Variability
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In the course of process characterization we should endeavor to eliminate all sources of uncontrolled
variation. 
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3. Production Process Characterization
3.1. Introduction to Production Process Characterization
3.1.3. Terminology/Concepts
3.1.3.2. Process Variability

3.1.3.2.1.Controlled/Uncontrolled Variation

Two trend
plots

The two figures below are two trend plots from two different oxide growth processes.
Thirty wafers were sampled from each process: one per day over 30 days. Thickness
at the center was measured on each wafer. The x-axis of each graph is the wafer
number and the y-axis is the film thickness in angstroms.

Examples
of"in
control" and
"out of
control"
processes

The first process is an example of a process that is "in control" with random
fluctuation about a process location of approximately 990. The second process is an
example of a process that is "out of control" with a process location trending upward
after observation 20.

This process
exhibits
controlled
variation.
Note the
random
fluctuation
about a
constant
mean.

3.1.3.2.1. Controlled/Uncontrolled Variation
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This process
exhibits
uncontrolled
variation.
Note the
structure in
the
variation in
the form of
a linear
trend.
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3. Production Process Characterization
3.1. Introduction to Production Process Characterization
3.1.3. Terminology/Concepts

3.1.3.3.Propagating Error

The
variation we
see can
come from
many
sources

When we estimate the variance at a particular process step, this variance
is typically not just a result of the current step, but rather is an
accumulation of variation from previous steps and from measurement
error. Therefore, an important question that we need to answer in PPC is
how the variation from the different sources accumulates. This will
allow us to partition the total variation and assign the parts to the
various sources. Then we can attack the sources that contribute the
most.

How do I
partition the
error?

Usually we can model the contribution of the various sources of error to
the total error through a simple linear relationship. If we have a simple
linear relationship between two variables, say, 

then the variance associated with, y, is given by,

.

If the variables are not correlated, then there is no covariance and the
last term in the above equation drops off.  A good example of this is the
case in which we have both process error and measurement error. Since
these are usually independent of each other, the total observed variance
is just the sum of the variances for process and measurement.
Remember to never add standard deviations, we must add variances.

How do I
calculate the
individual
components?

Of course, we rarely have the individual components of variation and
wish to know the total variation. Usually, we have an estimate of the
overall variance and wish to break that variance down into its individual
components. This is known as components of variance estimation and is
dealt with in detail in the  analysis of variance page later in this chapter.

3.1.3.3. Propagating Error
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3. Production Process Characterization
3.1. Introduction to Production Process Characterization
3.1.3. Terminology/Concepts

3.1.3.4.Populations and Sampling

We take
samples
from a
target
population
and make
inferences

In survey sampling, if you want to know what everyone thinks about a
particular topic, you can just ask everyone and record their answers.
Depending on how you define the term, everyone (all the adults in a
town, all the males in the USA, etc.), it may be impossible or
impractical to survey everyone.  The other option is to survey a small
group (Sample) of the people whose opinions you are interested in
(Target Population) , record their opinions and use that information to
make inferences about what everyone thinks. Opinion pollsters have
developed a whole body of tools for doing just that and many of those
tools apply to manufacturing as well.  We can use these sampling
techniques to take a few measurements from a process and make
statements about the behavior of that process.

Facts about
a sample
are not
necessarily
facts about
a population

If it weren't for process variation we could just take one sample and
everything would be known about the target population.  Unfortunately
this is never the case.  We cannot take facts about the sample to be facts
about the population.  Our job is to reach appropriate conclusions about
the population despite this variation.  The more observations we take
from a population, the more our sample data resembles the population.
When we have reached the point at which facts about the sample are
reasonable approximations of facts about the population, then we say the
sample is adequate.

Four
attributes of
samples

Adequacy of a sample depends on the following four attributes:

Representativeness of the sample (is it random?)●   

Size of the sample●   

Variability in the population●   

Desired precision of the estimates●   

We will learn about choosing representative samples of adequate size in
the section on  defining sampling plans.

3.1.3.4. Populations and Sampling
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3.1.3.4. Populations and Sampling
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3. Production Process Characterization
3.1. Introduction to Production Process Characterization
3.1.3. Terminology/Concepts

3.1.3.5.Process Models

Black box
model and
fishbone
diagram

As we will see in Section 3 of this chapter, one of the first steps in PPC is to model the
process that is under investigation. Two very useful tools for doing this are the
black-box model and the fishbone diagram.

We use the
black-box
model to
describe
our
processes

We can use the simple black-box model, shown below, to describe most of the tools and
processes we will encounter in PPC.  The process will be stimulated by inputs. These
inputs can either be controlled (such as recipe or machine settings) or uncontrolled (such
as humidity, operators, power fluctuations, etc.). These inputs interact with our process
and produce outputs. These outputs are usually some characteristic of our process that
we can measure. The measurable inputs and outputs can be sampled in order to observe
and understand how they behave and relate to each other.

Diagram
of the
black box
model

3.1.3.5. Process Models

http://www.itl.nist.gov/div898/handbook/ppc/section1/ppc135.htm (1 of 4) [11/13/2003 5:41:23 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


These inputs and outputs are also known as Factors and Responses, respectively. 

Factors 

Observed inputs used to explain response behavior (also called explanatory
variables). Factors may be fixed-level controlled inputs or sampled uncontrolled
inputs. 

Responses 

Sampled process outputs. Responses may also be functions of sampled outputs
such as average thickness or uniformity. 

Factors
and
Responses
are further
classified
by
variable
type

We further categorize factors and responses according to their Variable Type, which
indicates the amount of information they contain. As the name implies, this classification
is useful for data modeling activities and is critical for selecting the proper analysis
technique. The table below summarizes this categorization. The types are listed in order
of the amount of information they contain with Measurement containing the most
information and Nominal containing the least.

3.1.3.5. Process Models
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Table
describing
the
different
variable
types

Type Description Example

Measurement
discrete/continuous, order is
important,  infinite range

particle count, oxide thickness,
pressure, temperature

Ordinal
discrete, order is important, finite
range

run #, wafer #, site, bin

Nominal
discrete, no order, very few
possible values

good/bad, bin,
high/medium/low, shift,
operator

 

Fishbone
diagrams
help to
decompose
complexity

We can use the fishbone diagram to further refine the modeling process. Fishbone
diagrams are very useful for decomposing the complexity of our manufacturing
processes. Typically, we choose a process characteristic (either Factors or Responses)
and list out the general categories that may influence the characteristic (such as material,
machine method, environment, etc.), and then provide more specific detail within each
category. Examples of how to do this are given in the section on Case Studies.

Sample
fishbone
diagram

3.1.3.5. Process Models
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3. Production Process Characterization
3.1. Introduction to Production Process Characterization
3.1.3. Terminology/Concepts

3.1.3.6.Experiments and Experimental
Design

Factors and
responses

Besides just observing our processes for evidence of stability and
capability, we quite often want to know about the relationships
between the various Factors and Responses.

We look for
correlations
and causal
relationships

There are generally two types of relationships that we are interested in
for purposes of PPC.  They are: 

Correlation

Two variables are said to be correlated if an observed change in
the level of one variable is accompanied by a change in the level
of another variable.  The change may be in the same direction
(positive correlation) or in the opposite direction (negative
correlation).

Causality

There is a causal relationship between two variables if a change
in the level of one variable causes a change in the other variable.

Note that correlation does not imply causality.  It is possible for two
variables to be associated with each other without one of them causing
the observed behavior in the other.  When this is the case it is usually
because there is a third (possibly unknown) causal factor. 

Our goal is to
find causal
relationships

Generally, our ultimate goal in PPC is to find and quantify causal
relationships. Once this is done, we can then take advantage of these
relationships to improve and control our processes.

Find
correlations
and then try
to establish
causal
relationships

Generally, we first need to find and explore correlations and then try to
establish causal relationships. It is much easier to find correlations as
these are just properties of the data. It is much more difficult to prove
causality as this additionally requires sound engineering judgment. 
There is a systematic procedure we can use to accomplish this in an
efficient manner. We do this through the use of designed experiments.

3.1.3.6. Experiments and Experimental Design
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First we
screen, then
we build
models

When we have many potential factors and we want to see which ones
are correlated and have the potential to be involved in causal
relationships with the responses, we use screening designs to reduce
the number of candidates.  Once we have a reduced set of influential
factors, we can use response surface designs to model the causal
relationships with the responses across the operating range of the
process factors.

Techniques
discussed in
process
improvement
chapter

The techniques are covered in detail in the  process improvement
section and will not be discussed much in this chapter. Examples of
how the techniques are used in PPC are given in the Case Studies.

3.1.3.6. Experiments and Experimental Design
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3. Production Process Characterization
3.1. Introduction to Production Process Characterization

3.1.4.PPC Steps

Follow these
4  steps to
ensure
efficient use
of resources

The primary activity of a PPC is to collect and analyze data so that we
may draw conclusions about and ultimately improve our production
processes. In many industrial applications, access to production facilities
for the purposes of conducting experiments is very limited.  Thus we
must be very careful in how we go about these activities so that we can
be sure of doing them in a cost-effective manner.

Step 1: Plan The most important step by far is the planning step. By faithfully
executing this step, we will ensure that we only collect data in the most
efficient manner possible and still support the goals of the PPC.
Planning should generate the following:

a statement of the goals●   

a descriptive process model (a list of process inputs and outputs)●   

a description of the sampling plan (including a description of the
procedure and settings to be used to run the process during the
study with clear assignments for each person involved)

●   

a description of the method of data collection, tasks and
responsibilities, formatting, and storage

●   

an outline of the data analysis●   

All decisions that affect how the characterization will be conducted
should be made during the planning phase. The process characterization
should be conducted according to this plan, with all exceptions noted.

Step 2:
Collect

Data collection is essentially just the execution of the sampling plan part
of the previous step. If a good job were done in the planning step, then
this step should be pretty straightforward. It is important to execute to
the plan as closely as possible and to note any exceptions.

Step 3:
Analyze and
interpret

This is the combination of quantitative (regression, ANOVA,
correlation, etc.) and graphical (histograms, scatter plots, box plots, etc.)
analysis techniques that are applied to the collected data in order to
accomplish the goals of the PPC.

3.1.4. PPC Steps
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Step 4:
Report

Reporting is an important step that should not be overlooked.  By
creating an informative report and archiving it in an accessible place, we
can ensure that others have access to the information generated by the
PPC. Often, the work involved in a PPC can be minimized by using the
results of other, similar studies. Examples of PPC reports can be found
in the Case Studies section.

Further
information

The planning and data collection steps are described in detail in the data
collection section. The analysis and interpretation steps are covered in
detail in the analysis section. Examples of the reporting step can be seen
in the Case Studies.

3.1.4. PPC Steps
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3. Production Process Characterization

3.2.Assumptions / Prerequisites

Primary
goal is to
identify and
quantify
sources of
variation

The primary goal of PPC is to identify and quantify sources of variation.
Only by doing this will we be able to define an effective plan for
variation reduction and process improvement. Sometimes, in order to
achieve this goal, we must first build mathematical/statistical models of
our processes. In these models we will identify influential factors and
the responses on which they have an effect. We will use these models to
understand how the sources of variation are influenced by the important
factors. This subsection will review many of the modeling tools we have
at our disposal to accomplish these tasks. In particular, the models
covered in this section are linear models, Analysis of Variance
(ANOVA) models and discrete models.

Contents:
Section 2

General Assumptions 1.  

Continuous Linear2.  

Analysis of Variance 

One-Way1.  

Crossed2.  

Nested 3.  

3.  

Discrete4.  

3.2. Assumptions / Prerequisites
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3. Production Process Characterization
3.2. Assumptions / Prerequisites

3.2.1.General Assumptions

Assumption:
process is sum
of a systematic
component and
a random
component

In order to employ the modeling techniques described in this section,
there are a few assumptions about the process under study that must
be made. First, we must assume that the process can adequately be
modeled as the sum of a systematic component and a random
component. The systematic component is the mathematical model
part and the random component is the error or noise present in the
system. We also assume that the systematic component is fixed over
the range of operating conditions and that the random component has
a constant location, spread and distributional form.

Assumption:
data used to fit
these models
are
representative
of the process
being modeled

Finally, we assume that the data used to fit these models are
representative of the process being modeled. As a result, we must
additionally assume that the measurement system used to collect the
data has been studied and proven to be capable of making
measurements to the desired precision and accuracy.  If this is not the
case, refer to the Measurement Capability Section of this Handbook.

3.2.1. General Assumptions
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3. Production Process Characterization
3.2. Assumptions / Prerequisites

3.2.2.Continuous Linear Model

Description The continuous linear model (CLM) is probably the most commonly used
model in PPC. It is applicable in many instances ranging from simple
control charts to response surface models.

The CLM is a mathematical function that relates explanatory variables
(either discrete or continuous) to a single continuous response variable.  It is
called linear because the coefficients of the terms are expressed as a linear
sum. The terms themselves do not have to be linear.

Model The general form of the CLM is:

This equation just says that if we have p explanatory variables then the
response is modeled by a constant term plus a sum of functions of those
explanatory variables, plus some random error term. This will become clear
as we look at some examples below.

Estimation The coefficients for the parameters in the CLM are estimated by the method
of least squares. This is a method that gives estimates which minimize the
sum of the squared distances from the observations to the fitted line or
plane. See the chapter on Process Modeling for a more complete discussion
on estimating the coefficients for these models.

Testing The tests for the CLM involve testing that the model as a whole is a good
representation of the process and whether any of the coefficients in the
model are zero or have no effect on the overall fit. Again, the details for
testing are given in the chapter on Process Modeling.

Assumptions For estimation purposes, there are no additional assumptions necessary for
the CLM beyond those stated in the assumptions section. For testing
purposes, however, it is necessary to assume that the error term is
adequately modeled by a Gaussian distribution.

3.2.2. Continuous Linear Model
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Uses The CLM has many uses such as building predictive process models over a
range of process settings that exhibit linear behavior, control charts, process
capability, building models from the data produced by designed
experiments, and building response surface models for automated process
control applications.

Examples Shewhart Control Chart - The simplest example of a very common usage
of the CLM is the underlying model used for Shewhart control charts. This
model assumes that the process parameter being measured is a constant with
additive Gaussian noise and is given by:

Diffusion Furnace - Suppose we want to model the average wafer sheet
resistance as a function of the location or zone in a furnace tube, the
temperature, and the anneal time. In this case, let there be 3 distinct zones
(front, center, back) and temperature and time are continuous explanatory
variables.  This model is given by the CLM:

Diffusion Furnace (cont.) - Usually, the fitted line for the average wafer
sheet resistance is not straight but has some curvature to it. This can be
accommodated by adding a quadratic term for the time parameter as
follows:

3.2.2. Continuous Linear Model
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3. Production Process Characterization
3.2. Assumptions / Prerequisites

3.2.3.Analysis of Variance Models
(ANOVA)

ANOVA
allows us to
compare the
effects of
multiple
levels of
multiple
factors

One of the most common analysis activities in PPC is comparison. We
often compare the performance of similar tools or processes. We also
compare the effect of different treatments such as recipe settings. When
we compare two things, such as two tools running the same operation,
we use  comparison techniques. When we want to compare multiple
things, like multiple tools running the same operation or multiple tools
with multiple operators running the same operation, we turn to ANOVA
techniques to perform the analysis.

ANOVA
splits the
data into
components

The easiest way to understand ANOVA is through a concept known as
value splitting. ANOVA splits the observed data values into components
that are attributable to the different levels of the factors. Value splitting
is best explained by example.

Example:
Turned Pins

The simplest example of value splitting is when we just have one level
of one factor. Suppose we have a turning operation in a machine shop
where we are turning pins to a diameter of .125 +/- .005 inches. 
Throughout the course of a day we take five samples of pins and obtain
the following measurements: .125, .127, .124, .126, .128.

We can split these data values into a common value (mean) and
residuals (what's left over) as follows:

.125 .127 .124 .126 .128

=

.126 .126 .126 .126 .126

+

-.001 .001 -.002 .000 .002

3.2.3. Analysis of Variance Models (ANOVA)
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From these tables, also called overlays, we can easily calculate the
location and spread of the data as follows:

mean = .126

std. deviation = .0016.

