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PREFACEPREFACE

This text provides a complete introduction to signal analysis. Inclusion of funda-
mental ideas—analog and discrete signals, linear systems, Fourier transforms, and
sampling theory—makes it suitable for introductory courses, self-study, and
refreshers in the discipline. But along with these basics, Signal Analysis: Time,
Frequency, Scale, and Structure gives a running tutorial on functional analysis—the
mathematical concepts that generalize linear algebra and underlie signal theory.
While the advanced mathematics can be skimmed, readers who absorb the material
will be prepared for latter chapters that explain modern mixed-domain signal analy-
sis: Short-time Fourier (Gabor) and wavelet transforms.

Quite early in the presentation, Signal Analysis surveys methods for edge detec-
tion, segmentation, texture identification, template matching, and pattern recogni-
tion. Typically, these are only covered in image processing or computer vision
books. Indeed, the fourth chapter might seem like a detour to some readers. But the
techniques are essential to one-dimensional signal analysis as well. Soon after
learning the rudiments of systems and convolutions, students are invited to apply the
ideas to make a computer understand a signal. Does it contain anything significant,
expected, or unanticipated? Where are the significant parts of the signal? What are
its local features, where are their boundaries, and what is their structure? The diffi-
culties inherent in understanding a signal become apparent, as does the need for a
comprehensive approach to signal frequency. This leads to the chapters on the fre-
quency domain. Various continous and discrete Fourier transforms make their
appearance. Their application, in turn, proves to be problematic for signals with
transients, localized frequency components, and features of varying scale. The text
delves into the new analytical tools—some discovered only in the last 20 years—for
such signals. Time-frequency and time-scale transforms, their underlying mathe-
matical theory, their limitations, how they differently reveal signal structure, and
their promising applications complete the book. So the highlights of this book are:

• The signal analysis perspective;

• The tutorial material on advanced mathematics—in particular function spaces,
cast in signal processing terms;

• The coverage of the latest mixed domain analysis methods.

We thought that there is a clear need for a text that begins at a basic level while
taking a signal analysis as opposed to signal processing perspective on applications.
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The goal of signal analysis is to arrive at a structural description of a signal so that
later high-level algorithms can interpret its content. This differs from signal pro-
cessing per se, which only seeks to modify the input signal, without changing its
fundamental nature as a one-dimensional sequence of numerical values. From this
viewpoint, signal analysis stands within the scope of artificial intelligence. Many
modern technologies demand its skills. Human–computer interaction, voice recog-
nition, industrial process control, seismology, bioinformatics, and medicine are
examples.

Signal Analysis provides the abstract mathematics and functional analysis which
is missing from the backgrounds of many readers, especially undergraduate science
and engineering students and professional engineers. The reader can begin comfort-
ably with the basic ideas. The book gradually dispenses the mathematics of Hilbert
spaces, complex analysis, disributions, modern integration theory, random signals,
and analog Fourier transforms; the less mathematically adept reader is not over-
whelmed with hard analysis. There has been no easy route from standard signal pro-
cessing texts to the latest treatises on wavelets, Gabor transforms, and the like. The
gap must be spanned with knowledge of advanced mathematics. And this has been a
problem for too many engineering students, classically-educated applied research-
ers, and practising engineers. We hope that Signal Analysis removes the obstacles. It
has the signal processing fundamentals, the signal analysis perspective, the mathe-
matics, and the bridge from all of these to crucial developments that began in the
mid-1980s.

The last three chapters of this book cover the latest mixed-domain transform
methods: Gabor transforms, wavelets, multiresolution analysis, frames, and their
applications. Researchers who need to keep abreast of the advances that are revolu-
tionizing their discipline will find a complete introductory treatment of time-
frequency and time-scale transforms in the book. We prove the Balian-Low theorem,
which pinpoints a limitation on short-time Fourier representations. We had envisioned
a much wider scope for mixed-domain applications. Ultimately, the publication
schedule and the explosive growth of the field prevented us from achieving a thorough
coverage of all principal algorithms and applications—what might have been a fourth
highlight of the book. The last chapter explains briefly how to use the new methods
in applications, contrasts them with time domain tactics, and contains further refer-
ences to the research literature.

Enough material exists for a year-long university course in signal processing
and analysis. Instructors who have students captive for two semesters may cover
the chapters in order. When a single semester must suffice, Chapters 1–3, 5, 7, 8,
and 9 comprise the core ideas. We recommend at least the sections on segmenta-
tion and thresholding in Chapter 4. After some programming experiments, the stu-
dents will see how hard it is to make computers do what we humans take for
granted. The instructor should adjust the pace according to the students’ prepara-
tion. For instance, if a system theory course is prerequisite—as is typical in the
undergraduate engineering curriculum—then the theoretical treatments of signal
spaces, the Dirac delta, and the Fourier transforms are appropriate. An advanced
course can pick up the mathematical theory, the pattern recognition material in
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Chapter 4, the generalized Fourier transform in Chapter 6, and the analog filter
designs in Chapter 9. But the second semester work should move quickly to and
concentrate upon Chapters 10–12. This equips the students for reading the
research literature.

RONALD L. ALLEN

San José, California

DUNCAN W. MILLS

Mountain View, California
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CHAPTER 1

Signals: Analog, Discrete, and Digital

Analog, discrete, and digital signals are the raw material of signal processing and
analysis. Natural processes, whether dependent upon or independent of human con-
trol, generate analog signals; they occur in a continuous fashion over an interval of
time or space. The mathematical model of an analog signal is a function de$ned
over a part of the real number line. Analog signal conditioning uses conventional
electronic circuitry to acquire, amplify, $lter, and transmit these signals. At some
point, digital processing may take place; today, this is almost always necessary. Per-
haps the application requires superior noise immunity. Intricate processing steps are
also easier to implement on digital computers. Furthermore, it is easier to improve
and correct computerized algorithms than systems comprised of hard-wired analog
components. Whatever the rationale for digital processing, the analog signal is cap-
tured, stored momentarily, and then converted to digital form. In contrast to an ana-
log signal, a discrete signal has values only at isolated points. Its mathematical
representation is a function on the integers; this is a fundamental difference. When
the signal values are of $nite precision, so that they can be stored in the registers
of a computer, then the discrete signal is more precisely known as a digital signal.
Digital signals thus come from sampling an analog signal, and—although there is
such a thing as an analog computer—nowadays digital machines perform almost all
analytical computations on discrete signal data.

This has not, of course, always been the case; only recently have discrete tech-
niques come to dominate signal processing. The reasons for this are both theoretical
and practical.

On the practical side, nineteenth century inventions for transmitting words, the
telegraph and the telephone—written and spoken language, respectively—mark the
beginnings of engineered signal generation and interpretation technologies. Mathe-
matics that supports signal processing began long ago, of course. But only in the
nineteenth century did signal theory begin to distinguish itself as a technical, engi-
neering, and scienti$c pursuit separate from pure mathematics. Until then, scientists
did not see mathematical entities—polynomials, sinusoids, and exponential func-
tions, for example—as sequences of symbols or carriers of information. They were
envisioned instead as ideal shapes, motions, patterns, or models of natural processes.



2 SIGNALS: ANALOG, DISCRETE, AND DIGITAL

The development of electromagnetic theory and the growth of electrical and
electronic communications technologies began to divide these sciences. The
functions of mathematics came to be studied as bearing information, requiring
modi$cation to be useful, suitable for interpretation, and having a meaning. The life
story of this new discipline—signal processing, communications, signal analysis,
and information theory—would follow a curious and ironic path. Electromagnetic
waves consist of coupled electric and magnetic $elds that oscillate in a sinusoidal
pattern and are perpendicular to one another and to their direction of propagation.
Fourier discovered that very general classes of functions, even those containing dis-
continuities, could be represented by sums of sinusoidal functions, now called a
Fourier series [1]. This surprising insight, together with the great advances in analog
communication methods at the beginning of the twentieth century, captured the
most attention from scientists and engineers.

Research efforts into discrete techniques were producing important results, even
as the analog age of signal processing and communication technology charged
ahead. Discrete Fourier series calculations were widely understood, but seldom car-
ried out; they demanded quite a bit of labor with pencil and paper. The $rst theoret-
ical links between analog and discrete signals were found in the 1920s by Nyquist,1

in the course of research on optimal telegraphic transmission mechanisms [2].
Shannon2 built upon Nyquist’s discovery with his famous sampling theorem [3]. He
also proved something to be feasible that no one else even thought possible: error-
free digital communication over noisy channels. Soon thereafter, in the late 1940s,
digital computers began to appear. These early monsters were capable of perform-
ing signal processing operations, but their speed remained too slow for some of the
most important computations in signal processing—the discrete versions of the
Fourier series. All this changed two decades later when Cooley and Tukey disclosed
their fast Fourier transform (FFT) algorithm to an eager computing public [4–6].
Digital computations of Fourier’s series were now practical on real-time signal data,
and in the following years digital methods would proliferate. At the present time,
digital systems have supplanted much analog circuitry, and they are the core of
almost all signal processing and analysis systems. Analog techniques handle only
the early signal input, output, and conditioning chores.

There are a variety of texts available covering signal processing. Modern intro-
ductory systems and signal processing texts cover both analog and discrete theory
[7–11]. Many re#ect the shift to discrete methods that began with the discovery of
the FFT and was fueled by the ever-increasing power of computing machines. These
often concentrate on discrete techniques and presuppose a background in analog

1As a teenager, Harry Nyquist (1887–1976) emigrated from Sweden to the United States. Among his
many contributions to signal and communication theory, he studied the relationship between analog sig-
nals and discrete signals extracted from them. The term Nyquist rate refers to the sampling frequency
necessary for reconstructing an analog signal from its discrete samples.
2Claude E. Shannon (1916–2001) founded the modern discipline of information theory. He detailed the
af$nity between Boolean logic and electrical circuits in his 1937 Masters thesis at the Massachusetts
Institute of Technology. Later, at Bell Laboratories, he developed the theory of reliable communication,
of which the sampling theorem remains a cornerstone.
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signal processing [12–15]. Again, there is a distinction between discrete and digital
signals. Discrete signals are theoretical entities, derived by taking instantaneous—
and therefore exact—samples from analog signals. They might assume irrational
values at some time instants, and the range of their values might be in$nite. Hence,
a digital computer, whose memory elements only hold limited precision values, can
only process those discrete signals whose values are $nite in number and $nite in
their precision—digital signals. Early texts on discrete signal processing sometimes
blurred the distinction between the two types of signals, though some further
editions have adopted the more precise terminology. Noteworthy, however, are the
burgeoning applications of digital signal processing integrated circuits: digital tele-
phony, modems, mobile radio, digital control systems, and digital video to name a
few. The $rst high-de$nition television (HDTV) systems were analog; but later,
superior HDTV technologies have relied upon digital techniques. This technology
has created a true digital signal processing literature, comprised of the technical
manuals for various DSP chips, their application notes, and general treatments on
fast algorithms for real-time signal processing and analysis applications on digital
signal processors [16–21]. Some of our later examples and applications offer some
observations on architectures appropriate for signal processing, special instruction
sets, and fast algorithms suitable for DSP implementation.

This chapter introduces signals and the mathematical tools needed to work with
them. Everyone should review this chapter’s $rst six sections. This $rst chapter com-
bines discussions of analog signals, discrete signals, digital signals, and the methods
to transition from one of these realms to another. All that it requires of the reader is
a familiarity with calculus. There are a wide variety of examples. They illustrate
basic signal concepts, $ltering methods, and some easily understood, albeit limited,
techniques for signal interpretation. The $rst section introduces the terminology of
signal processing, the conventional architecture of signal processing systems, and
the notions of analog, discrete, and digital signals. It describes signals in terms of
mathematical models—functions of a single real or integral variable. A speci$cation
of a sequence of numerical values ordered by time or some other spatial dimension
is a time domain description of a signal. There are other approaches to signal
description: the frequency and scale domains, as well as some—relatively recent—
methods for combining them with the time domain description. Sections 1.2 and 1.3
cover the two basic signal families: analog and discrete, respectively. Many of the
signals used as examples come from conventional algebra and analysis.

The discussion gets progressively more formal. Section 1.4 covers sampling and
interpolation. Sampling picks a discrete signal from an analog source, and interpo-
lation works the other way, restoring the gaps between discrete samples to fashion
an analog signal from a discrete signal. By way of these operations, signals pass
from the analog world into the discrete world and vice versa. Section 1.5 covers
periodicity, and foremost among these signals is the class of sinusoids. These sig-
nals are the fundamental tools for constructing a frequency domain description of a
signal. There are many special classes of signals that we need to consider, and Sec-
tion 1.6 quickly collects them and discusses their properties. We will of course
expand upon and deepen our understanding of these special types of signals

SIGNALS: ANALOG, DISCRETE, AND DIGITAL



4 SIGNALS: ANALOG, DISCRETE, AND DIGITAL

throughout the book. Readers with signal processing backgrounds may quickly scan
this material; however, those with little prior work in this area might well linger
over these parts.

The last two sections cover some of the mathematics that arises in the detailed
study of signals. The complex number system is essential for characterizing the tim-
ing relationships in signals and their frequency content. Section 1.7 explains why
complex numbers are useful for signal processing and exposes some of their unique
properties. Random signals are described in Section 1.8. Their application is to
model the unpredictability in natural signals, both analog and discrete. Readers with
a strong mathematics background may wish to skim the chapter for the special sig-
nal processing terminology and skip Sections 1.7 and 1.8. These sections can also
be omitted from a $rst reading of the text.

A summary, a list of references, and a problem set complete the chapter. The sum-
mary provides supplemental historical notes. It also identi$es some software
resources and publicly available data sets. The references point out other introductory
texts, reviews, and surveys from periodicals, as well as some of the recent research.

1.1 INTRODUCTION TO SIGNALS

There are several standpoints from which to study signal analysis problems: empiri-
cal, technical, and theoretical. This chapter uses all of them. We present lots of
examples, and we will return to them often as we continue to develop methods for
their processing and interpretation. After practical applications of signal processing
and analysis, we introduce some basic terminology, goals, and strategies.

Our early methods will be largely experimental. It will be often be dif$cult to
decide upon the best approach in an application; this is the limitation of an intuitive
approach. But there will also be opportunities for making technical observations
about the right mathematical tool or technique when engaged in a practical signal
analysis problem. Mathematical tools for describing signals and their characteristics
will continue to illuminate this technical side to our work. Finally, some abstract
considerations will arise at the end of the chapter when we consider complex num-
bers and random signal theory. Right now, however, we seek only to spotlight some
practical and technical issues related to signal processing and analysis applications.
This will provide the motivation for building a signi$cant theoretical apparatus in
the sequel.

1.1.1 Basic Concepts

Signals are symbols or values that appear in some order, and they are familiar enti-
ties from science, technology, society, and life. Examples $t easily into these cate-
gories: radio-frequency emissions from a distant quasar; telegraph, telephone, and
television transmissions; people speaking to one another, using hand gestures; rais-
ing a sequence of #ags upon a ship’s mast; the echolocation chirp of animals such as
bats and dolphins; nerve impulses to muscles; and the sensation of light patterns
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striking the eye. Some of these signal values are quanti$able; the phenomenon is a
measurable quantity, and its evolution is ordered by time or distance. Thus, a resi-
dential telephone signal’s value is known by measuring the voltage across the pair
of wires that comprise the circuit. Sound waves are longitudinal and produce
minute, but measurable, pressure variations on a listener’s eardrum. On the other
hand, some signals appear to have a representation that is at root not quanti$able,
but rather symbolic. Thus, most people would grant that sign language gestures,
maritime signal #ags, and even ASCII text could be considered signals, albeit of a
symbolic nature.

Let us for the moment concentrate on signals with quanti$able values. These are
the traditional mathematical signal models, and a rich mathematical theory is avail-
able for studying them. We will consider signals that assume symbolic values, too,
but, unlike signals with quanti$able values, these entities are better described by
relational mathematical structures, such as graphs.

Now, if the signal is a continuously occurring phenomenon, then we can repre-
sent it as a function of a time variable t; thus, x(t) is the value of signal x at time t.
We understand the units of measurement of x(t) implicitly. The signal might vary
with some other spatial dimension other than time, but in any case, we can suppose
that its domain is a subset of the real numbers. We then say that x(t) is an analog
signal. Analog signal values are read from conventional indicating devices or sci-
enti$c instruments, such as oscilloscopes, dial gauges, strip charts, and so forth.

An example of an analog signal is the seismogram, which records the shaking
motion of the ground during an earthquake. A precision instrument, called a seismo-
graph, measures ground displacements on the order of a micron (10�6 m) and pro-
duces the seismogram on a paper strip chart attached to a rotating drum. Figure 1.1
shows the record of the Loma Prieta earthquake, centered in the Santa Cruz moun-
tains of northern California, which struck the San Francisco Bay area on 18 October
1989.

Seismologists analyze such a signal in several ways. The total de#ection of the
pen across the chart is useful in determining the temblor’s magnitude. Seismograms
register three important types of waves: the primary, or P waves; the secondary, or S
waves; and the surface waves. P waves arrive $rst, and they are compressive, so
their direction of motion aligns with the wave front propagation [22]. The transverse
S waves follow. They oscillate perpendicular to the direction of propagation.
Finally, the large, sweeping surface waves appear on the trace.

This simple example illustrates processing and analysis concepts. Processing the
seismogram signal is useful to remove noise. Noise can be minute ground motions
from human activity (construction activity, heavy machinery, vehicles, and the like),
or it may arise from natural processes, such as waves hitting the beach. Whatever
the source, an important signal processing operation is to smooth out these minute
ripples in the seismogram trace so as to better detect the occurrence of the initial
indications of a seismic event, the P waves. They typically manifest themselves as
seismometer needle motions above some threshold value. Then the analysis prob-
lem of $nding when the S waves begin is posed. Figure 1.1 shows the result of a sig-
nal analysis; it slices the Loma Prieta seismogram into its three constituent wave
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trains. This type of signal analysis can be performed by inspection on analog seis-
mograms.

Now, the time interval between the arrival of the P and S waves is critical. These
undulations are simultaneously created at the earthquake’s epicenter; however, they
travel at different, but known, average speeds through the earth. Thus, if an analysis
of the seismogram can reveal the time that these distinct wave trains arrive, then the
time difference can be used to measure the distance from the instrument to the earth-
quake’s epicenter. Reports from three separate seismological stations are suf$cient
to locate the epicenter. Analyzing smaller earthquakes is also important. Their loca-
tion and the frequency of their occurrence may foretell a larger temblor [23]. Fur-
ther, soundings in the earth are indicative of the underlying geological strata;
seismologists use such methods to locate oil deposits, for example [24]. Other simi-
lar applications include the detection of nuclear arms detonations and avalanches.
For all of these reasons—scienti$c, economic, and public safety—seismic signal
intepretation is one of the most important areas in signal analysis and one of the
areas in which new methods of signal analysis have been pioneered. These further
signal interpretation tasks are more troublesome for human interpreters. The signal
behavior that distinguishes a small earthquake from a distant nuclear detonation is
not apparent. This demands thorough computerized analysis.

Fig. 1.1. Seismogram of the magnitude 7.1 Loma Prieta earthquake, recorded by a seis-
mometer at Kevo, Finland. The $rst wiggle—some eight minutes after the actual event—
marks the beginning of the low-magnitude P waves. The S waves arrive at approximately t =
1200 s, and the large sweeping surface waves begin near t = 2000 s.
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Suppose, therefore, that the signal is a discrete phenomenon, so that it occurs
only at separate time instants or distance intervals and not continuously. Then we
represent it as a function on a subset of the integers x(n) and we identify x(n) as a
discrete signal. Furthermore, some discrete signals may have only a limited range of
values. Their measurable values can be stored in the memory cells of a digital com-
puter. The discrete signals that satisfy this further constraint are called digital
signals.

Each of these three types of signals occurs at some stage in a conventional com-
puterized signal acquisition system (Figure 1.2). Analog signals arise from some
quanti$able, real-world process. The signal arrives at an interface card attached to
the computer’s input–output bus.

There are generally some signal ampli$cation and conditioning components, all
analog, at the system’s front end. At the sample and hold circuit, a momentary stor-
age component—a capacitor, for example—holds the signal value for a small time
interval. The sampling occurs at regular intervals, which are set by a timer. Thus, the
sequence of quantities appearing in the sample and hold device represents the dis-
crete form of the signal. While the measurable quantity remains in the sample and
hold unit, a digitization device composes its binary representation. The extracted
value is moved into a digital acquisition register of $nite length, thereby completing
the analog-to-digital conversion process. The computer’s signal processing software
or its input–output driver reads the digital signal value out of the acquisition regis-
ter, across the input–output bus, and into main memory. The computer itself may be
a conventional general-purpose machine, such as a personal computer, an engineer-
ing workstation, or a mainframe computer. Or the processor may be one of the many
special purpose digital signal processors (DSPs) now available. These are now a
popular design choice in signal processing and analysis systems, especially those
with strict execution time constraints.

Some natural processes generate more than one measurable quantity as a func-
tion of time. Each such quantity can be regarded as a separate signal, in which case
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Fig. 1.2. Signal acquisition into a computer. Analog, discrete, and digital signals each
occur—at least in principle—within such a system.
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Fig. 1.3. A multichannel signal: The electroencephalogram (EEG) taken from a healthy
young person, with eyes open. The standard EEG sensor arrangement consists of 19 elec-
trodes (a). Discrete data points of channel one (b). Panels (c) and (d) show the complete
traces for the $rst two channels, x1(n) and x2(n). These traces span an eight second time inter-
val: 1024 samples. Note the jaggedness superimposed on gentler wavy patterns. The EEG
varies according to whether the patient’s eyes are open and according to the health of the
individual; markedly different EEG traces typify, for example, Alzheimer’s disease.
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they are all functions of the same independent variable with the same domain. Alter-
natively, it may be technically useful to maintain the multiple quantities together as
a vector. This is called a multichannel signal. We use boldface letters to denote mul-
tichannel signals. Thus, if x is analog and has N channels, then x(t) = (x1(t),
x2(t), …, xN(t)), where the analog xi(t) are called the component or channel signals.
Similarly, if x is discrete and has N channels, then x(n) = (x1(n), x2(n), …, xN(n)).

One biomedical signal that is useful in diagnosing brain injuries, mental illness,
and conditions such as Alzheimer’s disease is the electroencephalogram (EEG)
[25], a multichannel signal. It records electrical potential differences, or voltages,
that arise from the interactions of massive numbers of neurons in different parts of
the brain. For an EEG, 19 electrodes are attached from the front to the back of the
scalp, in a two–$ve–$ve–$ve–two arrangement (Figure 1.3).

The EEG traces in Figure 1.3 are in fact digital signals, acquired one sample
every 7.8 ms, or at a sampling frequency of 128 Hz. The signal appears to be conti-
nuous in nature, but this is due to the close spacing of the samples and linear inter-
polation by the plotting package.

Another variation on the nature of signals is that they may be functions
of more than one independent variable. For example, we might measure air
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Fig. 1.3 (Continued)
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temperature as a function of height: T(h) is an analog signal. But if we con-
sider that the variation may occur along a north-to-south line as well, then the
temperature depends upon a distance measure x as well: T(x, h). Finally, over an
area with location coordinates (x, y), the air temperature is a continuous function
of three variables T(x, y, h). When a signal has more than one independent vari-
able, then it is a multidimensional signal. We usually think of an “image” as
recording light intesity measurements of a scene, but multidimensional signals—
especially those with two or three independent variables—are usually called
images. Images may be discrete too. Temperature readings taken at kilometer
intervals on the ground and in the air produce a discrete signal T(m, n, k). A dis-
crete signal is a sequence of numerical values, whereas an image is an array of
numerical values. Two-dimensional image elements, especially those that repre-
sent light intensity values, are called pixels, an acronym for picture elements.
Occasionally, one encounters the term voxel, which is a three-dimensional signal
value, or a volume element.

An area of multidimensional signal processing and analysis of considerable
importance is the intepretation of images of landscapes acquired by satellites and
high altitude aircraft. Figure 1.4. shows some examples. Typical tasks are to
automatically distinguish land from sea; determine the amount and extent of sea
ice; distinguish agricultural land, urban areas, and forests; and, within the
agricultural regions, recognize various crop types. These are remote sensing
applications.

Processing two-dimensional signals is more commonly called picture or image
processing, and the task of interpreting an image is called image analysis or com-
puter vision. Many researchers are involved in robotics, where their efforts couple
computer vision ideas with manipulation of the environment by a vision-based
machine. Consequently, there is a vast, overlapping literature on image processing
[26–28], computer vision [29–31], and robotics [32].

Our subject, signal analysis, concentrates on the mathematical foundations, pro-
cessing, and especially the intepretation of one-dimensional, single-valued signals.
Generally, we may select a single channel of a multichannel signal for consider-
ation; but we do not tackle problems speci$c to multichannel signal interpretation.
Likewise, we do not delve deeply into image processing and analysis. Certain
images do arise, so it turns out, in several important techniques for analyzing sig-
nals. Sometimes a daunting one-dimensional problem can be turned into a tractable
two-dimensional task. Thus, we prefer to pursue the one-dimensional problem into
the multidimensional realm only to the point of acknowledging that a straightfor-
ward image analysis will produce the intepretation we seek.

So far we have introduced the basic concepts of signal theory, and we have
considered some examples: analog, discrete, multichannel, and multidimensional
signals. In each case we describe the signals as sequences of numerical values, or
as a function of an independent time or other spatial dimension variable. This con-
stitutes a time-domain description of a signal. From this perspective, we can dis-
play a signal, process it to produce another signal, and describe its signi$cant
features.
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1.1.2 Time-Domain Description of Signals

Since time #ows continuously and irreversibly, it is natural to describe sequential
signal values as given by a time ordering. This is often, but not always, the case;
many signals depend upon a distance measure. It is also possible, and sometimes a
very important analytical step, to consider signals as given by order of a salient
event. Conceiving the signal this way makes the dependent variable—the signal
value—a function of time, distance, or some other quantity indicated between
successive events. Whether the independent variable is time, some other spatial
dimension, or a counting of events, when we represent and discuss a signal in terms
of its ordered values, we call this the time-domain description of a signal.

Fig. 1.4. Aerial scenes. Distinguishing terrain types is a typical problem of image analysis,
the interpretation of two-dimensional signals. Some problems, however, admit a one-dimen-
sional solution. A sample line through an image is in fact a signal, and it is therefore suitable
for one-dimensional techniques. (a) Agricultural area. (b) Forested region. (c) Ice at sea.
(d) Urban area.
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Note that a precise time-domain description may elude us, and it may not even be
possible to specify a signal’s values. A fundamentally unknowable or random pro-
cess is the source of such signals. It is important to develop methods for handling
the randomness inherent in signals. Techniques that presuppose a theory of signal
randomness are the topic of the $nal section of the chapter.

Next we look further into two application areas we have already touched upon:
biophysical and geophysical signals. Signals from representative applications in
these two areas readily illustrate the time-domain description of signals.

1.1.2.1 Electrocardiogram Interpretation. Electrocardiology is one of the
earliest techniques in biomedicine. It also remains one of the most important. The
excitation and recovery of the heart muscles cause small electrical potentials, or volt-
ages, on the order of a millivolt, within the body and measurable on the skin. Cardio-
logists observe the regularity and shape of this voltage signal to diagnose heart con-
ditions resulting from disease, abnormality, or injury. Examples include cardiac
dysrhythmia and $brillation, narrowing of the coronary arteries, and enlargement of
the heart [33]. Automatic interpretation of ECGs is useful for many aspects of clini-
cal and emergency medicine: remote monitoring, as a diagnostic aid when skilled
cardiac care personnel are unavailable, and as a surgical decision support tool.

 A modern electrocardiogram (ECG or EKG) contains traces of the voltages from
12 leads, which in biomedical parlance refers to a con$guration of electrodes
attached to the body [34]. Refer to Figure 1.5. The voltage between the arms is Lead I,
Lead II is the potential between the right arm and left leg, and Lead III reads between
the left arm and leg. The WCT is a common point that is formed by connecting the
three limb electrodes through weighting resistors. Lead aVL measures potential
difference between the left arm and the WCT. Similarly, lead aVR is the voltage
between the right arm and the WCT. Lead aVF is between the left leg and the WCT.
Finally, six more electrodes are $xed upon the chest, around the heart. Leads V1
through V6 measure the voltages between these sensors and the WCT. This circuit

Fig. 1.5. The standard ECG con$guration produces 12 signals from various electrodes
attached to the subject’s chest, arms, and leg.
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arrangement is complicated; in fact, it is redundant. Redundancy provides for situa-
tions where a lead produces a poor signal and allows some cross-checking of the
readings. Interpretation of 12-lead ECGs requires considerable training, experience,
and expert judgment.

What does an ECG trace look like? Figure 1.6 shows an ECG trace from a single
lead. Generally, an ECG has three discernible pulses: the P wave, the QRS complex,
and the T wave. The P wave occurs upon excitation of the auricles of the heart, when
they draw in blood from the body and lungs. The large-magnitude QRS complex
occurs during the contraction of the vertricles as they contract to pump blood out of
the heart. The Q and S waves are negative pulses, and the R wave is a positive pulse.
The T wave arises during repolarization of the ventricles. The ECG signal is origi-
nally analog in nature; it is the continuous record of voltages produce across the var-
ious leads supported by the instrument. We could attach a millivoltmeter across an
electrode pair and watch the needle jerk back and forth. Visualizing the signal’s shape
is easier with an oscilloscope, of course, because the instrument records the trace on
its cathode ray tube. Both of these instruments display analog waveforms. If we could
read the oscilloscope’s output at regular time instants with perfect precision, then we
would have—in principle, at least—a discrete representation of the ECG. But for
computer display and automatic interpretation, the analog signal must be converted
to digital form. In fact, Figure 1.6 is the result of such a digitization. The signal v(n)
appears continuous due to the large number of samples and the interpolating lines
drawn by the graphics package that produced the illustration.

Interpreting ECGs is often dif$cult, especially in abnormal traces. A wide litera-
ture describing the 12-lead ECG exists. There are many guides to help technicians,
nurses, and physicians use it to diagnose heart conditions. Signal processing and
analysis of ECGs is a very active research area. Reports on new techniques, algo-
rithms, and comparison studies continue to appear in the biomedical engineering
and signal analysis literature [35].
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Fig. 1.6. One lead of an ECG: A human male in supine position. The sampling rate is 1 kHz,
and the samples are digitized at 12 bits per sample. The irregularity of the heartbeat is evident.
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One technical problem in ECG interpretation is to assess the regularity of the
heart beat. As a time-domain signal description problem, this involves $nding the
separation between peaks of the QRS complex (Figure 1.6). Large time variations
between peaks indicates dysrhythmia. If the time difference between two peaks,
v(n1) and v(n0), is , then the instantaneous heart rate becomes

 beats/m. For the sample in Figure 1.6, this crude computation will, how-
ever, produce a wildly varying value of doubtful diagnostic use. The application
calls for some kind of averaging and summary statistics, such as a report of the stan-
dard deviation of the running heart rate, to monitor the dysrhythmia.

There remains the technical problem of how to $nd the time location of QRS
peaks. For an ideal QRS pulse, this is not too dif$cult, but the signal analysis algo-
rithms must handle noise in the ECG trace. Now, because of the noise in the ECG
signal, there are many local extrema. Evidently, the QRS complexes represent sig-
nal features that have inordinately high magnitudes; they are mountains above the
forest of small-scale artifacts. So, to locate the peak of a QRS pulse, we might select
a threshold M that is bigger than the small artifacts and smaller than the QRS peaks.
We then deem any maximal, contiguous set of values S = {(n, v(n)): v(n) > M} to be
a QRS complex. Such regions will be disjoint. After $nding the maximal value
inside each such QRS complex, we can calculate  between each pair of maxima
and give a running heart rate estimate. The task of dividing the signal up into dis-
joint regions, such as for the QRS pulses, is called signal segmentation. Chapter 4
explores this time domain procedure more thoroughly.

When there is poor heart rhythm, the QRS pulses may be jagged, misshapen,
truncated, or irregulary spaced. A close inspection of the trace in Figure 1.7 seems
to reveal this very phenomenon. In fact, one type of ventricular disorder that is
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Fig. 1.7. Electrocardiogram of a human male, showing the fundametal waves. The 1-s  time
span around sample n = 14,000 is shown for the ECG of Figure 1.6. Note the locations of the
P wave, the QRS complex, and—possibly—the T wave. Is there a broken P wave and a mis-
sing QRS pulse near the central time instant?
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detectable in the ECG, provided that it employs a suf$ciently high sampling rate, is
splintering of the QRS complex. In this abnormal condition, the QRS consists of
many closely spaced positive and negative transitions rather than a single, strong
pulse. Note that in any ECG, there is a signi$cant amount of signal noise. This too
is clearly visible in the present example. Good peak detection and pulse location,
especially for the smaller P and T waves, often require some data smoothing
method. Averaging the signal values produces a smoother signal w(n):

. (1.1)

The particular formula (1.1) for processing the raw ECG signal to produce a
less noisy w(n) is called moving average smoothing or moving average $ltering.
This is a typical, almost ubiquitous signal processing operation. Equation (1.1)
performs averaging within a symmetric window of width three about v(n). Wider
windows are possible and often useful. A window that is too wide can destroy signal
features that bear on interpretation. Making a robust application requires judgment
and experimentation.

Real-time smoothing operations require asymmetric windows. The underlying
reason is that a symmetric smoothing window supposes knowledge of future signal
values, such as v(n + 1). To wit, as the computer monitoring system acquires each
new ECG value v(n), it can calculate the average of the last three values:

; (1.2)

but at time instant n, it cannot possibly know the value of v(n +1), which is neces-
sary for calculating (1.1). If the smoothing operation occurs of#ine, after the entire
set of signal values of interest has already been acquired and stored, then the whole
range of signal values is accessible by the computer, and calculation (1.1) is, of
course, feasible. When smoothing operations must procede in lockstep with acquisi-
tion operations, however, smoothing windows that look backward in time (1.2) must
be applied.

Yet another method from removing noise from signals is to produce a signal
whose values are the median of a window of raw input values. Thus, we might
assign

(1.3)

so that w(n) is the input value that lies closest to the middle of the range of $ve
values around v(n). A median $lter tends to be superior to a moving average $lter
when the task is to remove isolated, large-magnitude spikes from a source signal.
There are many variants. In general, smoothing is a common early processing step
in signal analysis systems. In the present application, smoothing reduces the
jagged noise in the ECG trace and improves the estimate of the QRS peak’s
location.

w n( ) 1
3
--- v n 1–( ) v n( ) v n 1+( )+ +[ ]=

w n( ) 1
3
--- v n 2–( ) v n 1–( ) v n( )+ +[ ]=

w n( ) Median v n 2–( ) v n 1–( ) v n( ) v n 1+( ) v n 2+( ), , , ,{ }=
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Contemplating the above algorithms for $nding QRS peaks, smoothing the raw
data, and estimating the instantaneous heart rate, we can note a variety of design
choices. For example, how many values should we average to smooth the data? A
span too small will fail to blur the jagged, noisy regions of the signal. A span too
large may erode some of the QRS peaks. How should the threshold for segmenting
QRS pulses be chosen? Again, an algorithm using values too small will falsely
identify noisy bumps as QRS pulses. On the other hand, if the threshold values
chosen are too large, then valid QRS complexes will be missed. Either circumstance
will cause the application to fail. Can the thresholds be chosen automatically? The
chemistry of the subject’s skin could change while the leads are attached. This can
cause the signal as a whole to trend up or down over time, with the result that the
original threshold no longer works. Is there a way to adapt the threshold as the
signal average changes so that QRS pulses remain detectable? These are but a few
of the problems and tradeoffs involved in time domain signal processing and
analysis.

Now we have illustrated some of the fundamental concepts of signal theory
and, through the present example, have clari$ed the distinction between signal
processing and analysis. Filtering for noise removal is a processing task. Signal
averaging may serve our purposes, but it tends to smear isolated transients into
what may be a quite different overall signal trend. Evidently, one aberrent upward
spike can, after smoothing, assume the shape of a QRS pulse. An alternative that
addresses this concern is median $ltering. In either case—moving average or
median $ltering—the algorithm designer must still decide how wide to make the
$lters and discover the proper numerical values for thresholding the smoothed sig-
nal. Despite the analytical obstacles posed by signal noise and jagged shape,
because of its prominence, the QRS complex is easier to characterize than the P
and T waves.

There are alternative signal features that can serve as indicators of QRS complex
location. We can locate the positive or negative transitions of QRS pulses, for exam-
ple. Then the midpoint between the edges marks the center of each pulse, and the
distance between these centers determines the instantaneous heart rate. This
changes the technical problem from one of $nding a local signal maximum to one
of $nding the positive- or negative-transition edges that bound the QRS complexes.
Signal analysis, in fact, often revolves around edge detection. A useful indicator of
edge presence is the discrete derivative, and a simple threshold operation identi$es
the signi$cant changes.

1.1.2.2 Geothermal Measurements. Let us investigate an edge detection
problem from geophysics. Ground temperature generally increases with depth. This
variation is not as pronounced as the air temperature #uctuations or biophysical sig-
nals, to be sure, but local differences emerge due to the geological and volcanic his-
tory of the spot, thermal conductivity of the underlying rock strata, and even the
amount of radioactivity. Mapping changes in ground termperature are important in
the search for geothermal energy resources and are a supplementary indication of the
underlying geological structures. If we plot temperature versus depth, we have a
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signal—the geothermal gradient—that is a function of distance, not time. It ramps
up about 10°C per kilometer of depth and is a primary indicator for geothermal
prospecting. In general, the geothermal gradient is higher for oceanic than for conti-
nental crust. Some 5% of the area of the United States has a gradient in the neighbor-
hood of 40°C per kilometer of depth and has potential for use in geothermal power
generation.

Mathematically, the geothermal gradient is the derivative of the signal with
respect to its independent variable, which in this case measures depth into the earth.
A very steep overall gradient may promise a geothermal energy source. A localized
large magnitude gradient, or edge, in the temperature pro$le marks a geological
artifact, such as a fracture zone. An example of the variation in ground temperature
as one digs into the earth is shown in Figure 1.8.

The above data come from the second of four wells drilled on the Georgia–South
Carolina border, in the eastern United States, in 1985 [36]. The temperature $rst
declines with depth, which is typical, and then warmth from the earth’s interior
appears. Notice the large-magnitude positive gradients at approximately 80 and
175 m; these correspond to fracture zones. Large magnitude deviations often repre-
sent physically signi$cant phenomena, and therein lies the importance of reliable
methods for detecting, locating, and interpreting signal edges. Finding such large
deviations in signal values is once again a time-domain signal analysis problem.

Suppose the analog ground temperature signal is g(s), where s is depth into the
earth. We seek large values of the derivative  Approximating the
derivative is possible once the data are digitized. We select a sampling interval D >
0 and set x(n) = g(nD); then  approximates the geother-
mal gradient at depth nD meters. It is further necessary to identify a threshold M for
what constitutes a signi$cant geothermal gradient. Threshold selection may rely
upon expert scienti$c knowledge. A geophysicist might suggest signi$cant gradients
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Fig. 1.8. A geothermal signal. The earth’s temperature is sampled at various depths to pro-
duce a discrete signal with a spatially independent variable.

g′ s( ) dg/ds.=

x′ n( ) x n 1+( ) x n 1–( )–=
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for the region. If we collect some statistics on temperature gradients, then the outly-
ing values may be candidates for threshold selection. Again, there are local variations
in the temperature pro$le, and noise does intrude into the signal acquisition appara-
tus. Hence, preliminary signal smoothing may once again be useful. Toward this end,
we may also employ discrete derivative formulas that use more signal values:

 . (1.4)

Standard numerical analysis texts provide many alternatives [37]. Among the prob-
lems at the chapter’s end are several edge detection applications. They weigh some
of the alternatives for $ltering, threshold selection, and $nding extrema.

For now, let us remark that the edges in the ECG signal (Figure 1.6) are far steeper
than the edges in the geothermal trace (Figure 1.8). The upshot is that the signal ana-
lyst must tailor the discrete derivative methods to the data at hand. Developing meth-
ods for edge detection that are robust with respect to sharp local variation of the signal
features proves to be a formidable task. Time-domain methods, such as we consider
here, are usually appropriate for edge detection problems. There comes a point, none-
theless, when the variety of edge shapes, the background noise in the source signals,
and the diverse gradients cause problems for simple time domain techniques. In recent
years, researchers have turned to edge detection algorithms that incorporate a notion
of the size or scale of the signal features. Chapter 4 has more to say about time domain
signal analysis and edge detection, in particular. The later chapters round out the story.

1.1.3 Analysis in the Time-Frequency Plane

What about signals whose values are symbolic rather than numeric? In ordinary
usage, we consider sequences of signs to be signals. Thus, we deem the display of
#ags on a ship’s mast, a series of hand gestures between baseball players, DNA
codes, and, in general, any sequence of codes to all be “signals.” We have already
taken note of such usages. And this is an important idea, but we shall not call such a
symbolic sequence a signal, reserving for that term a narrow scienti$c de$nition as
an ordered set of numbers. Instead, we shall de$ne a sequence of abstract symbols
to be a structural interpretation of a signal.

It is in fact the conversion of an ordered set of numerical values into a sequence
of symbols that constitutes a signal interpretation or analysis. Thus, a microphone
receives a logitudinal compressive sound wave and converts it into electrical
impulses, thereby creating an analog signal. If the analog speech signal is digitized,
processed, and analyzed by a speech recognition engine, then the output in the form
of ASCII text characters is a symbolic sequence that interprets, analyzes, or assigns
meaning to the signal. The $nal result may be just the words that were uttered. But,
more likely, the speech interpretation algorithms will generate a variety of interme-
diate representations of the signal’s structure. It is common to build a large hierar-
chy of interpretations: isolated utterances; candidate individual word sounds within
the utterances; possible word recognition results; re$nements from grammatical
rules and application context; and, $nally, a structural result.

x′ n( ) 1
12
------ x n 2–( ) 8x n 1–( )– 8x n 1+( ) x n 2+( )–+[ ]=



INTRODUCTION TO SIGNALS 19

This framework applies to the applications covered in this section. A simple
sequence of symbols representing the seismometer background, P waves, S waves,
and surface waves may be the outcome of a structural analysis of a seismic signal
(Figure 1.9).

The nodes of such a structure may have further information attached to them. For
instance, the time-domain extent of the region, a con$dence measure, or other ana-
lytical signal features can be inserted into the node data structure. Finding signal
edges is often the prelude to a structural description of a signal. Figure 1.10

Fig. 1.9. Elementary graph structure for seismograms. One key analytical parameter is the
time interval between the P waves and the S waves.

Fig. 1.10. Hypothetical geothermal signal structure. The root note of the interpretive struc-
ture represents the entire time-domain signal. Surface strata exhibit a cooling trend. There-
after, geothermal heating effects are evident. Edges within the geothermal heating region
indicate narrow fracture zones.
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illustrates the decomposition of the geothermal pro$le from Figure 1.8 into a rela-
tional structure.

For many signal analysis problems, more or less #at relational structures that
divide the signal domain into distinct regions are suf$cient. Applications such as
natural language understanding require more complicated, often hierarchical graph
structures. Root nodes describe the coarse features and general subregions of the
signal. Applying specialized algorithms to these distinct regions decomposes them
further. Some regions may be deleted, further subdivided, or merged with their
neighbors. Finally, the resulting graph structure can be compared with existing
structural models or passed on to higher-level arti$cial intelligence applications.

1.1.4 Other Domains: Frequency and Scale

While we can achieve some success in processing and analyzing signals with ele-
mentary time-domain techniques, applied scientists regularly encounter applica-
tions demanding more sophisticated treatment. Thinking for a moment about the
seismogram examples, we considered one aspect of their interpretation: $nding the
time difference between the arrival of the P and S waves. But how can one distin-
guish between the two wave sets? The distinction between them, which analysis
algorithms must $nd, is in their oscillatory behavior and the magnitude of the oscil-
lations. There is no monotone edge, such as characterized the geothermal signal.
Rather, there is a change in the repetitiveness and the sweep of the seismograph
needle’s wiggling. When the oscillatory nature of a signal concerns us, then we
are interested in its periodicity—or in other words, the reciprocal of period, the
frequency.

Frequency-domain signal descriptions decompose the source signals into sinuso-
idal components. This strategy does improve upon pure time domain methods,
given the appropriate application. A frequency-domain description uses some set of
sinusoidal signals as a basis for describing a signal. The frequency of the sinusoid
that most closely matches the signal is the principal frequency component of the
signal. We can delete this principal frequency component from the source signal to
get a difference signal. Then, we iterate. The $rst difference signal is further fre-
quency analyzed to get a secondary periodic component and, of course, a second
difference signal. The sinusoidal component identi$cation and extraction continue
until the difference signal consists of nothing but small magnitude, patternless, ran-
dom perturbations—noise. This is a familiar procedure. It is just like the elementary
linear algebra problem of $nding the expansion coef$cients of a given vector in
terms of a basis set.

Thus, a frequency-domain approach is suitable for distinguishing the P waves
from the S waves in seismogram interpretation. But, there is a caveat. We cannot
apply the sinusoidal signal extraction to the whole signal, but rather only to small
pieces of the signal. When the frequency components change radically on the sepa-
rate, incoming small signal pieces, then the onset of the S waves must be at hand.
The subtlety is to decide how to size the small signal pieces that will be subject to
frequency analysis. If the seismographic station is far away, then the time interval
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between the initial P waves and the later S waves is large, and fairly large subinter-
vals should suf$ce. If the seismographic station is close to the earthquake epicenter,
on the other hand, then the algorithm must use very small pieces, or it will miss the
short P wave region of the motion entirely. But if the pieces are made too small,
then they may contain too few discrete samples for us to perform a frequency analy-
sis. There is no way to know whether a temblor that has not happened yet will be
close or far away. And the dilemma is how to size the signal subintervals in order to
analyze all earthquakes, near and far, and all possible frequency ranges for the S and
P waves.

It turns out that although such a frequency-domain approach as we describe is
adequate for seismic signals, the strategy has proven to be problematic for the inter-
pretation of electrocardiograms. The waves in abnormal ECGs are sometimes too
variable for successful frequency-domain description and analysis.

Enter the notion of a scale-domain signal description. A scale-domain descrip-
tion of a signal breaks it into similarly shaped signal fragments of varying sizes.
Problems that involve the time-domain size of signal features tend to favor this type
of representation. For example, a scale-based analysis can offer improvements in
electrocardiogram analysis; in this $eld it is a popular redoubt for researchers that
have experimented with time domain methods, then frequency-domain methods,
and still $nd only partial success in interpreting ECGs.

We shall also illustrate the ideas of frequency- and scale-domain descriptions in
this $rst chapter. A complete understanding of the methods of frequency- and scale-
domain descriptions requires a considerable mathematical expertise. The next two
sections provide some formal de$nitions and a variety of mathematical examples of
signals. The kinds of functions that one normally studies in algebra, calculus, and
mathematical analysis are quite different from the ones at the center of signal the-
ory. Functions representing signals are often discontinuous; they tend to be irregu-
larly shaped, blocky, spiky, and altogether more ragged than the smooth and elegant
entities of pure mathematics.

1.2 ANALOG SIGNALS

At the scale of objects immediately present to human consciousness and at the
macroscopic scale of conventional science and technology, measurable phenomena
tend to be continuous in nature. Hence, the raw signals that issue from nature—
temperatures, pressures, voltages, #ows, velocities, and so on—are commonly mea-
sured through analog instruments. In order to study such real-world signals, engi-
neers and scientists model them with mathematical functions of a real variable. This
strategy brings the power and precision of mathematical analysis to bear on engi-
neering questions and problems that concern the acquisition, transmission, interpre-
tation, and utilization of natural streams of numbers (i.e., signals).

Now, at a very small scale, in contrast to our perceived macroscopic world, natu-
ral processes are more discrete and quantized. The energy of electromagnetic radia-
tion exists in the form of individual quanta with energy , where h isE h λ⁄=
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Planck’s constant,3 and λ is the wavelength of the radiation. Phenomena that we
normally conceive of possessing wave properties exhibit certain particle-like behav-
iors. On the other hand, elementary bits of matter, electrons for instance, may also
reveal certain wave-like aspects. The quantization of nature at the subatomic and
atomic levels leads to discrete interactions at the molecular level. Lumping ever
greater numbers of discretized interactions together, overall statistics take priority
over particular interactions, and the continuous nature of the laws of nature at a
large scale then become apparent.4  Though nature is indeed discrete at the
microlevel, the historical beginnings of common sense, engineering, and scienti$c
endeavor involve reasoning with continuously measurable phenomena. Only
recently, within the last century have the quantized nature of the interactions of mat-
ter and energy become known. And only quite recently, within our own lifetimes,
have machines become available to us—digital computers—that require for their
application the discretization of their continuous input data.

1.2.1 Definitions and Notation

Analog signal theory proceeds directly from the analysis of functions of a real vari-
able. This material is familiar from introductory calculus courses. Historically,
it also precedes the development of discrete signal theory. And this is a curious cir-
cumstance, because the formal development of analog signal theory is far more
subtle—some would no doubt insist the right term is perilous—than discrete time
signal processing and analysis.

De$nition (Analog Signals). An analog signal is a function , where R
is the set of real numbers, and x(t) is the signal value at time t. A complex-valued
analog signal is a function . Thus, , where xr(t) is the
real part of x(t); xi(t) is the imaginary part of x(t); both of these are real-valued
signals; and .

Thus, we simply identify analog signals with functions of a real variable. Ordi-
narily, analog signals, such the temperature of an oven varying over time, take on
real values. In other cases, where signal timing relationships come into question, or
the frequency content of signals is an issue, complex-valued signals are often used.
We will work with both real- and complex-valued signals in this section. Section 1.7
considers the complex number system, complex-valued signals, and the mathemat-
ics of complex numbers in more detail. Complex-valued signals arise primarily in
the study of signal frequency.

3To account for the observation that the maximum velocity of electrons dislodged from materials
depended on the frequency of incident light, Max Planck (1858–1947) conjectured that radiant energy
consists of discrete packets, called photons or quanta, thus discovering the quantum theory.
4This process draws the attention of philosophers (N. Hartmann, New Ways of Ontology, translator R. C.
Kuhn, Chicago: Henry Regnery, 1953) and scientists alike (W. Zurek, “Decoherence and the transition
from quantum to classical,” Physics Today, vol. 44, no. 10, pp. 36–44, October 1991).
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Of course, the independent variable of an analog signal does not have to be a
time variable. The pneumatic valve of a bicycle tire follows a sinusoidal course in
height above ground as the rider moves down the street. In this case the analog sig-
nal is a function of distance ridden rather than time passed. And the geothermal gra-
dient noted in the previous section is an example of a signal that is a function of
depth in the earth’s crust.

It is possible to generalize the above de$nition to include multichannel signals
that take values in Rn, n ≥ 2. This is a straightforward generalization for all of the
theory that we develop. Another way to generalize to higher dimensionality is to
consider signals with domains contained in Rn, n ≥ 2. This is the discipline of image
processing, at least for n = 2, 3, and 4. As a generalization of signal processing, it is
not so straightforward as multichannel theory; the extra dimension in the indepen-
dent signal variable leads to complications in signal interpretation and imposes
severe memory and execution time burdens for computer-based applications.

We should like to point out that modeling natural signals with mathematical
functions is an inherently #awed step; many functions do not correspond to any
real-world signal. Mathematical functions can have nonzero values for arbitrarily
large values of their independent variable, whereas in reality, such signals are
impossible; every signal must have a $nite past and eventually decay to nothing. To
suppose otherwise would imply that the natural phenomenon giving rise to the sig-
nal could supply energy inde$nitely. We can further imagine that some natural sig-
nals containing random noise cannot be exactly characterized by a mathematical
rule associating one independent variable with another dependent variable.

But, is it acceptable to model real-world signals with mathematical models that
eventually diminish to zero? This seems unsatisfactory. A real-world signal may
decay at such a slow rate that in choosing a function for its mathematical model we
are not sure where to say the function’s values are all zero. Thus, we should prefer a
theory of signals that allows signals to continue forever, perhaps diminishing at an
allowable rate. If our signal theory accomodates such models, then we have every
assurance that it can account for the wildest natural signal that the real world can
offer. We will indeed pursue this goal, beginning in this $rst chapter. With persis-
tence, we shall see that natural signals do have mathematical models that re#ect the
essential nature of the real-world phenomenon and yet are not limited to be zero
within $nite intervals. We shall $nd as well that the notion of randomness within a
real-world signal can be accommodated within a mathematical framework.

1.2.2 Examples

The basic functions of mathematical analysis, known from algebra and calculus,
furnish many elementary signal models. Because of this, it is common to mix the
terms “signal” and “function.” We may specify an analog signal from a formula that
relates independent variable values with dependent variable values. Sometimes the
formula can be given in closed form as a single equation de$ning the signal values.
We may also specify other signals by de$ning them piecewise on their domain.
Some functions may best be described by a geometric de$nition. Still other
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functions representing analog signals may be more convenient to sketch rather than
specify mathematically.

1.2.2.1 Polynomial, Rational, and Algebraic Signals. Consider, for exa-
mple, the polynomial signal,

 . (1.5)

x(t) has derivatives of all orders and is continuous, along with all of its derivatives. It
is quite unlike any of nature’s signals, since its magnitude, |x(t)|, will approach
in$nity as |t| becomes large. These signals are familiar from elementary algebra,
where students $nd their roots and plot their graphs in the Cartesian plane. The
domain of a polynomial p(t) can be divided into disjoint regions of concavity: con-
cave upward, where the second derivative is positive; concave downward, where the
second derivative is negative; and regions of no concavity, where the second deriva-
tive is zero, and p(t) is therefore a line. If the domain of a polynomial p(t) contain-

san interval a < t < b where  for all , then p(t) is a line.

However familiar and natural the polynomials may be, they are not the signal family
with which we are most intimately concerned in signal processing. Their behavior
for large |t| is the problem. We prefer mathematical functions that more closely
resemble the kind of signals that occur in nature: Signals x(t) which, as |t| gets large,
the signal either approaches a constant, oscillates, or decays to zero. Indeed, we
expend quite an effort in Chapter 2 to discover signal families—called function or
signal spaces—which are faithful models of natural signals.

The concavity of a signal is a very important concept in certain signal analysis
applications. Years ago, the psychologist F. Attneave [38] noted that a scattering of
simple curves suf$ces to convey the idea of a complex shape—for instance, a cat.
Later, computer vision researchers developed the idea of assemblages of simple,
oriented edges into complete theories of low-level image understanding [39–41].
Perhaps the most in#uential among them was David Marr, who conjectured that
understanding a scene depends upon the extraction of edge information [39] over a
range of visual resolutions from coarse to $ne multiple scales. Marr challenged
computer vision researchers to $nd processing and analysis paradigms within bio-
logical vision and apply them to machine vision. Researchers investigated the appli-
cations of concavity and convexity information at many different scales. Thus, an
intricate shape might resolve into an intricate pattern at a $ne scale, but at a coarser
scale might appear to be just a tree. How this can be done, and how signals can be
smoothed into larger regions of convexity and concavity without increasing the
number of differently curved regions, is the topic of scale-space analysis [42,43].
We have already touched upon some of these ideas in our discussion of edges of the
QRS complex of an electrocardiogram trace and in our discussion of the geothermal
gradient. There the scale of an edge corresponded to the number of points incorpo-
rated in the discrete derivative computation. This is precisely the notion we are
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trying to illustrate, since the scale of an edge is a measure of its time-domain extent.
Describing signal features by their scale is most satisfactorily accomplished using
special classes of signals (Section 1.6). At the root of all of this deep theory, how-
ever, are the basic calculus notion of the sign of the second derivative and the intui-
tive and simple polynomial examples.

Besides motivating the notions of convexity and concavity as component build-
ing blocks for more complicated shapes, polynomials are also useful in signal the-
ory as interpolating functions. The theory of splines generalizes linear interpolation.
It is one approach to the modern theory of wavelet transforms. Interpolating the val-
ues of a discrete signal with continuous polynomial sections—connecting the dots,
so to speak—is the opposite process to sampling a continuous-domain signal.

If p(t) and q(t) are polynomials, then x(t) = p(t)/q(t) is a rational function. Sig-
nals modeled by rational functions need to have provisions made in their de$nitions
for the times t0 when q(t0) = 0. If, when this is the case, p(t0) = 0 also, then it is pos-
sible that the limit,

(1.6)

exists and can be taken to be x(t0). This limit does exist when the order of the zero
of p(t) at t = t0 is at least the order of the zero of q(t) at t = t0.

Signals that involve a rational exponent of the time variable, such as x(t) = t1/2,
are called algebraic signals. There are often problems with the domains of such sig-
nals; to the point, t1/2 does not take values on the negative real numbers. Conse-
quently, we must usually partition the domain of such signals and de$ne the signal
piecewise. One tool for this is the upcoming unit step signal u(t).

1.2.2.2 Sinusoids. A more real-to-life example is a sinusoidal signal, such as
sin(t) or cos(t). Of course, the mathematician’s sinusoidal signals are synthetic,
ideal creations. They undulate forever, whereas natural periodic motion eventually
deteriorates. Both sin(t) and cos(t) are differentiable:    and

. From this it follows that both have derivatives of all orders and
have Taylor5 series expansions about the origin:

(1.7a)

. (1.7b)

5The idea is due to Brook Taylor (1685–1731), an English mathematician, who—together with many
others of his day—sought to provide rigorous underpinnings for Newton’s calculus.
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So, while sin(t) and cos(t) are most intuitively described by the coordinates of a
point on the unit circle, there are also formulas (1.7a)–(1.7b) that de$ne them. In
fact, the Taylor series, where it is valid for a function x(t) on some interval a < t < b
of the real line, shows that a function is the limit of a sequence of polynomials: x(a),
x(a) + x(1)(a)(t − a), x(a) + x(1)(t − a) + x(2)(t − a)2/2!, . . . , where we denote the nth-
order derivative of x(t) by x(n)(t).

The observation that sin(t) and cos(t) have a Taylor series representation (1.7a)–
(1.7b) inspires what will become one of our driving principles. The polynomial sig-
nals may not be very lifelike, when we consider that naturally occurring signals will
tend to wiggle and then diminish. But sequences of polynomials, taken to a limit,
converge to the sinusoidal signals. The nature of the elements is completely
changed by the limiting process. This underscores the importance of convergent
sequences of signals, and throughout our exposition we will always be alert to
examine the possibility of taking signal limits. Limit processes constitute a very
powerful means for de$nining fundamentally new types of signals.

From their geometric de$nition on the unit circle, the sine and cosine signals are
periodic; sin(t + 2π) = sin(t) and cos(t + 2π) = cos(t) for all . We can use the
trigonometric formulas for sin(s + t) and cos(s + t),  the limit  as ,
and the limit  as  to discover the derivatives  and  hence  the
Taylor series. Alternatively, we can de$ne sin(t) and cos(t) by (1.7a)–(1.7b), whence
we derive the addition formulas; de$ne π as the unique point 1 < π/2 < 2, where
cos(t) = 0; and, $nally, show the periodicity of sine and cosine [44].

1.2.2.3 Exponentials. Exponential signals are of the form

, (1.8)

where C and a are constants, and e is the real number b for which the exponential
 has derivative  for t = 0.  For C = a = 1, we often write x(t) =

exp(t). The derivative of exp(t) is itself. This leads to the Taylor series expansion
about t = 0:

. (1.9)

Notice once more that a polynomial limit process creates a signal of a completely
different genus. Instead of a periodic signal, the limit in (1.9) grows rapidly as

 and decays rapidly as .
If C > 0 and a > 0 in (1.9), then the graph of the exponential signal is an ever-

increasing curve for t > 0 and an ever-decaying curve for t < 0. Since it has non-
zero derivatives of arbitrarily high orders, such an exponential grows faster than any
polynomial for positive time values. For a < 0, the graph of the exponential re#ects
across the y-axis (Figure 1.11).
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A particularly valuable relation for signal theory is the Laplace6 identity; we take
the exponent in (1.9) to be purely imaginary:

(1.10)

where s is real. Why this is true can be seen from the unit circle in the complex
plane (Figure 1.12) and by examining the expansion (1.10) of e js in the series
(1.9). First, substitute js for t in the expansion (1.9). Next, group the real and

6Pierre Simon Laplace (1749–1827), a French mathematician, physicist, and astronomer, theorized
(along with German philosopher Immanuel Kant) that the solar system coalesced from a rotating gas
cloud. The Laplace transform (Chapter 9) is named for him.

Fig. 1.11. Analog exponential signals. Panel (a) shows the exponential exp(t/2)/3, and (b) is
its re#ection across the y-axis, exp(−t/2)3.
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Fig. 1.12. Laplace’s relation on the unit circle of the complex plane. By comparing Taylor
series expansions, we $nd , and this corresponds to a point at arc
distance s, counterclockwise on the unit circle from the positive x-axis.
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imaginary terms together. Observe that the sine and cosine Taylor series are in fact
intermixed into the expansion of e js, just as (1.10) expresses. The Laplace iden-
tity generalizes to any complex exponent x + jy: ex+jy ,
where x and y are real. This is the most important formula in basic algebra.

The exponential signal is important in solving differential equations, such as
arise from the study of heat transport and electromagnetism. For instance, the heat
diffusion equation describes the propagation of heat T(t, s) along a straight wire at
time t and distance s from the end of the wire:

, (1.11)

where D is the diffusion constant. Solutions to (1.11) are ,
where λ and k are such that . The diffusion equation will make an unex-
pected appearance in Chapter 4 when we consider how to smooth a signal so that
new regions of concavity do not appear as the smoothing progresses. Now, in elec-
tromagnetism, the electric and magnetic $elds are vectors, E and H, respectively,
that depend upon one another. Maxwell’s equations7 for a vacuum describe this
interaction in terms of space and time derivatives of the $eld vectors as follows:

(1.12a)

, (1.12b)

. (1.12c)

Equations (1.12a)–(1.12b) tell us that the curl of each $eld is proportional to the
time derivative of the other $eld. The zero divergences in (1.12c) hold when there is
no charge present. Constants µ0 and ε0 are the magnetic permeability and electric
permittivity of space, respectively. By taking a second curl in (1.12a) and a second
time derivative in (1.12b), separate equations in E and H result; for example, the
electric $eld must satisfy

. (1.13a)

For one spatial dimension, this becomes

. (1.13b)

7Scottish physicist James Clerk Maxwell (1831–1879) is known best for the electromagnetic theory, but
he also had a signi$cant hand in the mechanical theory of heat.
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Solutions to (1.13b) are sinusoids of the form , where
, and b, ω,  and A are constants.

Another signal of great importance in mathematics, statistics, engineering, and
science is the Gaussian.8

De$nition (Analog Gaussian). The analog Gaussian signal of mean µ and stan-
dard deviation σ is

. (1.14)

These terms are from statistics (Section 1.7). For now, however, let us note that the
Gaussian  can be integrated over the entire real line. Indeed, since (1.14) is
always symmetric about the line t = µ, we may take µ = 0. The trick is to work out
the square of the integral, relying on Fubini’s theorem to turn the consequent iter-
ated integral into a double integral:

(1.15)

Changing to polar coordinates cracks the hard integral on the right-hand side of
(1.15): r2 = t2+ s2 and dtds = rdrdθ. Hence,

(1.16)

and we have

. (1.17)

8Karl Friedrich Gauss (1777–1855) is a renowned German mathematician, physicist, and astronomer.
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Thus, there is unit area under the Gaussian curve. The Gaussian  (1.14) is a
bell-shaped curve (Figure 1.13), peaking at t = µ, and symmetric about this line.
The Gaussian decays forever as , but  for any .

We de$ne

, (1.18)

so that any Gaussian (1.14) is a scaled, shifted, and dilated version of g(t):

(1.19)

The multiplying factor (1/σ) governs the scaling, which may increase or decrease
the height of the Gaussian. The same factor inside  dilates the
Gaussian; it adjusts the spread of the bell curve according to the scale factor so as to
preserve the unit area property. The peak of the bell shifts by the mean µ.

If we multiply a complex exponential exp(−jωt) by a Gaussian function, we get
what is known as a Gabor9 elementary function or signal [45].

9Dennis Gabor (1900–1979) analyzed these pulse-like signals in his 1946 study of optimal time and fre-
quency signal representations. He is more famous outside the signal analysis discipline for having won
the Nobel prize by inventing holography.

Fig. 1.13. Gaussian signals. The pulse on the left is g0,2(t), the Gaussian with mean µ equals
0, and the standard deviation σ equals 2. The pulse g3,4(t) is on the right. It has a wider
spread than g0,2(t), and takes its smaller maximum value at t = 3.
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De$nition (Gabor Elementary Functions). The Gabor elementary function
Gµ,σ,ω(t) is

. (1.20)

Note that the real part of the Gabor elementary function Gµ,σ,ω(t) in (1.20) is a
cosine-like undulation in a Gaussian envelope. The imaginary part is a sine-like
curve in a Gaussian envelope of the same shape (Figure 1.14). The time-frequency
Gabor transform (Chapter 10) is based on Gabor elementary functions.

Interest in these signals surged in the mid-1980s when psychophysicists noticed
that the modeled some aspects of the brain’s visual processing. In particular, the
receptive $elds of adjacent neurons in the visual cortex seem to have pro$les that
resemble the real and imaginary parts of the Gabor elementary function. A contro-
versy ensued, and researchers—electrical engineers, computer scientists, physiolo-
gists, and psychologists—armed with the techniques of mixed-domain signal
decomposition continue to investigate and debate the mechanisms of animal visual
perception [46, 47].

Gµ σ ω, , t( ) gµ σ, t( )e
jωt

=

Fig. 1.14. Gabor elementary signals, real and imaginary parts. The pair on the top (a, b) are
the real and imaginary parts of g0,2(t)exp(j2πt). Below (c, d) is the Gabor pulse G3,4,.5π. Note
that if two Gabor elementary signals have the same sinusoidal frequency, but occupy Gauss-
ian envelopes of different variances, then they have fundamentally different shapes.
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1.2.3 Special Analog Signals

Several of the analog signal examples above are familiar from elementary algebra
and calculus. Others, perhaps the Gabor elementary functions, are probably unfa-
miliar until one begins the formal study of signal processing and analysis. Some
very simple analog signals play pivotal roles in the theoretical development.

1.2.3.1 Unit Step. We introduce the unit step and some closely related signals.
The unit step signal (Figure 1.15) $nds use in chopping up analog signals. It is also
a building block for signals that consist of rectangular shapes and square pulses.

De$nition (Unit Step). The unit step signal u(t) is de$ned:

(1.21)

To chop up a signal using u(t), we take the product y(t) = x(t)u(t − c) for some
. The nonzero portion of y(t) has some desired characteristic. Typically, this

is how we zero-out the nonintegrable parts of signals such as x(t) = t−2.

1

(a)  u(t);

1

-1

(b)  σ(t);

(c)  x(t);

in finite

zero

(d)   δ(t).

Fig. 1.15. Special Utility signals. (a) u(t). (b) σ(t). (c) x(t). (d) δ(t). The unit step (a), signum
(b), and sawtooth (c) are useful for constructing other signals and modeling their discontinui-
ties. The Dirac delta (d) is “in$nitely high” at t = 0 and zero otherwise; thus, it is not a bona
$de analog signal. Chapters 3 and 5 provide the mathematical underpinnings of a valid, for-
mal treatment of δ(t).

u t( ) 1 if t 0,≥
0 if t 0.<
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De$nition (Signum). The signum signal σ(t) is a cousin to the unit step:

(1.22)

De$nition (Sawtooth). A sawtooth signal is a piecewise linear signal (Figure 1.15).
For example, the in$nite sawtooth x(t) is

(1.23)

1.2.3.2 Dirac Delta. The Dirac10 delta is really more of a $ction than a func-
tion. Nonetheless, it is a useful $ction. It can be made mathematically precise with-
out losing its utility, and its informal development is familiar to many scientists and
engineers.

For n > 0 let us de$ne a sequence of analog signals δn(t):

(1.24)

The signals (1.24) are increasingly tall square spikes centered around the origin.
Consider a general analog signal x(t) and the integral over R of x(t)δn(t):

(1.25)

The last term in (1.25) is the average value of x(t) over [−1/n, 1/n]. As ,

(1.26)

The casual thought is to let δ(t) be the limit of the sequence {δn(t): n > 0} and con-
clude that the limit operation (1.26) can be moved inside the integral (Figure 1.16):

(1.27)

10British physicist Paul Adrian Maurice Dirac (1902–1984) developed the theory of quantum electrody-
namics. He received the Nobel prize in 1933.
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This idea is fundamentally mistaken, however. There is no pointwise limit of the
sequence δn(t) at t = 0, and the limit of this signal sequence does not exist. The
interchange of limit operations attempted in (1.27) is invalid. It is perhaps best to
think of the $nal integral in (1.27) as an abbreviation for the valid limit operation in
(1.26). 

The Dirac delta can be shifted to any point t0 in the domain of signal x(t) and a
similar argument applied. This gives the informal sifting property of the Dirac delta:

. (1.28)

Again, mathematical prudence suggests that we think of the sifting property as spe-
cial way of writing a limit of integrals. We can add another story to this mythology:
The Dirac delta is the derivative of the unit step u(t). Let n > 0 and consider the
following sequence of continuous signals un(t) approximating the unit step.

(1.29)

Note that as ,  for all . Also, for all 

. (1.30)

1
Unit area 
rectangles

Width = 2/n

Height = n/2

Fig. 1.16. Informal conception of the Dirac delta function. It is useful to think of δ(t) as the
limit of a sequence of rectangles growing higher and narrower.
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We set aside our mathematical qualms and take limits as  of both sides of
(1.30). The derivative property of the unit step results:

(1.31)

The convergence of a sequence of functions must be uniform in order that inter-
change of limit operations, such as (1.27) and (1.30), be valid. Advanced calculus
texts cover this theory [44]. The mathematical theory of distributions [48, 49] pro-
vides a rigorous foundation for the idea of a Dirac delta, as well as the sifting and
derivative properties.

1.3 DISCRETE SIGNALS

Now that we have looked at some functions that serve as models for real-world ana-
log signals, let us assume that we have a method for acquiring samples. Depending
upon the nature of the analog signal, this may be easy or dif$cult. To get a discrete
signal that represents the hourly air temperature, noting the reading on a thermome-
ter is suf$cient. Air temperature varies so slowly that hand recording of values
works just $ne. Rapidly changing analog signals, in contrast, require faster sam-
pling methods. To acquire digital samples over one million times per second is not
at all easy and demands sophisticated electronic design.

In signal processing, both analog and digital signals play critical roles. The sig-
nal acquisition process takes place at the system’s front end. These are electronic
components connected to some sort of transducer: a microphone, for instance. An
analog value is stored momentarily while the digitization takes place. This sample-
and-hold operation represents a discrete signal. An analog-to-digital converter turns
the stored sample into a digital format for computer manipulation. We will, how-
ever, not ordinarily deal with digital signals, because the limitation on numerical
precision that digital form implies makes the theoretical development too awkward.
Thus, the discrete signal—actually an abstraction of the key properties of digital
signals that are necessary for mathematical simplicity and #exibility—turns out to
be the most convenient theoretical model for real-life digital signals.

1.3.1 Definitions and Notation

Unlike analog signals, which have a continuous domain, the set of real numbers R,
discrete signals take values on the set of integers Z. Each integer n in the domain of
x represents a time instant at which the signal has a value x(n). Expressions such as
x(2/3) make no sense for discrete signals; the function is not even de$ned there.

De$nition (Discrete and Digital Signals). A discrete-time (or simply discrete)
signal is a real-valued function x: Z → R. x(n) is the signal value at time instant n. A
digital signal is an integer-valued function x: Z → [−N, N], with domain Z, N ∈ Z,
and N > 0. A complex-valued discrete-time signal is a function x: Z → C, with
domain Z and range included in the complex numbers C.
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Digital signals constitute a special class within the discrete signals. Because they
can take on only a $nite number of output values in the dependent variable, digital
signals are rarely at the center of signal theory analyses. It is awkward to limit sig-
nal values to a $nite set of integers, especially when arithmetic operations are per-
formed on the signal values. Ampli$cation is an example. What happens when the
ampli$ed value exceeds the maximum digital value? This is saturation, a very real
problem for discrete signal processing systems. Some approach for avoiding satura-
tion and some policy for handling it when it does occur must enter into the design
considerations for engineered systems. To understand the theory of signals, how-
ever, it is far simpler to work with real-valued signals that may become arbitrarily
small, arbitrarily large negative, and arbitrarily large positive. It is simply assumed
that a real machine implementing signal operations would have a suf$ciently high
dynamic range within its arithmetic registers.

Notation. We use variable names such as “n”, “m”, and “k” for the independent
variables of discrete signals. We prefer that analog signal independent variables
have names such as “t” and “s”. This is a tradition many readers will be comfortable
with from Fortran computer programming. On those occasions when the discussion
involves a sampling operation, and we want to use like names for the analog source
and discrete result, we will subscript the continuous-domain signal: xa(t) is the ana-
log source, and x(n) = xa(nT) is the discrete signal obtained from xa(t) by taking val-
ues every T time units.

With discrete-time signals we can tabulate or list signal values—for example,
x(n) = [3, 2, 1, 5, 1, 2, 3] (Figure 1.17). The square brackets signify that this is a dis-
crete signal de$nition, rather than a set of integers. We must specify where the inde-
pendent variable’s zero time instant falls in the list. In this case, the value at n = 0 is

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

0
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x(
n)
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0.5

1
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Real[y(n)]

Im
ag

[y
(n

)]

(b)

Fig. 1.17. Discrete signals. Panel (a) shows the signal x(n) = [3, 2, 1, 5, 1, 2, 3]. Signals may
also be complex-valued, in which case their graphs are plotted in the complex plane. In (b),
points of the signal y(n) = cos(nπ/6) + jsin(nπ/6) are shown as pairs, (Real[y(n)],
Imag[y(n)]).
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underlined, and x(0) = 5, x(−1) = 1, x(1) = 1, and so on. For time instants not shown,
signal values are zero. Thus, for discrete signals with an in$nite number of nonzero
values, we must provide a formula or rule that relates time instances to signal val-
ues, just as with analog signals.

1.3.2 Examples

We can derive straightforward discrete equivalents from the examples of analog sig-
nals above. A few curious properties relating to periodicity and derivatives arise.

1.3.2.1 Polynomials and Kindred Signals. There are discrete polynomial,
rational, and algebraic signals. Discrete polynomials have the form

. (1.32)

We cannot form the instantaneous derivative of x(n) in (1.32) as with analog signals;
instead discrete approximations must suf$ce. A variety of sometimes useful, but
often problematic, notions of discrete derivatives do exist. For example, the left-
hand discrete derivative of (1.32) is de$ned by xleft(n) = x(n) − x(n − 1). And a
right-hand derivative exists too: xright(n) = x(n + 1) − x(n). We can continue taking
discrete derivatives of discrete derivatives. Note that there is no worry over the
existence of a limit, since we are dividing the difference of successive signal values
by the distance between them, and that can be no smaller than unity. Thus, discrete
signals have (discrete) derivatives of all orders. 

The domain of a polynomial p(n) can be divided into disjoint regions of concav-
ity: concave upward, where the second discrete derivative is positive; concave
downward, where the second discrete derivative is negative; and regions of no con-
cavity, where the second discrete derivative is zero, and p(n) is therefore a set of
dots on a line. Here is a $rst example, by the way, of how different analog signals
can be from their discretely sampled versions. In the case of nonlinear analog poly-
nomials, in#ection points are always isolated. For discrete polynomials, though,
there can be whole multiple point segments where the second derivative is zero.

If p(n) and q(n) are polynomials, then x(n) = p(n)/q(n) is a discrete rational func-
tion. Signals modeled by discrete rational functions need to have provisions made in
their de$nitions for the times n0 when q(n0) = 0. If, when this is the case, p(n0) = 0
also, then it is necessary to separately specify the value of x(n0). There is no possi-
bility of resorting to a limit procedure on x(n) for a signal value, as with analog sig-
nals. Of course, if both p(n) and q(n) derive via sampling from analog ancestors,
then such a limit, if it exists, could serve as the missing datum for x(n0).

Signals that involve a rational exponent of the time variable, such as x(n) = n1/2,
are called discrete algebraic signals. Again, there are problems with the domains of
such signals; n1/2 does not take values on the negative real numbers, for example.
Consequently, we must usually partition the domain of such signals and de$ne the
signal piecewise.

x n( ) akn
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1.3.2.2 Sinusoids. Discrete sinusoidal signals, such as sin(ωn) or cos(ωn), arise
from sampling analog sinusoids (Figure 1.18). The function sin(ωn + φ) is the discrete
sine function of radial frequency ω and phase φ. We will often work with cos(ωn +
φ)—and call it a sinusoid also—instead of the sine function. Note that—somewhat
counter to intuition—discrete sinusoids may not be periodic! The periodicity depends
upon the value of ω in cos(ωn + φ). We will study this nuance later, in Section 1.5.

1.3.2.3 Exponentials. Discrete exponential functions take the form

, (1.33)

where C and a are constants. Discrete exponentials (Figure 1.19) are used in
frequency domain signal analysis (Chapters 7–9).
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Fig. 1.18. Discrete sinusoids. Panel (a) shows the signal x(n) = cos(ωn + φ), with ω = π/24
and φ = π/3. Signal x(n) has period T = 48. Panel (b,) on the other hand, shows the signal
y(n) = cos(ωn + φ), with ω = 1/7. It is not periodic.
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Fig. 1.19. Discrete exponential signals. Panel (a) shows the exponential x(n) = exp(n/2)/3,
and (b) is its re#ection across the y-axis, y(n) = exp(−n/2)/3.
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The discrete Gaussian signal is

. (1.34)

Truncating the discrete Gaussian so that it is zero outside of some interval [−N, N] is
a discrete signal processing commonplace (Figure 1.20). This assumes that

 is small for |n| > N. As a signal with a $nite number of nonzero values, the
truncated discrete Gaussian serves as a noise removal $lter. We can use it instead of
the moving average $lter (Section 1.1), giving preference to local signal values, for
example. Also, for noise removal it makes sense to normalize the nonzero values so
that their sum is unity. This preserves the average value of the raw signal.

There are also discrete versions of the Gabor elementary functions:

. (1.35)

1.3.3 Special Discrete Signals

Discrete delta and unit step present no theoretical dif$culties.

De$nition (Discrete Delta). The discrete delta or impulse signal δ(n) is

(1.36)
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Fig. 1.20. Discrete Gaussian signals. The discrete pulse in (a) is g0,2(n), the Gaussian with
mean µ equals 0 and standard deviation σ equals 2. Panel (b) illustrates a typical truncated
Gaussian pulse.
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There is a sifting property for the discrete impulse:

. (1.37)

Discrete summation replaces the analog integral; this will become familiar.

De$nition (Discrete Unit Step). The unit step signal u(n) is

(1.38)

Note that if m > k, then b(n) = u(n − k) − u(n − m) is a square pulse of unit height on
[k, m − 1]. Products s(n)b(n) extract a chunk of the original discrete signal s(n). And
translated copies of u(n) are handy for creating new signals on the positive or nega-
tive side of a signal: y(n) = x(n)u(n −  k).

1.4 SAMPLING AND INTERPOLATION

Sampling and interpolation take us back and forth between the analog and digital
worlds. Sampling converts an analog signal into a digital signal. The procedure is
straightforward: Take the values of the analog source at regular intervals. Interpola-
tion converts a discrete signal into an analog signal. Its procedure is almost as easy:
make some assumption about the signal between known values—linearity for
instance—and $ll them in accordingly. In the sampling process, much of the analog
signal’s information appears to be lost forever, because an in$nite number of signal
values are thrown away between successive sampling instants. On the other hand,
interpolation appears to make some assumptions about what the discrete signal
ought to look like between samples, when, in fact, the discrete signal says nothing
about signal behavior between samples. Both operations would appear to be funda-
mentally #awed.

