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Foreword

by
Yves Meyer

Membre de l’Institut (Académie des Sciences)

Foreign Honorary Member of the American Academy of Arts and Sciences

Wavelet analysis can be defined as an alternative to the classical win-
dowed Fourier analysis. In the latter case the goal is to measure the local
frequency content of a signal, while in the wavelet case one is comparing
several magnifications of this signal, with distinct resolutions. The building
blocks of a windowed Fourier analysis are sines and cosines (waves) multi-
plied by a sliding window. They are usually referred to as time-frequency
atoms. In a wavelet analysis, the window is already oscillating and is called
a mother wavelet. This mother wavelet is no longer multiplied by sines or
cosines. Instead it is translated and dilated by arbitrary translations and
dilations. That is the way the mother wavelet generates the other wavelets
which are the building blocks of a wavelet analysis. These dilations are pre-
cisely the magnifications we alluded to, and the building blocks are called
time-scale atoms.

Fourier analysis, windowed Fourier analysis, and wavelet analysis are
based on an identical recipe. In the three cases, the analysis of a function
amounts to computing all the correlations between this function and the
time-frequency or time-scale atoms which are being used. The synthesis is
obtained exactly as if these building blocks were an orthonormal basis.

A common wisdom among numerical analysts and image processing peo-
ple is that the inverse of a scale is a frequency: small scales correspond
to large frequencies and large scales to small frequencies. Moreover, very
distinct scales should provide independent (i.e., non-redundant) informa-
tion. Wavelet analysis could be defined as an attempt to give a very precise
meaning to this folk belief.

Wavelets were implicit in mathematics, physics, signal or image process-
ing, and numerical analysis long before they were given the status of a
unified scientific field.

In pure mathematics, three algorithms have been created to overcome
some drawbacks of standard Fourier series expansions. These difficulties
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appear when one is facing the problem of measuring the size or the smooth-
ness of a function. For example, the simplest norms, based on quadratic
estimates, can easily be extracted from Fourier coefficients. But as soon
as L

p or H
p estimates are addressed, Fourier coefficients do not answer the

problem, while the algorithms that do answer it involve the Haar basis
(1909), the Franklin orthonormal system (1927), or the Littlewood-
Paley theory (1930); these have, in the past, proven to be the correct
tools.

Later, Calderón’s reproducing identity (1960) and atomic decom-
positions (1972) were widely used in other functional settings (Hardy
spaces, for example). Both the Littlewood-Paley theory and atomic de-
compositions play a key role in a branch of operator theory created by
Calderón, Zygmund, and their school which is known as the Calderón-
Zygmund Theory. Just before wavelets became popular, J.O. Strömberg
used this precise tool for solving a celebrated problem in the geometry of
Banach spaces: the existence of a specific unconditional basis for the Hardy
space H

1(R).

In signal or image processing a similar and parallel evolution started from
the standard windowed Fourier analysis and culminated in some discrete
versions of Calderón’s reproducing identity. Indeed, D. Gabor (1946) intro-
duced time-frequency atoms in speech signal processing; Croisier, Este-
ban, and Galand developed subband coding in signal processing (1975);
and only a little later Burt and Adelson described pyramidal algorithms
in image processing (1982). D. Marr was convinced that both human vision
and computer vision were based on similar algorithms which should be, in
some sense, independent of the “wires” used in their realizations. These
specific algorithms involve the zero-crossings of the wavelet transform of
a two-dimensional signal (1982). In numerical analysis, wavelets are related
to spline approximation. Before wavelets became fashionable, V. Rokhlin
created the so-called multipole algorithms: refinement schemes that play
a key role in computer graphics.

Finally, let us turn to mathematical physics. Coherent states are fun-
damental in quantum mechanics. Renormalization in quantum field
theory is needed for extracting finite numbers from divergent integrals.
It is based on some variants of Littlewood-Paley techniques which were
mainly developed by K. Wilson, K. Gawedzki and A. Kupiainen, J. Glimm
and A. Jaffe, G. Battle and P. Federbush.