Other
layouts

While the above example is a trivial structural layout, it illustrates how
we can split data values into its components. In the next sections, we
will look at more complicated structural layouts for the data. In
particular we will look at multiple levels of one factor ( One-Way
ANOVA ) and multiple levels of two factors (Two-Way ANOVA)
where the factors are crossed and  nested.

3.2.3. Analysis of Variance Models (ANOVA)
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3. Production Process Characterization
3.2. Assumptions / Prerequisites
3.2.3. Analysis of Variance Models (ANOVA)

3.2.3.1.One-Way ANOVA

Description We say we have a one-way layout when we have a single factor with
several levels and multiple observations at each level. With this kind of
layout we can calculate the mean of the observations within each level
of our factor. The residuals will tell us about the variation within each
level. We can also average the means of each level to obtain a grand
mean. We can then look at the deviation of the mean of each level from
the grand mean to understand something about the level effects. Finally,
we can compare the variation within levels to the variation across levels.
Hence the name analysis of variance.

Model It is easy to model all of this with an equation of the form:

This equation indicates that the jth data value, from level i, is the sum of
three components: the common value (grand mean), the level effect (the
deviation of each level mean from the grand mean), and the residual
(what's left over).

Estimation

click here to
see details
of one-way
value
splitting

Estimation for the one-way layout can be performed one of two ways.
First, we can calculate the total variation, within-level variation and
across-level variation. These can be summarized in a table as shown
below and tests can be made to determine if the factor levels are
significant. The value splitting example illustrates the calculations
involved.

3.2.3.1. One-Way ANOVA
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ANOVA
table for
one-way
case

In general, the ANOVA table for the one-way case is given by:

Source Sum of Squares Degrees of
Freedom Mean Square

Factor 
levels

I-1
/(I-1)

residuals I(J-1)
/I(J-1)

corrected total IJ-1  

Level effects
must sum to
zero

The other way is through the use of CLM techniques. If you look at the
model above you will notice that it is in the form of a CLM. The only
problem is that the model is saturated and no unique solution exists. We
overcome this problem by applying a constraint to the model. Since the
level effects are just deviations from the grand mean, they must sum to
zero. By applying the constraint that the level effects must sum to zero,
we can now obtain a unique solution to the CLM equations. Most
analysis programs will handle this for you automatically. See the chapter
on  Process Modeling for a more complete discussion on estimating the
coefficients for these models.

Testing The testing we want to do in this case is to see if the observed data
support the hypothesis that the levels of the factor are significantly
different from each other. The way we do this is by comparing the
within-level variancs to the between-level variance.

If we assume that the observations within each level have the same
variance, we can calculate the variance within each level and pool these
together to obtain an estimate of the overall population variance. This
works out to be the mean square of the residuals.

Similarly, if there really were no level effect, the mean square across
levels would be an estimate of the overall variance. Therefore, if there
really were no level effect, these two estimates would be just two
different ways to estimate the same parameter and should be close
numerically. However, if there is a level effect, the level mean square
will be higher than the residual mean square.

3.2.3.1. One-Way ANOVA
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It can be shown that given the assumptions about the data stated below,
the ratio of the level mean square and the residual mean square follows
an F distribution with degrees of freedom as shown in the ANOVA
table. If the F-value is significant at a given level of confidence (greater
than the cut-off value in a F-Table), then there is a level effect present in
the data.

Assumptions For estimation purposes, we assume the data can adequately be modeled
as the sum of a deterministic component and a random component. We
further assume that the fixed (deterministic) component can be modeled
as the sum of an overall mean and some contribution from the factor
level. Finally, it is assumed that the random component can be modeled
with a Gaussian distribution with fixed location and spread.

Uses The one-way ANOVA is useful when we want to compare the effect of
multiple levels of one factor and we have multiple observations at each
level. The factor can be either discrete (different machine, different
plants, different shifts, etc.) or continuous (different gas flows,
temperatures, etc.).

Example Let's extend the machining example by assuming that we have five
different machines making the same part and we take five random
samples from each machine to obtain the following diameter data:

Machine
1 2 3 4 5

.125 .118 .123 .126 .118

.127 .122 .125 .128 .129

.125 .120 .125 .126 .127

.126 .124 .124 .127 .120

.128 .119 .126 .129 .121

Analyze Using ANOVA software or the techniques of the value-splitting
example, we summarize the data into an ANOVA table as follows:

Source Sum of
Squares

Degrees of
Freedom

Mean
Square F-value

Factor
levels

.000137 4 .000034 4.86 > 2.87

residuals .000132 20 .000007  
corrected total .000269 24   

3.2.3.1. One-Way ANOVA
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Test By dividing the Factor-level mean square by the residual mean square,
we obtain a F-value of 4.86 which is greater than the cut-off value of
2.87 for the F-distribution at 4 and 20 degrees of freedom and 95%
confidence. Therefore, there is sufficient evidence to reject the
hypothesis that the levels are all the same.

Conclusion From the analysis of these data we can conclude that the factor
"machine" has an effect. There is a statistically significant difference in
the pin diameters across the machines on which they were
manufactured.

3.2.3.1. One-Way ANOVA
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3. Production Process Characterization
3.2. Assumptions / Prerequisites
3.2.3. Analysis of Variance Models (ANOVA)
3.2.3.1. One-Way ANOVA

3.2.3.1.1.One-Way Value-Splitting

Example Let's use the data from the machining example to illustrate how to use
the techniques of value-splitting to break each data value into its
component parts. Once we have the component parts, it is then a trivial
matter to calculate the sums of squares and form the F-value for the
test. 
 

Machine
1 2 3 4 5

.125 .118 .123 .126 .118

.127 .122 .125 .128 .129

.125 .120 .125 .126 .127

.126 .124 .124 .127 .120

.128 .119 .126 .129 .121

Calculate
level-means

Remember from our model,  , we say each

observation is the sum of a common value, a level effect and a residual
value. Value-splitting just breaks each observation into its component
parts. The first step in value-splitting is to calculate the mean values
(rounding to the nearest thousandth) within each machine to get the
level means. 

Machine
1 2 3 4 5

.1262 .1206 .1246 .1272 .123

Sweep level
means

We can then sweep (subtract the level mean from each associated data
value) the means through the original data table to get the residuals:

3.2.3.1.1. One-Way Value-Splitting
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Machine
1 2 3 4 5

-.0012 -.0026 -.0016 -.0012 -.005
.0008 .0014 .0004 .0008 .006

-.0012 -.0006 .0004 -.0012 .004
-.0002 .0034 -.0006 -.0002 -.003
.0018 -.0016 .0014 .0018 -.002

Calculate
the grand
mean

The next step is to calculate the grand mean from the individual
machine means as:

Grand
Mean
.12432

Sweep the
grand mean
through the
level means

Finally, we can sweep the grand mean through the individual level
means to obtain the level effects:

Machine
1 2 3 4 5

.00188 -.00372 .00028 .00288 -.00132

It is easy to verify that the original data table can be constructed by
adding the overall mean, the machine effect and the appropriate
residual.

Calculate
ANOVA
values

Now that we have the data values split and the overlays created, the next
step is to calculate the various values in the One-Way ANOVA table.
We have three values to calculate for each overlay. They are the sums of
squares, the degrees of freedom, and the mean squares.

Total sum of
squares

The total sum of squares is calculated by summing the squares of all the
data values and subtracting from this number the square of the grand
mean times the total number of data values. We usually don't calculate
the mean square for the total sum of squares because we don't use this
value in any statistical test.

3.2.3.1.1. One-Way Value-Splitting
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Residual
sum of
squares,
degrees of
freedom and
mean square

The residual sum of squares is calculated by summing the squares of the
residual values. This is equal to .000132. The degrees of freedom is the
number of unconstrained values. Since the residuals for each level of the
factor must sum to zero, once we know four of them, the last one is
determined. This means we have four unconstrained values for each
level, or 20 degrees of freedom. This gives a mean square of .000007.

Level sum of
squares,
degrees of
freedom and
mean square

Finally, to obtain the sum of squares for the levels, we sum the squares
of each value in the level effect overlay and multiply the sum by the
number of observations for each level (in this case 5) to obtain a value
of .000137. Since the deviations from the level means must sum to zero,
we have only four unconstrained values so the degrees of freedom for
level effects is 4. This produces a mean square of .000034.

Calculate
F-value

The last step is to calculate the F-value and perform the test of equal
level means. The F- value is just the level mean square divided by the
residual mean square. In this case the F-value=4.86. If we look in an
F-table for 4 and 20 degrees of freedom at 95% confidence, we see that
the critical value is 2.87, which means that we have a significant result
and that there is thus evidence of a strong machine effect. By looking at
the level-effect overlay we see that this is driven by machines 2 and 4.

3.2.3.1.1. One-Way Value-Splitting
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3. Production Process Characterization
3.2. Assumptions / Prerequisites
3.2.3. Analysis of Variance Models (ANOVA)

3.2.3.2.Two-Way Crossed ANOVA

Description When we have two factors with at least two levels and one or more
observations at each level, we say we have a two-way layout. We say
that the two-way layout is crossed when every level of Factor A occurs
with every level of Factor B. With this kind of layout we can estimate
the effect of each factor (Main Effects) as well as any interaction
between the factors.

Model If we assume that we have K observations at each combination of I
levels of Factor A and J levels of Factor B, then we can model the
two-way layout with an equation of the form:

This equation just says that the kth data value for the jth level of Factor
B and the ith level of Factor A is the sum of five components: the
common value (grand mean), the level effect for Factor A, the level
effect for Factor B, the interaction effect, and the residual. Note that (ab)
does not mean multiplication; rather that there is interaction between the
two factors.

Estimation Like the one-way case, the estimation for the two-way layout can be
done either by calculating the variance components or by using CLM
techniques.

Click here
for the value
splitting
example

For the variance components methods we display the data in a two
dimensional table with the levels of Factor A in columns and the levels
of Factor B in rows. The replicate observations fill each cell. We can
sweep out the common value, the row effects, the column effects, the
interaction effects and the residuals using  value-splitting techniques.
Sums of squares can be calculated and summarized in an ANOVA table
as shown below.

3.2.3.2. Two-Way Crossed ANOVA
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Source Sum of Squares
Degrees

of
Freedom

Mean Square

rows I-1
/(I-1)

columns J-1
/(J-1)

interaction (I-1)(J-1)

/(I-1)(J-1)

residuals IJ(K-1) /IJ(K-1)

corrected
total

IJK-1  

We can use CLM techniques to do the estimation. We still have the
problem that the model is saturated and no unique solution exists. We
overcome this problem by applying the constraints to the model that the
two main effects and interaction effects each sum to zero.

Testing Like testing in the one-way case, we are testing that two main effects
and the interaction are zero. Again we just form a ratio of each main
effect mean square and the interaction mean square to the residual mean
square. If the assumptions stated below are true then those ratios follow
an F-distribution and the test is performed by comparing the F-ratios to
values in an F-table with the appropriate degrees of freedom and
confidence level.

Assumptions For estimation purposes, we assume the data can be adequately modeled
as described in the model above. It is assumed that the random
component can be modeled with a Gaussian distribution with fixed
location and spread.

Uses The two-way crossed ANOVA is useful when we want to compare the
effect of multiple levels of two factors and we can combine every level
of one factor with every level of the other factor. If we have multiple
observations at each level, then we can also estimate the effects of
interaction between the two factors.

3.2.3.2. Two-Way Crossed ANOVA
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Example Let's extend the one-way machining example by assuming that we want
to test if there are any differences in pin diameters due to different types
of coolant. We still have five different machines making the same part
and we take five samples from each machine for each coolant type to
obtain the following data:

Machine

Coolant
A

1 2 3 4 5
.125 .118 .123 .126 .118
.127 .122 .125 .128 .129
.125 .120 .125 .126 .127
.126 .124 .124 .127 .120
.128 .119 .126 .129 .121

Coolant
B

.124 .116 .122 .126 .125

.128 .125 .121 .129 .123

.127 .119 .124 .125 .114

.126 .125 .126 .130 .124

.129 .120 .125 .124 .117

Analyze For analysis details see the crossed two-way value splitting example. 
We can summarize the analysis results in an ANOVA table as follows: 

Source Sum of
Squares

Degrees of
Freedom Mean Square F-value

machine .000303 4 .000076 8.8 > 2.61
coolant .00000392 1 .00000392 .45 < 4.08

interaction .00001468 4 .00000367 .42 < 2.61
residuals .000346 40 .0000087  

corrected total .000668 49   

Test By dividing the mean square for machine by the mean square for
residuals we obtain an F-value of 8.8 which is greater  than the cut-off
value of  2.61 for 4 and 40 degrees of freedom and a confidence of
95%.  Likewise the F-values for Coolant and Interaction, obtained by
dividing their mean squares by the residual mean square, are less than
their respective cut-off values.

3.2.3.2. Two-Way Crossed ANOVA
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Conclusion From the ANOVA table we can conclude that machine is the most
important factor and is statistically significant. Coolant is not significant
and neither is the interaction. These results would lead us to believe that
some tool-matching efforts would be useful for improving this process.

3.2.3.2. Two-Way Crossed ANOVA
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3. Production Process Characterization
3.2. Assumptions / Prerequisites
3.2.3. Analysis of Variance Models (ANOVA)
3.2.3.2. Two-Way Crossed ANOVA

3.2.3.2.1.Two-way Crossed Value-Splitting
Example

Example:
Coolant is
completely
crossed with
machine

The data table below is five samples each collected from five different
lathes each running two different types of coolant. The measurement is
the diameter of a turned pin.

Machine

Coolant
A

1 2 3 4 5
.125 .118 .123 .126 .118
.127 .122 .125 .128 .129
.125 .120 .125 .126 .127
.126 .124 .124 .127 .120
.128 .119 .126 .129 .121

Coolant
B

.124 .116 .122 .126 .125

.128 .125 .121 .129 .123

.127 .119 .124 .125 .114

.126 .125 .126 .130 .124

.129 .120 .125 .124 .117

For the crossed two-way case, the first thing we need to do is to sweep
the cell means from the data table to obtain the residual values. This is
shown in the tables below.

3.2.3.2.1. Two-way Crossed Value-Splitting Example
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The first
step is to
sweep out
the cell
means to
obtain the
residuals
and means

Machine
1 2 3 4 5

A .1262 .1206 .1246 .1272 .123
B .1268 .121 .1236 .1268 .1206

Coolant
A

-.0012 -.0026 -.0016 -.0012 -.005
.0008 .0014 .0004 .0008 .006

-.0012 -.0006 .0004 -.0012 .004
-.0002 .0034 -.0006 -.0002 -.003
.0018 -.0016 .0014 .0018 -.002

Coolant
B

-.0028 -.005 -.0016 -.0008 .0044
.0012 .004 -.0026 .0022 .0024
.0002 -.002 .0004 -.0018 -.0066

-.0008 .004 .0024 .0032 .0034
.0022 -.001 .0014 -.0028 -.0036

Sweep the
row means

The next step is to sweep out the row means. This gives the table below.

Machine
1 2 3 4 5

A .1243 .0019 -.0037 .0003 .0029 -.0013
B .1238 .003 -.0028 -.0002 .003 -.0032

Sweep the
column
means

Finally, we sweep the column means to obtain the grand mean, row
(coolant) effects, column (machine) effects and the interaction effects.

Machine
1 2 3 4 5

.1241 .0025 -.0033 .00005 .003 -.0023
A .0003 -.0006 -.0005 .00025 .0000 .001
B -.0003 .0006 .0005 -.00025 .0000 -.001

3.2.3.2.1. Two-way Crossed Value-Splitting Example
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What do
these tables
tell us?

By looking at the table of residuals, we see that the residuals for coolant
B tend to be a little higher than for coolant A. This implies that there
may be more variability in diameter when we use coolant B. From the
effects table above, we see that machines 2 and 5 produce smaller pin
diameters than the other machines. There is also a very slight coolant
effect but the machine effect is larger. Finally, there also appears to be
slight interaction effects. For instance, machines 1 and 2 had smaller
diameters with coolant A but the opposite was true for machines 3,4 and
5.