Nevertheless, we shall eventually $nd conditions upon analog signals that allow
us to reconstruct them exactly from their samples. This was the discovery of
Nyquist [2] and Shannon [3] (Chapter 7).

1.4.1 Introduction

This section explains the basic ideas of signal sampling: Sampling interval, sam-
pling frequency, and quantization. The sampling interval is the time (or other spatial
dimension measure) between samples. For a time signal, the sampling frequency is
measured in hertz (Hz); it is the reciprocal of the sampling interval, measured in
seconds (s). If the signal is a distance signal, on the other hand, with the sampling
interval given in meters, then the sampling frequency is in units of (meters).−1
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Discrete signals are more convenient for theoretical work, but for computer process-
ing only a $nite number of bits can represent the value in binary form. The signal
must be digitized, or, in other words, the signal values must be quantized. By
squeezing the signal value into an N-bit register, some fraction of the true signal
value is lost, resulting in a quantization error. The number of possible digital signal
values is called the dynamic range of the conversion.

If xa(t) is an analog signal, then x(n) = xa(n) de$nes a discrete signal. The time
interval between x(n) values is unity. We can also take more widely or narrowly
spaced samples from xa(t): x(n) = xa(nT), where T > 0. In an actual system, elec-
tronic clock circuits set the sampling rate (Figure 1.21).

An N-bit register can hold non-negative digital values from 0 to 2N− 1. The small-
est value is present when all bits are clear, and the largest value is when all bits are set.
The two’s complement representation of a digital value most common for storing
signed digital signal values. Suppose there are N bits available in the input register, and
the quantized signal’s bit values are bN− 1, bN−2, . . ., b1, b0. Then, the digital value is
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Fig. 1.21. Analog-to-digital conversion. Conversion of analog signals to digital signals
requires several steps. Once digitized, algorithms running on the computer can analyze the
signal. There may exist a closed loop with the analog world. For example, a digital output sig-
nal is converted back into analog form to control an actuator, such as anti-skid brakes on an
automobile.
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(1.39)

In this form, a register full of zeros represents a digital zero value; a single bit in
the low-order position, b0 = 1, represents unity; and a register having all bits set
contains −1. The dynamic range of an N-bit register is 2N.

There are several popular analog-to-digital converter (ADC) designs: Successive
approximation, #ash, dual-slope integration, and sigma–delta. The popular succes-
sive approximation converter operates like a balance beam scale. Starting at half of
the digital maximum, it sets a bit, converts the tentative digital value to analog, and
compares the analog equivalent to the analog input value. If the analog value is less
than the converted digital guess, then the bit remains set; otherwise, the bit is cleared.
The process continues with the next highest bit position in succession until all bits
are tested against the input value. Thus, it adds and removes half-gram weights,
quarter-gram weights, and so forth, until it balances the two pans on the beam. Suc-
cessive approximation converters are accurate, slow, and common. A #ash converter
implements a whole bank of analog comparators. These devices are fast, nowadays
operating at sampling rates of over 250 MHz. However, they have a restricted
dynamic range. Dual-slope integration devices are slower, but offer better noise
rejection. The sigma–delta converters represent a good design compromise. These
units can digitize to over 20 bits and push sampling rates to almost 100 MHz.

1.4.2 Sampling Sinusoidal Signals

Let us consider sampling a sinusoid, xa(t) = cos(ωt), as in Figure 1.22. We sample it
at a variety of rates T: x(n) = xa(nT). For high sampling rates, the discrete result
resembles the analog original. But as the sampling interval widens, the resemblance
fades. Eventually, we cannot know whether the original analog signal, or, possibly,
one of much lower frequency was the analog source for x(n).

To answer the simple question—what conditions can we impose on an analog
signal xa(t) in order to recover it from discrete samples x(n)?—requires that we
develop both the analog and discrete Fourier transform theory (Chapters 5–7).

1.4.3 Interpolation

Why reconstruct an analog signal from discrete samples? Perhaps the discrete sig-
nal is the original form in which a measurement comes to us. This is the case with
the geothermal signals we considered in Section 1.1. There, we were given temper-
ature values taken at regular intervals of depth into the earth. It may be of interest—
especially when the intervals between samples are very wide or irregular—to pro-
vide estimates of the missing, intermediate values. Also, some engineered systems
use digital-to-analog converters to take a discrete signal back out into the analog
world again. Digital communication and entertainment devices come to mind. So,
there is an impetus to better understand and improve upon the analog conversion
process.
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2
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Fig. 1.22. Impossible to reconstruct. The original sinusoid (a) is $rst sampled at unit intervals
(b). Sampling at a slower rate (c) suggests the same original x(t) But when the rate falls,
lower-frequency analog sinusoids could be the original signal (d).
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1.4.3.1 Linear. Perhaps the simplest method of constructing an analog signal
from discrete values is to use linear interpolation (Figure 1.23). Let yn = x(n), and
de$ne

(1.40)

for . The given samples are called knots, as if we were tying short sec-
tions of rope together. In this case, the analog signal passes through the knots.
Observe that this scheme leaves corners—discontinuities in the $rst derivative—at
the knots. The analog signal constructed from discrete samples via linear interpola-
tion may therefore be unrealistic; nature’s signals are usually smooth.

1.4.3.2 Polynomial. Smooth interpolations are possible with quadratic and
higher-order polynomial interpolation.

Theorem (Lagrange11 Interpolation). There is a unique polynomial p(t) of
degree N > 0 whose graph (t, p(t)) contains the distinct points Pk = (nk, x(nk)) for

11Joseph Louis Lagrange (1736–1813)—professor at Turin, Berlin, and Paris—was, with Euler, one of
the great number theorists of the eighteenth century.
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Fig. 1.23. Linear interpolation. Consider the signal x(n) = sin(n). Linear interpolation of this
discrete sinusoid produces a jagged analog result.



46 SIGNALS: ANALOG, DISCRETE, AND DIGITAL

:

(1.41)

Proof: Clearly p(t) is of degree N and its graph passes through the points Pk. If q(t)
is another polynomial like this, then d(t) = p(t) − q(t) is of degree N and has zeros at
the N + 1 places: nk,  Since a nonzero polynomial of degree N has at
most N roots, the difference d(t) must be identically zero. ■

Lagrange interpolation is not completely satisfactory. If N is large, then the
method depends on a quotient of products of many terms; it is thereby subject to
numerical round-off errors in digital computation. Furthermore, it is only valid
for a restricted interval of points in a discrete signal. We may delete some
points, since the interval between successive knots does not need to be unity in
(1.41). However, we are still left with a polynomial approximation to a small
part of the signal. If the signal is zero outside an interval, then however well the
interpolant matches the nonzero signal region, p(t) still grows large in magni-
tude with |t|.

An alternative is to compute quadratic polynomials on sequential triples of
points. This provides some smoothness, but at every other knot, there is the possibil-
ity of a discontinuity in the derivative of the interpolants. Another problem is that
the interpolation results vary depending on the point at which one starts choosing
triples. To the point, how should we smooth the unit step signal u(n) with interpolat-
ing quadratics? The interpolants are lines, except near the origin. If we begin with
the triple (−2, −1, 0) and $t it with a quadratic polynomial, then our $rst interpolant
will be concave up. If, on the other hand, we begin interpolating with the triad (−1,
0, 1), then our $rst quadratic approximation will be concave down. The exercises
explore this and other questions entailed by quadratic interpolation. There is,
however, a better way.

1.4.4 Cubic Splines

Perhaps the best method to make an analog signal out of discrete samples is to inter-
polate with spline12 functions. The idea is to use a cubic polynomial between each
successive pair of knots, (nk, x(nk)) and (nk+1, x(nk+1)) and yet match the $rst deriv-
atives of cubics on either side of a knot.

To understand how this might work, let us $rst allow that the distance between
known points need not be unity. Perhaps the system that collects the discrete
samples cannot guarantee a regular sampling interval. The irregular sampling

12Architects and engineers once used a jointed, #exible ruler—known as a spline—to draw curves. These
tools were made from sections of wood or plastic, attached together by brass rivets; modern splines, how-
ever, are almost always made of software.
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notwithstanding, it is desirable to compose an analog signal that models the discrete
data as a continuous, naturally occurring phenomenon. Later, it may even be useful
to sample the analog model at regular intervals. So we assume that there are N+1
data points (nk, x(nk)), . Next, we set ∆k = nk+1 − nk, yk = x(nk), and we
consider a polynomial pk(t) between the knots (nk, yk) and (nk+1, yk+1), for

. If the polynomial is quadratic or of higher degree and it contains the
knots, then we need additional conditions to specify it. We prefer no sharp corners at
the knots; thus, let us also stipulate that the derivatives of successive polyomials,

 and , agree on their common knots: .
Now there are four conditions on any interpolant: It must pass through two given
knots and agree with its neighbors on endpoint derivatives. This suggests a cubic,
since there are four unknowns. Readers might suspect that something more is neces-
sary, because a condition on a polynomial’s derivative is much less restrictive than
requiring it to contain a given point.

Indeed, we need two further conditions on the second derivative in order to
uniquely determine the interpolating polynomial. This reduces the search for a set
of interpolating cubics to a set of linear equations. The two supplementary condi-
tions are that we must have continuity of the second derivatives at knots, and we
must specify second derivative values at the endpoints, (n0, y0) and (nN, yN). Then
the equations are solvable [37, 50].

We write the interpolant on the interval [nk, nk+1] in the form

. (1.42)

Then the derivative is

, (1.43)

and the second derivative is

. (1.44)

We de$ne  and . From (1.44),

(1.45)

and

, (1.46)

with . Thus, we can express bk and ak in terms of ∆k, which is
known, and Dk and Ek, which are as yet unknown. Using (1.42), we can write ck as
follows:

. (1.47)
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For , (1.45)–(1.47) imply

. (1.48)

To make a system of linear equations, we need to express this in terms of the second
derivatives, Dk and Ek. The derivatives,  and , are equal for t =
nk+1; this is a required property of the interpolating cubics. Hence,

(1.49)

Inserting the expressions for ck+1, ck, bk, and ak in terms of second derivatives gives

. (1.50)

Now, , by invoking the continuity
assumption on second derivatives. We also set EN–1 = DN, producing a linear equa-
tion in Dk, Dk + 1, and Dk + 2:

(1.51)

This system of equations has N + 1 variables, D0, D1, . . . , DN. Unfortunately, (1.51)
has only N − 1 equations, for k = 0, 1, . . . , N − 2. Let us lay them out as follows:

(1.52)
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From linear algebra, the system (1.52) may have no solution or multiple solutions
[51, 52]. It has a unique solution only if the number of variables equals the number
of equations. Then there is a solution if and only if the rows of the coef$cient
matrix—and consequently its columns—are linearly independent. Thus, we must
reduce the number of variables by a pair, and this is where the $nal condition on
second derivatives applies.

We specify values for D0 and DN. The most common choice is to set D0 = DN =
0; this gives the so-called natural spline along the knots (n0, y0), (n1, y1), . . . , (nN,
yN). The coef$cient matrix of the linear system (1.52) loses its $rst and last col-
umns, simplifying to the symmetric system (1.53). Other choices for D0 and DN
exist and are often recommended [37, 50]. It remains to show that (1.53) always has
a solution.

(1.53)

Theorem (Existence of Natural Splines). Suppose the points (n0, y0), (n1, y1), . . . ,
(nN, yN) are given and n0 < n1 < . . . < nN. Let . Then the system

 in (1.53) has a solution .

Proof: Gaussian elimination solves the system, using row operations to convert
A = [Ar,c] into an upper-triangular matrix. The elements on the diagonal of the
coef$cient matrix are called the pivots. The $rst pivot is , which is

positive. We multiply the $rst row of A by the factor  and  add  it  to
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the second row, thereby annihilating A2,1. A second pivot P2 appears in place
of A2,2:

(1.54)

We update the vector y according to the row operation as well. Notice that
. The process produces another positive pivot. Indeed, the algorithm

continues to produce positive pivots Pr. These are more than double the coef$cient
Ar+1,r, which the next row operation will annihilate. Thus, this process will eventu-
ally produce an upper-triangular matrix. We can $nd the solution to (1.53) by back
substitution, beginning with DN − 1 on the upper-triangular result.  ■

Figure 1.24 shows how nicely cubic spline interpolation works on a discrete sinu-
soid. Besides their value for reconstructing analog signals from discrete samples,
splines are important for building multiresolution signal decompositions that
support modern wavelet theory [53] (Chapters 11 and 12).
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Fig. 1.24. Cubic spline interpolation. Again, discrete samples of the signal x(n) = sin(n) are
used for the knots. Cubic spline interpolation offers a smooth model of the undulations and
clearly captures the sinusoidal behavior of the original analog signal.
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1.5 PERIODIC SIGNALS

Periodic signals, whether analog or discrete, repeat their values over intervals. The
most familar ones are sinusoids. These signals arise from the mechanics of circular
motion, in electric and magnetic interactions, and they are found in many natural
phenomena. For instance, we considered the solution of Maxwell’s equations,
which describe the relation between the electric and magnetic $elds. There we
showed how to derive from the $eld equations a set of differential equations whose
solution involves sinsusoidal functions. Radio waves propagate through empty
space as electric and magnetic sinusoids at right angles to one another.

1.5.1 Fundamental Period and Frequency

The interval over which a signal repeats itself is its period, and the reciprocal of
its period is its frequency. Of course, if a signal repeats itself over an interval, then
it also repeats itself over any positive integral multiple of that interval; we must
characterize a periodic signal by the smallest such interval of repetition.

De$nition (Periodicity). An analog signal x(t) is periodic if there is a T > 0 with
x(t + T) = x(t) for all t. A discrete signal x(n) is periodic if there is an integer N > 0
with x(n) = x(n + N) for all n. The smallest value for which a signal is periodic is
called the fundamental period.

De$nition (Analog Sinusoid). The signal 

(1.55)

is an analog sinusoid. A is the amplitude of x(t), which gives its maximum value;
Ω is its frequency in radians per second; and φ is its phase in radians. ,
where F is the frequency in hertz.

Example. If , then , from the 2π-periodicity
of the cosine function. So  is the fundamental period of x(t).

The sinusodal signals in nature are, to be sure, never the perfect sinusoid that our
mathematical models suggest. Electromagnetic propagation through space comes
close to the ideal, but always present are traces of matter, interference from other
radiation sources, and the minute effects of gravity. Noise corrupts many of the phe-
nomena that fall under our analytical eye, and often the phenomena are only
vaguely sinusoidal. An example is the periodic trends of solar activity—in particu-
lar, the 11-year sunspot cycle, which we consider in more detail in the next section.
But signal noise is only one aspect of nature’s refusal to strictly obey our mathemat-
ical forumulas.

x t( ) A Ωt φ+( )cos=

Ω 2πF=

x t( ) A Ωt φ+( )cos= x t( ) x t 2π
Ω------+( )=

T 2π
Ω
------ 1

F
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Natural sinusoidal signals decay. Thus, for it to be a faithful mathematical model
of a naturally occurring signal, the amplitude of the sinusoid (1.55) should decrease.
Its $delity to nature’s processes improves with a time-varying amplitude:

. (1.56)

The earliest radio telephony technique, amplitude modulation (AM), makes use of
this idea. The AM radio wave has a constant carrier frequency,  Hz, but its

amplitude A(t) is made to vary with the transmitted signal. Electronic circuits on the
receiving end tune to the carrier frequency. The amplitude cannot jump up and
down so quickly that it alters the carrier frequency, so AM is feasible only if F
greatly exceeds the frequency of the superimposed amplitude modulation. This
works for common AM content—voice and music—since their highest useful fre-
quencies are about 8 and 25 kHz, respectively. In fact, limiting voice frequencies to
only 4 kHz produces a very lifelike voice audio, suitable for telephony. Accord-
ingly, the AM radio band, 550 kHz to 1600 kHz, is set well above these values. The
signal looks like a sine wave whose envelope (the curve that follows local signal
maxima) matches the transmitted speech or music.

Natural and engineered systems also vary the frequency value in (1.55). The
basic frequency-modulated (FM) signal is the chirp, wherein the frequency
increases linearly. Animals—birds, dolphins, and whales, for example—use fre-
quency varying signals for communication.  Other animals, such as bats, use chirps
for echolocation. Some natural languages, such as Chinese, use changing tones as
a critical indication of word meaning. In other languages, such as English and
Russian, it plays only an ancillary role, helping to indicate whether a sentence is a
question or a statement. Thus, we consider signals of the form

, (1.57)

where F(t) need not be linear. An FM signal (1.57) is not a true sinusoid, but it pro-
vides the analyst with a different kind of signal model, suitable for situations where
the frequency is not constant over the time region of interest. Applications that rely
on FM signals include such systems as radars, sonars, seismic prospecting systems,
and, of course, communication systems.

A phase-modulated signal is of the form

. (1.58)

There is a close relation between phase and frequency modulation, namely, that the
derivative of the phase function  in (1.58) is the instantaneous frequency of the
signal x(t) [54, 55]. The idea of instantaeous frequency is that there is a sinusoid
that best resembles x(t) at time t. It arose as recently as the late 1930s in the context
of FM communication systems design, and its physical meaning has been the sub-
ject of some controversy [56]. If we $x F in (1.58) and allow  to vary, then the

x t( ) A t( ) Ωt φ+( )cos=

F Ω
2π
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frequency of the cosine wave changes. Over ∆t seconds, the radial frequency of
x(t) changes by amount , where

. The average change in Hertz frequency over this time interval is
. As , this value becomes the derivative , the instanta-

neous frequency of the phase modulated signal x(t).
If it seems odd that the derivative of phase is the signal frequency, then perhaps

thinking about the familiar Doppler13 effect can help reveal the connection. Sup-
pose a train whistle makes a pure sinusoidal tone. If the train is standing still, then
someone within earshot hears a sound of pure tone that varies neither in amplitude
nor pitch. If the train moves while the whistle continues to blow, however, then the

13Austrian physicist Christian Doppler (1803–1853) discovered and described this phenomenon, $rst
experimenting with trumpeters on a freight train.
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Fig. 1.25. AM and FM signals. Panel (a) shows a sinusoidal carrier modulated by a sinusoi-
dal signal. The information-bearing part of the signal is given by the envelope of the signal,
shown by dotted lines. In (b), a simple FM signal with the frequency varying sinusoidally is
shown. Note that the oscillations bunch up and spread out as time passes, indicating rising
and falling signal frequency, respectively.
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tone changes. Coming toward us, the train whistle mechanically reproduces the
same blast of air through an ori$ce, but the signal that we hear is different. The pitch
increases as the train comes toward us. That means the signal frequency is increas-
ing, but all that it takes to accomplish that is to move the train. In other words, a
change in the phase of the whistle signal results in a different frequency in sound
produced. A similar effect occurs in astronomical signals with the red shift of opti-
cal spectral lines from distant galaxies. In fact, the further they are away from us,
the more their frequency is shifted. This means that the further they are from earth,
the more rapidly is the phase changing. Objects further away move away faster. This
led Hubble14 to conclude that the universe is expanding, and the galaxies are
spreading apart as do inked dots on an in#ating balloon.

Some signals, natural and synthetic, are superpositions of sinusoids. In speech
analysis, for example, it is often possible to model vowels as the sum of two sinu-
soidal components, called formants:

. (1.59)

Generally, x(t) in (1.59) is not sinusoidal, unless . A geometric
argument demonstrates this. If the radial frequencies of the sinusoidal components
are equal, then the vectors  and

 rotate around the origin at equal speeds.
This forms a parallelogram structure, rotating about the origin at the same speed as
v1 and v2 (Figure 1.26), namely Ω radians per unit time. The x-coordinates of v1 and

14Working at the Mount Wilson Observatory near Los Angeles, Edwin Powell Hubble (1889–1953) dis-
covered that galaxies are islands of stars in the vast sea of space, the red shift relates velocity to distance,
and the universe itself expands in all directions.
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Fig. 1.26. Sinusoidal summation. Vector  has length . Its x-coordi-
nate, as a function of t, is a sinusoid of radial frequency Ω and phase .
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v2 are the values of x1(t) and x2(t), respectively. The sum x(t) is the x-coordinate of
v1 + v2. Now, , where

(1.60)

We also see from Figure 1.26 that the sum lies half way between v1 and v2. Thus,

the phase of v is , and we have .

1.5.2 Discrete Signal Frequency

Due to the gap between successive signal values, discrete periodic signals have sev-
eral properties that distinguish them from analog periodic waveforms:

(i) Discrete periodic signals have lower limits on their period; it makes no
sense to have a discrete signal with period less than unity, because the dis-
crete world does not even de$ne signals at intervals smaller than unity.

(ii) A discrete signal with unit period is constant.

(iii) For sinusoids, the restriction to unit periods or more means that they have a
maximum frequency: |Ω| = π.

(iv) Not all sinusoids are periodic; periodicity only obtains when the frequency
of the sampled signal is matched to the sampling interval.

This section covers these idiosyncrasies.

Proposition (Discrete Period). The smallest period for a discrete signal is T = 1.
The largest frequency for a discrete sinusoid is |Ω| = π, or equivalently, |F| = 1,
where Ω = 2πF is the frequency in radians per sample.

Proof: Exercise. ■

Proposition (Periodicity of Discrete Sinusoids). Discrete sinusoid x(n) = Acos(Ωn
+ φ), , is periodic if and only if Ω = 2πp, where , the rational numbers.

Proof: First, suppose that Ω = 2πp, where . Let p = m/k where . If
m = 0, then x(n) is periodic; in fact, it is constant. Therefore, suppose  and
choose N = |k/m|. Then,

by the 2π-periodicity of the cosine function. Thus, x(n) is periodic with period
N. Conversely, suppose that for some N > 0, x(n + N) = x(n) for all n.
Then, . Since , we must have
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 And, since cosine can only assume the
same values on intervals that are integral multiples of π, we must have 
for some . Then, , so that Ω is a rational multiple of π. ■

Let us reinforce this idea. Suppose that x(n) = xa(Tn), where xa(t) =
, with . Then xa(t) is an analog periodic signal. But x(n) is not

necessarily periodic. Indeed, , so by the proposition, x(n)
is periodic only if ΩT is a rational multiple of π. Also, the discrete sinusoid

 is periodic if and only if the frequency . The analog sig-
nal , , is always periodic with period 1/f. But if f = m/ k,
with , and m and k are relatively prime, then x(n) has period k, not 1/f. It
takes time to get used to the odd habits of discrete sinusoids.

1.5.3 Frequency Domain

Having introduced analog and discrete sinusoids, fundamental period, and sinusoidal
frequency, let us explain what it means to give a frequency-domain description of a
signal. We already know that signals from nature and technology are not always pure
sinusoids. Sometimes a process involves superpositions of sinusoids. The signal
amplitude may vary too, and this behavior may be critical to system understanding.
A variant of the pure sinusoid, the amplitude-modulated sine wave, models this situ-
ation. Another possibility is a variable frequency characteristic in the signal, and the
frequency-modulated sine wave model accounts for it. There is also phase modulation,
such as produced by a moving signal source. Finally, we must always be cognizant of,
prepare for, and accommodate noise within the signal. How can we apply ordinary
sinusoids to the study of these diverse signal processing and analysis applications?

1.5.3.1 Signal Decomposition. Many natural and synthetic signals contain
regular oscillatory components. The purpose of a frequency-domain description of a
signal is to identify these components. The most familar tool for aiding in identify-
ing periodicities in signals are the sinusoidal signals, sin(t) and cos(t). Thus, a
frequency-domain description presupposes that the signal to be analyzed consists of
a sum of a few sinusoidal components. Perhaps the sum of sinusoids does not
exactly capture the signal values, but what is left over may be deemed noise or
background. We consider two examples: sunspot counts and speech. If we can iden-
tify some simple sinusoidal components, then a frequency-domain description
offers a much simpler signal description. For instead of needing a great number of
time domain values to de$ne the signal, we need only a few triplets of real num-
bers—the amplitude, frequency, and phase of each substantive component—in
order to capture the essence of the signal.

Consider the signal x(n) of Figure 1.27, which consists of a series of irregular
pulses. There appears to be no rule or regularity of the values that would allow us to
describe it by more that a listing of its time-domain values. We note that certain
regions of the signal appear to be purely sinusoidal, but the juxtaposition of unfa-
miliar, oddly shaped pulses upsets this local pattern.

Ωn φ+( )cos Ωn φ+( ) ΩN+( ).cos=
ΩN mπ=

m N∈ Ω mπ N⁄=

A Ωt φ+( )cos A 0≠
x n( ) A ΩnT φ+( )cos=

x n( ) 2πfn( )cos= f Q∈
s t( ) 2πft( )cos= f 0>
m k, N∈
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The signal does, however, have a concise description as a sum of three sinusoids
and a small noise component:

. (1.61)

Thus, signal description, and hence the further analysis of signals, is often made more
powerful by representing signals in terms of an established set of prototype signals.
For a frequency domain signal description, sinusoidal models are appropriate. Some
background noise may elude an immediate description in terms of sinusoidal com-
ponents. Depending on the application, of course, this residual signal may be negligible
because it has a much lower magnitude than the source signal of interest. If the sinu-
soidal trends are localized within a signal, the arithmetic of superposition may allow
us to describe them even with sinusoids of longer duration, as Figure 1.27 illustrates.

1.5.3.2 Sunspots. One periodic phenomenon with which we are familiar is the
sunspot cycle, an example of a natural periodic trend. Sunspots appear regularly on
the sun’s surface as clusters of dark spots and, at their highest intensities, disrupt
high-frequency radio communication. Scientists have scrutinized sunspot activity,
because, at its height during the 11-year cycle, it occasionally hampers very high fre-
quency radio communication. Until recently, the mechanism responsible for this phe-
nomenon was not known. With temperature of 3800 °K, they are considerably cooler
than the rest of the sun’s surface, which has an average temperature of some 5400 °K.

Ancient people sometimes observed dark spots on the solar disk when it was
obscured by fog, mist, or smoke. Now we check for them with a simple telescope
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Fig. 1.27. Ef$ciency of freqency-domain signal description. An irregular signal, appearing
to lack any regular description beyond a listing of its time-domain values, turns out to be the
sum of three sinusoids and a small background noise signal.
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that projects the sun’s image onto a white plate. Galileo15 was the $rst to do so. His
observations upset the prevailing dogma of seventeenth century Europe insisting
that the sun was a perfect disk. Standardized sunspot reports began in the mid-
1700s, and the earlier values given in our data plots (Figure 1.28) are assumptions
based on informal observations. 

Sunspot activity can be formulated as a discrete signal by counting the number of
groups of sunspots. In 1848, the Swiss astronomer, Johann Rudolph Wolf, introduced
a daily measurement of sunspot number. His method, which is still used today, counts
the total number of spots visible on the face of the sun and the number of groups into
which they cluster, because neither quantity alone satisfactorily measures sunspot
activity. The Wolf 16 sunspot number is w(n) = 10G(n) + S(n), where G(n) is the aver-
age number of sunspot groups and S(n) is the average number of spots. Individual
observational results do vary greatly, however, since the measurement strongly
depends on interpretation, experience, and the stability of the earth’s atmosphere

15In addition to $nding solar blemishes in 1610, Galileo Galilei (1564–1642) used his telescope
to resolve the Milky Way into faint stars and, with his discovery of the phases of Venus, con$rmed
Copernicus’s heliocentric theory.
16After Swiss astronomer Johann Rudolph Wolf (1816–1893).
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Fig. 1.28. Wolf sunspot numbers. Panel (a) plots the time-domain values of w(n) = 10G(n) +
S(n) for each month from 1700 through 1995. We compare the oscillation with sinusoids, for
example, when period T = 11.1 years as in (b).
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above the observing site. The use of the earth as a platform from which to record these
numbers contributes to their variability, too, because the sun rotates and the evolving
spot groups are distributed unevenly across solar longitudes. To compensate for these
limitations, each daily international number is computed as a weighted average of
measurements made from a network of cooperating observatories.

One way to elucidate a frequency-domain description of the sunspot signal w(n)
is to compare it with a sinusoidal signal. For example, we can align sinusoids of
varying frequency with w(n), as shown in Figure 1.28b. Thus, the sinusoids are
models of an ideal sunspot cycle. This ideal does not match reality perfectly, of
course, but by pursuing the mathematical comparison between the trignonometric
model and the raw data, we can get a primitive frequency-domain description of the
sunspot cycle. What we want to derive in a frequency-domain description of a sig-
nal is some kind of quanti$cation of how much a signal resembles model sinusoids
of various frequencies. In other words, we seek the relative weighting of supposed
frequency components within the signal. Thinking of the signal values as a very
long vector, we can compute the inner product of w(n) with the unit vectors whose
values are given by sinusoids

, (1.62)

where T varies from 0.1 year to 16 years. Then we compute the difference
, an error term which varies with periodicity of the sinusoid

(1.62) determined by T. Now, we take evalutate the norm of the vector  which
has length : . If we plot the norm of the error vectors with
respect to the supposed period T of the sinusoidal model, we see that there is a
pronounced minimum near T = 11 (Figure 1.29).
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Fig. 1.29. Comparing sinusoids with sunspot numbers. The minimal error between such
sinusoids and the sunspot oscillations occurs just above T = 11. Note that there are other local
minima both below and above T = 11. In point of fact, sometimes the sunspot cycle peaks a
few months early and sometimes a few months later.
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Note that we have exploited a few speci$c facts about the sunspot numbers in
this analysis. In particular, we have not worried about the relative position of the
sinusoidal model. That is, we have not taken the relative phases of the sinusoid
s(n) and the discrete sunspot signal w(n) into account. Could a slightly shifted
sinusoid result in a smaller error term? This is indeed quite a likely possibility,
and we avoid it for two reasons. First, it turns the minimization of the error term
into a two-dimensional problem. This is a practical, application-oriented discus-
sion. Although we want to explain the technical issues that arise in signal analysis
problems, we do not want to stray into two-dimensional problems. Our focus is
one-dimensional—signal analysis, not image analysis—problems. In fact, with
more powerful tools, such as the discrete Fourier transform (Chapter 7), we we
can achieve a frequency domain analysis in one dimension that handles the
relative phase problem.

1.5.3.3 Speech. Scientists and engineers have long attempted to build commer-
cial speech recognition products. Such products now exist, but their applicability
remains limited. Computers are so fast, mathematics so rich, and the investigations
so deep: How can there be a failure to achieve? The answers seem to lie in the fun-
damental differences between how signal analyzing computers and human minds—
or animal minds in general, for that matter—process the acoustical signals they
acquire. The biological systems process data in larger chunks with a greater applica-
tion of top-down, goal-directed information than is presently possible with present
signal analysis and arti$cial intelligence techniques.

An interesting contrast to speech recognition is speech generation. Speech syn-
thesis is in some sense the opposite of recognition, since it begins with a structural
description of a signal—an ASCII text string, for instance—and generates speech
sounds therefrom. Speech synthesis technology has come very far, and now at the
turn of the century it is found in all kinds of commercial systems: telephones, home
appliances, toys, personal computer interfaces, and automobiles. This illustrates the
fundamental asymmetry between signal synthesis and analysis. Speech recognition
systems have become increasingly sophisticated, some capable of handling large
vocabularies [57–59]. In recent years, some of the recognition systems have begun
to rely on arti$cial neural networks, which mimic the processing capabilities of
biological signal and image understanding systems [60].

To begin to understand this fundamental difference and some of the daunting
problems faced by speech recognition researchers, let us consider an example of
digitized voice (Figure 1.30). Linguists typically classify speech events accord-
ing to whether the vocal cords vibrate during the pronunciation of a speech
sound, called a phone [61]. Phones are speech fragments. They are realizations
of the basic, abstract components of a natural language, called phonemes. Not all
natural languages have the same phonemes. Speakers of one language some-
times have extreme dif$culties hearing and saying phonemes of a foreign tongue.
And within a given language, some phonemes are more prevalent than others.
The most common strategy for speech recognition technology is to break apart a
digital speech sample into separate phones and then identify phonemes among
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them [59, 62]. The speech fragment of Figure 1.30 contains $ve phonemes.
Sometimes the preliminary sequence of phonemes makes no sense; a sophisti-
cated algorithm may merge or further segment some of the phones for a better
result. A higher-level process uses the phoneme stream to extract whole words.
Perhaps some posited word does not $t the application’s context. Still higher-
level algorithms—and at this point the application has removed itself from sig-
nal processing and analysis proper to the realm of arti$cial intelligence—may
substitute one phoneme for another to improve the interpretation. This is called
contextual analysis. Although we will consider speech analysis in more detail in
later chapters, topics such as contextual analysis blend into arti$cial intelligence,
and are outside the scope of our presentation. It is nevertheless interesting to
note that computers are generally better than humans at recognizing individual
phonemes, while humans are far superior when recognizing complete words [63],
a hint of the power of contextual methods.

Linguists separate phonemes into two categories: voiced and unvoiced, according
to whether the vocal cords vibrate or not, respectively. Vowels are voiced, and it
turns out that a frequency-domain description helps to detect the presence of a
vowel sound. Vowel sounds typically contain two sinusoidal components, and one
important early step in speech processing is to determine the frequency components
of the signal. We can see this in a digital speech sample of a vowel (Figure 1.31).
There are clearly two trends of oscillatory behavior in the signal.

Thus, depending upon the relative strength of the two components and upon their
actual frequency, a frequency domain description can identify this phone as the /u/
phoneme. There are complicating factors of course. The frequency components
change with the gender of the speaker. And noise may corrupt the analysis. Never-
theless, a frequency-domain description is an important beginning point in phoneme
recognition.
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Fig. 1.30. A digitized voice signal, the word “greasy”. The sampling rate is 16 kHz. It is
dif$cult, even to the trained eye, to recognize the spoken content of a signal from its time-
domain signal values.
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1.5.4 Time and Frequency Combined

Until we develop the formal theory for the frequency analysis of signals—the
Fourier transform, in particular—we continue to illustrate signals in terms of their
time-domain values. We can nonetheless identify the oscillatory components by
inspection. Parts of a given signal resemble a sinusoid of a given frequency. Some-
times the oscillations continue throughout the time span of the signal. For such sig-
nals, the Fourier transform (Chapters 5 and 6, and introduced from a practical
standpoint in Chapter 4) is the appropriate tool.

Sometimes, however, the oscillatory components die out. This makes the game
interesting, because our ordinary sinusoidal models continue oscillating forever. We
can arbitrarily limit the time domain extent for our sinusoidal models, and this hap-
pens to be effective for applications such as speech analysis. Special mathematical
tools exist that can decompose a signal into a form that exposes its frequency com-
ponents within distinct time intervals. Among these tools is the Gabor transform,
one of several time-frequency transforms that we explore in Chapter 10. Until the
theoretical groundwork is laid for understanding these transforms, however, we
must content ourselves with intuitive methods for describing the frequency content
of signals.

Let us also remark that frequency-domain methods have been extensively
explored in electrocardiography and electroencephalography—applications we con-
sidered at the beginning of the chapter. This seems a natural approach for the ECG,
since the heartbeat is a regular pulse. Perhaps surprisingly, for heartbeat irregulari-
ties, frequency-domain techniques have been found to be problematic. In EEG
work, the detection of certain transients and their development into regular waves is
important for diagnosing epilepsy. And here again frequency-domain tools—even
those that employ an explicit mixed time-frequency analysis strategy—do not
address all of the dif$culties [35, 64–66]. Like problems arise in seismic signal
interpretation [67, 68]. In fact, problems in working with time-frequency analysis
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Fig. 1.31. A vowel phoneme, the sound “u”, sampled at 8 kHz. Note the two sinusoids in the
time-domain trace. The lower frequency component has a higher amplitude. Principal fre-
quency components are at approximately 424 Hz and at 212 Hz.
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methods for seismic soundings analysis in petroleum prospecting led to the discov-
ery of the scale-based wavelet transform in the mid-1980s [69].

Researchers have thus begun to investigate methods that employ signal shape
and scale as a tool, rather than frequency. Unlike the sinusoidal components that are
the basis for a frequency-domain signal description, the components for a scale-
based description are limited in their time-domain extent. The next section consid-
ers several special signal classes, among them several types which are time-limited.
Of these, the $nite-energy signals are particularly attractive, as later chapters dem-
onstrate, for signal descriptions based on scale.

1.6 SPECIAL SIGNAL CLASSES

This section covers some special signal classes: $nitely supported signals, even and
odd signals, absolutely summable signals, $nite energy signals, and $nite average
power signals. The $nite-energy signals are by far the most important. This signal
class has a particularly elegant structure. The $nite energy signals are usually at the
center of theoretical signal processing and analysis discussions.

It is from such signal families that the notion of a scale-domain description of a
signal arises. A scale-domain description decomposes a signal into parts based on
shape over a given length of time. All of the parts contain the same shape, even
though the time-domain extent of the shape element varies. In order for a shape ele-
ment to be so localized, the component signal must eventually die out; it becomes
zero, or at least effectively zero. Thus, signals that oscillate forever, as do the sinu-
soids, do not directly serve a scale-domain analysis. Signals that diminish near
in$nity, such as Gaussians, Gabor elementary functions, and the like, are used for
scale-domain description.

1.6.1 Basic Classes

Useful distinguishing properties of signals are their symmetry and their behavior
near in$nity.

1.6.1.1 Even and Odd Signals. One of the important characteristics of a sig-
nal is its symmetry. Symmetries allow us to simplify the description of a signal; we
only need to know about the shape of the signal over some restricted domain.
Uncovering symmetries can also be a $rst step to decomposing a signal into constit-
uent parts. For brevity, this section primarily discusses discrete signals, but for ana-
log signals, similar de$nitions and properties follow easily.

De$nition (Symmetry, Even and Odd Signals). A discrete signal x(n) is symmet-
ric about the time instant n = p if x(p + n) = x(p − n) for all . And x(n) is anti-
symmetric about the time instant p if x(p + n) = − x(p − n) for all nonzero . A
discrete signal x(n) is even if it is symmetric about n = 0. Similarly, if x(n) is anti-
symmetric about n = 0, then x is odd.

n Z∈
n Z∈
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Corresponding de$nitions exist for symmetries of analog signals x(t).

De$nition (Even and Odd Part of Signals). Let x(n) be a discrete signal. Then
the even part of x(n) is

. (1.63a)

The odd part of x(n) is

. (1.63b)

There are corresponding de$nitions for the even and odd parts of analog signals as
well.

Proposition (Even/Odd Decomposition). If x(n) is a discrete signal, then

(i) xe(n) is even;

(ii) xo(n) is odd;

(iii) x(n) = xe(n) + xo(n).

Proof: Exercise. ■

Examples. sin(t) is odd; cos(t) is even; and the Gaussian, gµ,σ(t) of mean µ and
standard deviation σ (1.14), is symmetric about µ.

Of course, some signals are neither even nor odd. For complex-valued signals,
we often look at the real and imaginary components for even and odd symmetries.

1.6.1.2 Finitely Supported Signals. The set of time values over which a
signal x is nonzero is called the support of x. Finitely supported signals are zero
outside some $nite interval. For analog signals, a related concept is also useful—
compact support.

De$nition (Finite Support). A discrete signal x(n) is $nitely supported if there
are integers M < N such that x(n) = 0 for n < M and n > N.

If x(n) is $nitely supported, then it can be speci$ed via square brackets notation:
, where x(n) = kn and .

For analog signals, we de$ne the concept of $nite support as we do with discrete
signals; that is, x(t) is of $nite support if it is zero outside some interval [a, b] on the
real line. It turns out that our analog theory will need more specialized concepts
from the topology of the real number line [44, 70].
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De$nition (Open and Closed Sets, Open Covering, Compactness). A set 
is open if for every , there is an open interval (a, b) such that .
A set is closed if its complement is open. An open covering of a   is a family
of open sets  such that . Finally, a  set  is compact if
for every open covering of S, , there is a $nite subset that also
contains S:

, (1.64)

for some .

De$nition (Compact Support). An analog signal x(t) has compact support if
  is compact. 

It is easy to show that a ($nite) sum of $nitely supported discrete signals is still
of $nite support; that is, the class of $nitely supported signals is closed under addi-
tion. We will explore this and other operations on signals, as well as the associated
closure properties in Chapters 2 and 3. The following theorem connects the idea of
compact support for analog signals to the analogous concept of $nite support for
discrete signals [44, 70].

Theorem (Heine–Borel).  is compact if and only if it is closed and con-
tained within some $nite interval [a, b] (that is, it is bounded).

Proof:  The exercises outline the proof. ■

1.6.2 Summable and Integrable Signals

Compact support is a very strong constraint on a signal. This section introduces the
classes of absolutely summable (discrete) and absolutely integrable (analog) sig-
nals. Their decay is suf$ciently fast so that they are often neglible for large time val-
ues. Their interesting values are concentrated near the origin, and we can consider
them as having localized shape.

De$nition (Absolutely Summable Signals). A discrete signal x(n) is absolutely
summable (or simply summable) if the sum of its absolute values is $nite:

. (1.65)

Another notation for this family of discrete signals is l1. Finite support implies
absolutely summability. 
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De$nition (Absolutely Integrable Signals). A signal x(t) is absolutely integrable
(or simply integrable) if the integral of its absolute value over R is $nite:

. (1.66)

Other notations for this analog signal family are L1 or L1[R]. Signals that are inte-
grable of an interval [a, b] are in L1[a, b]. They satisfy

. (1.67)

1.6.3 Finite-Energy Signals

The most important signal classes are the discrete and analog $nite energy signals.

De$nition (Finite–Energy Discrete Signals). A discrete signal x(n) has $nite
energy or is square-summable if

. (1.68)

Another notation for this family of discrete signals is l2. Note that a discrete signal
that is absolutely summable must also be $nite energy. We require the square of the
absolute value |x(n)|2 in (1.68) to accomodate complex-valued signals.

De$nition (Finite-Energy Analog Signals). An analog signal x(t) is $nite-energy
(or square-integrable) if

(1.69)

Alternative names for this family are L2 or L2[R]. L1[a, b] signals satisfy

(1.70)

The term “$nite-energy” has a physical meaning. The amount of energy required to
generate a real-world signal is proportional to the total squares of its values. In clas-
sical electromagnetic theory, for example, a radio wave carries energy that is
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proportional to the sum of the squares of its electric and magnetic $elds integrated
over the empty space through which the $elds propagate.

Discrete and analog $nite-energy signals are central to the later theoretical devel-
opment. The next two chapters generalize the concept of a vector space to in$nite
dimensions. A discrete signal is like a vector that is in$nitely long in both positive
and negative directions. We need to justify mathematical operations on signals so
that we can study the processes that operate upon them in either nature or in engi-
neered systems. The goal is to $nd classes of signals that allow in$nite support, yet
possess all of the handy operations that vector space theory gives us: signal sums,
scalar multiplication, inner (dot) product, norms, and so forth.

1.6.4 Scale Description

Only recently have we come to understand the advantages of analyzing signals by
the size of their time-domain features. Before the mid-1980s, signal descriptions
using frequency content predominated. Sometimes the frequency description was
localized, but sometimes these methods break down. Other applications naturally
invite an analysis in terms of the feature scales. At a coarse scale, only large features
of the signal are evident. In a speech recognition application, for example, one does
not perform a frequency decomposition or further try to identify phonemes if a
coarse-scale inspection of the signal reveals only the presence of low-level back-
ground noise. At a $ner scale, algorithms separate words. And at even higher reso-
lution, the words may be segmented into phonemes that are $nally subjected to
recognition efforts. Although a frequency-domain analysis is necessary to identify
phonemes, therefore, some kind of scale-domain analysis may be appropriate for
the initial decomposition of signal. 

Figure 1.32 shows an example from image analysis. One-dimensional analysis is
possible by extracting lines from the image. In fact, many image analysis applica-
tions approach the early segmentation steps by using one-dimensional methods at a
series of coarse scales. The time-consuming, two-dimensional analysis is thus post-
poned as long as possible.

1.6.5 Scale and Structure

Signal description at many scales is one of the most powerful methods for exposing
a signal’s structure. Of course, a simple parsing of a signal into time-domain subsets
that do and do not contain useful signal represents a structural decomposition. How-
ever, when this type of signal breakdown is presented a different scales, then an
arti$cial intelligence algorithm can home in on areas of interest, perform some goal-
directed interpretation, and proceed—based upon the coarse scale results—to focus
on minute details that were ignored previously. Thus, the structural description of a
signal resembles a tree, and this tree, properly constructed, becomes a guide for the
interpretation of the signal by high-level algorithms.
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Fig. 1.32. A butter#y and a scanning electron microscope (SEM) teach us the concept of
scale. The first image (a), which looks like a butter#y wing is taken at a magni$cation of 9×.
(b) The SEM, at a power of 330×, reveals a scaly pattern. (c) At 1700× the scales appear to
possess striations. (d) This con$rms the existence of striations at 8500× and hints of small-
scale integuments between the principal linear structures. (e) This exposes both the coarse-
scale striations and the $ne-scale integuments between them at 40,000× magni$cation.
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Two methods of structural description rely on signal shape models:

(i) Using self-similar shape models over a range of scales

(ii) Using a library of special shapes

Applications using self-similar shape models have begun to draw the attention of
researchers in recent years. This approach makes possible a fractal analysis of a sig-
nal pattern. A fractal application attempts to understand to what degree the same
shape occurs within a signal at different scales.

Sometimes, naturally occurring signals unexpectedly reveal fractal properties
(Figure 1.33). This signal monitors neurons in the auditory pathway of an anesthe-
tized cat. The signal’s independent variable is not temporally dimensioned. Rather,
each signal instant represents the next neural event, and the value of the signal is the
time interval between such events. This twist in the conventional way of sketching a
signal is key to arriving at the fractal behavior of the neuron.

Representing the signal in this special way provides insight into the nature of the
neural process [71]. The discharge pattern reveals fractal properties; its behavior at
large scales (in this case, over a span of many discharge events) resembles its behav-
ior over small scales. Recently, signal analysts have brought their latest tools—
among them the wavelet transform (Chapter 11), which breaks down a signal
according to its frequency content within a telescoping family of scales—to bear on
fractal analysis problems [53, 69].
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Fig. 1.33. Fractal behavior of an auditory neuron. From a single neuron in the hearing path-
ways of an anesthesized cat, researchers recorded the time intervals between successive neu-
ral discharge events in the presence of a tone stimulus. Note in particular that the independent
variable represents not the #ow of time or an ordering by distance but rather an enumeration
of successive neural discharge events.
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1.7 SIGNALS AND COMPLEX NUMBERS

Complex numbers are useful for two important areas of signal theory:

(i) Computation of timing relationships (phase) between signals;

(ii) Studying the frequency content of signals.

1.7.1 Introduction

To understand why complex numbers are computationally useful, let us consider the
superposition of two sinusoidal waves. Earlier, we considered this important case. It
occurs in electrical circuits, where two voltages are summed together; in speech rec-
ognition, where vowel phonemes, for example, are represented by a sinusoidal sum;
and in optics, where two optical wavefronts combine and interfere with one another
to produce an interference pattern. Introducing complex numbers into the mathe-
matical description of signal phenomena makes the analysis much more tractable
[72].

Let . An awkward
geometric argument showed earlier that if , then x(t) remains sinu-
soidal. Why should a purely algebraic result demand a proof idea based on rotating
parallelograms? Complex numbers make it easier. We let x1(t) and x2(t) be the real
parts of the complex exponentials:  and ,
where

, (1.71a)

. (1.71b)

Then . We calculate 

(1.72)

Notice that the sum (1.72) has radial frequency Ω radians per second; the exp(jΩt)
term is the only one with a time dependence. To calculate ||z(t)||, note that

, and so . As before, we $nd

. (1.73)

Thus, complex arithmetic takes care of the phase term for us, and this is one reason
why complex arithmetic $gures in signal theory. Of course, we understand that
only the real part of the complex-valued signal model corresponds to any physical
reality.
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Now let us consider complex-valued functions, , and develop the
ideas of calculus for them. Such functions may at $rst glance appear to bear a strong
resemblance to signals de$ned on pairs of real numbers: , for exam-
ple. To pursue the idea for a moment, we can let z = x + jy, where j2 = −1. Then,
f(z) = f(x + jy), and f is a function of the real pair (x, y). The function f is complex-
valued, of course, but we can take its real and imaginary parts: f(z) = Real[f(x + jy)]
+ jImag[f(x + jy)]. Now f(z) looks suspiciously like a sum of two multidimensional
signals—a sum of two images—one of which is scaled by the imaginary square root
of − 1. If we were to de$ne differentiation of f(z) with respect to x and y, where z =
x + jy, then this would indeed be the case; our theory of complex analysis would
look a lot like ordinary real analysis. But when we de$ne differentiation with
respect to the complex variable z, what a huge difference it makes! A seemingly
innocuous distinction about how to de$ne differentiation makes the calculus of
complex variables rich, novel, and powerful.

1.7.2 Analytic Functions

The existence of a derivative is a very special and far-reaching property for a com-
plex function f(z).

De$nition (Differentiation, Derivative). Let  and . Then f  is
differentiable at a point  if the limit,

(1.74)

exists. As in calculus, the limit  is called the derivative of f at z.

De$nition (Analyticity). Let . If there is an R > 0 such that f(z) is differen-
tiable for all at all z such that |w − z| < R, then f  is analytic at w. If f(z) is analytic at
every , then f(z) is analytic in S.

Proposition (Differentiation). Let f and g be differentiable at . Then

(i) f is continuous at z.

(ii) If , then cf is differentiable at z, and .

(iii) f+g is differentiable at z, and .

(iv) fg is differentiable at z, and .

(v) If , then f/g is differentiable at z, and 

. (1.75)
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Proof: As in calculus of a real variable [44]; also see complex analysis texts [73– 75]. 
■

Proposition (Chain Rule).  Let f  be differentiable at  and let g be differen-
tiable at f(z). Then the composition of the two functions, (g ¤ f)(z) = g(f(z)), is also
differentiable, and (g ¤ f)�(z) = g�(f(z))f �(z).

Proof: Refer to Refs. [44] and [73–75].   ■

Power series of a complex variable are useful for the study of discrete systems, sig-
nal processing entities that modify discrete signals. A system takes a signal as an
input and produces another signal as an output. A special complex power series,
called the z-transform of a signal, is studied in Chapters 8 and 9.

De$nition (Power and Laurent Series). A complex power series is a sum of
scaled powers of the complex variable z:

, (1.76a)

where the an are (possibly complex) coef$cients. Sometimes we expand a complex
power series about a point :

. (1.76b)

A Laurent series is two-sided:

 (1.77a)

and can be expanded about :

. (1.77b)

[The z-transform of x(n) is in fact a Laurent expansion on the values of the discrete
signal: x(n) = an in (1.77a).]

We de$ne special complex functions in terms of power series:

; (1.78a)

; (1.78b)

z C∈

anz
n

n 0=

∞

∑

w C∈

an z w–( )n

n 0=

∞

∑

anz
n

n ∞–=

∞

∑

w C∈

an z w–( )n

n ∞–=

∞

∑

z( )sin z z
3

3!
-----– z

5

5!
----- z

7

7!
-----– …+ +=

z( )cos 1 z
2

2!
-----– z

4

4!
----- z

6

6!
-----– …+ +=



SIGNALS AND COMPLEX NUMBERS 73

and the most important function in mathematics,

. (1.79)

Their convergence criteria are similar to those of real power series. The following
theorem says that a convergent power series is differentiable and its derivative may
be computed by termwise differentiation.

Proposition (Power Series Differentiation). Suppose that

(1.80)

converges in S = {z : |z− w| < R}. Then p(z) is analytic (differentiable at every
point) inside S, and

. (1.81)

Proof: References [44] and [73–75]. ■

The next theorem suggests that complex function calculus is very different from
conventional real variable theory [73–75].

Theorem (Cauchy–Riemann Equations). Suppose that f(z) = u(x, y) + jv(x, y),
where u and v are the real and imaginary parts, respectively, of f(z). If f is differen-
tiable at z = w, then the partial derivative , and  all
exist; furthermore,

, (1.82a)

. (1.82b)

Proof:  We can compute the derivative  in two different ways. We can
approach w along the real axis or along the imaginary axis. Thus, we see that the fol-
lowing limit gives  when we approach w from values w + h, where h is real:

(1.83a)
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But  can also be computed by taking the limit along the imaginary axis; we
now approach w from values w+jk, where k is real. Consequently,

(1.83b)

The limit (1.83a) is

, (1.84a)

whereas (1.83b) is

. (1.84b)

Since  has to be equal to both limits, the only way to reconcile (1.84a) and
(1.84b) is to equate their real and imaginary parts, which gives (1.82a)–(1.82b). ■

Remark. The Cauchy–Riemann equations imply that some surprisingly simple
complex functions, f(z) = f(x + jy) = x − jy, for example, are not differentiable.

The converse to the theorem requires an additional criterion on the partial deriva-
tives, namely that they be continuous.

Theorem (Cauchy–Riemann Converse). Let f(z) = u(x, y) + jv(x, y), where u
and v are the real and imaginary parts, respectively, of f(z). Furthermore, let
the partial derivatives , and  all exist and be continu-
ous and satisfy the Cauchy–Riemann equations (1.82a)–(1.82b) at z = w. Then

 exists.

Proof: Not too dif$cult [73–75]. ■

Corollary. Let f(z) = u(x, y) + jv(x, y), where u and v are the real and imaginary
parts, respectively, of f(z). If  and  exist, then the partial derivatives of
u and v obey the Laplace equation:

. (1.85)

Proof: By the Cauchy–Riemann theorem, u and v satisfy (1.82a)–(1.82b). Apply-
ing the theorem again to the deriviatives, and using the fact from calculus that
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mixed partial derivatives are equal where they are continuous, we $nd

(1.86a)

Similarly,

. (1.86b)

The Laplace equations for both u and v follow. ■

This is an intriguing result. Complex differentiability leads to a second-order
partial differential equation. That is, if a function f(z) is twice differentiable, then it
is harmonic in a set . Thus, complex differentiation is already seen to be a
much more restricted condition on a function than real differentiation. Laplace’s
equation appears in many applications of physics and mechanics: heat conduction,
gravitation, current #ow, and #uid #ow, to name a few. The import of the corollary
is that complex functions are a key tool for understanding such physical systems.
For applications to the theory of #uid #ow, for example, see Ref. 75.

Even stronger results are provable. The next section outlines the development of
complex integration theory. It seems quite backwards to prove theorems about dif-
ferentiation by means of integration theory; but in the exotic realm of complex
analysis, that is exactly the course we follow. Using contour integration in the com-
plex plane, it is possible to prove that an analytic function (differentiable in a
region) has continuous derivatives of all orders. That is, every analytic function
expands in a Taylor series.

1.7.3 Complex Integration

This section continues our sweep through complex analysis, turning now to integra-
tion in the complex plane. Given the results of the previous section, one might imag-
ine that complex integration should also have special properties unlike anything in
real analysis. Such readers will not be disappointed; the theory of complex integra-
tion is even more amazing than differentiation.

De$nition (Contour). A curve in the complex plane is a function ,
where . We say that s parameterizes its range. If the real and imaginary
parts of s(t) are continuously differentiable, then s is called an arc. If s(a) = s(b),
then the curve s is closed. And if s(t1) = s(t2) on (a, b) implies t1 = t2, then the curve
s is simple. A sequence of arcs {sn(t) : [an, bn] → C : 1 ≤ n ≤ N} is a contour if
sn(bn) = sn+1(an+1), for n = 1, 2, . . . , N − 1.

Remarks. A curve is a complex-valued analog signal, de$ned on a closed interval
of the real line. An arc is a continuously differentiable, complex-valued analog sig-
nal. A simple curve does not intersect itself, save at its endpoints. We often denote
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an arc in the complex plane by its range, C = {z : z = s(t), for some a ≤ t ≤ b}, and
the de$ning curve function is implicit. Our purpose is to de$ne integration along a
contour [76].

De$nition (Contour Integral). If the complex function f(z) is continuous in a
region containing an arc C, then the contour integral of f over C is de$ned by

, (1.87)

where s(t) is the function that parameterizes C.

Since f(z), s(t), and  are all continuous, the integrand in (1.87) is Riemann
integrable. The function  is complex-valued; we therefore perform the
real integration (that is, with respect to t) twice, once for the real part and once for
the imaginary part of the integrand. Observe that the change of integration variable,

 and , converts the integral’s de$nition with respect to z in
(1.87) to one with respect to t.

The main result of this section is Cauchy’s integral theorem. There is an interpre-
tation of contour integration that provides an intuitive link to the familiar theory of
integration from calculus and an informal argument for the theorem [77]. Readers
seeking rigor and details will $nd them in the standard texts [73–76]. We $rst con-
sider the case where C is a circle around the origin, which is a simple, closed arc.
Then we shall argue the extension to general arcs, by supposing the arcs to be the
limit of a local tiling of the region by adjacent triangles. From this, the extension to
contours, which are a sequence of arcs, follows directly.

Theorem (Cauchy Integral for a Circle). Suppose f(z) is analytic in a region con-
taining the closed circle C, with radius R and center z = (0, 0). Then,

(1.88)

Proof: In calculus courses [44], Riemann integrals are the limits of Riemann sums.
For the case of a contour integral, such a sum is a limit:

. (1.89)

where  parameterizes the arc C; a = t1 < t2 < ⋅ ⋅ ⋅ < tN < tN+1 = b
partitions [a, b]; zn = s(tn); and wn = s(t) for some . Suppose further
that we  select  the tn so that |zn+1 − zn| = εN = Length(C)/N = LC /N. Then  we  have
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(1.90)

Note that as , we have , and  approaches a
complex value whose real and imaginary parts are the components of the unit tan-
gent vector to C at zn, T(zn). Since C has radius R, T(zn) = jz/R and LC = 2πR.
Therefore, the $nal sum in (1.90) approaches .
We conclude

. (1.91)

Now suppose m = − 1, so that f(z) = z-1. Then

(1.92)

To show the other possibility in (1.88), we let  and $nd

. (1.93)

But, the average of all values zm+1 over the circle |z| = R is zero, which demon-
strates the second possibility of (1.88) and concludes the proof. ■

Note that the informal limit (1.89) is very like the standard calculus formulation
of the Riemann integral. The de$nition of the contour integral is thus a plausible
generalization to complex-valued functions.

We will apply this result in Chapter 8 to derive one form of the inverse z-
transform. This produces discrete signal values x(n) from the complex function X(z)
according to the rule:

 . (1.94)

The Cauchy residue theorem leads to the following concepts.

De$nition (Poles and Zeros). A complex function f(z) has a pole of order k at z =
p if there is a g(z) such that f(z) = g(z)/(z − p)k, g(z) is analytic in an open set con-
taining z = p, and . We say that f(z) has a zero of order k at z = p if there is
a g(z) such that f(z) = g(z)(z − p)k, g(z) is analytic in a region about z = p, and
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De$nition (Residue). The residue of f(z) at the pole z = p is given by

(1.95)

where k is the order of the pole.

Theorem (Cauchy Residue). Assume that f(z) is a complex function, which is
analytic on and within a curve C; ; and f(z) is $nite (has no pole) at z = a.
Then

(1.96)

More generally, we state the following theorem.

Theorem (Cauchy Residue, General Case). Assume that C is a simple, closed
curve;  for  and f(z) is analytic on and within C, except for poles
at each of the am. Then

(1.97)

Proof: References 73–76. ■

1.8  RANDOM SIGNALS AND NOISE

Up until now, we have assumed a close link between mathematical formulas or
explicit rules and our signal values. Naturally occurring signals are inevitably cor-
rupted by some random noise, and we have yet to capture this aspect of signal pro-
cessing in our mathematical models. To incorporate randomness and make the
models more realistic, we need more theory.

We therefore distinguish between random signals and deterministic signals.
Deterministic signals are those whose values are completely speci$ed in terms of
their independent variable; their exact time domain description is possible. The sig-
nal may be discrete or continuous in nature, but as long as there is a rule or formula
that relates an independent variable value to a corresponding signal value, then the
signal is deterministic. In contrast, a random signal is one whose values are not
known in terms of the value of its independent variable. It is best to think of time-
dependent signals to understand this. For a random signal, we cannot know the
value of the signal in advance; however, once we measure the signal at a particular
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time instant, only then do we know its value. Deterministic signals are good for car-
rying information, because we can reliably insert and extract the information we
need to move in a reliable fashion. Nature is not kind, however, to our designs. A
random component—for example, a measurement error, digitization error, or ther-
mal noise—corrupts the deterministic signal and makes recovery of the signal infor-
mation more dif$cult.

This situation often confronts electrical communication engineers. There are
many sources of noise on telephone circuits, for example. If the circuits are physi-
cally close, electromagnetic coupling between them occurs. Faint, but altogether
annoying, voices will interfere with a conversation. One might argue that this is
really a deterministic interference: someone else is deliberately talking, and indeed,
if the coupling is strong enough, the other coversation can be understood. However,
it is in general impossible to predict when this will occur, if at all, and telephony
engineers allow for its possibility by considering models of random signal interfer-
ence within their designs. Thermal noise from the random motion of electrons in
conductors is truly random. It is generally negligible. But it becomes signi$cant
when the information-bearing signals are quite weak, such as at the receiving end of
a long line or wireless link.

An important signal analysis problem arises in communication system design. In
a conversation, a person speaks about 35% of the time. Even allowing that there are
two persons talking and that both may speak at once, there is still time available on
their communication channel when nobody speaks. If circuitry or algorithms can
detect such episodes, the channel can be reused by quickly switching in another
conversation. The key idea is to distinguish voice signals from the channel’s back-
ground noise. There is one quirk: When the conversation is broken, the telephone
line sounds dead; one listener or the other invariably asks, “Are you still there?” In
order to not distress subscribers when the equipment seizes their channel in this
manner, telephone companies actually synthesize noise for both ends of the conver-
sation; it sounds like the connection still exists when, in fact, it has been momen-
tarily broken for reuse by a third party. This is called comfort noise generation. A
further problem in digital telephony is to estimate the background noise level on a
voice circuit so that the equipment can synthesize equivalent noise at just the right
time.

Now let us provide some foundation for using random signals in our develop-
ment. Our treatment is quite compact; we assume the reader is at least partly famil-
iar with the material. Readers can gain a deeper appreciation for discrete and
continuous probability space theory from standard introductory texts [78–81]. Ran-
dom signal theory is covered by general signal processing texts [13, 14] and by
books that specialize in the treatment of random signals [82, 83].

1.8.1 Probability Theory

This section introduces the basic principles and underlying de$nitions of probabil-
ity theory, material that should already be familiar to most readers. 
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Consider the noise in the 12-lead electrocardiogram signal. Close inspection
of its trace shows small magnitude jaggedness, roughness of texture, and spiky
artifacts. Variations in the patient’s physical condition and skin chemistry, imper-
fections in the sensors, and #aws in the electronic signal conditioning equipment
impose an element of randomness and unknowability on the ECG’s value at any
time. We cannot know the exact voltage across one of the ECG leads in advance
of the measurement. Hence, at any time t, the voltage across a chosen ECG lead
v(t) is a random variable. All of the possible activities of ECG signal acquisi-
tion constitute the sample space. An event is a subset of the the sample space.
For instance, recording the ECG signal at a moment in time is an event. We
assign numerical likelihoods or probabilities to the ECG signal acquisition
events.

1.8.1.1 Basic Concepts and Definitions. In order that probability and ran-
dom signal theory work correctly, the events must obey certain rules for separating
and combining them.

De$nition (Algebra and σ-Algebra). An algebra over a set Ω is a collection of
subsets of Ω, , with the following properties:

(i) The empty set is in Σ: .

(ii) If , then the complement of A is in Σ: .

(iii) If , then .

A σ-algebra over a set Ω is an algebra Σ with a further property:

(iv) If  for all , then their union is in Σ:

. (1.98)

It is easy to verify that in an algebra Σ, , the union of any $nite set of its ele-
ments is still in Σ, and Σ is closed under $nite intersections. A σ-algebra is also
closed under the intersection of in$nite families of elements as in (1.98).

The probability measure must have certain mathematical properties.

De$nition (Probability Measure). A probability measure on a σ-algebra Σ over Ω
is a function  such that

(i) ;

(ii) P sums on disjoints unions; that is, if , where , and
, when , then

Σ ℘ Σ( )⊆ A : A Ω⊆{ }=

∅ Σ∈
A Σ∈ A′ Σ∈
A B, Σ∈ A B∪ Σ∈

An Σ∈ n N∈

An
n 0=

∞
∪ Σ∈

Ω Σ∈

P: Σ 0 1,[ ]→

P Ω( ) 1=
An: n I∈{ } Σ⊆ I N⊆

An Am∩ ∅= n m≠
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. (1.99)

De$nition (Probability Space). A probability space is an ordered triple (Ω , Σ, P),
where Ω is a set of experimental outcomes, called the sample space; Σ is a σ-alge-
bra over Ω, the elements of which are called events; and P is a probability measure
on Σ. The event  is called the impossible event, and the event Ω is called the cer-
tain event.

Alternative approaches to probability exist. The earliest theories are drawn from
the experiments of early gambler-mathematicians, such as Cardano and Pascal.17

Their dice and card games, run through many cycles—sometimes to the point of
$nancial ruin of the investigator—inspired an alternative de$nition of probability. It
is the value given by the limiting ratio of the number of times the event occurs
divided by the number of times the experiment has been tried:

, (1.100)

where OX,n is the number of observations through n trials where X occurred. This
intuition serves as a foundation for probability. The exercises supply some #avor of
the theoretical development. More widely accepted, however, is the axiomatic
approach we follow here. Soviet mathematicians—notably Kolmogorov18—
pioneered this approach in the 1930s. Through William Feller’s classic treatise [79]
the axiomatic development became popular outside the Soviet Union. Most readers
are probably familiar with this material; those who require a complete treatment
will $nd [78–81] helpful.

1.8.1.2 Conditional Probability. Conditional probability describes experi-
ments where the probability of one event is linked to the occurrence of another.

De$nition (Conditional Probability, Independence). Suppose A and B are two
events. The probability that A will occur, given that B has occurred, is de$ned as

. (1.101)

The quotient P(A|B) is called the conditional probability of event A given B.

17Girolamo Cardano (1501–1576) led a scandalous life as a gambler, but learned enough to found the
theory of probability decades before Fermat and Pascal. Blaise Pascal (1623–1662) was a French mathe-
matician and philosopher. See O. Ore, Cardano, The Gambling Scholar, New York: Dover, 1953; also,
O. Ore, Pascal and the invention of probability theory, American Mathematical Monthly, vol. 67,
pp. 409–419, 1960.
18Andrei Nikolaevich Kolmogorov (1903–1987) became professor of mathematics at Moscow Univer-
sity in 1931. His foundational treatise on probability theory appeared in 1933. 
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B must occur with nonzero probability for the conditional probability P(A|B) to be
de$ned.

De$nition (Independent Events). Suppose A and B are two events. If P(A|B) =
P(A)P(B), then A and B are said to be independent events.

Proposition. If A and B are independent, then

(i) A and ~B are independent;

(ii) ~A and ~B are independent.

Proof: Exercise. ■

Proposition (Total Probability). Suppose  is a partition of Ω and
P(Bn) > 0 for all n. Then for any A,

(1.102)

Proof: , which is a disjoint union.
The de$nition of conditional probability entails

. (1.103)

■

1.8.1.3 Bayes’s Theorem. An important consequence of the total probability
property, known as Bayes’s19 theorem, is central to a popular pattern classi$cation
scheme (Chapter 4).

Theorem (Bayes’s). Suppose  is a partition of Ω and P(Cn) > 0 for
all n. If P(A) > 0 and 

(1.104)

19A friend of Thomas Bayes (1703–1761) published the Nonconformist minister’s theorem in a 1764
paper before the Royal Society of London.
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Proof: The de$nition of conditional probability implies

. (1.105)

■

Example (Phoneme Classi$cation). Consider the application of Bayes’s theorem
to a phoneme classi$cation system. Phonemes fall into a $xed number of classes,
C1, C2, . . . , CN, given by the application domain. There are also a set of signal
features that the application computes for each candidate phoneme. Let us suppose
that there are M features, A1, A2, . . . , AM, and the application design is so well done
that, for any phoneme-bearing signal, it is possible to both reliably distinguish the
phonemes from one another and to assign one of the classes Am as the principal
feature of the signal. A typical feature might be a set of sinusoidal frequencies (for-
mants) that dominate the energy contained in the signal. In any case, we are inter-
ested in the phoneme class Cn to which a given input signal belongs. Suppose that
the dominant feature is A = Am. We calculate each of the probabilities: P(C1|A),
P(C2|A), . . . , P(CN|A). The highest of these probabilities is the answer—the Bayes
classi$cation.

How can we calculate these N probabilities? Evidently, we must know P(Cn)
for each n. But any of the features might be the dominant one within a signal.
Therefore, we must know P(Am|Cn) for each m and n. And, $nally, we must
know P(Am) for each m. A working Bayes classi$er requires many probabilities
to be known in advance. It is possible to develop these statistics, however, a step
called the classi$er training phase. We gather a large, representative body of
speech for the application. If we classify the phonemes manually, in an of#ine
effort, then the relative frequencies of each phoneme can be used in the real-time
application. This gives us P(Cn), . Once we identify a phoneme’s class,
then we $nd its predominant feature. For each phoneme Cn, we calculate the
number of times that feature Am turns out to be its predominant feature, which
approximates P(Am|Cn). Lastly, we compute the number of times that each fea-
ture is dominant and thus estimate P(Am). Now all of the numbers are available
from the training phase to support the execution of the phoneme classi$er on
actual data. The more sample phonemes we process and the more genuinely the
training data re#ects the actual application sources, the better should be our prob-
ability estimates.

It is unfortunately often the case that one cannot discover any predominant fea-
ture from a set of signal data. What we usually encounter is a feature vector a = (a1,
a2, ..., aM), where the am represent numerical values or scores indicating the pres-
ence of each feature Am. We can compute the probability of a vector of features, but
that can only be done after a little more development.
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1.8.2 Random Variables

A random variable is a function that maps events to numerical values.

De$nition (Random Variable). Suppose that (Ω, Σ , P) is a probability space. A
random variable x on Ω is a function , such that for all ,

.

Notation.  or  is standard for the event .
Similarly, we write , , , and so on. Using the properties of a
σ-algebra, we can show these too are events in S. It is also possible to consider
complex-valued random variables, .

De$nition (Distribution Function). Suppose that (Ω, Σ , P) is a probability space
and x is a random variable . Then the probability distribution function,
or simply the distribution function, for x is de$ned by .

Since there is no ordering relation on the complex numbers, there is no distribu-
tion function for a complex-valued random variable. However, we can consider dis-
tribution functions of the real and imaginary part combined; this topic is explored
later via the concept of multivariate distributions.

Proposition (Distribution Function Properties). Let  be a random
variable in the probability space (Ω, Σ , P), and let  be its distribution function.
Then the following properties hold:

(i)  If r < s, then .

(ii)   and .

(iii)  P(x > r) = 1 − Fx(r).

(iv)  .

(v)  .

(vi)  .

(vii)  If Fx (r) is a continuous function of r, then P(x = r) = 0 for all r.

Proof: Exercise [81]. ■

The proposition’s $rst statement (i) is a monotonicity property.
The distribution function of a random variable may be computed by experi-

ment or may be assumed to obey a given mathematical rule. Special mathematical
properties are often assumed for the distribution function; this facilitates mathe-
matical investigations into the behavior of the random variable. One common
assumption is that the distribution function is differentiable. This motivates the
next de$nition.

x : Ω R→ r R∈
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x r> x r= r x s≤<
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x : Ω R→
Fx r( ) P x r≤( )=

x : Ω R→
Fx r( )

Fx r( ) Fx s( )≤
Fx r( )

r ∞→
lim 1= Fx r( )

x ∞→
lim 0=

P r x s≤<( ) Fx s( ) Fx r( )–=
P x r=( ) Fx r( ) Fx r s–( )

s 0> s 0→,
lim–=

P r x s≤ ≤( ) Fx s( ) Fx r t–( )
t 0> t 0→,

lim–=
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De$nition (Density Function). Suppose that (Ω, Σ , P) is a probability space and x
is a random variable on Ω. If Fx(r) is differentiable, then the derivative with respect
to r of Fx(r), denoted with a lowercase letter f,

, (1.106)

is called the probability density function or simply the density function of x.

Only functions with speci$c properties can be density functions. The exercises
explore some speci$c cases.

Proposition (Density Function Properties). Let  be a random vari-
able in the probability space (Ω, Σ , P) with distribution function . Then

(i)    for all .

(ii)

. (1.107)

(iii)

. (1.108)

(iv)

(1.109)

Proof: Property (i) follows from the monotonicity property of the distribution func-
tion. Property (iv) follows from the fundamental theorem of calculus [44], where we
let the lower limit of the integral pass to in$nity in the limit. Properties (ii) and (ii)
derive from (iv) via the distribution function limit properties. ■

In the proposition, (i) and (ii) are the conditions that a general function
 must satisfy in order to be a density function. One may also prove

an existence theorem that constructs a random variable from such a density function
[81]. Random variables divide into two classes: discrete and continuous, based on
the continuity of the distribution function. (There is also a mixed distribution that
has aspects of both, but it is outside our scope.) 

1.8.2.1 Discrete Random Variables. Discrete random variables prevail
within discrete signal theory.
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rd
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De$nition (Discrete Random Variable). The random variable x is discrete if its
distribution function is a step function.

In this case, there is a set , such that m < n implies rm < rn, the
set of half-open intervals [rm, rn) partition R, and Fx(r) is constant on each [rm, rn).

Proposition (Discrete Random Variable Characterization). Let x be a random
variable in the probability space (Ω, Σ , P) with distribution function . Set

. Then, x is discrete if and only if

. (1.110)

Proof: By the de$nition, we see that . This occurs if and
only if . Therefore the sum (1.110) is 

 (1.111)

by the distribution function properties. ■

If the random variable x is discrete, then the Fx(r) step heights approach zero as
 and approach unity as . Because a step function is not differentia-

ble, we cannot de$ne a density function for a discrete random variable as in the pre-
vious section. However, we can separately de$ne the density function for a discrete
random variable as discrete impulses corresponding to the transition points between
steps.

De$nition (Discrete Density Function). Suppose the random variable x is dis-
crete, and its distribution function Fx(r) is constant on half-open intervals [rn, rm)
that partition R. Its density function fx(r) is de$ned:

(1.112)

Example (Dice). Consider an experiment where two fair dice are thrown, such as
at a Las Vegas craps table. Each die shows one to six dots. The probability of any
roll on one die is, given honest dice, 1/6. The throw’s total is the sum, a random
variable x. The values of x can be 2, 12, or any natural number in between. There
are 36 possible rolls, and the probability of the event that either 2 or 12 is rolled is
1/36. Lucky seven is the most common event—with probability 6/36—as it occurs
through the following tosses: (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), or (6, 1). Figure 1.34
shows the distribution function and the density functions for the dice toss.
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Discrete signal theory commonly assumes a density or distribution function for a
random variable. If the density or distribution is unknown, it can be measured, of
course, but that is sometimes impractical. Instead, one typically approximates it by
a distribution that has tractable mathematical properties.

De$nition (Binomial Distribution). Suppose that the discrete random variable x
has . Then x has a binomial distribution of order n if

−2 0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

r

D
is

tr
ib

ut
io

n 
fu

nc
tio

n

Dice roll

(a)

−2 0 2 4 6 8 10 12 14 16
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

r

Dice roll

D
en

si
ty

 fu
nc

tio
n

(b)

Fig. 1.34. Distribution (a) and density functions (b) for tossing a pair of dice.
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there are non-negative values p and q, such that p + q = 1, and

(1.113)

De$nition (Poisson20 Distribution). Suppose the discrete random variable x has
 and a > 0. Then x has a Poisson distribution with

parameter a if

. (1.114)

We cannot know the value that a random variable will assume on an event before the
event occurs. However, we may know enough about the trend of the random vari-
able to be able to specify its average value over time and how well grouped about its
average the random values tend to be. There are a variety of parameters associated
with a random variable; these we calculate from its distribution or density functions.
The most important of these are the mean and standard deviation.

De$nition (Discrete Mean). If the random variable x is discrete and
 then the mean or expectation of x, written E[x], is 

. (1.115)

De$nition (Discrete Variance, Standard Deviation). Let the random variable x be
discrete, , and µ = E[x]. Then the variance of x, , is

. (1.116)

The standard deviation of x is the square root of the variance: .

1.8.2.2 Continuous Random Variables. The distribution function may have
no steps.

De$nition (Continuous Random Variable). The random variable x is continuous
if its distribution function Fx(r) is continuous.

Proposition (Continuous Random Variable Characterization). Let x be a con-
tinuous random variable in the probability space (Ω, Σ, P) with distribution function

. Then,  for all .

20This distribution was $rst described in 1837 by French mathematician Siméon-Denis Poisson (1781–
1840).
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Proof: By continuity . But the distribution function

properties entail that . So, . 

■

Assuming a particular form of the density function and then integrating it to get a
distribution is common in analytical work. The only restrictions are that the density
function must be non-negative and that its integral over the entire real line be unity.
This implies that density functions for continuous random variables are in fact abso-
lutely integrable. There are many distribution functions useful for analog signal
theory, but the normal or Gaussian distribution is of paramount importance.

De$nition (Normal Distribution). The random variable x is normally or Gaussian
distributed if its probability density function is of the form

(1.117)

where µ and σ are the mean and standard deviation of the Gaussian (1.117), respec-
tively.

De$nition (Exponential Distribution). The random variable x has an exponential
distribution with parameter a > 0 if its density function is of the form

(1.118)

De$nition (Gamma Distribution). The random variable x has a gamma distribu-
tion with scale parameter a > 0 and shape parameter b > 0 if its density function is
of the form

(1.119)

where Γ(t) is the gamma function [80]:

(1.120)

de$ned for t > 0.

De$nition (Continuous Mean). If the random variable x is continuous and has
density function fx(r) and if xfx(r) is in L1(R), then the mean or expectation of x,
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written E[x], is

(1.121)

De$nition (Continuous Variance, Standard Deviation). Suppose that the ran-
dom variable x is continuous, xfx(r) is in L1(R), µ = E[x], and x2fx(r) is in L1(R).
Then the variance of x, , is

(1.122)

1.8.2.3 Multivariate Distributions. This section considers the description of
random vectors, entities that consist of two or more random components. Much of
the development follows from a direct, albeit somewhat messy, extension of the
ideas from the single random variables.

De$nition (Multivariate Distributions). Let x and y be random variables in the
probability space (Ω, Σ , P). Their joint distribution function is de$ned by

. This generalizes to an arbitrary $nite number of
random variables, r = (r1, r2, . . . , rM). For continuous random variables, the joint
density of x and y is

. (1.123)

We can de$ne joint probability density functions for families of random variables
too. This requires vector and matrix formulations in order to preserve the properties
of density and distribution functions. For example, for the multivariate normal den-
sity, we have the following de$nition.