Therefore wavelets were implicit in several scientific fields but nobody
knew that, for instance, Littlewood-Paley theory and the Burt & Adelson
pyramidal algorithms were telling the same story. The great unification
was a shock, and many people still do not accept it. This unification was a
fairy tale come true, which explains why the subject became immediately
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popular. The great unification meant a scientific status incorporating the
heuristics and the wisdom of the distinct fields where protowavelets were
already used. This unification was made possible through the efforts of
several people. Let me especially mention Alex Grossmann and Stephane
Mallat.

I have a vivid and nostalgic memory of many discussions with Antoni
Zygmund. He used to test me on whatever problem he was dreaming about.
He silently waited for my answer. Then he listened with a smile to my
often stupid comments. Finally he often tried to correct my erroneous
viewpoints. This happened when R.R. Coifman and G. Weiss and their
collaborators launched the so-called atomic decompositions program.
Zygmund asked my opinion about what Guido Weiss was doing. Zygmund
immediately recognized the relevance of this endeavour, while it took me a
slightly longer time.

But it is hard to believe that Zygmund would have guessed that atomic
decompositions are also relevant in signal processing. He would have been
surprised to learn that the celebrated composer and conductor Pierre Boulez
and his collaborators decided to find a compact atomic decomposition for
an aria by Mozart interpreted by Rita Streich. P. Boulez and his collabora-
tors were indeed using (time-frequency) waveforms instead of (time-scale)
wavelets.

We now come to the present book. It is not just one more book about
wavelets. This unique book is distinct, since it is co-authored by one of the
pioneers of atomic decompositions. Who else is more appropriate to talk
about wavelets? Indeed atomic decompositions are at the heart of signal
and image processing.

The careful writing of the authors, Eugenio Hernández and Guido Weiss,
is well known and this book reflects their desire to make this subject most
accessible. It will be applauded by all lovers of the precise, powerful, and
elegant mathematics which Guido Weiss and his school have promoted.

This book contains many new and impressive results. Nowadays, there
is a tendency to derive wavelets from the multiresolution analysis construc-
tion. By this method one cannot address basic issues like the ones that are
discussed in this book and are, indeed, crucial. For example, the Fourier lo-
calization of a wavelet is discussed in full detail. This has been neglected by
other authors. I hope the reader will enjoy this remarkable contribution as
much as I did, and I thank the authors for letting me read the manuscript.
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Preface

Introduction

Wavelets were introduced relatively recently, in the beginning of the
1980s. They attracted considerable interest from the mathematical commu-
nity and from members of many diverse disciplines in which wavelets had
promising applications. A consequence of this interest is the appearance of
several books on this subject and a large volume of research articles. In
order to explain why we have written this book, describe where it might
play a useful role in this field and to whom it is addressed, we find it nec-
essary to state what we mean by the word “wavelet” and mention some of
its properties. Let us do this for wavelets defined on the real line R.

The real line is endowed with two basic algebraic operations, addition
and multiplication. From these two operations we obtain two families of
operators acting on functions defined on R: the translations and the di-
lations. More precisely, translation by h ∈ R is the operator τh that maps
a function f into the function whose value at x ∈ R is (τhf)(x) = f(x−h).
The dilation ρr, r > 0, is defined by the equality (ρrf)(x) = f(rx). Many
of the important linear operators acting on functions defined on R have sim-
ple relations with these two families. For example, differentiation commutes
with the translations. More generally, in the setting of tempered distribu-
tions, the class of convolution operators are characterized by this property
of commuting with translations (differentiation is obtained by convolving
with the distribution that is the derivative of the “Dirac-delta function”).
Similar observations can be made about the family of dilations. A most
important operator acting on functions (or, more generally, on tempered
distributions) is the Fourier Transform, which maps f into f̂ , where

f̂(ξ) =
∫

R

e−iξxf(x) dx.