Calculate
sums of
squares and
mean
squares

We can calculate the values for the ANOVA table according to the
formulae in the table on the crossed two-way page. This gives the table
below. From the F-values we see that the machine effect is significant
but the coolant and the interaction are not.

Source Sums of
Squares

Degrees of
Freedom

Mean
Square F-value

Machine .000303 4 .000076 8.8 > 2.61
Coolant .00000392 1 .00000392 .45 < 4.08

Interaction .00001468 4 .00000367 .42 < 2.61
Residual .000346 40 .0000087  

Corrected
Total .000668 49   

3.2.3.2.1. Two-way Crossed Value-Splitting Example
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3. Production Process Characterization
3.2. Assumptions / Prerequisites
3.2.3. Analysis of Variance Models (ANOVA)

3.2.3.3.Two-Way Nested ANOVA

Description Sometimes, constraints prevent us from crossing every level of one factor
with every level of the other factor. In these cases we are forced into what
is known as a nested layout. We say we have a nested layout when fewer
than all levels of one factor occur within each level of the other factor. An
example of this might be if we want to study the effects of different
machines and different operators on some output characteristic, but we
can't have the operators change the machines they run. In this case, each
operator is not crossed with each machine but rather only runs one
machine.

Model If Factor B is nested within Factor A, then a level of Factor B can only
occur within one level of Factor A and there can be no interaction. This
gives the following model:

This equation indicates that each data value is the sum of a common value
(grand mean), the level effect for Factor A, the level effect of Factor B
nested Factor A, and the residual.

Estimation For a nested design we typically use variance components methods to
perform the analysis.  We can sweep out the common value, the row
effects, the column effects and the residuals using  value-splitting
techniques. Sums of squares can be calculated and summarized in an
ANOVA table as shown below.

Click here
for nested
value-
splitting
example

It is important to note that with this type of layout, since each level of one
factor is only present with one level of the other factor, we can't estimate
interaction between the two.

3.2.3.3. Two-Way Nested ANOVA
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ANOVA
table for
nested case

Source Sum of Squares Degrees of
Freedom Mean Square

rows I-1
/(I-1)

columns I(J-1)
/I(J-1)

residuals IJ(K-1) /IJ(K-1)

corrected
total

IJK-1  

As with the crossed layout, we can also use CLM techniques. We still have
the problem that the model is saturated and no unique solution exists. We
overcome this problem by applying to the model the constraints that the
two main effects sum to zero.

Testing We are testing that two main effects are zero. Again we just form a ratio of
each main effect mean square to the residual mean square. If the
assumptions stated below are true then those ratios follow an F-distribution
and the test is performed by comparing the F-ratios to values in an F-table
with the appropriate degrees of freedom and confidence level.

Assumptions For estimation purposes, we assume the data can be adequately modeled as
described in the model above. It is assumed that the random component can
be modeled with a Gaussian distribution with fixed location and spread.

Uses The two-way nested ANOVA is useful when we are constrained from
combining all the levels of one factor with all of the levels of the other
factor. These designs are most useful when we have what is called a
random effects situation. When the levels of a factor are chosen at random
rather than selected intentionally, we say we have a random effects model.
An example of this is when we select lots from a production run, then
select units from the lot. Here the units are nested within lots and the effect
of each factor is random.

3.2.3.3. Two-Way Nested ANOVA
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Example Let's change the two-way machining example slightly by assuming that we
have five different machines making the same part and each machine has
two operators, one for the day shift and one for the night shift. We take five
samples from each machine for each operator to obtain the following data:

Machine

Operator
Day

1 2 3 4 5
.125 .118 .123 .126 .118
.127 .122 .125 .128 .129
.125 .120 .125 .126 .127
.126 .124 .124 .127 .120
.128 .119 .126 .129 .121

Operator
Night

.124 .116 .122 .126 .125

.128 .125 .121 .129 .123

.127 .119 .124 .125 .114

.126 .125 .126 .130 .124

.129 .120 .125 .124 .117

Analyze For analysis details see the nested two-way value splitting example. We
can summarize the analysis results in an ANOVA table as follows: 

Source Sum of
Squares

Degrees of
Freedom Mean Square F-value

Machine .000303 4 .0000758
8.77 >
2.61

Operator(Machine) .0000186 5 .00000372
.428 <
2.45

Residuals .000346 40 .0000087  
Corrected Total .000668 49   

Test By dividing the mean square for machine by the mean square for residuals
we obtain an F-value of 8.5 which is greater than the cut-off value of  2.61
for 4 and 40 degrees of freedom and a confidence of 95%.  Likewise the
F-value for Operator(Machine), obtained by dividing its mean square by
the residual mean square is less than the cut-off value of 2.45 for 5 and 40
degrees of freedom and 95% confidence.

3.2.3.3. Two-Way Nested ANOVA
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Conclusion From the ANOVA table we can conclude that the Machine is the most
important factor and is statistically significant. The effect of Operator
nested within Machine is not statistically significant. Again, any
improvement activities should be focused on the tools.

3.2.3.3. Two-Way Nested ANOVA
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3. Production Process Characterization
3.2. Assumptions / Prerequisites
3.2.3. Analysis of Variance Models (ANOVA)
3.2.3.3. Two-Way Nested ANOVA

3.2.3.3.1.Two-Way Nested Value-Splitting Example

Example:
Operator
is nested
within
machine.

The data table below contains data collected from five different lathes, each run by two
different operators. Note we are concerned here with the effect of operators, so the layout is
nested. If we were concerned with shift instead of operator, the layout would be crossed.
The measurement is the diameter of a turned pin.

Machine Operator
Sample

1 2 3 4 5

1
Day .125 .127 .125 .126 .128
Night .124 .128 .127 .126 .129

2
Day .118 .122 .120 .124 .119
Night .116 .125 .119 .125 .120

3
Day .123 .125 .125 .124 .126
Night .122 .121 .124 .126 .125

4
Day .126 .128 .126 .127 .129
Night .126 .129 .125 .130 .124

5
Day .118 .129 .127 .120 .121
Night .125 .123 .114 .124 .117

For the nested two-way case, just as in the crossed case, the first thing we need to do is to
sweep the cell means from the data table to obtain the residual values. We then sweep the
nested factor (Operator) and the top level factor (Machine) to obtain the table below.

Machine Operator
Common Machine Operator

 Sample
 1 2 3 4 5

1
Day

.12404

.00246
-.0003 -.0012 .0008 -.0012 -.0002 .0018

Night .0003 -.0028 .0012 .002 -.0008 .0022

2
Day

-.00324
-.0002 -.0026 .0014 -.0006 .0034 -.0016

Night .0002 -.005 .004 -.002 .004 -.001

3
Day

.00006
.0005 -.0016 .0004 .0004 -.0006 .0014

Night -.0005 -.0016 -.0026 .0004 .0024 .0014

4
Day

.00296
.0002 -.0012 .0008 -.0012 -.002 .0018

Night -.0002 -.0008 .0022 -.0018 .0032 -.0028
Day .0012 -.005 .006 .004 -.003 -.002

3.2.3.3.1. Two-Way Nested Value-Splitting Example
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5 -.00224Night -.0012 .0044 .0024 -.0066 .0034 -.0036

What
does this
table tell
us?

By looking at the residuals we see that machines 2 and 5 have the greatest variability.
There does not appear to be much of an operator effect but there is clearly a strong machine
effect.

Calculate
sums of
squares
and
mean
squares

We can calculate the values for the ANOVA table according to the formulae in the table on
the nested two-way page. This produces the table below. From the F-values we see that the
machine effect is significant but the operator effect is not. (Here it is assumed that both
factors are fixed).

Source Sums of Squares Degrees of Freedom Mean Square F-value
Machine .000303 4 .0000758 8.77 > 2.61

Operator(Machine) .0000186 5 .00000372 .428 < 2.45
Residual .000346 40 .0000087  

Corrected Total .000668 49   

3.2.3.3.1. Two-Way Nested Value-Splitting Example
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3. Production Process Characterization
3.2. Assumptions / Prerequisites

3.2.4.Discrete Models

Description There are many instances when we are faced with the analysis of
discrete data rather than continuous data. Examples of this are yield
(good/bad), speed bins (slow/fast/faster/fastest), survey results
(favor/oppose), etc. We then try to explain the discrete outcomes with
some combination of discrete and/or continuous explanatory variables.
In this situation the modeling techniques we have learned so far (CLM
and ANOVA) are no longer appropriate.

Contingency
table
analysis and
log-linear
model

There are two primary methods available for the analysis of discrete
response data. The first one applies to situations in which we have
discrete explanatory variables and discrete responses and is known as
Contingency Table Analysis. The model for this is covered in detail in
this section. The second model applies when we have both discrete and
continuous explanatory variables and is referred to as a Log-Linear
Model. That model is beyond the scope of this Handbook, but interested
readers should refer to the reference section of this chapter for a list of
useful books on the topic.

Model Suppose we have n individuals that we classify according to two
criteria, A and B. Suppose there are r levels of criterion A and s levels
of criterion B. These responses can be displayed in an r x s table. For
example, suppose we have a box of manufactured parts that we classify
as good or bad and whether they came from supplier 1, 2 or 3.

Now, each cell of this table will have a count of the individuals who fall
into its particular combination of classification levels. Let's call this
count Nij. The sum of all of these counts will be equal to the total
number of individuals, N. Also, each row of the table will sum to Ni.
and each column will sum to N.j .

3.2.4. Discrete Models
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Under the assumption that there is no interaction between the two
classifying variables (like the number of good or bad parts does not
depend on which supplier they came from), we can calculate the counts
we would expect to see in each cell. Let's call the expected count for any
cell Eij . Then the expected value for a cell is Eij = Ni. * N.j /N . All we
need to do then is to compare the expected counts to the observed
counts. If there is a consderable difference between the observed counts
and the expected values, then the two variables interact in some way.

Estimation The estimation is very simple. All we do is make a table of the observed
counts and then calculate the expected counts as described above.

Testing The test is performed using a Chi-Square goodness-of-fit test according
to the following formula:

where the summation is across all of the cells in the table.

Given the assumptions stated below, this statistic has approximately a
chi-square distribution and is therefore compared against a chi-square
table with (r-1)(s-1) degrees of freedom, with r and s as previously
defined. If the value of the test statistic is less than the chi-square value
for a given level of confidence, then the classifying variables are
declared independent, otherwise they are judged to be dependent.

Assumptions The estimation and testing results above hold regardless of whether the
sample model is Poisson, multinomial, or product-multinomial. The
chi-square results start to break down if the counts in any cell are small,
say < 5.

Uses The contingency table method is really just a test of interaction between
discrete explanatory variables for discrete responses. The example given
below is for two factors. The methods are equally applicable to more
factors, but as with any interaction, as you add more factors the
interpretation of the results becomes more difficult.

Example Suppose we are comparing the yield from two manufacturing processes.
We want want to know if one process has a higher yield.

3.2.4. Discrete Models
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Make table
of counts

Good Bad Totals
Process A 86 14 100
Process B 80 20 100

Totals 166 34 200

Table 1. Yields for two production processes

We obtain the expected values by the formula given above.  This gives
the table below.

Calculate
expected
counts

Good Bad Totals
Process A 83 17 100
Process B 83 17 100

Totals 166 34 200

Table 2. Expected values for two production processes

Calculate
chi-square
statistic and
compare to
table value

The chi-square statistic is 1.276. This is below the chi-square value for 1
degree of freedom and 90% confidence of 2.71 . Therefore, we conclude
that there is not a (significant) difference in process yield.

Conclusion Therefore, we conclude that there is no statistically significant
difference between the two processes.

3.2.4. Discrete Models
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3. Production Process Characterization

3.3.Data Collection for PPC

Start with
careful
planning

The data collection process for PPC starts with careful planning. The
planning consists of the definition of clear and concise goals, developing
process models and devising a sampling plan.

Many things
can go
wrong in the
data
collection

This activity of course ends without the actual collection of the data
which is usually not as straightforward as it might appear. Many things
can go wrong in the execution of the sampling plan. The problems can
be mitigated with the use of check lists and by carefully documenting all
exceptions to the original sampling plan.

Table of
Contents

Set Goals1.  

Modeling Processes

Black-Box Models1.  

Fishbone Diagrams2.  

Relationships and Sensitivities3.  

2.  

Define the Sampling Plan

Identify the parameters, ranges and resolution1.  

Design sampling scheme2.  

Select sample sizes3.  

Design data storage formats4.  

Assign roles and responsibilities5.  

3.  

3.3. Data Collection for PPC
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3. Production Process Characterization
3.3. Data Collection for PPC

3.3.1.Define Goals

State concise
goals

The goal statement is one of the most important parts of the
characterization plan. With clearly and concisely stated goals, the rest
of the planning process falls naturally into place.

Goals
usually
defined in
terms of key
specifications

The goals are usually defined in terms of key specifications or
manufacturing indices. We typically want to characterize a process and
compare the results against these specifications. However, this is not
always the case. We may, for instance, just want to quantify key
process parameters and use our estimates of those parameters in some
other activity like controller design or process improvement.

Example
goal
statements

Click on each of the links below to see Goal Statements for each of the
case studies.

Furnace Case Study (Goal)1.  

Machine Case Study (Goal)2.  

3.3.1. Define Goals
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3. Production Process Characterization
3.3. Data Collection for PPC

3.3.2.Process Modeling

Identify
influential
parameters

Process modeling begins by identifying all of the important factors and
responses. This is usually best done as a team effort and is limited to the
scope set by the goal statement.

Document
with
black-box
models

This activity is best documented in the form of a black-box model as
seen in the figure below. In this figure all of the outputs are shown on
the right and all of the controllable inputs are shown on the left. Any
inputs or factors that may be observable but not controllable are shown
on the top or bottom.

3.3.2. Process Modeling
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Model
relationships
using
fishbone
diagrams

The next step is to model relationships of the previously identified
factors and responses. In this step we choose a parameter and identify
all of the other parameters that may have an influence on it. This
process is easily documented with fishbone diagrams as illustrated in
the figure below. The influenced parameter is put on the center line and
the influential factors are listed off of the centerline and can be grouped
into major categories like Tool, Material, Work Methods and
Environment.

Document
relationships
and
sensitivities

The final step is to document all known information about the
relationships and sensitivities between the inputs and outputs. Some of
the inputs may be correlated with each other as well as the outputs.
There may be detailed mathematical models available from other
studies or the information available may be vague such as for a
machining process we know that as the feed rate increases, the quality
of the finish decreases.

It is best to document this kind of information in a table with all of the
inputs and outputs listed both on the left column and on the top row.
Then, correlation information can be filled in for each of the appropriate
cells. See the case studies for an example.

3.3.2. Process Modeling

http://www.itl.nist.gov/div898/handbook/ppc/section3/ppc32.htm (2 of 3) [11/13/2003 5:41:32 PM]



Examples Click on each of the links below to see the process models for each of
the case studies.

Case Study 1 (Process Model)1.  

Case Study 2 (Process Model)2.  

3.3.2. Process Modeling
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3. Production Process Characterization
3.3. Data Collection for PPC

3.3.3.Define Sampling Plan

Sampling
plan is
detailed
outline of
measurements
to be taken

A sampling plan is a detailed outline of which measurements will be
taken at what times, on which material, in what manner, and by whom.
Sampling plans should be designed in such a way that the resulting
data will contain a representative sample of the parameters of interest
and allow for all questions, as stated in the goals, to be answered.

Steps in the
sampling plan

The steps involved in developing a sampling plan are:

identify the parameters to be measured, the range of possible
values, and the required resolution

1.  

design a sampling scheme that details how and when samples
will be taken

2.  

select sample sizes3.  

design data storage formats4.  

assign roles and responsibilities5.  

Verify and
execute

Once the sampling plan has been developed, it can be verified and then
passed on to the responsible parties for execution.