De$nition (Joint Normal Density). Suppose that X = (x1, x2, . . . , xM) is a vector
of M random variables on the probability space (Ω, Θ, P). We de$ne the joint nor-
mal density function fX(r) by

, (1.124)

where r = (r1, r2, . . . , rM) is a vector of length M; µ = (E[x1], E[x2], . . . , E[xM]) is
the vector of means; (r − µ)T is the transpose of r − µ; Σ is the  covariance
matrix for X, ; det(Σ) is its determinant;
and its inverse is Σ−1.
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Earlier we considered how to apply Bayes’s theorem to the problem of signal
classi$cation. However, we noted that it is not easy to distinguish signals by one
feature alone, and our one-dimensional statistical classi$cation breaks down. Now
let’s consider how to use statistical information about feature vectors and classes of
signals to develop statistical discriminant functions. Suppose that we know the a
priori probability of occurrence of each of the classes Ck, P(Ck). Suppose further
that for each class Ck we know the probability density function for the feature vector
v, p(v |Ck). The conditional probability P(v |Ck) provides the likelihood that class k
is present, given that the input signal has feature vector v. If we could compute
P(Ck|v) for each Ck and v, then this would constitute a statistical basis for selecting
one class over another for categorizing the input signal f.

We can restate Bayes’s theorem for the multivariate case as follows.

Theorem (Multivariate Bayes). Suppose that for K signal classes Ck we know the
a priori probability of occurrence of each of the classes P(Ck) and the probability
density function for the feature vector v, P(v |Ck). Then

, (1.125)

where p(v) is the probability density function for feature vector v.

1.8.3 Random Signals

The ideas of random variables, their distribution and density functions, and the prin-
cipal parameters that describe them are the basis for a de$nition of a random signal.

When we say that a signal is random, that is not to say that we know nothing of
its values; in fact, we might know that the value of the signal at a time instant is
almost certain to be in a given range. We might know that the signal remains, at
other times, in some other range. It should be possible to provide a table that
speci$es the possible ranges of the signal and furnishes rough measures for how
likely the signal value is to fall within that range. Every time the signal is measured
or evaluated at a time, the signal is different, but we have an approximate idea of
how these values behave. We can $nd one set of signal values, one instance of the
random signal, but the next instance will differ. Thus, our concept of a random sig-
nal is embodied by a family of signals, and each member of the family represents a
possible measurement of the signal over its domain. In probabilty theory, this is
known as a random or stochastic process.

De$nition (Random Signal). Suppose that (Ω , Σ, P) is a probability space. Let
 be a family of random variables on (Ω , Σ, P) indexed by the set

T. Then X is a stochastic process or random signal. If the index set T is the integers,
then we say that X is a discrete random signal. If T is the real numbers, then we call
X an analog random signal.
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1.9 SUMMARY

There are two distinct signal categories: those with a continuous independent vari-
able and those with a discrete independent variable. Natural signals are generally
analog, and they become discrete—or more precisely, digital—by means of a con-
version apparatus or by the way in which they are collected. The electrocardiogram
source is analog, and it could be displayed in such a mode on an oscilloscope, for
example. But nowadays it is often digitized for computer analysis. Such digital sig-
nals have a $nite range. They are the true objects of digital signal processing on
computers, but they are awkward for theoretical development. The temperature of
the earth is a continuous function of depth, and it could be continuously recorded on
a strip chart. But since the changes in the geothermal signal are so slow, it is more
practical to collect isolated measurements. It is therefore discrete from the begin-
ning. We rely on mathematical model for signal theory: continuous time functions,
de$ned on the real numbers, for analog signals, and discrete time functions, de$ned
on the integers, for discrete signals.

There is also a notion of the units of the interval between numerical signal
values; This is called the independent variable. It is often a time variable, measured
in seconds, minutes, hours, and so on, and this is natural, because time of occur-
rence provides a strict, irreversible ordering of events. So often are signals based on
time that we get imprecise and routinely speak in temporal terms of the independent
variable. On occasion, the independent variable that de$nes earlier and later signal
values is a distance measure. The geothermal signal has an independent variable
typically measured in meters, or even kilometers, of depth into the earth. Despite
the fact that the independent variable is a distance measure, we often casually refer
to the list of the signal’s values as its “time-domain” speci$cation.

The dependent variable of the signal is generally a real value for analog and dis-
crete signals, and it is an integral value for digital signals. These are the signal
values, and we stipulate that they assume numerical values, so that we can apply
mathematical methods to study them. So the terminology here follows that from the
mathematical notions of the independent and dependent variable for a mathematical
function. We reserve the idea of a sequence of symbols, which is sometimes called a
signal in ordinary language, for our concept of a signal interpretation.

We are concerned mainly with signals that have a one-dimensional independent
and dependent variables. It is possible for a signal’s dependent measurement to
depend on multiple independent measurements. Image processing performs condi-
tioning operations on two-dimensional signals. Computer vision analyzes multidi-
mensional signals and produces a structural description or interpretation of them.
We distinguish between single channel and multiple channel signals. If a signal pro-
duces a one-dimensional value, then it is single channel. An example is the temper-
ature versus depth measurement. Signals that generate multidimensional values are
called multichannel signals. An example is the 12-lead ECG. Multichannel signals
have multidimensional range values. They arise in many applications, but we
con$ne our discussions primarily to single-channel signals and refer interested
readers to the more specialized literature on sensor fusion.
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1.9.1 Historical Notes

A popular introduction to signal theory with historical background is Ref. 84. One
of the latest discoveries in signal analysis is wavelet theory—a relatively recent and
exciting approach for time-scale analysis [85]. An overview of wavelets and related
time-frequency transforms is Ref. 69.

Several practical inventions spurred the early development of signal processing
and analysis. The telegraph, invented by the American portrait painter Samuel F. B.
Morse (1791–1872) in 1835, transmitted messages comprised of a sequence of iso-
lated pulse patterns, or symbols, standing for letters of the English alphabet. The
symbols themselves were (and still are, for the Morse code has been amended
slightly and standardized internationally) a $nite sequence of short and long electri-
cal pulses, called dots and dashes, respectively. Shorter symbols represent the more
prevalent English letters. For example, single dot and single dash represent the most
common English letters, E and T, respectively. Morse’s signaling scheme is an
essentially discrete coding, since there is no continuous transition between either
the full symbols or the component dots and dashes. Moreover, as a means of com-
munication it could be considered to be digital, since the code elements are $nite
in number. But it would eventually be supplanted by analog communication
technologies—the telephone and voice radio—which relied on a continuously vary-
ing representation of natural language.

Alexander Graham Bell (1847–1922), the famed U.S. inventor and educator of
the deaf, discovered the telephone in the course of his experiments, undertaken in
the mid-1870s, to improve the telegraph. The telegraph carried a single signal on a
single pair of conductors. Bell sought to multiplex several noninterfering tele-
graphic messages onto a single circuit. The economic advantages of Bell’s Har-
monic Telegraph would have been tremendous, but the results were modest. Instead,
Bell happened upon a technique for continuously converting human voices into
electrical current variations and accurately reproducing the voice sounds at a remote
location. Bell patented the telephone less than a year later, in March 1876; veri$ed
the concept six months later in sustained conversations between Boston and
Cambridgeport, Massachusetts; and built the $rst commerical telephone exhange, at
New Haven, Connecticut in January 1878. Bell’s patent application points to the
analog nature of telephony as clearly distinguishing it from discrete telegraphy.

Wireless telegraphy—and eventually wireless telephony—were the fruit of per-
sistent efforts by yet another scienti$c layperson, Guglielmo Marconi (1874–1937).
The young Italian inventor was aware of both J. C. Maxwell’s theory of electromag-
netic waves21and H. R. Hertz’s demonstration22 of precisely this radiation with a
spark coil transmitter and wire loop receiver. But Hertz’s apparatus was too weak
for practical use. Marconi’s improvements—a telegraph key to control the $ring of
the spark gap, a long wire antenna and earth ground for greater signal strength, and

21Scottish physicist James Clerk Maxwell (1831–1879) announced his electromagnetic $eld theory to a
skeptical scienti$c community in 1864.
22With a small spark coil, German physicist Heinrich Rudolf Hertz (1857–1894) generated the $rst elec-
tromagnetic waves at the University of Karlsruhe and veri$ed Maxwell’s theory.
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the crystal detector for improved reception—enabled him to demonstrate radio
telegraphy in 1895. Unheralded in his native Italy, Marconi took his technology to
England, received a patent in 1896, formed his own company a year later, and
received the Nobel prize in 1909. These techniques could only serve discrete modes
of telecommunication, however. Analog communication awaited further improve-
ments in radio communication, in particular the radio-frequency alternator.

These practical advances in analog technologies were complemented by the dis-
covery of the richness within Jean-Baptiste Fourier’s discovery, long past, that even
signals containing discontinuities could be represented by sums of smoothly undu-
lating sinusoids. Fourier developed his theory for the purpose of studying heat prop-
agation. In particular, it remains a principal tool for solving the differential
equations governing such phenomena as heat conduction, Fourier’s original
problem [1]. Thus, at the turn of the last century, the most important signal technol-
ogies and the most important signal theories revolved around analog methods.

Theory would not link the analog and discrete realms of signal processing
until the early twentieth century, when Nyquist [2], Shannon [3], and Vladimir
Kotelnikov23 developed the sampling theory. Nyquist’s original research article
focused on telegraphy, and it established a $rst theoretical link between discrete and
analog communication methods. In particular, he showed that a continuous domain
signal containing but a limited variety of frequencies could be captured and regener-
ated with a discrete signal. But analog practice and analog theory ruled supreme,
and Nyquist’s contribution was largely overlooked. Only when Shannon proved that
error-free digital communication—even in the presence of noise—was possible did
the attention of scientists and engineers turn once more to discrete modes of com-
munication. The contributions of Nyquist and Shannon did $rmly establish signal
theory as a distinct scienti$c and engineering discipline. Both analog and discrete
signal theory were soundly $xed upon mathematical foundations and shared a link
through the Shannon–Nyquist results.

One seemingly insurmountable problem remained. The frequency analysis of
analog signals was possible using conventional analog instruments such as a fre-
quency analyzer. But discrete signal frequencies could not be calculated fast enough
to keep pace with the arrival of discrete values to a processing apparatus. Therefore,
although mathematicians developed a considerable complement of tools for under-
standing discrete signals, engineers remained preoccupied with analog tools which
could handle their signals in real time.

The discovery of the fast Fourier transform (FFT) by J. W. Cooley and J. W.
Tukey in 1965 shattered the analog tradition in signal processing. By eliminating
duplicate computations in the DFT, it became possible to produce the frequency
spectrum of a signal with N data points in Nlog2N operations; real-time digital
signal spectrum analysis became feasible [4–6].

23Vladimir A. Kotelnikov (1908– ), a Russian communications engineer, independently discovered the
sampling theorem in 1933. His work was largely unknown outside the Soviet Union.
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1.9.2 Resources

A vast array of resources—commercial products, inexpensive shareware applica-
tions, and public-domain software—are available nowadays for studying signal
theory. Researchers, university laboratories, private $rms, and interested individuals
have also made available signal and image processing data sets. Some of these have
become standards for experimentation, algorithm development, and performance
comparisons.

1.9.2.1 Signal Processing Tools. Commercial packages used for this chap-
ter’s examples include:

• Matlab, available from The MathWorks, Inc., 24 Prime Park Way, Natick,
MA, 01760, USA [86].

• Mathematica, available from Wolfram Research, Inc., 100 Trade Center Drive,
Champaign, IL, 61820, USA [87].

Public-domain packages include the following:

• Wavelab, which uses Matlab and includes several popular research data sets,
available free of charge from Stanford University: http://playfair.
stanford.edu/~wavelab.

• Khoros, available free of charge via anonymous ftp from the University of
New Mexico: ftp.eece.unm.edu [88].

1.9.2.2 Data. There are many data sets available over the internet, including sev-
eral smaller data archives, maintained by individual researchers, tapped for exam-
ples in this chapter.

Among the larger repositories are the following:

• Rice University, Houston, TX, in conjunction with the Institute of Electrical
and Electronic Engineers (IEEE), supports the Signal Processing Information
Base (SPIB): http://spib.rice.edu/spib.html. SPIB contains a
variety of signal and image data sets, several of which found their way into the
examples of this text.

• The University of California at Irvine, Irvine, CA supports a machine intelli-
gence database.

Every effort has been made to use example data sets that are available to the reader.
Readers should be able to $nd this chapter’s signal data examples within the public
domain. Figure 1.1 is on the web site of the Princeton Earth Physics Project (http:
//www.gns.cri.nz/quaketrackers/curr/seismic_waves.htm).
The EEG signals of Figure 1.3 are from Krishna Nayak’s Florida State University web
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site, http://www.scri.fsu.edu. The aerial scenes of Figure 1.4 are from the
Danish Center for Remote Sensing, http://www.dcrs.dk. The ECG signal of
Figure 1.6 is from SPIB. The geothermal data of Figure 1.8 comes from the Appala-
chian Deep Core Hole project and is available at the ADCOH web site [36]. The
auditory neuron pulse train data are  from SPIB.

1.9.3 Looking Forward

Now that we have introduced the basic raw material, signals, we proceed in
Chapters 2 and 3 to introduce the machinery, systems. The term “system” is a
very broad term, but in signal theory it is used in a quite speci$c sense. A system
is the mathematical entity that accomplishes signal processing; it takes a signal as
input and produces a signal as output. A system is a function that operates on
signals.

An understanding of signals requires ideas from basic mathematics, algebra,
calculus, a dose of complex analysis, and some random variable theory. In con-
trast, a $rm understanding of the ideas of systems—the mechanisms that convert
one signal into another, signal processing in other words—depends upon ideas
from advanced mathematical analysis. In particular, we must draw upon the con-
cepts of functional analysis—especially Hilbert space theory—topics normally
taught at the university graduate mathematics level. For practical-minded scien-
tists and engineers, this seems ominous. But the good news is that this develop-
ment is straightforward for discrete signals. Thus, in Chapter 2 we concentrate
exclusively on discrete signal spaces, of which discrete Hilbert spaces are a spe-
cial case.

To most of us, the mastery of analog signal processing theory comes less
readily than a thorough understanding of discrete theory. Readers need to under-
stand both developments, even though the analog theory is more mathematically
involved. However, scientists, applied mathematicians, and engineers who are
looking further toward modern mixed-domain signal processing methods need a
good foundation in signal spaces and an advanced presentation of analog signal
analysis. Chapter 3 presents the prerequisite background in continuous-domain
signal spaces.

1.9.4 Guide to Problems

All of the chapters provide problems. They range in dif$culty from simple exercises
that recall basic ideas from the text to more complicated problems that extend and
develop the chapter’s material. Some of them are outlines of research projects that
may involve several weeks of work. The student may need to make simplifying
assumptions, discover constraints, and—quite likely—will not arrive at a once-and-
for-all answer to the problems posed.
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PROBLEMS

1. Which of the following signals are analog, discrete, or digital? Explain.

(a) The temperature reading on a mercury thermometer, as a function of height,
attached to a rising weather balloon.
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(b) The time interval, given by a mechanical clock, between arriving customers
at a bank teller’s window.

(c) The number of customers that have been serviced at a bank teller’s window,
as recorded at $fteen minutes intervals throughout the workday.

2. Which of the following constitute time domain, frequency domain, or scale
domain descriptions of a signal? Explain.

(a) A listing of the percentages of 2-kHz, 4-kHz, 8-kHz, and 16-kHz tones in a
ten second long tape recording of music.

(b) The atmospheric pressure readings reported from a weather balloon, as it
rises above the earth.

(c) From a digital electrocardiogram, the number of QRS pulses that extend for
5, 10, 15, 20, 25, and 30 ms.

3. Sketch the following signals derived from the unit step u(t):

(a) u(t − 1)

(b) u(t +2)

(c) u(− t)
(d) u(− t − 1)

(e) u(− t  +2)

(f) u(t − 2) −  u(t −  8)

4. Sketch the following signals derived from the discrete unit step u(n):

(a) u(n −  4)

(b) u(n +3)

(c) u(− n)

(d) u(− n − 3)

(e) u(− n +3)

(f) u(n − 2) − u(n − 8)

(g) u(n + 6) −  u(n − 3)

5. Describe the difference between the graphs of a signal x(t); the shifted version
of x(t), y(t) = x(t − c); and the re#ected and shifted version, z(t) = x(− t − c).
Consider all cases for c > 0, c < 0, and c = 0.

6. Suppose that an N-bit register stores non-negative digital values ranging from 0
(all bits clear) to all bits set. The value of bit bn is 2n, n = 0, 1, ..., N − 1. Show
that the largest possible value is 2N− 1.

7. Consider the two’s complement representation of a digital value in an N-bit
register. If the bits are bN − 1, bN − 2, ..., b1, b0, then the digital value is − bN−1
2N−1 + bN−22N− 2 + ⋅ ⋅ ⋅ + b222 + b121 + b020.

(a) Find the largest positive value and give its bit values.

(b) Find the most negative value and give its bit values.

(c) Show that the dynamic range is 2N.



102 SIGNALS: ANALOG, DISCRETE, AND DIGITAL

8. Suppose that an N-bit register uses the most signi$cant bit bN− 1 as a sign bit: If
bN− 1 = 1, then the value is − 1 times the value in $rst N− 1 bits; otherwise the
value is positive, 1 times the value in $rst N − 1 bits. The remaining N − 1 bits
store a value as in Problem 6.

(a) Again, $nd the largest possible positive value and the most negative value.

(b) What is the dynamic range for this type of digital storage register? Explain
the result.

9. Suppose discrete signal x(n) is known at distinct points (nk, x(nk)) = (nk, yk),
where . Suppose too that there are interpolating cubic polynomials
over the [nk, nk+1]:

. (1.126)

(a) If the interpolants passes through the knots (nk, yk), then show yk = dk.

(b) Compute the derivatives,  and  for each k, and show that if
 and , then ak and bk can be written in

terms of Dk and Ek.

(c) Suppose that for some k, we know both Dk and Ek. Show that we can then
give the coef$cients of the interpolating cubic, pk(t) on [nk, nk+1].

10. Let x(t) = 5sin(2400t  + 400), where t is a (real) time value in seconds. Give:

(a) The amplitude of x

(b) The phase of x

(c) The frequency of x in Hz (cycles/second)

(d) The frequency of x in radians/second

(e) The period of x

11. Consider a discrete signal  for which there is an N>0
with x(n)=x(n+N) for all n.

(a) Explain why the smallest period for all discrete signals is N=1, but there is
no such lowest possible period for the class of analog signals.

(b) Show that if x(n) is a sinusoid, then the largest frequency it can have is
 or, equivalently, , where .

12. Let  be a discrete signal. Find the following:

(a) The amplitude of s

(b) The phase of s

(c) The frequency of s in radians/sample

(d) The frequency of s in Hz (cycles/sample)

(e) Does s have a period? Why?
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13. Find the frequency of the following discrete signals. Which ones are even, odd,
$nitely supported? Which ones are equal?

(a) .

(b) .

(c) .

(d) .

14. Prove that a signal decomposes into its even and odd parts. If x(n) is a discrete
signal, then show that:

(a) xe(n) is even.

(b) xo(n) is odd.

(c) x(n) = xe(n)+xo(n).

15. Consider the signal x(n) = [3, 2, 1, − 1, − 1, − 1, 0, 1, 2]. Write x(n) as a sum of
even and odd discrete functions.

16. Show the following:

(a) sin(t) is odd.

(b) cos(t) is even.

(c) gµ,σ(t) of mean µ and standard deviation σ (1.14) is symmetric about µ.

(d) Suppose a polynomial x(t) is even; what can you say about x(t)? Explain.

(e) Suppose a polynomial x(t) is odd; what can you say about x(t)? Explain.

(f) Show that the norm of the Gabor elementary function  (1.20) is
even.

(g) Characterize the real and imaginary parts of  as even or odd.

17. Show that rational signal x(t)=1/t is neither integrable nor square-integrable in
the positive real half-line {t:t > 0}. Show that s(t)= t− 2, however, is integrable
for {t:t>1}.

18. Show that f(z) = f(x + jy) = x −  jy, the complex conjugate function, is not dif-
ferentiable at a general point .

19. Suppose that f(z) = z and C is the straight line arc from a point u to point v in the
complex plane.

(a) Find the contour integral

 (1.127)

(b) Suppose that f(z) = z− 1; again evaluate the contour integral in part (a); what
assumptions must be made? Explain.

20. Suppose Σ is an algebra over a set Ω.
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(a) Show that .

(b) Show that Σ is closed under $nite unions; that is, show that a $nite union of
elements of Σ is still in Σ.

(c) Show that Σ is closed under $nite intersections.

(d) Supposing that Σ is a σ-algebra as well and that  for all natural
numbers , show that

 . (1.128)

21. Suppose that (Ω, Σ , P) is a probability space. Let S and T be events in Σ. Show
the following:

(a) .

(b) , where  is the complement of S inside Ω.
(c) If , then .

(d) .

22. Suppose that Ω is a set.

(a) What is the smallest algebra over Ω?

(b) What is the largest algebra over Ω?

(c) Find an example set Ω and an algebra Σ over Ω that is not a σ-algebra;

(d) Suppose that every algebra over Ω is also a σ-algebra. What can you say
about Ω? Explain.

23. If A and B are independent, show that

(a) A and ~B are independent.

(b) ~A and ~B are independent.

24. Let x be a random variable and let r and s be real numbers. Then, by the
de$nition of a random variable, the set  is an event.
Provide definitions for the following and show that they must be events:

(a) .

(b) .

(c) .

25. Find constants A, B, C, and D so that the following are probability density func-
tions:

(a) .

(b) , where u(t) is the analog unit step signal.

(c) The Rayleigh density function is

 (1.129)
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(d) f(r) is de$ned as follows:

(1.130)

The following problems are more involved and, in some cases, expand upon
ideas in the text.

26. Let  and  be continuous-domain (analog)
signals. Find conditions for A, B, Ω, and Φ so that the following statement is
true, and then prove it: If x(t) = y(t) for all t, then A = B and Ω = Φ.

27. Explain the following statement: There is a unique discrete sinusoid x(n) with
radial frequency .

28. The following steps show that the support of a signal x(t) is compact if and only
if its support is both closed and bounded [44, 70].

(a) Show that a convergent set of points in a closed set S converges to a point
in S.

(b) Prove that a compact  is bounded.

(c) Show that a compact  has at least one cluster point; that is, there is a
t in S such that any open interval (a, b) containing t contains in$nitely many
points of S.

(d) Using (a) and (b), show that a compact set is closed.

(e) If r > 0 and  is bounded, show S is contained in the union of a $nite
number of closed intervals of length r.

(f) Show that if  is closed and bounded, then S is compact.

29. The average power of the discrete signal x(n) is de$ned by

 . (1.131)

If the limit de$ning Px exists, then we say that x(n) has $nite average power.
Show the following.

(a) An exponential signal , where A is real and nonzero, has
$nite average power, but not $nite energy.

(b) If x(n) is periodic and x(n) is non-zero, then x(n) is neither absolutely sum-
mable nor square summable.

(c) If x(n) is periodic, then x(n) has $nite average power.

30. Show that under any of the following conditions, the differentiable function f(z)
must be constant on C.
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(a) Real[f(z)] is constant.

(b) Imag[ f(z)] is constant.

(c) | f(z)| is constant.

31. Show that a discrete polynomial p(k) may have consecutive points, k0, k1, ...,
and so on, where the discrete second derivative is zero.

(a) For a given degree n, what is the limit, if any, on the number of consecutive
points where the discrete second derivative is zero? Explain.

(b) For a discrete polynomial p(k) of degree n, $nd formulas for the $rst,
second, and third derivatives of p(k).

(c) Show that a polynomial p(t) of degree n > 1 has only isolated points, t0,
t1, ..., tN, where the second derivative is zero. What is N?

32. Prove the proposition on distribution function properties of Section 1.8.2 [81].

33. Suppose the discrete random variable x has a binomial distribution (1.113).

(a) Find the density function fx(r).

(b) Find the distribution function Fx(r).

(c) Find the mean E[x].

(d) Find the variance (σx)2.

(e) Discuss the case where p or q is zero in (1.113).

34. Suppose the discrete random variable x has a Poisson distribution with parame-
ter a > 0 (1.114).

(a) Find the density function fx(r).

(b) Find the distribution function Fx(r).

(c) Find the mean E[x].

(d) Find the variance (σx)2.

The next several problems consider electrocardiogram processing and analysis.

35. Develop algorithms for calculating the running heart rate from a single ECG
lead.

(a) Obtain the ECG trace of Figure 1.6 from the Signal Processing Information
Base (see Section 1.9.2.2). Plot the data set using a standard graphing pack-
age or spreadsheet application. For example, in Matlab, execute the com-
mand lines: load ecg.txt; plot (ecg). As an alternative, develop
C or C++ code to load the $le, plot the signal, and print out the time-
domain values. Identify the QRS complexes and give a threshold value M
which allows you to separate QRS pulses from noise and other cardiac
events.

(b) Give an algorithm that reads the data sequentially; identi$es the beginning
of a QRS complex using the threshold M from (a); identi$es the end of the
QRS pulse; and $nds the maximum value over the QRS event just deter-
mined.
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(c) Suppose two successive QRS pulse maxima are located at n0 and n1, where
n1 > n0. Let the sampling interval be T seconds. Find the elapsed time (sec-
onds) between the two maxima, v(n1) and v(n0). Give a formula for the
heart rate from this single interval; let us call this value H(n1).

(d) Critique the algorithm for instantaneous heart rate above. Explain any
assumptions you have made in the algorithm. Calculate the instantaneous
heart rate H(ni), for all successive pairs of QRS pulses beginning at ni−1.
Plot this H(ni) value over the entire span of the signal. What do you
observe? What if the threshold you choose in (a) is different? How does this
affect your running heart rate value?

(e) Suppose that the running heart rate is computed as the average of the last
several H(ni) values—for example, H3(ni) = [H(ni) + H(ni−1) + H(ni−2)]/3.
Is the instantaneous heart rate readout better? Is there a practical limit to
how many past values you should average?

36. Explore the usefulness of signal averaging when computing the instantaneous
heart rate.

(a) Use a symmetric moving average $lter on the raw ECG trace:

 . (1.132)

Calculate the running heart rates as in the previous problem using w(n)
instead of v(n).

(b) How does an asymmetric smoothing $lter,

 , (1.133)

affect the results? Explain.

(c) Sketch an application scenario which might require an asymmetric $lter.

(d) Try symmetric moving average $lters of widths $ve and seven for the task
of part (a). Graph the resulting ECG traces. Are the results improved? Is the
appearance of the signal markedly different?

(e) Why do signal analysts use symmetric $lters with an odd number of terms?

(f) When smoothing a signal, such as the ECG trace v(n), would it be useful to
weight the signal values according to how close they are to the most
recently acquired datum? Contemplate $lters of the form

 , (1.134)

and discuss their practicality.

w n( ) 1
3
--- v n 1–( ) v n( ) v n 1+( )+ +[ ]=

w n( ) 1
3
--- v n( ) v n 1–( ) v n 2–( )+ +[ ]=

w n( ) 1
4
---v n 1–( ) 1

2
---v n( ) 1

4
---v n 1+( )+ +=



108 SIGNALS: ANALOG, DISCRETE, AND DIGITAL

(g) Why do we choose the weighting coef$cients in the equation of part (f) to
have unit sum? Explain.

(h) Finally, consider weighted $lter coef$cients for asymmetric $lters. How
might these be chosen, and what is the motivation for so doing? Provide
examples and explain them.

37. Develop algorithms for alerting medical personnel to the presence of cardiac
dysrhythmia. A statistical measure of the variability of numerical data is the
standard deviation,

(a) What is the average heart rate over the entire span of the ECG trace, once
again using the distance between QRS pulse peaks as the basis for comput-
ing the instantaneous heart rate.

(b) Calculate the standard deviation of time intervals between QRS pulses.
How many pulses are necessary for meaningful dysrhythmia computations?

38. Find algorithms for detecting the presence of the P wave and T wave in an
ECG. One approach is to again identify QRS pulses and then locate the P wave
pulse prior to the detected QRS complex and the T wave pulse subsequent to
the detected QRS complex.

(a) Find the presence of a QRS pulse using a threshold method as before. That
is, a QRS pulse is indicated by signal values above a threshold Tq.

(b) However, to locate P and T waves adjacent to the QRS complex, we must
develop an algorithm for $nding the time domain extent, that is the scale, of
QRS pulses in the ECG trace. Develop an algorithm that segments the sig-
nal into the QRS pulse regions and non-QRS pulse regions. How do you
handle the problem of noise that might split a QRS region? Is the method
robust to extremely jagged QRS pulses—that is, splintering of the QRS
complex?

(c) Show how a second, smaller threshold Tp can be used to $nd the P wave
prior to the QRS complex. Similarly, a third threshold Tt can be used to $nd
the T wave after the falling edge of the QRS complex.

(d) Should the thresholds Tp and Tt be global constants, or should they be
chosen according to the signal levels of the analog and discrete signal
acquisition procedures? Explain.



109

Signal Analysis: Time, Frequency, Scale, and Structure, by Ronald L. Allen and Duncan W. Mills
ISBN: 0-471-23441-9 Copyright © 2004 by Institute of Electrical and Electronics Engineers, Inc.

CHAPTER 2

Discrete Systems and Signal Spaces

The $rst chapter introduced many different sorts of signals—simple, complicated,
interesting, boring, synthetic, natural, clean, noisy, analog, discrete—the initial
mixed stock of fuel for the signal analysis machinery that we are going to build. But
few signals are ends in themselves. In an audio system, for example, the end result
is music to our ears. But that longitudinal, compressive signal is only the last prod-
uct of many transformations of many representations of the sound on its path from
compact disc to cochlea. It begins as a stretch of some six billion tiny pits on a com-
pact disc. A laser light strobes the disc, with its re#ection forming a pair of 16-bit
sound magnitude values 44,000 times each second. This digital technique, known as
Pulse Code Modulation (PCM), provides an extremely accurate musical tone rendi-
tion. Filtering circuits remove undesirable artifacts from the digital signal. The digi-
tal signal is converted into analog form, $ltered again, ampli$ed, bandpass $ltered
through the graphic equalizer, ampli$ed again, and $nally delivered strong and
clean to the speakers. The superior sound quality of digital technology has the draw-
back of introducing some distortion at higher frequencies. Filtering circuits get rid
of some distortion. Since we are human, though, we cannot hear the false notes;
such interference occurs at frequencies above 22 kHz, essentially outside our audio
range. Of the many forms the music signal takes through the stereo equipment, all
but the last are transitional, intended for further conversion, correction, and
enhancement. Indeed, the $nal output is pleasant only because the design of the sys-
tem incorporates many special intermediate processing steps. The abstract notion of
taking an input signal, performing an operation on it, and obtaining an output is
called a system. Chapter 2 covers systems for discrete signals.

As a mathematical entity, a system is analogous to a vector-valued function on
vectors, except that, of course, the “vectors” have an in$nite extent. Signal process-
ing systems may require a single signal, a pair of signals, or more for their inputs.
We shall develop theory primarily for systems that input and output a single signal.
Later (Chapter 4) we consider operations that accept a signal as an input but funda-
mentally change it or break it down somehow to produce an output that is not a sig-
nal.  For example, the output could be a structural description, an interpretation, or
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just a number that indicates the type of the signal. We will call this a signal analysis
system in order to distinguish it from the present case of signal processing systems.

Examples of systems abound in electronic communication technology:
ampli$ers, attenuators, modulators, demodulators, coders, decoders, and so on. A
radio receiver is a system. It consists of a sequence of systems, each accepting an
input from an earlier system, performing a particular operation on the signal, and
passing its output on to a subsequent system. The entire cascade of processing steps
converts the minute voltage induced at the antenna into sound waves at the loud-
speaker. In modern audio technology, more and more of the processing stages oper-
ate on digital signal information. The compact disc player is a wonderful example,
embodying many of the systems that we cover in this chapter. Its processed signals
take many forms: discrete engravings on the disc, light pulses, digital encodings,
analog voltages, vibration of the loudspeaker membrane, and $nally sound waves.

Although systems that process on digital signals may not be the $rst to come to
mind—and they are certainly not the $rst to have been developed in electronic sig-
nal conditioning applications—it turns out that their mathematical description is
much simpler. We shall cover the two subjects separately, beginning here with the
realm that is easier realm to conquer: discrete signal spaces and systems. Many sig-
nal processing treatments combine the introduction of discrete and continuous time
systems [1–4]. Chapter 3 covers the subtler theory of analog systems.

2.1 OPERATIONS ON SIGNALS

This section explores the idea of a discrete system, which performs an operation on
signals. To help classify systems, we de$ne special properties of systems, provide
examples, and prove some basic theorems about them. The proofs at this level are
straightforward.

A discrete system is a function that maps discrete signals to discrete signals. Sys-
tems may be de$ned by rules relating input signals to output signals. For example,
the rule y(n) = 2x(n) governs an ampli$er system. This system multiplies each input
value x(n) by a constant A ≥ 1. If H is a system and x(n) is a signal, then y = H(x) is
the output of the system H, given the input signal x. More compact and common,
when clarity permits, is y = Hx. To highlight the independent variable of the signals
we can also say y(n) = H(x(n)). But there should be no misunderstanding: The sys-
tem H operates on the whole signal x not its individual values x(n), found at time
instants n. Signal #ow diagrams, with arrows and boxes, are good for visualizing
signal processing operations (Figure 2.1).

Not every input signal to a given system produces a valid output signal. Recall
that a function on the real numbers might not have all real numbers in its domain.
An example is  with . Consider now the
accumulator system y = Hx de$ned by the rule

. (2.1)

f t( ) t= Domain f( ) t R: t 0≥∈{ }=

y n( ) x k( )
k ∞–=

n

∑=
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With x(n) = 1 for all n, H has no output. So, as with functions on the real numbers,
it is best to think of a system as a partial function on discrete signals.

2.1.1 Operations on Signals and Discrete Systems

There are many types of operations on signals and the particular cases that happen
to be discrete systems. We list a variety of cases, some quite simple. But it will turn
out that many types of discrete systems decompose into such simple system compo-
nents, just as individual signals break down into sums of shifted impulses.

De$nition (Discrete System). A discrete system H is a partial function from the set
of all discrete signals to itself. If y(n) is the signal output by H from the input x(n),
then y = Hx or y = H(x). It is common to call y the response of the system H to input

x(n) A

(a)

y(n)

Fig. 2.1. (a) Ampli$er system symbol. (b) A sinusoidal pulse, ampli$cation by factor A = 2,
and attenuation by factor A = 0.4.
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x. The set of signals x for which some y = Hx is the domain of the system H. The set
of signals y for which y = Hx for some signal x is the range of H.

One simple signal operation is to multiply each signal value by a constant (Fig-
ure 2.1). If H is the system and y = Hx, then the output values y(n) are related to
input values by y(n) = Ax(n). This operation inverts the input signal when A < 0.
When |A| > 1, the system ampli$es the input. When |A| < 1, the system attenuates
the input signal. This system is also referred to as a scaling system. (Unfortunately,
another type of system, one that dilates a signal by distorting its independent vari-
able, is also called a scaling system. Both appellations are widespread, but the two
notions are so different that the context is usually enough to avoid confusion.)

The domain of an ampli$cation system is all discrete signals. Except for the case
A = 0, the range of all ampli$cation systems is all discrete signals.

Another basic signal operation is to delay or advance its values (Figure 2.2).
Thus, if x(n) is an input signal, this system produces an output signal y(n) = x(n − k)

x(n) z−k y(n)

(a)

Fig. 2.2. Translation systems. (a) Diagram for a translation system, y(n) = x(n − k). (b) discrete
sinusoidal pulse within a Gaussian envelope, x(n); x(n − k), with k = 2; and x(n − k) with k = −5.
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for some integer k. This is called a time shift when the signal’s independent variable
indicates a time instant or a translation when the independent variable stands for a
non-time quantity, such as distance. If k > 0, then the shift operation is a delay. If
k < 0, then this system advances the signal. The diagram notation z−k is inspired by
the notions of the impulse response of the translation system, which we shall
discover later in this chapter, and the z-transform (Chapter 8). 

The set of all translates of a signal is closed under the translation operation. This
system is also commutative; the order of two successive translations of a signal does
not matter. Translations cause no domain and range problems. If T is a translation
system, then Domain(T) = Range(T) = {s(n): s is a discrete signal}.

Signal re#ection reverses the order of signal values: y(n) = x(−n). For time signals,
we will call this a time reversal system (Figure 2.3). It #ips the signal values x(n)
around the instant n = 0. Note that the re#ection and translation operations do not
commute with one another. If H is a re#ection system and G is a translation y(n) =
x(n − k), then H(Gx) ≠ G(Hx) for all x unless k = 0. Notice also that we are careful to
say “for all x” in this property. In order for two systems to be identical, it is necessary
that their outputs are identical when their inputs are identical. It is not enough that
the system outputs coincide for a particular input signal.

Signal addition or summation adds a given signal to the input, y(n) = x(n) +
x0(n), where x0(n) is a $xed signal associated with the system H (Figure 2.4). If we
allow systems with two inputs, then we can de$ne y = H(v,w) = v + w.
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Fig. 2.3. Time reversal y(n) = x(−n). There does not seem to be a conventional block diagram
symbol for time reversal, perhaps owing to its physical impossibility for time-based signals.
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Fig. 2.4. System y = Hx adds another (fixed) signal to the input.
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Another type of system, called a multiplier or modulator, forms the termwise
product of the input, y(n) = x(n)x0(n), where x0(n) is a $xed signal associated with
the system H (Figure 2.5). Note carefully that the product system is not written with
an asterisk operator y = x*h. This is the notation for convolution, a more important
signal operation, which we will cover below. 

The correlation of two signals is the sum of their termwise products:

. (2.2)

Signals x(n) and y(n) may be complex-valued; in this case, we take the complex
conjugate of the second operand. The correlation of a signal with itself, the autocor-
relation, will then always be a non-negative real number. In (2.2) the sum is in$nite,
so the limit may not exist. Also note that (2.2) does not de$ne a system, because the
output is a number, not a signal. When we study abstract signal spaces later, we will
call correlation the inner product of the two signals. It is a challenge to $nd classes
of signals, not necessarily having $nite support, for which the inner product always
exists. 

The cross-correlation system is de$ned by the input–output relation

. (2.3)

In (2.3) the signal h(n) is translated before the sum of products correlation is
computed for each y(n). If the signals are complex-valued, then we use the complex
conjugate of h(n): 

. (2.4)

This makes the autocorrelation have a non-negative real value for n = 0; if x = h,

x(n) y (n)

x0(n)

×

Fig. 2.5. System y = Hx multiplies the input term-by-term with another ($xed) signal. This
also called modulation, especially in communication theory.
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, (2.5)

the square of the l2 norm of x, which will become quite important later.
Convolution seems strange at $rst glance—a combination of re#ection, transla-

tion, and correlation:

. (2.6)

But this operation lies at the heart of linear translation invariant system theory,
transforms, and $ltering. As Figure 2.6 shows, in convolution one signal is #ipped
and then shifted relative to the other. At each shift position, a new y(n) is calculated
as the sum of products.

y 0( ) x ○ h( ) 0( ) x k( )x nk( )
k ∞–=

∞

∑ x 2
2

= = =

y n( ) x * h( ) n( ) x k( )h n k–( )
k ∞–=

∞

∑= =

x(n) y (n)

h(n)

∗
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Fig. 2.6. Convolution. (a) The system y = Hx = (h*x)(n). (b) An example convolving two
$nitely supported signals a square pulse h(n) = 4.8[u(n − 8) − u(n − 20)] and a triangular
pulse x(n) = (6 − n)[u(n − 1) − u(n − 9)].
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A subsampling or downsampling system skips over samples of the input signal:
y(n) = x(kn), where k > 0 is the sampling interval. This is uniform sampling (Figure
2.7). In nonuniform sampling, the intervals between samples vary. Both forms of
signal sampling have proven handy in applications.
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Fig. 2.7. Uniform sampling.
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Sampling is useful when the content of a signal contains less information than
the density of the samples warrants. In uniform sampling, the relevant signal infor-
mation is adequately conveyed by every kth sample of the input. Thus, subsampling
is a preliminary signal compression step. Scientists and engineers, attempting to
squeeze every bit of digital information through narrow bandwidth communication
channels, have been seeking better ways to compress signals and images in recent
years [5]. Technologies such as network video and cellular radio communications
hinge on the ef$ciency and integrity of the compression operations. Also, in signal
and image analysis applications, we can $lter signals and subsample them at multi-
ple rates for coarse-to-$ne recognition. One outcome of all the research is that if the
$ltering and subsampling operations are judiciously chosen, then the sampled sig-
nals are adequate for exact reconstruction of the original signal. Progressive trans-
mission is therefore feasible. Moreover, there is an unexpected, intimate connection
between multirate signal sampling and the modern theory of time-scale transforms,
or wavelet analysis [6]. Later chapters detail these aspects of signal subsampling
operations. Nonuniform sampling is useful when some local regions of a signal
must be more carefully preserved in the sampled output. Such systems have also
become the focus of modern research efforts [7].

An upsampling operation (Figure 2.8) inserts extra values between input samples
to produce an output signal. Let k > 0 be an integer. Then we form the upsampled
output signal y(n) from input signal x(n) by

(2.7)

A multiplexer merges two signals together:

(2.8)

A related system, the demultiplexer, accepts a single signal x(n) as an input and
produces two signals on output, y0(n) and y1(n). It also is possible to multiplex
and demultiplex more than two signals at a time. These are important systems for
communications engineering.

Thresholding is an utterly simple operation, ubiquitous as well as notorious in the
signal analysis literature. Given a threshold value T, this system segments a signal:

(2.9)

The threshold value T can be any real number; however, it is usually positive and a
thresholding system usually takes non-negative real-valued signals as inputs. If the
input signal takes on negative or complex values, then it may make sense to $rst
produce its magnitude y(n) = |x(n)| before thresholding.
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Fig. 2.8. Upsampling operation.
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The thresholding operation of (2.9) is an elementary signal analysis system.
Input signals x(n) are labeled by the output signal y(n) which takes on two values, 0
or 1. Thus, 1 indicates the presence of meaningful information, and 0 indicates the
presence of nonmeaningful information in x(n). When we say that the thresholding
operation segments the signal into useful and nonuseful portions, we mean that the
system partitions the input signal’s domain. Typically, we use thresholding as a
crude method for removing background noise from signals. A problem with brute-
force thresholding is that signals may contain noise impulses that are as large in
magnitude as some meaningful signal values. Furthermore, the noise magnitude
may be as large as the interesting signal values and thresholding therefore fails
completely. Chapter 4 elaborates on thresholding subtleties.

Threshold selection dramatically affects the segmentation. Thresholding usu-
ally follows the $ltering or transforming of an input signal. The trick is choosing
the proper threshold so that the output binary image correctly marks signal
regions. To gain some appreciation of this, let’s consider a thresholding problem
on a two-dimensional discrete signal—that is an 8-bit, 256 gray scales image. Fig-
ure 2.9 shows the original image, a parcel delivery service’s shipping label. A very
thoroughly studied image analysis problem is to interpret the text on the label so
that automated systems can handle and route the parcel to its destination. Optical
character recognition (OCR) systems read the individual characters. Since almost
all current OCR engines accept only binary image data, an essential $rst step is to
convert this gray scale image to binary form [8, 9]. Although the image itself is
fairly legible, only the most careful selection of a single threshold for the picture
suf$ces to correctly binarize it.

The accumulator system, y = Hx, is given by

. (2.10)

The accumulator outputs a value that is the sum of all input values to the present
signal instant. Any signal with $nite support is in the domain of the accumulator
system. But, as already noted, not all signals are in the accumulator’s domain. If
a signal is absolutely summable (Section 1.6.2), then it is in the domain of the accu-
mulator. Some $nite-energy signals are not in the domain of the accumulator. An
example that cannot be fed into an accumulator is the $nite-energy signal

(2.11)

A system may extract the nearest integer to a signal value. This called a digitizer
because in principle a $nite-length storage register can hold the integral values
produced from a bounded input signal. There are two variants. One kind of digitizer
produces a signal that contains the integral ceiling of the input,

(2.12)
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The other variant produces the integral #oor of the input,

. (2.13)

The moving average system, y = Hx, is given by

y n( ) x n( ) greatest integer x n( )≤= =

Fig. 2.9. Thresholding. An 8-bit, 256 gray scales image of a shipping label (a). First thresh-
old applied (b). Here the threshold results in an image that is too dark. The company logo is
only marginally readable. With a different threshold (c), the logo improves, but the shipping
code beneath begins to erode. It is dif$cult to pick an appropriate global threshold for the
image. 
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This system outputs a signal that averages the 2N + 1 values around each x(n). This
smoothes the input signal, and it is commonly used to improve the signal-to-noise
ratio of raw signals in data acquisition systems.

2.1.2 Operations on Systems

We can build more complicated systems by combining the systems, taking the
output of one system and using it as an input to another.

De$nition (System Composition). Let H and G be systems. Then the composite
system GH is the system de$ned by y(n) = G(H(x(n)). GH is called the composition
or the cascade of G with H.

Remark. In general, the order of system composition is important. Many signal
operations—however intuitive and simple they may seem—may not commute with
one another. In particular, note again that the shift operation does not commute with
re#ection. If G is a shift operation, G(x(n)) = x(n − k), k is nonzero, and H is a
re#ection, then .

2.1.3 Types of Systems

Now let us categorize the various systems we have considered. These characteriza-
tions will prove useful for understanding the behavior of a system in an application.
Some systems, because of the form of their de$nition, may seem impossible to
implement on a computer. For example, the accumulator (2.9) is de$ned with
an in$nite sum that uses every earlier input signal value. We have observed already
that it is an example of a system in which not every input produces a meaningful
output. Do we need an in$nite set of memory locations to store input signal values?
No, we can still implement an accumulator on a computer by exploiting the recur-
rence relation y(n) = y(n − 1) + x(n). It is only necessary to know an initial value of
y(n) at some past time instant n = n0. The accumulator belongs to a class of sys-
tems—called recursive systems—that can be implemented by reusing output values
from previous time instants.

Now we develop some basic categories for systems: static and dynamic systems,
recursive systems, and causal systems. 

We can start by distinguishing systems according to whether they require com-
puter memory for signal values at other than the current instant for their implemen-
tation. Let H be a system y = Hx. H is static if y(n) can always be found from the
current value of input signal x(n) and n itself. That is, H is static when y(n) =
F(x(n)) for some de$ning function or rule F for H. H is dynamic when it must use
values x(m) or y(m) for m ≠ n in order to specify y(n).

(2.14)y n( ) 1
2N 1+
---------------- x k( ).

k N–=

N

∑=

GH HG≠
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A system that depends on future values of the input signal x(n) is dynamic too.
This seems impossible, if one thinks only of signals that have a time-related inde-
pendent variable. But signals can independent variables of distance, for example. So
the values of x(n + k), k > 0, that need to be known to compute y(n) are just values
of the input signal in a different direction. Systems for two-dimensional signals (i.e.,
images) are in fact a very widely studied case of signals whose values may depend
on “future” values of the input.

Example. The accumulator is a dynamic system because, for a general input x(n),
it cannot be implemented without knowing either 

(i) x(n) and all previous values of the input signal; or

(ii) for some k > 1, y(n − k) and all x(n − k + p) for p = 0, ..., k.

Dynamic systems require memory units to store previous values of the input
signal. So static systems are also commonly called memoryless systems. 

A concept related to the static versus dynamic distinction is that of a recursive
system. Pondering the accumulator system once more, we note that this dynamic
system cannot be implemented with a $nite set of memory elements that only con-
tain previous values of x(n). Let H be a system, y = Hx. H is nonrecursive if there is
an M > 0, such that y(n) can always be found as a function of x(n), x(n − 1), ..., x(n −
M). If y(n) depends on y(n − 1), y(n − 2), ..., y(n − N), for some N > 0, and perhaps
upon x(n − 1), ..., x(n − M), for some M, then H is recursive.

A system y = Hx is causal if y(n) can always be computed from present and past
inputs x(n), x(n − 1), x(n − 2), ... . Real, engineered systems for time-based signals
must always be causal, and, if for no other reason, causality is important. Neverthe-
less, where the signals are not functions of discrete time variables, noncausal signals
are acceptable. A nonrecursive system is causal, but the converse is not true.

Examples (System Causality)

(i) y(n) = x(n) + x(n − 1) + x(n − 2) is causal and nonrecursive.

(ii) y(n) = x(n) + x(n + 1) is not causal.

(iii) y(n) = x(2 − n) is noncausal.

(iv) y(n) = x(|n|) is noncausal.

(v) The accumulator (2.10) is causal.

(vi) The moving average system (2.14) is not causal.

2.2 LINEAR SYSTEMS

Linearity prevails in many signal processing systems. It is desirable in entertain-
ment audio systems, for example. Underlying the concept of linearity are two ideas,
and they are both straightforward:



LINEAR SYSTEMS 123

(i) When the input signal to the system is larger (or smaller) in amplitude, then
the output signal from the system produces is proportionally larger (or
smaller). This is the scaling property of linearity. In other words, if a signal
is ampli$ed or attenuated and then input to a linear system, then the output
is a signal that is ampli$ed or attenuated by the same amount.

(ii) Furthermore, if two signals are added together before input, then the result is
just the sum of the outputs that would occur if each input component were
passed through the system independently. This is the superposition property.

Obviously, technology cannot produce a truly linear system; there is a range within
which the linearity of a system can be assumed. Real systems add noise to any sig-
nal. When the input signal becomes too small, the output may disappear into the
noise. The input could become so large intensity that the output is distorted. Worse,
the system may fail if subjected to huge input signals. Practical, nearly linear
systems are possible, however, and engineers have discovered some clever tech-
niques to make signal ampli$cation as linear as possible. 

When ampli$cation factors must be large, the nonlinearity of the circuit compo-
nents—vacuum tubes, transistors, resistors, capacitors, inductors, and so on—
becomes more and more of a factor affecting the output signal. The discrete com-
ponents lose their linearity at higher power levels. A change in the output propor-
tional to the change in the input becomes very dif$cult to maintain for large
ampli$cation ratios. Strong ampli$cation is essential, however, if signals must
travel long distances from transmitter to repeater to receiver. One way to lessen the
distortion by ampli$cation components is to feed back a tiny fraction of the out-
put signal, invert it, and add it to the input signal. Subject to a sharp attenuation,
the feedback signal remains much closer to true linearity. When the output varies
from the ampli$cation setting, the input biases in the opposite direction. This
restores the ampli$ed signal to the required magnitude. An illustration helps to
clarify the concept (Figure 2.10).

From Figure 2.10 we can see that the output signal is y(n) = A(x(n) − By(n − 1)).
Assuming that the output is relatively stable, so that y(n) ≈ y(n − 1), we can express

Fig. 2.10. Feedback ampli$er.
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the system gain as follows:

. (2.15)

Evidently, if the ampli$cation factor A is large, then A−1 is small, and the system
gain depends mostly on the inverse of the attenuation factor in the feedback. It is
approximately B−1. Due to its low power levels, the feedback circuit is inherently
more linear, and it improves the overall linearity of the system immensely. Achiev-
ing good linearity was an early stumbling block in the development of the telephone
system.1

Since many important results and characterizations about systems follow from
the assumption of linearity, it is a central object of our study in signal processing
and analysis.

2.2.1 Properties

Let us formalize these ideas and explore the properties of linear systems.

De$nition (Linear System). Let y = Hx, and let A be a scalar (real or complex
number). The system H is linear if it obeys the scaling and superposition properties:

(i) Scaling:

. (2.16)

(ii) Superposition:

. (2.17)

There is a useful criterion for system linearity.

Proposition (Linearity Criterion). If system H is linear, x(n) = 0 for all n, and y =
Hx, then y(n) = 0 for all n also. 

Proof: Although it seems tricky to many who are not familiar with this type of
argument, the proof is quite simple. If x(n) = 0 for all n, then x(n) = x(n) + x(n).
Hence, y(n) = H(x(n) + x(n)) = H(x(n)). But H(x + x) = Hx + Hx by superposition.
So Hx + Hx = Hx; the consequence, subtracting Hx from both sides of this equation,
is that 0 = Hx = y. That is, y(n) is the zero signal, and the criterion is proven. Note,

1The big technical breakthrough came when a Bell Laboratories engineer, Harold Black, had a #ash
of insight on the ferry from Hoboken, New Jersey, to work in New York City on a summer morning in
1927 [J. R. Pierce and A. M. Noll, Signals: The Science of Telecommunications, New York: Scienti$c
American Library, 1990].
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by the way, that this last equality is an equality of signals and that the “0” in the
equation is really the signal y(n) that is zero for all time instants n. ■

Examples. To show a system is linear, we must check that it satis$es both the
scaling and superposition properties. The linearity criterion is helpful for exposing
nonlinear systems. 

(i) The system y(n) = 5 + x(n) is nonlinear, an easy application of the criterion.

(ii) The system y(n) = x(n)x(n) is nonlinear. The criterion does not help with
this example. However, the system violates both the scaling and superpo-
sition properties.

(iii) The re#ection system y(n) = x(−n) is linear.

(iv) The system y(n) = cos(n)x(n) is linear. Note this example. The idea of lin-
earity is that systems are linear in their input signals. There may be nonlin-
ear functions, such as cos(t), involved in the de$nition of the system
relation. Nevertheless, as long as the overall relation between input and out-
put signals obeys both scaling and superposition (and this one does indeed),
then the system is linear.

2.2.2 Decomposition

A very useful mathematical technique is to resolve complicated entities into simpler
components. For example, the Taylor series from calculus resolves differentiable
functions into sums of polynomials. Linear systems can defy initial analysis
because of their apparent complexity, and our goal is to break them down into
elementary systems more amenable to study. There are two steps:

(i) We $rst break down signals into sums of scaled, shifted unit impulse sig-
nals.

(ii) This decomposition can it turn be used to resolve the outputs of linear sys-
tems into sums of simple component outputs.

Proposition (Decomposition). Let x(n) be a discrete signal and de$ne the con-
stants ck = x(k). Then x(n) can be decomposed into a sum of scaled, shifted impulse
signals as follows:

. (2.18)

Proof: Let w(n) be the right-hand side of (2.18). Then w(k) = ck, since all of the
terms  are zero, unless n = k. But this is just x(k) by the de$nition of the
constants ck. So w(k) = x(k) for all k, completing the proof. ■

x n( ) ckδ n k–( )
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The next de$nition prepares us for a theorem that characterizes discrete linear
systems. From the examples above, linear systems can come in quite a few varieties.
Sometimes the system’s linear nature is nonintuitive. However, any general linear
system is completely known by its behavior on one type of input signal: a shifted
impulse. (Our proof is informal, in that we assume that scaling and superposition
apply to in$nite sums and that a convergent series can be rearranged without affect-
ing its limit.)

De$nition (Output of Shifted Input). Let H be a linear system and y = Hx. De$ne
y(n, k) = H(x(n − k)) and h(n, k) = H(δ(n − k)), where δ is the discrete unit impulse
signal.

Theorem (Linearity Characterization). Let H be a linear system, x(n) a signal,
ck = x(k), and y = Hx. Then

(2.19)

Proof: By the decomposition of discrete signals into impulses, we know that
. So with y(n) = H(x(n)), it follows from superposition

that

(2.20)

And then by the scaling property applied to the middle term of (2.20),

(2.21)

Repeatedly using the linearity properties to break out middle terms in (2.21) gives
the desired result. ■
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2.3 TRANSLATION INVARIANT SYSTEMS

In many real-life systems, the outputs do not depend on the absolute time at which
the inputs were done. For example, a compact disc player is a reasonably good
time-invariant system. The music played from a compact disc on Monday will not
differ substantially when the same disc played on Tuesday. Loosely put, time-
invariant systems produce identically shifted outputs from shifted inputs. Since not
all systems, of course, are time-based, we prefer to call such systems translation-
invariant.

To formalize this idea, we need to carefully distinguish between the following:

• The signal y(n, k) is the output of a system, given a delay (or advance, depend-
ing on the sign of k) of the input signal x(n) by k time units.

• On the other hand, y(n − k) is the signal obtained by $nding y = Hx and then
shifting the resulting output signal, y(n), by k.

These two results may not be the same. An example is the system y(n) = x(n) + n. It
is easy to $nd input signals x(n) which for this system give .
Hence, the important de$nition:

De$nition (Translation-Invariant Systems). Let H be the system y = Hx. Then,
if for all signals x(n) in Domain(H), if y(n, k) = H(x(n − k)) = y(n − k), then H is
translation-invariant. Another term is shift-invariant. For time-based signals, it is
common to say time-invariant.

To show a system is translation-invariant, we must compare the shifted output, y(n −
k), with the output from the shifted input, H(x(n − k)). If these are equal for all sig-
nals in the system’s domain, then H is indeed translation-invariant. It is very easy to
confuse these two situations, especially for readers new to signal processing. But
there is a simple, effective technique for showing translation-invariance: we rename
the input signal after it is shifted, hiding the shift amount. 

Examples (Translation-Invariance). Let us try this technique on the systems we
checked for linearity earlier.

(i) The system y(n) = 5 + x(n) is translation-invariant. If y = Hx, then the out-
put shifted by k is y(n − k) = 5 + x(n − k). We just substitute “n − k” for “n”
at each instance in the de$ning rule for the system’s input–output relation.
What if we translate the input by k units also? This produces x(n − k). We
rename it w(n) = x(n − k). This hides the shift amount within the new name
for the input signal. It is easy to see what H does to any signal, be it named
x, w, u, v, or whatever. H adds the constant 5 to each signal value. Hence we
see y(n, k) = H(w(n)) = 5 + w(n). Now we put the expression for x in terms

y n k–( ) y n k,( )≠
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of w back into the expression: y(n, k) = 5 + x(n − k). So y(n − k) = y(n, k),
and the system is translation-invariant.

(ii) The system y(n) = x(n)x(n) is translation-invariant. The output shifted by k
is y(n − k) = x(n − k)x(n − k). We rename once more the shifted input w(n) =
x(n − k). Then y(n, k) = H(w(n)) = w(n)w(n) = x(n − k)x(n − k). Again, the
system is translation-invariant.

(iii) The re#ection system y(n) = x(−n) is not translation-invariant. The shifted
output in this case is y(n − k) = x(−(n − k)) = x(k − n). We make a new name
for the shifted input, w(n) = x(n − k). Then y(n, k) = H(w(n)) = w(−n). But
w(−n) = x(−n − k). Thus,  in general. In particular, we can
take x(n) = δ(n), the unit impulse signal, and k = 1. Then y(n − k) = δ(1 −
n), although y(n, k) = δ(−1 − n).

(iv) The system y(n) = cos(n)x(n) is not translation-invariant. The shifted output
in this case is y(n − k) = cos(n − k)x(n − k). Once more, we rename the
shifted input w(n) = x(n − k). Then y(n, k) = H(w(n)) = cos(n)w(n) =
cos(n)x(n − k). Again,  in general.

2.4 CONVOLUTIONAL SYSTEMS

The most important systems obey both the linearity and translation-invariance prop-
erties. Many physical systems are practically linear and practically translation-
invariant. If these special properties can be assumed for a physical system, then the
analysis of that system simpli$es tremendously. The key relationship, it turns out, is
that linear translation-invariant systems are fully characterized by one signal associ-
ated with the system, the impulse response. By way of contrast, think again of the
characterization of linear systems that was given in Section 2.2. For a linear system,
there is a characterization of the system’s outputs as sums of scaled signals h(n, k).
However, there are in general an in$nite number of h(n, k) components. This in$nite
set reduces to just one signal if the system is translation-invariant too.

2.4.1 Linear, Translation-Invariant Systems

This is the most important type of system in basic signal processing theory.

De$nition (LTI System). A system H that is both linear and translation-invariant is
called an LTI system. When signals are functions of an independent time variable,
we may say linear, time-invariant, but the abbreviation is the same. Some authors
use the term shift-invariant and refer to LSI systems.

De$nition (Impulse Response). Let H be an LTI system and y = Hx. Then we
de$ne the impulse response of the system as h(n) = H(δ(n)), where δ is the discrete
unit impulse signal.

y n k–( ) y n k,( )≠

y n k–( ) y n k,( )≠
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Theorem (Convolution). Let H be an LTI system, y = Hx, and h = Hδ. Then

. (2.22)

Proof: With H linear, there follows the decomposition

. (2.23)

But since H is translation-invariant, h(n − k) = H(δ(n − k)). Inserting this into (2.23)
proves the theorem.  ■

Remarks. Note that (2.22) is the convolution of the input signal x(n) and the
impulse response δ(n) of the LTI system H: y(n) = (x*h)(n). For this reason, we call
LTI systems convolutional. Although it is a simple result, the importance of the
theorem cannot be overemphasized. In order to understand a system, we must know
how it operates on its input signals. This could be extremely complicated. But for
LTI systems, all we need to do is $nd one signal—the system’s impulse response.
Then, for any input, the output can be computed by convolving the input signal and
the impulse response. There is some more theory to cover, but let us wait and give
an application of the theorem.

Example (System Determination). Consider the LTI system y = Hx for which
only two test cases of input–output signal pairs are known: y1 = Hx1 and y2 = Hx2,
where y1 = [−2, 2, 0, 2, −2], x1 = [2, 2, 2], y2 = [1, −2, 2, −2, 1], x2 = [−1, 0, −1].
(Recall from Chapter 1 the square brackets notation: x = [n−M, ..., n−1, n0, n1, ..., nN]
is the $nitely supported signal on the interval [M, N] with x(0) = n0, x(−1) = n−1,
x(1) = n1, and so on. The underscored value indicates the zero time instant value.)
The problem is to $nd the output y = Hx when x is the ramp signal x = [1, 2, 3].
An inspection of the signal pairs reveals that 2δ(n) = x1 + 2x2. Thus, 2h = Hx1 +
2Hx2 = y1 + 2y2 by the linearity of H. The impulse response of H must be the signal
(y1 + 2y2)/2 = h = [−1, 2, −1]. Finding the impulse response is the key. Now the
convolution theorem implies that the response of the system to x(n) is the convolu-
tion x*h. So y = [−1, 0, 0, 4, −3].

Incidentally, this example previews some of the methods we develop extensively
in Chapter 4. Note that the output of the system takes zero values in the middle of
the ramp input and large values at or near the edges of the ramp. In fact, the impulse
response is known as a discrete Laplacian operator. It is an elementary example of
a signal edge detector, a type of signal analysis system. They produce low magni-
tude outputs where the input signal is constant or uniformly changing, and they pro-
duce large magnitude outputs where the signal changes abruptly. We could proceed
further to $nd a threshold value T for a signal analysis system that would mark the
signal edges with nonzero values. In fact, even this easy example gives us a taste of
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the problems with picking threshold values. If we make T large, we will only detect
the large step edge of the ramp input signal above. If we make T small enough to
detect the beginning edge of the ramp, then there are two instants at which the $nal
edge is detected.

2.4.2 Systems Defined by Difference Equations

A discrete difference equation can specify a system. Difference equations are the
discrete equivalent of differential equations in continuous-time mathematical analy-
sis, science, and engineering. Consider the LTI system y = Hx where the input and
output signals always satisfy a linear, constant-coef$cient difference equation:

(2.24)

The output y(n) can be determined from the current input value, recent input values,
and recent output values. 

Example. Suppose the inputs and outputs of the LTI system H are related by 

(2.25)

where . In order to characterize inputs and outputs of this system, it suf$ces to
$nd the impulse response. There are, however, many signals that may be the impulse
response of a system satisfying (2.25). If h = Hδ, is an input–output pair that satis$es
(2.25), with x = δ and y = h, then a single known value of h(n0) determines all of
h(n). Let us say that h(0) = c. Then repeatedly applying (2.25) we can $nd h(1) =
ac + δ(1) = ac; h(2) = a2c; and, for non-negative k, h(k) = akc. Furthermore, by writ-
ing the equation for y(n − 1) in terms of y(n) and x(n), we have

. (2.26)

Working with (2.26) from the initial known value h(0) = c gives h(k) = ak(c − 1), for
k < 0. So

(2.27)

From the convolution relation, we now know exactly what LTI systems satisfy the
difference equation (2.25). It can be shown that if the signal pair (δ, h) satis$es the
difference equation (2.24), then the pair (x, h*x) also satis$es (2.24).

Example. Not all solutions (x, y) of (2.24) are an input–output pair for an LTI sys-
tem. To see this, let  and consider the homogeneous linear difference equation

(2.28)
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Clearly, any signal of the form y(n) = dan, where d is a constant, satis$es the homo-
geneous equation. If (x, y) is a solution pair for (2.25), and yh is a solution of the
homogeneous equation, then (x, y + yh) is yet another solution of (2.25). We know
by the linearity criterion (Section 2.2) that for an LTI system, the only possible
input–output pair (x, y) when x(n) = 0 for all n is y(n) = 0 for all n. In particular,
(0, dan) is a solution of (2.25), but not an input–output pair on any LTI system.

2.4.3 Convolution Properties

Although it seems at $rst glance to be a very odd operation on signals, convolution
is closely related to two quite natural conditions on systems: linearity and translation-
invariance. Convolution in fact enjoys a number of algebraic properties: associativity,
commutativity, and distributivity.

Proposition (Convolution Properties). Let x, y, and z be discrete signals. Then

(i) (Associativity) x*(y*z) = x*(y*z).

(ii) (Commutativity) x*y = y*x.

(iii) (Distributivity) x*(y+z) = x*y + x*z.

Proof: We begin with associativity. Let w = y*z. Then, by the de$nition of convo-
lution, we have [x*(y*z)](n) = (x*w)(n). But, x convolved with w is 

. (2.29)

Let p = k + l so that l = p − k, and note that  as . Then make the
change of summation in (2.29):

 (2.30)
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Commutativity is likewise a matter of juggling summations:

 (2.31)

Finally, distributivity is the easiest property, since

(2.32)

This completes the theorem.  ■

The convolution theorem has a converse, which means that convolution with the
impulse response characterizes LTI systems.

Theorem (Convolution Converse). Let h(n) be a discrete signal and H be the
system de$ned by y = Hx = x*h. Then H is LTI and h = Hδ.

Proof: Superposition follows from the distributive property. The scaling property
of linearity is straightforward (exercise). To see that H is translation-invariant, note
that the shifted output y(n − l) is given by

. (2.33)

We compare this to the response of the system to the shifted input, w(n) = x(n − l):

(2.34)

So H is indeed translation-invariant. It is left to the reader to verify that h = Hδ. ■
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De$nition (FIR and IIR Systems). An LTI system H having an impulse response
h = Hδ with $nite support is called a $nite impulse response (FIR) system. If the
LTI system H is not FIR, then it is called in$nite impulse response (IIR).

Remarks. FIR systems are de$ned by a convolution sum that may be computed for
any input signal. IIR systems will have some signals that are not in their domain.
IIR systems may nevertheless have particularly simple implementations. This is the
case when the system can be implemented via a difference equation, where previous
known output values are stored in memory for the computation of current response
values. Indeed, an entire theory of signal processing with IIR systems and their
compact implementation on digital computers has been developed and is covered in
signal processing texts [10].

2.4.4 Application: Echo Cancellation in Digital Telephony

In telephone systems, especially those that include digital links (almost all interme-
diate- and long-distance circuits in a modern system), echo is a persistent problem.
Without some special equipment—either echo suppressors or echo cancellers—a
speaker can hear a replica of his or her own voice. This section looks at an important
application of the theory of convolution and LTI systems for constructing effective
echo cancellers on digital telephone circuits.

Echo arises at the connection between two-wire telephone circuits, such as found
in a typical residential system, and four-wire circuits, that are used in long-haul cir-
cuits. The telephone circuits at the subscriber’s site rely on two wires to carry the
near-end and far-end speakers’ voices and an earth ground as the common conduc-
tor between the two circuit paths. The earth ground is noisy, however, and for long-
distance circuits, quite unacceptable. Good noise immunity requires a four-wire
circuit. It contains separate two-wire paths for the far-end and near-end voices. A
device called a hybrid transformer, or simply a hybrid, effects the transition
between the two systems [11]. Were it an ideal device, the hybrid would convert all
of the energy in a signal from the far-end speaker into energy on the near-end two-
wire circuit. Instead, some of the energy leaks through the hybrid (Figure 2.11) into
the circuit that carries the near-end voice outbound to the far-end speaker. The result

Far speaker Near speaker
Hybrid Hybrid

Fig. 2.11. Impedance mismatches in the four-wire to two-wire hybrid transformer allow an
echo signal to pass into the speech signal from the near-end speaker. The result is that the far-
end speaker hears an echo.
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is that far-end speakers hear echoes of their own voices. Since the system design is
often symmetrical, the echo problem is symmetrical too, and near-end speakers also
suffer annoying echoes. The solution is to employ an echo suppression or echo
cancellation device.

Echo suppression is the older of the two approaches. Long-haul telephone cir-
cuits are typically digital and, in the case of the common North American T1 stan-
dard, multiplex upwards of 24 digital signals on a single circuit. Since the echo
removal is most economically viable at telephone service provider central of$ces,
the echo removal equipment must also be digital in nature. A digital echo suppres-
sor extracts samples from the far-end and near-end digital voice circuits. It
compares the magnitudes of the two signals, generally using a threshold on the dif-
ference in signal amplitudes. It opens the near-end to far-end voice path when there
is suf$cient far-end speech detected to cause an echo through the hybrid, but
insuf$cient near-end speech to warrant maintaining the circuit so that the two
speakers talk at once. (This situation, called double-talk in telephone engineering
parlance, occurs some 30% of the time during a typical conversation.) Thus, let
T > 0 be a threshold parameter, and suppose that M far-end samples and N near-end
samples are compared to decide a suppression action. Let x(n) and s(n) be the far-
and near-end digital signals, respectively. If |x(n)| + |x(n − 1)| + ⋅⋅⋅ + |x(n − M +
1)| > T(|s(n)| + |s(n − 1)| + ⋅⋅⋅ + |s(n − N + 1)|) at time instant n, then the suppres-
sor mutes the near-end speaker’s voice. Now, this may seem crude.

And echo suppression truly is crude. When both people speak, there is echo, but
it is less noticeable. The suppressor activates only when the near-end speaker stops
talking. Hence, unless the threshold T, the far-end window size M, and the near-end
window size N are carefully chosen, the suppressor haphazardly interrupts the near-
end signal and makes the resultant voice at the far-end sound choppy. Even granting
that these parameters are correct for given circuit conditions, there is no guarantee
that system component performances will not drift, or that one speaker will be
unusually loud, or that the other will be unusually soft-voiced. Moreover, the sup-
pressor design ought to provide a noise matching capability, whereby it substitutes
comfort noise during periods of voice interruption; otherwise, from the utter silence,
the far-end listener also gets the disturbing impression that the circuit is being
repeatedly broken and reestablished. Chapter 4 will study some methods for updat-
ing such parameters to maintain good echo suppressor performance. For now, how-
ever, we wish to turn to the echo canceller, a more reliable and also more modern
alternative.

An echo canceller builds a signal model of the echo which slips through the
hybrid. It then subtracts the model signal from the near-end speaker’s outbound
voice signal (Figure 2.12). How can this work? Note that the hybrid is an approxi-
mately linear device. If the far-end speaker’s signal x(n) is louder, then the echo gets
proportionally louder. Also, since telephone circuit transmission characteristics do
not change much over the time of a telephone call, the echo that the far-end signal
produces at one moment is approximately the same as it produces at another
moment. That is, the hybrid is very nearly translation-invariant. This provides an
opportunity to invoke the convolution theorem for LTI systems.
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Let H be the hybrid system, so that r = Hx is LTI, where x(n) is the inbound sig-
nal from the far-end speaker, and r(n) is the echo through the hybrid. Suppose that
the canceller stores the impulse response of the inbound far-end voice signal h(n).
Then it can approximate the echo as y(n) = (x*h)(n), and this is the crux of the
design. Subtracting y(n) from the near-end speech and echo signal, s(n) + r(n),
gives the transmitted digital voice signal t(n) = s(n) + r(n) − y(n) with echo largely
removed. Digital signal processors can perform these convolution and subtraction
steps in real time on digital telephony circuits [12]. Alternatively, echo cancellation
can be implemented in application-speci$c integrated circuits [13].

An intriguing problem is how to establish the echo impulse response coef$cients
h(k). The echo may change based on the connection and disconnection of equip-
ment on the near-end circuit, including the two-wire drop to the subscriber. Thus, it
is useful to allow h(k) to change slowly over time. We can allow h(k) to adapt so as
to minimize the residual error signal, e(n) = r(n) − y(n), that occurs when the near-
end speaker is silent, s(n) = 0. Suppose that discrete values up to time instant n have
been received and the coef$cients must be adjusted so that the energy of the error
e(n) is a minimum. The energy of the error signal’s last sample is e2(n). Viewing
e2(n) as a function of the coef$cients h(k), the maximum decrease in the error is in
the direction of the negative gradient, given by the vector with components

(2.35)

To smoothly converge on a good set of h(k) values, it is best to use some proportion
parameter η; thus, we adjust h(k) by adding 2ηr(n)x(n − k). This is an adaptive

Delay

Delay

Echo canceller:  LMS
adaptive filter Hybrid

+

Near speaker

x(n)

s(n)

s(n) + r(n)

y(n) = (x*h)(n)

t(n) = s(n) + r(n) - y(n)

Fig. 2.12. An echo canceller holds a set of coef$cients from which it can approximately
model the echo signal r(n). Assuming that the hybrid leakage is both linear and translation-
invariant, we can apply the convolution theorem for LTI systems. The canceller stores the
impulse response of the inbound far-end voice signal h(n) and computes the echo as y(n) =
(x*h)(n). Subtracting y(n) from the near-end speech and echo signal, s(n) + r(n), gives the
transmitted digital voice signal t(n) = s(n) + r(n) − y(n).
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$ltering algorithm known in the research literature as the least mean squares (LMS)
algorithm [14].

An improvement in echo cancellation results from implementing some of the
ideas from echo suppressor designs. A component commonly called the nonlinear
processor (NLP) performs muting and noise insertion in the advanced canceller.
Referring to Figure 2.13, note that the NLP mutes residual echo t(n) when it falls
below a small threshold and there is no near-end speech. NLP noise matching sup-
plies comfort noise to the outbound circuit so the far-end listener does not suspect a
dead line. Finally, the adaptation of the coef$cients h(n) should cease during peri-
ods of double-talk; otherwise, just as does genuine echo, the large magnitude near-
end speech will be seen as echo by the canceller. The upshot is that the h(n)
coef$cients will diverge from their proper settings, and a burst of echo will occur
when the near speaker stops talking.

2.5 THE l p SIGNAL SPACES

The remainder of the chapter develops the mathematical foundation for discrete sig-
nal processing theory. Vector calculus relies on such a foundation. But it is so intui-
tive, however, that many students do not even realize that the $nite-dimensional
vector spaces, Rn and Cn, underlie multivariable calculus. The theories of differenti-
ation, integration, limits, and series easily generalize to work with vectors instead
of just scalars. Our problems are much more complicated now, since the objects of
our theory—signals—are like vectors that are in$nitely long and extend in two

Delay

Delay

Echo canceller:  LMS
adaptive filter Hybrid

+

Near speaker

x(n)

s(n)

s(n) + r(n)

y(n) = (x*h)(n)

t(n) = s(n) + r(n) - y(n)

+ Non-linear
processor:

residual
suppression
and noise
matching

Near-end
speech
detector

e(n) = r(n) - y(n)

Fig. 2.13. An advanced echo canceller implements some of the design ideas from echo sup-
pressors. The nonlinear processor mutes residual echo (the signal t(n) after cancellation)
when it exceeds a threshold. Noise matching supplies comfort noise to the outbound circuit
so that the far-end listener does not suspect a dead line.
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directions. We cannot, for example, carelessly generalize the dot product from $nite
dimensional vector spaces to signals; the resulting sum may not converge.

2.5.1 lp Signals

What signal operations must our formal framework support? We have discovered
that convolution operations play a pivotal role in the study of LTI systems. Since the
summation in this important operation is in$nite, we may ask under what circum-
stances one can compute the limit which it represents. It is clear that if the system is
FIR, then the convolution sum is computable for any input signal. From a practical
perspective, every signal encountered in engineering is $nitely supported and can-
not continue with nonzero values forever. However, it is reassuring to know that this
is not a fundamental limitation of the theory we develop for signals. By looking a
little deeper into the mathematics of signals and operations on them, we can in fact
$nd classes of signals, not $nitely supported, that allow us to compute convolutions
for IIR systems.

De$nition (l p Signal Spaces). Let p ≥ 1 be a real number. Then lp is the set of all
real-valued (or complex-valued) signals x(n) such that

. (2.36)

We sometimes call the lp signals p-summable. If x(n) is in lp, then its lp-norm is

. (2.37)

There is an lp distance measure as well: . There is a special
case of lp signals, the bounded signals. A discrete signal x(n) is bounded if there is a
positive real number Mx such that for all n,

. (2.38)

It is customary to denote the class of bounded signals as . (This notation allows
an elegant formulation of an upcoming theorem.) Finally, we de$ne the norm of
a signal to be its least upper bound:

(2.39)

The l p signal classes share a number of important properties that we need in
order to do signal processing within them. This and the next section comprise a
tutorial on the mathematical discipline known as functional analysis [15], which
studies the properties of mathematical functions from a geometric standpoint. It is a
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generalization of $nite-dimensional real and complex vector space theory. In fact,
we already know some examples of lp spaces.

Example (Finite-Energy Signals). The l2 signals are precisely the $nite energy, or
square-summable discrete signals. The l2 norm is also the square root of the energy
of the signal. We will $nd that l2 is a standout lp space, since it supports an inner
product relation that generalizes the dot product on signals. There are signal spaces
for $nite energy analog signals too (Chapter 3). Furthermore, we will $nd in Chap-
ter 7 that it is possible to build a complete theory for the frequency analysis of l2

signals [16]. Chapter 11 explains the recent theory of multiresolution analysis for
$nite energy signals—a recent advance in signal analysis and one kind of signal
decomposition based on wavelets [17].

Example (Absolutely Summable Signals). The l1 signal space is the set of abso-
lutely summable signals. It too enjoys a complete signal frequency theory. Interest-
ingly, for any p, , there is an associated frequency analysis theory for the
space of lp signals [16]. Since signal processing and analysis uses mainly l1 and l2,
however, we will not elaborate the Fourier transform theory for lp, 1 < p < 2.

2.5.2 Stable Systems

The notion of the lp signal spaces applies readily to study of stable systems.

De$nition (Stability). The system H is stable if y = Hx is bounded whenever x is
bounded. Another term for stable is bounded input–bounded output (BIBO).

Thus, the response of a stable system to an  input signal is still an  signal. The
next theorem is useful for discovering whether or not an LTI system is stable. This
result depends on an important property of the real number system: Every sequence
that has a upper bound has a least upper bound [18].

Theorem (Stability Characterization). An LTI system H is stable if and only if
its impulse response, h = Hδ, is in l1 (absolutely summable).

Proof: First, suppose h = Hδ is in l1, and x(n) is an  input signal with
. Let y = Hx. Then,

(2.40)

So y(n) is bounded, proving that H is stable. Conversely, suppose the system H is
stable, but the impulse response h(n) is not in l1. Now, the expression (2.37) for
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the l1-norm of h is in fact a limit operation on a monotonically increasing
sequence of sums. This sequence is either bounded or it is not. If it is bounded,
then it would have a least upper bound, which must be the limit of the in$nite sum
(2.37). But we are assuming this limit does not exist. Thus, the sum must in fact
be unbounded. And the only way that the limit cannot exist is if it diverges to
in$nity. That is,

. (2.41)

Let us consider the bounded input signal x(n) de$ned

(2.42)

What is the response of our supposedly stable system to the signal x(n)? The convo-
lution theorem for LTI systems tells us that we can $nd, for example, y(0) to be

(2.43)

This shows that y is unbounded, so that H is not stable, contradicting the assump-
tion. Consequently, it must be the case that h is in l1. ■

2.5.3 Toward Abstract Signal Spaces

One of the $rst things to verify is the closure of the lp spaces under certain arith-
metic or algebraic signal operations. This involves two steps: 

(i) Verifying that the result of the operation is still a signal; that is, we can com-
pute the value of the result at any time instant (if one of the signal values
becomes in$nite, then it is not a signal).