It is well known that convolution operators are converted, via the Fourier
transform, into multiplication operators. This is a consequence of the for-
mula (f ∗ g)∧ = f̂ ĝ. In particular, (τhf)∧(ξ) = e−ihξ f̂(x); that is, transla-
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tion by h corresponds to multiplication by the exponential e−ihξ. All these
properties are particularly natural if we consider them in the context of
L

2(R): the Fourier transform can then be expressed in terms of a unitary
operator, and this allows one to study many convolution operators in terms
of particularly simple multiplier operators.

In view of these observations, it is only natural to look for bases of L2(R)
having properties that reflect the importance of translations, dilations and
the Fourier transform. For example, in the analogous periodic case, the
“trigonometric” system, { 1√

2π
einx : n ∈ Z}, is an orthonormal basis for

L
2(0, 2π) that simultaneously diagonalizes all the bounded operators on this

space that commute with translations. This property makes this system a
most important basis for L

2(0, 2π) and is of fundamental importance to the
study of Fourier series. The various wavelets provide us with orthonormal
bases for L

2(R) that are particularly natural when dealing with the analysis
that involves the action of translations, dilations and the Fourier transform
(that is, Harmonic Analysis). We see that this is most plausible from their
definition: a function ψ ∈ L

2(R) is an orthonormal wavelet provided the
system {ψj,k : j, k ∈ Z} is an orthonormal basis for L

2(R), where

ψj,k(x) = 2
j
2 ψ(2jx− k) for all j, k ∈ Z.

That is, this system is generated from one function, ψ, by translating it
by the integers and applying the dyadic dilations ρr, where r = 2j , to
these translates. The multiplication by the factor 2j/2 is forced upon us
if we require each member of this system to have L

2-norm equal to one;
moreover, it renders the action of the Fourier transform on this system
particularly simple: if γ = ψ̂, then the Fourier transform of ψj,k is

(ψj,k)∧(ξ) = e−i2−jkξ2−
j
2 γ(2−jξ).

That is, we still have dyadic dilations and the translations are converted into
“modulations” (which is a term that means multiplication by exponentials).

The philosophy of the book

The purpose of this book is to show how such wavelets can be constructed,
illustrate why they provide us with a particularly powerful tool in mathe-
matical analysis, and indicate how they can be used in applications. The
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title of the book reflects our hope that it can be read by those who are
familiar with the Fourier transform and its basic properties; we feel that
this amount of knowledge suffices for the understanding of the material pre-
sented. Let us explain in more detail what we mean by this. We shall show
that wavelets can be applied to a large variety of mathematical subjects.
For example, they can be used to characterize several function spaces: the
Lebesgue, Hardy, Sobolev, Besov and Triebel-Lizorkin spaces are some of
these. The Lebesgue spaces are easily defined, and some of their basic prop-
erties are not hard to explain. This is not the case for all these spaces. For
example, the Hardy spaces have many different, but equivalent, definitions.
Originally they were introduced as spaces of holomorphic functions in the
domain in the complex plane that lies above the x-axis. About twenty-five
years ago it was discovered that they can be identified as functions (re-
ally, distributions) on R having an appropriate maximal function. A few
years later their “atomic” characterization was discovered. This approach
involves certain “building blocks” called atoms, which are particularly sim-
ple functions, that can be used to express the general element of the Hardy
space. It would carry us way beyond the scope of this book if, before dis-
cussing these spaces, we were to present all the material that is necessary to
establish the equivalence of these various versions. It is not difficult, how-
ever, to present clear statements of those properties that are most relevant
to the use of wavelets; when we do this, we do give appropriate references.
In this sense this book is not “self-contained,” but this does not mean that
more is demanded from the reader in order to appreciate the roles that are
played by wavelets in these applications.