3.3.3. Define Sampling Plan
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3. Production Process Characterization
3.3. Data Collection for PPC
3.3.3. Define Sampling Plan

3.3.3.1. Identifying Parameters, Ranges and
Resolution

Our goals and the models we built in the previous steps should
provide all of the information needed for selecting parameters and
determining the expected ranges and the required measurement
resolution.

Goals will tell
us what to
measure and
how

The first step is to carefully examine the goals. This will tell you
which response variables need to be sampled and how. For instance, if
our goal states that we want to determine if an oxide film can be
grown on a wafer to within 10 Angstroms of the target value with a
uniformity of <2%, then we know we have to measure the film
thickness on the wafers to an accuracy of at least +/- 3 Angstroms and
we must measure at multiple sites on the wafer in order to calculate
uniformity.

The goals and the models we build will also indicate which
explanatory variables need to be sampled and how. Since the fishbone
diagrams define the known important relationships, these will be our
best guide as to which explanatory variables are candidates for
measurement.

Ranges help
screen outliers

Defining the expected ranges of values is useful for screening outliers.
In the machining example , we would not expect to see many values
that vary more than +/- .005" from nominal. Therefore we know that
any values that are much beyond this interval are highly suspect and
should be remeasured.

3.3.3.1. Identifying Parameters, Ranges and Resolution
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Resolution
helps choose
measurement
equipment

Finally, the required resolution for the measurements should be
specified. This specification will help guide the choice of metrology
equipment and help define the measurement procedures. As a rule of
thumb, we would like our measurement resolution to be at least 1/10
of our tolerance. For the oxide growth example, this means that we
want to measure with an accuracy of 2 Angstroms. Similarly, for the
turning operation we would need to measure the diameter within
.001". This means that vernier calipers would be adequate as the
measurement device for this application.

Examples Click on each of the links below to see the parameter descriptions for
each of the case studies.

Case Study 1 (Sampling Plan)1.  

Case Study 2 (Sampling Plan)2.  

3.3.3.1. Identifying Parameters, Ranges and Resolution
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3. Production Process Characterization
3.3. Data Collection for PPC
3.3.3. Define Sampling Plan

3.3.3.2. Choosing a Sampling Scheme

A sampling
scheme defines
what data will
be obtained
and how

A sampling scheme is a detailed description of what data will be
obtained and how this will be done. In PPC we are faced with two
different situations for developing sampling schemes. The first is
when we are conducting a controlled experiment. There are very
efficient and exact methods for developing sampling schemes for
designed experiments and the reader is referred to the Process
Improvement chapter for details.

Passive data
collection

The second situation is when we are conducting a passive data
collection (PDC) study to learn about the inherent properties of a
process. These types of studies are usually for comparison purposes
when we wish to compare properties of processes against each other
or against some hypothesis. This is the situation that we will focus on
here.

There are two
principles that
guide our
choice of
sampling
scheme

Once we have selected our response parameters, it would seem to be a
rather straightforward exercise to take some measurements, calculate
some statistics and draw conclusions. There are, however, many
things which can go wrong along the way that can be avoided with
careful planning and knowing what to watch for. There are two
overriding principles that will guide the design of our sampling
scheme.

The first is
precision

The first principle is that of precision. If the sampling scheme is
properly laid out, the difference between our estimate of some
parameter of interest and its true value will be due only to random
variation. The size of this random variation is measured by a quantity
called standard error. The magnitude of the standard error is known
as precision. The smaller the standard error, the more precise are our
estimates.

3.3.3.2. Choosing a Sampling Scheme
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Precision of
an estimate
depends on
several factors

The precision of any estimate will depend on:

the inherent variability of the process estimator●   

the measurement error●   

the number of independent replications (sample size)●   

the efficiency of the sampling scheme.●   

The second is
systematic
sampling error
(or
confounded
effects)

The second principle is the avoidance of systematic errors. Systematic
sampling error occurs when the levels of one explanatory variable are
the same as some other unaccounted for explanatory variable. This is
also referred to as confounded effects. Systematic sampling error is
best seen by example.

Example 1: We want to compare the effect of two
different coolants on the resulting surface finish from a
turning operation. It is decided to run one lot, change the
coolant and then run another lot. With this sampling
scheme, there is no way to distinguish the coolant effect
from the lot effect or from tool wear considerations.
There is systematic sampling error in this sampling
scheme.

Example 2: We wish to examine the effect of two
pre-clean procedures on the uniformity of an oxide
growth process. We clean one cassette of wafers with
one method and another cassette with the other method.
We load one cassette in the front of the furnace tube and
the other cassette in the middle. To complete the run, we
fill the rest of the tube with other lots. With this sampling
scheme, there is no way to distinguish between the effect
of the different pre-clean methods and the cassette effect
or the tube location effect. Again, we have systematic
sampling errors.

Stratification
helps to
overcome
systematic
error

The way to combat systematic sampling errors (and at the same time
increase precision) is through stratification and randomization.
Stratification is the process of segmenting our population across
levels of some factor so as to minimize variability within those
segments or strata. For instance, if we want to try several different
process recipes to see which one is best, we may want to be sure to
apply each of the recipes to each of the three work shifts. This will
ensure that we eliminate any systematic errors caused by a shift effect.
This is where the ANOVA designs are particularly useful.

3.3.3.2. Choosing a Sampling Scheme
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Randomization
helps too

Randomization is the process of randomly applying the various
treatment combinations. In the above example, we would not want to
apply recipe 1, 2 and 3 in the same order for each of the three shifts
but would instead randomize the order of the three recipes in each
shift. This will avoid any systematic errors caused by the order of the
recipes.

Examples The issues here are many and complicated. Click on each of the links
below to see the sampling schemes for each of the case studies.

Case Study 1 (Sampling Plan)1.  

Case Study 2 (Sampling Plan)2.  

3.3.3.2. Choosing a Sampling Scheme
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3. Production Process Characterization
3.3. Data Collection for PPC
3.3.3. Define Sampling Plan

3.3.3.3.Selecting Sample Sizes

Consider
these things
when
selecting a
sample size

When choosing a sample size, we must consider the following issues:

What population parameters we want to estimate●   

Cost of sampling (importance of information)●   

How much is already known●   

Spread (variability) of the population●   

Practicality: how hard is it to collect data●   

How precise we want the final estimates to be●   

Cost of
taking
samples

The cost of sampling issue helps us determine how precise our
estimates should be. As we will see below, when choosing sample
sizes we need to select risk values.  If the decisions we will make from
the sampling activity are very valuable, then we will want low risk
values and hence larger sample sizes.

Prior
information

If our process has been studied before, we can use that prior
information to reduce sample sizes. This can be done by using prior
mean and variance estimates and by stratifying the population to
reduce variation within groups.

Inherent
variability

We take samples to form estimates of some characteristic of the
population of interest. The variance of that estimate is proportional to
the inherent variability of the population divided by the sample size:

.

with  denoting the parameter we are trying to estimate. This means
that if the variability of the population is large, then we must take many
samples. Conversely, a small population variance means we don't have
to take as many samples.

3.3.3.3. Selecting Sample Sizes
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Practicality Of course the sample size you select must make sense. This is where
the trade-offs usually occur. We want to take enough observations to
obtain reasonably precise estimates of the parameters of interest but we
also want to do this within a practical resource budget. The important
thing is to quantify the risks associated with the chosen sample size.

Sample size
determination

In summary, the steps involved in estimating a sample size are:

There must be a statement about what is expected of the sample.
We must determine what is it we are trying to estimate, how
precise we want the estimate to be, and what are we going to do
with the estimate once we have it. This should easily be derived
from the goals.

1.  

We must find some equation that connects the desired precision
of the estimate with the sample size. This is a probability
statement. A couple are given below; see your statistician if
these are not appropriate for your situation.

2.  

This equation may contain unknown properties of the population
such as the mean or variance. This is where prior information
can help.

3.  

If you are stratifying the population in order to reduce variation,
sample size determination must be performed for each stratum.

4.  

The final sample size should be scrutinized for practicality. If it
is unacceptable, the only way to reduce it is to accept less
precision in the sample estimate.

5.  

Sampling
proportions

When we are sampling proportions we start with a probability
statement about the desired precision. This is given by:

where

 is the estimated proportion●   

P is the unknown population parameter●   

 is the specified precision of the estimate●   

 is the probability value (usually low)●   

This equation simply shows that we want the probability that the

precision of our estimate being less than we want is . Of course we

like to set  low, usually .1 or less. Using some assumptions about
the proportion being approximately normally distributed we can obtain
an estimate of the required sample size as:

3.3.3.3. Selecting Sample Sizes
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where z is the ordinate on the Normal curve corresponding to .

Example Let's say we have a new process we want to try. We plan to run the
new process and sample the output for yield (good/bad). Our current
process has been yielding 65% (p=.65, q=.35). We decide that we want

the estimate of the new process yield to be accurate to within  = .10

at 95% confidence (  = .05, z=2). Using the formula above we get a
sample size estimate of n=91. Thus, if we draw 91 random parts from
the output of the new process and estimate the yield, then we are 95%
sure the yield estimate is within .10 of the true process yield.

Estimating
location:
relative error

If we are sampling continuous normally distributed variables, quite
often we are concerned about the relative error of our estimates rather
than the absolute error. The probability statement connecting the
desired precision to the sample size is given by:

where  is the (unknown) population mean and  is the sample mean.

Again, using the normality assumptions we obtain the estimated
sample size to be:

with 2 denoting the population variance.

Estimating
location:
absolute
error

If instead of relative error, we wish to use absolute error, the equation
for sample size looks alot like the one for the case of proportions:

where  is the population standard deviation (but in practice is
usually replaced by an engineering guesstimate).

3.3.3.3. Selecting Sample Sizes
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Example Suppose we want to sample a stable process that deposits a 500
Angstrom film on a semiconductor wafer in order to determine the
process mean so that we can set up a control chart on the process. We

want to estimate the mean within 10 Angstroms (  = 10) of the true
mean with 95% confidence (  = .05, Z = 2). Our initial guess
regarding the variation in the process is that one standard deviation is
about 20 Angstroms. This gives a sample size estimate of n = 16. Thus,
if we take at least 16 samples from this process and estimate the mean
film thickness, we can be 95% sure that the estimate is within 10% of
the true mean value.

3.3.3.3. Selecting Sample Sizes
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3. Production Process Characterization
3.3. Data Collection for PPC
3.3.3. Define Sampling Plan

3.3.3.4.Data Storage and Retrieval

Data control
depends on
facility size

If you are in a small manufacturing facility or a lab, you can simply
design a sampling plan, run the material, take the measurements, fill in
the run sheet and go back to your computer to analyze the results. There
really is not much to be concerned with regarding data storage and
retrieval.

In most larger facilities, however, the people handling the material
usually have nothing to do with the design. Quite often the
measurements are taken automatically and may not even be made in the
same country where the material was produced. Your data go through a
long chain of automatic acquisition, storage, reformatting, and retrieval
before you are ever able to see it. All of these steps are fraught with
peril and should be examined closely to ensure that valuable data are not
lost or accidentally altered.

Know the
process
involved

In the planning phase of the PPC, be sure to understand the entire data
collection process. Things to watch out for include:

automatic measurement machines rejecting outliers●   

only summary statistics (mean and standard deviation) being
saved

●   

values for explanatory variables (location, operator, etc.) are not
being saved

●   

how missing values are handled●   

Consult with
support staff
early on

It is important to consult with someone from the organization
responsible for maintaining the data system early in the planning phase
of the PPC.  It can also be worthwhile to perform some "dry runs" of the
data collection to ensure you will be able to actually acquire the data in
the format as defined in the plan.

3.3.3.4. Data Storage and Retrieval

http://www.itl.nist.gov/div898/handbook/ppc/section3/ppc334.htm (1 of 2) [11/13/2003 5:41:33 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


3.3.3.4. Data Storage and Retrieval

http://www.itl.nist.gov/div898/handbook/ppc/section3/ppc334.htm (2 of 2) [11/13/2003 5:41:33 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


3. Production Process Characterization
3.3. Data Collection for PPC
3.3.3. Define Sampling Plan

3.3.3.5.Assign Roles and Responsibilities

PPC is a team
effort, get
everyone
involved early

In today's manufacturing environment, it is unusual when an
investigative study is conducted by a single individual. Most PPC
studies will be a team effort. It is important that all individuals who
will be involved in the study become a part of the team from the
beginning. Many of the various collateral activities will need
approvals and sign-offs. Be sure to account for that cycle time in your
plan.

Table showing
roles and
potential
responsibilities

A partial list of these individuals along with their roles and potential
responsibilities is given in the table below. There may be multiple
occurrences of each of these individuals across shifts or process steps,
so be sure to include everyone.

Tool Owner Controls Tool
Operations

Schedules tool time●   

Ensures tool state●   

Advises on
experimental design

●   

Process Owner Controls Process
Recipe

Advises on
experimental design

●   

Controls recipe settings●   

Tool Operator Executes
Experimental Plan

Executes experimental
runs

●   

May take
measurements

●   

Metrology Own Measurement
Tools

Maintains metrology
equipment

●   

Conducts gauge studies●   

May take
measurements

●   

3.3.3.5. Assign Roles and Responsibilities
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CIM Owns Enterprise
Information
System

Maintains data
collection system

●   

Maintains equipment
interfaces and data
formatters

●   

Maintains databases
and information access

●   

Statistician Consultant Consults on
experimental design

●   

Consults on data
analysis

●   

Quality Control Controls Material Ensures quality of
incoming material

●   

Must approve shipment
of outgoing material
(especially for recipe
changes)

●   

3.3.3.5. Assign Roles and Responsibilities
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3. Production Process Characterization

3.4.Data Analysis for PPC

In this section we will learn how to analyze and interpret the data we
collected in accordance with our data collection plan.

Click on
desired
topic to read
more

This section discusses the following topics:

Initial Data Analysis 

Gather Data1.  

Quality Checking the Data 2.  

Summary Analysis (Location, Spread and Shape) 3.  

1.  

Exploring Relationships 

Response Correlations1.  

Exploring Main Effects 2.  

Exploring First-Order Interactions 3.  

2.  

Building Models 

Fitting Polynomial Models 1.  

Fitting Physical Models2.  

3.  

Analyzing Variance Structure 4.  

Assessing Process Stablility5.  

Assessing Process Capability6.  

 Checking Assumptions 7.  

3.4. Data Analysis for PPC
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3. Production Process Characterization
3.4. Data Analysis for PPC

3.4.1.First Steps

Gather all
of the data
into one
place

After executing the data collection plan for the characterization study,
the data must be gathered up for analysis. Depending on the scope of the
study, the data may reside in one place or in many different places. It
may be in common factory databases, flat files on individual computers,
or handwritten on run sheets. Whatever the case, the first step will be to
collect all of the data from the various sources and enter it into a single
data file.  The most convenient format for most data analyses is the
variables-in-columns format. This format has the variable names in
column headings and the values for the variables in the rows.

Perform a
quality
check on the
data using
graphical
and
numerical
techniques

The next step is to perform a quality check on the data. Here we are
typically looking for data entry problems, unusual data values, missing
data, etc. The two most useful tools for this step are the scatter plot and
the histogram. By constructing scatter plots of all of the response
variables, any data entry problems will be easily identified.  Histograms
of response variables are also quite useful for identifying data entry
problems. Histograms of explanatory variables help identify problems
with the execution of the sampling plan. If the counts for each level of
the explanatory variables are not the same as called for in the sampling
plan, you know you may have an execution problem. Running
numerical summary statistics on all of the variables (both response and
explanatory) also helps to identify data problems.

Summarize
data by
estimating
location,
spread and
shape

Once the data quality problems are identified and fixed, we should
estimate the location, spread and shape for all of the response variables.
This is easily done with a combination of histograms and numerical
summary statistics.

3.4.1. First Steps
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3. Production Process Characterization
3.4. Data Analysis for PPC

3.4.2.Exploring Relationships

The first
analysis of
our data is
exploration

Once we have a data file created in the desired format, checked the
data integrity, and have estimated the summary statistics on the
response variables, the next step is to start exploring the data and to try
to understand the underlying structure. The most useful tools will be
various forms of the basic scatter plot and box plot.