(ii) Verifying that the resulting signal is in the signal space of the operands.

2.5.3.1 Closure Properties. The closure property for a signal operation shows
that we can process lp space signals through systems that are de$ned by the given
operation. For example, the proof of the following closure proposition is easy and
left as an exercise. What it shows is that an lp signal can be fed into an ampli$er sys-
tem and yet it remains an lp signal. Similarly, a delay or advance system preserves
the lp nature of its input signals.

h 1 h k( )
k ∞–=

∞

∑ ∞= =

x n( )
h n–( )
h n–( )
----------------- if h n–( ) 0,≠

0 if h n–( ) 0.=





=

y 0( ) h k( )x 0 k–( )
k ∞–=

∞

∑ h k( ) h k( )
h k( )
-------------

k ∞–=

∞

∑ h k( )
k ∞–=

∞

∑ h 1 ∞.= = = = =



140 DISCRETE SYSTEMS AND SIGNAL SPACES

Proposition (Closure of lp Spaces). Let x(n) be a signal in lp, , let c be a
real (or complex) number, and let k be an integer. Then:

(i) cx(n) is in lp and ||cx||p = |c| ||x||p.

(ii) x(k − n) is in lp and ||x(k − n)||p = ||x(n)||p.

Proof: Exercise. ■

Proposition (Closure of l1 Spaces). Let x(n) and y(n) be l1 signals. Then w(n) =
x(n) + y(n) is in l1 also.

Proof: To show that ||w(n)||1 is $nite, we only need to generalize the triangle
inequality from arithmetic, , to in$nite sums, and this is straightfor-
ward.  ■

Proposition (Closure of  Spaces). Let x(n) and y(n) be  signals. Then w(n) =
x(n) + y(n) is in  also.

Proof: is the least upper bound of {|w(n)|: n an integer}. The arithmetic
triangle inequality extends to in$nite sets for upper bounds as well.  ■

2.5.3.2 Vector Spaces. Before getting into the thick of abstract signal spaces,
let us review the properties of a vector V space over the real numbers R. There is a
zero vector. Vectors may be added, and this addition is commutative. Vectors have
additive inverses. Vectors can be multiplied by scalars, that is, elements of R. Also,
there are distributive and associative rules for scalar multiplication of vectors. One
vector space is the real numbers over the real numbers: not very provocative. More
interesting is the space with vectors taken from . This
set of real ordered pairs is called the Cartesian product, after Descartes,2 but the
concept was also pioneered by Fermat.3  In general, we can take the Cartesian

2Forming a set of ordered pairs into a structure that combines algebraic and geometric concepts origi-
nates with Rene Descartes (1596–1650) and Pierre Fermat (1601–1665) [D. Struik, ed., A Source Book in
Mathematics, 1200–1800, Princeton, NJ: Princeton University Press, 1986]. Descartes, among other
things, invented the current notation for algebraic equations; developed coordinate geometry; inaugu-
rated, in his Meditations, the epoch of modern philosophy; and was subject to a pointed critique by his
pupil, Queen Christina of Sweden.
3Fermat is famous for notes he jotted down while perusing Diophantus’s Arithmetic.  One was a claim to
the discovery of a proof for his Last Theorem: There are no nonzero whole number solutions of xn + yn =
zn for n > 1. Historians of science, mathematicians, and the lay public for that matter have come to doubt
that the Toulouse lawyer had a “marvelous demonstration,” easily inserted but for the tight margins
left by the printer. Three centuries after Fermat’s teasing marginalia, A. Wiles of Princeton University
followed an unexpected series of deep results from mathematicians around the world with his own six-
year assault and produced a convincing proof of Fermat’s Last Theorem [K. Devlin, Mathematics: The
Science of Patterns, New York: Scienti$c American Library, 1994.]
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product any positive number of times. The vector space exemplar is in fact the set of
ordered n-tuples of real numbers . This space is called Euclid-
ean n-space.4

Ideas of linear combination, span, linear independence, basis, and dimension are
important; we will generalize these notions as we continue to lay our foundation
for signal analysis. When a set of vectors  spans V, then each vec-
tor  is a linear combination of some of the ui: there are real numbers ai such
that v = a1u1 + ⋅⋅⋅ + aN uN. If S is $nite and spans V, then there is a linearly inde-
pendent subset of S that spans V. In other words, there is some ,

, B spans V, and no nontrivial linear combination of the bi is
the zero vector: 0 =  a1u1 + ⋅⋅⋅ + aNuN implies ai = 0. A spanning, linearly indepen-
dent set is called a basis for V. If V has a $nite basis, then every basis for V contains
the same number of vectors—the dimension of V. A vector in Euclidean n-space
has a norm, or length, which is the square root of the sum of the squares of its
elements.

There is also an inner product, or dot product, for :  .

 The dot product is a means of comparing two vectors via the relation
, where θ is the angle between the two vectors.

The vector space may also be de$ned over the complex numbers C in which
casewe call it a complex vector space. The set of n-tuples of complex numbers Cn is
called unitary n-space, an n-dimensional complex vector space. All of the vector
space de$nitions and properties carry directly over from real to complex vector
spaces, except for those associated with the inner product. We have to de$ne

, where c  is  the  complex conjugate. A classic refer-
ence on vector spaces (and modern algebra all the way up to the unsolvability of
quintic polynomials by radicals , roots of order n) is Ref. 19.

2.5.3.3 Metric Spaces. A metric space is an abstract space that incorporates
into its de$nition only the notion of a distance measure between elements. 

De$nition (Metric Space). Suppose that M is a set and d maps pairs of elements of
M into the real numbers, . Then M is a metric space with metric, or
distance measure d, if:

(i) d(u, v) ≥ 0 for all u, v in M.

(ii) d(u, v) = 0 if and only if u = v.

(iii) d(u, v) = d(v, u) for all u, v in M.

(iv) For any u, v, and w in M, .

4The ancient Greek mathematician Euclid (ca. 300 B.C.) was (probably) educated at Plato’s Academy in
Athens, compiled the Elements, and founded a school at Alexandria, Egypt.
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Items (i) and (ii) are known as the positive-de$niteness conditions; (iii) is a symme-
try condition; and (iv) is the triangle inequality, analogous to the distances along
sides of a triangle.

Example (Euclidean, Unitary Metric Spaces). Clearly the Euclidean and unitary
spaces are metric spaces. We can simply take the metric to be the Euclidean norm:
d(u, v) = ||u − v||.

Example (City Block Metric). But other distance measures are possible, too. For
example, if we set d((u1, v1), (u2, v2)) = |u1 − u2| + |v1 − v2|, then this is a metric on

, called the city block distance. This is easy to check and left as an exercise. Note
that the same set of elements can underlie a different metric space, depending upon
the particular distance measure chosen, as the city block distance shows. Thus, it is
common to write a metric space as an ordered pair (M, d), where M is the set of ele-
ments of the space, and d is the distance measure.

The triangle inequality is a crucial property. It allows us to form groups of metric
space elements, all centered around a single element. Thus, it is the mathematical
foundation for the notion of the proximity of one element to another. It makes the
notion of distance make sense: You can jump from u to v directly, or you can jump
twice, once to w and thence to v. But since you end up in the same place, namely at
element v, a double jump should not be a shorter overall trip.

We would like to compare two signals for similarity—for instance, to match one
signal against another (Chapter 4). One way to do this is to subtract the signal val-
ues from each other and calculate the size or magnitude of their difference. We can’t
easily adapt our inner product and norm de$nitions from Euclidean and unitary
spaces to signals because signals contain an in$nite number of components. Intu-
itively, a $nitely supported signal could have some norm like a $nite-dimensional
vector. But what about other signals? The inner product sum we are tempted to
write for a discrete signal becomes an in$nite sum if the signal is not $nitely
supported. When does this sum converge? What about bases and dimension? Can
the span, basis, and dimension notions extend to encompass discrete signals too?

2.5.4 Normed Spaces

This section introduces the normed space, which combines the ideas of vector
spaces and metric spaces.

De$nition (Normed Space). A normed space, or normed linear space, is a vector
space V with a norm ||v|| such that for any u and v in V,

(i) ||v|| is real and ||v|| ≥ 0.

(ii) ||v|| = 0 if and only if v = 0, the zero vector in V.

R
2
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(iii) ||av|| = |a| ||v||, for all real numbers a.

(iv) .

If  is a vector subspace of V, then we may de$ne a norm on S by just taking the
norm of V restricted to S. Then S becomes a normed space too. S is called a normed
subspace of V.

We adopt Euclidean and unitary vector spaces as our inspiration. The goal is to
take the abstract properties we need for signals from them and de$ne a special type
of vector space that has at least a norm. Now, we may not be able to make the class
of all signals into a normed space; there does not appear to be any sensible way to
de$ne a norm for a general signal with in$nite support. One might try to de$ne a
norm on a restricted set of signals in the same way as we de$ne the norm of a vector
in . The l2 signals have such a norm de$ned for them. The problem is that we do
not yet know whether the l2 signals form a vector space. In particular, we must show
that a sum of l2 signals is still an l2 signal (additive closure). Now, we have already
shown that the l1 signals with the norm ||x||1 do form a normed space. Thus, our
strategy is to work out the speci$c properties we need for signal theory, specify an
abstract space with these traits, and then discover those concrete classes of signals
that ful$ll our axiom system’s requirements. This strategy has proven quite success-
ful in applied mathematics.5 The discipline of functional analysis provides the tools
we need [15, 20–23]. There is a complete history as well [24]. We start with a
lemma about conjugate exponents [15].

De$nition (Conjugate Exponents). Let p > 1. If p−1 + q−1 = 1, then q is a conju-
gate exponent of p. For p = 1, the conjugate exponent of p is .

Let us collect a few simple facts about conjugate exponents.

Proposition (Conjugate Exponent Properties). Let p and q be conjugate expo-
nents. Then

(i) (p + q)/pq = 1.

(ii) pq = p + q.

(iii) (p − 1)(q − 1) = 1.

(iv) (p − 1)−1 = q − 1.

(v) If u = tp−1, then t = uq−1.

5Several mathematicians—among them Wiener, Hahn, and Banach—simultaneously and independently
worked out the concept and properties for a normed space in the 1920s. The discipline of functional anal-
ysis grew quickly. It incorporated the previous results of Hölder and Minkowski, found applications
in quantum mechanics, helped unify the study of differential equations, and, within a decade, was the
subject of general treatises and reviews.
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Lemma (Conjugate Exponents). Let a > 0 and b > 0 be real numbers. Let p and
q be conjugate exponents. Then .

Proof: The trick is to see that the inequality statement of the lemma reduces to a
geometric argument about the areas of regions bounded by the curve u = tp−1. Note
that

(2.44)

(2.45)

De$nite integrals (2.44) and (2.45) are areas bounded by the curve and the t- and
u-axis, respectively (Figure 2.14). The sum of these areas is not smaller than the
area of the rectangle de$ned by (0,0) and (a,b) in any case. ■

Our $rst nontrivial closure result on lp spaces, Hölder’s6 inequality [15], shows
that it is possible to form the product of signals from conjugate lp spaces.

6German mathematician Otto Ludwig Hölder (1859–1937) discovered the relation in 1884.
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Fig. 2.14. There are two cases: Either point (a, b) is below the curve (bottom) or above the
curve (top). In either case the area of the rectangle determined by the origin and (a, b) has a
smaller area than the total area of regions bounded by the curve and the t- and u-axes.
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Theorem (Hölder’s Inequality). Let x(n) be in lp and let h(n) in lq, where p and q
are conjugate exponents. Then y(n) = x(n)h(n) is in l1 and .

Proof: Since the inequality clearly holds if ||x||p = 0 or ||h||q = 0, we assume that
these signals are not identically 0. Next, let and , and
set . By the lemma,

. (2.46)

Putting (2.46) into the expression for , we $nd that

(2.47)

Hence,

(2.48)

and the Hölder inequality follows. ■

Remarks. From the Hölder inequality, it is easy to show that there are IIR systems
that have large classes of in$nitely supported signals in their domains. This shows
that our theory of signals can cope with more than FIR systems. In particular, the
space of $nite-energy signals is contained within the domain of any LTI system
with a $nite-energy impulse response. 

Theorem (Domain of lq Impulse Response Systems). Suppose H is an LTI sys-
tem and h = Hδ is in lq. Then any x(n) in lp, where p and q are conjugate exponents,
is in Domain(H).

Proof: By the convolution theorem for LTI systems, the response of H to input x is
y = x * h. Thus,

. (2.49)

Since the q-summable spaces are closed under translation and re#ection,
h(n − k) is in lq for all n. So the Hölder inequality implies that the product signal
wn(k) = x(k)h(n − k) is in l1. Computing ||wn||1, we see that it is just the right-
hand side of (2.49). Therefore,  for all n. The convolution sum (2.49)
converges. ■
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Corollary (Cauchy–Schwarz7 Inequality). Suppose x(n) and h(n) are in l2. Then
the product y(n) = x(n)h(n) is in l1 and

. (2.50)

Proof: Take p = q = 2 in the Hölder inequality. ■

Theorem (Minkowski8 Inequality). If x and y are in lp, then w = x + y is in lp, and
.

Proof: Assume p > 1. Then,

. (2.51)

Summing over all n gives

. (2.52)

The Hölder inequality applies to the $rst sum on the right-hand side of (2.52) with
q = p/(p − 1) as follows:

(2.53)

Similarly, for the second sum of the right-hand side of (2.52), we have

. (2.54)

Putting (2.52)–(2.54) together gives

. (2.55)

7After French mathematician Augustin-Louis Cauchy (1789–1857) and German mathematician
Hermann Amandus Schwarz (1843–1921).
8Although he was born in what is now Lithuania, Hermann Minkowski (1864–1909) spent his academic
career at German universities. He studied physics as well as pure mathematics. He was one of the $rst to
propose a space-time continuum for relativity theory. 
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Finally, (2.55) entails

(2.56)

completing the proof.  ■

Now, it’s easy to check that the norms associated with the lp signal spaces, ||x||p, are
in fact norms under the above abstract de$nition of a normed linear space:

Theorem (lp Spaces Characterization). The lp spaces are normed spaces for
. ■

So far we $nd that the lp spaces support several needed signal operations: addi-
tion, scalar multiplication, and convolution. Sometimes the result is not in the same
class as the operands, but it is still in another related class; this is not ideal, but at
least we can work with the result. Now let us try to incorporate the idea of signal
convergence—limits of sequences of signals—into our formal signal theory.

2.5.5 Banach Spaces

In signal processing and analysis, we often consider sequences of signals {xk(n)}.
For example, the sequence could be a series of transformations of a source signal.
It is of interest to know whether the sequence of signals converges to another lim-
iting signal. In particular, we are concerned with the convergence of sequences of
signals in lp spaces, since we have already shown them to obey special closure
properties, and they have a close connection with such signal processing ideas as
stability. We have also shown that the lp signal spaces are normed spaces. We
cannot expect every sequence of signals to converge; after all, not every sequence
of real numbers converges. However, we recall from calculus the Cauchy condi-
tion for convergence: A sequence of real (or complex) numbers {ak} is a Cauchy
sequence if for every ε > 0, there is an N > 0 such that for k, l > N, |ak − al| < ε.
Informally, this means that if we wait long enough, the numbers in the sequence
will remain arbitrarily close together. An essential property of the real line is that
every Cauchy sequence of converges to a limit [18]. If we have an analogous
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property for signals in a normed space, then we call the signal space a Banach9

space [15]. 

De$nition (Banach Space). A Banach space B is a normed space that is complete.
That is, any sequence {xk(n)} of signals in B that is a Cauchy sequence converges in
B to a signal x(n) also in B. Note that {xk(n)} is a Cauchy sequence if for every ε >
0, there is an N > 0 so that whenever k, l > N, we have ||xk − xl|| < ε. If  is a
complete normed subspace of B, then we call S a Banach subspace of B.

Theorem (Completeness of lp Spaces). The lp spaces are complete, .

Proof: The exercises sketch the proofs.  ■

Banach spaces have historically proven dif$cult to analyze, evidently due to the
lack of an inner product relation. Breakthrough research has of late cleared up some
of the mysteries of these abstract spaces and revealed surprising structure. The area
remains one of intense mathematical research activity. For signal theory, we need
more analytical power than what Banach spaces furnish. In particular, we need some
theoretical framework for establishing the similarity or dissimilarity of two signals—
we need to augment our abstract signal theory space with an inner product relation.

Examples

(i) An example of a Banach subspace is l1, which is a subspace of all lp

.

(ii) The set of signals in lp that are zero on a nonempty subset  is easily
shown to be a Banach space. This is a proper subspace of lp for all p.

(iii) The normed subspace of lp that consists of all $nitely supported p-summa-
ble signals is not a Banach subspace. There is a sequence of $nitely sup-
ported signals that is a Cauchy sequence (and therefore converges inside lp)
but does not converge to a $nitely supported signal.

Recall from calculus the ideas of open and closed subsets of the real line. A set
 is open if for every point p in S, there is ε > 0 such that

. That is, every point p of S is contained in
an open ball that is contained in S. A set  is closed if its complement is open.
Let V be a normed space. Then a set  is open if for every point p in S, there is
ε > 0 such that . That is, every point p of S
is contained in an open ball that is contained in S.

Theorem (Banach Subspace Characterization). Let B be a Banach space and S a
normed subspace of B. Then S is a Banach subspace if and only if S is closed in B.

9The Polish mathematician S. Banach (1892–1945) developed so much of the initial theory of complete
normed spaces that the structure is named after him. Banach published one of the $rst texts on functional
analysis in the early 1930s.

S B⊆

1 p ∞≤ ≤

1 p ∞≤ ≤
Y Z⊆

S R⊆
Ball p ε,( ) x R: x p– ε<∈{ } S⊆=

S R⊆
S V⊆

Ball p ε,( ) x V: x p– ε<∈{ } S⊆=



INNER PRODUCT SPACES 149

Proof: First suppose that S is a Banach subspace. We need to show that S is closed
in B. Let , and . We claim that there is an ε > 0 such that the open ball

. If not, then for any integer n > 0, there is a point  that
is within the ball Ball(p, 1/n). The sequence {sn: n > 0} is a Cauchy sequence in S.
Since S is Banach, this sequence converges to . However, this means we must
have s = p, showing that , a contradiction. 

Conversely, suppose that S is closed and {sn: n > 0} is a Cauchy sequence in S. We
need to show that {sn} converges to an element in S. The sequence is still a Cauchy
sequence in all of B; the sequence converges to . We claim . If not, then
since p is in the complement of S and S is closed, there must be an ε > 0 and an open
ball . This contradicts the fact that , proving the claim
and the theorem. ■

2.6 INNER PRODUCT SPACES

Inner product spaces have a binary operator for measuring the similarity of two ele-
ments. Remember that in linear algebra and vector calculus over the normed spaces
Rn, the inner (or dot) product operation has a distinct geometric interpretation. We
use it to $nd the angle between two vectors in Rn: , where θ
is the angle between the vectors. From the inner product, we de$ne the notion of
orthogonality and of an orthogonal set of basis elements. Orthogonal bases are
important because they furnish a very easy set of computations for decomposing
general elements of the space.

2.6.1 Definitions and Examples

Once again, we abstract the desired properties from the Euclidean and unitary spaces.

De$nition (Inner Product Space). An inner product space I is a vector space with
an inner product de$ned on it. The inner product, written with brackets notation

, can be real- or complex-valued, according to whether I is a real or complex
vector space, respectively. The inner product satis$es these $ve rules:

(i)  for all .

(ii) For all ,  if and only if x = 0 (that is, x is the zero vector).

(iii) For all , , where c is the complex conjugate of c.

(iv) For all  (or just R, if I is a real inner product space) and all ,
.

(v) For all , .

If , then S becomes an inner product space by taking its inner product to be the
inner product of I restricted to S. We call S an inner product subspace of I.
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s S∈
p S∈

p B∈ p S∈

Ball p ε,( ) S ′⊆ d sn s,( ) 0→

u v,〈 〉 u v θ( )cos=

x y,〈 〉

0 x x,〈 〉≤ x I∈
x I∈ 0 x x,〈 〉=

x y, I∈ x y,〈 〉 y x,〈 〉=
c C∈ x y, I∈

cx y,〈 〉 c x y,〈 〉=
w x y, , I∈ w x+ y,〈 〉 w y,〈 〉 x y,〈 〉+=
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Remarks. Note that the inner product is linear in the $rst component, but, when the
inner product spaces are complex, it is conjugate linear in the second component.
When the de$nition speaks of “vectors,” these are understood to be abstract ele-
ments; they could, for example, be in$nitely long or functions from the integers to
the real numbers (discrete signals).

Examples (Inner Product Spaces)

(i) The normed space Rn, Euclidean n-space, with inner product de$ned
 is a real inner product space. This space is familiar from

linear algebra and vector calculus.

(ii) The normed space Cn with inner product de$ned  is a
complex inner product space. (We take complex conjugates in the de$nition
so that we can de$ne ||x|| on Cn from the inner product.)

(iii) The signal space l2 is an inner product space when we de$ne its inner
product

. (2.57)

Remarks. Notice that the Cauchy–Schwarz result (2.50) implies convergence of
(2.57). Furthermore, since we know that the lp spaces are Banach spaces and there-
fore complete, l2 is our $rst example of a Hilbert space10 (Figure 2.15).

The ideas underlying Banach and Hilbert spaces are central to understanding the
latest developments in signal analysis: time-frequency transforms, time-scale trans-
forms, and frames (Chapters 10–12).

10D. Hilbert studied the special case of l2 around 1900. Later, in a landmark 1910 paper, F. Riesz gener-
alized the concept and de$ned the lp spaces we know today. The Cauchy–Schwarz inequality was known
for discrete $nite sums (i.e., discrete signals with $nite support) by A. Cauchy in the early nineteenth
century. H. Schwarz proved the analagous result for continuous signals (we see this in the next chapter,
when the summations become integrals) and used it well in a prominent 1885 paper on minimal surfaces.
V. Buniakowski had in fact already discovered Schwarz’s integral form of the inequality in 1859, but his
result drew little attention. O. Hölder published a paper containing his inequality in 1889. H. Minkowski
disclosed the inequality that now bears his name as late as 1896; it was, however, restricted to $nite sums.
Riesz’s 1910 paper would extend both the Hölder and Minkowski results to analog signals, for which
integrals replace the discrete sums.

x y,〈 〉 xkykk 1=
n∑=

x y,〈 〉 xkykk 1=
n∑=

x y,〈 〉 x n( )y n( )
n ∞–=

∞

∑=
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2.6.2 Norm and Metric

An inner product space I has a natural norm associated with its inner product:
. With this de$nition, the triangle inequality follows from the

Cauchy–Schwarz relation, and the other normed space properties follow easily.
There is also a natural distance measure: d(x,y) = ||x − y||.

Theorem (Cauchy–Schwarz Inequality for Inner Product Spaces). Let I be an
inner product space and . Then

(2.58)

Furthermore,  if and only if u and v are linearly dependent.

Proof: First, suppose that u and v are linearly dependent. If, say, v = 0, then both
sides of (2.58) are zero. Also, if u = cv for some scalar (real or complex number)
c, then , proving (2.58) with equality. Next, let us show
that there is strict inequality in (2.58) if u and v are linearly independent. We resort
to a standard trick. By linear independence,  for any scalar c. Hence,

(2.59)

for any c. In particular, by taking  in (2.59),

(2.60)

The Cauchy–Schwarz inequality follows. ■

Normed spaces

Inner product spaces

Banach
spaces

Hilbert spaces

Fig. 2.15. Relationships between signal spaces. Hilbert spaces are precisely the inner
prodct spaces that are also Banach spaces.
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We can now show that with , I is a normed space. All of the prop-
erties of a normed space are simple, except for the triangle inequality. By expanding
the inner products in ||u + v||2, it turns out that

 , (2.61)

where Real(c) is the real part of . Applying Cauchy–Schwarz to (2.61),

, (2.62)

and we have shown the triangle inequality for the norm.
The natural distance measure d(x,y) = ||x − y|| is indeed a metric. That is, for

all  we have d(x, y) ≥ 0. Also, d(x, y) = 0 if and only if x = y. Symmetry
exists: d(x, y) = d(y, x). And the triangle inequality holds: Given ,

. We use the distance metric to de$ne convergent
sequences in I: If {xn} is a sequence in I, and  as , then we say

. The inner product in I is continuous (exercise), another corollary of the
Cauchy–Schwarz inequality.

Proposition (Parallelogram Rule). Let I be an inner product space, let x and y be
elements of I, and let  be the the inner product space norm. Then
||x + y||2 + ||x - y||2 = 2||x||2 + 2||y||2.

Proof: Expanding the norms in terms of their de$nition by the inner product gives

, (2.63)

. (2.64)

Adding (2.63) and (2.64) together gives the rule.  ■

The reason for the rule’s name lies in a nice geometric interpretation (Figure
2.16). The parallelogram rule is an abstract signal space equivalent of an elementary
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y(n)

x+y

x-y

Fig. 2.16. Parallelogram rule. This simple geometric relationship between signals in an
inner product space imposes a severe constraint on the lp spaces. Only subspaces of l2 sup-
port an inner product relation for our signal theory. 
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property from plane geometry. This shows the formal and conceptual power of the
function space approach to signal theory. We can derive the algebraic rule from
blind manipulations, and we can also resort to geometric constructs for insights into
the relationships between the abstractions.

There is a negative consequence of the parallelogram rule: Except for l2, none of
the lp spaces support an inner product de$nition that is related to the norm, || ||p. To

verify this, consider the signals x = [0, 1], y = [1, 0], and compute 

and . By the rule, we must have , so that p =
2. The consequence is that although we have developed a certain body of theory for
p-summable signals, found closure rules for basic operations like signal summation,
ampli$cation, and convolution, and shown that Cauchy sequences of p-summable
signals converge, we cannot have an inner product relation for comparing signals
unless p = 2. One might worry that l2 is a signal analysis monoculture—it lacks the
diversity of examples, counterexamples, classes, and conditions that we need to run
and maintain the signal analysis economy. The good news is that the square-
summable signal space is quite rich and that we can $nd in its recesses the excep-
tional signals we happen to need. 

2.6.3 Orthogonality

The inner product relation is the key to decomposing a signal into a set of simpler
components and for characterizing subspaces of signals. The pivotal concept for
inner product signal spaces, as with simple Euclidean and unitary vector spaces, is
orthogonality.

2.6.3.1 Definition and Examples. If we consider inner product spaces of
discrete signals, then the inner product is a measure of the similarity of two signals.
Signals are similar to themselves, and so nonzero signals have a positive inner prod-
uct with themselves: . Two signals that are not at all alike, following this
intuition, have zero inner product with each other: .

De$nition (Orthogonality). In an inner product space I, two elements—u and
v— are orthogonal if ; in this case, we write . If u is orthogonal
to every element of a set S, we write . The set of all u in I such that for all
s in S, we have  is called the orthogonal complement of S; it is written .
A set S of nonzero elements of I is an orthogonal set if  for u, v in S,

. If S is an orthogonal set such that ||u|| = 1 for all u in S, then S is an
orthonormal set.

Example (Unit Impulses). The shifted unit impulse signals S = {δ(n − k)} form an
orthonormal set in the inner product space l2.
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Notice that we do not say that the unit impulse signals are a basis for the square-
summable signals. In $nite-dimensional vector spaces, bases span the entire space;
thus, every vector is a linear combination of a $nite number of elements from the
basis set. This is not true for general l2 signals and the shifted unit impulses. No
$nite set of shifted unit impulses can span the whole Hilbert space. Moreover, some
signals—those without $nite support—cannot be a linear combination of a $nite
number of shifted unit impulses. While we were able to smoothly migrate most of
the ideas from $nite-dimensional vector spaces to inner product spaces, we now $nd
that the concept of a basis did not fare so well. The problem is that general inner
product spaces (among them our remaining lp space, l2) may have an “in$nite”
dimension.

We must loosen up the old idea of basis considerably. Let us re#ect for a moment
on the shifted unit impulses and a signal . Since , given ε > 0, we
can $nd N > 0, so that the energy of the outer fringes of the signal—x(n) values for
n > N—have energy less than ε. This means that some linear combination of shifted
impulses comes arbitrarily close to x in l2 norm. Here then is where we loosen the
basis concept so that it works for inner product spaces. We allow that a linear com-
bination come arbitrarily close to signal x. This is the key idea of completeness: A
set of elements S is complete or total if every element of the space I is the limit of a
sequence of elements from the linear span of S. We also say that S is dense in I. The
term “complete” for this idea is terrible, but standard. In a space with a distance
measure, “complete” means that every Cauchy sequence converges to an element in
the space. For example, the real number line is complete this sense. Now we use the
same term for something different, namely the existence of a Cauchy sequence of
linear combinations. The better term is “total” [15]. The only good advice is to pay
close attention to the context; if the discussion is about bases, then “complete” prob-
ably signi$es this new sense. So we could stipulate that a basis for I is a linearly
independent set of signals whose linear span is dense in I.

Should we also assert that the shifted unit samples are a basis for the square-
integrable signals? Notice that we are talking here about convergence in a general
inner product space. Some inner product spaces are not complete. So, we will post-
pone the proper de$nition of completeness and the generalization of the basis con-
cept that we need until we develop more inner product space theory.

Example (Rademacher11 Signals). Consider the signals e0 = [1, −1], e1 = [1,  1,
−1, −1], e2 = [1, 1, 1, 1, −1, −1 −1, −1], and so on. These signals are orthogonal. Notice
that we can shift e0 by multiples of 2, and the result is still orthogonal to all of the ei.
And we can delay e1 by 4k for some integer k, and it is still orthogonal to all of the
ei and all of the shifted versions of e0. Let us continue to use ei,k to denote the signal
ei delayed by amount k. Then the set {ei,k: i is a natural number and k = m2i+1, for
some m} is orthogonal.  Notice that the sum of signal values of a linear combination

11Although not Jewish, but rather a paci$st, German number theorist and analyst Hans Rademacher
(1892–1969) was forced from his professorship at Breslau in 1934 by the Nazi regime and took refuge in
the United States.

x l
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of Rademacher signals is always zero. Hence, the Rademacher signals are not com-
plete. The signal δ(n), for instance, is not in the closure of the linear span of the
Rademacher signals. Note too that the Rademacher signals are not an orthonormal set.
But we can orthonormalize them by dividing each ei,k by its norm, 2i+1.

We will use the notion of orthogonality extensively. Note $rst of all that this
formal de$nition of orthogonality conforms to our geometric intuition. The Pythag-
oras12 relation for a right triangle states that the square of the length of the hypote-
neuse is equal to the sum of the squares of the other two sides. It is easy to show that

 in an inner product space entails ||u||2 + ||v||2 = ||u+v||2. This also generalizes
to an arbitrary $nite orthogonal set. Other familiar inner product properties from the
realm of vector spaces reappear as well:

(i) If  for i = 1, ..., n, then x is orthogonal to any linear combination of
the ui.

(ii) If  for i in the natural numbers, and , then .

(iii) If  (where S is an orthogonal set), ui is in S, and , then .

Orthonormal sets can be found that span the inner product signal spaces I that we
commonly use to model our discrete (and later, analog) signals. The idea of span-
ning an inner product space generalizes the same notion for $nite-dimensional
vector spaces. We are often interested in decomposing a signal x(n) into linear com-
bination of simpler signals {u0, u1, ...}. That is, we seek scalars ck such that

. If the family {ck} is $nite, we say that x(n) is in the linear span
of {u0 , u1, ...}. Orthonormal sets are handy for the decomposition because the sca-
lars ck are particularly easy to $nd. If  and the uk are orthonor-
mal, then . For example, the shifted unit impulse signals S = {δ(n –
k)} form an orthonormal set in the inner product space l2. Decomposing x(n) on the
orthonormal shifted unit impulses is trivial: ck = x(k). The unit impulses are not a
very informative decomposition of a discrete signal, however, because they do not
provide any more information about the signal than its values contain at time
instants. The problem of signal decomposition becomes much more interesting and
useful when the composition elements become complicated. Each uk then encapsu-
lates more elaborate information about x(n) within the decomposition. We may also
interpret |ck| as a measure of how much alike are x(n) and uk(n).

Example (Discrete Fourier Transform). To illustrate a nontrivial orthonormal
decomposition, let N > 0 and consider the windowed exponential signals 

, (2.65)

12This property of right triangles was known to the Babylonians long before the mystic Greek number
theorist Pythagoras (#. ca. 510 B.C.) [B. L. van der Waerden, Science Awakening, translator. A. Dresden,
Groningen, Holland: Nordhoff, 1954].
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where u(n) is the unit step signal. They form an orthonormal set on [0, N − 1].
Suppose x(n) also has support in [0, N − 1]. We will show later that x(n) is in the
linear span of  (Chapter 7). Since x, u1, ..., uN−1 are in l2,
we have 

. (2.66)

This decomposes x(n) into a sum of scaled frequency components; we have, in fact,
quite easily discovered the discrete Fourier transform (DFT) using a bit of inner
product space theory. Fourier transforms in signal processing are a class of signal
operations that resolve an analog or discrete signal into its frequency components—
sinusoids or exponentials. The components may be called “Fourier components”
when the underlying orthonormal set is not made up of sinusoidal or exponential
components. Thus we have the de$nition: If  is an orthonor-
mal set and x is a signal in an inner product space, then  is the kth
Fourier coef$cient of x(n) with respect to the {uk}. If , then we say
that x is represented by a Fourier series in the {uk}.

Note that the DFT system is linear, but, owing to the $xed decomposition
window, not translation-invariant. There are a great many other properties and
applications of the DFT (Chapter 7).

2.6.3.2 Bessel’s Inequality. Geometric intuition about inner product spaces
can tell us how we might use Fourier coef$cients to characterize a signal. From
(2.66) we can see that each Fourier coef$cient indicates how much of each uk(n)
there is in the signal x(n). If , then there is nothing like uk(n) in x(n); if

 is large, it means that there is an important uk-like element in x(n); and
when  is large and the rest of the Fourier coef$cients are small, it means
that as a signal x(n) has a signi$cant similarity to uk(n). Given an orthonormal set
S = {uk} and a signal x(n), what do the Fourier coef$cients of x(n) with respect to S
look like? It is clear from (2.66) that when ||x(n)|| is large, then the norms of the
Fourier coef$cients also become large. How large can the Fourier coef$cients be
with respect to ||x(n)||? If the set S is in$nite, are most of the Fourier coef$cients
zero? Is it possible for the Fourier coef$cients of x(n) to be arbitrarily large? Per-
haps the  as ? If not, then there is an ε > 0, such that for any N >
0, there is a k > N with . In other words, can the signi$cant Fourier
components in x(n) with respect to S go on forever? The next set of results, leading
to Bessel’s theorem for inner product spaces, helps to answer these questions.

Consider a signal x(n) and an orthonormal set  in an inner
product space I. x(n) may be in the linear span of S, in which case the Fourier
coef$cients tell us the degree of similarity of x(n) to each of the elements uk. But if x(n)
is not in the linear span of S, then we might try to $nd the y(n) in the linear span of S
that is the closest signal to x(n). In other words, if S cannot give us an exact breakdown
of x(n), what is the best model of x(n) that S can provide? Let ck be complex numbers,
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and let . y(n) is a linear combination of elements of S which we want to
be close to x(n). Then, after some inner product algebra and help from Pythagoras,

(2.67)

By varying the ck, y(n) becomes any general signal in the linear span of S. The min-
imum distance between x(n) and y(n) occurs when the middle term of (2.67) is zero:

. With this choice of {ck}, y(n) is the best model S can provide for x(n). 
We can apply this last result to answer the question about the magnitude of

Fourier coef$cients for a signal x(n) in an inner product space. We would like to $nd
an orthogonal set S so that its linear span contains every element of the inner prod-
uct space. Then, we might characterize a signal x(n) by its Fourier coef$cients with
respect to S. Unfortunately, as with the Rademacher signals, the linear span of an
orthonormal set may not include the entire inner product space. Nevertheless, it is
still possible to derive Bessel’s inequality for inner product spaces.

Theorem (Inner Product Space Bessel13 Inequality). Let I be an inner product
space, let S = {uk} an orthonormal family of signals in I, and let . Then

. (2.68)

Proof: Proceeding from (2.67), we set . Then, ,

and . But . Thus,

and (2.68) follows. ■

2.6.3.3 Summary. We use the inner product relation as a measure of the simi-
larity of signals, just as we do with $nite-dimensional vectors. Orthonormal families
of signals S = {uk} are especially convenient for decomposing signals x(n), since
the coef$cients of the decomposition sum are readily computed as the inner product

. It may well be that x(n) cannot be expressed as a sum (possibly
in$nite) of elements of S; nevertheless, we can $nd the coef$cients ck that give us
the closest signal to x(n). From Bessel’s relation, we see that the Fourier coef$cients
for a general signal x(n) with respect to an orthonormal family S are bounded by
||x||. One does not $nd a monstrous Fourier coef$cient unless the original signal
itself is monstrous. Moreover, the sum in (2.68) could involve an in$nite number of
nonzero terms. Then the fact that the sum converges indicates that the Fourier
coef$cients must eventually become arbitrarily small. No signal has Fourier
coef$cients with respect to S that get arbitrarily large. When S is in$nite, every
signal has Fourier coef$cients  such that  as . Bessel’s
inequality guarantees that the Fourier coef$cients for x(n) are well-behaved.

13After German mathematician and astronomer Friedrich Wilhelm Bessel (1794–1846).
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Under what conditions does , with ? That is, we are
interested in whether x(n) has a Fourier series representation with respect to the {uk}.
If the orthonormal set S is $nite and x is in the linear span of S, then this is true. If, on
the other hand, S is in$nite, then the sum becomes (possibly) in$nite and the problem
becomes whether the limit that formally de$nes this summation exists. Recall that cal-
culus explains convergence of in$nite sums in terms of Cauchy sequences of partial
series sums. Thus, , if lim An = a, where . If every Cauchy
sequence has a limit, then the abstract space is called complete. Banach spaces are
normed spaces that are complete. If we add completeness to the required properties
of an inner product space, then what we get is the abstract structure known as a Hilbert
space—one of the most important tools in applied mathematics, signal analysis, and
physics.

2.7 HILBERT SPACES

In addition to the many excellent treatments of inner product and Hilbert spaces in
functional analysis treatises, Hilbert space theory is found in specialized, introduc-
tory texts [25, 26].

2.7.1 Definitions and Examples

De$nition (Hilbert Space). A Hilbert space is a complete inner product space. If
 is an inner product subspace of H and every Cauchy sequence of elements of

S converges to an element of S, then S is a Hilbert subspace of H.

Recall that {xk(n)} is a Cauchy sequence if for every ε > 0, there is an N > 0 so
that whenever k, l > N, we have d(xk, xl) = ||xk − xl|| < ε. Completeness means that
every Cauchy sequence of signals in the space converges to a signal also in that
space. Since we are working with inner product spaces, this norm must be inter-
preted as the inner product space norm. The least special of all the spaces is the
normed space. Within its class, and distinct from one another, are the inner product
and Banach spaces. The Banach spaces that are blessed with an inner product are
the Hilbert spaces (Figure 2.15).

Examples (Hilbert Spaces). The following are Hilbert spaces:

(i) l2 with the inner product de$ned

. (2.69)
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(ii) The set of signals in l2 that are zero on a nonempty subset .

(iii) The inner product space Rn, Euclidean n-space, with the standard dot
product.

(iv) Similarly, the unitary space Rn with the standard inner product is a complex
Hilbert space.

(v) Consider some subset of the shifted unit impulse signals S = {δ(n − k)}. The
linear span of S is an inner product subspace of l2. If we take the set of limit
points of Cauchy sequences of the linear span of S, then we get a Hilbert
subspace of l2. These subspaces are identical to those of (ii). 

2.7.2 Decomposition and Direct Sums

The notions of orthogonality, basis, and subspace are interlinked within Hilbert
space theory. The results in this section will show that l2 Hilbert space looks very
much like an “in$nite-dimensional” extension of our $nite-dimensional Euclidean
and unitary n-spaces.

2.7.2.1 Subspace Decomposition. The following theorem is basic.

Theorem (Hilbert Space Decomposition). Let H be a Hilbert space, let X be a
Hilbert subspace of H, and let  be the orthogonal complement of X in H.
Then for any h in H, h = x + y, where  and .

Proof: Let  and consider the distance from the subspace X to h. This number,
call it δ = d(h, X), is the greatest lower bound of {||x − h||: x in X}. Since we can $nd
elements  whose distance to h differs by an arbitrarily small value from δ,
there must be a sequence {xn: xn in X, n > 0} with ||xn − h|| < 1/n + δ.

We claim that {xn} is a Cauchy sequence in X. By applying the parallelogram
rule to xn − h and xm − h, we have

. (2.70)

Since X is closed under addition and scalar multiplication, we have , and
therefore

. (2.71)

Putting the inequality (2.71) into (2.70) and rearranging gives

. (2.72)
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Consequently,

, (2.73)

which shows {xn} is Cauchy, as claimed. Since X is complete and contains this
sequence, there must be a limit point: . Let y = h − x. We claim that

. To prove this claim, let . We must show that .
First note that since δ = d(h, X) and , we have 

(2.74)

for all n. Thus, . Next, let a be a scalar. Closure properties of
X imply that  so that . Expanding this
last inequality in terms of the inner product on H gives

. (2.75)

Because , we can simplify (2.75) and then take , which

greatly simpli$es to produce . This must mean that ,

, and . This proves the last claim and completes the proof. ■

Let us list a few facts that follow from the theorem:

(i) The norm of element y is precisely the distance from h to the subspace X,
||y|| = δ = d(h, X). This was shown in the course of the proof.

(ii) Also, the decomposition of h = x + y is unique (exercise).

(iii) One last corollary is that a set S of elements in H is complete (that is, the
closure of its linear span is all of H) if and only if the only element that is
orthogonal to all elements of S is the zero element.

De$nition (Direct Sum, Projection). Suppose that H is a Hilbert space with
. Then H is the direct sum of X and Y if every  is a unique sum of a

signal in X and a signal in Y: h = x + y. We write  and, in this case, if h =
x + y with  and , we say that x is the projection of h onto X and y is the
projection of h onto Y.

The decomposition theorem tells us that a Hilbert space is the direct sum of any
Hilbert subspace and its orthogonal complement. The direct sum decomposition of
a Hilbert space leads naturally to a linear system.
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De$nition (Projection System). Let H be a Hilbert space and X a Hilbert subspace
of H. The projection from H to X is the mapping  de$ned by T(h) = x,
where h = x + y, with . 

Remark. This de$nition makes sense (in other words, the mapping is well-de$ned)
because there is a unique  that can be associated with any .

2.7.2.2 Convergence Criterion. Combining the decomposition system with
orthogonality gives Hilbert space theory much of the power it has for application in
signal analysis. Consider an orthonormal set of signals {uk(n)} in a Hilbert space H,
a set of scalars {ak}, and the sum

. (2.76)

This sum may or may not converge in H. If the sequence of partial sums {sN(n)}

. (2.77)

is a Cauchy sequence, then (2.76) has a limit. 

Theorem (Series Convergence Criterion). The sum (2.76) converges in Hilbert
space H if and only if the signal a(n) = an is in l2.

Proof: Let N > M and take the difference sN − sM in (2.77). Then,

, (2.78)

because of the orthonormality of the {uk(n)} signal family. Thus, d(sN, sM) tends to
zero if and only if the sums of squares of the |an | tend to zero. ■

Note too that if (2.76) converges, then the an are the Fourier coef$cients of x with
respect to the orthonormal family {uk(n)}. This follows from taking the inner
product of x with a typical uk:

(2.79)

Therefore,

. (2.80)

T: H X→
y X

⊥∈

x X∈ h H∈

x n( ) akuk n( )
k ∞–=

∞

∑=

sN n( ) akuk n( )
k N–=

N

∑=

sN sM–
2

a N–
2

a N– 1+
2 … a M– 1–

2
aM 1+

2 … aN
2

+ + + + + +=

x uk,〈 〉 aiui n( )
i ∞–=

∞

∑ uk, aiui n( )
i N–=

N

∑
N ∞→
lim uk, ak uk uk,〈 〉 ak.= = = =

x n( ) x uk,〈 〉uk n( )
k ∞–=

∞

∑=



162 DISCRETE SYSTEMS AND SIGNAL SPACES

Thus, if the orthonormal family {uk(n)} is complete, then any x(n) in H can be
written as a limit of partial sums, and the representation (2.80) holds.

The theorem shows that there is a surprisingly close relationship between a gen-
eral Hilbert space and the square-summable sequences l2.

Orthonormal families and inner products are powerful tools for $nding the
signi$cant components within signals. When does a Hilbert space have a complete
orthonormal family? It turns out that every Hilbert space has a complete orthonor-
mal family, a result that we will explain in a moment. There is also a method
whereby any linearly independent set of signals in an inner product space can be
converted into an orthonormal family.

2.7.2.3 Orthogonalization. Let us begin by showing that there is an algo-
rithm, called Gram–Schmidt14 orthogonalization, for converting a linearly indepen-
dent set of signals into an orthormal family. Many readers will recognize the
procedure from linear algebra.

Theorem (Gram–Schmidt Orthogonalization). Let H be a Hilbert space contain-
ing a linearly independent family {un}. Then there is an orthonormal family {vn}
with each vn in the linear span of .

Proof: The proof is by induction on n. For n = 0, we can take . Now

suppose that the algorithm works for n = 0, 1, ..., k. We want to show that the
orthonormal elements can be expanded one more time, for n = k + 1. Let U be the
subspace of H that consists of the linear span of {u0, u1, ..., uk}. This is a Hilbert
subspace; for instance, it is closed and therefore complete. Let . By linear
independence, uk+1 is not in U. This means that in the unique decomposition uk+1 =
u + v, with u in U and v in V, we must have v ≠ 0, the zero signal. If we set

, then ||vk+1|| = 1; ; and, because v = uk+1 − u, vk+1 is in the

linear span of . ■

It is easier to $nd linearly independent than fully orthogonal signal families. So the
Gram–Schmidt method is useful. The Gram–Schmidt procedure shows that if
the linearly independent family is complete, then the algorithm converts it into a
complete, orthonomal family.

14Erhard Schmidt (1876–1959), to whom the algorithm had been attributed, was Hilbert’s student.
Schmidt speci$ed the algorithm in 1907. But it was discovered later that Jorgen Pedersen Gram (1850–
1916) of Denmark had resorted to the same technique during his groundbreaking 1883 study on least
squares approximation problems.

uk: 0 k n≤ ≤{ }
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2.7.3 Orthonormal Bases

We now show how to build complete orthonormal families of signals in Hilbert
space. That is, we want every element in the space to be approximated arbitrarily
well by some linear combination of signals from the orthonormal family. Euclidean
and unitary n-dimensional vector spaces all have orthonormal bases. This is a cen-
tral idea in linear algebra. We are close to having shown the existence of orthonor-
mal bases for general Hilbert spaces, too. But to get there with the Gram–Schmidt
algorithm, we need to start with a complete (total) linearly independent family of
signals. At this point, it is not clear that a general Hilbert space should even have a
total linearly independent set.

De$nition (Orthonormal Basis). In a Hilbert space, a complete orthonormal set is
called an orthonormal basis.

We have already observed that the shifted unit sample signals are an orthonormal
basis for the Hilbert space l2. Remember the important distinction between this
looser concept of basis and that for the $nite-dimensional Euclidean and unitary
spaces. In the cases of Rn and Cn, the bases span the entire space. For some Hilbert
spaces, however—and l2 is a $ne example—the linear combinations of the
orthonormal basis signals only come arbitrarily close in norm to some signals.

2.7.3.1 Set Theoretic Preliminaries. There are some mathematical subtle-
ties involved in showing that every Hilbert space has an orthonormal basis. The
notions we need hinge on some fundamental results from mathematical set theory.
A very readable introduction to these ideas is [27]. Most readers are probably aware
that there are different orders of in$nity in mathematics. (Those that are not may be
in for a shock.) The number of points on a line (i.e., the set of real numbers) is a
larger in$nity than the natural numbers, because R cannot be placed in a one-to-one
correspondence with N. We say that two sets between which a one-to-one map
exists have the same cardinality. The notation for the cardinality of a set X is |X|. In
fact, the natural numbers, the integers, the rational numbers, and even all the real
numbers which are roots of rational polynomials have the same cardinality, |N|.
They are called countable sets, because there is a one-to-one and onto map from N,
the counting set, to each of them. The real numbers are an uncountable set. Also
uncountable is the set of subsets of the natural numbers, called the power set of N,
written P (N). It turns out that |P (N)| = |R|. The discovery of different orders of
in$nity—different cardinalities—is due to Cantor.15

15Georg Cantor (1845–1918) worked himself to the point of physical, emotional, and mental exhaustion
trying to demonstrate the continuum hypothesis: there is no cardinality of sets in between |N | and |R |. He
retreated from set theory to an asylum, but never proved or disproved the continuum hypothesis. It is a
good thing, too. In 1963, Paul Cohen proved that the continuum hypothesis is independent of the usual
axioms of set theory; it can be neither proved nor disproved! [K. Devlin, Mathematics: The Science of
Patterns, New York: Scienti$c American Library, 1994.]
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Some basic facts about countable sets are as follows (exercises):

(i) The Cartesian product  of two countable sets is countable.

(ii) The Cartesian product  of a $nite number of countable
sets is countable.

(iii) A countable union of countable sets is countable.

(iv) The set that consists of all $nite subsets of a countable set is countable.

(v) The set of all subsets of a set X always has a larger cardinality than X; in
other words, |X| < |P (X)|.

Observe carefully that indexing notation presupposes a one-to-one, onto map
from the indexing set to the indexed set. Suppose X is a countable set—for example,
the set of shifted impulses, X = {δ(n − k): k an integer}. We can index X by N with
the map f(k) = δ(n − k). Trivially, f is a one-to-one and onto map of N to X. Now let
Y = {aδ(n): a is a real number} be the set of ampli$ed unit impulse signals. It is
impossible to index Y with the natural numbers, because Y has the same cardinality
as the real line. Instead, if it is necessary to index such a collection, we must pick an
indexing set that has the same cardinality as Y.

2.7.3.2 Separability. We draw upon these set theoretic ideas in order to show
that every Hilbert space has an orthonormal basis. In particular, we need to bring the
notion of cardinality into the discussion of Hilbert space and to invoke another
concept from set theory—the Axiom of Choice.

De$nition (Separable Hilbert Space). A Hilbert space is separable if it contains a
countable dense set.

Notice that l2 is a separable Hilbert space. The set of shifted impulse signals is an
orthonormal basis for l2. Now the set of all scalar multiples of linear combinations
of the shifted impulses is not countable, because there are an uncountable number of
magnitude values possible. However, we can get arbitrarily close to a linear combi-
nation of shifted impulses with a linear combination that has rational coef$cients.
There are a countable number of rationals. The set of $nite sequences of rationals is
therefore countable. Thus, the set of linear combinations of shifted impulses with
rational coef$cients is a countable dense subset of l2.

Let’s continue this line of reasoning and assume that we have a countable dense
subset S of a Hilbert space H. We wish to fashion S into an orthonormal basis. We
may write the dense family using the natural numbers as an indexing set: S = {sn: n
is in N}. If S is a linearly independent family, then the Gram–Schmidt procedure
applies, and we can construct from S an orthonormal family that is still dense in H.
Thus, in this case, H has a countable basis. If S is has some linear dependency, we
can pick the $rst element of S, call it d0, that is a linear combination of the previous
ones. We delete d0 from S to form S0, which still has the same linear span, and
hence is just as dense as S in H. Continue this process for all natural numbers,

X Y×
X1 X2

… Xn×××
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$nding dn+1 and cutting it from Sn to produce Sn+1. The result is a linearly indepen-
dent set, Sω. If Sω is not linearly independent, then there is an element that is a linear
combination of the others; call it t. We see immediately a contradiction, because t
had to be chosen from the orthogonal complement of the elements that we chose
before it and because the elements that were chosen later had to be orthogonal—and
therefore linearly independent—to t. We note as well that Sω has a linear span
which is dense in H; and, using the Gram–Schmidt algorithm, it can be sculpted into
an orthonormal basis for H.

Without separability of the Hilbert space H, the above argument breaks down.
We could begin an attack on the problem by assuming a dense subset . But
what subsets, other than H itself, can we assume for a general, abstract Hilbert
space? Examining the separable case’s argument more closely, we see that we really
built up a linearly independent basis incrementally, beginning from the bottom

. Here we can begin with some nonzero element of H, call it sa, where we
index by some other set A that has suf$cient cardinality to completely index the
orthonormal set we construct. If the linear span of {sa} includes all of H, then
we are done; otherwise, there is an element in the orthogonal complement of the
Hilbert subspace spanned by {sa}. Call this element sb. Then {sa, sb} is a linearly
independent set in H. Continue the process: Check whether the current set of lin-
early independent elements has a dense linear span; if not, select a vector from the
orthogonal complement, and add this vector to the linearly independent family. In
the induction procedure for the case of a separable H, the ultimate completion of the
construction was evident. Without completion a contradiction arises. For if our
“continuation” on the natural numbers does not work, can we $nd a least element
that is a linear combination of the others, leading to a contradiction. But how can we
$nd a “least” element of the index set A in the nonseparable case? We do not even
know of an ordering for A. Thus there is a stumbling block in showing the existence
of an orthonormal basis for a nonseparable Hilbert space.

2.7.3.3 Existence. The key is an axiom from set theory, called the Axiom of
Choice, and one of its related formulations, called Zorn’s lemma.16 The Axiom of
Choice states that the Cartesian product of a family of sets  is not
empty. That is,  has at least one ele-
ment. The existence of an element in P means that there is a way to simultaneously
choose one element from each of the sets Sa of the collection S. Zorn’s lemma
seems to say nothing like this. The lemma states that if a family of sets

 has the property that for every chain  of sets in S,
there is a T in S that is a superset of each of the chain elements, then S itself has an
element that is contained properly in no other element of S; that is, S has a maximal
set. Most people are inclined to think that the Axiom of Choice is obviously true
and that Zorn’s lemma is very suspicious, if not an outright $ction. On the contrary:
Zorn’s lemma is true if and only if the Axiom of Choice is true [27].

16Algebraist Max Zorn (1906–1993) used his maximal set principle in a 1935 paper.

S H⊆

s0 S∈

Sa: a A∈{ }
P sa sb sc …, , ,( ) : sa Sa sb Sb …,∈,∈{ }=

S Sa: a A∈{ }= Sa Sb …⊆ ⊆
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Let us return now to our problem of constructing a dense linearly independent set
in a Hilbert space H and apply the Zorn’s lemma formulation of the Axiom of
Choice. In a Hilbert space, the union of any chain of linearly independent subsets is
also linearly independent. Thus, H must have, by Zorn, a maximal linearly indepen-
dent set S. We claim that K, the linear span of S, is dense. Suppose not. Now K is a
Hilbert subspace. So there is a vector v in the orthogonal complement to K. Contra-
diction is imminent. The set  is linearly independent and properly includes
S; this is impossible since S was selected to be maximal. So S must be complete
(total). Its linear span is dense in H. Now we apply the Gram–Schmidt procedure to
S. One $nal obstacle remains. We showed the Gram–Schmidt algorithm while using
the natural numbers as an index set, and thus implicitly assumed a countable collec-
tion! We must not assume this now. Instead we apply Zorn’s lemma to the Gram–
Schmidt procedure, $nding a maximal orthonormal set with same span as S. We
have, with the aid of some set theory, $nally shown the following.

Theorem (Existence of Orthonormal Bases). Every Hilbert space contains an
orthonormal basis.  ■

If the Hilbert space is spanned by a $nite set of signals, then the orthonormal
basis has a $nite number of elements. Examples of $nite-dimensional Hilbert
spaces are the familiar Euclidean and unitary spaces. If the Hilbert space is separa-
ble, but is not spanned by a $nite set, then it has a countably in$nite orthonormal
basis. Lastly, there are cases of Hilbert spaces which are not separable.

2.7.3.4 Fourier Series. Let us complete this chapter with a theorem that wraps
up many of the ideas of discrete signal spaces: orthonormal bases, Fourier
coef$cients, and completeness. 

Theorem (Fourier Series Representation). Let H be a Hilbert space and let
 be an orthonormal family in H. Then,

(i) Any  has at most countably many nonzero Fourier coef$cients with
respect to the ua.

(ii) S is complete (its linear span is dense in H) if and only if for all signals
 we have 

, (2.81)

where the sum is taken over all a, such that the Fourier coef$cient of x with
respect to ua is not zero.

(iii) (Riesz–Fischer Theorem17) If  is a set of scalars such that

17Hungarian Frigyes Riesz (1880–1956) and Austrian Ernst Sigismund Fischer (1875–1954) arrived at
this result independently in 1907 [22].
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, (2.82)

then there is a unique x in H such that , and

. (2.83)

Proof: We have already used most of the proof ideas in previous results.

(i) The set of nonzero Fourier coef$cients of x with respect to the ua is the
same as the set of Fourier coef$cients that are greater than 1/n for some
integer n. Since there can only be $nitely many Fourier coef$cients that are
greater than 1/n, we must have a countable union of $nite sets, which is still
countable. Therefore, there may only be a countable number of .

(ii) Suppose $rst that S is complete and . Since there can be at most a
countably in$nite number of nonzero Fourier coef$cients, it is possible to
form the series sum,

. (2.84)

This sum converges by the Bessel inequality for inner product spaces. Con-
sider t = s − x. It is easy to see that  by taking the inner product of t
with each . But since S is complete, this means that there can be no
nonzero element in its orthogonal complement; in other words, t = 0 and s
= x. Now, since  when , we see that

(2.85)

Next, suppose that the relation (2.81) holds for all x. Assume for the sake of
contradiction that S is not complete. Then by the Hilbert space decomposi-
tion theorem, we know that there is some nonzero . This means
that  for all ua and that the sum (2.81) is zero. The contradiction
is that now we must have x = 0, the zero signal.

(iii) If  is a set of scalars such that (2.82) holds, then at most a
countable number of them can be nonzero. This follows from an argument
similar to the proof of (i). Since we have a countable collection in (2.82), we
may use the Hilbert space series convergence criterion, which was stated
(implicitly at that point in the text) for a countable collection. ■

An extremely powerful technique for specifying discrete systems follows from
these results. Given a Hilbert space, we can $nd an orthonormal basis for it. In the
case of a separable Hilbert space, there is an iterative procedure to $nd a linearly
independent family and orthogonalize it using the Gram–Schmidt algorithm. If the
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Hilbert space is not separable, then we do not have such a construction. But the
existence of the orthonormal basis  is still guaranteed by Zorn’s
lemma. Now suppose we use the orthonormal basis to analyze a signal. Certain of
the basis elements, , have features we seek in general signals,
x. We form the linear system T(x) = y, de$ned by

. (2.86)

Now the signal y is that part of x that resembles the critical basis elements. Since the
theorem guarantees that we can expand any general element in terms of the
orthonormal basis U, we know that the sum (2.86) converges. We can tune our lin-
ear system to provide precisely the characteristics we wish to preserve in or remove
from signal x by selecting the appropriate orthonormal basis elements. Once the
output y = Tx is found, we can $nd the features we desire in x more easily in y. Also,
y may prove that x is desirable in some way because it has a large norm; that is

. And, continuing this reasoning, y may prove that x is quite undesirable
because ||y|| is small.

In its many guises, we will be pursuing this idea for the remainder of the book.

2.8 SUMMARY

This chapter began with a practical—perhaps even naïve—exploration of the types
of operations that one can perform on signals. Many of these simple systems will
arise again and again as we develop methods for processing and interpreting dis-
crete and continuous signals. The later chapters will demonstrate that the most
important type of system we have identi$ed so far is the linear, time-invariant sys-
tem. In fact, the importance of the characterization result, the convolution theorem
for LTI systems, cannot be overemphasized. This simple result underlies almost all
of our subsequent work. Some of the most important concepts in signal $ltering and
frequency analysis depend directly on this result.

Our explorations acquire quite a bit of mathematical sophistication, however,
when we investigate the closure properties of our naively formulated signal process-
ing systems. We needed some good answers for what types of signals can be used
with certain operations. It seems obvious enough that we would like to be able to
sum any two signals that we consider, and this is clearly feasible for $nitely sup-
ported signals. For other signals, however, this simple summing problem is not so
swiftly answered. We need a formal mathematical framework for signal processing
and analysis. Inspired by basic vector space properties, we began a search for the
mathematical underpinnings of signal theory with the idea of a normed space. The
lp Banach spaces conveniently generalize some natural signal families that we $rst
encountered in Chapter 1. Moreover, these spaces are an adequate realm for devel-
oping the theory of signals, stable systems, closure, convolution, and convergence
of signals.

U ua: a A∈{ }=

V vb: b B A⊆∈{ }=

Tx y x vb,〈 〉vb
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Unfortunately, except for l2, none of the lp spaces support an inner product
de$nition that is related to the norm, || ||p. This is a profoundly negative result. But it
once again shows the unique nature of the l2 space. Of the lp Banach spaces, only l2

can be equipped with an inner product that makes it into a Hilbert space. This
explains why $nite-energy signals are so often the focus of signal theory. Only the
l2 Hilbert space, or one of its closed subspaces, has all of the features from Euclid-
ean vector spaces that we $nd so essential for studying signals and systems.

We see that all Hilbert spaces have orthonormal bases, whether they are $nite,
countable, or uncountable. Furthermore, a close link exists between orthonormal
bases for Hilbert spaces and linear systems that map one signal to another yet retain
only desirable properties of the input. We will see in the sequel that it is possible to
$nd special orthonormal bases that provide for the ef$cient extraction of special
characteristics of signals, help us to $nd certain frequency and scale components of
a signal, and, $nally, allow us to discover the structure and analyze a signal.
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PROBLEMS

1. Find the domain and range of the following systems:

(a) The ampli$er system: y(n) = Ax(n).

(b) A translation system: y(n) = x(n −  k).

(c) The discrete system on real-valued signals, y(n) = x(n)1/2.

(d) The discrete system on complex-valued signals, y(n) = x(n)1/2.

(e) An adder: y(n) = x(n) + x0(n).

(f) Termwise multiplication (modulation): y(n) = x(n)x0(n).

(g) Convolution: y(n) = x(n)*h(n).

(h) Accumulator: y(n) = x(n) + y(n – 1).

2. Consider the LTI system y = Hx that satis$es a linear, constant-coef$cient
difference equation

 . (2.87)

Show that any K successive values of the output h = Hδ are suf$cient to charac-
terize the system.

y n( ) aky n k–( )
k 1=

K

∑ bmx n m–( )
m 0=

M

∑+=
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3. Consider an LTI system y = Hx that satis$es the difference equation (2.87). 

(a) Give the homogeneous equation corresponding to (2.87). 

(b) Show that if (x, y) is a solution pair for (2.87) and yh is a solution of its
homogeneous equation, then (x, y+ yh) is a solution of the difference equa-
tion.

(c) Show that if (x, y1) and (x, y2) are solution pairs for (2.87), then y1 − y2 is a
solution to the homogeneous equation in (a).

4. Consider the LTI system y = Hx that satis$es a linear, constant-coef$cient dif-
ference equation (2.87). Prove that if the signal pair (δ, h) satis$es the differ-
ence equation and y = x*h, then the pair (x, y) also satis$es the difference
equation.

5. Prove the converse of the convolution theorem for LTI Systems: Let h(n) be a
discrete signal and H be the system de$ned by y = Hx = x*h. Then H is LTI and
h = Hδ.

6. Suppose x(n) is in lp, . Let c be a scalar (real or complex number) and
let k be an integer. Show the following closure rules:

(a) cx(n) is in lp and ||cx||p = |c| ||x||p.

(b) x(k − n) is in lp and ||x(k − n)||p = ||x(n)||p.

7. Show that the signal space lp is a normed space. The triangle inequality of the
norm is proven by Minkowski’s inequality. It remains to show the following: 

(a) ||x||p ≥ 0 for all x.

(b) ||x||p = 0 if and only if x(n) = 0 for all n.

(c) ||ax||p = |a| ||x||p for all scalars a and all signals x(n).

8. Let p and q be conjugate exponents. Show the following:

(a) (p + q)/pq = 1.

(b) pq = p + q.

(c) (p − 1)(q − 1) = 1.

(d) (p − 1)−1 = q − 1.

(e) If u = tp−1, then t = uq−1.

9. Show that the lp spaces are complete, . Let {xk(n)} be a Cauchy
sequence of signals in lp.

(a) Show that for any integer n, the values of the signals in the sequence at time
instant n are a Cauchy sequence. That is, with n $xed, the sequence of sca-
lars {xk(n): k an integer} is a Cauchy sequence.

(b) Since the real (complex) numbers are complete, we can $x n, and take the
limit 

 . (2.88)

Show that the signal de$ned by x(n) = cn is in lp.

1 p ∞≤ ≤

1 p ∞<≤

cn xk n( )
k ∞→
lim=
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(c) Show that 

 , (2.89)

so that the signals xk converge to x in the lp distance measure dp.

10. Show that the  signal space is complete.

11. Let I be an inner product space. Show that the inner product is continuous in I;
that is if  and , then . 

12. Show that orthogonal signals in an inner product space are linearly indepen-
dent.

13. Let I be an inner product space and d(u, v) = ||u − v|| be its distance measure.
Show that with the distance measure d(u, v), I is a metric space:

(a) d(u, v) ≥ 0 for all u, v.

(b) d(u, v) = 0 if and only if u = v.

(c) d(u, v) = d(v, u) for all u, v.

(d) For any w, .

14. Show that the discrete Euclidean space Zn = {(k1, k2, ⋅⋅⋅, kn) | ki is in Z} is a
metric space. Is it a normed linear space? Explain.

15. Show that if for the Euclidean space Rn, we de$ne the metric d((u1, u2, ..., un),
(v1, v2, ⋅⋅⋅, vn)) = |u1 − v1| + |u2 − v2| + ⋅⋅⋅ + |un − vn|, then (Rn, d) is a metric
space.

16. Show that the following sets are countable.

(a) The integers Z by arranging them in two rows:

0, 2, 4, 6, ...

1, 3, 5, 7, ...

and enumerating them with a zigzag traversal.

(b) All ordered pairs in the Cartesian product N × N.

(c) The rational numbers Q.

(d) All ordered k-tuples of a countable set X.

(e) Any countable union of countable sets.

xk x–
pk ∞→

lim 0=

l
∞

xn x→ yn y→ xn yn,〈 〉 x y,〈 〉→

d u v,( ) d u w,( ) d w v,( )+≤
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CHAPTER 3

Analog Systems and Signal Spaces

This chapter extends linear systems and Hilbert space ideas to continuous domain
signals, $lling the gap Chapter 2 left conspicuous. Indeed, noting that an integral
over the real line displaces an integral summation, the de$nitions, theorems, and
examples are quite similar in form to their discrete-world cousins. We mainly verify
that after replacing summations with integrations we can still construct analog
signal spaces that support signal theory.

The initial presentation is informal, not rigorous, and takes a quicker pace. We
require normed vector space operations for analog signals: the capability to add,
scalar multiply, and measure the size of a signal. The signal spaces should also sup-
port limit operations, which imply that arbitrarily precise signal approximations are
possible; we $nd that we can construct analog Banach spaces, too. More important
is the measure of similarity between two analog signals—the inner product rela-
tion—and we take some care in showing that our abstract structures survive the
transition to the analog world. There is an analog Hilbert space theory, for which
many of the purely algebraic results of Chapter 2 remain valid. This is convenient,
because we can simply quote the same results for analog signals. Hilbert spaces,
principally represented by the discrete and analog $nite energy signals, will prove to
be the most important abstract structure in the sequel. Introductory texts that cover
analog signal theory include Refs. 1–5.

The last two sections are optional reading; they supply rigor to the analog theory.
One might hope that it is only necessary to replace the in$nite summations with
in$nite integrations, but subtle problems thwart this optimistic scheme. The
Riemann integral, familiar from college calculus, cannot handle signals with an
in$nite number of discontinuities, for example. Its behavior under limit operations
is also problematic. Mathematicians faced this same problem at the end of the nine-
teenth century when they originally developed function space theories. The solution
they found—the Lebesgue integral—works on exotic signals, has good limit opera-
tion properties, and is identical to the Riemann integral on piecewise continuous
functions. Lebesgue measure and integration theory is covered in Section 3.4. In
another area, the discrete-world results do not straightforwardly generalize to the
analog world: There is no bona $de continuous-time delta function. The intuitive
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treatment, which we offer to begin with, does leave the theory of linear, translation-
invariant systems with a glaring hole. It took mathematicians some time to put for-
ward a theoretically sound alternative to the informal delta function concept as well.
The concept of a distribution was worked out in the 1930s, and we introduce the
theory in Section 3.5.

The chapter contains two important applications. The $rst, called the matched $lter,
uses the ideas of inner product and orthogonalization to construct an optimal detector
for an analog waveform. The second application introduces the idea of a frame. Frames
generalize the concept of a basis, and we show that they are the basic tool for numer-
ically stable pattern detection using a family of signal models. The next chapter applies
matched $lters to the problem of recognizing signal shapes. Chapter 10 develops
frame theory further in the context of time-frequency signal transforms.

3.1 ANALOG SYSTEMS

This section introduces operations on analog signals. Analog signals have a contin-
uous rather than discrete independent time-domain variable. Analog systems oper-
ate on analog systems, and among them we $nd the familiar ampli$ers, attenuators,
summers, and so on. This section is a quick read for readers who are already famil-
iar with analog systems.

3.1.1 Operations on Analog Signals

For almost every discrete system there corresponds an analog system. We can skim
quickly over these ideas, so similar they are to the discrete-world development in
the previous chapter.

De$nition (Analog System).  An analog system H is a partial function from the set
of all analog signals to itself. If x(t) is a signal and y(t) is the signal output by H from
the input x(t), then y = Hx, y(t) = (Hx)(t), or y(t) = H(x(t)). As with discrete signals,
we call y(t) the response of the system H to input x(t). The set of signals x(t) for
which some y = Hx is determined is the domain of the system H. The set of signals
y for which y = Hx for some signal x is the range of H.

3.1.2 Extensions to the Analog World

Let us begin by enumerating some common, but not unimportant, analog operations
that pose no theoretical problems. As with discrete signals, the operations of scaling
(in the sense of ampli$cation and attenuation) and translation (or shifting) an analog
signal are central.

We may amplify or attenuate an analog signal by multiplying its values by a
constant: 

(3.1)y Ax t( ).=
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This is sometimes called a scaling operation, which introduces a possible confusion
with the notion of dilation y(t) = x(At), which is also called “scaling.” The scaling
operation inverts the input signal when A < 0, ampli$es the signal when |A| > 1, and
attenuates the signal when |A| < 1. The domain of a scaling system is all analog
signals, as is the range, as long as A = 0.

An analog signal may be translated or shifted by any real time value:

(3.2)

When t0 > 0 the translation is a delay, and when t0 < 0 the system can more pre-
cisely be called an advance. As in the discrete world, translations cause no domain
and range problems. If T is an analog time shift, then Dom(T) = Ran(T) = {s(t): s is
an analog signal}.

Analog signal re#ection reverses the order of signal values: y(t) = x(−t). For ana-
log time signals, this time reversal system re#ects the signal values x(t) around the
time t = 0. As with discrete signals, the re#ection and translation operations do not
commute.

The basic arithmetic operations on signals exist for the analog world as well. Sig-
nal addition or summation adds a given signal to the input, y(t) = x(t) + x0(t), where
x0(t) is a $xed signal associated with the system H. We can also consider the system
that takes the termwise product of a given signal with the input, y(t) = x(t)x0(t).

One bene$t of a continuous-domain variable is that analog signals allow some
operations that were impossible or at least problematic in the discrete world.

Dilation always works in the analog world. We can form y(t) = x(at) whatever the
value of a ∈ R. The corresponding discrete operation, y(n) = x(bn), works nicely
only if b ∈ Z and |b| ≥ 1; when 0 < |b| < 1 and b ∈ Q we have to create special val-
ues (typically zero) for those y(n) for which b ∈ Z. As noted earlier, dilation is often
called scaling, because it changes the scale of a signal. Dilation enlarges or shrinks
signal features according to whether |a| < 1 or |a| > 1, respectively.

Another analog operation is differentiation. If it is smooth enough, we can take
the derivative of an analog signal:

(3.3)

If the signal x(t) is only piecewise differentiable in (3.3), then we can assign some
other value to y(t) at the points of nondifferentiability.

3.1.3 Cross-Correlation, Autocorrelation, and Convolution

The correlation and convolution operations depend on signal integrals. In the dis-
crete world, systems that implement these operations have input–output relations
that involve in$nite summations over the integers. In continuous-domain signal pro-
cessing, the corresponding operations rely on integrations over the entire real line.

y x t t0–( ).=

y t( ) dx
dt
------ x′ t( ).= =
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These do pose some theoretical problems—just as did the in$nite summations rem-
iniscent of Chapter 2; we shall address them later when we consider signal spaces of
analog signals.

The analog convolution operation is once again denoted by the * operator: y =
x*h. We de$ne:

(3.4)

The cross-correlation system is de$ned by the rule y = x°h, where

(3.5)

The analog autocorrelation operation on a signal is y = x°x, and when the signals
are complex-valued, we use the complex conjugate of the kernel function h(t):

(3.6)

The autocorrelation is de$ned by . One of the applications of func-
tional analysis ideas to signal processing, which we shall provide below, is to show
the existence of the correlation and autocorrelation functions for square-integrable
signals x(t) and h(t).  

We can show that linear translation invariant analog systems are again character-
ized by the convolution operation. This is not as easy as it was back in the discrete
realm. We have no analog signal that corresponds to the discrete impulse, and dis-
covering the right generalization demands that we invent an entirely new theory:
distributions.

3.1.4 Miscellaneous Operations

Let us brie#y survey other useful analog operations.
A subsampling or downsampling system continuously expands or contracts an

analog signal: y(t) = x(at), where a > 0 is the scale or dilation factor. Tedious as it is
to say, we once more have a terminology con#ict; the term “scale” also commonly
refers in the signal theory literature to the operation of amplifying or attenuating a
signal: y(t) = ax(t). 

Analog thresholding is a just as simple as in the discrete world:

(3.7)

y t( ) x∗h( ) t( ) x s( )h t s–( ) s.d
∞–

∞

∫= =

y t( ) x°h( ) t( ) x s( )h t s+( ) s.d
∞–

∞

∫= =

y t( ) x°h( ) t( ) x s( )h t s+( ) s.d
∞–

∞

∫= =

y t( ) x°x( ) t( )=

y t( ) 1 if x t( ) T,≥
0  if x t( ) T.<




=
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The accumulator system, y = Hx, is given by

(3.8)

The accumulator outputs a value that is the sum of all input values to the present
signal instant. As already noted, not all signals are in the domain of an accumulator
system. The exercises explore some of these ideas further.

The moving average system is given by

(3.9)

where a > 0. This system averages x(s) around in an inteval of width 2a to output y(t).

3.2 CONVOLUTION AND ANALOG LTI SYSTEMS

The characterization of a linear, translation-invariant analog system as one given
by the convolution operation holds for the case of continuous domain signals too.
We take aim at this idea right away. But, the notion of an impulse response—so
elementary it is an embarassment within discrete system theory—does not come to
us so readily in the analog world. It is not an understatement to say that the proper
explication of the analog delta requires supplementary theory; what it demands is a
complete alternative conceptualization of the mathematical representation of ana-
log signals. We will offer an informal de$nition for the moment, and this might be
the prudent stopping point for $rst-time readers. We shall postpone the more
abstruse development, known as distribution theory, until Section 3.5.

3.2.1 Linearity and Translation-Invariance

Analog systems can be classi$ed much like discrete systems. The important discrete
signal de$nitions of linearity and translation- (or shift- or time-) invariance extend
readily to the analog world.

De$nition (Linear System).  An analog system H is linear if H(ax) = aH(x) and
H(x + y) = H(x) + H(y). Often the system function notation drops the parentheses;
thus, we write Hx instead of H(x). H(x) is a signal, a function of a time variable, and
so we use the notation y(t) = (Hx)(t) to include the independent variable of the
output signal.

De$nition (Translation-Invariant).  An analog system H is translation-invariant if
whenever y = Hx and s(t) = x(t − a), then H(s) = y(t − a).

y t( ) x s( ) s.d
∞–

t

∫=

y t( ) 1
2a
------ x s( ) s,d

t a–

t a+

∫=
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A linear system obeys the principles of scaling and superposition. When a sys-
tem is translation-invariant, then the output of the shifted input is precisely the
shifted output. 

De$nition (LTI System).  An LTI system is both linear and translation-invariant.

Let us consider some examples.

Example.  Let the system y = Hx be given by y(t) = x(t)cos(t). The cosine term is a
nonlinear distraction, but this system is linear. Indeed, H(x1 + x2)(t) = [x1(t) +
x2(t)]cos(t) = x1(t)cos(t) + x2(t)cos(t) = H(x1)(t) + H(x2)(t). Also, H(ax)(t) = [ax(t)]
cos(t) = a[x(t)cos(t)] = a(Hx)(t).

Example. Let y = Hx by given by y(t) = tx(t). Then H is not translation-invariant.
The decision about whether a system is or is not translation-invariant can some-
times bedevil signal processing students. The key idea is to hide the shift amount
inside a new signal’s de$nition: Let w(t) = x(t − a). Then w(t) is the shifted input
signal. (Hw)(t) = tw(t) by de$nition of the system H. But tw(t) = tx(t − a). Is this
the shifted output? Well, the shifted output is y(t − a) = (t − a)x(t − a). In general,
this will not equal tx(t − a), so the system H is not shift-invariant.

Example. Let y = Hx, where y(t) = x2(t) + 8. This system is translation-invariant.
Again, let w(t) = x(t − a), so that (Hw)(t) = w2(t) + 8 = x(t − a)x(t − a) + 8 is the out-
put of the translated input signal. Is this the translated output signal? Yes, because
y(t − a) = x2(t − a) + 8 = (Hw)(t).

Example (Moving Average).  Let T > 0 and consider the system y = Hx:

(3.10)

Then H is LTI. The integration is a linear operation, which is easy to show. So let us
consider a translated input signal w(t) = x(t − a). Then (Hw)(t) is

(3.11)

where we have changed the integration variable with u = s − a. But note that the
shifted output is

(3.12)

and (3.12) is identical to (3.11).

y t( ) x s( ) s.d
t T–

t T+

∫=

w s( ) sd
t T–

t T+

∫ x s a–( ) s x u( ) u,d
t T– a–

t T a–+

∫=d
t T–

t T+

∫=

y t a–( ) x s( ) s,d
t a– T–

t a– T+

∫=
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3.2.2 LTI Systems, Impulse Response, and Convolution

Putting aside mathematical formalities, it is possible to characterize analog linear,
translation-invariant systems by convolution of the input signal with the system
impulse response.

3.2.2.1 Analog Delta and Impulse Response. Let us begin by developing
the idea of the analog delta function, or Dirac1 delta, δ(t). This signal should—like
the discrete delta, δ(n)—be zero everywhere except at time t = 0. Discrete con-
volution is a discrete sum, so δ(0) = 1 suf$ces for sifting out values of discrete
siganls x(n). Analog convolution is an integral, and if δ(t) is a signal which is non-
zero only at t = 0, then the integral of any integrand x(s)δ(t − s) in the convolution
integral (3.4) is zero. Consequently, it is conventional to imagine the analog impulse
signal as being in$nite at t = 0 and zero otherwise; informally, then,

(3.13)

Another way to de$ne the analog delta function is through the following convolu-
tional identity:

Sifting Property. The analog impulse is the signal for which, given analog signal
x(t),

(3.14)

No signal satisfying (3.13) or having the property (3.14) exists, however. The choice
seems to be between the Scylla of an impossible function or the Charybdis of an
incorrect integration. 

