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8 Myriad Smoothers

8.1 FLOM Smoothers

Under the framework of Gaussian processes, the sample mean (β̄)

minimizes the second moment of the shifted variable X − β over all

possible shifts.

E(X) = β̄ = arg min
β

E(X − β)2. (1)

Second-order moments do not exist with stable processes, but

fractional-order moments do. The second moment in (1) can be replaced

by fractional lower-order moments (FLOMs) to obtain the following

measure of location

βp = arg min
β

E(|X − β|p), p < 2. (2)
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FLOM smoothers follow from (2) where FLOM estimates are computed in

the running window X(n) = [X1(n),X2(n), . . . , XN (n)]T as

Y (n) = arg min
β

N∑
i=1

|Xi(n) − β|p (3)

with p < 2.

The behavior of FLOM smoothers is markedly dependant on the choice of

p. As p → 2, FLOM smoothers resemble the running mean. As p is

reduced in value, FLOM smoothers become more robust and its output

can tract discontinuities more effectively.
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Figure 1: FLOM smoothing of a speech signal for different values of p and

window size 5.
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• FLOM smoothers arise from the location estimation problem under the

generalized Gaussian distribution.

• For p < 1, FLOM smoothers are selection type.

• For p > 1, the cost function is convex and the output is not

necessarily equal in value to one of the input samples.

• FLOM smoother computation is in general nontrivial.

• A method to overcome this limitation is to force the output of the

smoother to be identical in value to one of the input samples.

• Selection type FLOM smoothers are suboptimal and are referred to as

gamma filters.
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EXAMPLE 8.1 (IMAGE DENOISING)

Figure 2: FLOM smoothing of an image for different values of p. (a) Image conta-

minated with salt-and-pepper noise (PSNR=17.75dB) and output of the

FLOM smoother for: (b) p = 0.01 (PSNR=26.12dB).
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Figure 3: FLOM smoothing of an image for different values of p. Outputs of the

FLOM smoother for: (c) p = 0.1 (PSNR=31.86dB), (d) p = 1 (median

smoother, PSNR=37.49dB).
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Figure 4: FLOM smoothing of an image for different values of p (continued). (a)

p = 2 (mean smoother, PSNR=33.53dB), (b) p = 10 (PSNR=31.15).
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Figure 5: Gamma smoothing of an image for different values of p and different

window sizes. (a) Original image and output of the 3 × 3 gamma

smoother for (b) p = 2 (sample closest to the mean, PSNR=32.84dB).
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Figure 6: Gamma smoothing of an image for different values of p and different

window sizes. Output of the 3 × 3 gamma smoother for (c) p = 10
(PSNR=32.32dB), and the 5 × 5 gamma smoother for (d) p = 0.1
(PSNR=28.84dB).
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Figure 7: Gamma smoothing of an image for different values of p and different

window sizes (continued). (a) p = 1 (PSNR=29.91dB), (b) p = 10
(PSNR=28.13dB).
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8.2 Running Myriad Smoothers

Given an observation vector X(n) = [X1(n),X2(n), . . . , XN (n)] and

a fixed positive (tunable) value of K , the running myriad smoother output

at time n is computed as

YK(n) = MYRIAD[K;X1(n),X2(n), . . . , XN (n)]

= arg min
β

N∏
i=1

[
K2 + (Xi(n) − β)2

]
. (4)

= arg min
β

N∑
i=1

log
[
K2 + (Xi(n) − β)2

]
. (5)

The myriad YK(n) is thus the value of β that minimizes the above cost

function.
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The definition of the sample myriad involves the free-tunable parameter

K . This parameter will be shown to play a critical role in characterizing the

behavior of the myriad.

Figure 8: Myriad cost functions for different values of k
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Property 8.1 (Linear Property) Given a set of samples,

X1,X2, . . . , XN , the sample myriad β̂K converges to the sample

average as K → ∞. This is,

lim
K→∞

β̂K = lim
K→∞

MYRIAD(K;X1, . . . , XN )

=
1
N

N∑
i=1

Xi. (6)
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Note that β̂K ≤ X(N) by checking that for any i, and for

β > X(N),K
2 + (Xi − β)2 > K2 + (Xi − X(N))2. In the same

way, β̂K ≥ X(1). Hence,

β̂K = arg min
X(1)≤β≤X(N)