These techniques will allow pairwise explorations for examining
relationships between any pair of response variables, any pair of
explanatory and response variables, or a response variable as a
function of any two explanatory variables. Beyond three dimensions
we are pretty much limited by our human frailties at visualization.

Graph
everything
that makes
sense

In this exploratory phase, the key is to graph everything that makes
sense to graph. These pictures will not only reveal any additional
quality problems with the data but will also reveal influential data
points and will guide the subsequent modeling activities.

Graph
responses,
then
explanatory
versus
response,
then
conditional
plots

The order that generally proves most effective for data analysis is to
first graph all of the responses against each other in a pairwise fashion.
Then we graph responses against the explanatory variables. This will
give an indication of the main factors that have an effect on response
variables. Finally, we graph response variables, conditioned on the
levels of explanatory factors. This is what reveals interactions between
explanatory variables. We will use nested boxplots and block plots to
visualize interactions.

3.4.2. Exploring Relationships
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3. Production Process Characterization
3.4. Data Analysis for PPC
3.4.2. Exploring Relationships

3.4.2.1.Response Correlations

Make
scatter
plots of
all of the
response
variables

In this first phase of exploring our data, we plot all of the response variables in a pairwise fashion.
The individual scatter plots are displayed in a matrix form with the y-axis scaling the same for all
plots in a row of the matrix.

Check the
slope of
the data
on the
scatter
plots

The scatterplot matrix shows how the response variables are related to each other. If there is a linear
trend with a positive slope, this indicates that the responses are positively correlated. If there is a
linear trend with a negative slope, then the variables are negatively correlated. If the data appear
random with no slope, the variables are probably not correlated. This will be important information
for subsequent model building steps.

This
scatterplot
matrix
shows
examples
of both
negatively
and
positively
correlated
variables

An example of a scatterplot matrix is given below. In this semiconductor manufacturing example,
three responses, yield (Bin1), N-channel Id effective (NIDEFF), and P-channel Id effective
(PIDEFF) are plotted against each other in a scatterplot matrix. We can see that Bin1 is positively
correlated with NIDEFF and negatively correlated with PIDEFF. Also, as expected, NIDEFF is
negatively correlated with PIDEFF. This kind of information will prove to be useful when we build
models for yield improvement.

3.4.2.1. Response Correlations

http://www.itl.nist.gov/div898/handbook/ppc/section4/ppc421.htm (1 of 2) [11/13/2003 5:41:35 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatterb.htm
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3. Production Process Characterization
3.4. Data Analysis for PPC
3.4.2. Exploring Relationships

3.4.2.2.Exploring Main Effects

The next
step is to
look for
main effects

The next step in the exploratory analysis of our data is to see which factors have an effect on which
response variables and to quantify that effect. Scatter plots and box plots will be the tools of choice
here.

Watch out
for varying
sample
sizes across
levels

This step is relatively self explanatory. However there are two points of caution. First, be cognizant
of not only the trends in these graphs but also the amount of data represented in those trends. This is
especially true for categorical explanatory variables. There may be many more observations in some
levels of the categorical variable than in others. In any event, take unequal sample sizes into account
when making inferences.

Graph
implicit as
well as
explicit
explanatory
variables

The second point is to be sure to graph the responses against implicit explanatory variables (such as
observation order) as well as the explicit explanatory variables. There may be interesting insights in
these hidden explanatory variables.

Example:
wafer
processing

In the example below, we have collected data on the particles added to a wafer during a particular
processing step. We ran a number of cassettes through the process and sampled wafers from certain
slots in the cassette. We also kept track of which load lock the wafers passed through. This was done
for two different process temperatures. We measured both small particles (< 2 microns) and large
particles (> 2 microns). We plot the responses (particle counts) against each of the explanatory
variables.

Cassette
does not
appear to
be an
important
factor for
small or
large
particles

This first graph is a box plot of the number of small particles added for each cassette type. The "X"'s
in the plot represent the maximum, median, and minimum number of particles.

3.4.2.2. Exploring Main Effects
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The second graph is a box plot of the number of large particles added for each cassette type.

3.4.2.2. Exploring Main Effects
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We conclude from these two box plots that cassette does not appear to be an important factor for
small or large particles.

There is a
difference
between
slots for
small
particles,
one slot is
different for
large
particles

We next generate box plots of small and large particles for the slot variable. First, the box plot for
small particles.

3.4.2.2. Exploring Main Effects
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Next, the box plot for large particles.

3.4.2.2. Exploring Main Effects
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We conclude that there is a difference between slots for small particles. We also conclude that one
slot appears to be different for large particles.

Load lock
may have a
slight effect
for small
and large
particles

We next generate box plots of small and large particles for the load lock variable. First, the box plot
for small particles.

3.4.2.2. Exploring Main Effects
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Next, the box plot for large particles.

3.4.2.2. Exploring Main Effects
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We conclude that there may be a slight effect for load lock for small and large particles.

For small
particles,
temperature
has a
strong
effect on
both
location
and spread.
For large
particles,
there may
be a slight
temperature
effect but
this may
just be due
to the
outliers

We next generate box plots of small and large particles for the temperature variable. First, the box
plot for small particles.

3.4.2.2. Exploring Main Effects
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Next, the box plot for large particles.

3.4.2.2. Exploring Main Effects
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'

We conclude that temperature has a strong effect on both location and spread for small particles. We
conclude that there might be a small temperature effect for large particles, but this may just be due to
outliers.

3.4.2.2. Exploring Main Effects
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3. Production Process Characterization
3.4. Data Analysis for PPC
3.4.2. Exploring Relationships

3.4.2.3.Exploring First Order Interactions

It is
important
to identify
interactions

The final step (and perhaps the most important one) in the exploration phase is to find any first order
interactions. When the difference in the response between the levels of one factor is not the same for
all of the levels of another factor we say we have an interaction between those two factors. When
we are trying to optimize responses based on factor settings, interactions provide for compromise.

The eyes
can be
deceiving -
be careful

Interactions can be seen visually by using nested box plots. However, caution should be exercised
when identifying interactions through graphical means alone. Any graphically identified interactions
should be verified by numerical methods as well.

Previous
example
continued

To continue the previous example, given below are nested box plots of the small and large particles.
The load lock is nested within the two temperature values. There is some evidence of possible
interaction between these two factors. The effect of load lock is stronger at the lower temperature
than at the higher one. This effect is stronger for the smaller particles than for the larger ones. As
this example illustrates, when you have significant interactions the main effects must be interpreted
conditionally. That is, the main effects do not tell the whole story by themselves.

For small
particles,
the load
lock effect
is not as
strong for
high
temperature
as it is for
low
temperature

The following is the box plot of small particles for load lock nested within temperature.

3.4.2.3. Exploring First Order Interactions
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We conclude from this plot that for small particles, the load lock effect is not as strong for high
temperature as it is for low temperature.

The same
may be true
for large
particles
but not as
strongly

The following is the box plot of large particles for load lock nested within temperature.

3.4.2.3. Exploring First Order Interactions
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We conclude from this plot that for large particles, the load lock effect may not be as strong for high
temperature as it is for low temperature. However, this effect is not as strong as it is for small
particles.

3.4.2.3. Exploring First Order Interactions
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3. Production Process Characterization
3.4. Data Analysis for PPC

3.4.3.Building Models

Black box
models

When we develop a data collection plan we build black box models of the
process we are studying like the one below:

In our data
collection plan
we drew
process model
pictures

3.4.3. Building Models
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Numerical
models are
explicit
representations
of our process
model pictures

In the Exploring Relationships section, we looked at how to identify the
input/output relationships through graphical methods. However, if we want to
quantify the relationships and test them for statistical significance, we must
resort to building mathematical models.

Polynomial
models are
generic
descriptors of
our output
surface

There are two cases that we will cover for building mathematical models. If our
goal is to develop an empirical prediction equation or to identify statistically
significant explanatory variables and quantify their influence on output
responses, we typically build polynomial models. As the name implies, these are
polynomial functions (typically linear or quadratic functions) that describe the
relationships between the explanatory variables and the response variable.

Physical
models
describe the
underlying
physics of our
processes

On the other hand, if our goal is to fit an existing theoretical equation, then we
want to build physical models. Again, as the name implies, this pertains to the
case when we already have equations representing the physics involved in the
process and we want to estimate specific parameter values.

3.4.3. Building Models
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3. Production Process Characterization
3.4. Data Analysis for PPC
3.4.3. Building Models

3.4.3.1.Fitting Polynomial Models

Polynomial
models are a
great tool
for
determining
which input
factors drive
responses
and in what
direction

We use polynomial models to estimate and predict the shape of
response values over a range of input parameter values. Polynomial
models are a great tool for determining which input factors drive
responses and in what direction. These are also the most common
models used for analysis of designed experiments. A quadratic
(second-order) polynomial model for two explanatory variables has the
form of the equation below. The single x-terms are called the main
effects. The squared terms are called the quadratic effects and are used
to model curvature in the response surface. The cross-product terms are
used to model interactions between the explanatory variables.

We generally
don't need
more than
second-order
equations

In most engineering and manufacturing applications we are concerned
with at most second-order polynomial models. Polynomial equations
obviously could become much more complicated as we increase the
number of explanatory variables and hence the number of cross-product
terms. Fortunately, we rarely see significant interaction terms above the
two-factor level. This helps to keep the equations at a manageable level.

Use multiple
regression to
fit
polynomial
models

When the number of factors is small (less than 5), the complete
polynomial equation can be fitted using the technique known as
multiple regression. When the number of factors is large, we should use
a technique known as stepwise regression. Most statistical analysis
programs have a stepwise regression capability. We just enter all of the
terms of the polynomial models and let the software choose which
terms best describe the data. For a more thorough discussion of this
topic and some examples, refer to the process improvement chapter.

3.4.3.1. Fitting Polynomial Models

http://www.itl.nist.gov/div898/handbook/ppc/section4/ppc431.htm (1 of 2) [11/13/2003 5:41:45 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/
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3. Production Process Characterization
3.4. Data Analysis for PPC
3.4.3. Building Models

3.4.3.2.Fitting Physical Models

Sometimes
we want
to use a
physical
model

Sometimes, rather than approximating response behavior with polynomial
models, we know and can model the physics behind the underlying process. In
these cases we would want to fit physical models to our data. This kind of
modeling allows for better prediction and is less subject to variation than
polynomial models (as long as the underlying process doesn't change).

We will
use a
CMP
process to
illustrate

We will illustrate this concept with an example. We have collected data on a
chemical/mechanical planarization process (CMP) at a particular semiconductor
processing step. In this process, wafers are polished using a combination of
chemicals in a polishing slurry using polishing pads. We polished a number of
wafers for differing periods of time in order to calculate material removal rates.

CMP
removal
rate can
be
modeled
with a
non-linear
equation

From first principles we know that removal rate changes with time. Early on,
removal rate is high and as the wafer becomes more planar the removal rate
declines. This is easily modeled with an exponential function of the form:

removal rate = p1 + p2 x exp  p3 x time

where p1, p2, and p3 are the parameters we want to estimate.

A
non-linear
regression
routine
was used
to fit the
data to
the
equation

The equation was fit to the data using a non-linear regression routine. A plot of
the original data and the fitted line are given in the image below. The fit is quite
good. This fitted equation was subsequently used in process optimization work.

3.4.3.2. Fitting Physical Models

http://www.itl.nist.gov/div898/handbook/ppc/section4/ppc432.htm (1 of 2) [11/13/2003 5:41:45 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


3.4.3.2. Fitting Physical Models

http://www.itl.nist.gov/div898/handbook/ppc/section4/ppc432.htm (2 of 2) [11/13/2003 5:41:45 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


3. Production Process Characterization
3.4. Data Analysis for PPC

3.4.4.Analyzing Variance Structure

Studying
variation is
important
in PPC

One of the most common activities in process characterization work is to study the variation
associated with the process and to try to determine the important sources of that variation. This
is called analysis of variance. Refer to the section of this chapter on ANOVA models for a
discussion of the theory behind this kind of analysis.

The key is
to know the
structure

The key to performing an analysis of variance is identifying the structure represented by the
data. In the ANOVA models section we discussed one-way layouts and two-way layouts where
the factors are either crossed or nested. Review these sections if you want to learn more about
ANOVA structural layouts.

To perform the analysis, we just identify the structure, enter the data for each of the factors and
levels into a statistical analysis program and then interpret the ANOVA table and other output.
This is all illustrated in the example below.

Example:
furnace
oxide
thickness
with a
1-way
layout

The example is a furnace operation in semiconductor manufacture where we are growing an
oxide layer on a wafer. Each lot of wafers is placed on quartz containers (boats) and then placed
in a long tube-furnace. They are then raised to a certain temperature and held for a period of
time in a gas flow. We want to understand the important factors in this operation. The furnace is
broken down into four sections (zones) and two wafers from each lot in each zone are measured
for the thickness of the oxide layer.

Look at
effect of
zone
location on
oxide
thickness

The first thing to look at is the effect of zone location on the oxide thickness. This is a classic 
one-way layout. The factor is furnace zone and we have four levels. A plot of the data and an
ANOVA table are given below.

3.4.4. Analyzing Variance Structure
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The zone
effect is
masked by
the
lot-to-lot
variation

ANOVA
table

Analysis of Variance

 
Source DF SS Mean Square F Ratio Prob > F
Zone 3 912.6905 304.23 0.467612 0.70527
Within 164 106699.1 650.604   

Let's
account for
lot with a
nested
layout

From the graph there does not appear to be much of a zone effect; in fact, the ANOVA table
indicates that it is not significant. The problem is that variation due to lots is so large that it is
masking the zone effect. We can fix this by adding a factor for lot. By treating this as a nested
two-way layout, we obtain the ANOVA table below.

Now both
lot and zone
are
revealed as
important

Analysis of Variance

 
Source DF SS Mean Square F Ratio Prob > F
Lot 20 61442.29 3072.11 5.37404 1.39e-7
Zone[lot] 63 36014.5 571.659 4.72864 3.9e-11
Within 84 10155 120.893   

Conclusions Since the "Prob > F" is less than .05, for both lot and zone, we know that these factors are
statistically significant at the 95% level of confidence.

3.4.4. Analyzing Variance Structure

http://www.itl.nist.gov/div898/handbook/ppc/section4/ppc44.htm (2 of 2) [11/13/2003 5:41:45 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


3. Production Process Characterization
3.4. Data Analysis for PPC

3.4.5.Assessing Process Stability

A process is
stable if it has a
constant mean
and a constant
variance over
time

A manufacturing process cannot be released to production until it has
been proven to be stable. Also, we cannot begin to talk about process
capability until we have demonstrated stability in our process. A
process is said to be stable when all of the response parameters that
we use to measure the process have both constant means and
constant variances over time, and also have a constant distribution.
This is equivalent to our earlier definition of controlled variation.

The graphical
tool we use to
assess stability
is the scatter
plot or the
control chart

The graphical tool we use to assess process stability is the scatter
plot. We collect a sufficient number of independent samples (greater
than 100) from our process over a sufficiently long period of time
(this can be specified in days, hours of processing time or number of
parts processed) and plot them on a scatter plot with sample order on
the x-axis and the sample value on the y-axis. The plot should look
like constant random variation about a constant mean. Sometimes it
is helpful to calculate control limits and plot them on the scatter plot
along with the data. The two plots in the controlled variation
example are good illustrations of stable and unstable processes.

Numerically,
we assess its
stationarity
using the
autocorrelation
function

Numerically, we evaluate process stability through a times series
analysis concept know as stationarity. This is just another way of
saying that the process has a constant mean and a constant variance.
The numerical technique used to assess stationarity is the
autocovariance function.