To escape this quandary, let us try to approximate the ideal, unattainable analog
sifting property by a local average. Let δn(t) be de$ned for n > 0 by

(3.15)

1P. A. M. Dirac (1902–1984) applied the delta function to the discontinuous energy states found in quan-
tum mechanics (The Principles of Quantum Mechanics, Oxford: Clarendon, 1930). Born in England,
Dirac studied electrical engineering and mathematics at Bristol and then Cambridge, respectively. He
developed the relativistic theory of the electron and predicted the existence of the positron. 

δ t( ) ∞ if t 0,≠
0 if otherwise.




=

x t( ) x∗δ( ) t( ) x s( )δ t s–( ) s.d
∞–

∞

∫= =

δn t( ) n if t 1
2n
------– 1

2n
------,∈

0 if otherwise. 

,







=
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Fig. 3.1. Approximating the analog impulse, δn(t) = n on the interval of width 1/n around the
origin.

Then, referring to Figure 3.1,  δn(t) integrates to unity on the real line,

(3.16)

Furthermore, δn(t) provides a rudimentary sifting relationship,

. (3.17)

To verify this, note that

, (3.18)

while

. (3.19)

Combining (3.18) and (3.19) proves that δn(t) has a sifting-like property. Note that
as n → ∞ the square impluse in Figure 3.1 grows higher and narrower, approximat-
ing an in$nitely high spike. Under this limit the integral (3.17) is the average of x(t)
within an increasingly minute window around t = 0: 

. (3.20)

t
-1/2 n 1/2 n

n

x(t)

n=3

n=2

n=1

δn t( ) td
∞–

∞

∫ 1.=

x t( )δn t( ) td
∞–

∞

∫ Average value of  x t( ) on 1
2n
------– 1

2n
------,=

x t( )δn t( ) td
∞–

∞

∫ n x t( ) td
1– 2n⁄

1 2n⁄

∫=

x t( ) td
a

b

∫ b a–( ) Average value of × x t( ) on 1
2n
------– 1

2n
------,=

x t( )δn t( ) td
∞–

∞

∫
n ∞→
lim x 0( )=
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This argument works whatever the location of the tall averaging rectangles de$ned
by δn(t). We can conclude that

(3.21)

An interchange of limit and integration in (3.21) gives

(3.22)

Finally, and if we assume δn(t) → δ(t), that the square spikes converge to the Dirac
delta, then the sifting property follows from (3.22).

Rigorously speaking, of course, there is no signal δ(t) to which the δn(t) con-
verge, no such limit exists, and our interchange of limits is quite invalid [6]. It is
possible to formally substantiate delta function theory with the theory of general-
ized functions and distributions [7–10]. Some applied mathematics texts take time
to validate their use of Diracs [11–13]. In fact, the amendments follow fairly closely
the informal motivation that we have provided above. Despite our momentary
neglect of mathematical justi$cation, at this point these ideas turn out to be very
useful in analog signal theory; we shamelessly proceed to feed delta “functions”
into linear, translation-invariant systems.

De$nition (Impulse Response).  Let H be an analog LTI system and δ(t) be the
Dirac delta function. Then the impulse response of H is h(t) = (Hδ)(t). Standard
notation uses a lowercase “h” for the impulse response of the LTI system “H.”

The next section applies these ideas toward a characterization of analog LTI
systems. 

3.2.2.2 LTI System Characterization. The most important idea in analog
system theory is that a convolution operation—the input signal with the system’s
impulse response—characterizes LTI systems. We $rst rewrite an analog signal x(t)
as a scaled sum of shifted impulses. Why take a perfectly good—perhaps in$nitely
differentiable—signal and write it as a linear combination of these spikey, problem-
atic components? This is how, in Chapter 2, we saw that convolution governs the
input–output relation of an LTI discrete system.

To decompose x(t) into Diracs, note that any integral is a limit of Riemann sums
of decreasing width:

(3.23)

x s( )δn t s–( ) sd
∞–

∞

∫
n ∞→
lim x t( ).=

x s( )δn t s–( ) sd
∞–

∞

∫
n ∞→
lim x s( ) δn t s–( )

n ∞→
lim  s.d

∞–

∞

∫=

f s( ) sd
∞–

∞

∫ f an( )
n ∞–=

∞

∑
Len I( ) 0→

lim Len In( ),=
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where I = {In: n ∈ Z} is a partition of the real line, In = [an, bn], the length of interval
In is Len(In) = bn − an, and Len(I) = max{Len(In): n ∈ Z}. If f(s) = x(s)δ(t − s), then

(3.24)

so that

(3.25)

Besides blithely swapping the limit and system operators, (3.25) applies linearity
twice: scaling with the factor x(an) and superposition with the summation. By trans-
lation-invariance, H[δ(t − an)] = (Hδ)(t − an). The $nal summation above is an inte-
gral itself, precisely the LTI system characterization we have sought:

Theorem (Convolution for LTI Systems). Let H be an LTI system, y = Hx, and
h = Hd. Then

(3.26)

Now let us consider a basic application of the theorem to the study of stable and
causal systems.

3.2.2.3 Stable and Causal Systems. The same ideas of stability and causal-
ity, known from discrete system theory, apply to analog systems. 

De$nition (Bounded). A signal x(t) is bounded if there is a constant M such that
|x(t)| < M for all t ∈ R.

De$nition (Absolutely Integrable). A signal x(t) is absolutely integrable if

(3.27)

The equivalent concept in Chapter 2 is absolutely summable.

De$nition (Stable System). If y = Hx is a bounded output signal whenever x(t) is a
bounded input signal, then the system H is stable.

x t( ) f s( ) sd
∞–

∞

∫ x an( )
n ∞–=

∞

∑
Len I( ) 0→

lim δ t an–( ) Len In( ),= =

y t( ) H x( ) t( ) H x an( )
n ∞–=

∞
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Len I( ) 0→

lim δ t an–( )Len In( )    

x an( )
n ∞–=

∞

∑
Len I( ) 0→

lim H δ t an–( )[ ]Len In( )=

= =

y t( ) x∗h( ) t( ) x s( )h t s–( ) s.d
∞–

∞

∫= =

x t( ) td
∞–

∞

∫ ∞.<
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Proposition (Stability Characterization). The LTI system y = Hx is stable if and
only if its impulse response h = Hδ is absolutely integrable.

Proof: Suppose h is absolutely integrable and |x(t)| < M for all t ∈ R. Then

(3.28)

Since the $nal integral in (3.28) is $nite, y(t) is bounded and H must be stable.
Conversely, suppose that H is stable but h = Hδ is not absolutely integrable:

; (3.29)

we seek a contradiction. If

(3.30)

where we are allowing for the situation that h(t) is complex-valued, then x(t) is
clearly bounded. But convolution with h(t) governs the input-output relation of H,
and that is the key. We can write y = Hx as

(3.31)

So y(t) is the output of stable system H given bounded input x(t). y(t) should be
bounded. What is y(0)? Well,

(3.32)

However, the $nal integral in (3.32) is in$nite by (3.29). So y(t) cannot be bounded,
and this contradicts the converse’s assumption.  ■

To the discrete theory, there also corresponds an analog notion of causality. A
system is causal if the future of the input signals have no bearing on their response.

De$nition (Causal System). The system H is causal if y = Hx can be found using
only present and past values of x(t).
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Proposition (Causality Criterion). The LTI system y = Hx is causal if its impulse
response h = Hδ satis$es h(r) = 0 for r < 0.

Proof: If h(t − s) = 0 for s > t, then jotting down the convolution integral shows

(3.33)

We have written y(t) knowing only earlier x(s) values, and so H must be causal. ■

Remark. For analog signals, the converse of the causality criterion is not true. The
impulse response h(t) could be nonzero at an isolated point, say t = −2, and so the
convolution integral (3.33) does not depend on negative times.

Example. Let H be the system with impulse response

(3.34)

The system  is LTI, and H is causal, but it does not obey the con-
verse of the causality criterion.  

The causality criterion’s lack of a converse distinguishes analog from discrete
theory. In discrete system theory, an LTI system H is causal if and only if its
impulse response h(n) is zero for n < 0. We can improve on the proposition, by
developing a stronger integral. Indeed, the fact that we might allow signals that
have isolated $nite impulses, or even a countably in$nite number of $nite impulse
discontinuities points to the Riemann integral’s inadequacy. This same defect trou-
bled mathematicians in the early 1900s, when they $rst drew set theoretic con-
cepts into analysis and began to demand limit operations from the integral.
Modern measure and integration theory was the outcome, and we cover it in
Section 3.4. 

3.2.3 Convolution Properties

Convolution is the most important signal operation, since y = h*x gives the input–
output relation for the LTI system H, where h = Hδ. This section develops basic
theorems, these coming straight from the properties of the convolution integral.

Proposition (Linearity). The convolution operation is linear: h*(ax) = ah*x, and
h*(x + y) = h*x + h*y.

Proof: Easy by the linearity of integration (exercise).  ■

y t( ) x s( )h t s–( ) s x s( )h t s–( ) s.d
∞–

t

∫=d
∞–

∞

∫=

h t( )
e

t–
if t 0,≥

1 if t 1,–=

0 if otherwise.





=

y t( ) x∗h( ) t( )=
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Proposition (Translation-Invariance). The convolution operation is translation
invariant: h*[x(t − a)] = (h*x)(t − a).

Proof: It is helpful to hide the time shift in a signal with a new name. Let w(t) =
x(t − a), so that the translated input is w(t). We are asking, what is the convolution of
the shifted input? It is (h*w)(t). Well,

(3.35)

which is the translation of the output by the same amount.  ■

These last two propositions comprise a converse to the convolution theorem (3.26)
for LTI systems: a system y = h*x is an LTI system. The next property shows that
the order of LTI processing steps does not matter.

Proposition (Commutativity). The convolution operation is commutative: x*y =
y*x.

Proof: Let u = t − s for a change of integration variable. Then du = −ds, and

(3.36)

The last integral in (3.36) we recognize to be the convolution y*x. ■

Proposition (Associativity). The convolution operation is associative: h*(x*y) =
h*(x*y).

Proof: Exercise.  ■

Table 3.1 summarizes the above results.

TABLE 3.1. Convolution Properties

Signal Expression Property Name

De$nition

h*[ax + y] = ah*x + h*y Linearity
h*[x(t − a)] = (h*x)(t − a) Translation- or shift-invariance
x*y = y*x Commutativity
h*(x*y) = (h*x)*y Associativity
h*(δ(t − a)) = h(a) Sifting

h∗w( ) t( ) h s( )w t s–( ) s h s( )x t a–( ) s–( ) s h∗x( ) t a–( ),=d
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∞
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x∗y( ) t( ) x s( )y t s–( ) s x t u–( )y u( ) u x t u–( )y u( ) u.d
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∫=d
∞

∞–

∫–=d
∞–

∞

∫=

x∗y( ) t( ) x s( )y t s–( ) sd

∞–

∞

∫=
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3.2.4 Dirac Delta Properties

The Dirac delta function has some unusual properties. Although they can be rigor-
ously formulated, they also follow from its informal description as a limit of ever
higher and narrower rectangles. We maintain a heuristic approach.

Proposition. Let u(t) be the unit step signal. Then .

Proof: Consider the functions un(t):

(3.37)

Notice that the derivatives of un(t) are precisely the δn(t) of (3.15) and that as n → ∞
we have un(t) → u(t). Taking the liberty of assuming that in this case differentiation
and the limit operations are interchangeable, we have

(3.38)

■

Remarks. The above argument does stand mathematical rigor on its head. In differential
calculus [6] we need to verify several conditions on a sequence of signals and their deriv-
atives in order to conclude that the limit of the derivatives is the derivative of their limit.
In particular, one must verify the following in some interval I around the origin:

(i) Each function in {xn(t) | n ∈ N} is continuously differentiable on I.

(ii) There is an a ∈ I such that {xn(a)} converges.

(iii) The sequence {xn′(t)} converges uniformly on I.

Uniform convergence of {yn(t) | n ∈ N} means that for every ε > 0 there is an
Nε > 0 such that m, n > Nε implies |yn(t) − ym(t)| < ε for all t ∈ I. The key distinction
between uniform convergence and ordinary, or pointwise, convergence is that uni-
form convergence requires that an Nε be found that pinches yn(t) and ym(t) together
throughout the interval. If the Nε has to depend on t ∈ I (such as could happen if the
derivatives of the yn(t) are not bounded on I), then we might $nd pointwise conver-
gence exists, but that uniform convergence is lost. The exercises delve further into
these ideas. Note also that a very important instance of this distinction occurs in
Fourier series convergence, which we detail in Chapters 5 and 7. There we show
that around a discontinuity in a signal x(t) the Fourier series is pointwise but not
uniformly convergent. Connected with this idea is the famous ringing artifact of
Fourier series approximations, known as the Gibbs phenomenon.

The next property describes the scaling or time dilation behavior of δ(t). Need-
less to say, it looks quite weird at $rst glance. 

δ t( )
td

d u t( )[ ]=
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1 if t 1
2n
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------– ,≤

nt 1
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Proposition (Scaling Property). Let u(t) be the unit step signal and a ∈ R, a ≠ 0.
Then

 . (3.39)

Proof: Consider the rectangles approaching δ(t) as in Figure 3.1. If the δn(t) are
dilated to form δn(at), then in order to maintain unit area, we must alter their height;
this makes the integrals an average of x(t). This intuition explains away the prop-
erty’s initial oddness. However, we can also argue for the proposition by changing
integration variables: s = at. Assume $rst that a > 0; thus,

(3.40)

and δ(at) behaves just like . If a < 0, then s = at = −|a|t, and

(3.41)

Whatever the sign of the scaling parameter, (3.39) follows.  ■

The Dirac is even: δ(−t) = δ(t), as follows from the Dirac scaling proposition.
The next property uses this corollary to show how to sift out the signal derivative
(Table 3.2). 

TABLE 3.2. Dirac Delta Properties

Signal Expression Property Name

Sifting

Derivative of unit step

Scaling

Even

Derivative of Dirac
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Proposition. Let δ(t) be the Dirac delta and x(t) a signal. Then,

(3.42)

Proof: We differentiate both sides of the sifting property equality to obtain

(3.43)

and the proposition follows by taking t = 0 in (3.43). ■

3.2.5 Splines

Splines are signals formed by interpolating discrete points with polynomials, and
they are particularly useful for signal modeling and analysis. Sampling converts an
analog signal into a discrete signal, and we can effect the reverse by stretching poly-
nomials between isolated time instants. The term “spline” comes from a jointed
wood or plastic tool of the same name used by architects to hand draw elongated,
smooth curves for the design of a ship or building. Here we provide a brief overview
of the basic splines, or B-splines. There are many other types of splines, but what
now interests us in B-splines is their de$nition by repetitive convolution. 

De$nition (Spline). The analog signal s(t) is a spline if there is a set of points K =
{km: m ∈ Z} such that s(t) is continuous and equal to a polynomial on each interval
[km, km+1]. Elements of K are called knots. If s(t) is a polynomial of degree n on
each [km, km+1], then s(t) has degree n. A spline s(t) of degree n is called smooth if it
is n − 1 times continuously differentiable.

Splines are interesting examples of analog signals, because they are based on
discrete samples—their set of knots—and yet they are very well-behaved between
the knots. Linear interpolation is probably everyone’s $rst thought to get from
a discrete to an analog signal representation. But the sharp corners are problem-
atic. Splines of small order, say n = 2 or n = 3, are a useful alternative; their
smoothness is often precisely what we want to model a natural, continuously
occurring process.

Splines accomplish function approximation in applied mathematics [14, 15] and
shape generation in computer graphics [16, 17]. They have become very popular sig-
nal modeling tools in signal processing and analysis [18, 19] especially in connec-
tion with recent developments in wavelet theory [20]. A recent tutorial is Ref. 21. 

For signal processing, splines with uniformly spaced knots K = {km: m ∈ Z} are
most useful. The knots then represent samples of the spline s(t) on intervals of
length T = k1 − k0. We con$ne the discussion to smooth splines.
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De$nition (B-Spline). The zero-order B-spline β0(t) is given by

(3.44)

The B-spline of order n, βn(t), is

. (3.45)

The B-splines are isolated pulses. The zeroth-order B-spline is a square, β1(t) is a
triangle, and higher-order functions are Gaussian-like creatures (Figure 3.2). 

Before proving some theorems about splines, let us recall a few ideas from the
topology of the real number system R [6]. Open sets on the real line have soft
edges;  is open if every  is contained in an open interval I = (a, b) that is
completely within S:   Closed sets have hard edges: S is closed if its com-
plement is open. Unions of open sets are open, and intersections of closed sets are
closed. S is bounded if it is contained in some $nite interval (a, b). A set of open sets
O = {On} is an open covering of S if . Set S is compact if for every open
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covering O of S there is a subset  such that P is $nite and P covers S. The
famous Heine–Borel theorem2 states that a set is compact if and only if it is closed
and bounded [22, 23].

De$nition (Support). Let x(t) be an analog signal. Then x(t) is compactly sup-
ported if x(t) = 0 outside some interval [a, b]. The support of x(t), written Sup-
port(x), is the smallest closed set S such that x(t) = 0 if t ∉ S.

Proposition. The n th-order B-spline βn(t) has compact support; that is, the small-
est closed set which contains the domain over which set βn(t) is nonzero is closed
and bounded.

Proof: By induction on the order (exercise). ■

The next result shows that general splines are linear combinations of shifted
B-splines [14].

Theorem (Schoenberg). Let x(t) be a spline having degree n and integral knots K =
{m = km: m ∈ Z}. Then there are constants cm such that

 (3.46)

Proof: The proof is outside our present scope; we need Fourier transform tools
(Chapters 5 and 6) for the arguments; interested readers will $nd some of the steps
sketched in the latter chapter’s problems.  ■

The Schoenberg theorem shows that sums of simple shifts and scalings
(ampli$cation or attentuation) of the B-spline βn(t) will generate any spline of order
n. Thus, the B-splines constitute a kind of signal atom. If signal x(t) admits a spline
model, then we can decompose the model into a sum of atoms. The relative abun-
dance of each atom in the original signal at a time value t = m is given by a simple
coef$cient cm. This data reduction can be a great help to signal processing and
analysis applications, such as $ltering and pattern recognition. Notice too that as
models of naturally occurring signals, B-splines have the realistic property that they
decay to zero as time increases toward ±∞.

Once we develop more signal theory we shall explore B-spline ideas further. We
require a more powerful tool: the full theory of signal frequency, which the Fourier
transform provides. Looking forward, we will apply B-splines to construct
windowed Fourier transforms (Chapter 10) and scaling functions for wavelet multi-
resolution analysis structures (Chapter 11).

2German analyst Heinrich Eduard Heine (1821–1881) $rst de$ned uniform continuity. Emile Borel
(1871–1956) is mostly known for his contributions to topology and modern analysis. But he was also
Minister of the French Navy (1925–1940) and received the Resistance Medal in 1945 for his efforts
opposing the Vichy government during the war.

P O⊂

s t( ) cmβn t m–( ).
m ∞–=

∞

∑=
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3.3 ANALOG SIGNAL SPACES

We must once again $nd suf$ciently powerful mathematical structures to support
the analog signal processing operations that we have been working with. For
instance, convolution characterizes linear, translation-invariant analog systems. But
how does one know that the convolution of two signals produces a genuine signal?
Since convolution involves integration between in$nite limits, there is ample room
for doubt about the validity of the result. Are there classes of signals that are broad
enough to capture the behavior of all the real-world signals we encounter and yet
are closed under the convolution operation? We are thus once again confronted with
the task of $nding formal mathematical structures that support the operations we
need to study systems that process analog signals.

3.3.1 Lp Spaces

Let us begin by de$ning the p-integrable signal spaces, the analog equivalents of the
p-summable spaces studied in the previous chapter. Again, some aforementioned
signal classes—such as the absolutely integrable, bounded, and $nite-energy
signals—fall  into one of these families. The theory of signal frequency (Fourier ana-
lysis) in Chapters 5 and 7 uses these concepts extensively. These ideas also lie at the
heart of recent developments in mixed-domain signal analysis: Gabor transforms,
wavelets, and their applications, which comprise the $nal three chapters of the book.

3.3.1.1 Definition and Basic Properties. We begin with the de$nition of the
p norm for analog signals. The norm is a measure of analog signal size. It looks a lot
like the de$nition of the lp norm for discrete signals, with an in$nite integral replac-
ing the in$nite sum. Again, our signals may be real- or complex-valued.

De$nition (Lp Norm or p Norm). If x(t) is an analog signal and p ≥ 1 is $nite, then
its Lp norm is

, (3.47)

if the Riemann integral exists. If p = ∞, then ||x||∞ is the least upper bound of {|x(t)|
| x ∈ R}, if it exists. The Lp norm of x(t) restricted to the interval [a, b] is

. (3.48)

Other notations are ||x||p,R and ||x||p,[a, b]. The basic properties of the p-norm are the
Hölder, Schwarz, and Minkowski inequalities; let us extend them to integrals.

Theorem (Hölder Inequality). Suppose 1 ≤ p ≤ ∞ and p and q are conjugate expo-
nents:  p−1 + q−1 = 1. If ||x||p < ∞ and ||y||q < ∞, then ||xy||1 ≤ ||x||p||y|| q.
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td
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Proof: Recall the technical lemma from Section 2.5.4: ab ≤ p−1ap + q−1bq, where p
and q are conjugate exponents and a, b > 0. So by the same lemma,

. (3.49)

Integrating (3.49) on both sides of the inequality gives

(3.50)

The case p = 1 and q = ∞ is straightforward and left as an exercise. ■

Corollary (Schwarz Inequality). If ||x||2 < ∞ and ||y||2 < ∞, then ||xy||1 ≤ ||x||2||y||2.

Proof: Because p = q = 2 are conjugate exponents. ■

Theorem (Minkowski Inequality). Let 1 ≤ p ≤ ∞, ||x||p < ∞, and ||y||p < ∞. Then
||x + y||p ≤ ||x||p + ||y||p.

Proof: We prove the theorem for 1 < p < ∞ and leave the remaining cases as exer-
cises. Because |x(t) + y(t)| ≤ |x(t)| + |y(t)| and 1 ≤ p, we have |x(t) + y(t)|p ≤ (|x(t)| +
|y(t)|)p = (|x| + |y|)p−1|x| + (|x| + |y|)p−1|y|. Integration gives

(3.51)

Let  so that p and q are conjugate exponents. Hölder’s inequality then

applies to both integrals on the right-hand side of (3.51):

(3.52a)

and

. (3.52b)
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If the term in square brackets is zero, the theorem is trivially true; we assme other-
wise. Putting (3.52a) and (3.52b) together into (3.51) and dividing through by the
square-bracketed term gives

. (3.53)

Since , the middle term in (3.53) is || |x| + |y| ||p. But ||x + y||p ≤ || |x| + |y| ||p
and we are done.  ■

Now we can de$ne the principal abstract spaces for signal theory. The  de$nition
is provisional only, since it relies upon the Riemann integral for the idea that ||x||p <
∞. We offer two re$nements in what follows. 

De$nition (Lp(R), Lp[a, b]). Let 1 ≤ p ≤ ∞. For p < ∞, the p-integrable space of
analog signals or functions de$ned on the real numbers is Lp(R) = {x(t) | x: R → K

and ||x||p < ∞}, where || ⋅ || is the Lp norm and K is either the real numbers R or
the complex numbers C.  Also if a < b, then Lp[a, b] = {x(t) | x: [a, b] → K and
||x||p,[a,b] < ∞}. If p = ∞, then L∞(R) and L∞[a, b] are the bounded signals on R and
[a, b], respectively.

It is conventional to use uppercase letters for the analog p-integrable spaces and
lowercase letters for the discrete p-summable signal spaces. It is also possible to
consider half-in$nite Lp spaces: Lp(-∞, a] and Lp[a, +∞).

These ideas have signal processing signi$cance. The absolutely integrable
signals can be used with other Lp signals under the convolution operation [12]. The
following proposition tells us that as long as its impulse response h = Hδ is abso-
lutely integrable, an LTI system will produce an L1 output from an L1 input.

Proposition. If x, h ∈ L1(R), then y = x * h ∈ L1(R), and ||y||1 ≤ ||x||1||h||1.

Proof 

(3.54)
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∞
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∞
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From the Fubini–Tonelli theorem [24], if the two-dimensional integrand is either
absolutely integrable or non-negative, then the double integral equals either iterated
integral. Thus,

.   (3.55)

■

The next proposition concerns the concept of uniform continuity, which readers
may recall from calculus [6]. A function y(t) is uniformly continuous means that for
any e > 0 there is a δ > 0 such that |t − s| < δ implies |y(t) − y(s)| < ε. The key idea is
that for any ε > 0, it is possible to $nd a δ > 0 that works for all time values. When
the interval width δ must depend on t ∈ R, then we may have ordinary continuity,
but not necessarily uniform continuity. An example of a signal that is uniformly
continuous on R is sin(t). A signal that is continuous, but not uniformly so, is t2.

Proposition. If x ∈ L2(R) and y = x ° x, then |y(t)|  ≤ ||x||22. Furthermore, y(t) is uni-
formly continuous.

Proof: We apply the Schwarz inequality, ||fg||1 ≤ ||f ||2||g||2:

. (3.56)

To show uniform continuity, let us consider the magnitude |y(t + ∆t) − y(t)|:

(3.57)

Invoking the Schwarz inequality on the right-hand side of (3.57) and changing the
integration variable with τ = t + s, we obtain

. (3.58)

The limit, lim∆t→0 y(t + ∆t) − y(t), concerns us. From integration theory—for
instance, Ref. 24, p. 91—we know that

(3.59)

and since this limit does not depend upon t, y(t) is uniform continuous. ■

Proposition. Let 1 ≤ p ≤ ∞, x ∈ Lp(R), and h ∈ L1(R). Then y = x * h ∈ Lp(R), and
||y||p ≤ ||x||p||h||1.

Proof: Exercise.  ■
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The criterion upon which the de$nition rides depends completely on whether |x(t)|p

is integrable or not; that is, it depends how powerful an integral we can roust up.
The Riemann integral, of college calculus renown, is good for functions that are
piecewise continuous. Basic texts usually assume continuity of the integrand, but
their theory generalizes easily to those functions having a $nite number of
discontinuities; it is only necessary to count the pieces and perform separate
Riemann integrals on each segment. A re$nement of the de$nition is possible, still
based on Riemann integration. We make this re$nement after we discover how to
construct Banach spaces out of the Lp-normed linear spaces given by the $rst
de$ntion of ||x||p. We issue the following warning: The Riemann integral will fail to
serve our signal theoretic needs. We will see this as soon as we delve into the basic
abstract signal structures: normed linear, Banach, inner product, and Hilbert spaces.
The modern Lebesgue integral replaces it. Our $nal de$nition, which accords with
modern practice, will provide the same $nite integral criterion, but make use of the
modern Lebesgue integral instead. This means that although the above de$nition
will not change in form, when we interpret it in the light of Lebesgue’s rather than
Riemann’s integral, the Lp spaces will admit a far wider class of signals. 

3.3.1.2 Normed Linear Spaces. A normed linear space allows basic signal
operations such as summation and scalar multiplication (ampli$cation or attenua-
tion) and in addition provides a measure of signal size, the norm operator, written
|| ⋅ ||. Normed spaces can be made up of abstract elements, but generally we con-
sider those that are sets of analog signals.

De$nition (Norm, Normed Linear Space). Let X be a vector space of analog
signals over K (R or C). Then a norm, written || ⋅ ||, is a map || ⋅ ||: X → R such that

(i) (Non-negative) 0 ≤ ||x|| for all x ∈ X.

(ii) (Zero) ||x|| = 0 if and only if x(t) = 0 for all t.

(iii) (Scalar multiplication) ||ax|| = |c| ||x|| for every scalar c ∈ K.

(iv) (Triangle inequality) ||x + y|| ≤ ||x|| + ||y||.

If X is a vector space of analog signals and || ⋅ || is a norm on X, then (X, || ⋅ ||) is a
normed linear space. Other common terms are normed vector space or simply
normed space.

One can show that the norm is a continuous map. That is, for any x ∈ X and ε > 0
there is a δ > 0 such that for all y ∈ X, ||y − x|| < δ implies | ||y|| − ||x|| | < ε. The alge-
braic operations, addition and scalar multiplication, are also continuous.

Example. Let a < b and consider the set of continuous functions x(t) on [a, b]. This
space, denoted C0[a, b] is a normed linear space with the following norm: ||x(t)|| =
sup{|x(t)|: t ∈ [a, b]}.  Since the closed interval [a, b] is compact, it is closed and
bounded (by the Heine–Borel theorem), and a continuous function therefore
achieves a maximum [6]. Thus, the norm is well-de$ned.
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Example. Let C 0(R) the set of bounded continuous analog signals. This too is a
normed linear space, given the supremum norm: ||x(t)|| = sup{|x(t)|: t ∈ R}.

Example. Different norms can be given for the same underlying set of signals, and
this results in different normed vector spaces. For example, we can choose the
energy of a continuous signal x(t) ∈ C0[a, b] as a norm:

. (3.60)

The next proposition ensures that the Lp-norm is indeed a norm for continuous
signals.

Proposition. Let X be the set of continuous, p-integrable signals x : R → K, where
K is either R or C. Then ||x||p is a norm, and (X, ||x||p) is a normed linear space.

Proof: The continuous signals are clearly an Abelian (commutative) group under
addition, and obey the scalar multiplication rules for a vector space.  Norm proper-
ties (i) and (iii) follow from basic integration theory. For (ii), note that if x(t) is not
identically zero, then there must be some t0 such that x(t0) = ε ≠ 0. By continuity, in
an interval I = (a, b) about t0, we must have |x(t)| > ε/2. But then the norm integral
is at least [ε(b − a)/2]p > 0. The last property follows from Minkowski’s inequality
for analog signals. ■

Proposition. Let X be the set of continuous, p-integrable signals x: [a, b] → K,
where a < b. Then (X, ||x||p,[a, b]) is a normed linear space.

Proof: Exercise.  ■

Must analog signal theory con$ne itself to continuous signals? Some important
analog signals contain discontinuities, such as the unit step and square pulse signals,
and we should have enough con$dence in our theory to apply it to signals with an
in$nite number of discontinuities. Describing signal noise, for example, might
demand just as much. The continuity assumption enforces the zero property of the
norm, (ii) above; without presupposing continuity, signals that are zero except on a
$nite number of points, for example, violate (ii). The full spaces, Lp(R) and Lp[a,b],
are not—from discussion so far—normed spaces.

A metric space derives naturally from a normed linear space. Recall from the
Chapter 2 exercises that a metric d(x, y) is a map from pairs of signals to real num-
bers. Its four properties are:

(i) d(x, y) ≥ 0 for all x, y.

(ii) d(x, y) = 0 if and only if x = y.

x Ex x t( ) 2
td

a

b

∫
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(iii) d(u, v) = d(v, u) for all u, v.

(iv) For any s, d(x, y) ≤ d(x, s) + d(s, y).

Thus, the Lp-norm generates a metric. In signal analysis matching applications, a
common application requirement is to develop a measure of match between candi-
date signals and prototype signals. The candidate signals are fed into the analysis
system, and the prototypes are models or library elements which are expected
among the inputs. The goal is to match candidates against prototypes, and it is typi-
cal to require that the match measure be a metric.

Mappings between normed spaces are also important in signal theory. Such maps
abstractly model the idea of $ltering a signal: signal-in and signal-out. When the
normed spaces contain analog signals, or rather functions on the real number line,
then such maps are precisely the analog systems covered earlier in the chapter. For
applications we are often interested in linear maps.

De$nition (Linear Operator). Let X and W be normed spaces over K (R or C)
and T: X → W such that for all x, y ∈ X and any a ∈ K we have

(i) T(x + y) = T(x) + T(y).

(ii) T(ax) = aT(x). 

Then T is called a linear operator or linear map. Dropping parentheses is wide-
spread: Tx ≡ T(x). If the operator’s range is included in R or C, then we more
speci$cally call T a linear functional.

Proposition (Properties). Let X and W be normed spaces over K and let T: X → W
be a linear operator. Then

(i) Range(T) is a normed linear subspace of W.

(ii) The null space of T, {x ∈ X | Tx = 0} is a normed linear subspace of X.

(iii) The inverse map T −1: Range(T) → X exists if and only if the null space of T
is precisely {0} in X.

Proof: Exercise.  ■

De$nition (Continuous Operator). Let X and W be normed spaces over K and
T: X → W. Then T is continuous at x if for any ε > 0 there is a δ > 0 such that if
||y − x|| < δ, then ||Ty − Tx|| < ε. T is continuous if it is continuous at every x ∈ X.

De$nition (Norm, Bounded Linear Operator). Let X and W be normed spaces
over K and T: X → W be a linear operator. Then we de$ne the norm of T, written ||T||,
by ||T|| = sup{||Tx||/||x||: x ∈ X, x ≠ 0}. If ||T|| < ∞, then T is a bounded linear operator.
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Theorem (Boundedness). Let X and W be normed spaces over K and T: X → W be
a linear operator. Then the following are equivalent:

(i) T is bounded.

(ii) T is continuous.

(iii) T is continuous at 0 ∈ X.

Proof: The easy part of this proof is not hard to spot: (ii) obviously implies (iii).
Let us therefore assume continuity at zero (iii) and show that T is bounded. Let δ >
0 such that ||Tx − 0|| = ||Tx|| < 1 when ||x − 0|| = ||x|| < δ. Let y ∈ X be nonzero. Then

, so that  and ; T is bounded. Now we assume

T is bounded (i) and show continuity. Note that ||Tx − Ty|| = ||T(x − y)|| ≤ ||T|| ||x − y||,
from which continuity follows.  ■

The boundedness theorem seems strange at $rst glance. But what ||T || < ∞ really
says is that T ampli$es signals by a limited amount. So there cannot be any sudden
jumps in the range when there are only slight changes in the domain. Still, it might
seem that a system could be continuous without being bounded, since it could allow
no jumps but still amplify signals by arbitrarily large factors. The linearity assump-
tion on T prevents this, however. 

3.3.1.3 Banach Spaces. Analog Banach spaces are normed linear spaces for
which every Cauchy sequence of signals converges to a limit signal also in the
space. Again, after formal developments in the previous chapter, the main task here
is to investigate how analog spaces using the Lp norm can be complete. Using famil-
iar Riemann integration, we can solve this problem with an abstract mathematical
technique: forming the completion of a given normed linear space. But this solution
is unsatisfactory because it leaves us with an abstract Banach space whose elements
are quite different in nature from the simple analog signals with which we began.
Interested readers will $nd that the ultimate solution is to replace the Riemann with
the modern Lebesgue integral.

Recall that a sequence of signals {xn(t): n ∈ Z} is Cauchy when for all ε > 0
there is an N such that if m, n > N, then ||xm − xn|| < ε. Note that the de$nition
depends on the choice of norm on the space X. That is, the signals get arbitrarily
close to one another; as the sequence continues, signal perturbations become less
and less signi$cant—at least as far as the norm can measure. A signal x(t) is the
limit of a sequence {xn(t)} means that for any ε > 0 there is an N > 0 such that n > N
implies ||xn − x|| < ε. A normed space X is complete if for any Cauchy sequence
{xn(t) : n ∈ N} there is an x(t) ∈ X such that x(t) is the limit of {xn(t)}. A complete
normed space is also called a Banach space.

In the previous section, we considered the continuous analog signals on the real
line, or on an interval, and showed that with the Lp norm, they constituted normed
linear spaces. Are they also Banach spaces? The answer is no, unfortunately;

δy
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Cauchy sequences of continuous signals may converge to signals that are not con-
tinuous, as the counterexample below illustrates.

Example. If p < ∞, then the signal space (C 0[−1, 1], || ⋅ ||p,[−1,1]), consisting of all
continuous signals on [−1, 1] with the Lp norm, is not complete. The claim is secure
if we can exhibit a Cauchy sequence of continuous functions that converges to a
discontinuous function.  A sequence that approximates the unit step on [−1, 1] is

(3.61)

The {xn(t)}, shown in Figure 3.3, clearly converge pointwise. Indeed, for any t0 < 0,
xn(t0) → 0; for any t0 > 0, xn(t0) → 1; and for t0 = 0, xn(t0) = 1/2 for all n. Now, if we
assume that n < m, then

(3.62)

The sequence is Cauchy, but converges to a discontinuous signal. The same reason-
ing applies to Lp[a, b], where a < b, and to Lp(R).    

Example. Now consider C 0[a, b] the set of bounded continuous analog signals on
[a, b] with the supremum or L∞ norm: ||x(t)||∞ = sup{|x(t)| : t ∈ [a, b]}. This space’s
norm avoids integration, so (C0[a, b], || ⋅ ||∞) earns Banach space status. To see this,
note that if {xn(t)} is Cauchy and ε > 0, then there is an N > 0 such that for all m, n >
N we have ||xn − xm||∞ < ε. Fixing t0 ∈ [a, b], the sequence of real numbers {xn(t0)}
is Cauchy in R. Calculus teaches that Cauchy sequences of real numbers converge
to a limit in R; for each t ∈ [a, b], we may therefore set . We
claim x(t) is continuous. Indeed, since the sequence {xn(t)} is Cauchy in the L∞

norm, the sequence must converge not just pointwise, but uniformly to x(t). That
is, for any ε > 0, there is an N > 0 such that m, n > N implies |xm(t) − xn(t)| < ε for all
t ∈ [a, b]. Uniformly convergent sequences of continuous functions converge to a
continuous limit [6] x(t) must therefore be continuous, and C 0[a, b] is a Banach
space.

Analog signal spaces seem to leave us in a quandary. We need continuity in order
to achieve the basic properties of normed linear spaces, which provide a basic signal
size function, namely the norm. Prodded by our intuition that worldly processes—at
least at our own perceptual level of objects, forces between them, and their motions—
are continuously de$ned, we might proceed to develop analog signal theory from
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Fig. 3.3. (a) A Cauchy sequence of continuous signals in Lp[−1, 1] . (b) Detail of the differ-
ence between xm and xn. Assuming n < m, the signals differ by at most 1/2 within the rectan-
gular region, which has width 2/n. (c) Diagram showing discontinuous limit. 
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continuous signals alone. However, arbitrarily precise signal approximations depend
on the mathematical theory of limits, which in turn begs the question of the complete-
ness for our designated theoretical base, (C0[−1, 1], || ⋅ ||p) for example. But the $rst
above example shows that we cannot get completeness from families of continuous
signals with the Lp-norm, where p < ∞.

What about working with the supremum norm, || ⋅ ||∞? This is a perfectly good
norm for certain signal analysis applications. Some matching applications rely on it,
for example. Nonetheless, the next section shows that L∞ does not support an inner
product. Inner products are crucial for much of our later development: Fourier
analysis, windowed Fourier (Gabor) transforms, and wavelet transforms. Also many
applications presuppose square-integrable physical  quantities. It would appear that
the supremum norm would con$ne signal theory to a narrow range of processing
and analysis problems. 

Let us persist:  Can we only allow sequences that do converge? As the exercises
explain, uniformly convergent sequences of continuous signals converge to a con-
tinuous limit. The problem is when the signal values, say xn(t0), converges for every
t0 ∈ [−1, 1], then we should expect that xn itself converges to an allowable member
of our signal space. Alternatively, since Cauchy sequences of continuous signals
lead us to discontinuous entities, can we just incorporate into our foundational sig-
nal space the piecewise continuous signals that are p-integrable? We would allow
signals with a $nite number of discontinuities. The Riemann integral extends to
them, and it serves the Lp-norm de$nition (3.47). We would have to give up one of
the criteria for a normed linear space; signals would differ, but the norm of their dif-
ference would be zero. Frustratingly, this scheme fails, too, as the next example
shows [25].

Example. Consider the signals {xn(t)} de$ned on [−1, 1] de$ned by

(3.63)

Note that xn(t) is zero at all but a $nite number of points in [−1, 1]; xn(t) is Riemann-
integrable, and its Riemann integral is zero on [−1, 1]. Also  ||xn(t) − xm(t)||p,[−1,1] =
0, which means that the sequence {xn(t)} is Cauchy. It converges, however, to

(3.64)

which is not Riemann-integrable.

3.3.1.4 Constructing Banach Spaces. An abstract mathematical technique,
called completing the normed space, eliminates most of the above aggravations. The
completion of a normed linear space X, is a Banach space B having a subspace C iso-
metric to X. Two normed spaces, M and N, are isometric means there is a one-to-one,
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onto  map  f: M → N  such that f is a vector space isomorphism  and  for all x ∈ M,
||x||M = ||f(x)||N. Isometries preserve norms. The next theorem shows how to construct
the completion of a general normed linear space.

Let us cover an algebraic idea which features in the completion result: equi-
valence relations [26]. 

De$nition (Equivalence Relation). We say a ~ b is an equivalence relation on a
set S if it satis$es the following three properties:

(i) (Re#exive) For all a ∈ S, a ~ a.

(ii) (Symmetric) For all a, b ∈ S, if a ~ b, then b ~ a.

(iii) (Transitive) For all a, b, c ∈ S, if a ~ b and b ~ c, then a ~ c.

Equivalence relations associate things in a collection that are similar in form. 

Example. For example, we might consider ordered pairs of integers (m, n) with n ≠
0. If p = (m, n) and q = (i, k), then it is easy to check that the relation, p ~ q if and
only if m⋅k = n⋅i, is an equivalence relation. In fact, this is the equivalence relation-
for different forms of the same rational number: , for instance. Rational num-
bers themselves are not pairs of integers, but are represented by an in$nite
collection of such pairs. This is an important idea.

De$nition (Equivalence Class). Let a ~ b be an equivalence relation on a set S.
The equivalence class of a ∈ S is [a] = {b ∈ S | a ~ b}.

If a ~ b is an equivalence relation on a set S, then the equivalence classes form
a partition of S. Every a ∈ S belongs to one and only one equivalence class.

Example (Rational Numbers). From the previous example we can let S = {(m, n) |
m, n ∈ Z and n ≠ 0}. Let Q = {[q] | q ∈ S}. We can de$ne addition and multiplica-
tion on elements of Q. This is easy. If p = (m, n) and q = (i, k), then we de$ne [p] +

[q] = [(M, N)], where . Constructing a rational multiplication operator is

simple, too. These steps construct the rational numbers from the integers [26].
But for signal theory, so what? Well, equivalence relations are precisely what we

need to deal with the problem that arises when making a normed linear space based
on the Lp norm. Just a moment ago, we noted that the zero property of the norm—
namely, that ||x||p = 0 if and only if x(t) = 0 identically—compelled us to use contin-
uous signals for normed linear spaces. But we use and need piecewise continuous
entities, such as the unit step, in signal processing. Also, signals with point disconti-
nuities are also useful for modeling noise spikes and the like. The strategy is to
begin with piecewise discontinuous signals, but to assemble them into equivalence
classes for making the normed linear space.
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Example (Signal Equivalence Classes). Let 1 ≤ p < ∞, and suppose that we have
extended the Riemann integral to piecewise continuous analog signals (that is, hav-
ing at most a $nite number of discontinuities) on the interval [a, b]. Strictly speak-
ing, this class of signals is not a normed linear space using || ⋅ ||p; the zero property of
the norm fails. However, we let [x] = {y(t): ||y||p = ||x||p} and de$ne Lp[a, b] = {[x] |
x ∈ Lp[a, b]}. Evidently, we have identi$ed all signals that differ from one another
by a $nite number of discontinuities as being essentially the same. That is what
lumping them into equivalence classes accomplishes. Now we can de$ne signal
addition, scalar multiplication, and the norm on equivalence classes. This reinterpre-
tation of Lp[a, b] in terms of equivalence classes is often implicit in many signal pro-
cessing treatments. The same idea applies to Lp(R). The exercises explore these
ideas in greater depth.

Now let us turn to the problem of constructing a Banach space from a given
normed linear space [22, 27]. This leads to a re$ned de$nition for the Lp spaces.

Theorem (Completion of Normed Linear Space). Let X be a normed linear
space. Then there is a Banach space B and an isometry f : X → B such that C =
Range( f ) is dense in B.

Proof: Let S = {xn} and T = {yn} be Cauchy sequences in X. We de$ne the relation
S ~ T if and only if limn→∞||xn − yn|| = 0. It is not hard to show this is an equivalence
relation (exercise). Let [S] = {T : T ~ S} and set B = {[S]:  S = {xn} is Cauchy in X}.
Let x ∈ X and de$ne f(x) = [{xn}], where xn = x for all n; the image f(x) is a constant
sequence. There are several things we must show.

With appropriate de$nitions of addition, scalar multiplication, and norm, we can
make B into a normed linear space. If S = {xn}, T = {yn} ∈ B, then we de$ne an
additon operation on B by [S] + [T] = [{xn + yn}]. This works, but there is a slight
technical problem. Many different Cauchy sequences {an} can be the source for a
single equivalence class, say [S]. We must show that the de$nition of additon does
not depend on which sequences in the respective equivalence classes, S and T, are
taken for de$ning the sums in {xn + yn}. So suppose S = [{an}] and T = [{bn}] so
that {an} ~ {xn} and {bn} ~ {yn}. We claim that [{xn + yn}] = [{an + bn}]; that is,
our addition operation is well-de$ned. Because ||(xn + yn) − (an + bn)|| =  ||(xn − an)
+ (yn − bn)|| ≤ ||xn − an|| + ||yn − bn||, and both of these last terms approach zero, we
must have {xn + yn}~{an + bn}, proving the claim. We de$ne scalar multiplication
by c[S] = [{cxn}]. It is straightforward to show that these de$nitions make B into a
vector space. For the norm, we de$ne ||[S]|| = limn→∞||xn||. Justifying the de$nition
requires that the limit exists and that the de$nition is independent of the sequence
chosen from the equivalence class [S].  We have

(3.65)xn xm– xn xm–≤



204 ANALOG SYSTEMS AND SIGNAL SPACES

by the triangle inequality. Since {xn} is Cauchy in X, so must {||xn||} be in R. Next,
suppose that some other sequence {an} generates the same equivalence class:
[{an}] = [S]. We need to show that limn→∞||xn|| = limn→∞||an||. In fact, we know that
[{an}] ~  [{xn}], since they are in the same equivalence class. Thus, limn→∞||xn −
an|| = 0. Since , limn→∞[||xn|| − ||an||] = 0, and we have
shown our second point necessary for a well-de$ned norm. Verifying the normed
space properties remains, but it is straightforward and perhaps tedious.

Notice that the map f is a normed space isomorphism that preserves norms—an
isometry. An isomorphism is one-to-one and onto, f(x + y) = f(x) + f(y), and f(cx) =
cf(x) for scalars c ∈ R (or C). In an isometry we also have ||x|| = ||f(x)||.

Our major claim is that B is complete, but a convenient shortcut is to $rst show
that Range(f) is dense in B. Given [T] = [{yn}] ∈ B, we seek an x ∈ X such that f(x)
is arbitrarily close to [T]. Since {yn} is Cauchy, for any ε > 0, there is an Nε such
that if m, n > Nε, then ||ym − yn|| < ε. Let k > Nε, and set x = xn = yk for all n ∈ N.
Then f(x) = [{xn}], and ||[{yn}] −  [{xn}]|| = limn→∞||yn − xn|| = limn→∞||yn − yk|| ≤ ε.
Since ε is arbitrary, f (X) must be dense in B.

Finally, to show that B is complete, let {Sn} be a Cauchy sequence in B; we
have to $nd an S ∈ B such that limn→∞Sn = S. Since Range(f) is dense in B, there
must exist xn ∈ X such that ||f(xn) − Sn|| < 1/(n + 1) for all n ∈ N. We claim that
{xn} is Cauchy in X, and if we set S = [{xn}], then S = limn→∞Sn. Since f is an
isometry,

(3.66)

By the choice of {xn}, the $rst two terms on the bottom of (3.66) are small for
suf$ciently large m, n. The $nal term in (3.66) is small too, since {Sn} is Cauchy.
Consequently, {xn} is Cauchy, and S = [{xn}] must be a bona $de element of B. Fur-
thermore, note that ||Sk − S|| ≤ ||f(xk) − Sk|| + ||f(xk) − S||. Again, ||f(xk) − Sk|| < 1/(k +
1); we must attend to the second term. Let yn = xk for all n ∈ N, so that f(xk) =
[{yn}].  Then ||f(xk) − S|| = ||[{yn}] − [{xn}]|| = limn→∞||yn − xn|| = limn→∞||xk − xn||.
But  {xn} is Cauchy, so this last expression is also small for large n. ■

Corollary (Uniqueness). Let X be a normed linear space and suppose B is a
Banach space with a dense subset C isometric to X. Then B is isometric to the com-
pletion of X.

Proof: Let f: X → C be the isometry and suppose X is the completion of X. Any ele-
ment of B is a limit of a Cauchy sequence of elements in C: b = limn→∞cn.  We can
extend f to a map from X to B by f(x) = b, where x = limn→∞ f −1(cn). We trust the
further demonstration that this is an isometry to the reader (exercise).   ■

The corollary justi$es our referring to the completion of a normed linear space.
Now we can re$ne the de$nition of the p-integrable signal spaces.

xn an– xn aa–≥

xn xm– f xn( ) f xm( )– f xn( ) Sn–( ) Sm f xm( )–( ) Sn Sm–( )+ +
≤ f xn( ) Sn– Sm f xm( )– Sn Sm–+ + .
= =
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De$nition (Lp(R), Lp[a, b]). For 1 ≤ p < ∞, Lp(R) and Lp[a, b] are the completions
of the normed linear spaces consisting of the continuous, Riemann p-integrable ana-
log signals on R and [a, b], respectively.

So the completion theorem builds up Banach spaces from normed linear spaces
having only a limited complement of signals—consisting, for instance, of just con-
tinuous signals. The problem with completion is that it provides no clear picture of
what the elements in completed normed space look like. We do need to expand our
realm of allowable signals because limit operations lead us beyond functions that
are piecewise continuous. We also seek constructive and elemental descriptions of
such functions and hope to avoid invoking abstract, indirect operations such as with
the completion theorem. Can we accomplish so much and still preserve closure
under limit operations? 

The Lebesgue integral is the key concept. Modern integration theory removes
almost every burden the Riemann integral imposes, but some readers may prefer to
skip the purely mathematical development; the rest of the text is quite accessible
without Lebesgue integration. So we postpone the formalities and turn instead to
inner products, Hilbert spaces, and ideas on orthonormality and basis expansions
that we need for our later analysis of signal frequency. 

3.3.2 Inner Product and Hilbert Spaces

Inner product and Hilbert spaces provide many of the theoretical underpinnings for
time domain signal pattern recognition applicatins and for the whole theory of
signal frequency, or Fourier analysis.

3.3.2.1 Inner Product Spaces. An inner product space X is a vector space
equipped with an inner product relation 〈x, y〉. The operation 〈⋅, ⋅〉 takes pairs of ele-
ments in X and maps them to the real numbers or, more generally, the complex num-
bers. The algebraic content of Chapter 2’s development is still valid; again, all we
need to do is de$ne the inner product for analog signals and verify that the proper-
ties of an abstract inner product space remain true.

De$nition (Inner Product). Let x(t) and y(t) be real- or complex-valued analog
signals. Then their inner product is 〈x, y〉:

. (3.67)

The inner product induces a norm, ||x|| = (〈x, x〉)1/2. So any inner product space
thereby becomes a normed linear space. Readers mindful of Chapter 2’s theorems
will rightly suspect that the converse does not hold for analog signals. Recall that
the inner product norm obeys the parallelogram law,

, (3.68)

x y,〈 〉 x t( )y t( ) td
∞–

∞

∫=

x y+
2

x y–
2

+ 2 x
2

y
2

+( )=
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and the polarization identity,

(3.69)

It is not hard to show that the de$nition (3.67) satis$es the properties of an inner
product. The main dif$culty—as in the discrete world—is to $nd out for which
abstract signal spaces the integral (3.67) actually exists. As with our earlier discrete
results, we $nd that the space L2 is special.

Example (Square-Integrable Signals). The spaces L2[a, b] and L2(R) are inner
product spaces. Let x(t) and y(t) be real- or complex-valued analog signals. By
the Schwarz inequality we know that if signals x and y are square-integrable, that is
||x||2 < ∞ and ||y||2 < ∞, then ||xy||1 ≤ ||x||2||y||2.  We must show that their inner product
integral (3.67) exists. But,

. (3.70)

Schwarz’s inequality shows the integration works. It states that if ||x||2 < ∞ and
||y||2 < ∞, then ||xy||1 ≤ ||x||2||y||2. But (3.70) shows that |〈x, y〉| ≤ ||xy||1. Requisite
properties of an inner product are:

(i) 0 ≤ 〈x, x〉 and 〈x, x〉 = 0 if and only if x(t) = 0 for all t.

(ii) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉.
(iii) 〈cx, y〉 = c〈x, y〉, for any scalar c.

(iv) 〈x, y〉 = 

Their veri$cation from (3.67) follows from the basic properties of Riemann integra-
tion (exercise).

Example (Lp spaces, p ≠ 2). The spaces Lp[a, b] and Lp(R) are not inner product
spaces with 〈⋅, ⋅〉 de$ned in (3.67). Let x(t) and y(t) be the signals shown in Figure 3.4.
Observe that ||x||p = ||y||p = 21/p, but ||x + y||p = ||x − y||p = 2. The parallelogram law
holds in an inner product space, which for these signals implies 2 = 22/p. This is only
possible if p = 2.   

3.3.2.2 Hilbert Spaces. An inner product space that is complete with respect
to its induced norm is called a Hilbert space. All of the Lp signal spaces are Banach
spaces, but only L2 is an inner product space. So our generalization of linear alge-
bra to encompass vectors that are in$nitely long in both directions—that is,
signals—succeeds but at the cost of eliminating all but an apparently narrow class
of signals.

4 x y,〈 〉 x y+
2

x y–
2

j x jy+
2

j x jy–
2
.–+–=

x y,〈 〉 x t( )y t( ) td
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∞

∫ x t( )y t( ) td
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∞

∫ x t( ) y t( ) td
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∞

∫ xy 1= =≤=

y x,〈 〉 .
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Though it is true that square-integrable signals shall be our principal realm for
signal theory, other classes do feature signi$cantly in the sequel:

• Absolutely integrable signals, L1;

• Bounded signals, L∞;

• Certain subclasses of L2, such as L1 ∩ L2;

• In$nitely differentiable, rapidly decreasing signals.

It turns out that the L1 signals constitute the best stepping-off point for construct-
ing the Fourier transform (Chapter 5). This theory is the foundation of signal fre-
quency analysis. With some extra effort, we can also handle L2 signals, but we have

x(t)

y(t)

Fig. 3.4.  Signals in the Lp Banach spaces: a square pulse x(t) and a step signal y(t).
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to resort to limit operations to so extend the Fourier transform. Boundedness con-
nects with absolute integrability in the theory of stable linear, translation-invariant
systems: y = Hx is stable when its impulse response h = Hδ ∈ L1(R). L∞ is a basic,
but useful, signal class. For example, if f ∈ L∞ and g ∈ Lp, then fg ∈ Lp.

Example (Square-Integrable Signals). The spaces L2[a, b] and L2(R) are Hilbert
spaces. All of the Lp spaces are complete, and L2 has an inner product that corre-
sponds to its standard p-norm. These and their discrete cousin, l2(Z), the square-
summable discrete signals, are the most important Hilbert spaces for signal theory.

Example (Absolutely and Square-Integrable Signals). The inner product on
L2(R), restricted to those signals that are also absolutely integrable, furnishes a 〈⋅, ⋅〉
operation for L1 ∩ L2. We have to de$ne ||x|| = 〈x, x〉1/2 on this space. Note too that
any Cauchy sequence of signals in L1 ∩ L2 is still Cauchy in L1. Thus, the sequence
converges to an absolutely integrable limit. This sequence and its limit is also square-
integrable, and so the limit is also in L2. Thus, L1 ∩ L2 is complete. It is easy to show
that the restrictions of the signal addition and scalar multiplication operations to L1 ∩
L2 are closed on that space. So L1 ∩ L2 is a Hilbert space. We can say more: L1 ∩ L2

is a dense subspace of L2; for every square integrable signal x(t) and any ε > 0, there
is y(t) ∈ L1 ∩ L2 such that ||y − x|| < ε. In fact, if x(t) ∈ L2, then we may take

(3.71)

Then limn→∞ xn = x, and xn ∈ L1(R) are absolutely integrable because they are
compactly supported.

Example (Schwarz Space). The Schwarz space S is the class of in$nitely differen-
tiable, rapidly decreasing functions of a real variable [28]. In$nitely  differentiable
means that each x(t) ∈ S has derivatives of all orders. Thus, x(t) and its derivatives
are all continuous. Rapidly decreasing means that limt→∞tmx(n)(t) = 0 for all m, n ∈
N, where x(n)(t) = dnx/dtn. Examples of signals in S are the Gaussians of mean µ and
standard deviation σ > 0:

. (3.72)

Examples of signals not in S include rational signals such as (σ2 + t 2)−1; these are
not rapidly decreasing. The even decaying exponentials exp(−σ|t|) rapidly decrease,
but fail differentiability, so they are not in the Schwarz class. The Schwarz space is
a plausible candidate for the mathematical models of continuously de$ned naturally
occurring signals: temperatures, voltages, pressures, elevations, and like quantitative

xn t( ) x t( ) if n– t n,≤ ≤
0 if otherwise.
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phenomena. The Schwarz class strikes us as incredibly special and probably popu-
lated by very few signals. In fact, S is dense in both L1(R) and L2(R). To see this,
it suf$ces to show that elements of S are arbitrarily close to square pulse functions.
Since linear combinations of square pulses are precisely the step functions, and
since step functions are dense in L1(R) and L2(R), this implies that S is dense
as well. The trick is to blend the upper and lower ledge of a step together in
an in$nitely differentiable way [28]. The following function interpolates a unit
step edge:

(3.73)

Scalings and dilations of s(t) interpolate a general step edge, and it is evident that
arbitrary step functions are approximated to any precision by linear combinations of
functions of the form (3.73).

There is a rich theory of linear operators and especially linear functionals on
Hilbert spaces. Detailed explication of the ideas would take this presentation too far
astray into abstract functional analysis; we refer the reader to the broad, excellent
literature [13, 25, 26, 29] We shall be obliged to quote some of these results here, as
elaborating some of our later signal analysis tools depends upon them.

Example (Inner Product). If we $x h ∈ L2(R), then the inner product Tx = 〈x, h〉
is a bounded linear functional with ||T|| = ||h||2. Indeed by Schwarz’s inequality
(3.70), ||Tx|| = |〈x, h〉| = ||xh||1 ≤ ||x||2||h||2.

We have held up the inner product operation as the standard by which two
signals may be compared. Is this right? It is conjugate linear and de$ned for square-
integrable analog signals, which are desirable properties. We might well wonder
whether any functional other than the inner product could better serve us as a tool
for signal comparisons. The following theorem provides the answer.

Theorem (Riesz Representation). Let T be a bounded linear function on a Hilbert
Space H. Then there is a unique h ∈ H such that Tx = 〈x, h〉 for all x ∈ H. Futher-
more, ||T|| = ||h||.

Proof: See Ref. 29. ■

Inner products and bounded linear operators are very closely related. Using a gener-
alization of the Riesz representation theorem, it is possible to show that every
bounded linear Hilbert space operator T : H → K has a related map S : K → H which
cross-couples the inner product. 
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Theorem. Let T : H → K be a bounded linear function on Hilbert space H and K.
Then there is a bounded linear operator S : K → H such that:

(i) ||T || = ||S||.
(ii) For all h ∈ H and k ∈ K, 〈Th, k〉 = 〈h, Sk〉.

Proof: The idea is as follows. Let k ∈ K and de$ne the linear functional L : H → K

(R or C) by L(h) = 〈Th, k〉. L is linear by the properties of the inner product. L is also
bounded. The Riesz representation theorem applies, guaranteeing that there is a
unique g ∈ H such that L(h) = 〈h, g〉. Thus, we set S(k) = g. After verifying that S is
linear and bounded, we see that it satis$es the two required properties [26].  ■

De$nition (Adjoint). Let T: H → K be a bounded linear operator on Hilbert spaces
H and K and S be the map identi$ed by the previous theorem. Then S is called the
Hilbert adjoint operator of T and is usually written S = T*. If H = K and T* = T, then
T is called self-adjoint.

Note that if T is self-adjoint, then 〈Th, h〉 = 〈h, Th〉. So 〈Th, h〉 ∈ R for all h ∈ H.
This observation enables us to order self-adjoint operators.

De$nition (Positive Operator, Ordering). A self-adjoint linear operator is posi-
tive, written T ≥ 0, if for all h ∈ H, 0 ≤ 〈Th, h〉. If S and T are self-adjoint operators
on a Hilbert space H with T − S ≥ 0, then we say  S ≤ T.

We shall use ordered self-adjoint linear operators when we study frame theory in
Section 3.3.4.

Finally, important special cases of Hilbert operators are those that are isometries.

De$nition (Isometry). If T: H → K is linear operator on Hilbert spaces H and K
and for all g, h ∈ H we have 〈Tg, Th〉  = 〈g, h〉, then T is an isometry.

3.3.2.3 Application: Constructing Optimal Detectors. As an application
of functional analysis ideas to signal analysis, consider the problem of $nding a
known or prototype signal p(t) within a given, candidate signal x(t). The idea is to
convolve a kernel k(t) with the input: y(t) = (x * k)(t). Where the response y(t) has a
maximum, then hopefully x(t) closely resembles the model signal p(t). How should
we choose k(t) to make this work?

A commonly used approach is to let k(t) = p(−t), the prototype pattern’s
re#ection [30, 31]. Then y(t) =  (x * k)(t) =  (x ° p)(t), the correlation of x(t) and p(t).
Since
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we see that minimizing the energy of the difference of x(t) and p(t) is equivalent to
maximizing their inner product as long as the two signals have constant 2-norms. It
is easy to do this for the prototype; we use the normalized signal (t) = p(t)/||p||2 as
the model signal, for example. This step is called normalization, and so the method
is often called normalized cross-correlation. If the entire candidate x(t) is available
at the moment of comparison, such as for signals acquired of#ine or as functions of
a nontemporal independent variable, then we can similarly normalize x(t) and com-
pare it to (t). If, on the other hand, x(t) is acquired in real time, then the feasible
analysis works on past fragments of x(t).

The Schwarz inequality tells us that equality exists if and only if the candidate
and prototype are constant multiples of one another. If we subtract the mean of each
signal before computing the normalized cross-correlation, then the normalized
cross-correlation has unit magnitude if and only if the signals are related by x(t) =
Ap(t) + B, for some constants A, B. Since y(t) =  (x * k)(t) = (x ° p)(t) attains a max-
imum response when the prototype p(t) matches the candidate x(t), this technique is
also known as matched $ltering. It can be shown that in the presence of a random
additive white noise signal, the optimal detector for a known pattern is still given by
the matched $lter [32].

Many signal and image processing applications depend upon matched $ltering.
In speech processing, one problem is to minimize the effect of reverberation from
the walls and furnishings within a room on the recorded sound. This is an echo
cancellation problem where there may be multiple microphones. The idea is to
$lter each microphone’s input by the re#ected impulse response of the room
system [33]. 

Normalized cross correlation can be computationally demanding. When it is
applied to images, this is especially the case. Consequently, many applications in
image-based pattern matching use coarse resolution matched $ltering to develop a
set of likely match locations of the template against the input image. Then, $ner
resolution versions of the template and original image are compared [34]. Correla-
tion techniques are also one of the cornerstones of image motion analysis [35]. 

3.3.3 Orthonormal Bases

In Chapter 2 a close relationship was established between general Hilbert spaces
and the space of square-summable discrete signals. Here we list discuss four differ-
ent orthogonal basis sets:

• Exponential signals of the form exp( jnt), where n ∈ N

• Closely related sinusoids, which are the real and imaginary parts of the
exponentials

• Haar basis, which consists of translations and dilations of a single, simple step
function

• Sinc functions of the form , where A > 0 and n ∈ N

p̃

p̃

sn t( ) 1

π
------- At nπ–( )sin

At nπ–
-------------------------------=
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Orthonormal bases are fundamental signal identi$cation tools. Given a signal
x(t), we project it onto the orthonormal basis set {en | n ∈ N} by taking the inner
products cn = 〈x(t), en(t)〉. Each cn indicates the relative presence of the basis
element en inside x(t). The strategy is that—hopefully, at least—the set of
coef$cients {cn | n ∈ N} is a simpler description of the original signal. If they are
not, then we attempt to $nd an alternative basis set that better captures the character
of anticipated input signals. We can say more, though. It works best for the signal
recognition application if decomposition produces only a few signi$cant cn values
for every typical x(t) that we try to analyze. In other words, for the original signals
x(t) that we expect to feed into our analysis application, the energy of the decompo-
sition coef$cients is sparse and concentrated in a relative few values. On the other
hand, dense decomposition coef$cient sets make signal classi$cation harder,
because we cannot clearly distinguish which en(t) factor most critically within x(t).
Figure 3.5 illustrates the idea. For signal identi$cation, therefore, the upshot is that
the statistics of the decomposition coef$cients for typical system input signals are
our guide for selecting an orthonormal basis set. 

3.3.3.1 Exponentials. The most important basis for the L2 Hilbert spaces is the
exponential signals. We begin by considering the space L2[−π, π]. 

Let {en(t) | n ∈ N} be de$ned by en(t) = (2π)−1/2exp(jnt). It can be easily shown
that the en(t) are indeed orthonormal (exercise). Similarly, if we set

, (3.75)
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Fig. 3.5. Signal decomposition on an orthonormal basis (a). Sparse representations are
better (b) than decompositions that spread signal energy across many different basis
elements (c).   
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then B = {en(t) | n ∈ N} is orthonormal in L2[a, b]. We shall show in Chapter 5 that
B is complete so that it is, in fact, a basis. Thus, for any square-integrable signal x(t)
on [a, b] a linear combination of {en} is arbitrarily close to x(t); in other words,

(3.76)

for some constants {cn | n ∈ N}, called the Fourier series coef$cients for x(t). Note
that cn measures the similarity of x(t) to the basis element exp(jnt): 〈x(t), exp(jnt)〉 =
cn by orthonormality.

Now consider the case of L2(R). We can break up the real line into 2π-wide inter-
vals Im = [(2m − 1)π, (2m + 1)π]. Let Χm be the characteristic function on Im, and
set em,n(t) = Χm(2π)−1/2exp( jnt). Then clearly {em,n(t) | m, n ∈ N} is an orthonor-
mal basis for L2(R).

3.3.3.2 Sinusoids. There is an orthonormal basis for L2[−π, π] consisting
entirely of sinusoids. Let us break up en(t) = (2π)−1/2exp(jnt) into its real and imagi-
nary parts using exp( jt) = cos(t) = jsin(t). We set an = cn + c−n and jbn = c−n − cn.
Thus, (3.36) becomes

, (3.77)

and any x(t) ∈ L2[−π, π] can be expressed as a sum of sinusoids. Equation (3.77)
shows that in addition to bona $de sinusoids on  [−π, π], we need one constant func-
tion to comprise a spanning set. That the sinusoids are also orthogonal follows from
writing them in terms of exponentials:

(3.78a)

 (3.78b)

and using the orthonormality of the exponentials once more. As with exponentials,
the sinusoids can be assembled interval-by-interval into an orthonormal basis for
L2(R). The exercises further explore exponential and sinusoidal basis decom-
position.  

3.3.3.3 Haar Basis. The Haar3 basis uses differences of shifted square pulses to
form an orthonormal basis for square-integrable signals. It is a classic construction

3Hungarian mathematician Alfréd Haar (1885–1933) was Hilbert’s graduate student at Göttingen. The
results of his 1909 dissertation on orthogonal systems, including his famous basis set, were published a
year later.  
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[36], dating from the early 1900s. It is also quite different in nature from the expo-
nential and sinusoidal bases discussed above.

The sinusoidal basis elements consist of sinusoids whose frequencies are all inte-
gral multiples of one another—harmonics. As such, they all have different shapes.
Thus, cos(t) follows one undulation on [−π, π], and it looks like a shifted version of
sin(t). Futhermore, cos(2t) and sin(2t) resemble one another as shapes, but they are
certainly different from cos(t), sin(t), and any other basis elements of the form
cos(nt) or sin(nt) where n ≠ 2.

Haar’s orthonormal family begins with a single step function, de$ned as follows:

(3.79)

Nowadays h(t) is called a Haar wavelet. Haar’s basis contains dilations and transla-
tions of this single atomic step function (Figure 3.6). Indeed, if we set H = {hm,n(t)
= 2n/2h(2nt − m) | m, n ∈ N}, then we claim that H is an orthonormal basis for
L2(R).
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Fig. 3.6. Some examples of Haar basis elements.  
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Orthonormality is easy. If the supports of two unequal basis elements, hm,n(t) and
hp,q(t), overlap, then we must have n ≠ q; let us suppose n > q. Then the support of
hm,n(t) will lie completely within one of the dyadic subintervals of Support (hp,q(t)).
The inner product must be zero: 〈hm,n(t), hp,q(t)〉 = 0.

Completeness—that the closure of the span of H = {hm,n(t) | m, n ∈ N} happens
to be all of L2(R)—is somewhat harder to show. Informally, any square-integrable
signal can be approximated to arbitrary precision with a step function. Likewise, if
we can approximate step functions with linear combinations of {hm,n(t)}, then com-
pleteness follows. We $rst show that the unit square pulse, s(t) = u(t − 1) − u(t), is in
Span(H). Indeed, one can check that for any N ∈ N,

     (3.80)

So on all but a countably in$nite set of points, the sum on the left-hand side of
(3.80) is s(t). When we study the Lebesgue integral, we shall see that these disconti-
nuities do not affect the integral. Similarly, we can show that dyadic dilations and
translations of s(t) are in Span(H). Linear combinations of these dilations and trans-
lations can be arbitrarily close to a general step function, which justi$es our com-
pleteness claim. 

Practically, the importance of this is that it is good for $nding one particular
shape, which might manifest itself in different sizes or scales inside a signal. By
contrast, the sinusoidal basis elements $nd various harmonics—distinct shapes—on
the subintervals by which they divide the time domain. Of course, the elemental
shape of the Haar basis is quite simple, but the basis elements are tuned to this shape
at an in$nite range of scales and an in$nite set of positions. The two different types
of basis in fact represent two different ways of analyzing signals. The sinusoidal and
exponential bases $nd frequencies inside signals; they are frequency-domain tools
for signal interpretation. The Haar basis $nds a single atomic shape at different
scales inside a signal, so it exempli$es scale-domain methods.   

Recent books on wavelets [37, 38] cover Haar’s basis. Until the mid-1980s,
mathematicians believed that the only possible orthonormal bases for L2(R) which
used dilations and translations of a single signal atom were those like Haar’s con-
struction where the atom has step discontinuities. The new wavelet theories, how-
ever, have completely toppled this long-standing conviction (Chapter 11).

3.3.3.4 Sinc Functions. Another important basis set consists of sinc(t) =
sin(t)/t functions. In later chapters we shall have the tools in hand to show that the
following family of functions is orthonormal: {sn(t) | n ∈ N}, where

(3.81)
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and A > 0. We shall $nd that {sn(t)} de$ned in (3.81) spans an important Hilbert
subspace of L2(R): a band-limited subspace that consists of signals whose spectral
content lies entirely within a $nite frequency range.

3.3.4 Frames

The concept of a frame generalizes the idea of an orthonormal basis in Hilbert
space. Frame representations may be overcomplete. This means they may represent
a signal in more than one way, and therefore they are not orthogonal. To understand
why this might be useful and, indeed, why a signal analysis application based on
frames can still be made workable, we have to re#ect for a moment on the use of
orthonormal bases for signal representation. 

Many signal and image analysis applications need to recognize an unknown,
candidate pro$le as an instance or combination of certain known prototypes. Proba-
bly the $rst approach that comes to mind is to decompose the candidate signal as a
linear combination of the prototypical building blocks: x(t) = Σcnen(t). The cn repre-
sent the relative weight of each en(t) in this linear signal combination. The applica-
tion’s desirable features are as follows: 

(i) Incoming signals are uniquely represented by the coef$cients 〈x, en 〉; x(t)
does not have multiple identifying strings of weighting coef$cients.

(ii) Two representations in terms of decomposition coef$cients should permit a
straightforward comparison of source signals for the differences between
them.

(iii) Any original signal should be reconstructible from the stored coef$cients;
this is a completeness criterion. 

(iv) Finally, the reconstruction of x(t) from {cn} should be numerically stable; a
small change in the coef$cients results in a small change on the rebuilt
signal.

These criteria suggest orthonormal bases. If we use an orthogonal set, such as the
exponential functions en(t) = e−jnt, then the four conditions hold in theory. The
orthogonal character of the underlying special functions eases the computation of
coef$cients. However, a local change in the incoming signal leads to changes in the
whole range of decomposition coef$cients. Noise in signals, however sparse, drasti-
cally perturbs the stored digital form of the signal. This leads to practical dif$culties
in comparing two outwardly similar signals. 

Sometimes, in an attempt to localize changes in signals to appropriate portions of
the coef$cient set, the decomposition functions are chosen to be windowed or
“short-time” exponentials. These may take the form en,m(t) = Cme−jnt, where Cm is
the characteristic function of the integral interval [m, m + 1]. The downfall of this
tactic is that it adds high-frequency components to the decomposition. Relatively
smooth signals decompose into sequences with unusually large coef$cients for
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large values of n. This problem can be ameliorated by choosing a smoother window
function—a Gaussian instead of a square window, for example. This becomes a re-
presentation in terms of the Gabor elementary functions, which $rst chapter intro-
duced. But a deeper problem with windowed exponentials arises. It turns out that
one cannot construct an orthonormal basis out of Gaussian-windowed exponentials.
Chapter 10 will cover this famous result, known as the Balian–Low theorem. None-
theless, it is possible to make frames out Gabor elementary functions, and this is a
prime reason for the technique’s recent popularity. 

Earlier, however, we noted that the statistics of the decomposition coef$cients
are an important consideration. Sparse sets are better than dense sets. We form vec-
tors out of the decomposition coef$cient sets of system input signals. The vectors
comprise a library of signal models. Sparse decomposition coef$cients imply short
vectors, and short vectors mean that the library more succinctly represents the
essential aspects of our signal models.

Unfortunately, it quite often happens that orthonormal bases produce non-
sparse coef$cient sets on fairly simple signals. For example, a decaying pulse sig-
nal, x(t) = exp(−At2)cos(Bt), contains a local frequency component set by the
width of the Gaussian envelope. Now, x(t) can be represented by the exponential or
sinusoidal basis sets, but far from the origin there will always be large weighting
coef$cients. These distant, high-frequency sinusoidal wiggles have to cancel one
another in order to correctly represent the negligible amplitude of x(t) in their
neighborhood. Libraries based on such orthonormal bases can also be problem-
atic; when the signal changes a little bit, many decomposition coef$cients must
change globally to effect just the right weighting to cancel and reinforce the right
signal components.

One surprising result from contemporary signal analysis research is that over-
complete representations—in particular, the frame decomposition that we cover
here—can help in constructing sparse signal representations. Special techniques,
such as the matching pursuit algorithm have been devised to cope with the overcom-
pleteness [39, 40]. Originating in the 1950s [41, 42], frames are now widely used in
connection with the recent development of the theory of time-frequency and time-
scale transforms [38, 43]. 

First-time readers may skip this section. Visitors to the latest research literature
on time-frequency and time-scale transform methods will, however, commonly
encounter frame theoretic discussions. We shall cover frames more thoroughly in
Chapters 10–12. 

3.3.4.1 Definition and Basic Properties. This section de$nes the notion of
a Hilbert space frame and provides some simple connections to the more speci$c
and familiar concept of orthonormal basis. In what follows, we shall allow Hilbert
spaces de$ned over the complex numbers.

De$nition (Frame). Let {fn: n ∈ Z} be signals in a Hilbert space H. If there are
positive A, B ∈ R such that for all x ∈ H we have
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(3.82)

then the {fn} constitute a frame in H. The constants A and B are the frame bounds,
lower and upper, respectively. The frame is tight if A = B. A frame is exact if it is no
longer a frame following the deletion of a single element.

It is immediately clear that the frame condition (3.82) generalizes the idea of an
orthonormal basis, makes the convergence unconditional, and ensures that a frame
is a complete set (the closure of its linear span is all of H).

Proposition. Let {en: n ∈ Z} be an orthonormal basis for a Hilbert space H. Then
{en} is a tight exact frame having bounds A = B = 1.

Proof: Let x ∈ H. Parseval’s relation for Hilbert spaces implies 

. (3.83)

Therefore,

, (3.84)

which is precisely the frame condition (3.82), with A = B = 1.   ■

Proposition (Unconditionality). Let {fn : n ∈ Z} be a frame in a Hilbert space H.
Then any rearrangement of the sequence {fn} is also a frame.

Proof: If x ∈ H, then {|〈x, fn〉|2} is a sequence of positive real numbers, and the
convergence of the series

(3.85)

is absolute [6]. This means that the above sum converges to the same value under
any rearrangement of the {fn}.   ■

Remark. Thus, we are free to renumber a frame with the natural numbers. Later, in
Chapter 10, we shall $nd it convenient to use pairs of integers to index frame ele-
ments. This same idea is at work, as long as the index set has the same cardinality as
the natural numbers. 

Proposition (Completeness). Let F = {fn : n ∈ Z} be a frame in a Hilbert space H.
Then {fn} is a total set: Span {fn} = H.
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Proof: Let x ∈ H, 〈x, fn〉 = 0 for all n, and A > 0 be the lower frame bound for F.  By
the de$nition of a frame,

(3.86)

Equation (3.86) shows that x = 0. Since a subset X of H is complete if and only if
no nonzero element is orthogonal to all elements of X, it must be the case that F is
total in H. ■

3.3.4.2 Examples. In the following examples, H is a Hilbert space, and {en:
n ∈ N} is an orthonormal basis in H.

Example (Overcompleteness). Let F = {fn} = {e0, e0, e1, e1, e2, e2,...}. Then F is a
tight frame with bounds A = B = 2. Of course, it is not an orthonormal basis,
although the subsequence {f2n: n ∈ N} is orthonormal. It is also not exact. Elements
of H have multiple decompositions over the frame elements.

Example (Orthogonal, Yet Not a Frame). F = {fn} = {e0, e1/2, e2/3,...} is com-
plete and orthogonal. However, it is not a frame, because it can have no positive
lower frame bound. To see this, assume instead that F is a frame and let A > 0 be its
lower bound. Let N be large enough that N −2 < A and set x = eN. Then, (3.82) gives 

 (3.87)

a contradiction.

Example (Tight Frame). F = {fn} = {e0, 2−1/2e1, 2−1/2e1, 3−1/2e2, 3−1/2e2, 3−1/2e2,
...} is a tight frame with bounds A = B = 1. F is not exact.

Example (Exact But Not Tight). F = {fn} = {2e0, e1, e2, ...} is a frame, with lower
bound A = 1 and upper bound B = 2. F is exact but not tight.

3.3.4.3 Frame Operator. There is a natural bounded linear operator associated
with a frame. In fact, if the decomposition set is a frame, then the basic signal anal-
ysis system that associates signals in a Hilbert space with their decomposition
coef$cients is just such an operator. This section gives their de$nition and proper-
ties. While they are mathematically elegant and abstract, frame operators also factor
critically in using overcomplete frames in signal representation.