N∏
i=1

[K2 + (Xi − β)2] (7)

= arg min
X(1)≤β≤X(N)

{
K2N + K2N−2

N∑
i=1

(Xi − β)2 + f(K)

}
,(8)

where f(K) = O(K2N−4) and O denotes the asymptotic order as

K → ∞.
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Since adding or multiplying by constants does not affect the arg min
operator, Equation (8) can be rewritten as

β̂K = arg min
X(1)≤β≤X(N)

{
N∑

i=1

(Xi − β)2 +
O(K2N−4)

K2N−2

}
. (9)

Letting K → ∞, the term O(K2N−4)/K2N−2 becomes negligible, and

β̂K → arg min
X(1)≤β≤X(N)

{
N∑

i=1

(Xi − β)2
}

=
1
N

N∑
i=1

Xi.
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Definition 8.1 (Sample mode-myriad) Given a set of samples

X1, X2, . . . ,

XN , the mode-myriad estimator, β̂0, is defined as

β̂0 = lim
K→0

β̂K , (10)

where β̂K = MYRIAD(K;X1,X2, . . . , XN ).

Property 8.2 (Mode Property) The mode-myriad β̂0 is always equal to

one of the most repeated values in the sample. Furthermore,

β̂0 = arg min
Xj∈M

N∏
i=1,Xi �=Xj

|Xi − Xj |, (11)

where M is the set of most repeated values.
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EXAMPLE 8.2 (BEHAVIOR OF THE MODE MYRIAD)

�X = [1, 4, 2.3, S, 2.5, 2, 5, 4.25, 6]. S varies from 0 to 7.

Figure 9: Mode myriad of a sample set with one variable sample. The constant

samples are indicated with ”©”
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EXAMPLE 8.3 (MODE-MYRIAD PERFORMANCE IN α-STABLE NOISE)

Figure 10: Estimated Mean Absolute Error of the sample mean, sample median

and mode-myriad location estimator in α-stable noise (N = 5).
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EXAMPLE 8.4 (DENOISING OF A VERY IMPULSIVE SIGNAL.)

Figure 11: Running smoothers in stable noise (α = 0.2). All smoothers of size

121; (a) original blocks signal, (b) corrupted signal with stable noise,

(c) the output of the running mean, (d) the running median, (e) the

running FLOM smoother, and (f) the running mode-myriad smoother.
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Figure 12: (a) The sample myriad, β̂, minimizes the product of distances from

point A to all samples. Any other value, such as x = β′, produces a

higher product of distances; (b) the myriad as K is reduced.
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EXAMPLE 8.5

Figure 13: Sample myriad of the sample set {1, 1, 2, 10} for (a) K = 0.01,

(b) K = 5, (c) K = 100.
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Figure 14: The role of the linearity parameter when the myriad is looked as a

maximum likelihood estimator. When K is large, the generating den-

sity function is spread and the data are visualized as well-behaved (the

optimal estimator is the sample average). For small values of K , the

generating density becomes highly localized, and the data are visual-

ized as very impulsive (the optimal estimator is a cluster locator).
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Figure 15: Functionality of the myriad as K is varied. Tuning the linearity parame-

ter K adapts the behavior of the myriad from impulse-resistant mode-

type estimators (small K) to the Gaussian-efficient sample mean

(large K).

Empirical selection of K:

• Linear type K ≈ X(N) − X(1)

• Mode type K ≈ mini,j |Xi − Xj |
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Figure 16: Values of the myriad as a function of K for the following data sets:

(solid) original data set = 0, 1, 3, 6, 7, 8, 9; (dash-dot) original set

plus an additional observation at 20; (dotted) additional observation at

100; (dashed) additional observations at 800, -500, and 700.
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Property 8.3 (Scale Invariance) Let β̂K(X) denote the myriad of order

K of the data in the vector X. Then, for c > 0,

β̂K(cX) = cβ̂K/c(X). (12)

Proof : Let X1,X2, . . . , XN denote the data in X. Then,

β̂K(cX) = arg min
β

N∏
i=1

[
K2 + (cXi − β)2

]

= arg min
β

N∏
i=1

[(
K

c

)2

+
(

Xi − β

c

)2
]

(13)

= c

(
arg min

β

N∏
i=1

[(
K

c

)2

+ (Xi − β)2
])

.
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8.3 Optimality of the Sample Myriad

Optimality In The α-Stable Model

Proposition 8.1 Let Tα,γ(X1,X2, . . . , XN ) denote the maximum

likelihood location estimator derived from a symmetric α-stable distribution

with characteristic exponent α and dispersion γ. Then,

lim
α→0

Tα,γ(X1,X2, . . . , XN ) = MYRIAD {0;X1,X2, . . . , XN} .