Graphical
methods
usually good
enough

Typically, graphical methods are good enough for evaluating process
stability. The numerical methods are generally only used for
modeling purposes.
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3. Production Process Characterization
3.4. Data Analysis for PPC

3.4.6.Assessing Process Capability

Capability
compares a
process
against its
specification

Process capability analysis entails comparing the performance of a process against its specifications.
We say that a process is capable if virtually all of the possible variable values fall within the
specification limits.

Use a
capability
chart

Graphically, we assess process capability by plotting the process specification limits on a histogram
of the observations. If the histogram falls within the specification limits, then the process is capable.
This is illustrated in the graph below. Note how the process is shifted below target and the process
variation is too large. This is an example of an incapable process.

Notice how
the process is
off target and
has too much
variation

Numerically, we measure capability with a capability index. The general equation for the capability
index, Cp, is:

3.4.6. Assessing Process Capability
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Numerically,
we use the Cp
index

Interpretation
of the Cp
index

This equation just says that the measure of our process capability is how much of our observed
process variation is covered by the process specifications. In this case the process variation is
measured by 6 standard deviations (+/- 3 on each side of the mean). Clearly, if Cp > 1.0, then the
process specification covers almost all of our process observations.

Cp does not
account for
process that
is off center

The only problem with with the Cp index is that it does not account for a process that is off-center.
We can modify this equation slightly to account for off-center processes to obtain the Cpk index as
follows:

Or the Cpk
index

Cpk accounts
for a process
being off
center

This equation just says to take the minimum distance between our specification limits and the
process mean and divide it by 3 standard deviations to arrive at the measure of process capability.
This is all covered in more detail in the process capability section of the process monitoring chapter.
For the example above, note how the Cpk value is less than the Cp value. This is because the process
distribution is not centered between the specification limits.

3.4.6. Assessing Process Capability
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3. Production Process Characterization
3.4. Data Analysis for PPC

3.4.7.Checking Assumptions

Check the
normality of
the data

Many of the techniques discussed in this chapter, such as hypothesis tests, control charts and
capability indices, assume that the underlying structure of the data can be adequately modeled by a
normal distribution. Many times we encounter data where this is not the case.

Some causes
of non-
normality

There are several things that could cause the data to appear non-normal, such as:

The data come from two or more different sources. This type of data will often have a
multi-modal distribution. This can be solved by identifying the reason for the multiple sets of
data and analyzing the data separately.

●   

The data come from an unstable process. This type of data is nearly impossible to analyze
because the results of the analysis will have no credibility due to the changing nature of the
process.

●   

The data were generated by a stable, yet fundamentally non-normal mechanism. For example,
particle counts are non-normal by the very nature of the particle generation process. Data of
this type can be handled using transformations.

●   

We can
sometimes
transform the
data to make it
look normal

For the last case, we could try transforming the data using what is known as a power
transformation. The power transformation is given by the equation:

where Y represents the data and lambda is the transformation value. Lambda is typically any value
between -2 and 2. Some of the more common values for lambda are 0, 1/2, and -1, which give the
following transformations:

General
algorithm for
trying to make
non-normal
data
approximately
normal

The general algorithm for trying to make non-normal data appear to be approximately normal is to:

Determine if the data are non-normal. (Use normal probability plot and histogram).1.  

Find a transformation that makes the data look approximately normal, if possible. Some data
sets may include zeros (i.e., particle data). If the data set does include zeros, you must first
add a constant value to the data and then transform the results.

2.  

3.4.7. Checking Assumptions
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Example:
particle count
data

As an example, let's look at some particle count data from a semiconductor processing step. Count
data are inherently non-normal. Below are histograms and normal probability plots for the original
data and the ln, sqrt and inverse of the data. You can see that the log transform does the best job of
making the data appear as if it is normal. All analyses can be performed on the log-transformed data
and the assumptions will be approximately satisfied.

The original
data is
non-normal,
the log
transform
looks fairly
normal

Neither the
square root
nor the inverse
transformation
looks normal

3.4.7. Checking Assumptions
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3. Production Process Characterization

3.5.Case Studies

Summary This section presents several case studies that demonstrate the
application of production process characterizations to specific problems.

Table of
Contents

The following case studies are available.

Furnace Case Study1.  

Machine Case Study2.  

3.5. Case Studies
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3. Production Process Characterization
3.5. Case Studies

3.5.1.Furnace Case Study

Introduction This case study analyzes a furnace oxide growth process.

Table of
Contents

The case study is broken down into the following steps.

Background and Data1.  

Initial Analysis of Response Variable2.  

Identify Sources of Variation3.  

Analysis of Variance4.  

Final Conclusions5.  

Work This Example Yourself6.  

3.5.1. Furnace Case Study
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3. Production Process Characterization
3.5. Case Studies
3.5.1. Furnace Case Study

3.5.1.1.Background and Data

Introduction In a semiconductor manufacturing process flow, we have a step
whereby we grow an oxide film on the silicon wafer using a furnace.
In this step, a cassette of wafers is placed in a quartz "boat" and the
boats are placed in the furnace. The furnace can hold four boats. A gas
flow is created in the furnace and it is brought up to temperature and
held there for a specified period of time (which corresponds to the
desired oxide thickness). This study was conducted to determine if the
process was stable and to characterize sources of variation so that a
process control strategy could be developed.

Goal The goal of this study is to determine if this process is capable of
consistently growing oxide films with a thickness of 560 Angstroms
+/- 100 Angstroms. An additional goal is to determine important
sources of variation for use in the development of a process control
strategy.

Process
Model

In the picture below we are modeling this process with one output
(film thickness) that is influenced by four controlled factors (gas flow,
pressure, temperature and time) and two uncontrolled factors (run and
zone). The four controlled factors are part of our recipe and will
remain constant throughout this study. We know that there is
run-to-run variation that is due to many different factors (input
material variation, variation in consumables, etc.). We also know that
the different zones in the furnace have an effect. A zone is a region of
the furnace tube that holds one boat. There are four zones in these
tubes. The zones in the middle of the tube grow oxide a little bit
differently from the ones on the ends. In fact, there are temperature
offsets in the recipe to help minimize this problem.

3.5.1.1. Background and Data
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Sensitivity
Model

The sensitivity model for this process is fairly straightforward and is
given in the figure below. The effects of the machin are mostly related
to the preventative maintenance (PM) cycle. We want to make sure the
quartz tube has been cleaned recently, the mass flow controllers are in
good shape and the temperature controller has been calibrated recently.
The same is true of the measurement equipment where the thickness
readings will be taken. We want to make sure a gauge study has been
performed. For material, the incoming wafers will certainly have an
effect on the outgoing thickness as well as the quality of the gases used.
Finally, the recipe will have an effect including gas flow, temperature
offset for the different zones, and temperature profile (how quickly we
raise the temperature, how long we hold it and how quickly we cool it
off).

3.5.1.1. Background and Data
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Sampling
Plan

Given our goal statement and process modeling, we can now define a
sampling plan. The primary goal is to determine if the process is
capable. This just means that we need to monitor the process over some
period of time and compare the estimates of process location and spread
to the specifications. An additional goal is to identify sources of
variation to aid in setting up a process control strategy. Some obvious
sources of variation are incoming wafers, run-to-run variability,
variation due to operators or shift, and variation due to zones within a
furnace tube. One additional constraint that we must work under is that
this study should not have a significant impact on normal production
operations.

Given these constraints, the following sampling plan was selected. It
was decided to monitor the process for one day (three shifts). Because
this process is operator independent, we will not keep shift or operator
information but just record run number. For each run, we will randomly
assign cassettes of wafers to a zone. We will select two wafers from
each zone after processing and measure two sites on each wafer. This
plan should give reasonable estimates of run-to-run variation and within
zone variability as well as good overall estimates of process location and
spread.

We are expecting readings around 560 Angstroms. We would not expect
many readings above 700 or below 400. The measurement equipment is
accurate to within 0.5 Angstroms which is well within the accuracy
needed for this study.

3.5.1.1. Background and Data
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Data
The following are the data that were collected for this study.

RUN   ZONE    WAFER    THICKNESS
--------------------------------
 1       1       1       546
 1       1       2       540
 1       2       1       566
 1       2       2       564
 1       3       1       577
 1       3       2       546
 1       4       1       543
 1       4       2       529
 2       1       1       561
 2       1       2       556
 2       2       1       577
 2       2       2       553
 2       3       1       563
 2       3       2       577
 2       4       1       556
 2       4       2       540
 3       1       1       515
 3       1       2       520
 3       2       1       548
 3       2       2       542
 3       3       1       505
 3       3       2       487
 3       4       1       506
 3       4       2       514
 4       1       1       568
 4       1       2       584
 4       2       1       570
 4       2       2       545
 4       3       1       589
 4       3       2       562
 4       4       1       569
 4       4       2       571
 5       1       1       550
 5       1       2       550
 5       2       1       562
 5       2       2       580
 5       3       1       560
 5       3       2       554
 5       4       1       545
 5       4       2       546
 6       1       1       584
 6       1       2       581
 6       2       1       567
 6       2       2       558
 6       3       1       556
 6       3       2       560
 6       4       1       591
 6       4       2       599

3.5.1.1. Background and Data
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 7       1       1       593
 7       1       2       626
 7       2       1       584
 7       2       2       559
 7       3       1       634
 7       3       2       598
 7       4       1       569
 7       4       2       592
 8       1       1       522
 8       1       2       535
 8       2       1       535
 8       2       2       581
 8       3       1       527
 8       3       2       520
 8       4       1       532
 8       4       2       539
 9       1       1       562
 9       1       2       568
 9       2       1       548
 9       2       2       548
 9       3       1       533
 9       3       2       553
 9       4       1       533
 9       4       2       521
10       1       1       555
10       1       2       545
10       2       1       584
10       2       2       572
10       3       1       546
10       3       2       552
10       4       1       586
10       4       2       584
11       1       1       565
11       1       2       557
11       2       1       583
11       2       2       585
11       3       1       582
11       3       2       567
11       4       1       549
11       4       2       533
12       1       1       548
12       1       2       528
12       2       1       563
12       2       2       588
12       3       1       543
12       3       2       540
12       4       1       585
12       4       2       586
13       1       1       580
13       1       2       570
13       2       1       556
13       2       2       569
13       3       1       609
13       3       2       625

3.5.1.1. Background and Data
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13       4       1       570
13       4       2       595
14       1       1       564
14       1       2       555
14       2       1       585
14       2       2       588
14       3       1       564
14       3       2       583
14       4       1       563
14       4       2       558
15       1       1       550
15       1       2       557
15       2       1       538
15       2       2       525
15       3       1       556
15       3       2       547
15       4       1       534
15       4       2       542
16       1       1       552
16       1       2       547
16       2       1       563
16       2       2       578
16       3       1       571
16       3       2       572
16       4       1       575
16       4       2       584
17       1       1       549
17       1       2       546
17       2       1       584
17       2       2       593
17       3       1       567
17       3       2       548
17       4       1       606
17       4       2       607
18       1       1       539
18       1       2       554
18       2       1       533
18       2       2       535
18       3       1       522
18       3       2       521
18       4       1       547
18       4       2       550
19       1       1       610
19       1       2       592
19       2       1       587
19       2       2       587
19       3       1       572
19       3       2       612
19       4       1       566
19       4       2       563
20       1       1       569
20       1       2       609
20       2       1       558
20       2       2       555

3.5.1.1. Background and Data
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20       3       1       577
20       3       2       579
20       4       1       552
20       4       2       558
21       1       1       595
21       1       2       583
21       2       1       599
21       2       2       602
21       3       1       598
21       3       2       616
21       4       1       580
21       4       2       575
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3. Production Process Characterization
3.5. Case Studies
3.5.1. Furnace Case Study

3.5.1.2. Initial Analysis of Response Variable

Initial Plots
of Response
Variable

The initial step is to assess data quality and to look for anomalies. This is done by generating a
normal probability plot, a histogram, and a boxplot. For convenience, these are generated on a
single page.

Conclusions
From the
Plots

We can make the following conclusions based on these initial plots.

The box plot indicates one outlier. However, this outlier is only slightly smaller than the
other numbers.

●   

The normal probability plot and the histogram (with an overlaid normal density) indicate
that this data set is reasonably approximated by a normal distribution.

●   

3.5.1.2. Initial Analysis of Response Variable
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Parameter
Estimates

Parameter estimates for the film thickness are summarized in the
following table.

Parameter Estimates

Type Parameter Estimate
Lower (95%)
Confidence

Bound

Upper (95%)
Confidence

Bound
Location Mean 563.0357 559.1692 566.9023

Dispersion
Standard
Deviation

25.3847 22.9297 28.4331

Quantiles Quantiles for the film thickness are summarized in the following table.

Quantiles for Film Thickness

100.0% Maximum 634.00
99.5%  634.00
97.5%  615.10
90.0%  595.00
75.0% Upper Quartile 582.75
50.0% Median 562.50
25.0% Lower Quartile 546.25
10.0%  532.90
2.5%  514.23
0.5%  487.00
0.0% Minimum 487.00

Capability
Analysis

From the above preliminary analysis, it looks reasonable to proceed with the capability
analysis.

Dataplot generated the following capabilty analysis.

  
****************************************************
*            CAPABILITY ANALYSIS                   *
*     NUMBER OF OBSERVATIONS       =      168      *
*     MEAN                         =    563.03571  *
*     STANDARD DEVIATION           =     25.38468  *
****************************************************
*  LOWER SPEC LIMIT  (LSL)         =    460.00000  *

3.5.1.2. Initial Analysis of Response Variable
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*  UPPER SPEC LIMIT  (USL)         =    660.00000  *
*  TARGET         (TARGET)         =    560.00000  *
*  USL COST      (USLCOST)         =   UNDEFINED   *
****************************************************
*  CP                              =      1.31313  *
*  CP LOWER 95% CI                 =      1.17234  *
*  CP UPPER 95% CI                 =      1.45372  *
*  CPL                             =      1.35299  *
*  CPL LOWER 95% CI                =      1.21845  *
*  CPL UPPER 95% CI                =      1.48753  *
*  CPU                             =      1.27327  *
*  CPU LOWER 95% CI                =      1.14217  *
*  CPU UPPER 95% CI                =      1.40436  *
*  CPK                             =      1.27327  *
*  CPK LOWER 95% CI                =      1.12771  *
*  CPK UPPER 95% CI                =      1.41882  *
*  CNPK                            =      1.35762  *
*  CPM                             =      1.30384  *
*  CPM LOWER 95% CI                =      1.16405  *
*  CPM UPPER 95% CI                =      1.44344  *
*  CC                              =      0.00460  *
*  ACTUAL      % DEFECTIVE         =      0.00000  *
*  THEORETICAL % DEFECTIVE         =      0.00915  *
*  ACTUAL (BELOW) % DEFECTIVE      =      0.00000  *
*  THEORETICAL(BELOW)  % DEFECTIVE =      0.00247  *
*  ACTUAL (ABOVE) % DEFECTIVE      =      0.00000  *
*  THEORETICAL(ABOVE)  % DEFECTIVE =      0.00668  *
*  EXPECTED LOSS                   =    UNDEFINED  *
****************************************************

Summary of
Percent
Defective

From the above capability analysis output, we can summarize the percent defective (i.e.,
the number of items outside the specification limits) in the following table.

Percentage Outside Specification Limits

Specification Value Percent Actual Theoretical (%
Based On Normal)

Lower Specification
Limit

460
Percent Below
LSL = 100*
((LSL - )/s)

0.0000 0.0025%

Upper Specification
Limit

660
Percent Above
USL = 100*(1 - 
((USL - )/s))

0.0000 0.0067%

Specification Target 560
Combined Percent

Below LSL and
Above USL

0.0000 0.0091%

Standard Deviation 25.38468    

with  denoting the normal cumulative distribution function,  the sample mean, and s
the sample standard deviation.

3.5.1.2. Initial Analysis of Response Variable
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Summary of
Capability
Index
Statistics

From the above capability analysis output, we can summarize various capability index
statistics in the following table.

Capability Index Statistics

Capability Statistic Index Lower CI Upper CI
CP 1.313 1.172 1.454

CPK 1.273 1.128 1.419
CPM 1.304 1.165 1.442
CPL 1.353 1.218 1.488
CPU 1.273 1.142 1.404

Conclusions The above capability analysis indicates that the process is capable and we can proceed
with the analysis.