De$nition (Frame Operator). If F = {fn(t): m, n ∈ Z} is a frame in a Hilbert space
H, then the associated frame operator TF: H → l2(Z) is de$ned by

. (3.88)
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In other words, y = TF(x) = TFx is the complex-valued function de$ned on the inte-
gers such that y(n) = 〈x, fn〉. When the frame is clear by the context we may drop the
subscript on the frame operator: y = Tx.

Proposition. If F = {fn(t): n ∈ Z} is a frame in a Hilbert space H, then the associ-
ated frame operator T given by (3.88) is linear and bounded. Furthermore, if B is the
upper frame bound, then ||T|| ≤ B1/2.

Proof: Linearity is clear from inner product properties. If x ∈ H, then

.   (3.89)

■

De$nition (Adjoint Frame Operator). Let F = {fn(t) : n ∈ Z} be a frame in a
Hilbert space H and let T be its associated frame operator T (3.88). The adjoint
frame operator S : l2(Z) → H is de$ned for y(n) ∈ l2(Z) by 

(3.90)

Proposition. Let S be given by (3.90). Then S is the Hilbert adjoint operator with
respect to frame operator T of F: S = T*.

Proof: That S is linear is left as an exercise. Let x ∈ H, T the frame operator for F =
{fn(t) : n ∈ Z}, and let y = {yn : n ∈ Z} be some sequence in l2. Then

(3.91)

and also

. (3.92)

Together, (3.91) and (3.92) show that T and S cross-couple the inner products of the
two Hilbert spaces. Therefore, S = T*.   ■

The next theorem, one of the classic results on frames and frame operators, offers
a characterization of frames [41]. It uses the idea of a positive operator. Recall that
an operator T on a Hilbert space H is positive, written T ≥ 0, when  〈Tx, x〉 ≥ 0 for all
x ∈ H. Also, if S and T are operators on H, then T ≥ S means that T − S ≥ 0. Positive
operators are self-adjoint [26, 29].

Theorem (Frame Characterization). Let F = {fn : n ∈ Z} be a sequence in a Hil-
bert space H; A, B > 0; and let I be the identity operator on H. Then F is a frame with
lower and upper bounds A and B, respectively, if and only if the operator S de$ned by 

(3.93)
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is a bounded linear operator with

. (3.94)

Proof: Assume that (3.93) de$nes S and (3.94) holds. By the de$nition of ≤ for
operators, for all x ∈ H (3.94) implies 

(3.95)

However, 

(3.96a)

and

. (3.96b)

The middle term of (3.95) is

(3.97)

Together (3.96a), (3.96b), and (3.97) can be inserted into (3.95) to show that the
frame condition is satis$ed for F.

Conversely, suppose that F is a frame. We must $rst show that S is well-
de$ned—that is, the series (3.93) converges. Now, the Schwarz inequality implies
that the norm of any z ∈ H is sup{|〈z, y〉| : y ∈ H and ||y|| = 1}. Let sN represent
partial sums of the series (3.93):

. (3.98)

When M ≤ N the Schwarz inequality applies again:

(3.99)

Algebra on the last term above gives

 (3.100)

By the frame condition,

(3.101)
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and the $nal term in (3.101) must approach zero as M, N → ∞. This shows that the
sequence {sN | N ∈ N} is Cauchy in the Hilbert space H. H is complete, so the {sN}
converge, the series must converge, and the operator S is well-de$ned.

Similarly,

, (3.102)

which entails ||S|| ≤ B. From the frame condition and (3.93) the operator ordering,
AI ≤ S ≤ BI follows immediately.   ■

Remark. Notice that for a frame F = {fn:n ∈ Z} the theorem’s operator S is the
composite T*T, where T is the frame operator and T* is its adjoint. The following
corollaries provides further properties of T*T.

Corollary. Let F = {fn: n ∈ Z} be a frame in a Hilbert space H and let T be the
frame operator. Then the map S = T*T : L2(R) → L2(R) given by

(3.103)

is positive and invertible.

Proof: Let A be the lower frame bound for F. Since AI ≤ S, S − AI ≥ 0, by the
de$nition of the operator ordering relation. Also, since A > 0, S/A − I ≥ 0. A prop-
erty of positive operators is that if an operator, say U, is positive, U ≥ 0, then U + I is
invertible [27]. Therefore, S/A − I + I = S/A is invertible. Clearly then, S is invertible.
Moreover, adding a positive operator I to S/A − I still gives a positive operator. This
shows that S is indeed positive.  ■

Corollary. Let F = {fn : n ∈ Z} be a frame in a Hilbert space H; let A and B be the
lower and upper frame bounds, respectively, for F; let T be the frame operator; and
let S = T*T be given by the previous corollary. Then I/B ≤ S−1 ≤ I/A.

Proof: The previous corollary shows that S−1 exists. Since S −1 commutes with I
and with S, and since AI ≤ S ≤ BI, it follows that S −1AI ≤ S−1S ≤ S −1BI. Upon rear-
rangment, this yields B−1I ≤ S −1 ≤ A−1I. ■

These results allow us to de$ne the concept of the dual frame. The dual frame is
the key concept for applying frames in signal analysis applications.

De$nition (Dual Frame). Let F = {fn: n ∈ Z} be a frame in a Hilbert space H and
T be the frame operator. We de$ne the dual frame to F by applying the inverse of
T*T to frame elements:

. (3.104)
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Corollary. Let F = {fn: n ∈ Z} be a frame in a Hilbert space H; let A and B the
lower and upper frame bounds, respectively, for F; let T  be the frame operator; and
let S = T*T. Then the sequence {S−1fn | n ∈ Z} in H is a frame with lower bound
B−1 and upper bound A−1.

Proof: S −1 exists and is positive. Let x ∈ H and note that

(3.105)

by the linearity and continuity of S−1. Since every positive operator is self-adjoint
(Hermitian) [29], S−1 is self-adjoint. Hence, 

. (3.106)

Notice that (3.106) is precisely the form that the operator S-1 takes in (3.93) of the
frame characterization theorem. That B−1I ≤ S−1 ≤ A−1I follows from an earlier cor-
ollary. Thus, the theorem’s condition applies, and {S−1fn} is a frame in H. ■

Corollary. Under the assumptions of the previous corollary, any x ∈ H can be
written

(3.107)

Proof: Using (3.105), (3.106), and x = SS−1x = S−1Sx, the result follows easily.   ■

Corollary. Further assuming that the frame T is tight, we have S = AI, S −1 = A−1I,
and, if x ∈ H, then

(3.108)

Proof: Clear from the de$nition of tightness and the preceding corollaries.   ■

3.3.4.4 Application: Stable Modeling and Characterization. These results
shed light on our proposed requirements for a typical signal analysis system. Let us
list what we know so far:

• The $rst requirement—that the representation be unique—was demonstrated
not to hold for general frames by an easy counterexample.

• The second speci$cation—that signal representations should permit a straight-
forward comparison of two incoming signals—is satis$ed by the frame opera-
tor that maps signals to sequences of complex numbers allowing us to use the
l2 norm for comparing signals.
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• The corollary (3.107) ful$lls the requirement that the original signal should be
reconstructible from the decomposition coef$cients.

• The fourth requirement has been left rather vague: What does numerical insta-
bility mean?

We can understand numerical instability in terms of bounded operators. Let F = {fn}
be a frame and T = TF its frame operator. If the inverse mapping T −1 is unbounded,
then elements of l2 of unit norm will be mapped back to elements of H having arbi-
trarily large norms. This is not at all desirable; signals of enormous power as well as
signals of miniscule power will map to decomposition coef$cients of small l2-norm.
This is numerical instability. The next result shows that frame-based signal decom-
position realizes the fourth requirement of a signal analysis system.

Corollary. Let F = {fn : n ∈ Z} be a frame in a Hilbert space H and let T = TF be
the associated frame operator. Then the inverse T −1 exists and is bounded.

Proof: Let S = T*T, as in the previous section. Then S −1 exists and S −1T* = T −1 is
the bounded inverse of T. Alternatively, (3.107) explicitly maps a square-summable
sequence in C to H, and it inverts T. A straightforward calculation shows that the
map is bounded with ||T −1|| ≤ A−1/2. ■

Remarks. So the use of a frame decomposition for the signal analysis system allows
a stable reconstruction of incoming signals from the coef$cients obtained previ-
ously. In the case that the frame used in the signal processing system is tight, then
the reconstruction is much simpler (3.108). We can reconstruct a signal from its
decomposition coef$cients using (3.108) alone; there is no need to invert S = T*T to
get S−1fn values.

We have substantiated all of the basic requirements of a signal analysis system,
except for the $rst stipulation—that the coef$cients of the decomposition be unique.
The exercises elaborate some properties of exact frames that allow us to recover this
uniqueness property. Brie#y, if F = {fn(t) : n ∈ Z} is a frame in a Hilbert space H,
T = TF is its associated frame operator (3.88), and S = T*T, then we know from the
corollaries to the frame representation theorem that for any x ∈ H, if an = 〈x, S −1fn〉,
then x = Σanfn. We can also show (exercises) that if there is some other representa-
tion of x, then it is no better than the the one we give in terms of the dual frame. That
is, if there are cn ∈ C such that x = Σcnfn, then 

; (3.109)

the representation by dual frame elements is the best in a least-squares sense. Later
chapters (10–12) further cover frame representations and elaborate upon this idea.

To sum up. We began by listing the desired features of a signal analysis system.
The notion of a frame can serve as a mathematical foundation for the decomposition,
analysis, and reconstruction of signals. Orthonormal bases have very nice
computational properties, but their application is often confounded by an undesirable
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practicality: The representations may well not be sparse. Frame theoretic approaches
are a noteworthy alternative trend in recent signal analysis research, offering
improved representation density over orthonormal bases [39, 40, 43].

3.4 MODERN INTEGRATION THEORY

The Lebesgue integral offers several theoretical advantages over the Riemann inte-
gral. The modern integral allows us to de$ne Banach spaces directly, rather than in
terms of the completion of a simpler space based on continuous analog signals.
Also, the Lebesgue integral widens considerably the class of functions for which we
can develop signal theory. It supports a powerful set of limit operations. Practically
speaking, this means that we can develop powerful signal approximation techniques
where signal and error magnitudes are based upon Lebesgue integrals (here we have
in mind, of course, the Lp-norm).

This material has not been traditionally included in the university engineering
and science curricula. Until recently, these disciplines could get along quite well
without the mathematician’s full toolkit. Mixed domain transform methods, Gabor
and wavelet transforms in particular, have entered into widespread use in signal pro-
cessing and analysis in the last several years. And carried with them has been an
increased need for ideas from abstract functional analysis, Hilbert space techniques,
and their mathematical underpinnings, among them the Lebesgue integral. 

First-time readers and those who are content to build Banach spaces indirectly, by
completing a given normed linear space, may elect to skip the material on the modern
integral. Frankly, much of the sequel will still be quite understandable. Occasionally,
we may worry that a signal is nonzero, but has Lebesgue integral zero; the mathemat-
ical term is that the signal is zero almost everywhere on an interval [a, b]. This is the
standard, albeit homely, term for a function with so many zero points that its L1-norm
with respect to the Lebesgue integral is zero. We also say two signals are equal almost
everywhere when their difference is zero almost everywhere. 

Standard mathematical analysis texts cover measure and integration theory in far
more detail and generality than we need here [24, 44, 45]. A tutorial is contained in
Ref. 25. We cover the basic theoretical development only in these settings: measures
on subsets of the real line and complex plane, real- and complex-valued functions, and
their integrals. So restricted, this treatment follows the classic approach of Ref. 44.    

Calculus de$nes the Riemann4 integral as a limit of sums of areas of rectangles
[6, 25]. Another approach uses trapezoids instead of rectangles; it offers somewhat

4Georg Friedrich Bernhard Riemann (1826–1866) studied under a number of great German mathemati-
cians of the nineteenth century, including Gauss and Dirichlet. In 1857 he assumed a professorship at
Göttingen. He contributed important results to complex variable theory, within which the Cauchy–
Riemann equations are fundamental, and to non-Euclidean geometries, whose Riemannian manifolds
Einstein much later appropriated for modern cosmology. Riemann is most widely known, ironically per-
haps, for a relatively minor accomplishment—formalizing the de$nition of the conventional integral
from calculus [R. Dedekind, Biography of Riemann, in H. Weber, ed., Collected Works of Bernhard Rie-
mann, New York: Dover, 1953].
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better numerical convergence. Either approach produces the same result. For rectan-
gular sums, let us recall the de$nition.

De$nition (Riemann Integral). Let x(t) be continuous on the interval I = [a, b];
a = t0 < t1 < ⋅⋅⋅ < tN = b partition I; and, for each subinterval, Ik = [tk, tk + 1], let
rk and sk be the minimum and maximum values, respectively, of x(t) on Ik. Then
the lower and upper Riemann sums for x(t) and I are

(3.110a)

. (3.110b)

The Riemann integral is de$ned by

, (3.110c)

where ∆I = max{tk − tk−1 | k = 1, 2, ⋅⋅⋅ , N}.

Calculus proves that limit (3.110c) remains the same whether we use upper or
lower Riemann sums. The height of the rectangle may indeed be the function value
at any point within the domain interval. We have chosen to de$ne the Riemann inte-
gral using the extreme cases, because, in fact, the modern Lebesgue integral uses
sums from below similar to (3.110c). 

The base of the rectangle or trapezoid is, of course, an interval. So the Riemann
integral partitions the function domain and lets that partition determine the range
values used for computing little areas. The insight of modern integration is this: Par-
tition the range, not the domain, and then look at the sets in the function’s domain
that it maps to the range regions. There is a way to measure the area of these domain
sets (next section), and then their area is weighted by the range values in much the
same way as the Riemann integral. The difference seems simple. The difference
seems inconsequential. But the implications are enormous.  

3.4.1 Measure Theory

The standard approach to the Lebesgue integral is to develop a preliminary theory
of the measure of a set. This generalizes the notion of simple interval length to a
much wider class of sets. Although the Lebesgue integral can be de$ned without
$rst building a foundation in measure theory (cf. Refs. 13 and 25), the idea of a
measure is not dif$cult. Just as the Riemann integral is a limit of sums of areas,
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which are interval widths wide and function values high, the Lebesgue integral is a
limit of sums of weighted measures—set measures scaled by function values.

Measurable sets, however, can be much more intricate than simple intervals. For
example, the rational numbers Q is a measurable set, and its measure, or its area if
you will, is zero. Furthermore, any countable set (i.e., a set that can be put into a
one–one correspondence with the natural numbers N) is measurable and has zero
measure. The interval [0, 1] has unit measure, which is no doubt reassuring, and if
we remove all the rational points from it, obtaining [0, 1] \ Q,  then the result is still
measurable and still has unit measure. The rest of this section sketches the
developments upon which these appealing ideas can be justi$ed.

3.4.1.1 Rudiments of the Theory. Measure theory axiomatics are closely
related to the ideas of a probability measure, which we covered in Chapter 1. We
recall therefrom the concept of a σ-algebra Σ. These can be de$ned for abstract
spaces, but we shall stick to sets of real or complex numbers, since these are the
spaces for which we de$ne analog signals. Let K be either R or C. The four proper-
ties of Σ are:

(i) Elements of Σ are subsets of R (or C): ℘(K) ⊃ Σ.

(ii) The entire space is in Σ: K ∈ Σ.

(iii) Closure under complement: If A ∈ Σ, then A = {t ∈ K | t ∉A} ∈ Σ.

(iv) Closure under countable union: If Σ ⊃ {An | n ∈ N}, then .

Examples. A couple of extreme examples of σ-algebras are as follows:

• Σ1 = ℘(R), the set of all subsets of R.

• Σ0 = {∅, R}.

There are equivalent examples for C. We have a more interesting σ-algebra in mind,
the Borel sets, and we will cover this class momentarily. Combining the closure under
countable unions and complement rules, we can show (exercise) that σ-algebras are
closed under countable intersections. Two basic concepts are that of a measurable
function, which we interpret as a measurable signal, and of a measure itself, which is
a map from a σ-algebra to the non-negative reals.

De$nition (Measurable Function). A real- or complex-valued function x(t) is
measurable with respect to a σ-algebra Σ if x−1(A) = {t ∈ R | x(t) ∈A}∈ Σ for all
open sets A in K.

Proposition. Let Σ be a σ-algebra and let x : R → K be a real- or complex-valued
function. Let Θ  = {T ∈ ℘(K) | x−1(T) ∈ Σ}. Then Θ is a σ-algebra in K.

An
n N∈
∪ Σ∈
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Proof: Clearly, ∅ and K ∈ Θ. If T ∈ Θ, then S = x−1(T) ∈ Σ and R \ S ∈ Σ. But T =
x(R \ S), so T ∈ Θ. Finally, x−1(∪n∈NTn) = ∪n∈Nx−1(Tn), so closure under count-
able unions holds as well.   ■

The properties of a measure and limit theorems for the modern integral depend
on an extension of the real numbers to include two in$nite values: ∞ and −∞. For-
mally, these are just symbols. Intuitively, however, ∞ is an abstract positive value
that is larger than any than any real number and −∞ is an abstract negative value that
has larger magnitude than any real number. Let us $rst consider ∞. This value’s
arithmetic operations are limited. For example, r + ∞ = ∞ for any r ∈ R; r × ∞ = ∞
for any r > 0; if r = 0, then r × ∞ = 0; and addition and multiplication with ∞ are
commutative. There is also a negative in$nity element, −∞, so that r + (−∞) = −∞
for any r ∈ R. Furthermore, r × (−∞) = −∞ for any r > 0; if r = 0, then r × (−∞) = 0;
if r < 0, then r × ∞ = −∞; and so on. 

Note that subtraction, division, and cancellation operations only work with $nite
values. That is, r − s is not de$ned if both r and s are in$nite, and a similar restric-
tion applies to r/s. If rs = rt, then we can conclude s = t only if r is $nite. A similar
restriction applies to r + s = r + t.

We can also consider the extended real line, R+ = R ∪ {∞} ∪ {−∞}. We con-
sider R+ as having the additional open sets (r, ∞] and [−∞, r) for any $nite r ∈ R.
Of course, countable unions of open sets are open in the extended reals. Analog
signals can be extended so that they take on in$nite values at their singularities.
Thus, a signal like x(t) = t−2 is unde$ned at t = 0. In the extended reals, however,
we may set x(0) = ∞. This makes the later limit theorems on modern integration
(Section 3.4.3) into equalities. Note that we do not use the extended reals as the
domain for analog signals. We only use the extension R ∪ {∞} ∪ {−∞} for
de$ning the idea of a measure on σ-algebras and for extending the range of ana-
log signals.   

De$nition (Measure). A measure on a σ-algebra Σ is a function µ : Σ → [0, ∞]
such that

  (3.111)

whenever {An} are pairwise disjoint.

Thus a measure is just like a probability measure, except that its values range in
[0, ∞] rather than in [0, 1]. A measure function gives a size value for a set. Thus, the
measure might indicate the relative size of part of a signal’s domain. We are also
limiting the discussion to the real line, even though the ideas generalize to measures
on σ-algebras in abstract metric spaces. Real analysis texts formalize these notions
[24, 44, 45], but we prefer to limit the scope to just what we need for analog signal
theory. Here are some easy examples.

µ An
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Example (All or Nothing Measure). Let Σ = ℘(R), and for A ∈ Σ de$ne µ(∅) =
0 and µ(A) = ∞ if A ≠ ∅. Then µ is a measure on Σ.

Example (Counting Measure). Again let Σ = ℘(R), and for A ∈ Σ de$ne µ(A) =
N if A contains exactly N elements and µ(A) = ∞ otherwise. Then µ is a measure
on Σ.

Proposition. Let µ be a measure on the σ-algebra Σ. Then

(i) (Null set) µ(∅) = 0.

(ii) (Additivity) If Ap ∩ Aq = ∅ when p ≠ q, then µ(A1 ∪ A2 ∪ ⋅⋅⋅ ∪ An) = µ(A1) +
µ(A2) + ⋅⋅⋅ + µ(An).

(iii) (Monotonicity) If B ⊃ A, then µ(B) ≥ µ(A).

Proof: Similar to probability measure arguments.   ■

3.4.1.2 Lebesgue Measurable Sets. There are lots of σ-algebras on the real
line. Analog signal theory needs only the smallest σ-algebra that contains all the
open sets in R. We must show that such a smallest σ-algebra exists.

Theorem. There is a σ-algebra B on R such that:

(i) B contains all open subsets of R.

(ii) If Σ is a σ-algebra containing all the open sets, then Σ ⊃ B.

Proof: To begin with, the power set on the real line, ℘(R), is itself is a σ-algebra
and contains all open sets. Nonconstructively, we set B to be the intersection of all
such σ-algebras. It is straightforward to show that this intersection is still a σ-
algera. It is still a subset of ℘(R). Since R must be in every σ-algebra, it is must be
in the intersection of those containing the open sets. Closure under complement is
also easy: if A ∈ Σ, where Σ is a any σ-algebra containing the open sets, then A ∈
Σ; thus, A is in the intersection of all such σ-algebras. Finally, let B ⊃ {An | n ∈ N}.
Then for all n ∈ N, An is in every σ-algebra Σ that contains all the open sets in R.
Thus the countable family {An} is a subset of every such σ-algebra. Hence  

is in  each of these σ-algebras; and, consequently,  is in the intersection B.
■

De$nition (Borel sets). The class of Borel or Lebesgue measurable sets is the
smallest σ-algebra that contains every open set.

All the sets we normally use in signal theory are Borel sets. In fact, it takes a
certain amount of craftiness to exhibit a set that is not Lebesgue measurable.

An
n N∈
∪

An
n N∈
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Example (Intervals). All of the open and closed sets, and the intervals (a, b) and
[a, b] in particular, are Lebesgue measurable. That closed sets are measurable fol-
lows from the σ-algebra’s complement property. Also, since we take the half-
in$nite intervals (a, ∞] and [−∞, a) to be open, these too are measurable. Finally, we
can form countable unions involving these basic measurable sets. In the complex
plane, open disks {z: |z| < r}, and closed disks {z: |z| ≤ r} are measurable as are half-
in$nite sets {z: |z| > r}, and so on.

Example (Countable Sets). Any countable set is measurable. For example, real
singletons {a} are measurable because they are closed. So any countable union of
singletons is measurable.

Proposition. If x(t) is measurable and T is a Lebesgue measurable set in K (R or
C), then x−1(T) ∈ B ; in other words, x−1(T) is Lebesgue measurable in R.

Proof: Let Θ  = {T ∈ ℘(K) | x−1(T) ∈ B}. Since x(t) is measurable, Θ contains all
the open sets in K. In the previous section, we showed that Θ is a σ-algebra, so it
must contain all the Lebesgue measurable sets. ■

3.4.1.3 Lebesgue Measure. There are lots of possible measures on σ-alge-
bras in R (or C). Again, we need only one of them: the Lebesgue measure. It applies
to the Lebesgue measurable, or Borel sets.

De$nition (Open Covering). Let S be a set and O = {An | n ∈ N} be a family of
open sets. If , then O is an open covering for S.

De$nition (Real Lebesgue Measure). Let B be the Lebesgue measurable sets on
R and let the measure function µ be de$ned as follows:

(i) µ(a, b) = b − a.

(ii) If S is an open set in R, then 

(3.112)

where the greatest lower bound is taken over all open coverings of S by
intervals. The function µ is called the (real) Lebesgue measure.

De$nition (Complex Lebesgue Measure).  Let B be the Lebesgue measurable
sets on C. Let the measure function µ be de$ned as follows:

(i) If B = {z ∈ C | |z − c| < r}, then µ(B) = πr2.

S An
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(ii) If S is an open set in C, then 

, (3.113)

where the greatest lower bound is taken over all open coverings of S by open
balls. The function µ is called the (complex) Lebesgue measure.

Accepting that these de$nitions do produce functions that are indeed measures
on the Borel sets, let us provide some examples of the measures of sets.

Example (Singletons). The measure of a singleton {a} is zero. Let ε > 0. Then the
single interval Iε = (a − ε, a + ε) covers {a}. The Lebesgue measure of Iε is 2ε. Since
ε was arbitrary and positive, the greatest lower bound of the lengths of all such
intervals cannot be positive, so µ{a} = 0.

Example (Intervals). The measure of a half-open interval [a, b) is b − a. The mea-
sure of (a, b) is b − a, and the singleton {a} has measure zero. Because (a, b) and
{a} are disjoint, µ(a, b) + µ{a} = µ[a, b) = b − a. We also have µ(a, ∞] = ∞; this is a
consequence of the monotonicity property of a measure, since there are in$nitely
many disjoint intervals of unit length that are contained in a half-in$nite interval.

Example (Countable Sets). Suppose A is a countable set A = {an | n ∈ N}. Then
for each ε > 0 we can $nd a set of intervals that covers A such that the sum of the
lengths of the intervals is ε. For example, let In,ε = (an − ε2−n−2, an + ε2−n−2). Since
ε is arbitrary, µA = 0.

De$nition (Almost Everywhere). A property is said to hold almost everywhere on
a measurable set A if the set of elements of A upon which is does not hold has
Lebesgue measure zero. 

Example (Nonmeasurable Set). To show that there are non-Lebesgue measurable
sets, we recapitulate the example from Ref. 24. Consider the half-open unit interval
I = [0, 1), for which µI = 1. For a, b ∈ I, de$ne a ⊕ b by

   (3.114)

We can easily see that Lebesgue measure is translation invariant: If µS = r, then
µ(S + a) = µ{s + a | s ∈ S} = r for any a ∈ R. Similarly, if we de$ne S ⊕ a = {s ⊕
a | s ∈ S}, then µ(S ⊕ a) = µ(S). Now de$ne an equivalence relation a ∼ b on I to
mean a − b ∈ Q, the rational numbers. Let [a] = {b ∈ I | a ~ b} be the equivalence
class of any a ∈ I and K = {[a] | a ∈ I}. De$ne the set C to contain exactly one ele-
ment from each equivalence class in K. Set theory’s Axiom of Choice [46] ensures
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that set C exists. Since Q is countable, we can index Q ∩ I by {qn | n ∈ N}, with
q0 = 0. We set Cn = C ⊕ qn. The properties of the Cn are as follows:

(i) C0 = C.

(ii) The Cn are disjoint; for if r ∈ Cm ∩ Cn, then r = c + qm = d + qn for some c,
d ∈ C; so c ~ d, and since C was a choice set containing exactly one element
from disjoint equivalence classes in K, we must have m = n.

(iii) ; if r ∈ I, then there is an [a] ∈ K with r ∈ [a] and a ∈ C;  this

implies r ~ a or r − a ∈ Q ∩ I; but {qn} indexes such rational numbers, so
r − a = qn for some n ∈ N; thus, r = a + qn ∈ Cn.

If C is Lebesgue measurable, then by the properties of the Lebesgue measure under
translations, for all n ∈ N, Cn is measurable and µC = µCn.

Thus,

(3.115)

However, we know µI = 1, so that (3.115) is a contradiction; it must be the case that
the choice set C is not Lebesgue measurable.

Our intuition might well suggest an easy generalization of the idea of an inter-
val’s length to a length measure for any subset of the real line. This last example has
shown that the task demands some care. We cannot have the proposed properties of
a measure and still be able to measure the size (length or area) of all sets. Some
functions must be outside our theory of analog signals. The characteristic function
for the choice set C in the above example is a case in point. Nevertheless, the class
of measurable sets is quite large, and so too is the class of measurable functions. Let
us turn to integration of measurable functions and apply the modern integral to sig-
nal theory. Here we shall see how these mathematical tools sharpen the de$nitions
of the basic analog signal spaces. Moreover, these concepts will support our later
development of signal approximation and transform techniques.     

3.4.2 Lebesgue Integration

The key distinction between the Lebesgue and Riemann integrals is that the modern
integral partitions the range of function values, whereas the classic integral parti-
tions the domain of the function. A seemingly inconsequential difference at $rst
glance, this insight is critical.

To illustrate the idea, consider the task of counting the supply of canned goods
on a cabinet shelf. (Perhaps the reader lives in a seismically active region, such as
this book’s Californian authors, and is assessing household earthquake prepared-
ness.) One way to do this is to iterate over the shelf, left to right, front to back,
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adding up the volume of each canned food item. No doubt, most people would
count cans like this. And it is just how we Riemann integrate x(t) by adding areas:
for each interval I = [a, b) in the domain partition, accumulate the area, say x(a) × (b
− a); re$ne the partition; $nd a better Riemann sum; and continue to the limit. The
other way to guage the stock of canned food is to $rst count all the cans of one size,
say the small tins of tuna. Then proceed to the medium size soup cans. Next the
large canned vegetables. Finally—and perhaps exhausting the reader’s patience—
we count the giant fruit juices. It might seem silly, but it works.

And this is also Lebesgue’s insight for de$ning the integral. We slice up the range
of x(t), forming sums with the weighted measures x(a) × µ[x−1{a}], where x−1{a} =
{t ∈ R | x(t) = a} and µ is some measure of the size of  x−1{a}. Our remaining expo-
sition omits many abstractions and details; mathematical treatises that excel in this
area are readily available. Instead we seek a clear and simple statement of how the
ideas on measure and measurable functions $t together to support the modern integral. 

3.4.2.1 Simple Functions. Like the Riemann integral, the Lebesgue integral is
also a limit. It is the limit of integrals of so-called simple functions. 

De$nition (Simple Function). If x : R → R is Lebesgue measurable and Range(x)
is $nite, then x(t) is called a simple function.

Every Lebesgue measurable function can be approximated from below by such
simple functions [44]. This theorem’s proof uses the stereotypical Lebesgue integra-
tion technique of partitioning the range of a measurable function.

Theorem (Approximation by Simple Functions). If x(t) is measurable, then
there is a sequence of simple functions sn(t) such that:

(i) If n ≤ m, then |sn(t)| ≤ |sm(t)|.

(ii) |sn(t)| ≤ |x(t)|.

(iii) limn→∞sn(t) = x(t).

Proof: Since we can split x(t) into its negative and non-negative parts, and these
are still measurable, we may assume that x(t) ∈ [0, ∞] for all t ∈ R. The idea is to
break Range(x) into two parts: Sn = [0, n) and Tn = [n, ∞] for each n > 0. We further
subdivide Sn into n2n subintervals of length 2−n: Sm,n = [m2−n, (m + 1)2−n), for 0 ≤
m < n2n. Set An = x−1(Sn) and Bn = x−1(Tn). De$ne

, (3.116)

where χS is the characteristic function on the set S. The simple functions (3.116)
satisfy the conditions (i)–(iii). ■
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3.4.2.2 Definition and Basic Properties. We de$ne the modern integral in
increments: $rst for non-negative functions, then for functions that go negative, and
$nally for complex-valued functions.

De$nition (Lebesgue Integral, Non-negative Functions).  Let µ the Lebesgue
measure, let A be a Lebesgue measurable set in R, and let x : R → [0, ∞] be a mea-
surable function. Then the Lebesgue integral with respect to µ of x(t) over A is

, (3.117)

where the functions s(t) used to take the least upper bound in (3.117) are all simple.

De$nition (Lebesgue Integral, Real-Valued Functions). Let µ the Lebesgue
measure, let A be a Lebesgue measurable set in R, and let x : R → R be a measur-
able function. Furthermore, let x(t) = p(t) − n(t), where p(t) > 0 and n(t) > 0 for all
t ∈ R. Then the Lebesgue integral with respect to µ of x(t) over A is

(3.118)

as long as one of the integrals on the right-hand side of (3.118) is $nite.

Remarks. By the elementary properties of Lebesgue measurable functions, the
positive, negative, and zero parts of x(t) are measurable functions. Note that the zero
part of x(t) does not contribute to the integral. In general, de$nitions and properties
of the Lebesgue integral must assume that the subtractions of extended reals make
sense, such as in (3.118). This assumption is implicit in what follows. 

De$nition (Lebesgue Integral, Complex-Valued Functions). Let µ the Lebesgue
measure; let A be a Lebesgue measurable set in R, let x: R → C be a measurable func-
tion, and let x(t) = xr(t) + jxi(t), where xr(t) and xi(t) are real-valued  for all t ∈ R. Then
the Lebesgue integral with respect to µ of x(t) over A is

. (3.119)

The modern Lebesgue integral obeys all the rules one expects of an integral. It also
agrees with the classic Riemann integral on piecewise continuous functions. Finally,
it has superior limit operation properties.

Proposition (Linearity). Let µ the Lebesgue measure, let A be a Lebesgue mea-
surable set in R, and let x, y : R → C be measurable functions. Then,

(i) (Scaling) For any c ∈ C,
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(ii) (Superposition) 

Proof: The integral of simple functions and the supremum are linear. ■

Remark. If x(t) = 0 for all t ∈ R, then (even if µA = ∞)  by (i).  

Proposition. Let µ be the Lebesgue measure, let [a, b] be an interval on R, and let
x: R → C be a piecewise continuous function. Then the Lebesgue and Riemann
integrals of x(t) are identical:

. (3.120)

Proof: x(t) is both Riemann integrable and Lebesgue integrable. The Riemann
integral, computed as a limit of lower rectangular Riemann sums (3.110a), is
precisely a limit of simple function integrals.  ■

Proposition (Domain Properties). Let µ be the Lebesgue measure; let A, B be
Lebesgue measurable sets in R; and let x: R → C be a measurable function. Then,

(i) (Subset) If B ⊃ A and x(t) is non-negative, then .

(ii) (Union) .

(iii) (Measure Zero Set) If µ(A) = 0, then .

Remark. Note that  in (iii) even if x(t) = ∞ for all t ∈ R.

Proposition (Integrand Properties). Let µ the Lebesgue measure; let A be Leb-
esgue measurable in R; let χA(t) be the characteristic function on A; and let x, y:
R → C be measurable functions. Then,

(i) (Monotonicity) If y(t) ≥ x(t) ≥ 0 for all t ∈ R, then .

(ii) (Characteristic Function) .

Proof: The proofs of these propositions follows from the de$nition of simple
functions and integrals as limits thereof. ■

3.4.2.3 Limit Operations with Lebesgue’s Integral. The modern integral
supports much more powerful limit operations than does the Riemann integral.
We recall that sequence of functions can converge to a limit that is not Riemann
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integrable. In order to simplify the discussion, we offer the following theorems
without detailed proofs; the interested reader can $nd them in treatises on modern
analysis, [13, 24, 25, 44, 45].

Theorem (Monotone Convergence). Let µ be the Lebesgue measure, let A be a
measurable set in R, and xn: R → R be Lebesgue measurable for n ∈ N. If 0 ≤
xn (t) ≤ xm(t) for n < m and limn→∞xn(t) = x(t) for all t ∈ A, then x(t) is measurable
and

. (3.121)

Proof: x(t) is measurable, because for any r ∈ R,

. (3.122)

Hence, . Arguing the inequality the other way [44]

requires that we consider simple functions s(t) such that 0 ≤ s(t) ≤ x(t) for all t ∈ R. Let
0 < c < 1 be constant and set An = {t ∈ R | cs(t) ≤ xn(t)}. Then, An+1 ⊃ An for all n ∈ N,

and . Thus,

. (3.123)

As n → ∞ on the right-hand side of (3.123), we see

, (3.124a)

which is true for every 0 < c < 1. Let c → 1, so that

. (3.124b)

But s(t) can be any simple function bounding x(t) below, so by the de$nition of
Lebesgue integration we know . ■

Corollary. Let µ the Lebesgue measure; let A be a measurable set in R; let xn: R →
R be Lebesgue measurable for n ∈ N; and, for all t ∈ A, suppose limn→∞xn(t) = x(t).
Then, x(t) is measurable and

. (3.125)

Proof: Split x(t) into negative and positive parts. ■

A similar result holds for complex-valued functions. The next corollary shows that
we may interchange Lebesgue integration and series summation.
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Corollary (Integral of Series). Let µ the Lebesgue measure; let A be a measur-
able set in R; let xn: R → C be Lebesgue measurable for n ∈ N; and, for all t ∈ A,
suppose Σn→∞xn(t) = x(t). Then,

. (3.126)

Proof: Beginning with non-negative functions, apply the theorem to the partial
sums in (3.126). Then extend the result to general real- and complex-valued func-
tions. ■

The next theorem, Fatou’s lemma,5 relies on the idea of the lower limit of a
sequence [23].

De$nition (lim inf, lim sup). Let A = {an | n ∈ N} be a set of real numbers and let
AN = {an | n ≥ N}. Let rN = inf AN be the greatest lower bound of AN in the extended
real numbers R ∪ {∞} ∪ {−∞}. Let sN = sup AN be the least upper bound of AN in
the extended real numbers. We de$ne lim inf A and lim sup A by

(3.127a)

and
. (3.127b)

The main things anyone has to know are:

• lim inf{an} is the smallest limit point in the sequence {an};

• lim sup{an} is the largest limit point in the sequence {an};

• lim inf{an} = lim sup {an} if and only if the sequence {an} converges to some
limit value a = limn→∞{an}, in which case a = lim inf {an} = lim sup {an};

• the upper and lower limits could be in$nite, but they always exist;

• if an ≤ bn then lim inf{an} ≤ lim inf{bn};

• lim sup{−an} = −lim inf{an}.

Example. Consider the sequence {an} = {1−1, 1, −1, 2−1, 2, −2, 3−1, 3, −3, ...}.
This sequence has three limit points: −∞, ∞, and 0. We have lim inf {an} = −∞, lim
sup {an} = +∞, and limn→∞{a3n} = 0. Only this last sequence is a genuine Cauchy
sequence, however.

Theorem (Fatou’s Lemma). Let µ the Lebesgue measure; let A be a measurable
set in R; let xn: R → R be Lebesgue measurable for n ∈ N; and, for all n ∈ N and
t ∈ A, 0 ≤ xn(t) ≤ ∞. Then,

. (3.128)

5Pierre Fatou (1878–1929), mathematician and astronomer at the Paris Observatory.
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Proof: De$ne

, (3.129)

so that the yn(t) approach lim inf xn(t) as n → ∞ and yn(t) ≤ ym(t) when n < m. Note
that for all n ∈ N, yn(t) ≤ xn(t). Consequently,

, (3.130)

and thus, 

. (3.131)

The left-hand side of (3.131) draws our attention. Since lim{yn(t)} = lim inf {xn(t)}
and {yn(t)} are monotone increasing, Lebesgue’s monotone convergence theorem
implies

(3.132)

Combining (3.131) and (3.132) completes the proof.   ■

Theorem (Lebesgue’s Dominated Convergence). Let µ be the Lebesgue mea-
sure, let A be a measurable set in R, and let xn: R → C be Lebesgue measurable for
n ∈ N, limn→∞xn(t) = x(t) for all t ∈ A, and |xn(t)| ≤ g(t) ∈ L1(R). Then x(t) ∈ L1(R)
and

. (3.133)

Proof: We borrow the proof from Ref. 44. Note $rst that limit x(t) is a measurable
function and it is dominated by g(t), so x(t) ∈ L1(R). Next, we have |x(t) − xn(t)| ≤
2g(t) and we apply Fatou’s lemma to the difference 2g(t) − |xn(t) − x(t)|:

. (3.134a)

Manipulating the lower limit on the right-hand integral in (3.134a) gives

. (3.134b)

Subtracting  out of (3.134b), we have limn→∞
from which limn→∞  and (3.133) follows.   ■
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Corollary (Interchange of Limits). Let µ the Lebesgue measure, let A be a mea-
surable set in R, and let xn: R → C be Lebesgue measurable for n ∈ N. Suppose
that

. (3.135)

Then the series Σnxn(t) = x(t) for almost all t ∈ A, x(t) ∈ L1(R), and 

. (3.136)

Proof: Apply the dominated convergence theorem to partial series sums. ■

3.4.2.4 Lebesgue Integrals in Signal Theory. To this point, our de$nitions
of Lp signal spaces were de$ned abstractly as completions of more rudimentary
spaces. The new integral helps avoid such stilted formulations. We de$ne both the
Lp norm and Lp signals spaces using the Lebesgue integral.

De$nition (Lp, Lp norm). Let µ the Lebesgue measure and let A be a measurable
set in R. Then Lp(A) is the set of all Lebesgue measurable signals x(t) such that

. (3.137)

We de$ne ||x||p, A to be

(3.138)

when the integral (3.137) exists. In the case of p = ∞, we take L∞(A) to be the set of
all x(t) for which there exists Mx with |x(t)| < Mx almost everywhere on A.

Now we can recast the entire theory of Lp spaces using the modern integral. We
must still identify Lp space elements with the equivalence class of all functions that
differ only by a set of measure zero. The basic inequalities of Holder, Minkowski,
and Schwarz still hold. For instance, Minkowski’s inequality states that ||x + y||p ≤
||x||p + ||y||p, where the p-norm is de$ned by Lebesgue integral. The more powerful
limit theorems of the modern integral, however, allow us to prove the following
completeness result [25, 44, 45].  

Theorem. For Lebesgue measurable A, the Lp(A) spaces are complete, 1 ≤ p ≤ ∞.

Proof: We leave the case p = ∞ as an exercise. Let {xn(t)} be Cauchy in Lp(A) We can
extract a subsequence {yn(t)} of {xn(t)} with ||yn+1 − yn|| p < 2−n for all n. We then
de$ne fn(t) = |y1(t) − y0(t)| + |y2(t) − y1(t)| + ⋅⋅⋅ + |yn+1(t) − yn(t)| and f(t) = limn→∞fn(t).
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The choice of the subsequence and Minkowski’s inequality together imply ||fn(t)||p <
1. Invoking Fatou’s lemma (3.128) on {[fn(t)]p},  we obtain

(3.139)

This also shows f(t) < ∞ almost everywhere on A. If x(t) is given by

(3.140)

then the convergence of f(t) guarantees that x(t) converges absolutely almost every-
where on A. Thus, x(t) = limn→∞yn(t), the Cauchy sequence {xn(t)} has a convergent
subsequence, and so {xn(t)} must have the same limit. ■

The next result concerns two-dimensional integrals. These occur often, even in
one-dimensional signal theory. The Fubini theorem6 provides conditions under
which iterated one-dimensional integrals—which arise when we apply successive
integral operators—are equal to the associated two-dimensional integral [24]. Func-
tions de$ned on R × R are really two-dimensional signals—analog images—and
generally outside the scope of this book. However, in later chapters our signal
transform operations will mutate a one-dimensional signal into a two-dimensional
transform representation. Opportunties to apply the following result will abound. 

Theorem (Fubini). Let x(s, t) be a measurable function on a measurable subset
A × B of the plane R2. If either of these conditions obtains,

(i) x(s, t) ∈ L1(A × B),

(ii) 0 ≤ x(s, t) on A × B,

then the order of integration may be interchanged:

. (3.141)

Proof: Refer to Ref. 24.

3.4.2.5 Differentiation. It remains to explain the concept of a derivative in the
context of Lebesgue integration. Modern integration seems to do everything back-
wards. First, it de$nes the sums for integration in terms of range values rather than
domain intervals. Then, unlike conventional calculus courses, it leaves out the intui-
tively easier differentiation theory until the end. Lastly, as we shall see below, it
de$nes the derivative in terms of an integral.

6Guido Fubini (1879–1943) was a mathematics professor at Genoa and Turin until anti-Semitic decrees
issued by Mussolini’s fascist regime compelled him to retire. Fubini moved to the United States from
Italy, taking a position at the Institute for Advanced Study in Princeton, New Jersey in 1939.
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De$nition (Derivative). Let y(t) be a Lebesgue measurable function. Suppose x(t)
is a Lebesgue measurable function such that

, (3.142)

almost everywhere on any interval [a, b] that contains t. Then we say x(t) is the

derivative of y(t). With the usual notations, we write .

Second and higher derivatives may be further de$ned, and the notations carry
through as well.

All of the differentiation properties of conventional calculus check out under this
de$nition.

3.5 DISTRIBUTIONS

Distributions extend the utility of Hilbert space to embrace certain useful quantities
which are not classically de$ned in Riemannian calculus. The most celebrated
example of a distribution is the Dirac delta, which played a seminal role in the
development of quantum mechanics and has been extended to other areas of quanti-
tative science [7–11, 47–49]. The Dirac delta is easy to apply but its development
within the context of distributions is often obscured, particularly at the introductory
level.  This section develops the foundations of distribution theory with emphasis on
the Dirac delta. The theory and de$nitions developed here are also the basis for the
generalized Fourier transform of Chapter 6.

3.5.1 From Function to Functional

Quantitative science is concerned with generating numbers and the notion of a func-
tion as a mapping from the one set of complex numbers to another is well-estab-
lished. The inner product in Hilbert space is another tool for generating physically
relevant data, and this Hilbert space mapping is conveniently generalized by the
concept of a functional.

De$nition (Functional). Let  be a function belonging to the class of so-called
test functions (to be de$ned shortly).  If the inner product 

(3.143)

converges, the quantity  is a functional on the space of test functions.
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The test functions are de$ned as follows.

De$nition (Rapid Descent). A function is said to be rapidly descending if for each
positive integer N, the product

(3.144)

remains bounded as . A test function  will be classi$ed as rapidly
decreasing if  and all its derivatives are rapidly decreasing.

The derivatives are included in this de$nition to ensure that the concept of rapid
descent is closed under this operation. Exponentials such as , and Gaussians

 are rapidly decreasing. On the other hand, polynomials, the exponential ,
and  are not rapidly decreasing. (These will be categorized shortly.)
Furthermore, rapidly decreasing functions are integrable.

The condition of rapid descent can be guaranteed for a large class of functions by
forcing them vanish identically for all t outside some interval , that is, 

. (3.145)

These test functions of compact support  are a subset of all test functions of rapid
descent.

Remark. The test functions are our slaves; by stipulating that they decay suf$ciently
rapidly, we can ensure that (3.143) converges for a suf$ciently broad class of func-
tionals . In many discussions, particularly general theoretical treatment of func-
tionals, the exact form of the test function is immaterial; it is merely a vehicle for
ensuring that the inner products on the space of  converge.  Often, all that is
required is the knowledge that a test function behaves in a certain way under
selected operations, such as differentiation, translation, scaling, and more advanced
operations such as the Fourier transform (Chapters 5 and 6). Whenever possible, it
is advantageous to work in the space of compact support test functions since that
eliminates any questions as to whether its descent is suf$ciently rapid; if  has
compact support, the product  follows suit, admitting a large set of  for
which (3.143) generates good data.  However, in some advanced applications, such
as the generalized Fourier transform (Chapter 6), we do not have the luxury of
assuming that all test functions are compactly supported. 

3.5.2 From Functional to Distribution

A distribution is a subset of the class of functionals with some additional (and phys-
ically reasonable) properties imposed.

3.5.2.1 Defintion and Classification

De$nition (Distribution). Let  be a test function of rapid descent. A func-
tional  is a distribution if it satis$es conditions of continuity and linearity:
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(i) Continuity. Functional  is continuous if when the sequence  con-
verges to zero in the space of test functions, then .

(ii) Linearity. Functional  is linear if for all complex constants   and 
and for  of rapid descent,

(3.146)

Linearity plays such a central role to signal analysis that any functional that does
not belong to the class of distributions is not useful for our applications. Distribu-
tions of all types are sometimes referred to as generalized functions. 

De$nition (Equivalent Distributions). Two functionals f (t) and g(t) are equiva-
lent if 

(3.147)

for all test functions. 
A distribution f(t) that is equivalent to a classically de$ned function  so that 

(3.148)

is termed a regular distribution. Distributions that have no direct expression as a
standard function belong to the class of singular distributions. The most celebrated
example of a singular distribution is the Dirac delta, which we will study in detail. 

Distributions  de$ned on the space of the rapidly descending test functions
are tempered distributions or distributions of slow growth.  The concept of slow
growth applies equally well to regular and singular distributions. For the former, it
can be illustrated with familiar concepts:

De$nition (Slow Increase). A function is said to be slowly increasing, tempered,
or of slow growth  if for some positive integer M, the product

(3.149)

remains bounded as .
In essence, a slowly increasing function is one that can be tamed (tempered) by a

suf$ciently high power of  in (3.149). Examples include the polynomials, the sine
and cosine, as well as .The exponential  grows too rapidly to be tempered.  

Remarks. Functions of slow growth are not generally integrable, a fact that later
hinders the description of their spectral content via the integral Fourier transform.

f t( ) φk t( )
f t( ) φk t( ),〈 〉

k ∞→
lim 0→

f t( ) c1 c2
ψ t( )

f t( ) c1φ t( ) c2ψ t( )+,〈 〉 c1 f t( ) φ t( ),〈 〉 c2 f t( ) ψ t( ),〈 〉 .+=

f t( ) φ t( ),〈 〉 g t( ) φ t( ),〈 〉=

f0 t( )

f t( ) φ t( ),〈 〉 f0 t( ) φ t( ),〈 〉=

f t( )

t
M–

f t( )⋅

t ∞→

t
tsin t⁄ e

t



244 ANALOG SYSTEMS AND SIGNAL SPACES

We will demonstrate this dif$culty in Chapter 5 and remedy the situation by
de$ning a generalized Fourier transform in Chapter 6; of utility will be many of the
concepts developed here.

Note that the product of a function of slow growth  and a function of rapid
descent  is a function of rapid descent. This is easily demonstrated. According
to (3.144) and (3.149), there is some  for which 

(3.150)

remains bounded as  for any positive integer . Therefore
 decreases rapidly. Such products are therefore integrable. For signal

analysis applications, distributions of slow growth and test functions of rapid
descent are the most useful set of dual spaces in the distribution literature. For alter-
native spaces, see Ref. 10.

3.5.2.2 Properties of Distributions. Many standard operations such as scal-
ing, addition, and multiplication by constants have predictable effects on the inner
product de$ning distributions. In selected cases these operations map distributions
to distributions, giving us #exibility to add them, scale the independent variable,
multiply by classically de$ned functions or constants, and take derivatives.  

Proposition. Let  be a distribution. Then   is a functional which is continu-
ous and linear.

Proof: By de$nition, a distribution  is a functional satisfying

(3.151)

Continuity is assured by noting 

, (3.152)

which follows directly from the stipulations placed on the test function . Lin-
earity is easy to establish and is left to the reader. ■

Derivatives  of  higher order follow in a similar manner. Consider the second deriv-

ative . Let , where the prime denotes differentiation. Then for 

  the derivative rule leads to

. (3.153)
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According to the conditions de$ning a test function,  is also a bona
$de test function, so we can reexpress the derivative rule for :

. (3.154)

But the last element in this equality can be further developed to

(3.155)

where we used the $rst derivative property for . Linking (3.154) and (3.155)
leads to the desired result expressed in terms of the original test function :

(3.156)

This result generalizes to derivatives of all orders (exercise).

Proposition (Scaling). Let  be a constant. Then

(3.157)

Proof: Left as an exercise. ■

Note that (3.157) does not necessarily imply that  although such

equivalence may be obtained in special cases. If this is not clear, reconsider the
definition of equivalence.

Proposition (Multiplication by Constant). If  is a constant, if follows that

(3.158)

Proof: Trivial. ■

In many signal analysis applications it is common to mix distributions and classi-
cally de$ned functions.

Proposition (Associativity). Let  be an in$nitely differentiable regular distri-
bution. Then

(3.159)

Proof: Exercise. ■

Why must we stipulate that   be in$nitely differentiable? In general, the prod-
uct of two distributions is not de$ned unless at least one of them is an in$nitely
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differentiable regular distribution. This associative law (3.159) could be established
because  was a regular distribution and the product   has meaning as
a test function.

Proposition (Derivative of Product). Let  be a regular distribution and let
 be a distribution of arbitrary type. The derivative of their product is a distribu-

tion satisfying

. (3.160)

Proof: Consider the distribution represented by the second term above, regrouping
factors and then applying the derivative rule:

. (3.161)

The derivative in the last equality can be unpacked using the classical product rule
since both factors are regular functions,

(3.162)

The right-hand side can be rearranged by applying the derivative rule to the second
term. This gives two terms with  acting as a test function:

. (3.163)

Comparing (3.162) and (3.163) and applying the de$nition of equivalence gives

, (3.164)

from which the desired result (3.161) follows.  ■

In many applications it is convenient to scale the independent variable. Distributions
admit a chain rule under differentiation.

Proposition (Chain Rule). If  is an arbitrary distribution,   is a constant, and
, then

(3.165)

Proof: Exercise. ■

f0 t( ) f0 t( )φ t( )

f0 t( )
f t( )

td
d f0 t( )f t( )[ ] f t( )

td

df0 f0 t( )
td

df+=

f0 t( )
td

dfφ t( ) td
∞–

∞

∫ td
df f0⋅ t( )φ t( ) td

∞–

∞

∫ f t( )
td

d f0 t( )φ t( )[ ]⋅ td
∞–

∞

∫–= =

f t( ) φ t( )
td

df0 f0 t( )
td

dφ+⋅ td
∞–

∞

∫– f t( ) φ t( )
td

df0 td⋅
∞–

∞

∫– f t( )
td

dφf0 t( ) t.d⋅
∞–

∞

∫–=

φ t( )

f t( )
td

df0 φ t( ) td⋅
∞–

∞

∫–
td

d f t( )f0 t( )[ ] φ t( ) td⋅
∞–

∞

∫+

f0 t( )
td

df f t( )–
td

df0

td
d f t( )f0 t( )[ ]+=

f t( ) a
y at≡

td
d f at( ) a

td
d f t( ).=



DISTRIBUTIONS 247

3.5.3 The Dirac Delta

Certain signals f(t) exhibit jump discontinuities. From a classical Riemannian per-
spective, the derivative  is singular at the jump. The situation can be reas-
sessed within the context of distributions. Consider the unit step . For a test
function of rapid descent , integration by parts produces

(3.166)

This reduces to

(3.167)

so that

(3.168)

The existence of  is central to the preceding argument and is guaranteed by the

de$nition of the test function. Consider the following de$nition.

De$nition (Dirac Delta). The Dirac delta  is a functional that is equivalent to
the derivative of the unit step, 

. (3.169)

From (3.168), we have

(3.170)

so the value returned by the distribution  is the value of the test function at the
origin. It is straightforward to show that the Dirac delta satis$es the conditions of
continuity and linearity; it therefore belongs to the class of functionals de$ned as
distributions. Appearances are deceiving:  despite its singular nature, the Dirac delta
is a distribution of slow growth since it is de$ned on the (dual) space consisting of
the test functions of rapid descent. 

By simple substitution of variables we can generalize further:

. (3.171)

df dt⁄
u t( )

φ t( )

td
duφ t( ) td

∞–

∞

∫ u t( )φ t( ) ∞–
∞

u t( )
td

dφ td
∞–

∞

∫– u t( )
td

dφ t.d
∞–

∞

∫–= =

u t( )
td

du td
0

∞

∫– φ ∞( ) φ 0( )–[ ]– φ 0( ),= =

td
duφ t( ) td

∞–

∞

∫ φ 0( ).=

td
dφ

δ t( )

δ t( )
td

du≡

δ t( ) φ t( ),〈 〉
td

du φ t( ), φ 0( )= =

δ t( )

δ t τ–( ) φ t( ),〈 〉
td

d u t τ–( )φ t( ) td
∞–

∞

∫ φ τ( )= =
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This establishes the Dirac delta as a sifting operator which returns the value of
the test function at an arbitrary point . In signal analysis, the process of
sampling, whereby a the value of a function is determined and stored, is ideally
represented by an inner product of the form (3.171). 

Remark. Unfortunately, it has become common to refer to the Dirac delta as the
“delta function.” This typically requires apologies such as “the delta function is
not a function”, which can be confusing to the novice, and imply that the Dirac
delta is the result of mathematical sleight of hand. The term delta distribution is
more appropriate. The truth is simple: The delta function is not a function; it is a
functional and if the foregoing discussion is understood thoroughly, the Dirac
delta is (rightly) stripped of unnecessary mathematical mystique. 

The sifting property described by (3.171) can be further re$ned through a test
compact support on the interval . The relevant integration by parts,

(3.172)

takes speci$c values depending on the relative location of the discontinuity (in this
case, located at  for convenience) and the interval on which the test function
is supported. There are three cases:

(i) :

(3.173)

(ii) : Since the unit step is identically zero on this interval,

. (3.174)

(iii) : on this interval, , so that

. (3.175)

Remark. In general, it is not meaningful to assign a pointwise value to a distribu-
tion since by their nature they are de$ned by an integral over an interval speci$ed by
the test function. Cases (ii) and (iii) assert that  is identically zero on the inter-
val . The above arguments can be applied to the intervals  and

 where  is arbitrarily small, demonstrating that the Dirac delta is identically

t τ=

t a b,[ ]∈

td
duφ t( ) ud

a

b

∫ u t( )φ t( )
a
b

u t( )
td

dφ t,d
a

b

∫–=

t 0=

a 0 b< <

td
duφ t( ) ud

a

b

∫ u t( )φ t( )
a
b

 1
td

dφ td⋅
0

b

∫– φ b( ) φ b( ) φ 0( )–[ ]– φ 0( ).= = =

a b 0< <

td
duφ t( ) ud

a

b

∫ 0 0
td

dφ td⋅
a

b

∫– 0= =

b a 0> > u t( ) 1=

td
duφ t( ) ud

a

b

∫ φ t( )
a
b

1
td

dφ td⋅
a

b

∫– 0= =

δ t( )
a b,[ ] ∞– ε–,[ ]

ε ∞,[ ] ε
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zero at all points along the real line except the origin, consistent with expected beha-
vior of .

The general scaling law (3.157) relates two inner products. But when the distri-
bution is a Dirac delta, there are further consequences.

Proposition (Scaling). If a ≠ 0, then

. (3.176)

Proof: Note that

. (3.177)

The right-hand side can be expressed as

. (3.178)

Applying the de$nition of equivalence leads to the scaling law (3.176). ■

The special case  leads to the relation , so the Dirac delta
has even symmetry. Some useful relations follow from the application of (3.159) to
the Dirac delta. 

Proposition (Associative Property). We have

. (3.179)

Proof: Since

, (3.180)

this establishes the equivalence (3.179). ■

Note this does not imply , since division is not an operation that is
naturally de$ned for arbitrary singular distributions such as .  However, (3.179)
leads to some interesting algebra, as shown in the following example.

Example. Suppose . According to (3.179),

(3.181)

td
du

δ at( ) 1
a
-----δ t( )=

δ at( )φ t( ) td
∞–

∞

∫
1
a
----- δ t( )φ t

a
--- 

  td
∞–

∞

∫
1
a
-----φ 0( )= =

1
a
-----φ 0( ) 1

a
----- δ t( )φ t( ) td

∞–

∞

∫=

a 1–= δ t–( ) δ t( )=

δ t( )f0 t( ) δ t( )f0 0( )=

δ t( )f0 t( )φ t( ) td
∞–

∞

∫ f0 0( )φ 0( ) δ t( )f0 0( )φ t( ) td
∞–

∞

∫≡=

f0 t( ) f0 0( )=
δ t( )

f0 t( ) t=

tδ t( ) 0=



250 ANALOG SYSTEMS AND SIGNAL SPACES

for all t. This implies that if  and  are distributions, and , then

, (3.182)

where  is constant. Note that (3.182) applies equally well to regular and singular
distributions; it is central to establishing important relations involving the general-
ized Fourier transform in Chapter 6.

The inner product de$ning the derivative,

(3.183)

also leads to a sifting property.

Proposition (Differentiation)

. (3.184)

Proof: Using a prime to denote differentiation with respect to t, we obtain

. (3.185)

For an arbitrary Dirac delta centered at , this generalizes to (3.184). ■

3.5.4 Distributions and Convolution

The convolution operation is central to analyzing the output of linear systems. Since
selected signals and system impulse responses may be expressed in terms of the
Dirac delta, some of our applications may involve the convolution of two singular
distributions, or singular and regular distributions. Given that the product of two
singular distributions is not de$ned, it may come as an unexpected result to de$ne a
convolution operation. As before, we will base the development on an analogous
result derived from Riemannian calculus. 

First, consider the convolution of a distribution with a test function. This prob-
lem is straightforward. Let  be an arbitrary distribution. Then the convolution

(3.186)

is a function in the variable . 

f t( ) g t( ) tg t( ) tf t( )=

g t( ) f t( ) a0δ t( )+=

a0

td
dfφ t( ) td

∞–

∞

∫ f t( )
td

dφ t,d
∞–

∞

∫–=

δ′ t τ–( )φ t( ) td
∞–

∞

∫ φ′ τ( )–=

δ′ t( )φ t( ) td
∞–

∞

∫ δ t( )φ′ t( ) td
∞–

∞

∫– φ′ 0( )–= =

t τ=

f t( )

f ∗φ( ) u( ) f t( )φ u t–( ) td
∞–

∞

∫ f u t–( )φ t( ) td
∞–

∞

∫= =

u
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Next, consider the convolution of two test functions. If  and  are test
functions, their convolution presents no dif$culty:

. (3.187)

Remark. If  is to be a test function of compact support, both  and
 must also be compactly supported. When this consideration impacts an

important conclusion, it will be noted.

Now reconsider this convolution in terms of a Hilbert space inner product. If we
de$ne

, (3.188)

then

. (3.189)

This leads to a standard inner product, since

. (3.190)

Because  is a test function, it follows that

. (3.191)

However,

(3.192)

Comparing the last two equations gives the desired result:

(3.193)

The purpose of this exercise was to allow the convolution to migrate to the right-
hand side of the inner product. This leads naturally to a de$nition that embraces the
convolution of two singular distributions.

De$nition (Convolution of Distributions). Using (3.193) as a guide, if  and
 are distributions of any type, including singular, their convolution is de$ned by

. (3.194)

φ t( ) ψ t( )

φ∗ψ( ) u( ) φ u t–( )ψ t( ) td
∞–

∞

∫≡ φ t( )ψ u t–( ) td
∞–

∞

∫ ψ∗φ( ) u( )= =

φ∗ψ( ) u( ) φ t( )
ψ t( )

ψref ψ t–( )≡

φ∗ψref( ) u( ) φ t( )ψ u t+( ) td
∞–

∞

∫=

φ∗ψref( ) 0( ) φ t( )ψ t( ) td
∞–

∞

∫ φ t( ) ψ t( ),〈 〉= =

φ∗ψ( ) t( )

φ∗ψ η,〈 〉 φ∗ψ( )∗ηref( ) 0( ) φ∗ ψref
∗η( )ref( ) 0( )= =

φ∗ ψref
∗η( )ref( ) 0( ) φ ψref

∗η,〈 〉 .=

φ∗ψ η,〈 〉 φ ψref
∗η,〈 〉 .=

f t( )
g t( )

f ∗g φ,〈 〉 f gref
∗φ,〈 〉≡
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Example (Dirac Delta). Given two delta distributions  and
, we have

. (3.195)

So

, (3.196)

and the relevant inner product (3.194) takes the form 

. (3.197)

So the desired convolution is expressed,

. (3.198)

Later developments will lead us derivatives of distributions. An importaint result
involving convolution is the following. A similar result holds for standard analog
signals (functions on the real line). 

Proposition (Differentiation of Convolution). Let  and  be arbitrary distribu-
tions. Then,

. (3.199)

Proof: The proof of (3.199) requires the usual inner product setting applicable
to distributions and is left as an exercise. (You may assume that convolution of
distributions is commutative, which has been demonstrated for standard functions
and is not dif$cult to prove in the present context.)  ■

3.5.5 Distributions as a Limit of a Sequence 

Another concept that carries over from function theory de$nes a functional as a limit
of a sequence. For our purposes, this has two important consequences. First, limits
of this type generate approximations to the Dirac delta, a convenient property that
impacts the wavelet transform (Chapter 11). Second, such limits make predictions
of the high-frequency behavior of pure oscillations (sinusoids) which are the foun-
dations of Fourier analysis (Chapters 5 and 6). This section covers both topics.

De$nition. Let  be a distribution of arbitrary type, and suppose  is a
sequence in some parameter . Then if 

, (3.200)

f t( ) δ t a–( )=
g t( ) δ t b–( )=

gref δ t– b–( ) δ t b+( )–( ) δ t b+( )= = =

gref
∗φ φ u t–( )δ t b+( ) td

∞–

∞

∫ φ u b+( )= =

f∗g φ,〈 〉 δ u a–( )φ u b+( ) td
∞–

∞

∫ φ a b+( )= =

f∗g δ t a b+( )–( )=

f g

td
d f ∗g( ) f ∗

td
dg

td
df*g= =

f t( ) fn t( )
n

fn t( ) φ t( ),〈 〉
n ∞→
lim f t( ) φ t( ),〈 〉→
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then the sequence  approaches  in this limit:

. (3.201)

3.5.5.1 Approximate Identities for the Dirac Delta. The Dirac delta has
been introduced as the derivative of the unit step, a functional which is identically
zero along the entire real line except in an in$nitesimal neighborhood of the origin.
A surprising number of regular distributions—such as the square pulse, suitably
scaled functions involving trigonometric functions, and another family generated by
Gaussians—approach the Dirac delta when suf$ciently scaled and squeezed in the
limit in which the scaling factor becomes large. Intuitively, we need normalized,
symmetric functions with maxima at the origin and that approach zero on other
points along the real line as the appropriate limit (3.201) is taken. This leads to the
following theorem.

Theorem (Approximating Identities). Let  be a regular distribution satisfying
the criteria:

 (3.202)

(3.203)

De$ne

  (3.204)

and  stipulate

 (3.205)

where  denotes the real line minus a segment of radius  centered around the
origin: .

Then , and  is said to be an approximating identity.

Proof: First,

. (3.206)

From (3.203) a simple substitution of variables shows . We can

thus recast the right-hand side of (3.206) into a more convenient form:

. (3.207)

fn t( ) f t( )

fn t( )
n ∞→
lim f t( )=

f t( )

f t( ) L
1

R( ),∈

f t( ) td
∞–

∞

∫ 1.=

fa t( ) af at( )≡

fa t( )
R̃
∫

a ∞→
lim 0,=

R̃ ρ
R̃ R ρ ρ,–[ ]⁄≡

fa t( )
a ∞→
lim δ t( )= fa t( )

fa t( ) φ t( ),〈 〉 δ t( ) φ t( ),〈 〉– af at( )φ t( ) td
∞–

∞

∫ φ 0( )–=

af at( ) td
∞–

∞
∫ 1=

af at( )φ t( ) td
∞–

∞

∫ φ 0( )– af at( )φ t( ) td
∞–

∞

∫ af at( )φ 0( ) td
∞–

∞

∫–=
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Dividing the real line into regions near and far from the origin, a change of variables
 gives 

, (3.208)

where

(3.209)

and

. (3.210)

Since  is continuous, for some t suitably close to the origin, we have 

. (3.211)

Thus,  is bounded above:

. (3.212)

In the second integral, note that there exists some  such that 

. (3.213)

Equation (3.210) can be expressed as

. (3.214)

Furthermore, by de$nition,  is bounded above. Consequently,

, (3.215)

which reduces to

. (3.216)

u at≡

f u( ) φ u
a
--- 

  φ 0( )– ud
∞–

∞

∫ I1 I2+=

I1 f u( ) φ u
a
--- 

  φ 0( )– ud
ρ a⁄–

ρ a⁄

∫=

I2 f u( ) φ u
a
--- 

  φ 0( )– ud

R ρ–
a

------ ρ
a
---, 

 ⁄

∫=

φ t( )

φ u
a
--- 

  φ 0( )– ε<

I1

I1 ε f u( ) ud
ρ a⁄–

ρ a⁄

∫≤

ρ

f u( ) ud

R ρ–
a

------ ρ
a
---, 

 ⁄

∫ ε≤

I2 φ u
a
--- 

  f u( ) ud

R ρ–
a

------ ρ
a
---, 

 ⁄

∫ φ 0( ) f u( ) ud

R ρ–
a

------ ρ
a
---, 

 ⁄

∫–≤

φ t( )

I2 φ u
a
--- 

 
max 

f u( ) ud

R ρ–
a

------ ρ
a
---, 

 ⁄

∫ φ 0( ) ε–≤

I2 ε φ u
a
--- 

 
max

φ 0( )–≤
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Returning to (3.206), we have

(3.217)

In the limit of large , we have

 , (3.218)

so that 

(3.219)

and we obtain the desired result. ■

The decay condition (3.205) is equivalent to 

(3.220)

which can be stated: for each  there exists  such that  for all

. This is equivalent to stating that if  there exists   such that

 for . The scaling required to convert  to an approxi-

mate identity implies that 

(3.221)

so that 

. (3.222)

Remark. Functions  that satisfy (3.202)–(3.205) are commonly called weight
functions. They are of more than academic interest, since their localized atomistic
character and ability to wrap themselves around a selected location make them
useful for generating wavelets (Chapter 11). Such wavelets can zoom in on small-
scale signal features.  The class of weight functions is by no means small; it
includes both uniformly and piecewise continuous functions.

There are several variations on these approximating identities. For example,
(3.203) can be relaxed so that if the weight function has arbitrary $nite area

 (3.223)

fa t( ) φ t( ),〈 〉 δ t( ) φ t( ),〈 〉– ε f u( ) ud

R ρ–
a

------ ρ
a
---, 

 ⁄

∫ φ u
a
--- 

 
max

φ 0( )–+ .≤

a

ε
a ∞→
lim 0=

fa t( ) φ t( ),〈 〉 δ t( ) φ t( ),〈 〉–
a ∞→
lim 0=

f t( )
t ∞→
lim 0,=

λ 0> Tλ 0> f t( ) λ<
t Tλ> λ a⁄ 0> Tλ a⁄ 0>
f at( ) λ a⁄< at Tλ a⁄> f t( )

af at( ) a f t( ) aλ
a
--- λ< <=

af at( )
t ∞→
lim 0=

f t( )

Γ f t( ) t,d
∞–

∞

∫≡
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then (3.125) reads

. (3.224)

The scaling of the amplitude can be modi$ed so that 

(3.225)

is an approximating identity. The proofs are left as exercises. These approximating
identities give the wavelet transform the ability to extract information about the
local features in signals, as we will demonstrate in Chapter 11.

We consider several common weight functions below.

Example (Gaussian). Let

(3.226)

where  is a constant. The general Gaussian integral 

(3.227)

implies that 

(3.228)

if  is to have unit area.  Note that the ability to normalize the area is proof that
 is integrable, so two of the weight function criteria are satis$ed. Figure 3.7

illustrates a Gaussian approximate identity 

(3.229)

for increasing values of . The Gaussian is a powerful tool in the development of
the continuous wavelet transform. We shall review its role as an approximating
identity when we cover the small-scale resolution of the wavelet transform. 

Example (Abel’s Function). In this case the weight function permits an arbitrary
positive-de$nite parameter ,

. (3.230)

fa t( )
a ∞→
lim Γδ t( )=

fa t( ) af at( )≡

f t( ) A0e
t
2

2⁄–
,=

A0

e
αy

2
–

yd
∞–

∞

∫
π
α
---≡

A0
1

2π
----------=

f t( )
f t( )

fa t( ) a

2π
----------e

at( )2
2⁄–

=

a

β

f t( ) A0
β

1 β2
t
2

+
-------------------=
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It is left as an exercise to show that the condition of unit area requires

. (3.231)

For this purpose it is convenient to use the tabulated integral,

(3.232)

where . The resulting approximate identity has the form

(3.233)

Example (Decaying Exponential). This weight function is piecewise continuous,
but ful$lls the required criteria: 

(3.234)

It is left as an exercise to show that , so that .

A0
1
π
---=

4

3

2

1

−2 2

Fig. 3.7. The evolution of the scaled Gaussian (3.229) for  (widest), , and
. In the limit , the scaled Gaussian approaches a Dirac delta. 

a 1= a 3=
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1 x
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-------------- xd

0

∞

∫
π
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--- µπ
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-------,csc=

Reν Reµ 0> >
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--- 

  2
t
2

+

-------------------------.=
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.=
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=
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Example (Rectangular Pulse). The unit-area rectangular pulse described by

(3.235)

approximates a Dirac delta (exercise). 

Remark. The weight functions described in this section embody properties that are
suf$cient to generate approximate identities. These conditions are by no means
necessary. The family of sinc pulses

(3.236)

does not qualify as a weight function (why not?), yet it can be shown that 

. (3.237)

Note that the scale is applied only in the numerator. The properties of this approxi-
mate identity are explored in the exercises. 

3.5.5.2 The Riemann–Lebesgue Lemma. Much of signal analysis involves
the study of spectral content—the relative contributions from individual pure tones
or oscillations at given frequency , represented by  and . The
behavior of these oscillations as  is not predicted classically, but by treating
the complex exponential  as a regular distribution, the foregoing theory pre-
dicts that  and  vanish identically in the limit of high frequency.
This result is useful in several subsequent developments. 

Theorem (Riemann–Lebesgue Lemma). Let . If  is a test func-
tion of compact support on the interval  then

(3.238)

Proof: It is convenient to de$ne a  such that 

(3.239)

and apply integration by parts to obtain

. (3.240)

Then

(3.241)
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---------=
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∞
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t1
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∫
1
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jωt2–
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By de$nition, the test function is bounded. Hence,

(3.242)

and the numerator of the $rst term in (3.241) is bounded. Consequently, in the limit
 this $rst term vanishes. The integral in the second term is also $nite (it is

the Fourier transform of ), and we defer proof of its boundedness until Chapter 5.
Finally, 

(3.243)

By extension, the real and imaginary parts of this exponential (  and
) also vanish identically in this limit. ■

Remark. Test functions of compact support, as used herein, greatly simplify mat-
ters. When , thus generalizing the result to all , the same result
obtains; we omit the complete proof, which is quite technical.

3.6 SUMMARY

Analog signal processing builds directly upon the foundation of continuous domain
function theory afforded by calculus [6] and basic topology of sets of real numbers
[22]. An analog system accepts an input signal and alters it to produce an output
analog signal—a simple concept as long as the operations involve sums, scalar mul-
tiplications, translations, and so on. Linear, translation-invariant systems appear in
nature and engineering. The notion is a mix of simple operations, and although
there was a very straightforward theory of discrete LTI systems and discrete impulse
response δ(n), replacing the n by a t stirs up serious complications.

Informal arguments deliver an analog equivalent of the convolution theorem, and
they ought to be good enough justi$cation for most readers. Others might worry
about the analog impulse’s scaling property and the supposition that an ordinary
signal x(t) decomposes into a linear combination of Diracs. But rigorous
justi$cation is possible by way of distribution theory [8–10]. 

Analog signals of certain classes, of which the Lp signals are especially conve-
nient for signal processing, form elegant mathematical structures: normed spaces,
Banach spaces, inner product, and Hilbert spaces. The inner product is a natural
measure of similarity between signals. Completeness, or closure under limit
operations, exists in Banach and Hilbert spaces and allows for incremental approxi-
mation of signals. Many of the results from discrete theory are purely algebraic in
nature; we have been able to appropriate them once we show that analog signals—
having rightly chosen a norm or inner product de$nition, of course—reside in one
of the familiar abstract function spaces.

φ t( )e
jωt– φ t( ) e

jωt– φ t( ) ,≤ ≤

ω 0,→

td
dφ

e
jωt–

ω ∞→
lim 0.=

ωt( )cos
ωt( )sin

t1 t2,( ) ∞– ∞,( )→ t
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3.6.1 Historical Notes

Distribution theory dates from the mid-1930s with the work of S.L. Sobolev.
Independent of the Soviet mathematician, L. Schwartz formalized the notion of a
distribution and developed a rigorous delta function theory [7]. Schwartz’s lectures
are in fact the inspiration for Ref. 8.

Splines were $rst studied by Schoenberg in 1946 [14]. It is interesting to note
that while his paper preceded Shannon’s more famous results on sampling and sig-
nal reconstruction [50], the signal processing research community overlooked
splines for many years.

Mathematicians developed frame theory in the early 1950s and used it to repre-
sent functions with Fourier series not involving the usual sinusoidal harmonics [41,
42]. Only some 30 years later did applied mathematicians, physicists, and engineers
discover the applicability of the concept to signal analysis [43]. 

Details on the origins of signal theory, signal spaces, and Hilbert spaces can be
found in mathematically oriented histories [51, 52]. Advanced treatments of func-
tional analysis include  Refs. 53 and 54. 

Lebesgue’s own presentation of his integral is given in Ref. 55. This book also
contains a short biography of Lebesgue. Lebesgue’s approach was the best of many
competing approaches to replace the Riemannian integral [56, 57].

3.6.2 Looking Forward

The next chapter covers time-domain signal analysis. Taking representative signal
interpretation problems, Chapter 4 attempts to solve them using the tools we have
developed so far. The time-domain tools we can formulate, however, turn out to
be de$cient in analyzing signals that contain periodicities. This motivates the
frequency-domain analysis of signals, beginning with the analog Fourier transforms
in Chapter 5.

In Chapter 6, the formal development of the Dirac delta as a functional will help
build a Fourier transform theory for periodic, constant, and otherwise untransform-
able analog signals.

3.6.3 Guide to Problems

This chapter includes many basic problems (1–46) that reinforce the ideas of the
text. Some mathematical subtleties have been covered but casually in the main text,
and the problems help the interested reader pursue and understand them. Of course,
in working the problems, the student should feel free to consult the mathematical
literature for help. The advanced problems (47–56) require broader, deeper
investigation. For example, the last few problems advance the presentation on
frames. Searching the literature should provide a number of approaches that have
been considered for these problems. Indeed, investigators have not satisfactorily
answered all of the questions posed.  
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PROBLEMS

1. Find the domain and range of the following analog systems; if necessary,
narrow the problem domain to a particular analog signal space.

(a) The ampli$er (or attenuator, |A| < 1) system: y(t) = Ax(t)

(b) A translation system: y(t) = x(t − a)

(c) The system on real-valued signals, y(t) = x(t)1/2

(d) The system on complex-valued signals, y(t) = x(t)1/2

(e) The adder: y(t) = x(t) + x0(t)

(f) Termwise multiplication: y(t) = x(t) × x0(t)

(g) Convolution: y(t) = x(t)*h(t)

(h) Accumulator:

. (3.244)

2. Let x(t) be an analog signal and let H be an analog accumulator system. Show
that:

(a) If x(t) has $nite support, then x(t) is in the domain of H.

(b) If x(t) is absolutely integrable, then it is in the domain of H.

(c) There are $nite energy signals are not in the domain of H. (Hint: Provide an
example based on the signal x(t) = t−1.)

3. Consider the systems in Problem 1.

(a) Which of them are linear?

(b) Which of them are translation-invariant?

(c) Which of them are stable?

y t( ) x s( ) sd
∞–

t

∫=
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4. Suppose that the analog systems H and G are LTI. Let T = aH and S = H + G.
Show that both T and S are LTI systems.

5. Which of the following systems are linear? translation-invariant? stable?
causal?

(a) y(t) = x(t/2)

(b) y(t) = x(2t)

(c) y(t) = x(0) + x(t)

(d) y(t) = x(−t)

(e) The system given by

(3.245)

6. Consider the cross-correlation system y = x°h = Hx, where

. (3.246)

(a) Prove or disprove: H is linear.

(b) Prove or disprove: H is translation-invariant.

(c) Prove or disprove: H is stable.

(d) Is h(t) the impulse response of H? Explain.

(e) Answer these same questions for the autocorrelation operation y = x°x.

7. An analog LTI system H has impulse response h(t) = 2etu(2 − t), where u(t) is
the unit step signal. What is the response of H to x(t) = u(t + 3) − u(t − 4)? 

8. Analog LTI system G has impulse response g(t) = u(t + 13) − u(t); u(t) is the
unit step. What is the response of G to x(t) = u(t)e−t?

9. Analog LTI system K has impulse response k(t) = δ(t + 1) + 2δ(t − 2), where
δ(t) is the Dirac delta. What is K’s response to x(t) = u(t − 1) − u(t)?