Wavelets can be defined on other domains. For example, we can in-
troduce a natural extension of the definition of the function ψj,k by con-
sidering ψ to be defined in R

n, n-dimensional Euclidean space, by letting
k = (k1, · · · , kn) ∈ Z

n be an n-tuple of integers and replacing 2j/2 by 2nj/2

(so that ‖ψj,k‖2 = ‖ψ‖2). The situation, in this case, is more complicated:
if one makes certain natural assumptions, it can be shown that one can-
not obtain an orthonormal basis of L

2(Rn) by such a construction; in fact,
2n − 1 such generating functions are needed if one wants to obtain such
a basis. Other domains can be considered where the roles played by the
translations and dilations need to be played by different actions on the
domain. We decided in this “first course on wavelets” not to present the
theory of wavelets in these more complicated settings and to concentrate
on the one-dimensional case. We felt that a good understanding of the
one-dimensional theory provides a good background for its extensions to
other domains.

Let us make a few comments about some of the other books on wavelets.
Perhaps the two most important treatises on the subject are Y. Meyer’s
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three-volume set ([Me1], [Me2], and [CM1] – the third one is co-authored
with R. Coifman) and I. Daubechies “Ten lectures on wavelets” ([Da1]).
Both are excellent presentations, and we recommend them with enthusiasm.
They are more advanced than this book and cover much more material.
Since they were written, however, the theory has advanced considerably
(partly due to their contributions). Some of the original constructions have
been simplified and extended. We hope that this book can serve as an
introduction to these two treatises. The book by C. Chui ([Chu]) should
also be mentioned. It is a good complement to the ones by Daubechies and
Meyer (as, we hope, is ours). We cite it often, particularly when we discuss
spline wavelets.

Description of the book

It is, perhaps, useful to describe this book in more detail and give some
advice about how to read it. The first four chapters, together with Chap-
ter 7, make up a “natural” inter-related group. They are devoted to the
construction of wavelets. We feel that Chapter 7 is the most important one
in the book. There are two simple equations that completely characterize
all orthonormal wavelets. They are

∑
j∈Z

∣∣ψ̂(2jξ)
∣∣2 = 1 for a.e. ξ ∈ R, (1)

and for every odd integer m,

∞∑
j=0

ψ̂(2jξ) ψ̂(2j(ξ + 2mπ)) = 0 for a.e. ξ ∈ R. (2)

More precisely, ψ ∈ L
2(R) is an orthonormal wavelet if and only if ψ sat-

isfies (1) and (2), provided ‖ψ‖2 = 1. The proof of this is elementary but
it is not simple, and we present it in the seventh chapter. These equa-
tions are known and have been used by many investigators working with
wavelets. The proof of this characterization in full generality, however,
did not appear in the published literature until recently. It can be found
in a paper by G. Gripenberg ([Gri1]), the Ph.D. thesis of one of our stu-
dents, X. Wang ([Wan]), and will appear in an expository article we wrote
with him ([HWW3]). It has been one of our goals to study the properties
of wavelets by examining their Fourier transforms. One of the principal
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features of this book, in fact, is the important role played by the Fourier
transform.

The first four chapters are devoted to different ways of constructing
wavelets. Chapter 1 deals with the local sine and cosine bases that were
discovered by R. Coifman and Y. Meyer. We show how they lead us to
bases for L

2(R) that have the important features described in the begin-
ning of this introduction; that is, they enjoy particularly simple relations
with the basic operators: translations, dilations and the Fourier transform.
We use these bases to construct the wavelets of Lemarié and Meyer, the
first class of orthonormal wavelets that were introduced and that includes
ones such that they and their Fourier transform are smooth.