3.5.1.2. Initial Analysis of Response Variable

http://www.itl.nist.gov/div898/handbook/ppc/section5/ppc512.htm (4 of 4) [11/13/2003 5:41:53 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org


3. Production Process Characterization
3.5. Case Studies
3.5.1. Furnace Case Study

3.5.1.3. Identify Sources of Variation

The next part of the analysis is to break down the sources of variation.

Box Plot by
Run

The following is a box plot of the thickness by run number.

Conclusions
From Box
Plot

We can make the following conclusions from this box plot.

There is significant run-to-run variation.1.  

Although the means of the runs are different, there is no discernable trend due to run.2.  

In addition to the run-to-run variation, there is significant within-run variation as well. This
suggests that a box plot by furnace location may be useful as well.

3.  

3.5.1.3. Identify Sources of Variation
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Box Plot by
Furnace
Location

The following is a box plot of the thickness by furnace location.

Conclusions
From Box
Plot

We can make the following conclusions from this box plot.

There is considerable variation within a given furnace location.1.  

The variation between furnace locations is small. That is, the locations and scales of each
of the four furnace locations are fairly comparable (although furnace location 3 seems to
have a few mild outliers).

2.  

Box Plot by
Wafer

The following is a box plot of the thickness by wafer.

3.5.1.3. Identify Sources of Variation
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Conclusion
From Box
Plot

From this box plot, we conclude that wafer does not seem to be a significant factor.

Block Plot In order to show the combined effects of run, furnace location, and wafer, we draw a block plot of
the thickness. Note that for aesthetic reasons, we have used connecting lines rather than enclosing
boxes.

3.5.1.3. Identify Sources of Variation

http://www.itl.nist.gov/div898/handbook/ppc/section5/ppc513.htm (3 of 4) [11/13/2003 5:41:53 PM]

http://www.itl.nist.gov/div898/handbook/ppc/section5/Furnace/gifs/bpwafe_f.gif
http://www.itl.nist.gov/div898/handbook/eda/section3/blockplo.htm


Conclusions
From Block
Plot

We can draw the following conclusions from this block plot.

There is significant variation both between runs and between furnace locations. The
between-run variation appears to be greater.

1.  

Run 3 seems to be an outlier.2.  

3.5.1.3. Identify Sources of Variation
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3. Production Process Characterization
3.5. Case Studies
3.5.1. Furnace Case Study

3.5.1.4.Analysis of Variance

Analysis of
Variance

The next step is to confirm our interpretation of the plots in the previous
section by running an analysis of variance.

In this case, we want to run a nested analysis of variance. Although
Dataplot does not perform a nested analysis of variance directly, in this
case we can use the Dataplot ANOVA command with some additional
computations to generate the needed analysis.

The basic steps are to use a one-way ANOA to compute the appropriate
values for the run variable. We then run a one-way ANOVA with all the
combinations of run and furnace location to compute the "within"
values. The values for furnace location nested within run are then
computed as the difference between the previous two ANOVA runs.

The Dataplot macro provides the details of this computation. This
computation can be summarized in the following table.

Analysis of Variance

Source Degrees of
Freedom

Sum of
Squares

Mean
Square
Error

F Ratio Prob > F

Run 20 61,442.29 3,072.11 5.37404 0.0000001
Furnace
Location

[Run]

63 36,014.5 571.659 4.72864 3.85e-11

Within 84 10,155 120.893   
Total 167 107,611.8 644.382   

3.5.1.4. Analysis of Variance
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Components
of Variance

From the above analysis of variance table, we can compute the
components of variance. Recall that for this data set we have 2 wafers
measured at 4 furnace locations for 21 runs. This leads to the following
set of equations.

3072.11 = (4*2)*Var(Run) + 2*Var(Furnace Location) +
Var(Within)
571.659 = 2*Var(Furnace Location) + Var(Within)
120.893 = Var(Within)

Solving these equations yields the following components of variance
table.

Components of Variance

Component Variance
Component

Percent of
Total

Sqrt(Variance
Component)

Run 312.55694 47.44 17.679
Furnace

Location[Run]
225.38294 34.21 15.013

Within 120.89286 18.35 10.995

3.5.1.4. Analysis of Variance
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3. Production Process Characterization
3.5. Case Studies
3.5.1. Furnace Case Study

3.5.1.5.Final Conclusions

Final
Conclusions

This simple study of a furnace oxide growth process indicated that the
process is capable and showed that both run-to-run and
zone-within-run are significant sources of variation. We should take
this into account when designing the control strategy for this process.
The results also pointed to where we should look when we perform
process improvement activities.

3.5.1.5. Final Conclusions
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3. Production Process Characterization
3.5. Case Studies
3.5.1. Furnace Case Study

3.5.1.6.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot, if you have
downloaded and installed it. Output from each analysis step below will
be displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window and the Data Sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run
this case study yourself. Each step may use results
from previous steps, so please be patient. Wait until
the software verifies that the current step is complete
before clicking on the next step.

The links in this column will connect you with more
detailed information about each analysis step from the
case study description.

1. Get set up and started.

   1. Read in the data.

                              

 1. You have read 4 columns of numbers 
    into Dataplot, variables run, zone,
    wafer, and filmthic.

3.5.1.6. Work This Example Yourself
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2. Analyze the response variable.

   1. Normal probability plot,
      box plot, and histogram of
      film thickness.

   2. Compute summary statistics
      and quantiles of film
      thickness.

   3. Perform a capability analysis.

 1. Initial plots indicate that the
    film thickness is reasonably
    approximated by a normal 
    distribution with no significant
    outliers.

 2. Mean is 563.04 and standard
    deviation is 25.38.  Data range
    from 487 to 634.

 3. Capability analysis indicates
    that the process is capable.

3. Identify Sources of Variation.

   1. Generate a box plot by run.

   2. Generate a box plot by furnace
      location.

   3. Generate a box plot by wafer.

   4. Generate a block plot.

 1. The box plot shows significant
    variation both between runs and
    within runs.

 2. The box plot shows significant
    variation within furnace location
    but not between furnace location.

 3. The box plot shows no significant
    effect for wafer.

 4. The block plot shows both run
    and furnace location are
    significant.

3.5.1.6. Work This Example Yourself
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4. Perform an Analysis of Variance

   1. Perform the analysis of
      variance and compute the
      components of variance.

 1. The results of the ANOVA are
    summarized in an ANOVA table
    and a components of variance
    table.

3.5.1.6. Work This Example Yourself
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3. Production Process Characterization
3.5. Case Studies

3.5.2.Machine Screw Case Study

Introduction This case study analyzes three automatic screw machines with the intent
of replacing one of them.

Table of
Contents

The case study is broken down into the following steps.

Background and Data1.  

Box Plots by Factor2.  

Analysis of Variance3.  

Throughput4.  

Final Conclusions5.  

Work This Example Yourself6.  

3.5.2. Machine Screw Case Study
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3. Production Process Characterization
3.5. Case Studies
3.5.2. Machine Screw Case Study

3.5.2.1.Background and Data

Introduction A machine shop has three automatic screw machines that produce
various parts. The shop has enough capital to replace one of the
machines. The quality control department has been asked to conduct a
study and make a recommendation as to which machine should be
replaced. It was decided to monitor one of the most commonly
produced parts (an 1/8th inch diameter pin) on each of the machines
and see which machine is the least stable.

Goal The goal of this study is to determine which machine is least stable in
manufacturing a steel pin with a diameter of .125 +/- .003 inches.
Stability will be measured in terms of a constant variance about a
constant mean. If all machines are stable, the decision will be based on
process variability and throughput. Namely, the machine with the
highest variability and lowest throughput will be selected for
replacement.

Process
Model

The process model for this operation is trivial and need not be
addressed.

Sensitivity
Model

The sensitivity model, however, is important and is given in the figure
below. The material is not very important. All machines will receive
barstock from the same source and the coolant will be the same. The
method is important. Each machine is slightly different and the
operator must make adjustments to the speed (how fast the part
rotates), feed (how quickly the cut is made) and stops (where cuts are
finished) for each machine. The same operator will be running all three
machines simultaneously. Measurement is not too important. An
experienced QC engineer will be collecting the samples and making
the measurements. Finally, the machine condition is really what this
study is all about. The wear on the ways and the lead screws will
largely determine the stability of the machining process. Also, tool
wear is important. The same type of tool inserts will be used on all
three machines. The tool insert wear will be monitored by the operator

3.5.2.1. Background and Data

http://www.itl.nist.gov/div898/handbook/ppc/section5/ppc521.htm (1 of 7) [11/13/2003 5:42:00 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm


and they will be changed as needed.

Sampling
Plan

Given our goal statement and process modeling, we can now define a sampling
plan. The primary goal is to determine if the process is stable and to compare the
variances of the three machines. We also need to monitor throughput so that we
can compare the productivity of the three machines.

There is an upcoming three-day run of the particular part of interest, so this
study will be conducted on that run. There is a suspected time-of-day effect that
we must account for. It is sometimes the case that the machines do not perform
as well in the morning, when they are first started up, as they do later in the day.
To account for this we will sample parts in the morning and in the afternoon. So
as not to impact other QC operations too severely, it was decided to sample 10
parts, twice a day, for three days from each of the three machines. Daily
throughput will be recorded as well.

We are expecting readings around .125 +/- .003 inches. The parts will be
measured using a standard micrometer with readings recorded to 0.0001 of an
inch. Throughput will be measured by reading the part counters on the machines
at the end of each day.

3.5.2.1. Background and Data
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Data The following are the data that were collected for this study.

MACHINE      DAY        TIME      SAMPLE      DIAMETER
 (1-3)      (1-3)      1 = AM     (1-10)      (inches)
                       2 = PM
------------------------------------------------------
   1          1           1          1          0.1247
   1          1           1          2          0.1264
   1          1           1          3          0.1252
   1          1           1          4          0.1253
   1          1           1          5          0.1263
   1          1           1          6          0.1251
   1          1           1          7          0.1254
   1          1           1          8          0.1239
   1          1           1          9          0.1235
   1          1           1         10          0.1257
   1          1           2          1          0.1271
   1          1           2          2          0.1253
   1          1           2          3          0.1265
   1          1           2          4          0.1254
   1          1           2          5          0.1243
   1          1           2          6          0.124
   1          1           2          7          0.1246
   1          1           2          8          0.1244
   1          1           2          9          0.1271
   1          1           2         10          0.1241
   1          2           1          1          0.1251
   1          2           1          2          0.1238
   1          2           1          3          0.1255
   1          2           1          4          0.1234
   1          2           1          5          0.1235
   1          2           1          6          0.1266
   1          2           1          7          0.125
   1          2           1          8          0.1246
   1          2           1          9          0.1243
   1          2           1         10          0.1248
   1          2           2          1          0.1248
   1          2           2          2          0.1235
   1          2           2          3          0.1243
   1          2           2          4          0.1265
   1          2           2          5          0.127
   1          2           2          6          0.1229
   1          2           2          7          0.125
   1          2           2          8          0.1248

3.5.2.1. Background and Data
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   1          2           2          9          0.1252
   1          2           2         10          0.1243
   1          3           1          1          0.1255
   1          3           1          2          0.1237
   1          3           1          3          0.1235
   1          3           1          4          0.1264
   1          3           1          5          0.1239
   1          3           1          6          0.1266
   1          3           1          7          0.1242
   1          3           1          8          0.1231
   1          3           1          9          0.1232
   1          3           1         10          0.1244
   1          3           2          1          0.1233
   1          3           2          2          0.1237
   1          3           2          3          0.1244
   1          3           2          4          0.1254
   1          3           2          5          0.1247
   1          3           2          6          0.1254
   1          3           2          7          0.1258
   1          3           2          8          0.126
   1          3           2          9          0.1235
   1          3           2         10          0.1273
   2          1           1          1          0.1239
   2          1           1          2          0.1239
   2          1           1          3          0.1239
   2          1           1          4          0.1231
   2          1           1          5          0.1221
   2          1           1          6          0.1216
   2          1           1          7          0.1233
   2          1           1          8          0.1228
   2          1           1          9          0.1227
   2          1           1         10          0.1229
   2          1           2          1          0.122
   2          1           2          2          0.1239
   2          1           2          3          0.1237
   2          1           2          4          0.1216
   2          1           2          5          0.1235
   2          1           2          6          0.124
   2          1           2          7          0.1224
   2          1           2          8          0.1236
   2          1           2          9          0.1236
   2          1           2         10          0.1217
   2          2           1          1          0.1247
   2          2           1          2          0.122
   2          2           1          3          0.1218
   2          2           1          4          0.1237

3.5.2.1. Background and Data
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   2          2           1          5          0.1234
   2          2           1          6          0.1229
   2          2           1          7          0.1235
   2          2           1          8          0.1237
   2          2           1          9          0.1224
   2          2           1         10          0.1224
   2          2           2          1          0.1239
   2          2           2          2          0.1226
   2          2           2          3          0.1224
   2          2           2          4          0.1239
   2          2           2          5          0.1237
   2          2           2          6          0.1227
   2          2           2          7          0.1218
   2          2           2          8          0.122
   2          2           2          9          0.1231
   2          2           2         10          0.1244
   2          3           1          1          0.1219
   2          3           1          2          0.1243
   2          3           1          3          0.1231
   2          3           1          4          0.1223
   2          3           1          5          0.1218
   2          3           1          6          0.1218
   2          3           1          7          0.1225
   2          3           1          8          0.1238
   2          3           1          9          0.1244
   2          3           1         10          0.1236
   2          3           2          1          0.1231
   2          3           2          2          0.1223
   2          3           2          3          0.1241
   2          3           2          4          0.1215
   2          3           2          5          0.1221
   2          3           2          6          0.1236
   2          3           2          7          0.1229
   2          3           2          8          0.1205
   2          3           2          9          0.1241
   2          3           2         10          0.1232
   3          1           1          1          0.1255
   3          1           1          2          0.1215
   3          1           1          3          0.1219
   3          1           1          4          0.1253
   3          1           1          5          0.1232
   3          1           1          6          0.1266
   3          1           1          7          0.1271
   3          1           1          8          0.1209
   3          1           1          9          0.1212
   3          1           1         10          0.1249

3.5.2.1. Background and Data

http://www.itl.nist.gov/div898/handbook/ppc/section5/ppc521.htm (5 of 7) [11/13/2003 5:42:00 PM]



   3          1           2          1          0.1228
   3          1           2          2          0.126
   3          1           2          3          0.1242
   3          1           2          4          0.1236
   3          1           2          5          0.1248
   3          1           2          6          0.1243
   3          1           2          7          0.126
   3          1           2          8          0.1231
   3          1           2          9          0.1234
   3          1           2         10          0.1246
   3          2           1          1          0.1207
   3          2           1          2          0.1279
   3          2           1          3          0.1268
   3          2           1          4          0.1222
   3          2           1          5          0.1244
   3          2           1          6          0.1225
   3          2           1          7          0.1234
   3          2           1          8          0.1244
   3          2           1          9          0.1207
   3          2           1         10          0.1264
   3          2           2          1          0.1224
   3          2           2          2          0.1254
   3          2           2          3          0.1237
   3          2           2          4          0.1254
   3          2           2          5          0.1269
   3          2           2          6          0.1236
   3          2           2          7          0.1248
   3          2           2          8          0.1253
   3          2           2          9          0.1252
   3          2           2         10          0.1237
   3          3           1          1          0.1217
   3          3           1          2          0.122
   3          3           1          3          0.1227
   3          3           1          4          0.1202
   3          3           1          5          0.127
   3          3           1          6          0.1224
   3          3           1          7          0.1219
   3          3           1          8          0.1266
   3          3           1          9          0.1254
   3          3           1         10          0.1258
   3          3           2          1          0.1236
   3          3           2          2          0.1247
   3          3           2          3          0.124
   3          3           2          4          0.1235
   3          3           2          5          0.124
   3          3           2          6          0.1217

3.5.2.1. Background and Data
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   3          3           2          7          0.1235
   3          3           2          8          0.1242
   3          3           2          9          0.1247
   3          3           2         10          0.125

3.5.2.1. Background and Data
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3. Production Process Characterization
3.5. Case Studies
3.5.2. Machine Screw Case Study

3.5.2.2.Box Plots by Factors

Initial Steps The initial step is to plot box plots of the measured diameter for each of the explanatory variables.