10. Show that convolution is linear:

(a) h*(ax) = ah*x.

(b) h*(x + y) = h*x + h*y.

11. Show that if H and G are LTI systems, then H(G(x)) = G(H(x)).

12. Show that convolution is associative: h*(x*y) = (h*x)*y.

13. Give an alternative argument that δ(t) = u′(t), the derivative of the unit step [3].

(a) Let x(t) be a signal; show that integration by parts implies

(3.247)

y t( ) x s( ) s( ) s.dcos
∞–

∞

∫=

y t( ) x°h( ) t( ) x s( )h t s+( ) sd
∞–

∞

∫= =

x t( )
td

d u t( ) t x t( )u t( ) ∞–
∞

x′ t( )u t( ) t.d
∞–

∞

∫–=d
∞–

∞

∫
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(b) Remove u(t) from the $nal integrand in (3.247) and correct the limits of
integration.

(c) Show that

, (3.248)

which is the sifting property once again; hence, .

14. Suppose the function (an analog signal) x(t) is uniformly continuous over
some real interval I = (a, b). This means that for every ε > 0, there is a ∆ > 0
such that if s, t ∈ I with |s − t| < ∆, then |x(s) − x(t)| < ε. We allow the cases
that a = −∞, b = ∞, or both.

(a) Show that the signal sin(t) is uniformly continuous on R.

(b) Show that exp(t) is not uniformly continuous on R.

(c) Show that x(t) = t2 is uniformly continuous on any $nite interval (a, b), but
not on any unbounded interval (a = −∞, b = ∞, or both).

(d) Show that  is not uniformly continuous on any interval that
includes the origin.

(e) Prove or disprove: If x(t) is continuous and differentiable and has a bounded
derivative in the interval (a, b), then x(t) is uniformly continuous on (a, b). 

15. Suppose the sequence {xn(t) ∈ N} converges uniformly on some real time
interval (a, b). That is, every ε > 0 there is an Nε > 0 such that m, n > Nε implies
that for all t ∈ I we have |yn(t) − ym(t)| < ε.

(a) Show that if each xn(t) is continuous, then the limit  is
also continuous.

(b) Show that x(t) may not be continuous if the convergence is not uniform.

(c) Prove or disprove: If each xn(t) is bounded, then x(t) is also bounded. 

16. This problem explores interchanging limit and integration operations [6].
Suppose the signal xn(t) is de$ned for n > 0 by

(3.249)

(a) Show that xn(t) is continuous and integrates to unity on (0, 1).

(3.250)
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d u t( ) t x 0( )=d
∞–

∞

∫

δ t( )
td

d u t( )=

x t( ) t=

x t( ) xn t( )
n ∞→
lim=

xn t( )

4n
2
t         if 0 t 1

2n
------,≤ ≤

4n 4n
2
t– if 1

2n
------ t 1

n
---,≤ ≤

0         if otherwise.










=

xn t( ) t 1=d
0

1

∫



266 ANALOG SYSTEMS AND SIGNAL SPACES

(b) Let  Show that x(t) = 0 for all t ∈ R.

(c) Conclude that

. (3.251)

17. Let {xn(t)} be continuous and converge uniformly on the real interval [a, b]
to x(t).

(a) Show that x(t) is continuous and therefore Riemann integrable on [a, b].

(b) Using the uniform continuity, $nd a bound for the integral of xn(t) − x(t).

(c) Finally, show that

(3.252)

18. Prove (3.252) assuming that {xn(t)} converge uniformly and are Riemann-
integrable (but not necessarily continuous) on [a, b].

(a) Approximate xn(t) by step functions.

(b) Show that the limit x(t) is Riemann-integrable on [a, b].

(c) Conclude that the previous problem applies and (3.252) holds once again [6].

19. Suppose that the sequence {xn(t) ∈ N} converges uniformly on some real inter-
val I = (a, b) to x(t); that each xn(t) is continuously differentiable on I; that for
some c ∈ I, {xn(c)} converges; and that the sequence {xn′(t)} converges uni-
formly on I.

(a) Show that for all n ∈ N and all t ∈ I,

(3.253)

(b) By the previous problem, lim [xn(t) − xn(a)] exists and

. (3.254)

(c) So by the fundamental theorem of calculus [6], we have

(3.255)

20. Using informal arguments, show the following properties of the Dirac delta:

(a) δ(−t) = δ(t).

x t( ) xn t( )
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(b)

(3.256)

(c) Assuming the Dirac is differentiable and that interchange of differentiation
and integration is permissable, show that

. (3.257)

21. Show that the nth-order B−spline βn(t) has compact support.

22. Let βn(t) be the nth-order B-spline. Show the following [21]:

(a)

(3.258)

(b)

(3.259)

23.  Assuming that ||x||1 < ∞ and ||y||∞ < ∞, show that ||xy||1 ≤ ||x||1||y||∞.

24. If ||x||∞ < ∞ and ||y||∞ < ∞, show ||x + y||∞ ≤ ||x||∞ + ||y||∞.

25. Let X be the set of continuous, p-integrable signals x: [a, b] → K, where a < b
and K is either R or C. Show that (X, ||x||p, [a,b]) is a normed linear space.

26. Let X be a normed linear space. Show that the norm is a continuous map: For
any x ∈ X and ε > 0 there is a δ > 0 such that for any y ∈ X, if ||y − x|| < δ , then
| ||y|| − ||x|| | < ε. Show continuity for the algebraic operations on X: addition and
scalar multiplication.

27. Show that the map d(x, y) = ||x − y||p is a metric. How must the set of signals x(t)
be restricted in order to rigorously show this result? Explain how to remove the
restrictions.

28. Suppose a ~ b is an equivalence relation on a set S. Show that {[a]: a ∈ S} par-
titions S.

29. Consider the analog signals having at most a $nite number of discontinuities on
[a, b], where a < b, and let 1 ≤ p < ∞. We restrict ourselves to the Riemann inte-
gral, suitably extended to handle piecewise continuous functions.

(a)  Show that the set of all such signals does not constitute a normed linear
space. In particular, exhibit a signal x(t) which is nonzero and yet ||x||p = 0.

(b) Show that the relation x ~ y if and only if ||y||p = ||x||p is an equivalence relation.

x t( )
td

d u t( ) t x 0( ).=d
∞–

∞

∫

x t( )
t
n

n

d

d δ t( ) t 1–( )n

t
n

n

d

d x t( )

t 0=

=d
∞–

∞

∫

td
d βn t( ) βn 1– t 1

2
---+ 

  βn 1– t 1
2
---– 

  .–=

βn s( )
∞–

t

∫ ds βn 1+ t 1
2
---– k– 

  .
k 0=

∞

∑=



268 ANALOG SYSTEMS AND SIGNAL SPACES

(c) Let [x] = {y(t): ||y||p = ||x||p}. Show that [x] = [y] if and only if x(t) and y(t)
are identical except at a $nite number of points.

(d) De$ne Lp[a, b] = {[x] | x ∈ Lp[a, b]}. Further de$ne an addition operation on
these equivalence classes by [x] + [y] = [s(t)], where s(t) = x(t) + y(t). Show
that this addition operation makes Lp[a, b] into an additive Abelian group: it
is commutative, associative, has an identity element, and each element has
an additive inverse. Explain the nature of the identity element for Lp[a, b].
For a given [x] ∈ Lp[a, b], what is its additive inverse, −[x]? Explain.

(e) De$ne scalar multiplication for Lp[a, b] by c[x] = [cx(t)]. Show that  Lp[a,
b] thereby becomes a vector space.

(f) De$ne a norm on  Lp[a, b] by ||[x]||p = ||x||p. Show that this makes  Lp[a, b]
into a normed linear space.

(g) Apply the same reasoning to Lp(R).  

30. Suppose X is a normed linear space and x, y ∈ X. Applying the triangle inequal-
ity to the expression xn = xm + xn − xm, show that .

31. Let S = {xn} and T = {yn} be Cauchy sequences in a normed linear space X.
De$ne the relation S ~ T to mean that S and T get arbitrarily close to one
another, that is, limn→∞||xn − yn|| = 0.

(a)  Show that ~ is an equivalence relation.

(b) Let [S] = {T: T ~ S}; set B = {[S]:  S = {xn} is Cauchy in X}. De$ne addi-
tion and scalar multiplication on B. Show that these operations are well-
de$ned; and show that B is vector space.

(c) De$ne a norm for B. Show that it is well-de$ned, and verify each property.

(d) For x ∈ X, de$ne f(x) = [{xn}], where xn = x for all n, and let Y = Range(f ).
Show that f : X → Y is a normed linear space isometry.

(e) Show that if C is any other Banach space that contains X, then C contains a
Banach subspace that is isometric to Y = f(X), where f is given in (d).

32. If X and Y are normed spaces over K and T: X → Y is a linear operator, then
show the following:

(a) Range(T) is a normed linear space.

(b) The null space of T is a normed linear space.

(c) The inverse map T −1 : Range(T) → X exists if and only Tx = 0 implies x = 0.

33. Prove the following alternative version of Schwarz’s inequality: If x, y ∈ L2(R),
then |〈x, y〉| ≤ ||x||2||y||2.

34. Suppose F = {fn(t): n ∈ Z} is a frame in a Hilbert space H, and T is the frame
operator T given by (3.88). Just to review the de$nition of the frame operator
and inner product properties, please show us that T is linear. From its de$nition,
show that the frame adjoint operator is also linear.

35. Suppose that a linear operator U is positive: U ≥ 0. Show the following [26]:

xn xm– xn xm–≤
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(a) If I is the identity map, then U + I is invertible.

(b) If V is a positive operator, then U + V is positive. 

36. Show that the following are σ-algebras:

(a) ℘(R), the set of all subsets of R.

(b) {∅, R}.

37. Let . Show that there is a smallest σ-algebra that contains S. (The
Borel sets is the class where S is the family of open sets in R.)

38. Let Σ be a σ-algebra. Show Σ is closed under countable intersections.

39. Let Σ = ℘(R). Show the following are measures:

(a) µ(∅) = 0 and µ(A) = ∞ if A ≠ ∅.

(b) For A ∈ Σ, de$ne µ(A) = N if A contains exactly N elements and µ(A) = ∞
otherwise. 

(c) Show that if µ is a measure on Σ and c > 0, then cµ is also a measure on Σ.

40. Show the following properties of lim inf and lim sup:

(a) lim inf{an} is the smallest limit point in the sequence {an}.

(b) lim sup{an} is the largest limit point in the sequence {an}.

(c) lim inf{an} = lim sup{an} if and only if the sequence {an} converges
to some limit value a = limn→∞{an}; show that when this limit exists a =
lim inf{an} = lim sup{an}.

(d) If an ≤ bn, then lim inf{an} ≤ lim inf{bn}.

(e) Provide an example of strict inequality in the above.

(f) lim sup{−an} = −lim inf{an}.

41. Show that the general differential equation governing the nth derivative of the
Dirac delta is 

(3.260)

42. Derive the following:

(a) The scaling law for an arbitrary distribution (3.157).

(b) Associativity (3.159).

43. (a) Calculate the amplitude for the unit-area of the Abel function (3.230).

(b) Calculate the amplitude for the unit-area of the decaying exponential
(3.234). 

(c) Graph each of these approximate identities for scales of .

(d) Verify that the behavior is consistent with the conditions governing an
approximate identity.
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44. Show that 

(a) The rectangular pulse (3.235) is a weight function for any value of the
parameter .

(b) Verify that this unit-area pulse acts as an approximate identity by explicitly
showing

. (3.261)

45. Prove the differentiation theorem for convolution of distributions (3.199). 

46. Demonstrate the validity (as approximating identities) of the alternative weight
functions expressed by (3.224) and (3.225). 

The following problems expand on the text’s presentation, require some exploratory
thinking, and are suitable for extended projects.

47. Let 1 ≤ p ≤ ∞, x ∈ Lp(R), and h ∈ L1(R).

(a) Show that |y(t)| ≤ ∫ |x(t −s)||h(s)| ds;

(b) y = x * h ∈ Lp(R);

(c) ||y||p ≤ ||x||p||h||1.

48. Consider a signal analysis matching application, where signal prototypes P =
{p1, p2, ..., pM} are compared to candidates C = {c1, c2, ..., cN}, using a distance
measure d(p, c). Explain why each of the following properties of d(p, c) are
useful to the application design. 

(a) d(p, c) ≥ 0 for all p ∈ P, c ∈ C.

(b) d(p, c) = 0 if and only if p = c.

(c) d(p, c) = d(c, p) for all p, c.

(d) For any s, d(p, c) ≤ d(p, s) + d(s, c).

Collectively, these properties make the measure d(p, c) a metric. Consider
matching applications where the d(p,c) violates one metric property but obeys
the other three. What combinations of of the three properties still suf$ce for a
workable matching application? Explain how the de$ciency might be over-
come. Provide examples of such de$cient match measures. Does deleting a par-
ticular metric property provide any bene$t to the application—for instance, an
ambiguity of analysis that could aid the application?

49. Develop the theory of half-in$nite analog signals spaces. Provide formal
de$nitions of the half-in$nite Lp spaces: Lp(−∞, a] and Lp[a, +∞) and show that
these are normed linear spaces. Are they complete? Are they inner product
spaces? (You may use the Riemann integral to de$ne Lp for this problem.)

50. Using Lebesgue measure to de$ne it, show that L∞ is complete [44].

51. Study the matched $ltering technique of Section 3.3.2.3 for signal pattern
detection. Assume that for computer experiments, we approximate analog con-
volution with discrete sums.

σ

fa t( )φ t( ) td
∞–

∞

∫
a ∞→
lim φ 0( )=



PROBLEMS 271

(a) Show that the the Schwarz inequality implies that the method gives a match
measure of unit magnitude if and only if the candidate x(t) and prototype
p(t) are constant multiples of one another.

(b) Show that we can generalize the match somewhat by subtracting the mean
of each signal before computing the normalized cross-correlation, then the
normalized cross-correlation has unit magnitude if and only if the signals
are related by x(t) = Ap(t) + B, for some constants A, B.

(c) Consider what happens when we neglect to normalize the prototype signal.
Show that the matching is still satisfactory but that the maximum match
value must be the norm of the prototype pattern, ||p||.

(d) Suppose further that we attempt to build a signal detector without normal-
izing the prototype. Show that this algorithm may fail because it $nds false
positives. Explain using examples how the match measure can be larger
where x(t) in fact is not a constant multiple of p(t).

(e) What are the computational costs of matched $ltering?
(f) How can the computational cost be reduced? What are the effects of various

fast correlation methods on the matching performance? Justify your results
with both theory and experimentation;

(g) Develop some algorithms and demonstrate with experiments how coarse-
to-$ne matching can be done using normalized cross-correlation [34].  

52. Study the exponential and sinusoidal basis decompositions. Assume the expo-
nential signals constitute an orthonormal basis for L2[�π, π].

(a) Show that any x(t) ∈ L2[−π, π] can be expressed as a sum of sinusoidal
harmonics. From (3.76) set an = cn + c−n and jbn = c−n − cn. Show that

(3.262)

(b) Give the spanning set for L2[−π, π] implied by (3.262).
(c)  Show that the sinusoids are also orthogonal.
(d) By dividing up the real line into 2π-wide segments, [−π + 2nπ, π + 2nπ],

give an orthonormal basis for L2(R).
(e) Consider a square-integrable signal on L2(R), such as a Gaussian exp(−At2)

for some A > 0. Find a formula, based on the inner product on L2[−π, π] for
the Fourier series coef$cients that arise from the basis elements corre-
sponding to this central interval.

(f) Consider the Fourier series expansion on adjacent intervals, say [−π, π] and
[π, 3π]. Show that the convergence of partial sums of the Fourier series to
the signal x(t) exhibits artifacts near the endpoints of the intervals. Explain
these anomalies in terms of the periodicity of the exponentials (or sinuso-
ids) on each interval.

(g) Does the selection of sinusoidal or exponential basis functions affect the
partial convergence anomaly discovered in (e)? Explain.
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(h) What happens if we widen the intervals used for fragmenting R? Can this
improve the behavior of the convergence at endpoints of the intervals?

(i) Summarize by explaining why identifying frequency components of general
square-integrable signals based on sinusoidal and exponential Fourier series
expansions can be problematic.

53. Section 3.3.4.4 argued that frame decompositions support basic signal analysis
systems. One desirable property left open by that discussion is to precisely
characterize the relation between two sets of coef$cients that represent the
same incoming signal. This exercise provides a partial solution to the unique-
ness problem [42]. Let F = {fn(t) : n ∈ Z} be a frame in a Hilbert space H, let
T = TF be its associated frame operator (3.88), and let S = T*T.

(a) If x ∈ H, de$ne an = 〈x, S −1fn〉, and then show that x = Σanfn.

(b) If there are cn ∈ C such that x = Σcnfn, then 

. (3.263)

(c) Explain how the representation of x in terms of the dual frame for F is opti-
mal in some sense.

(d) Develop an algorithm for deriving this optimal representation.

54. Let F = {fn(t): n ∈ Z} be a frame in Hilbert space H. Prove the following: 

(a) If an element of the frame is removed, then the reduced sequence is either a
frame or not complete (closure of its linear span is everything) in H.

(b) Continuing, let S = T*T, where T* is the adjoint of the frame operator T =
TF. Show that if 〈 fk, S −1fk〉 ≠ 1, then F \ {fk} is still a frame. 

(c) Finally, prove that if 〈fk, S−1fk〉 = 1, then F \ {fk} is not complete in H.

55. Let us de$ne some variations on the notion of a basis.  If E = {en} is a sequence
in a Hilbert space H, then E is a basis if for each x ∈ H there are unique com-
plex scalars an such that x is a series summation, x = Σnanen. The basis E is
bounded if 0 ≤ inf{en} ≤ sup{en} < ∞. The basis is unconditional if the series
converges unconditionally for every element x in H. This last result shows that
the uniqueness of the decomposition coef$cients in a signal processing system
can in fact be guaranteed when the frame is chosen to be exact. Let F = {fn(t):
n ∈ Z} be a sequence in a Hilbert space H. Show that F is an exact frame if and
only if it is a bounded unconditional basis for H.

56. Repeat Problem 52, except allow for a frame-based signal decomposition. In
what ways does the presence of redundancy positively and negatively affect the
resulting decompositions?
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CHAPTER 4

Time-Domain Signal Analysis

This chapter surveys methods for time-domain signal analysis. Signal analysis $nds
the signi$cant structures, recognizable components, shapes, and features within a sig-
nal. By working with signals as functions of a discrete or analog time variable, we per-
form what is called time-domain signal analysis. We view signals as discrete or analog
functions. We distinguish one signal from another by the signi$cant differences in their
magnitudes at points in time. Ultimately, then, time-domain methods rely in a central
way on the level of the signal at an instant, over an interval, or over the entire domain
of the signal. Our analysis tools will be both crude and sophisticated, and our achieve-
ments will be both problematic and successful. From the perspective of Hilbert space
analysis, we will $nd that our time-domain signal analysis methods often involve the
use of basis functions for signal subspaces that have irregular, blocky shapes.

Signal analysis does encompass many signal processing techniques, but it ulti-
mately goes beyond the signal-in, signal-out framework: Signal analysis breaks an
input signal down into a nonsignal form. The output could be, for example, an inter-
pretation of the input, recognition results, or a structural description of the source
signal. In time-domain analysis we study signals without $rst deriving their fre-
quency content. Signals are viewed simply as functions of time (or of another inde-
pendent spatial variable). This chapter’s methods depend upon the foundation in
determinate and indeterminate signals, systems, and Hilbert space laid previously,
together with some calculus, differential geometry, and differential equations. In
contrast, a frequency-domain analysis $nds the frequencies within a signal by way
of Fourier transformation—or, in more modern vein, using the Gabor or wavelet
transforms—and uses the frequency information to interpret the signal.

After some philosophical motivation, this chapter considers some elementary sig-
nal segmentation examples. This discussion identi$es problems of noise, magnitude,
frequency, and scale in detecting special signal regions. Signal edges are the obvious
boundaries between segmentable signal regions, but detecting them reliably and opti-
mally proves to be harder that it would seem at $rst glance. Matched $ltering is intro-
duced, but the theoretical justi$cations are postponed. Scale space decomposition
gives a complete and general method for the segmentation and structural description
of a signal. Pattern recognition networks offer a hybrid scheme for signal detection.
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They combine ideas from matched $ltering and decomposition by scale; provide for
design rules, as in conventional pattern recognition systems; and have a network
training scheme similar to neural networks. Hidden Markov models (HMMs) are a
statistical recognition tool applied widely in speech and text interpretation. Later
chapters will expand these techniques further by showing how to use these signal
decomposition tools with frequency and mixed-domain signal processing.

We shall cover in this chapter, as promised, signal analysis techniques that are
not commonly found in the standard signal processing texts. But we do more than
validate the title of the whole book. By confronting the deep problems involved in
$nding the content and structure of signals, right after basic presentations on linear
systems, we will $nd both a motivation and a conceptual foundation for the study of
frequency and scale in signals. The $rst three chapters embellished the traditional
presentation of signal processing—discrete and analog signals, random signals,
periodicity, linear systems—with an introductory development of the theory of
Hilbert spaces. The important Hilbert space notion of inner product gives us a theo-
retical tool for $nding the similarity of two signals and therefore a point of depar-
ture for $nding one signal shape within another. Now the exposition tilts toward
techniques for breaking an input signal down into a nonsignal form.

Time-domain signal analysis will prove to have some serious limitations. Some
types of signals will prove amenable to the time-domain methods. We can engineer
signal analysis solutions for many process monitoring problems using time-domain
techniques. Other application areas—especially those where signals contain peri-
odic components—will cause trouble for our methods. Speech recognition and
vibration analysis are examples. For such applications, the signal level itself is not
so important as the regular assumption of some set of values by the signal. If we
retreat again to the abstract vantage point of Hilbert space, we will see that our
methods must now rely on basis functions for signals that are regular, textured, peri-
odic, sinusoidal, exponential, and so on. Although this discovery quali$es our suc-
cesses in preliminary signal analysis applications, it leads naturally to the study of
the Fourier transforms of analog and discrete signals, and later it leads to the mod-
ern mixed-domain techniques: time-frequency and time-scale transforms.

This decomposition into structural features may be passed on to higher-level
interpretation algorithms. Machine recognition of digitized speech is an example.
So, by this view, signal analysis is the front-line discipline within arti$cial intelli-
gence. While it makes extensive use of standard signal processing techniques, the
analysis of a signal into some interpretable format is a distinct, challenging, and
perhaps neglected area of engineering education and practice.

A small diagram, due to Professor Azriel Rosenfeld,1 who $rst formulated it for
images, illustrates the relationships between data processing, image synthesis (graph-
ics), image processing, and image analysis (computer vision) (Figure 4.1a). Reduc-
ing the dimension of the data, we arrive at a similar diagram for signals (Figure 4.1b)

1For many years Professor Rosenfeld has used this diagram in his computer vision courses (personal
communication). The authors have often heard—and, in the absence of a contrary reference in the sci-
enti$c literature, do believe—that the diagram is attributable to Azriel Rosenfeld.
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Fig. 4.1. (a) An input–output diagram of the disciplines that work with two-dimensional
signals (i.e., images). Conventional data processing began as soon as programmable
machines became available. Image processing (for example, enhancement) has been a suc-
cessful technology since the 1960s. With the advent of parallel processing and fast reduced
instruction set computers, computer graphics has reached such a level of maturity that is
both appreciated and expected by the public in general (example: morphing effects in
cinema). Computer vision stands apart as the one technology of the four that remains prob-
lematic. We seem to be decades away from the development of autonomous, intelligent,
vision-based machines. (b) An input–output diagram of the computer technologies that use
signals. The rediscovery of the fast Fourier transform in the mid-1960s gave digital signal
processing a tremendous boost. Computer music is now commonplace, with an example of
signal synthesis possible even on desktop computers since the 1980s. Like computer vision,
though, signal analysis is still an elusive technology. Where such systems are deployed, they
are greatly constrained, lack generality, and adapt poorly, if at all, to variations in their signal
diets.

TIME-DOMAIN SIGNAL ANALYSIS
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and reveal the input–output relationships between data processing, signal synthesis,
signal analysis, and signal processing. Most computing tasks fall into the data pro-
cessing categories of Figure 4.1, which covers $nancial and accounting programs,
database applications, scienti$c applications, numerical methods, control programs,
and so on. Signal processing occupies the other diagonal square, where signal data
are output from a signal data input. The other squares, converting data to signal
information and converting signal information to data, generally do not correspond
to classes in the university curriculum, except perhaps in some specialized programs
or big departments that offer many courses. An application that accepts abstract data
inputs and produces a signal output is an example of a signal synthesis system.
Courses such as this have been quite rare. Recently, though, some computer science
departments are offering multimedia courses that cover some aspects of producing
digital music, speech, and sounds. A computer program that accepts a signal and
from it generates a data output is in essence a signal analysis system. It is really the
form of the data output that is critical, of course. We envision a description—
a breakdown of content, or an analysis—of the signal that does not resemble the
original at all in form.

The great advances in mixed-domain signal transforms over the last 10 years are
the primary reason for reworking the conventional approach to signals. These time-
frequency and time-scale transforms cast new light on the Fourier transform, expose
its limitations, and point to algorithms and techniques that were either impossible or
terribly awkward using the standard Fourier tools. Moreover, advances in computer
hardware and software make technologies based on this new theory practically real-
izable. Applications—commercial products, too—are appearing for speech under-
standing, automatic translation, $ngerprint identi$cation, industrial process control,
fault detection, vibration analysis, and so on. An unexpected in#uence on these
emerging signal analysis techniques comes from biology. Research into hearing,
vision, the brain, psychophysics, and neurology has been supplemented and stimu-
lated by the investigations into the mathematics of the new signal transforms, neural
networks, and arti$cial intelligence. This book will show that a fruitful interaction
of arti$cial intelligence and signal analysis methods is possible. It will introduce
students, engineers, and scientists to the fresh, rapidly advancing disciplines of
time-frequency and time-scale signal analysis techniques.

In universities, signal processing is taught in both computer science and electrical
engineering departments. (Its methods often arise in other disciplines such as math-
ematics, mechanical engineering, chemical engineering, and physics.) The courses
are often almost identical by their course descriptions. There is controversy, though,
about whether signal processing even belongs in the computer science curriculum, so
similar in content is it to the electrical engineering course. One point of this book is
to show that mainstream computer science methods are applicable to signal analysis,
especially as concerns the computer implementation of algorithms and the higher-
level interpretation methods necessary for complete signal analysis applications.

Signal analysis includes such technologies as speech recognition [1–4], seismic
signal analysis [5, 6], interpretation of medical instrumentation outputs [7], fault
detection [8], and online handwriting recognition [9]. Computer user interfaces may
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nowadays comprise all of the Rosenfeld diagram’s technologies for both one-
dimensional signals and two-dimensional signals (images): speech synthesis and
recognition; image generation, processing, and interpretation; arti$cial intelligence;
and conventional user shells and services [10, 11].

It is possible to slant a signal processing course to computer science course
themes. Here, for example, we explore time-domain signal analysis and will see that
tree structures can be found for signals using certain methods. One can also empha-
size signal transforms in computer science signal processing instead of the design of
digital $lters which is taught with emphasis in the electrical engineering signal pro-
cessing course. This too we will explore; however, this task we must postpone until
we acquire an understanding of signal frequency through the various Fourier trans-
forms. There are $lter design packages nowadays that completely automate the
design process, anyway. Understanding transforms is, however, essential for going
forward into image processing and computer vision. Finally, one also notices that
signal processing algorithms—with complex-valued functions, arrays having nega-
tive indices, dynamic tree structures, and so forth—can be elegantly implemented
using modern computer languages known almost exclusively by students in the uni-
versity’s computer science department.

In the $rst sections of this chapter, we consider methods for $nding basic fea-
tures of signals: edges and textures. An edge occurs in a signal when its values
change signi$cantly in magnitude. The notion of texture seems to defy formal
description; at an intuitive level, it can be understood as a pattern or repetition of
edges. We develop several techniques for $nding edges and textures, compare them,
and discover some problems with their application. Edge and texture detection will
not be complete in this chapter. Later, having worked out the details of the Fourier,
short-time Fourier, and wavelet transforms, we shall return to edge and texture anal-
ysis to check whether these frequency-domain and mixed-domain methods shed
light on the detection problems we uncover here.

4.1 SEGMENTATION

Segmentation is the process of breaking down a signal into disjoint regions. The
union of the individual regions must be the entire domain of the signal. Each signal
segment typically obeys some rule, satis$es some property, or has some numerical
parameter associated with it, and so it can be distinguished from neighboring seg-
ments. In speech recognition, for example, there may be a segmentation step that
$nds those intervals which contain an utterance and accurately separates them from
those that consist of nothing but noise or background sounds.

This section begins with an outline of the formal concept of segmentation. There
are many approaches to the segmentation task, and research continues to add new
techniques. We shall con$ne our discussion to three broad areas: methods based on
signal levels, techniques for $nding various textures within a signal, and region
growing and merging strategies. Later sections of this chapter and later chapters in
the book will add further to the segmentation drawer of the signal analysis toolbox.
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4.1.1 Basic Concepts

Segmentation is a rudimentary type of signal analysis. Informally, segmentation
breaks a signal’s domain down into connected regions and assigns a type indication
to each region. For signals, the regions are intervals: open, half-open, or closed. Per-
haps a region is a single point. Some thinking in the design of a signal segmentation
method usually goes into deciding how to handle the transition points between
regions. Should the algorithm designer consider these boundaries to be separate
regions or deem them part of one of the neighboring segments? This is not too
dif$cult a question, and the next section’s edge detection methods will prove useful
for advanced segmentation strategies. However, for two-dimensional signals
(images) the situation is extremely complex. The connected regions can assume quite
complicated shapes2; and their discovery, description, and graphical representation
by machine too often bring current computer vision systems to their practical limits.

De$nition (Segmentation).  A segmentation Σ = (Π, L) of a signal f consists of a par-
tition Π = {S1, S2, ...} of Dom( f ) into regions and a logical predicate L that applies
to subsets of Dom( f ). The predicate L identi$es each Si as a maximal region in which
f is homogeneous. Precisely, then, segmentation requires the following [12]: 

• Dom( f ) = S1 ∪ S2 ∪ S3 ∪ ..., where the Si are disjoint.

• L(Si) = True for all i.

• L(Si ∪ Sj) = False when Si and Sj are adjacent in Dom( f ) and i ≠ j.

It is common to call the regions segments, but they are not necessarily intervals.
Commonly, the segments are $nite in number, only a speci$c region of interest
within the signal domain is subject to segmentation, and some mathematical opera-
tion on the signal de$nes the logical predicate. It is also very much an application-
speci$c predicate. For example, one elementary technique to segment the meaning-
ful parts of a signal from background noise is to threshold the signal. Let f(n) be a
noisy signal, T > 0, M = {n: |f(n)| ≥ T}, and N = {n: |f(n)| < T}. Let Π = {M, N}, and
let L be the logical predicate “All signal values in this region exceed T or all signal
values in this region do not exceed T.” Then S = (Π, L) is a segmentation of the signal
into meaningful signal and background noise regions. Of course, different threshold
values produce different segmentations, and it is possible that neither the M nor N is
a connected subset of the integers. Most signal analysts, in point of fact, never for-
mulate the logical predicate for segmentation; the predicate is implicit, and it is usu-
ally obvious from the computations that de$ne the partition of the signal’s domain.

2The famous Four-Color Problem is in fact a question of how many types are necessary to lable a map
segmented into countries. For every map ever drawn, it had been shown to be possible to color the
bounded regions with only four colors. Therefore, conjecture held that four-colorings of the plane were
always possible, but for centuries this simple problem de$ned solution. Only recently, with a grand effort
by both humans and computers, has the question been answered in the af$rmative.
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De$nition (Labeling, Features, Pattern). Let Π = {S1, S2, ...} be a partition of the
domain of signal f. Then a labeling of f for Π is a map Λ: Π → {Λ1, Λ2, ... }. Ran(Λ)
is the set of labels, which categorize subsets of Dom( f ) in Π. If Λ(Si) = Λj, then Si is
called a signal feature with label Λj. A pattern is set of features in a signal.

Labeling often follows segmentation in signal analysis systems. The nature of
the signal analysis application determines the set of labels which apply to signal
regions. The segmentation operation uses some logical predicate—which embodies
an algorithm or computation—to decompose the signal into homogeneous regions.
The regions are distinct from one another and suitable for labeling. Together, the
segmentation and labeling operations assign distinct signal regions to predeter-
mined categories, appropriate to the application. This results in a primitive descrip-
tion of the signal’s content known as feature detection. The task of $nding an
assemblage of features in a signal is called pattern detection or pattern recognition.

By associating the regions with a label, the positions and time-domain extents of
signal features are known. One problem is that the regions of a general segmenta-
tion may be disconnected, in which case the feature is located in multiple parts of
the signal. This is a little awkward, but, in general, we shall not demand that our
segmentations produce connected sets. But the partition elements do contain inter-
vals, and a maximal interval within a segment does specify the location of a feature.
Thus, $nding the maximal intervals that have a given label accomplishes the signal
analysis task of registration.

De$nition (Registration). Let f be a signal, Σ = (Π, L) be a segmentation of f, and
let Λ: Π → {Λ1, Λ2, ...} be a labeling of f with respect to Σ. If Λ(Si) = Λj, I ⊆ Si is an
(open, closed, or half-open) interval, and I is contained in no other connected subset
of Si, then I registers the feature with label Λj.

Higher-level algorithms may process the labeling and revise it according to rules,
prior knowledge of the signal’s content, or some model of what form the signal
should take. Such high-level algorithms may employ a very small set of rules. But
many signal analysis applications use a full rule database or implement a complete
expert system for interpreting labeled signals. They often use graph and tree struc-
tures. By this point, the design of a signal analysis system is well into the realm of
arti$cial intelligence. Without delving deeply into arti$cial intelligence issues, Sec-
tion 4.2.4 discusses some elementary statistical measures and algorithms for re$ning
the segmentation and labeling steps. This is called region splitting and merging.
Region merging can be a basis for classi$cation. If the goal is to $nd a suf$ciently
large signal region or a region with a particular registration, then a region merging
procedure applied to the results of a $rst-cut segmentation might be adequate. Later,
in Section 4.7, we will introduce what are called consistent labeling methods for
revising the region label assignments. This strategy uses constraints on both the
regions and the labels applied to them. The constraints on signal features can be for-
mulated as a directed graph, a familiar data structure from arti$cial intelligence.
When a signal’s features can be labeled so as to obey the constraints, which might be
derived from a signal prototype or model, then the signal has been classi$ed.



280 TIME-DOMAIN SIGNAL ANALYSIS

4.1.2 Examples

Some examples of segmentation, labeling, and registration should help to make
these abstract concepts more concrete.

Example (Signal versus Noise Detection). A logical predicate, N, for “either
noise or signal,” may apply to subsets of the domain of a signal, f. (To be precise, we
are using the exclusive “or” here: noise or signal, but not containing both character-
istics.) A region Rn ⊆ Dom( f ) for which N(Rn) = True may be a region of noise, and
another region Sn ⊆ Dom( f ) for which N(Sn) = True may be meaningful informa-
tion. Many applications involve signals whose noise component are of a much lower
magnitude than their information-bearing component. (This is not always the case;
signals may follow an active-low policy, and the choice of labels for low- and high-
magnitude segments must re#ect this.) Reasonably, then, we might apply a thresh-
old to the signal for distinguishing signal from noise. Figure 4.2 shows examples of

Fig. 4.2. Signal segmentation in speech recognition and industrial process control. Detect-
ing a speaker’s presence by thresholding works when the background noise level is
suf$ciently low (panels (a) and (b)). But background noises or artifacts of speech (tongue
clicks, lip smacks, sniffs, sighs, loud breaths) will often be assigned to a speech region. Pan-
els (c) and (d) show a representative optical trace from a plasma etching reactor. The con-
troller monitors a carbon monoxide optical emission signal, whose high level indicates the
presence of etching byproducts in the chamber.
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signal segmentation based on thresholding. The goal is to separate the signal into a
meaningful signal region, which has a high magnitude, and a background noise
region, which has a relatively low magnitude. If the noise magnitude remains mod-
est and the meaninful signal regions do not fade, then one-dimensional tasks like
this are quite straightforward. Segmenting images into high-magnitude objects and
low-magnitude background is called blob detection, an erstwhile colloquialism that
has become standard technical parlance over the years. In two dimensions, because
of the dif$culties in tracking boundaries, blob detection is often problematic. The
equivalent one-dimensional task—bump rather than blob detection—is much easier
of course, because the topology of the line is simpler than the topology of the plane.

Application (Touch-Tone Telephone Pulse Detection). This example continues
our discussion of digital telephony. Touch dialing telephones have largely sup-
planted the old rotary dialing units in the public service telephone network. Instead
of a series of electromechanically generated pulses, modern telephones generate
dual-tone multifrequency (DTMF) pulses for dialing [13]. The telephone company’s
central of$ce (CO) equipment decodes these pulses; sets up the appropriate commu-
nication links; rings the far telephone; and sends a ringback signal, which simulates
the sound a distant phone ring, to the near-end telephone. When someone lifts the
far-end handset, the CO switching equipment sends a brief test tone through the
circuit as a continuity check. The CO listens for facsimile (FAX) equipment tones
and then for modem tones; in their absence, it initiates echo cancellation (see
Chapter 2), and the call is complete. Table 4.1 shows the tone dialing scheme. Fig-
ure 4.3 illustrates a dual-tone sinusoidal pulse in noise and a sample segmentation.
This segmentation produces two sets; however, due to the sinusoidal components in
the pulse, there are numerous low-magnitude signal values interspersed in the time
interval where we expect to detect the pulse. One strategy to improve the segmenta-
tion is to integrate the signal, and another strategy is to adjust the labeling to elimi-
nate noise segments that are too brief.

Early telephones had two twin-tee feedback oscillators for producing DTMF
signals. Later, and cheaper, designs were digital. Nowadays, digital signal processors

TABLE 4.1. DTMF Telephone Dialing Signal Specificationsa

1209 Hz 1336 Hz 1477 Hz 1633 Hz

697 Hz 1 2 3 A
770 Hz 4 5 6 B
852 Hz 7 8 9 C
941 Hz * 0 # D

aDTMF pulses consist of two tones from a high- and a low-frequency group. Telephones
in public use do not sport the special keys on the right: A, B, C, D. The telephone com-
pany reserves them for test equipment and diagnostic signaling applications. DTMF tones
pass at a 10-Hz rate. Pulse width is between 45 ms and 55 ms.
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can be programmed to generate and decode DTMF signals [14, 15]. It is important
to note that this example only considers the relatively easy problem of $nding a
blob-like pulse of the proper width for a DTMF pulse. A complete, practical solu-
tion must $nd the frequencies within the signal blob, verify that only two signi$cant
tones exist, and check that the pair of tones corresponds to a cell in Table 4.1. We
will consider this more complex task in Chapter 7, after we develop methods for
signal frequency analysis in Chapters 5 and 6.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−2
−1

0

1

2
DTMF pulses (3 and 7) in noise x(n)

(a
)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

(b
) 

S
m

oo
th

 |x
(n

)|

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

time (s)

(d
) 

B
et

te
r

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

(c
) 

R
aw

 s
eg

m
en

t

Fig. 4.3. An example of dual-tone multi-frequency (DTMF) pulse detection for tele-
phone company dialing signals. Each number on the telephone dial is coded as a dual
frequency pulse (a). Simple threshold (b) and labeling operations (c) mark tones (tone
present = 1, background noise = 0). This naive, bottom-up procedure shows that no pulse
segment is suf$ciently long in duration to be a valid DTMF pulse; hence it $nds no
pulses present. The improved scheme (d) constrains the labeling operation so that short-
duration noise segments are merged with signal regions, thus properly $nding two
50-ms-wide pulses. It is possible—and more conventional for that matter—to $lter the
pulse (in this case its magnitude) for more consistent thresholding rather than rely on
consistent labeling.
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4.1.3 Classification

Following segmentation and labeling, signal analysis may take a further step—
classi$cation of the entire signal. Classi$cation is also called recognition. It is much
like labeling, except that the term “labeling” in signal and image analysis parlance
tends to mean a tentative classi$cation. Labels are applied to small fragments of the
signal, meant for later review, and facilitate the application of goal-driven rules. In
contrast, the recognition step applies a broader signal region, which comprises sev-
eral labeled, goal-directed fragments.

De$nition (Classi$cation). Let F = {f1, f2, ...} be a family of signals. Then a
classi$er for F is a map C: F → {C1, C2, ...}. The range of C is the set of classes,
which categorize signals in F.

In view of our imprecise distinction between labeling and classifying, and with
regard to the overlap of usage within the signal analysis community, we need to be
casual about this de$nition. An application may break a long-term signal down into
large regions and attempt to identify each chunk. While analyzing each large region,
the remainder of the signal can be considered to be zero, and it is quite irrelevant
about whether we deem the remaining chunks to be separate signals or just extended
pieces of the original. The distinction, therefore, between labeling and classi$cation
revolves around which is the preliminary step and which is the ultimate step in the
signal analysis.

The concepts of segmentation, labeling, and classi$cation imply a scheme for
constructing signal analysis systems (Figure 4.4). Most signal analysis systems
work in the order: segmentation, labeling, classi$cation. This strategy proceeds
from low-level signal data, through assignment of labels to signal regions, to $nally
classify the entire signal. Therefore, this is a data-driven or bottom-up methodology.
To impart a goal-driven or top-down aspect to the procedure, it is possible to con-
strain the labeling procedure. In this case, a high-level, rule-based algorithm reviews
the initial labels and adjusts their assignments to signal features. The labeled
regions may be too small in extent, as the narrow low-magnitude regions in the
example of Fig. 4.3, and hence they are merged into the surrounding meaningful
signal region.

Example (Voiced versus Unvoiced Speech Segmentation). Linguists typically clas-
sify speech events according to whether the vocal cords vibrate during the
pronunciation of a speech sound, called a phone. Phones are speech fragments that
represent the basic, abstract components of a natural language, called phonemes
(Table 4.2). If the vocal cords do vibrate, then there is said to be a voiced speech
event. If there is no vocal cord vibration, then the phoneme is unvoiced. It is also
possible that a speech signal contains no speech sound; thus, it is simply back-
ground, or noise. One approach to segmenting speech classi$es its portions as
voiced (V), unvoiced (U), or noise (N). For example, a digital recording of the
English phrase “linear $t” begins, divides the two words, and ends with noise
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regions. The most apparent phonemes, then, are /l I n i ∋ f I t/, of which /f/ and /t/ are
unvoiced. A preliminary segmentation, Σ0, by voiced/unvoiced/noise classi$cation
is (N, V, N, U, V, U, N), respecting the stipulation that no adjacent regions have the
same type. Actually, there are a number of unvoiced events that only become appar-
ent when the speech signal is digitized and spread out over time. One may $nd, for
example, momentary unvoiced aspirations and even periods of noise, surrounding
the voiced segments. A re$ned segmentation, Σ1, therefore supplies: (N, U, V, U, V,
U, V, U, V, U, V, U, N, U, V, U, N). In practical speech recognition applications,
surprisingly, this segmentation is too crude! Subtle periods of background noise,
with no voiced or unvoiced sound present, intrude into spoken words. A modern,
sophisticated segmentation algorithm $nds that several N regions split the unvoiced
regions U in the re$ned segmentation above. This means that several of the
unvoiced intervals have much shorter time extents than Σ1 would indicate. The
bene$t is that a higher-level interpretation algorithm may be better able to recognize
the  brief U boundaries  of the V segments as trailing and leading aspirations instead
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Fig. 4.4. Data-driven versus goal-driven signal analysis systems. In the data-driven, bottom-
up scheme of (a), the processing proceeds from segmentation, to labeling, to classi$cation
without looking back. The goal-driven, top-down strategy in (b) revises earlier results
according to rules speci$c to the application domain.
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of, for example, unvoiced fricatives. Figure 4.5 illustrates such a speech segmenta-
tion example. We shall continue to expose the intricacies of natural language
interpretation is this and the remaining chapters; there is much to cover.

Many problems involve a combination of segmentation procedures. For example,
in digital telephony, it may be necessary to distinguish voice from DTMF pulses.
Many commercial telephony applications that rely on DTMF detection require this
capability. A pervasive—some would call it pernicious—application is the of$ce
voice mail system. The user presses telephone buttons to control the selection, play-
back, archival, and deletion of recorded messages. The voice mail application
detects the DTMF and performs the appropriate function. Background of$ce noise
or talking confuses the DTMF classi$er. Thus, a sophisticated DTMF detector sorts
out the many possible natural language sounds from the dual-tone signaling pulses.
Vowel sounds, such as /i/ and /u/, typically contain two sinusoidal components; and
unvoiced fricatives, such as /s/ and /f/, are hard to discern from background

TABLE 4.2. Phonemes and Word Examples from American English [16]a

Phoneme Example Class   Phoneme Example Class

/i/ even Front vowel   /I/ signal Front vowel
/e/ basis Front vowel   /ε/ met Front vowel
/ae/ at Front vowel   /a/ father Mid vowel
/Λ/ but Mid vowel   /⊃/ all Mid vowel
/schwa/ signal Mid vowel   /u/ boot Back vowel
/o/ boat Back vowel   /U/ foot Back vowel
/I/ roses Back vowel   /∋/ Hilbert Mid vowel
/aw/ down Dipthong   /ay/ cry Dipthong
/⊃y/ boy Dipthong   /y/ yet Semivowel glide
/w/ wit Semivowel liquid   /r/ rent Semivowel glide
/l/ linear Semivowel liquid   /m/ segment Nasal consonant
/n/ nose Nasal consonant   /η/ Nguyen Nasal consonant
/p/ partition Unvoiced stop   /t/ $t Unvoiced stop
/k/ kitten Unvoiced stop   /b/ bet Voiced stop
/d/ dog Voiced stop   /g/ gain Voiced stop
/h/ help Aspiration   /f/ fit Unvoiced fricative
/θ/ thanks Unvoiced fricative   /s/ sample Unvoiced fricative
/sh/ shape Unvoiced fricative   /v/ vector Voiced fricative
/∂/ that Voiced fricative   /z/ zoo Voiced fricative
/zh/ closure Voiced fricative   /ch/ channel Affricate
/j/ Jim Affricate   /?/ no sound Glottal stop

aVowels are voiced, and they break down further into front, mid, and back classi$cations, according to
the location of the tongue’s hump in the mouth. Other essentially vowel-like sounds are the dipthongs
and the semivowels. Nasal consonants are voiced, and the affricates are unvoiced. The glottal stop is a
special symbol that indicates a momentary suspension of motion by the vocal cords (glottis). For exam-
ple, without the /?/ symbol, the phoneme sequences for “I scream” and “ice cream” are identical. As big
as it is, this table is far from panoramic; it offers but a glimpse of the natural language segmentation
problem.
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telephone line noise. Application success revolves around a careful design of seg-
mentation, labeling, and classi$cation algorithms. Sometimes a data-driven compu-
tational #ow works, even for distinguishing DTMF signals from human voices.
Where the bottom-up techniques break down, top-down constraints and goal-
directed, arti$cial intelligence strategies become attractive.

4.1.4 Region Merging and Splitting

Once the domain of a signal f is broken down by a segmentation into a partition Π =
{S1, S2, ...}, it may be necessary to combine some of the regions together. This
reduction in the number of separate regions of the domain is called region merging
(Figure 4.6). Region merging generally follows labeling. It is invoked because some
goal-directed rules have discovered #aws in the labeling. We already considered this
situation in the realm of speech analysis. A digitized speech fragment might receive
an initial phoneme label, because of its high magnitude. However, subsequent ana-
lysis of its time-domain extent, and possibly its position at the beginning or ending
of what appears to be a full-word utterance, might relegate the fragment to the cate-
gory of a tongue click. Merging can also be useful when the signal segmentation
must be made as simple as possible—for instance to facilitate signal compression or
speed up subsequent analysis steps.

The choice of criteria for region merging depends heavily on the signal analysis
application. For example, suppose that two segmentation regions have average signal
values that are so close that they seem to be caused by the same physical process. Let
µR be the mean within region R, and let be µS the mean within region S. If |µR −
µS| < ε, where ε is an application-speci$c threshold, then we replace R and S in Π by
R′ = R ∪ S. Merging continues by comparing the mean of R′ against the mean of the
remaining regions. Another statistic useful for merging two adjacent regions, espe-
cially when the segmentation is based on measures of signal texture (Section 4.3), is
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Fig. 4.5. A speech segmentation example. At a sampling rate of 16 kHz, the word “greasy”
is shown. The corresponding phonemes are /g/, /r/, /i/, /s/, and /i/; of these /s/ is voiceless.
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a similarity in their variances. An edge detector could test the boundary between
regions. If the edge detector fails to show a suf$ciently distinct edge between the two
areas, then they are candidates for merging. These are all low-level considerations for
merging regions. If the application is so well characterized as to have a set of goal-
directed rules that govern the labeling of signal regions, then the rules may be applied
to the preliminary segmentation results. Regions can be joined, therefore, to better
satisfy the top-down speci$cations. Finally, note that the results of the merging oper-
ations will supersede the original logical predicate that de$ned the segmentation.

Splitting a region is harder than merging. When the regions already exist, then
the main problem is choosing the right criteria, out of many possibilities, for decid-
ing whether to merge them. When a region is examined as a candidate for splitting,
however, what partition of it begins the task? One possibility is to divide a region of
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Fig. 4.6. Region merging: DTMF pulse (a), threshold operation (b), and raw labeling (c).
The marked pulse segments are too small for a valid tone signal. Simply merging unit width
segmented regions into their larger, differently marked neighbors isolates a valid DTMF
pulse of 50-ms contiguous length (d).
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interest, S = [a, b] ⊆ Dom( f ), into segments of equal length, S = S1 ∪ S2 ∪ S3 ∪ ⋅⋅⋅
∪ SN, where the Si are disjoint. A good choice for segment length is the smallest
time interval for meaningful features of signal f. Then a statistical measure, the
mean or variance for example, applied to each segment in succession, can indicate
whether the segment should be set apart from the rest. With the original S now sub-
divided, we can consider whether to unite the various Si, just as in the above region
merging algorithm. Splitting is then a kind of inverse of merging. The end result is
to split the original region S = R1 ∪ R2 ∪ ⋅⋅⋅ ∪ RM, where M ≤ N and each Ri is a
union of a different subset of {S1, S2, ... , SN}. The obvious problem with this
approach is that it directly depends upon the arbitrary partition of S into the seg-
ments, S1, S2, ... , SN.

But there is a deeper problem with both the region merging and the “inverse”
region splitting algorithms above. They both depend on the order in which the
regions are selected for merging or splitting. This is due to the lack of transitivity in
the “is similar to” relations we apply. Let’s explore this. If we begin with the $rst
segment, we may have |µ1 − µ2| < ε, and so we unite them, R1 = S1 ∪ S2. Now, the
mean of R1 is the statistical expectation, E[{f(n) | n ∈ R1}] = E[ f(R1)], and we com-
pare it to µ3. But it is quite possible that the criterion for merging S3 into R1 would
be met, while at the same time we have |µ1 − µ3| ≥ ε and |µ2 − µ3| ≥ ε. The merging
of the subregions (and thus the splitting of the original region of interest) depends
on the order in which the subregions are considered. To avoid this, we can try to
cluster the subregions around some entity that does not depend on an individual
region. Suppose we select M values k1 < k2 < k3 < ⋅⋅⋅ < kM, where ki ∈ Ran( f ). (Per-
haps we specify k1 = min{f(n) | n ∈ [a, b]}, and kM = max{f(n) | n ∈ [a, b]}, but this
is not essential.) Then we de$ne the subregion Si to belong to cluster j if |µi − kj| ≤
|µi − km|, for all m, 1 ≤ m ≤ M. That is, the clusters comprise those subregions whose
mean falls closest to a target signal value among {k1, k2, ..., kM}. We take Rj = ∪{Si
| Si belongs to cluster j}.

The above approach is called nearest-neighbor clustering. The same method can
be followed using the variance as a clustering measure. The drawback for this ele-
mentary approach is its dependence upon the target values. Another possibility is to
discover the target values. We consider all possible assignments of the Si to clusters
indicated by labels Λ1, Λ2, ..., ΛM. For each permutation, we let Rj = ∪{Si | Si is
assigned to cluster j} and Xj = {µi | µi = E[f(Si)] and Si is assigned to Λj}. A cluster
is made up of similar subregions if the average values in each Xj are close to
one another. Let the target values be kj = E[Xj]. Thus, if we set Var[Xj] = E[(Xj −
E[Xj])

2] = E[(Xj − kj)
2], then a reasonable measure of the inhomogeneity of our

cluster assignment is Var[X1] + Var[X2] + + Var[XM]. An assignment that mini-
mizes this measure is an optimal (i.e., minimal variance) clustering for M labels.

4.2 THRESHOLDING

The threshold system is a nonlinear, but time-invariant operation on signals. In sig-
nal analysis applications, thresholding is used to separate the signal domain into

...
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regions according to the value that the signal assumes. Thresholding systems are a
principal tool for signal segmentation. Thresholding can be applied globally or
locally. 

4.2.1 Global Methods

For purposes of segmentation, one of the easiest techniques is to select a single
threshold value and apply it to the entire signal—global thresholding. For example,
for discrete signals, f(n), if T > 0, then M = {n: | f(n)| ≥ T} is the meaningful compo-
nent, and N = {n: | f(n)| < T} is the noise component of f(n), respectively. Of course,
with this division of the signal, the meaningful component will have some noise
present. These jagged, low-magnitude artifacts are sometimes called “fuzz,” “clut-
ter,” or “grass,” and they are unavoidable for real-world signals. More precisely, the
thresholding operation just picks out that part of the signal that contains something
more—something relevant to the analysis application—than just the background
noise.

The examples in the previous section showed that this technique works for signal
features that are suf$ciently distinct from the background noise. Dif$culties arise,
however, when the signal features of interest diminish over time, blend into the
noise, or contain oscillatory components. Sometimes supplemental signal $ltering
helps. Sometimes a more sophisticated labeling procedure, which imposes con-
straints on the segmentation, corrects any #aws in the preliminary partitioning of the
signal’s domain. In any case, the main problem is to determine the appropriate
threshold.

4.2.2 Histograms

There are several methods for $nding global thresholds. Simple inspection of source
signals may indeed suf$ce. Another method is to histogram the signal, producing a
density map of the signal values. Histograms count the number of values that fall
within selected ranges, or bins, over the signal domain. This is akin to segmentation,
but it partitions the signal’s range rather than its domain. The histogram is also an
approximation of the signal level probability density function. This observation is
the key idea in several of the optimal threshold selection techniques in the signal
analysis literature.

De$nition (Histogram). Let f be a discrete signal and let Π = {B1, B2, ...} be a par-
tition of the range of f. Then the Bk are bins for Ran( f ). The histogram of f with
respect to Π is de$ned by h(k) = #( f −1(Bk)). In other words, the value h(k) is the
cardinality of f −1(Bk)—the number of n ∈ Dom( f ) with f(n) ∈ Bk.

Even though the de$nition con$nes the histogram idea to discrete signals, it is
still a very general formulation. It allows for a countably in$nite number of bins as
well as for in$nite histogram values. It is more practical to restrict the domain of
discrete signals f(n) to an interval and specify a $nite number of bins. That is,
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suppose f(n) is a digital signal with q-bit values and that f(n) is of $nite support (i.e.,
f(n) = 0 outside some $nite interval, I). Then 0 ≤ f(n) ≤ 2q − 1. Let Π = {{k} | 0 ≤ k
≤ 2q − 1}. Then Π is a set of bins for Ran( f ), and h(k) = #({n ∈ I | f(n) = k}) =
#( f −1({k})) is a histogram for f. Since h counts domain elements only within I, h(k)
is a discrete signal with support in [0, 2q − 1]. 

Example (Digital Image Histograms). Many one-dimensional signal processing
and analysis tasks arise in computer vision. Histograms, in particular, are funda-
mental to early image analysis tasks. Figure 4.7 shows a gray-scale text image and
its histogram. Threshold selection is easy. But this is due to the close cropping of
white background from the black text. Including larger areas of background in the
image would result in an apparently unimodal histogram. A lesson in text image
analysis is that successful segmentation of words into letters depends on a prior suc-
cessful segmentation of the page into words or lines.

Fig. 4.7. A text image familiar to readers working in the United States. The gray-scale text
image (a) has been cropped to exclude surrounding background areas. In the histogram (b),
the modes correspond to the largely white and largely black picture elements. Inspection of
the histogram reveals a threshold (c), and using this threshold segments the text into purely
black letters and purely white background (d).
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It is important, however, to automate the histogram threshold selection procedure
for autonomous signal analysis systems. A valley-$nding algorthm is sometimes
effective. If the signi$cant and background signal values are both large in number
and different in magnitude, then two large modes appear in the histogram. Begin-
ning from the histogram midpoint, a reverse-gradient search across the histogram
should $nd the valley between the modes. Let h(k) be the signal histogram, T ∈
Dom(h), and search to another k as follows:

• If T−1 ∈ Dom(h) and h(T−1) ≤ h(T), then continue the search at T−1; other-
wise.

• If T+1 ∈ Dom(h) and h(T+1) ≤ h(T), then continue the search at T+1; otherwise.

• Accept the value of T last searched as the threshold.

There are several drawbacks to this procedure, and they are common to every type
of reverse-gradient technique. The algorithm stops at the $rst local minimum it
$nds. The simple valley-$nding technique has a direction preference, which may
not accord well with the signal analysis application. And there is no guarantee that
the $nal T the method selects does not lie in a local minimum interior to one of the
histogram’s modes. The next technique offers to improve the valley-$nding algo-
rithm by building a global cost function.

If we think of the histogram as a valley, possibly containing foothills, between
two mountain ranges, then selecting a threshold amounts to deciding how much
effort it takes to get over the mountains to one boundary or the other. At each point
on the histogram, we associate a cost of leaving the valley; it is the minimum of the
cost of reaching the $rst and the cost of reaching the last histogram bin. Of course,
only uphill walking requires effort, so we increment the separate costs to the far bins
only when the histogram is decreasing on the left and increasing on the right. A
point with maximal cost lies in the valley and is a feasible threshold for separating
the two modes. Less metaphorically, therefore, an algorithm for $nding a threshold
in a histogram h(k) is as follows:

(4.1)

(4.2)

Cost(t) = min{CostL(t), CostH(t)}, (4.3)

(4.4)

We call the above technique a global valley-$nding algorithm.
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Techniques such as the above algorithm (4.1)–(4.4) furnish useful thresholds for
many signal segmentation tasks. However, as the exercises show, it easy to $nd sig-
nals for which the algorithm fails. Furthermore, natural signals or those from engi-
neered systems may have meaningful regions that become lost when the histogram
procedure removes their time domain locality. The question therefore arises whether
there is some way of inproving the histogram estimate, or, more optimistically,
whether there is an optimal method for $nding a threshold for segmentation of an
image from its histogram.

4.2.3 Optimal Thresholding

In fact, there are several optimal methods for $nding thresholds from signal histo-
grams. Each such “optimal” method discovers the best threshold based on some
particular assumption about the histogram’s statistics. This is a natural thought,
since the histogram approximates the probability density function of the signal val-
ues. Accordingly, let us consider some techniques for optimal threshold selection.
We shall begin with work that is now classic and end with some quite recent
improvements in this thread of investigation.

4.2.3.1 Parametric Approaches. Suppose that we know the some of the sta-
tistical behavior of signals that arrive as inputs to an analysis application. For exam-
ple, we might have knowledge of the statistical distribution of signal values, along
with knowledge of the likelihoods that signal features have certain labels; and, per-
haps the most valuable information of all, we might even know the probabilities for
the classi$cation of signals. Such information on statistical parameters associated
with a signal generation mechanism is the basis for the parametric approach to sig-
nal threshold determination. 

Suppose that we know the probabilities that a discrete signal value is high-
magnitude (meaningful), PH, or low-magnitude (background, noise), PL. These are
called the a priori probabilities of meaningful and noise components, respectively.
For example, in a digital telephony system, DTMF pulses might occur at 10 Hz with
an average pulse width of 48 ms. Hence we assume a priori probabilities of PH = .48
and PL = .52. Some system designs rely on preliminary statistical studies to develop
a priori probabilites. Other strategies are adaptive, and the probabilities change
slowly while the system operates.

Segmentation errors are due to labeling a noise value as meaningful or a mean-
ingful value as noise. Thus, if a threshold T for a signal histogram produces errors
with probability E(T), then

E(T) = PHEL(T) + PLEH(T), (4.5)

where EL(T) and EH(T) are the probabilities of incorrectly labeling a signal value
as noise and as meaningful, respectively. To $nd the minimum labeling error, we
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differentiate (4.5) and solve the equation dE/dT = 0 for the threshold T:

(4.6)

Now, this scheme does not work at all unless we can $nd estimates for EL(T) and
EH(T). The idea is to approximate the distributions of signal values in the histo-
grams by standard statistical distributions. In the histogram of Figure 4.7, for
instance, the modes resemble normal (Gaussian) density functions. From the tuto-
rial on probability theory in Section 1.8, the Central Limit Theorem shows that
whatever the distributions we observe in a histogram, then (given their bounded
variance) the average of a great many of these random variables always approaches
a Gaussian distribution. Let us assume, therefore, Gaussian distributions of both
noise and meaningful signal. Thus, 

(4.7)

is the probability density function for the signal noise values, where µL and σL are
the mean and standard deviation, respectively. Similarly,

(4.8)

where µH and σH are the mean and standard deviation of the signal noise values,
respectively. Since noise values are on average less than meaningful signal values,
we know that µL < µH. From (4.7) and (4.8), it follows that 

(4.9)

and

(4.10)

Differentiating (4.9) and (4.10) with respect to T shows that dEL/dT = qH(T) and
dEH /dT = −qL(T). We substitute expressions for these derivatives—(4.7) and
(4.8)—into (4.6) to obtain

(4.11)
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We take the natural logarithm on both sides of (4.11), simplify, and reveal a qua-
dratic equation in T:

(4.12)

The quadratic equation (4.12) may have two, one, or zero solutions, depending
upon the statistics of the true signal and its noise component. It may be necessary to
compare the performance of two possible thresholds using (4.5). And any solution T
for (4.12) must be in the range of the signal in question. The exercises further
explore these ideas.

This procedure is due to Chow and Kaneko [17]. They applied the technique for
$nding the left ventricle cardioangiograms—x-ray images acquired after injecting a
contrast-producing dye into the heart. Some observations on the method are:

• The method requires a priori knowledge of the signal, namely the probabilities
of the true signal, PH, and of the background, PL.

• It is a parametric method, in that it assumes a particular model of the signal
histogram and then derives parameters that best describe the model.

• To discover the parameters of the sum of Gaussian distributions in Chow and
Kaneko’s approach, it is necessary to $t the model to the actual histogram data.

• Thus, parameter determination requires, for example, a least-squares $t of the
model to the data, and an accurate or numerically well-behaved convergence is
not guaranteed.

• Moreover, as our own examples show, the model (e.g., a sum of two normal
distributions) may not be appropriate for the signal histogram.

These are dif$culties with any parametric technique. The next section considers a
nonparametric strategy. It is an alternative that does not presuppose statistical distri-
butions for the signal values. Then, in Section 4.2.3.3 we will revisit parametric
methods. There we will examine a method inspired by information theory that
avoids the assumption of a priori probabilities.

4.2.3.2 Nonparametric Approaches. A nonparametric approach to thresh-
old determination assumes no knowledge of the statistical parameters that derive
from a signal’s values. Thus, nonparametric strategies include the valley $nding tac-
tics covered earlier. Valley $nding methods do not assume any statistical distribu-
tion of meaningful signal and noise values, even though these particular algorithms
are rather primitive. Methods can combine, too, for better performance. We can use
a global valley-$nding algorithm to split the histogram with a preliminary threshold,
T. We then determine the statistical parameters of the noise and true signal by sepa-
rate least-squares $ts to the histogram for t < T and for t > T. And, $nally, we apply
the Chow and Kaneko technique to improve the estimate of T. If the segmentation
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that results from the threshold selection is unsatisfactory, goal-directed strategies
are worth investigating. It may be possible to alter the preliminary threshold, recom-
pute the mode statistics, or choose another statistical distribution for modeling the
histogram.

Let us turn to a nonparametric approach for threshold determination and signal
segmentation proposed by Otsu [18]. Otsu hoped to avoid some of the dif$culties
we noted above. The idea is to select a threshold to segment the signal into labeled
regions of minimal variance in signal levels. Let PL(t) and PH(t) be the probabil-
ity of background values and true signal values, respectively. In Chow and
Kaneko’s approach, these were needed a priori; in Otsu’s algorithm, on the other
hand, these are approximated from the histogram and are functions of the thresh-
old value. We segment the signal values into two groups, according to the thresh-
old. And let us suppose, again without loss of generality, that background values
are low and meaningful signal values are high. Then, a measure of within group
variance is

(4.13)

where σL(t) and σH(t) are the standard deviations of the noise and the meaningful
signal, respectively. In order to $nd t so that (4.13) is minimized, we must also $nd
the statistical distribuitons of the low-level and the high-level regions of the signal.
Chow and Kaneko’s parametric approach assumes that the histogram is a sum of
two normal densities and that a priori probabilities are known.

Because it directly approximates the histogram statistics from threshold values
and does not make assumptions about a priori noise and true signal probabilities,
Otsu’s method is essentially unsupervised. Let us see how the method works. Sup-
pose that Ran( f ) ⊆ [0, N − 1], set Sk = {k} for 0 ≤ k < N, and suppose that Dom( f )
is $nite. Then {Sk | } is a partition of Ran( f ). De$ne

 (4.14)
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Let {ΛL, ΛH} be labels for the noise and meaningful regions of the signal. Then, the
conditional probability that f(n) = k, given that n has label ΛL and the threshold is t,
is P(k | ΛL) = pk/PL(t). Similarly, P(k | ΛH) = pk/PH(t). This observation permits us
to write down the following values for the parameters of the distributions compris-
ing the histogram:

 (4.17)

 (4.18)

 (4.19)

and

 (4.20)

Having found the histogram statistics that follow from each possible threshold
value, we are in a position to search over all threshold values for T which minimizes
the within-group variance. Speci$cally, by a exhaustive search we $nd the optimal
threshold T which satis$es

(4.21)

Otsu’s method merits consideration in applications where human intervention in
the signal analysis process must be minimized. It does not need a priori probability
estimates. It does not make any assumptions about the distribution of histogram val-
ues. Two problems weigh on the approach, however:

• It requires a search and recomputation of the statistics (4.17)–(4.20) over all
possible threshold values.

• There may not be a unique minimum in (4.21), and, unless some goal-directed
are imposed, there is no criterion for selecting one variation-reducing thresh-
old over another with the same effect.

The exercises explore some algorithm re$nements that reduce the recomputation
burden. But the second point is troublesome. If we knew the within-group variance
to be unimodal, then the search would always identify an optimal threshold.
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Experiments supported—and Otsu conjectured—variance unimodality within seg-
mented regions, but it does not hold true in general. In summary, nonparametric
strategies generally involve more computational tasks than their parametric cousins.
Thus, a preliminary survey of the statistical parameters of input signals to an analy-
sis application may be warranted. A study of the statistics within histograms, for
example, may prove the feasibility of the simpler parametric strategy.

4.2.3.3 An Information-Theoretic Approach. Attempting to avoid the
modality problems inherent to Otsu’s algorithm, Kittler and Illingworth [19]
approached the problem by trying to $nd the mixture of Gaussian probability distri-
butions that best matches the signal histogram for a given threshold value. For their
optimality criterion, they employed relative entropy [20, 21], an information-
theoretic tool, which we introduced in Section 1.8.4. They adopted a model of the
histogram as a scaled sum of two normal distributions. Thus, theirs is a parametric
approach akin to Chow and Kaneko’s; however, it avoids the supposition of a priori
probabilities for noise and meaningful signal segments, and therefore it represents a
signi$cant extension to the parametric method.

Following Kittler and Illingworth, let us suppose that pk is given by (4.14), and
qk is an alternative distribution. Then the relative entropy, I(p, q), of the distribution
pk with respect to qk is

(4.22)

where H(p) is the entropy of p,

(4.23)

It can be shown that I(p, q) ≥ 0 for all distributions p and q. Furthermore, I(p, q) = 0
if and only if p = q. Finally, let us note that log2(pk/qk) is the information increment,
given that the signal f(n) = k, that supports the histogram h(k) having distribution pk
instead of qk. Thus, the average information in favor of h(k) following distribution
pk instead of qk is I(p, q), from (4.22). If qk is a scaled sum of two normal distribu-
tions, then

(4.24)

where a1 and a2 are constants. Now, qk represents the histogram h(k) better when
signal values f(n) = k discriminate in its favor over pk; in other words, (4.24) should

− − −

= = =
−

=

= = −

=− −

∑ ∑ ∑

∑

1 1 1

2 2 2
0 0 0

1

2
0

( , ) log log log

,( ) log

N N N
k

k k k k k
kk k k

N

k k
k

p
I p q p p p p q

q

H p p q

1

20

1
( ) .

log

N

k
kk

H p p
p

−

=
= ∑

2 2 2 2
1 1 2 21 2( ) /(2 ) ( ) /(2 )

1 2

,
2 2

k k
k

a a
q e e− −µ σ − −µ σ= +

πσ πσ



298 TIME-DOMAIN SIGNAL ANALYSIS

be minimized for best representing h(k) with a sum of two Gaussians scaled by a1
and a2. Since H(p) depends only upon the given histogram, this means that

(4.25)

should be minimized.
We can minimize (4.25) by approximating the statistical parameters of the two

components of the distribution qk for each candidate threshold, 0 < t < N − 1. If t lies
between well-separated means, µ1 and µ2, then we should expect reasonable esti-
mates. Thus, for each such t, we take µ1,t = t/2 (the #oor, or integer part of t/2). Let
a1,t and σ1,t be the mean and standard deviation of {p1, p2, ... pt−1}, respectively.
We set µ2,t = (N − t)/2, and let a2,t and σ2,t be the mean and standard deviation of
{pt, pt+1, ..., pN−1}, respectively. Lastly, we substitute these values into (4.24) to
obtain

(4.26)

Then, the optimal threshold is T where 

(4.27)

for all t, 0 < t < N − 1.
An extensive literature on thresholding testi$es that no single technique guar-

antees correct signal segmentation for all applications. General surveys include
[22, 23]. Others concentrate on thresholding text [24, 25] or map [26] images.
Figure 4.8 shows a signal, its histogram, and the results of thresholding it using
the Otsu algorithm. Simple threshold selection methods and bottom-up signal
classi$cation strategies very often work just as well as the more sophisticated
techniques. When they fail, combining methods is fruitful. Many of the methods
we cover can be extended, often in straightforward ways, to multiple threshold
values. Such an approach looks for multiple thresholds and partitions the domain
into several regions according to signal magnitude. This is also called signal
quantization, since it maps signal values that spread over a wide range to a set of
signal values that vary signi$cantly less. The exercises explore this important
problem. More challenging applications require some top-down, goal-directed
mechanism for improving the thresholding, segmentation, and labeling of a
signal.

Finally, let us confess that we have neglected an important technique for signal
segmentation: local or adaptive thresholding. 
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4.2.4 Local Thresholding

The methods covered above, by more or less sophisticated means, attempt to arrive
at a global threshold value that will break down the signal. In many problems, the
threshold that successfully segments a signal in one area fails to perform adequately
in another area. But there is nothing in the global thresholding methods we have
detailed above—based on histogram analysis—that prevents them from being
applied to $nite regions of the signal domain. When we $nd and apply thresholds
locally within a signal’s domain, the technique is called local thresholding or—
since the threshold value adapts to the statistics or entropy of the signal locally—
adaptive thresholding.

It may be possible, and indeed it may be essential, to vary the threshold at differ-
ent places within the signal domain. This could be the case where the gain of the
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signal processing elements of the system varies. Falling signal strength could cause
meaningful components to be misclassi$ed as background noise. Thus, the thresh-
old should adapt to the overall magnitude of local regions of the signal. Varying
illumination, shading, and object re#ectance make adaptive thresholding vital to
many image analysis applications. Optical character recognition is but one example
[27]. In digital telephony, echo cancellation should be suspended during episodes of
double-talk, when both the near-end and far-end speakers are talking. But the
threshold level for deciding that the near-end speaker is talking needs to adapt to the
signal level of the far-end speaker; otherwise, cancellation may occur when both
speakers are talking softly or might not take place when the far-end speaker is very
loud. One approach is to declare double-talk when the the near-end signal level
s(n) > (1/2)max{x(n), x(n − 1), ..., x(n −N)}, for some N > 0. By comparing levels
over a whole range of recent far-end speaker voice magnitudes, the algorithm acco-
modates the unknown echo delay in the near-end circuit [28].

4.3 TEXTURE

Signal segmentation often requires that regions with certain regular patterns of sig-
nal values be distinguished from one another. It is not the absolute signal level—as
with the previous section’s principal concern, thresholding—but rather the repeti-
tive transition of the signal through some value range that is of interest in such an
application. This section covers methods for segmenting a signal into regions of dif-
ferent texture.

A threshold-based segmentation algorithm does not easily handle signals with
periodic components. Examples covered in the previous sections, such as the speech
fragments and the dual-tone multifrequency telephone system signaling pulses, are
cases in point. It is possible to apply a preliminary smoothing $lter to the values
prior to thresholding. This blends the oscillation together and reduces the average
value of the signal over a region, and then the thresholding operation properly iso-
lates the region of interest. Regions found by one threshold, T1, but not by another
threshold T2 ≠ T1 constitute a distinct texture $eld. Perhaps several $lters and
thresholds are necessary. As an alternative, we might consider segmenting the large-
magnitude signal regions from the low-magnitude signal regions and then estimat-
ing an overall distance between peaks or between troughs. Areas that show different
average intervals between crests or troughs represent different textured signal com-
ponents. We are faced with a number of algorithm design issues, though, whatever
approach we select. It is desirable to arrive at some indication of texture that pro-
duces a measure directly from the signal values, without preliminary $ltering fol-
lowed by thresholding.

Intuitively, the notion of texture incorporates the presence of smoothness or
roughness and the overall character of repetition and continuity as opposed to rup-
ture or discontinuity. One tool in wide use by computer vision researchers is a col-
lection of photographs of textures, originally intended for use by artists, the Brodatz
textures [29]. Many pioneering researchers in the $eld pursued the problem of
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texture characterization from psychological standpoint [30]. Some, in particular,
worked with the principles of Gestalt psychology in mind [31, 32], which stipulates
that pictorial features group together in such a way that the overall constellation
achieves a form which cannot be expressed by descriptions of the individual ele-
ments. These pictorial features include proximity, similarity, continuation, symme-
try, closure, and common fate.

Over the years, research efforts in texture analysis have been con$ned to three
broad categories: statistical, spectral, and structural. Statistical approaches apply
moment computations to the signal values: variance, skew, and kurtosis, for exam-
ple [33]. Spectral approaches analyze the signal by comparing it to sinusoidal or
Gabor elementary functions (Chapter 1) of varying frequencies [34]. And structural
approaches endeavor to $nd a set of texture elements or primitives that obey a
repeating pattern or a relational grammar in the signal [35].

Perhaps one of the most pressing problems is to de$ne the type of repetitive
structure, the texture regions in the signal that the application must $nd. Readers
might well suppose that here we would introduce a formal de$nition of texture; this
has, after all, been much the pattern of presentation so far. The U.S. industrial stan-
dard for surface metrology [36] de$nes it as repetitive or random deviations from
the nominal surface within the three-dimensional topography of the surface. One
might well object to this de$nition, since the terms “repetitive” and “random” con-
tradict one another! Unfortunately, there is no suitable formal de$nition for texture,
and there is no best approach to segmentation. The methods used are mostly ad hoc,
and, if there can be anything close to a de$nition of texture, it is whatever the cho-
sen method seems to $nd within the signal! The whole notion of what constitutes
texture and what does not is quite uncertain. Let us consider the principal methods
for segmenting signals according to their texture content in the next three sections.
Though we lack a precise formal de$nition of texture, each approach constitutes a
practical, working concept of what texture is—indeed it is whatever that method
$nds.

4.3.1 Statistical Measures

The statistical approach to texture segmentation and classi$cation is the most
widely used. However problematic the formal de$nition of texture is, methods to
characterize and quantify it are quite important in areas such as materials science
and remote sensing. In surface metrology, for example, many standard statistical
measures of one- and two-dimensional textures are in use. There are also a number
spectral measures of texture, and we will cover them, albeit brie#y, in the next sec-
tion. Some of these texture parameters are admittedly ad hoc, but they are neverthe-
less widely implemented and widely respected indications of the presence of texture
within signals.

4.3.1.1 Basic Measures. One way to measure the amount of variation in a sig-
nal is to average the departure of the signal from its mean over a $xed interval. This
statistical parameter of signal texture is the roughness average. It is the most widely
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used measure in the world, especially for manufactured surface characterization,
and it has been standardized in the United States and internationally [33, 36–38].

De$nition (Roughness Average). Let x(t) be an integrable analog signal; let [a, b]
an interval, a < b; and let µ be the mean of x(t) over [a, b]. Then the roughness aver-
age of x(t) over [a, b] is

(4.28a)

And if x(n) is a discrete signal, [a, b] is an interval, a < b, and µ is the mean of x(n)
over [a, b], then the roughness average of x(n) over [a, b] is

(4.28b)

When the interval over which we compute the roughness average is understood, it is
common to write this parameter as Ra(x). If the signal values are also unambiguous,
it is simply Ra.

The roughness average indicates a change in signal variation, but it fails to expli-
cate the distribution of crests, troughs, and transients in the signal. Somewhat more
sophisticated statistical measures can be of help. We can, for example, better under-
stand the distribution of signal values by applying a variance measure to the signal
regions of interest. As a texture measure, the variance is also a standard.

De$nition (Root Mean Square (RMS) of Roughness). If x(t) is an analog signal,
[a, b], is an interval, a < b, and µ is the mean of x(t) over [a, b], then the RMS of
roughness for x(t) over [a, b] is

(4.29a)

For analog signals, the equivalent de$nition is

(4.29b)

It is common to omit the signal and region from the speci$cation of Ra and Rq, since
the problem context often makes it understood. 

Example (Surface Pro$lometers and Atomic Force Microscopes). Let us look
at the segmentation of surface pro$les by texture characterization. Instruments such
as pro$lometers and atomic force microscopes (AFM) acquire one-dimensional
(and in many commercial instruments, two-dimensional) height pro$les of a sur-
face. Surface texture measurements from such pro$les are critical for the control
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and diagnosis of the fabrication processes. These measures include such aspects of
surface texture as $ne-scale roughness, more widely spaced regularities called wav-
iness, and directional features called lay.

The roughness average is by far the most widely computed and reported in man-
ufactured surface characterization. Ra detects general signal pro$le variations, and a
signi$cant change over one part of the signal domain indicates a fundamental
change in the process that produces the signal. Nevertheless, it has limitations. To
wit, the roughness average parameter fails to detect the presence or absence of
widely separated signal transients. Ra completely overlooks subpatterns of texture.
(Structural techniques are better suited to this type of problem; see Section 4.2.3.3.)
The intervals between texture elements are also invisible to Ra. Some help in char-
acterizing surface texture comes from the Rq parameter. It measures the distribution
of deviations from the mean of the signal, so when it is large, it is an indication that
the rough features of the signal have wide magnitude variability.

Other texture segmentation methods rely on peak-to-valley measurements within
signal regions. Let us consider a few of these next and then proceed to some texture
measures that arise from applying statistical moment ideas to a signal’s values.