(14)

The α-stable triplet of optimality points satisfied by the myriad:

• α = 2 ↔ K = ∞
• α = 1 ↔ K = γ

• α = 0 ↔ K = 0
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Proposition 8.2 Let α and γ denote the characteristic exponent and

dispersion parameter of a symmetric α-stable distribution. Let Ko(α, γ)
denote the optimal tuning value of K in the sense that β̂Ko minimizes a

given performance criterion (usually the variance) among the class of

sample myriads with non negative linearity parameter. Then,

Ko(α, γ) = Ko(α, 1)γ. (15)

A simple empirical formula is

K(α) =
√

α

2 − α
, (16)
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�Figure 17: Empirical α-K curve for α-stable distributions. The curve values at

α = 0, 1, and 2 constitute the optimality points of the α-stable triplet.
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8.4 Weighted Myriad Smoothers

Given N observations {Xi}N
i=1 and nonnegative weights {Wi ≥ 0}N

i=1,

let the input and weight vectors be defined as X
�
= [X1,X2, . . . , XN ]T

and W
�
= [W1,W2, . . . ,WN ]T , respectively. For a given nominal

scale factor K , the underlying random variables are assumed to be

independent and Cauchy distributed with a common location parameter β,

but varying scale factors {Si}N
i=1: Xi ∼ Cauchy(β, Si):

fXi(Xi;β, Si) =
1
π

Si

S2
i + (Xi − β)2

, −∞ < Xi < ∞, (17)

and where

Si
�
=

K√
Wi

> 0, i = 1, 2, . . . , N. (18)
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The weighted myriad smoother output β̂K(W,X) is defined as follows

β̂K(W,X) = arg max
β

N∏
i=1

Si

S2
i + (Xi − β)2

,

= arg min
β

N∏
i=1

[
K2 + Wi (Xi − β)2

]
(19)

�
= arg min

β
P (β); (20)

Alternatively, we can write β̂K(W,X)
�
= β̂K as

β̂K = arg min
β

Q(β)
�
= arg min

β

N∑
i=1

log
[
K2 + Wi (Xi − β)2

]
;

(21)

β̂K is the global minimizer of P (β) and Q(β)
�
= log(P (β)).
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Definition 8.2 (Weighted myriad) Let W = [W1,W2, . . . ,WN ] be a

vector of nonnegative weights. Given K > 0, the weighted myriad of

order K for the data X1,X2, . . . , XN is defined as

β̂K = MYRIAD {K;W1 ◦ X1, . . . ,WN ◦ XN}

= arg min
β

N∑
i=1

log
[
K2 + Wi(Xi − β)2

]
, (22)

where Wi ◦ Xi represents the weighting operation in (22). In some

situations, the following equivalent expression can be computationally

more convenient

β̂K = arg min
β

N∏
i=1

[
K2 + Wi(Xi − β)2

]
. (23)
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Note that the weighted myriad has only N independent parameters

β̂K(W,X) = β̂1

(
W
K2

,X
)

(24)

Equivalently:

β̂K1(W1,X) = β̂K2(W2,X) iff
W1

K2
1

=
W2

K2
2

. (25)

Hence, the output depends only on W
K2 .
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The objective function P (β) is a polynomial in β of degree 2N , with

well-defined derivatives of all orders. Therefore, it can have at most

(2N − 1) local extremes, one of which is the output:

Figure 18: Sketch of a typical weighted myriad objective function Q(β) for the

weights [1, 2, 3, 2, 1] (solid line), and [1, 100, 3, 2, 1] (dashed

line), and the sample set [−1, 10, 3, 5, − 3] .
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Property 8.4 (Linear Property) In the limit as K → ∞, the weighted

myriad reduces to the normalized linear estimate

lim
K→∞

β̂K =
∑N

i=1 WiXi∑N
i=1 Wi

. (26)