Box Plot by
Machine

The following is a box plot of the diameter by machine.

Conclusions
From Box
Plot

We can make the following conclusions from this box plot.

The location appears to be significantly different for the three machines, with machine 2
having the smallest median diameter and machine 1 having the largest median diameter.

1.  

Machines 1 and 2 have comparable variability while machine 3 has somewhat larger
variability.

2.  

3.5.2.2. Box Plots by Factors
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Box Plot by
Day

The following is a box plot of the diameter by day.

Conclusions
From Box
Plot

We can draw the following conclusion from this box plot. Neither the location nor the spread
seem to differ significantly by day.

Box Plot by
Time of Day

The following is a box plot of the time of day.

3.5.2.2. Box Plots by Factors
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Conclusion
From Box
Plot

We can draw the following conclusion from this box plot. Neither the location nor the spread
seem to differ significantly by time of day.

Box Plot by
Sample
Number

The following is a box plot of the sample number.

3.5.2.2. Box Plots by Factors

http://www.itl.nist.gov/div898/handbook/ppc/section5/ppc522.htm (3 of 4) [11/13/2003 5:42:00 PM]

http://www.itl.nist.gov/div898/handbook/ppc/section5/Machine/gifs/bptime_f.gif
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm


Conclusion
From Box
Plot

We can draw the following conclusion from this box plot. Although there are some minor
differences in location and spread between the samples, these differences do not show a
noticeable pattern and do not seem significant.

3.5.2.2. Box Plots by Factors
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3. Production Process Characterization
3.5. Case Studies
3.5.2. Machine Screw Case Study

3.5.2.3.Analysis of Variance

Analysis of
Variance
using All
Factors

We can confirm our interpretation of the box plots by running an
analysis of variance. Dataplot generated the following analysis of
variance output when all four factors were included.

  
                 **********************************
                 **********************************
                 **  4-WAY ANALYSIS OF VARIANCE  **
                 **********************************
                 **********************************
  
       NUMBER OF OBSERVATIONS           =      180
       NUMBER OF FACTORS                =        4
       NUMBER OF LEVELS FOR FACTOR  1  =        3
       NUMBER OF LEVELS FOR FACTOR  2  =        3
       NUMBER OF LEVELS FOR FACTOR  3  =        2
       NUMBER OF LEVELS FOR FACTOR  4  =       10
       BALANCED CASE
       RESIDUAL    STANDARD DEVIATION   =    0.13743976597E-02
       RESIDUAL    DEGREES OF FREEDOM   =      165
       NO REPLICATION CASE
       NUMBER OF DISTINCT CELLS         =      180
  
                          *****************
                          *  ANOVA TABLE  *
                          *****************
  
 SOURCE              DF SUM OF SQUARES    MEAN SQUARE   F STATISTIC    F CDF SIG
 -------------------------------------------------------------------------------
 TOTAL (CORRECTED)  179       0.000437       0.000002
 -------------------------------------------------------------------------------
 FACTOR  1            2       0.000111       0.000055       29.3159 100.000%  **
 FACTOR  2            2       0.000004       0.000002        0.9884  62.565%
 FACTOR  3            1       0.000002       0.000002        1.2478  73.441%
 FACTOR  4            9       0.000009       0.000001        0.5205  14.172%
 -------------------------------------------------------------------------------
 RESIDUAL           165       0.000312       0.000002
  
       RESIDUAL    STANDARD DEVIATION =        0.00137439766
       RESIDUAL    DEGREES OF FREEDOM =           165

3.5.2.3. Analysis of Variance
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                          ****************
                          *  ESTIMATION  *
                          ****************
  
       GRAND MEAN                       =    0.12395893037E+00
       GRAND STANDARD DEVIATION         =    0.15631503193E-02
  
  
              LEVEL-ID      NI      MEAN      EFFECT     SD(EFFECT)
 --------------------------------------------------------------------
 FACTOR 1--    1.00000     60.    0.12489    0.00093    0.00014
         --    2.00000     60.    0.12297   -0.00099    0.00014
         --    3.00000     60.    0.12402    0.00006    0.00014
 FACTOR 2--    1.00000     60.    0.12409    0.00013    0.00014
         --    2.00000     60.    0.12403    0.00007    0.00014
         --    3.00000     60.    0.12376   -0.00020    0.00014
 FACTOR 3--    1.00000     90.    0.12384   -0.00011    0.00010
         --    2.00000     90.    0.12407    0.00011    0.00010
 FACTOR 4--    1.00000     18.    0.12371   -0.00025    0.00031
         --    2.00000     18.    0.12405    0.00009    0.00031
         --    3.00000     18.    0.12398    0.00002    0.00031
         --    4.00000     18.    0.12382   -0.00014    0.00031
         --    5.00000     18.    0.12426    0.00030    0.00031
         --    6.00000     18.    0.12379   -0.00016    0.00031
         --    7.00000     18.    0.12406    0.00010    0.00031
         --    8.00000     18.    0.12376   -0.00020    0.00031
         --    9.00000     18.    0.12376   -0.00020    0.00031
         --   10.00000     18.    0.12440    0.00044    0.00031
  
  
         MODEL               RESIDUAL STANDARD DEVIATION
 -------------------------------------------------------
 CONSTANT             ONLY--        0.0015631503
 CONSTANT & FACTOR  1 ONLY--        0.0013584237
 CONSTANT & FACTOR  2 ONLY--        0.0015652323
 CONSTANT & FACTOR  3 ONLY--        0.0015633047
 CONSTANT & FACTOR  4 ONLY--        0.0015876852
 CONSTANT & ALL 4 FACTORS --        0.0013743977
  

Interpretation
of ANOVA
Output

The first thing to note is that Dataplot fits an overall mean when
performing the ANOVA. That is, it fits the model

as opposed to the model

These models are mathematically equivalent. The effect estimates in
the first model are relative to the overall mean. The effect estimates for
the second model can be obtained by simply adding the overall mean to
effect estimates from the first model.

We are primarily interested in identifying the significant factors. The

3.5.2.3. Analysis of Variance
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last column of the ANOVA table prints a "**" for statistically
significant factors. Only factor 1 (the machine) is statistically
significant. This confirms what the box plots in the previous section
had indicated graphically.

Analysis of
Variance
Using Only
Machine

The previous analysis of variance indicated that only the machine
factor was statistically significant. The following shows the ANOVA
output using only the machine factor.

  
                 **********************************
                 **********************************
                 **  1-WAY ANALYSIS OF VARIANCE  **
                 **********************************
                 **********************************
  
       NUMBER OF OBSERVATIONS           =      180
       NUMBER OF FACTORS                =        1
       NUMBER OF LEVELS FOR FACTOR  1  =        3
       BALANCED CASE
       RESIDUAL    STANDARD DEVIATION   =    0.13584237313E-02
       RESIDUAL    DEGREES OF FREEDOM   =      177
       REPLICATION CASE
       REPLICATION STANDARD DEVIATION   =    0.13584237313E-02
       REPLICATION DEGREES OF FREEDOM   =      177
       NUMBER OF DISTINCT CELLS         =        3
  
                          *****************
                          *  ANOVA TABLE  *
                          *****************
  
 SOURCE              DF SUM OF SQUARES    MEAN SQUARE   F STATISTIC    F CDF SIG
 -------------------------------------------------------------------------------
 TOTAL (CORRECTED)  179       0.000437       0.000002
 -------------------------------------------------------------------------------
 FACTOR  1            2       0.000111       0.000055       30.0094 100.000%  **
 -------------------------------------------------------------------------------
 RESIDUAL           177       0.000327       0.000002
  
       RESIDUAL    STANDARD DEVIATION =        0.00135842373
       RESIDUAL    DEGREES OF FREEDOM =           177
       REPLICATION STANDARD DEVIATION =        0.00135842373
       REPLICATION DEGREES OF FREEDOM =           177

                          ****************
                          *  ESTIMATION  *
                          ****************
  
       GRAND MEAN                       =    0.12395893037E+00
       GRAND STANDARD DEVIATION         =    0.15631503193E-02
  

3.5.2.3. Analysis of Variance
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              LEVEL-ID      NI      MEAN      EFFECT     SD(EFFECT)
 --------------------------------------------------------------------
 FACTOR 1--    1.00000     60.    0.12489    0.00093    0.00014
         --    2.00000     60.    0.12297   -0.00099    0.00014
         --    3.00000     60.    0.12402    0.00006    0.00014
  
  
         MODEL               RESIDUAL STANDARD DEVIATION
 -------------------------------------------------------
 CONSTANT             ONLY--        0.0015631503
 CONSTANT & FACTOR  1 ONLY--        0.0013584237

Interpretation
of ANOVA
Output

At this stage, we are interested in the effect estimates for the machine variable. These can be
summarized in the following table.

Means for Oneway Anova

Level Number Mean Standard Error Lower 95% CI Upper 95% CI
1 60 0.124887 0.00018 0.12454 0.12523
2 60 0.122968 0.00018 0.12262 0.12331
3 60 0.124022 0.00018 0.12368 0.12437

The Dataplot macro file shows the computations required to go from the Dataplot ANOVA
output to the numbers in the above table.

Model
Validation

As a final step, we validate the model by generating a 4-plot of the residuals.

3.5.2.3. Analysis of Variance
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The 4-plot does not indicate any significant problems with the ANOVA model.

3.5.2.3. Analysis of Variance
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3. Production Process Characterization
3.5. Case Studies
3.5.2. Machine Screw Case Study

3.5.2.4.Throughput

Summary of
Throughput

The throughput is summarized in the following table (this was part of the original data collection,
not the result of analysis).

Machine Day 1 Day 2 Day 3
1 576 604 583
2 657 604 586
3 510 546 571

This table shows that machine 3 had significantly lower throughput.

Graphical
Representation
of Throughput

We can show the throughput graphically.

The graph clearly shows the lower throughput for machine 3.

3.5.2.4. Throughput
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Analysis of
Variance for
Throughput

We can confirm the statistical significance of the lower throughput of machine 3 by running an
analysis of variance.

  
                 **********************************
                 **********************************
                 **  1-WAY ANALYSIS OF VARIANCE  **
                 **********************************
                 **********************************
  
       NUMBER OF OBSERVATIONS           =        9
       NUMBER OF FACTORS                =        1
       NUMBER OF LEVELS FOR FACTOR  1  =        3
       BALANCED CASE
       RESIDUAL    STANDARD DEVIATION   =    0.28953985214E+02
       RESIDUAL    DEGREES OF FREEDOM   =        6
       REPLICATION CASE
       REPLICATION STANDARD DEVIATION   =    0.28953985214E+02
       REPLICATION DEGREES OF FREEDOM   =        6
       NUMBER OF DISTINCT CELLS         =        3
  
                          *****************
                          *  ANOVA TABLE  *
                          *****************
  
 SOURCE              DF SUM OF SQUARES    MEAN SQUARE   F STATISTIC    F CDF SIG
 -------------------------------------------------------------------------------
 TOTAL (CORRECTED)    8   13246.888672    1655.861084
 -------------------------------------------------------------------------------
 FACTOR  1            2    8216.898438    4108.449219        4.9007  94.525%
 -------------------------------------------------------------------------------
 RESIDUAL             6    5030.000000     838.333313
  
       RESIDUAL    STANDARD DEVIATION =       28.95398521423
       RESIDUAL    DEGREES OF FREEDOM =             6
       REPLICATION STANDARD DEVIATION =       28.95398521423
       REPLICATION DEGREES OF FREEDOM =             6

                          ****************
                          *  ESTIMATION  *
                          ****************
  
       GRAND MEAN                       =    0.58188891602E+03
       GRAND STANDARD DEVIATION         =    0.40692272186E+02
  
  
              LEVEL-ID      NI      MEAN      EFFECT     SD(EFFECT)
 --------------------------------------------------------------------
 FACTOR 1--    1.00000      3.  587.66669    5.77777   13.64904
         --    2.00000      3.  615.66669   33.77777   13.64904

3.5.2.4. Throughput

http://www.itl.nist.gov/div898/handbook/ppc/section5/ppc524.htm (2 of 3) [11/13/2003 5:42:01 PM]



         --    3.00000      3.  542.33331  -39.55560   13.64904
  
  
         MODEL               RESIDUAL STANDARD DEVIATION
 -------------------------------------------------------
 CONSTANT             ONLY--       40.6922721863
 CONSTANT & FACTOR  1 ONLY--       28.9539852142

Interpretation
of ANOVA
Output

We summarize the effect estimates in the following table.

Means for Oneway Anova

Level Number Mean Standard Error Lower 95%
CI

Upper 95%
CI

1 3 587.667 16.717 546.76 628.57
2 3 615.667 16.717 574.76 656.57
3 3 542.33 16.717 501.43 583.24

The Dataplot macro file shows the computations required to go from
the Dataplot ANOVA output to the numbers in the above table.

3.5.2.4. Throughput
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3. Production Process Characterization
3.5. Case Studies
3.5.2. Machine Screw Case Study

3.5.2.5.Final Conclusions

Final
Conclusions

The analysis shows that machines 1 and 2 had about the same
variablity but significantly different locations. The throughput for
machine 2 was also higher with greater variability than for machine 1.
An interview with the operator revealed that he realized the second
machine was not set correctly. However, he did not want to change the
settings because he knew a study was being conducted and was afraid
he might impact the results by making changes. Machine 3 had
significantly more variation and lower throughput. The operator
indicated that the machine had to be taken down several times for
minor repairs. Given the preceeding analysis results, the team
recommended replacing machine 3.

3.5.2.5. Final Conclusions
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3. Production Process Characterization
3.5. Case Studies
3.5.2. Machine Screw Case Study

3.5.2.6.Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the case study
description on the previous page using Dataplot, if you have
downloaded and installed it. Output from each analysis step below will
be displayed in one or more of the Dataplot windows. The four main
windows are the Output window, the Graphics window, the Command
History window and the Data Sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps Results and Conclusions

Click on the links below to start Dataplot and run this
case study yourself. Each step may use results from
previous steps, so please be patient. Wait until the
software verifies that the current step is complete
before clicking on the next step.

The links in this column will connect you with more
detailed information about each analysis step from the
case study description.

1. Get set up and started.

   1. Read in the data.

                              

 1. You have read 5 columns of numbers 
    into Dataplot, variables machine,
    day, time, sample, and diameter.

3.5.2.6. Work This Example Yourself
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2. Box Plots by Factor Variables

   1. Generate a box plot by machine.

   2. Generate a box plot by day.

   3. Generate a box plot by time of
      day.

   4. Generate a box plot by
      sample.

 1. The box plot shows significant
    variation for both location and
    spread.

 2. The box plot shows no significant
    location or spread effects for
    day.

 3. The box plot shows no significant
    location or spread effects for
    time of day.

 4. The box plot shows no significant
    location or spread effects for
    sample.

3. Analysis of Variance

   1. Perform an analysis of variance
      with all factors.

   2. Perform an analysis of variance
      with only the machine factor.

   3. Perform model validation by
      generating a 4-plot of the
      residuals.

 1. The analysis of variance shows
    that only the machine factor
    is statistically significant.

 2. The analysis of variance shows
    the overall mean and the 
    effect estimates for the levels
    of the machine variable.

 3. The 4-plot of the residuals does
    not indicate any significant
    problems with the model.

3.5.2.6. Work This Example Yourself
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4. Graph of Throughput

   1. Generate a graph of the
      throughput.

   2. Perform an analysis of
      variance of the throughput.

 1. The graph shows the throughput
    for machine 3 is lower than
    the other machines.

 2. The effect estimates from the
    ANIVA are given.

3.5.2.6. Work This Example Yourself
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