In the second chapter we develop a general method that was intro-
duced by Mallat and Meyer for constructing wavelets: the multiresolu-
tion analysis (MRA). We apply this method to obtain the compactly sup-
ported wavelets introduced by Daubechies. The third chapter is devoted to
the “band-limited” wavelets (the ones having compactly supported Fourier
transforms). We show that the elements of this class have some surprising
properties; for example, their Fourier transforms vanish in a neighborhood
of the origin. Perhaps one of the best reasons for studying this class sep-
arately is that the basic equations (1) and (2) are particularly easy to
study. Among other things, the series involved have only a finite number
of non-zero terms and we do not need to worry about their convergence.
This allows us to pave the way for the technically more difficult analysis
involved in the seventh chapter. The fourth chapter introduces the reader
to the “spline wavelets.” This class appears to be particularly important in
the various applications of wavelet theory to signal and image analyses. We
also explain in this fourth chapter how one can construct periodic wavelets.

By the end of the first four chapters we have enough examples and have
obtained sufficiently many properties of wavelets to introduce the reader to
some of the uses of wavelets and their connection to other parts of Analysis.
We therefore interrupt our program of characterizing all wavelets in terms
of their Fourier transform and show how they provide us with tools for the
study of the important scales of function spaces we mentioned above. In
addition to providing us with orthonormal bases for the Hilbert space L

2(R),
some wavelets give us natural bases for these other topological linear spaces
as well. Let us illustrate this with the Lebesgue spaces L

p(R), 1 < p < ∞,
of all those measurable functions f such that

∥∥f∥∥
p

=
(∫ ∞

−∞

∣∣f(x)
∣∣p dx

)1
p

< ∞. (3)

When p = 2 the finiteness of this norm ‖f‖2 is equivalent to the finiteness
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of the norm ∥∥c∥∥
2

=
(∑
j∈Z

∑
k∈Z

|cj,k|2
)1

2

of the coefficient sequence c = {cj,k} =
{
〈f, ψj,k〉

}
that provides us with

the representation

f =
∑
j∈Z

∑
k∈Z

cj,k ψj,k .

Thus, L
2(R) can be represented as the space  

2(Z × Z) of all sequences
c such that ‖c‖2 < ∞. Appropriate wavelet bases provide us with the
characterization of L

p(R) in terms of a sequence space for the other indices
p ∈ (1,∞). It can be shown that f belongs to L

p(R) if and only if

‖c‖(p) =
∥∥{cj,k}∥∥(p) =

(∫ ∞

−∞

{∑
j∈Z

∑
k∈Z

2j |cj,k|2χj,k
(x)

}p
2
dx

)1
p

< ∞,

where χ
j,k

is the characteristic function of the interval [2−jk, 2−j(k + 1)]
and c is the sequence of coefficients of f associated with {ψj,k}. Observe
that the finiteness of ‖c‖(p) is a condition on the size (or absolute value)
of the coefficients cj,k. This provides us with the ability to study L

p(R)
in terms of a corresponding sequence space in a way that is analogous to
the reduction of properties of L

2(R) to properties of  
2(Z × Z). Note that

‖c‖(2) = ‖c‖2. Thus, an operator that is diagonalized by the basis {ψj,k}
can be analyzed in terms of its proper values, as is the case in Hilbert space
theory. Many important operators are “essentially” diagonalized by wavelet
bases. It is this circle of ideas that is presented in Chapter 5 and Chap-
ter 6. More specifically, we present a brief treatment of bases in Banach
spaces, with an emphasis on the notion of unconditionality, in Chapter 5.
In Chapter 6 we give the characterizations described above. This treatment
uses properties of Calderón-Zygmund operators; consequently, we have
an opportunity to see how wavelets are associated with the study of these
important operators.

In Chapter 7 we resume the study of wavelets in L
2(R). We not only

give a characterization of all wavelets, as described above, but we also
characterize all wavelets that arise from an MRA and the basic functions
(the scaling functions and low-pass filters) involved in this method. These
characterizations allow us to construct several other classes of wavelets as
well.

Though most of the bases discussed in the first seven chapters are or-
thonormal, we do mention some other types of bases. In Chapter 8 we
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present a more thorough treatment of systems that are more general, with
particular attention to frames and their importance to wavelets. We pay
special attention to the way they can be used to analyze and reconstruct
functions; we also extend the Balian-Low theorem to frames.