Property 8.5 (No undershoot/overshoot) The output of a weighted

myriad smoother is always bracketed by

X(1) ≤ β̂K(W;X1,X2, . . . , XN ) ≤ X(N), (27)

where X(1) and X(N) denote the minimum and maximum samples in the

input window.
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Property 8.6 (Mode Property) Given a vector of positive weights,

W = [W1, . . . ,WN ], the weighted mode-myriad β̂0 is always equal to

one of the most repeated values in the sample. Furthermore,

β̂0 = arg min
Xj∈M

(
1

Wj

) r
2

N∏
i=1,Xi �=Xj

|Xi − Xj |, (28)

where M is the set of most repeated values, and r is the number of times

a member of M is repeated in the sample set.

Property 8.7 (Outlier Rejection Property) Let K < ∞, and let W
denote a vector of positive and finite weights. The outlier rejection property

states that:

lim
XN→±∞

β̂K(W;X1,X2, . . . , XN ) = β̂K(W;X1,X2, . . . , XN−1).

(29)
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Property 8.8 (Unbiasedness) Let X1,X2, . . . , XN be all independent

and symmetrically distributed around the point of symmetry c. Then, β̂K is

also symmetrically distributed around c. In particular, if Eβ̂K exists, then

Eβ̂K = c.
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Geometrical Interpretation
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Figure 19: (a) The sample myriad, β̂K , indicates the position of a moving bar

such that the product of distances from point A to the sample points

X1, X2, . . . ,XN is minimum. (b) If the weight W4 > 1 is intro-

duced, the product of distances is more sensitive to the variations of

the segment X4A4, very likely resulting in a weighted myriad β̂K

closer to X4.
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8.5 Fast Weighted Myriad Computation

• No explicit formulation is available to compute the weighted myriad.

• But, some characteristics of the objective function can be exploited.

• Turns out certain numerical iterative technique can be applied.
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Recall that the weighted myriad is given by

β̂K = arg min
β

log(P (β))
�
= arg min

β
Q(β)

= arg min
β

N∑
i=1

log

[
1 +

(
xi − β

Si

)2
]

, (30)

it’s easi to show that

Q′(β) = 2
N∑

i=1

Wi (β − Xi)
K2 + Wi (Xi − β)2

. (31)
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Q′(β) = 2
N∑

i=1

(
β − Xi

S2
i

)

1 +
(

Xi − β

Si

)2 . (32)

Defining

ψ(v)
�
=

2v

1 + v2
, (33)

and referring to (32) the following equation is obtained for the local

extremes of Q(β):

Q′(β) = −
N∑

i=1

1
Si

· ψ
(

Xi − β

Si

)
= 0. (34)
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By introducing the positive functions

hi(β)
�
=

1
S2

i

· ϕ
(

Xi − β

Si

)
> 0, (35)

for i = 1, 2, . . . , N, where

ϕ(v)
�
=

ψ(v)
v

=
2

1 + v2
, (36)

the local extremes of Q(β) in (34) can be formulated as

Q′(β) = −
N∑

i=1

hi(β) · (Xi − β) = 0. (37)
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Fixed Point Formulation

Equation (37) can be written as

β =

N∑
i=1

hi(β) · Xi

N∑
i=1

hi(β)

(38)

By defining the mapping

T (β)
�
=

N∑
i=1

hi(β) · Xi

N∑
i=1

hi(β)

, (39)
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the local extremes of Q(β), or the roots of Q′(β), are seen to be the fixed

points of T (·):

β∗ = T (β∗). (40)

The following fixed point iteration results in an efficient algorithm to

compute these fixed points:

βm+1
�
= T (βm) =

N∑
i=1

hi(βm) · Xi

N∑
i=1

hi(βm)

. (41)
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In the classical literature, this is also called the method of successive

approximation for the solution of the equation β = T (β).

It has been proven that the iterative method of (41) converges to a fixed

point of T (·); thus,

lim
m→∞βm = β∗ = T (β∗). (42)
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Fixed Point Weighted Myriad Search

Step 1: Select the initial point β̂0 among the values of the input samples:

β̂0 = arg min
Xi

P (Xi).

Step 2: Using β̂0 as the initial value, perform L iterations of the fixed point

recursion βm+1 = T (βm) of (41). The final value of these iterations

is then chosen as the weighted myriad: β̂FP = T (L)(β̂0).