The last chapter is devoted to certain topics that are important and
relevant to the applications of the theory of wavelets. We indicate how
the mathematical theory is transformed when it is applied to “discrete”
signals. We develop the Discrete Fourier (and Cosine) Transform in what
is, probably, a manner that is different from the usual treatment but has
some features that are adaptable to programming for computers. We also
describe the decomposition and reconstruction algorithms for wavelets and
we end the chapter with a treatment of “wavelet packets.”

One of our colleagues, M.V. Wickerhauser, has recently written a book,
“Adapted wavelet analysis from theory to software” ([Wi2]), that treats the
subject we just mentioned, and many more applications, in great detail.
We believe that his book will prove to be most useful. We found no need,
therefore, to go further than we did in this direction. As we stated about
the books by Daubechies and Meyer, we hope that our book makes a good
companion to, and complements, the book by Wickerhauser.

Some advice to the reader

The background we assume of the reader is a “good undergraduate”
preparation in mathematics. We do use the language of measure theory;
for example, we talk about “measurable functions.” One should not be dis-
couraged if he/she only knows the ordinary Riemann integral. Substituting
the Lebesgue integral for the latter will, in general, not affect the meaning
or the validity of most statements. Some notions in elementary functional
analysis are used; again, the results or statements involving these notions
can almost always be understood by ignoring unfamiliar language.

It is our hope that graduate students in mathematics, the sciences and
engineering can profit from our presentation. We advise the reader not
to be discouraged by the few somewhat technical notions we introduce at
times (distributions, maximal functions, vector-valued inequalities, etc). If
it’s “too much,” just skip it at first; there is enough material that can be
understood with the background mentioned in the previous paragraph. It
is our experience that even those whose main interest is in the applications
can profit by learning about the theory we present.
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In each section we number results consecutively; that is, we do not form
separate lists of theorems, propositions, corollaries, lemmas, formulae and
inequalities. These items are listed as ordered pairs n.m, where “n” denotes
the section (in the chapter) and “m” the mth item so numbered in the
section. If we need to refer to something in another chapter, we mention
the chapter and the relevant ordered pair. The sections in each chapter are
also assigned an ordered pair, n.m; in this case, “n” denotes the number of
the chapter and “m” the mth section.

We do not present a list of exercises at the end of each chapter. In many
cases we leave certain calculations to be worked out by the reader. This is
particularly true of the comments made in the last section of each chapter,
which is labelled “Notes and references.”

We also feel that we should state quite clearly that, though the bibliogra-
phy we include is quite large, it is far from a list that comes anywhere close
to exhausting what has been published in the theory of wavelets during the
relatively short period of its existence. We have tried to give proper credits;
however, since some of the material we discuss is quite new, we realize that
it is very likely we omitted some references that should have been included.
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wavelets as approximations to the Shannon wavelet. This graphic design
was done by J. Soria.

Special thanks are due to X. Wang, who obtained his Ph.D. with G. Weiss
at Washington University. His thesis and collaborations with us contain
much that is novel in this book. In addition, he prepared most of our
manuscript for the publisher. The first three chapters, and some later
material, was originally typed by J. Doran.

We are also most grateful to the Southwestern Bell Telephone Company,
the Air Force Office of Scientific Research (U.S.A.), the National Science
Foundation, and the Ministerio de Educación y Ciencia (Spain) for giving
us the financial support that allowed us to work together for the creation
of this book.

Eugenio Hernández, Universidad Autónoma de Madrid
Guido Weiss, Washington University in St. Louis

c© 1996 by CRC Press LLC


	A First Course on WAVELETS
	About the Authors
	Contents
	Foreword
	Preface
	Introduction
	The philosophy of the book
	Description of the book
	Some advice to the reader
	Acknowledgments