This algorithm can be compactly written as

β̂FP = T (L)

(
arg min

Xi

P (Xi)

)
. (43)
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8.6 Weighted Myriad Smoother Design

8.6.1 Center-Weighted Myriads for Image Denoising

The notion of center weighting can be applied to the myriad structure,

leading to:

Y = MYRIAD {K;X1, . . . ,Wc ◦ Xc, . . . , XN} . (44)

The cost function in (21) is now modified to

Q(β) = log
[
K2 + Wc(Xc − β)2

]
+

∑
Xi �=Xc

log
[
K2 + (Xi − β)2

]
.

(45)
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• In addition to the center weight Wc, the CWMy has the free parameter

(K) that controls the impulsiveness rejection.

• The center weight in the CWMy smoother is data dependent.

• For different applications, the center weight should be adjusted based

on their data ranges.

• For grayscale image denoising (values normalized between 0 and 1),

the parameters are:

(1) Choose K = (X(U) + X(L))/2, where 1 ≤ L < U ≤ N , with

X(U) being the U th smallest sample in the window and X(L) the

Lth smallest sample.

(2) Set Wc = 10, 000.
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• When there is “salt” noise in the window (outliers having large values),

the myriad structure assures that they are deemphasized because of

the outlier rejection property of K .

• For a single “pepper” outlier sample, the cost function (45) evaluated at

β = K will always be smaller than that at β = 0. Thus, “pepper”

noise will never go through the smoother.

A 2-pass CWMy smoother can be defined as follows:

Y = 1 − CWMy(1 − CWMy(X)). (46)
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Figure 20: (a) Original image, (b) Image with 5% salt-and-pepper noise

(PSNR=17.75dB)
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Figure 21: ((c) smoothed with 5 × 5 center weighted median with Wc =

15(PSNR=37.48dB), (d) smoothed with 5× 5 center weighted myriad

with Wc = 10, 000 and K = (X(21) + X(5))/2 (PSNR=39.98dB)
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Figure 22: Comparison of different filtering schemes (Enlarged). (a) Origi-

nal Image, (b) Image smoothed with a center weighted median

(PSNR=37.48dB)
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Figure 23: Comparison of different filtering schemes (Enlarged). (c) Im-

age smoothed with a 5 × 5 permutation weighted median

(PSNR=35.55dB), (d) Image smoothed with the center weighted myr-

iad (PSNR=39.98dB).
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Figure 24: Output of the Center weighted myriad smoother for different

values of the center weight Wc (a) Original image, (b) 100

(PSNR=36.74dB)
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Figure 25: Output of the Center weighted myriad smoother for different val-

ues of the center weight Wc (c) 10,000 (PSNR=39.98dB), (d)

1,000,000 (PSNR=38.15dB).
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Figure 26: Output of the center-weighted myriad smoother for different val-

ues of the center weight Wc (enlarged) (a) Original image, (b)

100, (c) 10,000, (d) 1,000,000.
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Figure 27: Output of the center-weighted myriad smoother for different

values of the center weight Wc (enlarged) (c) 10,000, (d)

1,000,000.
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8.6.2 Myriadization

• First, design a constrained linear smoother for Gaussian or noiseless

environments using FIR filter (smoother) design techniques.

• Then, plug in these smoother coefficients into weighted myriad

structure.

• Choose the suitable K according to the impulsiveness of the

environment.

• Note that the smoother coefficients Wi must be non-negative and

satisfy the normalization condition
∑N

i=1 Wi = 1
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EXAMPLE 8.6 (ROBUST LOW PASS FILTER DESIGN)

Figure 28: Myriadizing a linear low-pass smoother in an impulsive environment: (a) chirp signal, (b) chirp in additive impulsive

noise, (c) ideal (no noise) myriad smoother output with K = ∞, (e) K = 0.5, and (g) K = 0.2; Myriad

smoother output in the presence of noise with (d) K = ∞, (f) K = 0.5, and (h) K = 0.2.
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EXAMPLE 8.7 (MYRIADIZATION OF PHASE LOCK LOOP FILTERS)

Figure 29: Block diagram of the Phase-Locked Loop system.
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(a) (b)

(c)

Figure 30: Phase error plot for the PLL with (a) a linear FIR filter; (b) an optimal

weighted median filter; and (c) a myriadized version of the linear filter.
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