De$nition (Rt, Rz). The total indicated reading over [a, b], Rt, is the difference
between the signal maximum and signal minimum over the interval. Thus, for an
analog signal, x(t), we de$ne

Rt(x(t), [a, b]) = max{x(t): t ∈ [a, b]} − min{x(t) | t ∈ [a, b]}. (4.30a)

The analog for a discrete signal, x(n), is

Rt(x(n), [a, b]) = max{x(n): t ∈ [a, b]} − min{x(n) | t ∈ [a, b]}. (4.30b)

The $ve-point peak parameter, Rz, is 

(4.31)

where pk ≥ pk+1 are the $ve highest values x takes on [a, b], and vk+1 ≥ vk are the
$ve lowest values x takes on [a, b].

These parameters $nd application in diverse disciplines. Seismologists use the
total indicated reading parameter to calculate earthquake magnitude according to
the Richter scale.3 Let s(t) be the seismograph needle’s deviation from the center-
line of a paper strip chart at time t during an event. If the epicenter is 100 km

3Charles F. Richter (1900–1985), a seismologist at the California Institute of Technology, established the
popular logarithmic scale for earthquake magnitude in 1935.
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away from the instrument, then the seismologist computes the Richter magni-
tude, ML = log10[Rt(s)]. The problem with the total indicated reading as a mea-
sure of texture is that it is sensitive to impulse noise in the signal. The Rz
parameter is one of several that surface metrologists, for example, use to avoid
this dif$culty. An even larger average is tempting in (4.31); this provides rough-
ness estimates with better immunity to occasional burrs and pits that blemish a
generally good surface.

4.3.1.2 Higher-Order Moments. Further texture analysis measures proceed
from an analysis of the signal using statistical moments. Following our histogram-
ming discussion, suppose that we can obtain the discrete probability density func-
tion for the values of x(n): pk = P[x(n) = k]. For example, let x(n) be a digital signal
with L ≤ x(n) ≤ M for a ≤ n ≤ b, where a < b. We form the histogram h(k) = #({n ∈
[a, b] | f(n) = k}) for each k ∈ [L, M]. If M > L, we then set pk = h(k)/(M − L); other-
wise, pk = 1. Then pk is a discrete probability density function. The mean of x on [L,
M] is µ = (LpL + (L+1)pL+1 + + MpM). Then the variance, σ2, skew, µ3, and
kurtosis, µ4, are, respectively, as follows:

(4.32)

(4.33)

(4.34)

The Rq texture parameter is a variance measure. The skew measures the asymme-
try of the values about the signal mean. The kurtosis measures the relative heavi-
ness of the outlying signal values within the texture region. Some authors de$ne
kurtosis by subtracting three from (4.34); this ensures that a Gaussian distribution
has zero kurtosis, but it does not affect the measure as a tool for signal segmenta-
tion.

These texture parameters supply some of the information missing from the
roughness average $gure. To use any of these parameters as a basis for signal seg-
mentation, we compute the parameter over selected regions of the signal domain
and label the regions according to the parameter’s numerical value. A more infor-
mative segmentation of the signal is possible by calculating several of the parame-
ters and assigning labels to the regions that represent combinations of signi$cant
texture parameters.

Notice that there is a distinct difference between the application of these texture
measures and the previous section’s thresholding algorithms to segmentation prob-
lems. When thresholding, the segmentation regions were discovered, signal value
after signal value, by applying the thresholding criterion. On the other hand, to
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apply the texture measures, an interval or region of the signal domain must be used
to calculate the statistical quantity, Ra or Rq, for example. Thus, a texture segmenta-
tion commonly starts with a preliminary partition of the signal domain into inter-
vals, called frames, with texture measures assigned to the intervals. The bounds of
these preliminary texture regions may be adjusted later with split and merge criteria,
as we considered in Section 4.1.4. For precise registration of texture areas, a data-
driven alternative exists. An application may apply texture measures to frames of a
minimum size, say N > 0. After applying the measure to region [a, b], where b − a =
N, the statistics are compared to one or more threshold values. If [a, b] contains tex-
ture, then the measures are applied to the larger region [a, b + 1]; otherwise the
frame becomes [a + 1, b + 1] and texture $nding continues. Each time a region con-
tains texture, the application attempts to expand it on the right, until at some itera-
tion, say [a, b + k + 1], the texture indication test fails. Then [a, b + k] is declared to
be texture-laden, and processing continues with the next minimal frame [b + k + 1,
b + k + N + 1]. Albeit computationally expensive, this scheme avoids any top-down
split and merge procedures.

4.3.1.3 Co-occurrence Matrices. One signi$cant drawback to the above
methods for texture segmentation is that they utilize no distance measures between
intensity features within the texture. The moment parameters, such as Rq, do incor-
porate a notion of breadth of variation. In manufactured surface characterization, Rq
is often touted as an alternative to the widely quoted Ra value. Nevertheless, signal
and image analysts reckon that the most powerful techniques are those that compute
statistics for the distribution of signal values separated various time intervals [39].
The next de$nition [40] incorporates the distance between texture highlights into
our statistical indicators of texture.

De$nition (Co-occurence Matrix). Let x(n) be a digital signal; let L ≤ x(n) ≤ K for
some integers L, K and for a ≤ n ≤ b; and let δ be a time interval. Then Mδ =
[mi,j]N×N is the N × N matrix de$ned by mi,j = #{(x(p), x(q)) | p, q ∈ [a, b], x(p) = i
and x(q) = j, and δ = |p − q|}. The co-occurrence matrix for x(n) and time interval δ
is de$ned Pδ = [mi , j /Nδ], where Nδ = #{(x(p), x(q)) | p, q ∈ [a, b] and δ = |p − q|}.

Thus, mi,j contains a count of the number of pairs (p, q) for which x(p) = i, x(q) =
j, and p and q are time δ apart. Pδ estimates the joint probability that two signal will
take values i and j at a displacement δ apart. Also, it is not necessary to restrict x(n)
to be a digital signal; as long as its range is $nite, the co-occurrence matrix can be
de$ned.

Example (Co-occurrence Matrix). Let x(n) = [..., 0, 1, 2, 1, 1, 2, 0, 0, 1, 0, 2, 2, 0,
1, 1, 0, ...] be a digital signal, and suppose we compute the co-occurrence matrices
for δ = 1, 2, and 3 within the interval 0 ≤ n ≤ 15. This signal is roughly sawtooth
in shape, with the ramps positioned three time instants apart. We compute the
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co-occurrence matrics, P1, P2, and P3 as follows:

(4.35a)

(4.35b)

(4.35c)

where N1 = 15, N2 = 14, and N3 = 13. Notice that the values are spread out in M1
and M2, the main diagonal values are relatively small, and there are few outliers. In
contrast, M3 contains two large values, several small values, and a maximal proba-
bility on the diagonal. If the structures within x(n) are square pulses rather than
ramps, the matrices M1, M2, and M3 are even more distinct. The exercises explore
these ideas further.

To use the co-occurrence matrix as a texture segmentation tool, the time interval
δ must be selected according to the size and spacing of the signal regions. Suppose,
for instance, that the signal x(n) contains high-magnitude regions approximately ∆
time instants apart and that we calculate the matrix Pδ, where δ is smaller than ∆. If
|p − q| < δ, then the values x(p) and x(q) are likely to fall into the same region. Hence
Pδ entries on the diagonal should be large. Large values do not concentrate on Pδ’s
diagonal when δ is smaller than the typical region size. If a textured signal contains
features of two sizes, δ and ε, then we should expect to $nd matrices Pδ and Pε to be
largely diagonal. In general, many values of δ are unnecessary for good texture seg-
mentation results.

The idea of co-occurrence measures in texture analysis dates back to the early
work of Julesz [41]. The co-occurrence matrix entry on row i and column j, Pδ(i, j),
gives the probability that a sampling of a signal value and its neighbor δ time instants
away will have values i and j. It is also possible to sample a point and two others, δ1
and δ2 time instants away, to generate third-order co-occurrence statistics. Similarly,
fourth- and high-order co-occurrence measures are possible. Julesz conjectured that
humans cannot distinguish textures that contain identical $rst- and second-order co-
occurrence statistics; thus, visual texture $elds may differ in their third- or higher-
order statistics, but this effect is too subtle for the eye–brain system to detect. Julesz’s
thesis was tremendously attractive to computer vision researchers. It promised to
bound the ever-growing number of texture measures by invoking a discriminability
criterion based on human pattern detection performance. Possibly, too, researchers
could anchor a de$nition of texture itself in the second-order co-occurrence statistics.
But counterexamples were soon found. Julesz and other investigators were able to
synthesize texture $elds, which humans could distinguish, that had different third- or
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fourth-order co-occurrence statistics but identical $rst- and second-order statistics
[42]. Under further scrutiny, the synthesized counterexamples themselves were
shown to have different local and global co-occurrence statistics. The human visual
system excels at perceiving distinct local image characteristics and can group local
variations into global patterns over wide areas of the visual $eld. This causes many
visual illusions. Thus, persons viewing the counter-example textures were able to dis-
criminate regions within them, even though the global low-order co-occurrence sta-
tistics were identical. Ultimately, it appears that something very close to the Julesz
thesis holds true and that humans cannot distinguish textures that locally have the
same $rst- and second-order co-occurrence statistics [43].

However powerful the method of co-occurrence matrices, it evidently turns an
analysis problem of a one-dimensional entity—the signal—into the two-dimensional
analysis problem of analyzing the co-occurrence matrix. Hence, the key to achieving
any analytical power from the method is to keep the co-occurrence matrices and their
number small. For developing texture descriptors, researchers have suggested a wide
variety of parameters obtained from the co-occurrence matrices [44, 45]. Brie#y, let
us review some of the most important ones.

De$nition (Co-occurrence Matrix Texture Descriptors). Let x(n) be a digital
signal; L ≤ x(n) ≤ K for some integers L, K and for a ≤ n ≤ b; let Pδ be the co-occur-
rence matrix for x(n) with time interval δ; and denote the element at row i and col-
umn j of Pδ by Pδ(i, j). Then, the angular second moment, or energy uniformity, Ta;
contrast, Tc; inverse difference moment, Td; entropy, Te; and maximum, Tm, descrip-
tors are as follows:

  (4.36)

 (4.37)

(4.38)

(4.39)

Tm(δ) = max{Pδ(i, j) | L ≤ i, j ≤ K}. (4.40)

These values are easy to compute and their magnitudes shed light on the nature
of the co-occurrence matrix. Note that Ta is smaller for uniform Pδ values and larger
for widely varying co-occurrence matrix entries. Low-Tc and high-Td descriptors
indicate heavy groupings of values on Pδ’s main diagonal. The entropy descriptor is

2( ) ( , ),
K K

a
i L j L

T P i jδ
= =

δ = ∑ ∑

2( ) ( ) ( , ),
K K

c
i L j L

T i j P i jδ
= =

δ = −∑ ∑

2

( , )
( ) ,

1 ( )

K K

d
i L j L

P i j
T

i j
δ

= =
δ =

+ −
∑ ∑

2( ) ( , ) log ( , ),
K K

e
i L j L

T P i j P i jδ δ
= =

δ = − ∑ ∑



308 TIME-DOMAIN SIGNAL ANALYSIS

large when Pδ values are relatively uniform.  The maximum value can be thresh-
olded, or compared to (Ta(δ))1/2, to detect extreme co-occurrence matrix entries. It
may also be useful to study the behavior of the descriptors when the time interval δ
varies [46].

Now let us turn to another method for texture segmentation. The descriptors it
generates turn out be useful for extracting different sizes of repetitiveness in a signal.

4.3.2 Spectral Methods

The spectral approach to texture segmentation applies to textured signals that are
very periodic in nature.  The analysis tool used in spectral approaches to texture is
consequently the sinusoids, or, more generally, the complex exponential, ex+jy.
Rudimentary statistical measures of texture, such as the roughness average, Ra, do
not adequately account for the presence of different periodic trends in the signal.
For instance, a broad undulation may be modulated by a more frequent periodic
phenomenon—a ripple on top of a wave.  In machined surface characterization, the
term for the broad undulations is waviness.  Metrologists distinguish waviness from
roughness, which is a variation on a $ner scale.  But this signal phenomenon is
hardly con$ned to the science of characterizing manufactured surfaces.  The next
example explores this type of textured signal in the context of biomedicine.

Example (Waviness). Figure 4.9 shows some biomedical signals taken from
an anesthetized dog:  a blood pressure trace (in millimeters of mercury) and an
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Fig. 4.9. Examples of short-term and long-term periodicities in signals. Panel (a) shows the
electrocardiogram from an anesthetized dog. In panel (b) an anesthetized dog’s left ventricu-
lar blood pressure indicates a short-term variation for the heart contraction and a long-term
undulation due to the dog’s breathing. This signal has a distinct waviness trend, a long-term
undulation, which contrasts with the short-term pressure cycles.
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electrocardiogram (dimensionless units).  The left ventricle pressure is oscillatory,
and—as expected—the histogram has two peaks, or modes, corresponding to the
high- and low-pressure intervals within the heart beat. It is easy to identify a thresh-
old that $nds the individual pulses, but isolating the gentle waviness that underlies
their progression is not as easy. Furthermore, the moment-based statistical methods
we considered above do not help to identify the waviness. Such different periodici-
ties in signals occur throughout signal processing and analysis. Problems in bio-
medicine, digitized speech, industrial control, vibration analysis, remote sensing,
shape recognition, and, of course, surface characterization provide many other
examples. We need to discover, for such applications, a method distinguish between
the short-term periodic features from the long-term undulations in a signal. In sur-
face characterization, the minute variations indicate the roughness of a signal
pro$le, and large-scale, broad repetitions show the presence of waviness.

The sinusoidal functions naturally spring to mind in problems involving short-
term and long-term periodicity. Not surprisingly, in order to segment signals con-
taining both a waviness and a roughness character, signal analysts generally
employ spectral measures. A comparison of the signal with sinusoids of varying
frequency is the natural approach. This is the basis of the spectral method. To com-
pare a signal to a sinusoid, we might proceed as with normalized cross-correlation,
by taking the inner product of a portion of the signal with a sinusoidal function. In
fact, a family of sinusoids of different frequencies can encompass the range of $ne
texture, medium texture, and waviness that a signal contains. This is called a spec-
tral strategy, because in its fullest application it can expose an entire range, or spec-
trum, of periodicities in a signal’s values. The foundation of this approach was laid,
in fact, by our study of Hilbert spaces in Chapters 2 and 3. Our exploration of spec-
tral approaches to signal texture will be introductory only. In fact, research indi-
cates that statistical methods—and the co-occurrence matrix technique in
particular—hold sway over spectral methods [39, 44, 47]. Notwithstanding the
superiority of statistical approaches, there is one application for which spectral
methods offer an intuitive and powerful approach to texture characterization: the
identi$cation of different periodicities—the roughness from the waviness—within
a signal.

Let us contemplate the problem of discovering the various periodicities in a dis-
crete signal x(n) over an interval [a, b] ⊂ Z. Let us assume that a = 0 and b = N −1,
thus translating our signal to align the beginning of the texture region of interest
with the origin. Trigonometric functions, especially the sinusoids, are the natural
tool with which to test x(n) on [0, N − 1] for periodic behavior. We know from the
introduction to discrete signal frequency in Chapter 1 that the signals cos(2πnk/N),
for k = 0, 1, ..., N/2, range from the lowest (k = 0) to the highest (k = largest integer
less than N/2) possible frequency on [0, N − 1]. The inner product 〈x(n), cos(2πnk/
N)〉 of the signals x(n) and cos(2πnk/N) restricted to [0, N − 1] measures of similar-
ity of x(n) to the sinusoid cos(2πnk/N). It is convenient to assume that x(n) = 0 out-
side [0, N − 1]. Thus, those values of k over the range 0, 1, ... , N/2, for which
〈x(n), cos(2πnk/N)〉 has a relatively large magnitude, indicate the presence of a
signi$cant periodicity in x(n) of frequency ω = 2πk/N radians per sample. Let’s
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capture this concept by de$ning the periodicity descriptors Xc(k) for a signal x(n)
de$ned on [0, N − 1]:

(4.41)

Note that for values of k = N/2 + 1, N/2 + 2, ..., N − 1, the descriptors repeat in
reverse order; speci$cally, Xc(N − k) = Xc(k) for k = 1, 2, ..., N/2. We can also
de$ne periodicity descriptors based on the sine function, 

(4.42)

In (4.42) we see that Xs(N − k) = −Xs(k) for k = 1, 2, ..., N/2, so that for k > N/2,
the Xs(k) descriptors may be useful for detecting sign-inverted periodic signal com-
ponents also.

One dif$culty with the periodicity descriptors is that we do not in general know
whether x(n) has a maximal value at n = 0 as does cos(2πnk/N). In other words, the
texture $eld may be shifted so that it does not align with the sinusoids used to com-
pute the inner product periodicity measures. Suppose we shift x(n) values in a circu-
lar fashion; thus, we let y(n) = x((n+p) mod N). We desire that our texture
descriptors respond equally well to y(n) and x(n). That is, the descriptors should
support some kind of translation invariance. Equivalently, we can shift the sinusoids
by amount p and compute new descriptors, Xc,p(k) = 〈x(n), cos(2πn(k−p)/N)〉. This
accounts for possible translation of the texture in the source signal x(n), but now we
have quite a large computation task. We must compute Xc,p(k) for all possible off-
sets p and all possible frequencies 2πk/N. Can we relate the shifted descriptor,
Xc,p(k), to the original Xc(k) descriptor values in such a way that we avoid computa-
tion of Xc,p(k) for multiple offsets p? We calculate, 

(4.43)

which shows that the descriptor Xc,p(k) depends not only on Xc(k) but on the sine-
based descriptors as well. In other words, as the repetitive pattern of x(n) shifts, both
the cosine-based descriptor and the sine-based descriptor vary.

It turns out that a translation-invariant descriptor arises by combining the cosine-
and sine-based descriptors into the exponential exp(j2πnk/N) = cos(2πnk/N) +
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jsin(2πnk/N). Equation (4.43) already hints of this. We form the inner product of
x(n) with exp(j2pnk/N), as above, to get an exponential-based descriptor, X(k):

(4.44)

Now let’s consider computing X(k) values for a translated texture y(n) = x((n + p)
mod N), or, equivalently, by computing the inner product, Xp(k) = 〈x(n),
exp(2πjn(k−p)/N)〉:

(4.45)

Now we have |Xp(k)| = |exp(2πjpk/N)X(k)| = |X(k)|. In other words, we have
shown the following:

Proposition (Translation Invariance of |X(k)|). The complex norm of the period-
icity descriptor, |X(k)|, is invariant with respect to the modulo-N translation of the
textured source signal, x(n), de$ned by (4.44) on [0, N−1].

This, then, is the tool we need to isolate periodic components within textures
according to their different frequencies.

The values X(k) in (4.44), for k = 0, 1, ..., N−1, represent the discrete Fourier
transform of the signal x(n) on [0, N−1]. We know the signals X(k) already from
Chapter 2. There we considered them, after a suitable normalization, as an orthonor-
mal set on [0, N−1], {ek(n) | 0 ≤ k ≤ N−1}:

(4.46)

where u(n) is the unit step signal. It is common to call the values X(k) = 〈x(n),
exp(2πjnk/N)〉 the Fourier coef$cients of x(n), even though, precisely speaking, we
need to normalize them according to the inner product relation on an orthonormal
set (4.46). Readers must pay close attention to the de$nitions that textbooks pro-
vide. When discussing Hilbert space decompositions, textbooks usually normalize
the coef$cients according to (4.46), whereas ordinarily they omit the N−1/2 factor in
the DFT’s de$nition.
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The theory and applications of the DFT will comprise much of Chapters 6 and 7.
Let us content ourselves here with two applications of spectral texture analysis: $rst,
to the biomedical signals of Fig. 4.9 and, second, to digitized speech segmentation
and recognition. Figure 4.10 shows the results of applying the spectral texture
descriptors |X(k)| to biomedical signals.

Example (Biomedical Signal Frequency Analysis). Consider the ECG signal for
the anesthesized dog.

Application (Voiced versus Unvoiced Speech Segmentation). This example con-
tinues the discussion of speech phoneme segmentation that we began in Section
4.2.2 with voiced and unvoiced consonants. Linguists typically classify speech
events according to whether the vocal cords vibrate during the pronunciation of a
speech sound, or phoneme (Table 4.3). If the vocal cords do vibrate, then there is
said to be a voiced speech event. If there is no vocal cord vibration, then the pho-
neme is unvoiced. It is also possible that a speech signal contains no speech sound;
thus, it is simply background, or noise. One approach to segmenting speech
classi$es its portions as voiced (V), unvoiced (U), or noise (N). For example, a dig-
ital recording of the English phrase “linear $t” begins, divides the two words, and
ends with noise regions. The most apparent phonemes, then, are /l I n i ∋ f I t/, of
which /f/ and /t/ are unvoiced. A preliminary segmentation, Σ0, by voiced/unvoiced/
noise classi$cation is (N, V, N, U, V, U, N), respecting the stipulation that no adja-
cent regions have the same type. Actually, there are a number of unvoiced events
that only become apparent when the speech signal is digitized and spread out over
time. One may $nd, for example, momentary unvoiced aspirations and even periods
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Fig. 4.10. Biomedical signal waviness extraction. The spectral method helps to identify the
two sinusoidal components of the ECG signal (a). The main periodic trend is just below
5 Hz, and the waviness is the small peak below 0.5 Hz (b).
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of noise, surrounding the voiced segments. A re$ned segmentation, Σ1, therefore
supplies: (N, U, V, U, V, U, V, U, V, U, V, U, N, U, V, U, N). In practical speech rec-
ognition applications, surprisingly, this segmentation is too crude! Subtle periods of
background noise, with no voiced or unvoiced sound present, intrude into spoken
words. A modern, sophisticated segmentation algorithm $nds that several N regions
split the unvoiced regions U in the re$ned segmentation above. This means that sev-
eral of the unvoiced intervals have much shorter time extents than Σ1 would indicate.
The bene$t is that a higher-level interpretation algorithm may be better able to
recognize the brief U boundaries of the V segments as trailing and leading aspira-
tions instead of, for example, unvoiced fricatives. Figure 4.5 illustrates such a
speech segmentation example. We shall continue to expose the intricacies of natural
language interpretation is this and the remaining chapters. Chapter 9, in particular,
introduces several frequency-domain signal analysis tools for speech interpretation.

TABLE 4.3. More Complete Table of Phonemes and Examples from 
American English [12].a

Phoneme Example Class  Phoneme Example Class

/i/ even Front vowel  /I/ signal Front vowel
/e/ basis Front vowel  /ε/ met Front vowel
/ae/ at Front vowel  /a/ father Mid vowel
/Λ/ but Mid vowel  /⊃/ all Mid vowel
/schwa/ signal Mid vowel  /u/ boot Back vowel
/o/ boat Back vowel  /U/ foot Back vowel
/I/ roses Back vowel  /∋/ Hilbert Mid vowel
/aw/ down Dipthong  /ay/ cry Dipthong
/⊃y/ boy Dipthong  /y/ yet Semivowel glide
/w/ wit Semivowel liquid  /r/ rent Semivowel glide
/l/ linear Semivowel liquid  /m/ segment Nasal consonant
/n/ nose Nasal consonant  /η/ Nguyen Nasal consonant
/p/ partition Unvoiced stop  /t/ fit Unvoiced stop
/k/ kitten Unvoiced stop  /b/ bet Voiced stop
/d/ dog Voiced stop  /g/ gain Voiced stop
/h/ help Aspiration  /f/ fit Unvoiced fricativ
/θ/ thanks Unvoiced fricative  /s/ sample Unvoiced fricativ
/sh/ shape Unvoiced fricative  /v/ vector Voiced fricative
/∂/ that Voiced fricative  /z/ zoo Voiced fricative
/zh/ closure Voiced fricative  /ch/ channel Affricate
/j/ Jim Affricate  /?/ no sound Glottal stop

aVowels are voiced, and they break down further into front, mid, and back classifications, according to th
location of the tongue’s hump in the mouth. Vowels typically consist of two oscillatory components, call
formants. Other essentially vowel-like sounds are the dipthongs and the semivowels. The glottal stop is
special symbol that indicates a momentary suspension of motion by the vocal cords (glottis). For exampl
without the /?/ symbol, the phoneme sequences for “I scream” and “ice cream” are identical. As big as it 
this table is far from panoramic; it offers but a glimpse of the natural language segmentation problem.
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Vowels contain two frequency components called formants. It is hard to adapt
the level-based approach of thresholding to these oscillatory parts of signals. Also,
the statistical measures of texture do not account well for the time intervals between
transitions, and yet this is the most important aspect of signal frequency. What we
need to do is to discover some way to extract the degree of similarity between some
raw, noisy signal and a pure sinusoid.

4.3.3 Structural Approaches

When the precise description of local texture elements is important, then the struc-
tual approach to texture segmentation comes to the fore. The statistical and spectral
methods provide numerical estimates for the amount and distribution of variability
within signal regions. Simple statistical measures lose the repeating parts of the sig-
nal in the sums and integrations of their mathematical implementation. The co-
occurrence matrix method retains this information when co-occurrence matrices are
computed for several values of the time offset, δ. The structural approach, on the
other hand, relies on texture descriptors that provide a model of a local pattern that
is replicated, in one or another degree, at one or another locations across the domain
of the signal. Thus, the structural approach has a pattern recognition #avor. We need
to develop some basic tools for structural pattern recognition it order to cover this
approach adequately, and we will do this later in Section 4.7.

4.4 FILTERING AND ENHANCEMENT

This section considers some supplementary operations that can greatly improve the
performance of low-level segmentation processes before the thresholding operation:
convolutional smoothing, median $ltering, morphological $ltering, and histogram
enhancement.

4.4.1 Convolutional Smoothing

Let us here expand upon the idea of $ltering a signal before it passes to a threshold
operation. The purpose of preliminary $ltering is to prevent labeling mistakes
before they happen. Three types of $lters are in common use for this purpose: con-
volutional $lters of the type we covered in Chapters 2 and 3, for discrete and analog
signals, respectively; median $lters; and morphological $lters.

We noted by example in the previous section that oscillatory areas of signals may
contain mixtures of low- and high-magnitude signal values. Such a region may be
meaningful signal in its totality, and for many applications it is not correct to sepa-
rately segment the low-magnitude regions and label them as background. A linear
smoothing $lter proved useful for this purpose. Chapter 2 introduced the moving
average system given by

(4.47)1
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It is also called a box $lter, from the shape of its impluse response. This linear,
translation-invariant (LTI) system averages the input signal values within a window
of length 2N+1 around each x(n). Its effect on a oscillatory signal region, [a, b], is
to blur the high and low signal values together. Thus, for some threshold T > 0, the
system’s output, y(n) = (Hx)(n), has magnitude |y(n)| ≥ T within [a, b]. It is also pos-
sible to smooth using an in$nite impulse response $lter. For example, y(n) = ay(n −
1) + x(n), with impulse response h(0) = 1, and 0 < a < 1 is a possibility (Section
2.4.2). Smoothing with LTI systems blends oscillations together into more blob-
like, easily thresholded regions. It also reduces background noise when the signal of
interest is of relatively low magnitude.

The moving average system of (4.47) is not the only $lter available for smooth-
ing signals. One problem that readers may already note (see Chapter 2) is that this
$lter is not causal. So it cannot be applied to a data stream as values arrive in real
time. It also has sharp edges where its support ends, which, for some types of input
signals, causes its output to change abruptly. We will $nd in Chapter 7 some prob-
lems with how this $lter treats frequencies inside the input signal; in fact, this moti-
vates us to search for alternatives. A causal box $lter averages only the current and
some previous samples: y(n) = (1/3)[x(n) + x(n−1) + x(n−2)], for example.

Noise in signals varies widely. It is usually a detriment to signal quality; but in
some interesting cases, it is actually helpful. In digital telephony, for example, com-
fort noise is generated and automatically inserted into the line during episodes when
both talkers are quiet. The reason for this is that silent periods can be used to carry
other voices. The telephone company’s central of$ce multiplexing equipment rou-
tinely disconnects the channel, $lls it with other voice traf$c, and swiftly provides
an alternative link when someone speaks. But it is disconcerting to almost everyone
to hear a silent line. Realizing this, telecommunication engineers design the multi-
plexers to inject a small amount of white noise onto the two ends of the interrupted
link. Since the synthetic noise level is matched to the background noise present
while the conversants speak, the change is imperceptible. Another example of the
value of noise synthesis is in active noise cancellation.

Now let us return to our discussion of noise removal. We consider a $lter that has
been widely used for noise mitigation—the discrete version of the Gaussian. This
$lter has the impulse response

(4.48)

where τ > 0 is some sampling interval. This $lter emphasizes the signal values near
the value, x(n). Thus, it differs from the moving average $lter, which considers all
quantities equally valuable in a neighborhood [x(n − N), ... , x(n + N)] around x(n).
We shall investigate this type of $lter carefully in the last section of this chapter. For
pattern recognition applications based on signal shape over multiple scales and con-
volutional $ltering, there are strong theoretical reasons for using Gaussian $lters
above all others.
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4.4.2 Optimal Filtering

It is also possible to derive $lters that are, in some sense at least, optimal for remov-
ing the kind of noise that affects input signals to an application. Here, we will out-
line two approaches for designing such $lters: One method uses least-squares
principles [48–50], and another involves constrained minimization—a Lagrange4

multipliers approach [51]. Time-domain methods for noise removal, such as these,
generally depend upon statistical information about the signal values.

We can pose the search for an optimal noise removal $lter as a least-squares
search. Suppose that the noise removal $lter H is linear and translation-invariant.
Then the Convolution Theorem for LTI Systems (Chapter 2) instructs us that y = Hx
is given by convolution of h(n) = (Hδ)(n). We assume a real-valued, noisy input sig-
nal x(n). Let us further seek a $nite impulse response (FIR) $lter, of width M =
2p + 1, supported on [m − p, m + p], and ask what $lter coef$cients h(n) give the
best estimate of x at time instant p: y(p) = (Hx)(p). We view the FIR $ltering opera-
tion as a matrix operation, Ah = b, where the rows of matrix A are noisy samples of
the input signal x(n) from n = m − p to n = m + p; h is a column vector with entries
h(−p), h(−p + 1), ..., h(p); and b is a row vector with FIR $ltered values of the input.
Suppose we $lter N sets of noisy input windows of signal x(n) around n = p, (a1,1,
a1,2, ..., a1,M), (a2,1, a2,2, ..., a2,M), ..., (aN,1, aN,2, ..., aN,M), with the $lter h(n). Sup-
pose further that we know the true value (i.e., before corrupted by noise) of the input
signal for each sample set at n = p; call them b1, b2, ..., bN. Then we are in fact ask-
ing for the vector h for which the matrix product Ah is the best approximation to the
ground truth vector b, representing uncorrupted input signal values x(n) at n = p.
Our quest for a best noise removal $lter reduces to a problem of $nding the column
vector h, given a matrix A, which upon matrix multiplication Ah is closest to known
signal values b. The theory of this problem is easiest if we consider the closest
approximation to b in vector norm: we need to minimze ||Ah − b||2. In other words,
the best $lter problem reduces to a classic least squares minimization problem. The
following theorem—mainly from linear algebra and numerical analysis [48, 50, 52],
but drawn with a signal processing twist—summarizes this unconstrained search for
the best FIR noise removal $lter.

Theorem (Least-Squares Optimal Noise Removal Filters). If the vectors x, y,
and b are real and the matrices A and M are real, then with the above premises and
notation, the following statements are true:

1. If the columns of matrix A are linearly independent, then ATA is symmetric
and positive de$nite: (ATA)T = ATA, and xT(ATA)x ≥ 0 for all vectors x ≠ 0.

2. If the square matrix M is positive de$nite, then the quadratic equation in a
real vector x,

4Joseph Louis Lagrange (1736–1813), professor of mathematics at Turin, Berlin, and Paris, discovered
the powerful technique of introducing new variables, subject to additional constraints, into an equation to
be solved.
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Q(x) = (1/2)xTMx − xTc, (4.49)

has a minimum of 

Q(M−1c) = (−1/2)cTM−1c, (4.50)

when Mx = c.

3. The vector h = (ATA)−1 ATb minimizes ||Ah − b||2.

4. The FIR $lter h(n) = [h(−p), h(−p+1), ... , h(0), ... , h(p)], given by the vector
h of (3) is optimal for noise removal from signal x(n), where matrix A in (3)
is a set of noisy windows of x(n), and b is the set of noise-free values of x(n)
corresponding to A’s noisy sample sets.

Proof: To see statement 1, consider some vector x, and note that xT(ATA)x =
(Ax)T(Ax) = ||Ax||2 . Since the columns of A are linearly independent, Ax, which is
a linear combination of columns of A (the column space of A), cannot be 0 unless
x = 0. Hence, ATA is positive de$nite. Symmetry follows from the basic fact that
(AB)T = BTAT. For statement 2, observe that if Mx = c, then 

Q(y) − Q(x) = (1/2)(y − x)TM(y − x) ≥ 0 (4.51)

by the fact that M is positive de$nite; so Q(y) ≥ Q(x), and the minimum (4.50)
follows. Turning to statement 3, now note that ||Ah − b||2 = (Ah − b)T(Ah − b) =
xTATAh − hTATb − bTAh + bTb. So minimizing ||Ah − b||2 is equivalent to minimizing
hTATAh − hTATb − bTAh. Also, thinking of the 1 × 1 matrices here as real numbers,
we $nd hTATb = bTAh. So the minimization of ||Ah − b||2 reduces to a minimization
of Q(h) = (1/2)hT(ATA)h − hTATb. But this is precisely (4.49) with M = ATA and c =
ATb. Finally, statement 4 of the theorem simply expresses the equivalence of convo-
lution using an FIR $lter, h(n), with vector dot products. Filter h(n) is optimal in the
sense that any other noise removal $lter g(n) will produce errors with respect to
know values for x(n) at n = p that are larger in l2 norm than those which h(n)
produces. ■

Example. Suppose that a signal x(n) is corrupted with Gaussian noise, and we seek
an optimal noise removal $lter H with (Hδ)(n) = h(n) = [h(−1), h(0), h(1)]. We
record a series of windows of width 3 of the input signal x(n) around n = 0: [a1,1,
a1,2, a1,3], [a2,1, a2,2, a2,3], ..., [am,1, am,2, am,3]. In this case, the normal equations
become Ah = b, where, for example,

(4.52)

Upon solving the normal equations, we $nd h(n) = [h(−1), h(0), h(1)] = [1.08, .92,
1.17], very close to the box or moving average $lter to which our original intuition

1.12 0.94 0.77 0.96 1.83 0.52 0.91

0.86 1.31 0.94 1.19 2.15 0.70 1.03 .

1.19 2.72 0.32 0.65 0.04 0.89 1.21

TA
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 − 
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guided us. Now let us consider the possibilty that the noise on x(n) is correlated; in
particular, if we assume a correlation between the noise magnitude at x(0) and that
at x(−1) and x(1), then we arrive at normal equations with the following coef$cient
matrix

(4.53)

The solution to the normal equations provides an estimate h(n) = [h(−1), h(0),
h(1)] = [0.85, 1.12, 0.93], emphasizing the central $lter value. Thus it is the correla-
tion between successive noise values within the input signal x(n) that governs the
departure of the optimal $lter from the moving average $lter.

It is possible to adopt a different least-squares approach for optimal noise
removal. For example, a popular approach [49] is to $t quadratic (or higher-order)
polynomials to the signal values to obtain families of $lters of varying support.
There result $lters that smooth signals, but do not resemble the simple box or Gaus-
sian $lters at all. Table 4.4 shows representative $nitely supported smoothing $lters
that derive from this procedure.

Now let’s consider a constrained approach to optimal noise removal $lter design.
Again, we seek an LTI system H with an impulse response h = Hδ, of width M =
2p + 1, supported on [m − p, m + p]. Again we ask what h(n) must then be to opti-
mally remove noise from known signal x(n). Since we are concerned once more
with an FIR $lter and a noisy source signal x(n), we may view both as row vectors.
We view the system output y = Hx as an estimator of the random vector x which has
expected value vector µb = E[x], where b is the M-dimensional row vector of all
ones. In vector terms we seek a row vector h such that  = 〈h, x〉 is an estimator of
y(m) = (Hx)(m). Here, 〈 , 〉 is the vector inner (dot) product operation. We desire the
random variable  to be unbiased, so that its mean on [m − p, m + p] is the same as
x(n)’s value on this interval. In other words, E[ ] = µ. This condition implies the
following condition on impulse response h:

TABLE 4.4. Smoothing Filters Derived from Polynomial Fits to Signal Valuesa

Points Quadratic Polynomial Fit: Quartic Polynomial Fit:

    5 […, .4857, .3429, −.0857] […, 1.500, −.5000, .2500]
    7 […, .3333, .2857, .1429, −.0952] […, .5671, .3247, −.1299, .0216]
    9 […, .2554, .2338, .1688, .0606, −.0909] […, .4172, .3147, .0699, −.1282,

.0350]
  11 […, .2075, .1958, .1608, .1026, .0210, 

−.0839]
[…, .3333, .2797, .1399, −.0233,
−.1049, .0420]

aIn the table, all of the impulse responses are even, and only the values for non-negative time instants are
shown. Such noise removal filters are popular for smoothing data acquired from laboratory instruments
[49].

1.12 0.98 0.85 0.90 0.73 0.11 1.13

0.86 1.24 1.32 1.23 1.07 0.89 1.20 .

1.19 1.69 0.79 0.97 1.01 0.35 1.03
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Proposition (Unbiased Estimator). If the estimator  is unbiased, then

(4.54)

Proof: Since E[ ] = µ, we have E[ ] = E[〈h,  x〉] = 〈h, E[x]〉 = µ〈h, b〉, and there-
fore 〈h,  b〉 = 1. In terms of the impulse response of system H, this is (4.54); the
proof is complete. ■

Let us continue this notational framework for the next two results. If we require
the further condition that the estimator  have minimal variance, the following
holds:

Proposition (Variance of Unbiased Estimator). If the estimator  is unbiased,
then Var[ ] = 〈h, hΣ〉, where Σ = E[(x − µb), (x − µb)] is the covariance matrix of
the random vector x.

Proof: We calculate 

Var[ ] = E[(  − E[ ])2] = E[(〈h, x〉 − µ)2] = E[(〈h, x〉 − 〈h, µb〉)2]

             =E[〈h, h〈(x − µb), (x − µb)〉〉] = 〈h, hE[(x − µb), (x − µb)]〉 = 〈h, hΣ〉. (4.55)

■

Now we wish to minimize Var[ ] subject to the constraint of the $rst Unbiased
Estimator Proposition. The next theorem solves this is typical Lagrange multipliers
problem.

Theorem (Unbiased Minimal Variance Estimator). If the estimator  is unbiased
and has minimal variance, then

(4.56)

Proof: To apply Lagrange multipliers to the optimization problem, let us introduce
a function, L(h), with an additional parameter, λ:

L(h) = Var[ ] + λ(〈h, b〉 − 1) = 〈h, hΣ〉 + λ(〈h, b〉 − 1). (4.57)
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Recall that the impulse response of the optimal $lter we seek, h(n), was supported
on [m−p, m+p]. So the vector h is a 1 × M = 1 × (2p+1) row vector: h = (h1, h2, ... ,
hM). We next calculate the partial derivatives:

(4.58)

Since the partial derivatives (4.58) are zero where L(h) has a minimum, we solve 0 =
2hΣ + λb for the vector h:

(4.59)

Taking the inner product of both sides of (4.59) with the all-ones vector b and
applying the constraint 〈h, b〉 = 1 gives

(4.60)

and

(4.61)

 Finally, substituting (4.61) into (4.59) gets us to (4.56), and the proof is complete.
■

The determination of the optimal $lter h(n) therefore depends entirely on the
covariance matrix Σ.

Example. Suppose we seek a $lter supported on [−1, 1], and the random noise
embedded in input signal x(n) is uncorrelated. If the variances at x(−1) and x(1) are
equal, say they are ασ2, where σ2 is the variance of x(0), then we have the following:

(4.62)

(4.63)
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Example. Suppose that a $lter with support on [−1, 1] is again necessary, but that
the random noise is correlated. Suppose that values one time instant apart have cor-
relation ρ and values two time instants apart have correlation ρ2. Then we have the
following

(4.64)

(4.65)

The above development of optimal noise removal $lters using Lagrange multipli-
ers is usually presented for designing neighborhood smoothing operators in image
processing [51]. We have adapted it here for one-dimensional $lters. One conse-
quence of this is that the covariance matrices (which are M × M rather than M2 ×
M2, where M is the $lter size) are much easier to invert.

There are some situations where convolutional $ltering does not do a good job at
enhancement before thresholding and segmentation. The next section considers
such cases and develops some simple nonlinear smoothing $lters which have
proven to be very powerful and very popular.

4.4.3 Nonlinear Filters

Filtering with LTI systems may well result in an incorrect segmentation in those sit-
uations where signals contain transient phenomena, such as sharp, high-magnitude
spikes. From simple faith in the principal theorems of probability, such as the Cen-
tral Limit Theorem, we tend to dismiss the possibility of very high magnitude
spikes in our data. After all, after repeated trials the sum of any distributions will
tend toward a Gaussian distribution. Some 68.26% of the signal values should lie
within one standard deviation, σ, of the signal mean, µ. Over 95% of the values
should be less than 2σ from µ. And huge values should be extremely rare, using this
logic. But this reasoning is #awed. Such transients may occur to severe, short-
duration noise in the process that generates the source signal or result from imper-
fections in the signal acquisition apparatus.

The reason LTI $lters become problematic is that for a very large impulse, the
output of the smoothing signal y(n) resembles the $lter’s impulse response. The lin-
earity is the problem. Another problem with linear smoothing $lters is their tendency
to blur the sharp edges of a signal. Good noise removal requires a $lter with a wide
support. But this erodes sharp edges, too. Thus, when the thresholding operation is
applied, the regions labeled as meaningful signal may be smaller in extent than they
would be without the preliminary $ltering. Perhaps separate regions blend together,
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rendering the $nal form of the signal unrecognizable by the classi$cation step in the
application. The problem here is the wide support of the $lter impulse response.

Two types of nonlinear $lters are widely used for impulse noise removal: median
and morphological $lters. Properly chosen, these $lter a noisy signal without leav-
ing a large-magnitude response that interferes with the subsequent thresholding
operation. Like convolutional $lters, median and morphological noise removal are
handy before thresholding. By dint of their nonlinearity, however, they can preserve
the binary nature of a thresholded signal; they can also be used to clean out the
speckle noise that often persists in a signal after thresholding.

4.4.3.1 Median Filters. A discrete median $lter, H, accepts a signal x(n) as
input and produces y(n), which is the median value of x(n) in a neighborhood
around x(n). 

De$nition (Median Filter). If N is a positive integer, then the median $lter y = Hx
for the neighborhood of width 2N+1 is de$ned by y(n) = median{x(m) | n−M ≤ m ≤
n+N}.

To compute a median $lter, the values x(n−N), x(n−N+1), ... , x(n+N) must be
sorted and the middle element selected. It is possible, and maybe useful, to have
asymmetric median $lters as well as to take y(n) to be the median of a set that does
not contain x(n); nevertheless, the centered $lter is the most common.

As an enhancement tool, the median $lter is usually an early signal processing
stage in an application, and most applications use it to improve segmentation opera-
tions that depend on some kind of thresholding. We have noted that convolutional
$lters tend to smear signal edges and fail to fully eradicate sharp transient noise.
The main points to keep in mind about the median $lter as an enhancement tool are
as follows:

• It removes impulse noise.

• It smoothes the signal.

• The median can be taken over a wider interval so that the $lter removes tran-
sients longer than a time instant in duration.

• Median $lters preserve sharp edges.

In addition, since median $lters involve no #oating point operations, they are well-
suited for implementation on $xed-point digital signal processors (which are much
faster than their #oating-point capable cousins) and in real-time applications [53]. An
alternative to using wide median $lters is to apply a small support median $lter many
times in succession. Eventually this reduces the original signal to the median root,
which is no longer affected by further passes through the same $lter [54].

4.4.3.2 Morphological Filters. From the very beginning of this book, all of the
signal operations have been algebraic—additive, multiplicative, or based upon some
extension thereof. To conceptualize analog signals, we freely adopted real- and
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complex-valued functions of a real variable. To conceptualize discrete signals, we
made them into vectors-without-end, as it were. Analog signal operations and analog
system theory derived straight from the theory of functions of a real variable. And
vector operations inspired discrete signal manipulations, too. Thus, analog and dis-
crete systems added signals, multiplied signals by a scalar value, convolved them,
and so on. This is not at all surprising. Signals are time-ordered numerical values,
and nothing is more natural for numbers than arithmetic operations. But there is
another, distinctly different, and altogether attractive viewpoint for all of signal pro-
cessing and analysis: mathematical morphology.

Mathematical morphology, or simply morphology, relies on set-theoretic opera-
tions rather than algebraic operations on signals. Morphology $rst casts the concept
of a signal into a set theoretic framework. Then, instead of addition and multiplica-
tion of signal values, it extends and contracts signals by union and intersection. The
concept at the fore in morphology is shape, not magnitude.

It ought to be easier to understand the morphological perspective by thinking for
a moment in terms of binary images in the plane, instead of signals. A binary image
is a map I: R × R → {0, 1}. The binary image, I, and the subset of the plane, A =
I−1({1}) = {(s, t) ∈ R × R | I(s, t) = 1} mutually de$ne one another. (The image is
precisely the characteristic function of the set A.) So we can think of a binary image
as either a function or a set. Now suppose we have a small circle C = {(s, t) | s2 + t2

≤ r}, with r > 0. Suppose we place the center of C on top of a boundary point of (a,
b) ∈ A; we $nd all of the points, (r, s) covered by C, B = {(r, s) | (r − a)2 + (s − b)2 ≤
r2}; and we set A′ = A ∪ B. We continue this placement, covering, and union opera-
tion for all of the boundary points of A. The result is the set A with a shape change
effected for it by the morphological shaping element, B. This scheme works just as
well for binary-valued signals: An analog binary signal is the characteristic function
of a subset of the real line, and a discrete binary signal is the characteristic function
of a subset of the integers.

Let’s begin our brief tour of mathematical morphology with the de$nitions and
basic properties for binary morphological operations. This will introduce the termi-
nology and concepts as well as provide a theoretical foundation for our later exten-
sion to digital signals. Just as we can identify a binary image with a binary signal,
we can also characterize a binary discrete signal with a subset of the integers or a
binary analog signal with a subset of the real line. The signal is the characteristic
function of the set. Although morphologists work their craft on either Zn or Rn

[55–57], we shall consider digital signals and restrict our morphological investiga-
tion to discrete n-space, Z2. Note that the development could proceed as well for n-
tuples from an abstract normed linear space.

De$nition (Translate of a Set). Let A ⊆ Z2 and k ∈ Z2. Then the translate of A by
k is Ak = A+k = {a + k | a ∈ A}.

De$nition (Dilation). Let A, B ⊆ Z2. Then the dilation of A by B is

(4.66)( ).
b B

A B A
∈

⊕ = ∪ + b
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The set B in (4.66) is called a structuring element; in this particular instance, it is a
dilation kernel.

From this meager beginning, we see the development of diverse, interesting, use-
ful properties.

Proposition (Dilation Properties). Let A, B, C ⊆ Z2  and  k ∈ Z.  Then,  A ⊕ B =
{a + b | a ∈ A and b ∈ B}. Moreover, dilation is commutative, A ⊕ B = B ⊕ A;
associative, (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C); translation invariant, (A + k) ⊕ B = (A ⊕
B) + k; increasing: if A ⊆ B, then A ⊕ D ⊆ B ⊕ D; distributive over unions: A ⊕
(B ∪ C) = (A ⊕ B) ∪ (A ⊕ C).

Proof: Let’s show translation invariance. We need to show that the two sets,
(A + k) ⊕ B and (A ⊕ B) + k are equal; thus, we need to show they contain the same
elements, or, equivalently, that they are mutual subsets. If x ∈ (A + k) ⊕ B, then
there is a ∈ A and b ∈ B such that x = (a + k) + b = (a + b) + k. Since a + b ∈ A ⊕ B,
we know (a + b) + k = x ∈ (A ⊕ B) + k. Thus, (A + k) ⊕ B ⊆ (A ⊕ B) + k. Now let’s
consider an element x ∈ (A ⊕ B) + k. It must be of the form y + k, for some y ∈ A ⊕
B, by the de$nition of the translate of (A ⊕ B). Again, there must be a ∈ A and b ∈
B such that y = a + b. This means x = (a + b) + k = (a + k) + b ∈ (A + k) ⊕ B. Thus,
(A ⊕ B) + k ⊆ (A + k) ⊕ B. Since these two are mutual subsets, the proof of transla-
tion invariance is complete. The other properties are similar, and we leave them as
exercises. ■

Notice that the distributivity property implies that dilations by large structuring
elements can be broken down into a union of dilations by smaller kernels.

How can dilation serve as a noise removal operation within a digital signal
analysis application? To answer this question we adopt a set-theoretic description
for discrete signals, x(n), based on the graph of the signal, Graph(x) = {(n, x(n))
| n ∈ Z}. Graph(x) is a subset of the discrete plane, so it describes x(n) in set theory
terms, but we need other tools to adequately de$ne signal dilation. Our exposition
draws the concepts of umbra and top surface from the tutorial of Haralick et al. [55].

Definition (Umbra). Let x(n) be a digital signal, x: Z → [0, N], for some natural
number N ≥ 0. Then the umbra of x is Umbra(x) = {(n, m) ∈ Z × [0, N] | m ≤ x(n)}.

De$nition (Top Surface). If A ⊆ Z2 and B = {b ∈ Z | (b, k) ∈ A, for some k ∈ Z},
then the top surface for A is the function, T[A], that has domain B and is de$ned
T[A](b) = max {k ∈ Z | (b, k) ∈ A, for some k ∈ Z}.

Thus, the umbra of a digital signal x(n) is the planar set consisting of Graph(x)
and all the points beneath it. The umbra operation turns a signal into a set, and the
top surface operation turns a set into a function. Clearly, if x(n) is a digital signal, x:
Z → [0, N], for some natural number N ≥ 0, then x = T[Umbra(x)] = T[Graph(x)].
The next de$nition formally captures the idea of digital signal dilation.
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De$nition (Signal Dilation). Let x(n) and h(n) be digital signals, x: Z → [0, N] and
h: Z → [0, N] for some natural number N ≥ 0. Then the dilation of f by h, is f ⊕ h =
T[Umbra(f) ⊕ Umbra(h)].

Dilation is useful for removing transient signal features, such as splintering, when
a signal contains a sharp gap within the overall blob-like structure. This can occur due
to noise in the signal acquisition equipment. It may even be a genuine aspect of the
signal, but its presence disturbs subsequent analysis algorithms. From our earlier
examples of electrocardiography, recall that one occasional characteristic of electro-
cardiograms (ECGs) is such splintering. Its presence should not only be detected, but
for purposes of heart rate monitoring, the application should not misread the ECG’s
splinters as individual ventricular contractions. Linear smoothing spreads the splinter
into a large canyon in the signal. Using a dilation kernel on the umbra of the signal
erases the splintering, although it produces a signal with an overall higher mean. If the
dilation kernel is not as wide as the gap, then it has an insigni$cant enhancement effect.
For digital signals, this decreases the effective dynamic range of the signal. However,
rudimentary dilation kernels do a good job of $lling gaps in signal structures.

There is a dual operation to dilation—called erosion; the dilation of A by B is
equivalent to erosion of the complement, Ac = Z2 \ A = {b ∈ Z2 | b ∉ A}, by the
re#ection of B across the origin.

De$nition (Erosion). Let A, B ⊆ En. Then the erosion of A by B is

(4.67)

The structuring element B is also called an erosion kernel. The next proposition col-
lects some properties of erosion. Note the symmetry between these properties and
those in the Dilation Properties Proposition.

Proposition (Erosion Properties). If A, B, C ⊆ Z2, and k ∈ Z, then, A � B = {d ∈
Z2 | d + b ∈ A for all b ∈ B} = {d ∈ Z2 | Bd ⊆ A}; (A + k) � B = (A � B) + k; A �
(B + k) = (A � B) − k; A ⊆ B implies A � C ⊆ B � C; (A ∩ B) � C = (A � B) ∩
(B � C); and, $nally, (A � B)c = Ac ⊕ (−B), where −B = {−k | k ∈ B}.

Proof: Exercises. ■

The last of the Erosion Properties illustrates the dual nature of dilation and erosion.
Note that erosion is neither commutative nor associative. Note also that translation
invariance does not hold true for a translated erosion kernel. Let’s continue with a
de$nition of signal erosion and its application to enhancement.

De$nition (Signal Erosion). Let x(n) and h(n) be digital signals, x: Z → [0, N] and
h: Z → [0, N] for some natural number N ≥ 0. Then the dilation of f by h, is f � h =
T[Umbra( f ) � Umbra(h)].
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Erosion can remove spike transients. Such transients present dif$culties for linear
enhancement $lters. The convolution operation tends to blur the spike. Linear
smoothing superimposes a replica of its kernel’s impulse response on the signal and
can obliterate small local features in the process. An erosion kernel removes the spike
without spreading it into the rest of the signal’s values. If the kernel is narrower than
the transient, then it treats the transient as a blob, part of the main signal structure.

The following points summarize the behavior of dilation and erosion enhance-
ment operators:

• (Splinter removal) Dilation blends signal structures separated by gaps nar-
rower than the kernel width.

• (Spike removal) Erosion removes sharp, narrow, upward transients in the sig-
nal.

• Dilation has the undesirable effects of adding to the overall signal level and
creating new, $ne-scale signal features.

• Erosion has the undesirable effects of reducing the overall signal level and
destroying existing, $ne-scale signal features.

The drawbacks for both dilation and erosion as enhancement tools seem to be
counterposed. They modify the signal mean in opposite ways. The have opposite
effects on small signal features. These observations have led morphologists to com-
pose dilation and erosion operations while using the same kernel. The operations
are not inverses, and it turns out that this composition bene$ts later analysis steps,
such as histogram derivation, thresholding, labeling, and region merging and split-
ting operations.

De$nition (Opening). If A, B ⊆ Z2, then the opening of A by structuring element B
is A ° B = (A � B) ⊕ B. If x(n) and h(n) are digital signals, x: Z → [0, N] and h: Z

→ [0, N] for some natural number N ≥ 0, then the opening of f by h, is f ° h = (f � h) ⊕ h.

De$nition (Closing). If A, B ⊆ Z2, then the closing of A by structuring element B is
A • B = (A ⊕ B) � B. If x(n) and h(n) are digital signals, x: Z → [0, N] and h: Z →
[0, N] for some natural number N ≥ 0, then the closing of f by h, is f • h = (f ⊕ h) � h.

4.5 EDGE DETECTION

The edges of a signal mark the signi$cant changes of its values, and edge detection
is the process of determining the presence or absence of such signi$cant changes.
This is not a very satisfying de$nition, of course, since there is much room for dis-
agreement over what makes a change in a signal signi$cant or insigni$cant. It is
most often the nature of the edge detection application that resolves such disputes.
As we have already noted in segmentation problems, goal-directed considerations
play a considerable role in designing edge detectors. Not all of the operations
involved can proceed directly from the signal data to the edge detection result with-
out some overall perspective on what the problem under study requires for a correct
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result. Thus, in edge detection there is again an interaction between bottom-up (or
data-driven) approaches and top-down (or goal-driven) methods. Whatever the tools
employed—edge detectors, texture analysis, local frequency components, scale-
based procedures—this interplay between data-driven and goal-driven methods will
continue to be at work in our signal interpretation efforts.

Despite the apparent simplicity of formulating the problem, edge detection is
quite dif$cult. Among the $rst attempts to analyze signals and images were edge
detection techniques. We will explore these methods in some depth, and this study
will bring us up to an understanding of the current research directions, performance
issues, and debates surrounding derivative-based edge $nding. A second main
approach is to $t members of a collection of edge models to a signal. Note that edge
models are simply primitive shapes to be found in a signal. Since, as numerical ana-
lysts well know, $nding an approximation to the derivative of a quantized function
is a problematic undertaking, many researchers regard this approach as inherently
more robust. Let us look a little further at these two approaches and their advocates.

Remembering that our signals are just one-dimensional functions of a discrete or
continuous independent variable, we can take the magnitude of the signal derivative
as a starting point for building an edge detector. Furthermore, since the second
derivative changes sign over the extent of an edge, it is feasible to base an edge
detector on approximations of the second derivative of a signal. Many of the early
experiments in edge detection relied upon derivative-based approaches [58–62].

Another approach to edge detection is to $t selected edge-shaped masks or pat-
terns to the signal. The edge detection patterns are signals themselves and (reason-
ably assuming that we are working with $nite-energy signals) are elements of a
Hilbert space. For a conceptualization of the edge detection problem, we can resort
to our Hilbert space theory from Chapters 2 and 3. The edge detection operators can
be orthonormalized. Thus, the edge detection masks become the basis elements {ei:
i ∈ I} of a subspace of linear combinations of perfect edge-containing signals. The
whole edge detection problem becomes one of $nding the inner products of a signal
x(t) with edge detector basis elements ei(t). Notice, however, that the basis elements
are not smoothly undulating functions such as the sinusoids or exponentials as used
in the discrete Fourier transform (e.g., Section 4.3.2). Rather, the basis elements
contain sharp discontinuities in the $rst- or higher-order derivatives. These sharp
breaks in the basis functions match the shape of the edges to be detected. Thus,
large values of 〈x(t), ei(t − t0)〉 indicate the presence of an edge of type i at location
t0 in x(t). This too was a popular path of edge detection pioneers [61, 63–65]. Again,
the edge basis elements are simply templates that contain elementary shapes, and
this method, therefore, can be considered as a type of template matching. Section
4.6 of this chapter furnishes some basic template matching tools; the inner product
operation lies at the heart of such methods.

These references are but a few of those that have appeared in the research litera-
ture over the last 30 years. Even at this writing, near the turn of the twenty-$rst cen-
tury, investigators twist the interpretation of what is signi$cant in a signal, adjust the
mix of top-down and bottom-up goals, optimize in yet another way, and append a
new variant to the vast edge detection literature [66–69]. Indeed, in this book we
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will continue to remark upon and deepen our understanding of edge detection with
each new signal processing and analysis tool we develop.

Edge detection is a basic step in signal analysis. The output of an edge detector is
a list of the location, quality, and type of edges in a signal. Interpretation algorithms
could be designed to work on the list of edges. For an example from speech analy-
sis, between certain pairs of edges, and based on the signal values therein, the inter-
pretation could be that this portion of the signal represents irrelevant background
noise. Other parts of the voice signal, bounded by edges, represent human speech.
Further analysis may reveal that one signi$cant section is a voiced consonant,
another a fricative, and so on. In general, we $nd the edges in signals as a $rst step
in analysis because the edges mark the transition between important and unimpor-
tant parts of a signal or between one and another signi$cant part of a signal. Edge
detection draws the boundaries within which later, more intricate algorithms must
work. Edge guidelines allow interpretation processes to work in parallel on distinct
parts of the signal domain. Finally, preliminary edge detection prevents the waste
of  processing time by higher-level algorithms on signal fragments that contain no
useful information.

4.5.1 Edge Detection on a Simple Step Edge

To introduce the many problems that arise—even in the most elementary detection
problem—let us consider a simple step edge in a signal. The unit step signal pro-
vides a natural example of a step edge. For discrete signal analysis, u(n), the dis-
crete unit step is a perfect step edge located at n = 0. What do we expect that a step
edge detector should look like?

This much is obvious: the step edge we consider may not have unit height, and it
may not be located at the origin. If the amplitude of the edge diminishes, then it is a
less pronounced change in the signal, and our edge detector ought to produce a
smaller response. Thus, a $rst consideration is that our edge detector should be lin-
ear: Its output is greater, given a larger amplitude in the edge and therefore a larger
amplitude in the underlying signal. The second consideration is that an edge should
be detected by the operator wherever it happens to be located within the signal. In
other words, whether the step is at the origin or not is irrelevant: We should detect
the edge at any time. The implication of our second consideration is that a $rst-cut
edge detector is translation invariant. It is thus linear and translation invariant and,
by the results of Chapters 2 and 3, must be convolutional.

Let us suppose that we are working with discrete signals. If the edge detector is
y = Hx, then the output y is given by convolution with the impulse response, h(n), of
the detector system, H:

(4.68)

There may be noise present in the signal x(n) so that the sum in (4.68) does not
readily simplify and the response is irregular. Noisy or not, the response of the
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system H to input x(n) will be a signal y(n) with discrete values:

{..., y(−3), y(−2), y(−1), y(0), y(1), y(2), y(3), ...}. (4.69)

To $nd the edge, then, we have to threshold the output, supposing that an edge is
present in x(n) whenever |y(n)| ≥ T. If we are very lucky, then there will be only one
value that exceeds the threshold, along with a single detection result for a single
step edge. If there is a range of high response values, then it may be necessary to
select the maximum or a set of maximal responses.

In the case of an analog edge detection problem, the output of the convolution
integral (4.70) will be continuous. There will be no hope of thresholding to discover
a single detection result unless the threshold coincides with the maximum response
value. We must be content with seeking a maximum or a set of maximal responses.

(4.70)

It might seem that at this early stage in conceptualizing an edge detector that it is
wrong to settle so quickly on a convolutional operator. For example, if the input sig-
nal is attenuated to Ax(t), |A| < 1, then the response of the detector to the attenuation
will be y(t) = A(x*h)(t). The same edges—no matter how insigni$cant they become
because of the attenuation—will still be detected as maximal responses due to the
linearity of the operator H. So if the goals of our application change, and it becomes
necessary to ignore suf$ciently small changes in the input signal, then our edge
detector will fail by falsely indicating signi$cant transitions in x(t). Sometimes top-
down speci$cations demand non-linearity. Note, however, that we can accommo-
date such a top-down scheme by adjusting the threshold parameter. If certain jumps
should be detected as edges and others should be passed, then the kind of nonlinear-
ity we need can be implemented by thresholding all responses and then selecting the
maximal response from those that exceed the threshold. In other words, if Edges[x]
is a predicate or list of edges of input signal x(t), then Edges[x] = {(t, x(t)) : |y(t)| ≥ T
and t is a local maximum of y = x*h}.

There is a further dif$culty with uncritical convolutional edge detection. If the
input signal contains spike noise, then the output of the edge operator will have a
large response to the spike. In fact, around an isolated impulse, the response will
tend to look like the impulse response of the edge detector itself.

Example (Difference of Boxes Operator). One of the earliest edge detectors is the
Difference of Boxes (DOB) $lter [60], de$ned by y = hDOB*x, where, for some L > 0,

(4.71)

Clearly, the DOB operator is designed to smooth the data on both sides of a possible
edge and subtract the earlier values from the later ones. Any sudden transition at
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time t = 0 appears in the output as a large-magnitude value. The DOB operator
emphasizes values near t = 0 just as much as values near |t| = L. It is also typical to
zero the center value of the DOB operator, hDOB(0) = 0.

Example (Derivative of Gaussian Operator). Another popular operator for con-
volutional edge detection is the $rst derivative of the Gaussian (dG). The impulse
response of this system is given by hdG(t) = −texp[−(t/σ)2/2]. The dG operator is an
alternative to the DOB convolution kernel; it emphasizes values near the edge over
values further away. A disadvantage is that it has an in$nite extent. Practically, of
course, the kernel can be truncated, since the signal diminishes rapidly.

We can add some normally distributed noise to the analog unit step signal to pro-
duce noisy step edges. Convolution with DOB and dG operators produces satisfac-
tory results (Figure 4.11).

Application (Plasma Etch Endpoint Detection). Consider an example from a
problem of controlling an industrial process, Figure 4.2. A spectrometer monitors the
carbon monoxide (CO) optical discharge from a plasma reactor that is etching an
oxide layer on a silicon wafer [70]. This is a critical step in the production of inte-
grated circuit chips. The CO is a chemical byproduct of the plasma reaction with the
silicon dioxide on the wafer. When the CO spectral line falls abruptly, the layer of
silicon dioxide that is exposed to the plasma has been cleared by the plasma reaction.
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Fig. 4.11. An analog step edge in noise (a). The DOB and dG operators are shown in (b)
and (d), respectively. Panels (c) and (e) show the result of convolving the signal with the
DOB and dG operators, respectively.
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It is essential to stop the plasma reaction as close as possible to the time when the CO
intensity falls to avoid plasma damage to circuit layers underneath the target oxide.
Thus, plasma etch endpoint detection can be largely viewed as a real-time edge
detection problem. Plasma processes are very much subject to transients in the opti-
cal emissions. These can be caused by a reactor or acquisition fault or process insta-
bility. Transients can result in anomalous edge detection and an incorrect
identi$cation of etch process endpoint. As we found in Section 4.3.3, one the solu-
tion is to introduce a nonlinear $lter that removes impulse noise prior to the linear
$ltering and application of a convolutional edge detection operator [e.g., the DOB
operator (4.71)].

Most plasma etch endpoint detection algorithms rely on simple signal threshold-
ing and $rst- and second-derivative estimates on the optical emission signal. When
variability arises in the endpoint trace, perhaps due to imprecise control of previous
thin $lm deposition steps or to the presence of different circuit con$gurations on the
etched wafers, then strategies that consider the shape of the optical emission signal
become attractive [71]. We will consider this aspect later in Section 4.7. In other
processes, the signal edge is more dif$cult to discern, and endpoint detection meth-
ods that model the real-time optical emission and detect out-of-trend conditions
become important [72]. Lastly, there is the top-down consideration that complete
translation invariance is not appropriate for the edge detector. In fact, the process
control application of Figure 4.2 is such a case. Typically, it is known in advance, by
the process’s nature, that the edge cannot occur except within a certain time range.
In the case of plasma etching reactor control, it is common to specify an initiation of
etch period during which no collapse in the emission spectral line should be
detected. The upshot is that the convolutional operator is only applied within in the
region known to contain valid edges. An alternative is to run the edge detector over
the entire domain of the input signal and, in a further post-processing step, delete
edges that occur outside the appropriate interval as spurious.

The next proposition sheds some further light on the nature of convolutional
edge detectors [66]. We state and prove this proposition for analog signals and leave
the discrete case for an exercise.

Proposition (Maximal Response Edge Detector). If a step edge detection opera-
tor locates edges from the maximal responses of a convolutional operator, H, and
provides a unique maximum for u(t) at t = 0, then

(i) h(t) can only have one zero, at t = 0.

(ii) The impulse response of system H, h(t), must be odd.

Proof: The $rst part of the proposition follows from the fundamental theorem of
calculus. Since 

(4.72),
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we know that dy/dt = h(t). Since the response y(t) has a maximum at t = 0, its deriv-
ative must be zero; therefore h(0) = 0. If the detector, H, responds correctly to the
perfect step edge of u(t) at t = 0, then this can be the only maximal point of the
response, and it follows that h(t) has precisely one zero.

For (ii) we can decompose h(t) into its even and odd parts and then apply the fun-
damental theorem of calculus to get the result. Let h(t) = he(t) + ho(t) where he(t) is
even and ho(t) is odd. Applying the convolution theorem for analog LTI systems, let
t > 0, and note that

(4.73)

(4.74)

The $nite integrals over ho(t) cancel, and the $nite integrals over he(t) are identical;
thus,

(4.75)

Now from (4.75) we may write

(4.76)

Let us now differentiate (4.76), applying the chain rule to the left-hand side and
the fundamental theorem to the right-hand side. This gives 2he(t) = 0. Since t was
arbitrary, he(t) = 0 for all t > 0. Moreover, since he(t) is even, he(t) = 0 for all t. ■

4.5.2 Signal Derivatives and Edges

At $rst glance, $nding the abrupt changes, or edges, in a signal amounts to $nding the
points at which the signal has a large derivative. Since we are familiar with analog dif-
ferentiation from calculus and discrete differentiation from numerical analysis, it
would seem that we should already possess the proper tools to begin a formal study
of edge detection as a task within signal analysis. But the presence of even a minute
amount of noise in a signal can lead to wild variations in its derivative at a time instant.
Differentiation is known as a classical ill-posed problem or unstable process; in
systems that perform differentiation, small differences in the input signal lead to
large differences in the output signal [73]. The standard approach to such ill-posed
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problems is to convert them to well-posed problems by smoothing the input data. Thus,
for signal analysis systems, some preliminary signal conditioning is appropriate.

We recall how to take the derivative of signals from calculus as a limit,

(4.77)

This limit leads to standard formulas for differentiation of polynomials, algebraic
functions, and trigonometic and exponential functions. Thus, we can obtain esti-
mates for derivatives of discrete signals by $nding an interpolating polynomial
among a set of discrete vaues. The error estimates that this procedure gives are not
as good as when the time-domain signal is approximated; this is a practical manifes-
tation of the ill-posed nature of the differentiation process [74].

Deriving discrete derivatives for the analysis of digital signals by $rst developing
an interpolating function, however, is not necessary for an approximate slope value
near a point. We can derive discrete derivative formulas for a signal x(n) by assuming
that x(n) arises from sampling an analog signal xa(t): x(n) = xa(nT), where T is the
sampling interval. To get a formula for the discrete $rst and second derivatives around
time instant n = 0, we expand xa(t) in a Taylor series and neglect the error terms:

(4.78a)

(4.78b)

Subtracting (4.78b) from (4.78a) gives a simple formula for the $rst derivative:

(4.79)

Adding (4.78a) from (4.78b) gives a simple formula for the second derivative:

(4.80)

Thus, the system y = Hx with impulse response h(n) = [1/2, 0, −1/2] approximates a
discrete $rst derivative. And the system y = Gx with impulse response g(n) = [1, −2,
1] approximates the second derivative. Recall that the system y = Gx from Chapter 2
is called the discrete Laplacian operator. There we noted that it detected edges in
signals, producing a zero response within #at and linearly sloped signal regions.
Now we discover the discrete Laplacian’s true nature: It is just a discrete version of
the second derivative. The above analysis easily generalizes to approximate discrete
derivatives with wider support. We $nd x(2) and x(−2) in terms of the Taylor series
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of xa(t), apply (4.79) and (4.80), and $nd that

(4.81)

(4.82)

The above rudimentary edge detectors are intuitive, but they turn out to be less
than ideal. To see this, we need an appropriate mathematical foundation. Thus, let’s
formally de$ne signal edges and motivate the conditions on edge detectors that
should constitute opimality. This will provide us with some initial results on optimal
edge detectors.

De$nition (Analog Signal Edge). Let x(t) be an analog signal. Then x(t) has an
edge at t = t0 if for some n > 0, there is a discontinuity in the nth derivative of x(t).
(We consider the 0th derivative of x(t) to be the signal itself.)

It requires a little care to correctly de$ne edges for a discrete signal. By their
nature, discrete signals are composed entirely of discontinuities. So we adopt the
following de$nition.

De$nition (Discrete Signal Edge). Let x(n) be a discrete signal. Then there is an
edge in x(n) at a point n0 if there is a discontinuity in the derivative of the signal   xa(t) =
x(t) + (t − t)x(t) − x(t), where t is the #oor of t, and t is the ceiling of t.

These de$nitions do encompass the variety of edge shapes that we $nd in sig-
nals. Of course, the step edge is a discontinuity in the signal itself. When the signal
assumes a dihedral or “roof” shape, then the discontinuity lies in the $rst derivative.
Thus, we shall concentrate on step edges in our theoretical development, since other
edge shapes can be analyzed by computing the signal derivative and then applying
our step edge analysis methods.

4.5.3 Conditions for Optimality

Let us now return to the simple step edge and complete an analysis of the edge detec-
tion problem. Speci$cally, three conditions for an edge detector H are as follows:

(i) The detector should have a high signal-to-noise ratio (SNR). This means
that a better edge detector has a higher response to the edge within a signal
than to the surrounding noise.

(ii) H should be well-localized about the true signal edge. The output maxima of
H should cluster around the true edge, and better edge detectors show a
tighter group of maximal responses.

(iii) There should be only one response to a single edge. If H is good, then it
should present a number of apparently valid alternatives for the precise
location, or registration, of the edge.
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Canny chose the overall goals of (i)–(iii) for his detector design [75], which became
the overwhelming favorite in research literature and signal analysis applications for
many years. His strategy is to develop mathematical formulations for the goals and
then to $nd convolution kernels that maximize the products of individual criteria.

Let’s consider just the $rst two criteria above and see how this analysis unfolds.
Let h(t) be the convolution kernel that we seek and let u(t) be the unit step. We will
need to compute convolution integrals, y(t) = (h * u)(t), so we must limit the time-
domain extent of both h(t) and s(t), or assume that they belong to a signal space
(Chapter 3) that supports closure under convolution. To achieve this, we assume that
the edge detection $lter has support on a $nite interval [−L, L]. Now we de$ne one
form of the signal-to-noise ratio for analog systems and prove a property for the
SNR under white Gaussian noise (Chapter 3).

De$nition (Signal-to-Noise Ratio). Let y = Hx be an analog system and let n(t) be
a noise signal. Then the signal-to-noise ratio (SNR) for H at t = 0 is

(4.83)

where E[y] is the expectation operator.

That is, the SNR is a ratio of the system output without noise present to the sys-
tem’s expected output when the input is pure noise.

Proposition (SNR under White Gaussian Noise). Suppose H is an analog system
and n(t) is white Gaussian noise. Then SNRH,t=0 = |y(0)|/(n0||h||2), where n0 is the
standard deviation of n(t).

Proof: From stochastic processes theory [76], we have that 

(4.84)

hence,

(4.85)

and the proof is complete. ■
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This observation allows Canny [75] to specify a signal-to-noise performance
measure for the edge detection system H which does not depend on the input signal
x(t); in particular, the optimal edge detector must maximize (4.85). It turns out the
convolution kernel that provides a maximum SNR, given that the underlying step
edge contains noise, is just the reversed step itself. This result is known as the
Matched Filter Theorem. We introduce matched $ltering in Section 4.6.2, but we
need to have the tools of Fourier transform analysis at our disposal in order to com-
plete its theoretical justi$cation. Granting the Matched Filter Theorem, then, the
convolutional kernel that is optimal for $nding step edges is precisely the DOB
operator. Canny attempted to prove that the DOB operator enjoyed an optimal local-
ization property as well. The development proceeds as follows.

Let y = Hx = H(u + n), where u(t) is the (noiseless) unit step signal and n(t) is
white Gaussian noise. Then y = Hu + Hn by linearity. Let w = Hu and let m = Hn.
If a maximum of the detector output appears at time t = t0, then y′(t0) = w′(t0) +
m′(t0) = 0. Differentiation of the convolution integral for w = h * u gives w′(t0) =
h(−t0) = −h(t0), since h must be odd (by the Maximal Response Edge Detector Prop-
osition, Section 4.5.1). If t0 is close to the ideal edge at t = 0, then by a Taylor series
expansion for h(t), we know that h(t0) ≈ h(0) + t0h′(0). Since h(0) must be zero by
the same Proposition, it follows that t0h′(0) = m′(t0). This implies that h′(0)2E
[(t0)2] = E[m′(t0)2]. But, as in (4.84),

(4.86)

Thus,

(4.87)

and the optimal localization criterion that Canny proposes is (E[(t0)2])−1/2. Canny
argued that the DOB operator remains optimal for both this localization criterion and
the SNR criterion, for instance by seeking to maximize the product of (4.85) and
(4.87). Canny adduced the third criterion, namely that there should be no multiple
responses around a noisy edge in order to derive his optimal edge detection kernel. It
turns out, after some lengthy calculus of variations, that the operator is very similar
to the dG kernel [75].

Some time later, Tagare and deFigueiredo [66] pointed out some #aws in the rea-
soning above. The principal points are that

• There can be multiple time values t = t0 for which a maximum occurs and y′(t0) =
w′(t0) + m′(t0) = 0. The performance measure must account for the distribution
of all such maxima, and there is no reason to prefer one above the others.

• Equation (4.87) computes the variance of the maximum time t = t0. But, by the
previous point, the value of t0 varies with every realization of the white noise
process, and the substitution of (4.86) into h′(0)2E[(t0)2] = E[m′(t0)2] to get
(4.87) is invalid.
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Tagare and deFigueiredo propose an alternative localization criterion. They propose
that an optimal edge detector y = h * x should maximize the quantity

(4.88)

where H(ω) is the Fourier transform of the impulse response, h(t), of the edge detec-
tor. Since we will develop Fourier transform theory in the next two chapters and
outline its applications in Chapter 7, we defer the exposition of the new localization
criterion. It turns out, interestingly enough, that the optimal kernel for convolutional
edge detection under the criterion (4.88) is the dG function.

4.5.4 Retrospective

Edge detection has played a central role in the theoretical development of signal and
image analysis since it was $rst applied, in the early 1950s, in attempts at image
understanding with digital computers [58]. A large number of interdisciplinary
researchers have worked on edge detection from the standpoint of building biologi-
cally motivated signal and image analysis systems. Edge detection at a variety of
resolutions played a central role in Marr’s account of animal and machine vision
systems [77]. Marr5 drew careful parallels between biological and computer vision
mechanisms and inspired a generation of computer vision researchers to do the
same. In particular, Marr conjectured that edge analysis across many scales would
be suf$cient for a characterization of a signal or image. Since biological signal ana-
lysis systems were capable of edge detection and multiscale analysis, it would
appear that a major bond would then exist between electronic computers and their
software on the one hand and animal brains and their experiences on the other. We
will have occasion to revisit this conjecture later in the book; the theory of time-
scale transforms, or wavelet theory, would shed light on the question a dozen or so
years after Marr proposed it.

From a computational perspective, Canny’s work [75]—which comprised his
Master’s thesis work [78] at the Massachusetts Institute of Technology—was
thought to have essentially solved the edge detection problem. There was a period
when just about everyone’s research paper included a Canny edge detector, if it
mentioned edge detection at all. Some practitioners used a derivative of the Gauss-
ian operator as a close approximation to the Canny kernel, which was dif$cult to
compute. Only after the passage of several years did minor #aws in the theory
become apparent; fortuitously, those many papers of those many researchers that

5David Courtenay Marr (1945–1980). Spurred by Marr’s critique [“Artificial intelligence: a personal
view,” Artificial Intelligence, vol. 9, pp. 37–48, 1977], computer vision rose from a collection of ad hoc
techniques to a broad discipline unifying ideas from biology, psychology, computer science, and robot-
ics. One of the prominent pioneers of computer vision, Marr died quite young, in the midst of a most pro-
ductive carreer. 
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resorted to the dG shortcut were following the optimal road after all! There has
begun another round of research papers, controversies, and algorithmic emenda-
tions [66, 67, 79, 80]. The most recent research, in addition to emphasizing the dG
kernel, has found interconnections between diverse methods reaching back some
20 years, and a unifying framework has been elaborated [68, 69].

4.6 PATTERN DETECTION

Many of the most important signal analysis problems involve detecting more than a
single edge in a signal. There may be several edges in a signal region of interest, and
ascertaining the signal levels, slopes, and transitional shapes between the edges may
be critical to correctly interpreting the signal. The basic signal pattern detection or
recognition problem involves $nding a region a ≤ t ≤ b within a candidate signal x(t)
that closely matches a prototype signal p(t) on [0, b−a]. For discrete signals, the
detection problem reduces to comparing $nite sets of values. It seems simple; but in
the presence of noise or other distortions of the unknown signals, complications do
arise. The dif$culties worsen when the detection problem allows the size of the
prototype within the candidate to vary. Indeed, the problem can be trivial, challeng-
ing, problematic, and frustrating and may even defy robust solution. Signal pattern
detection remains a topic of research journals, experimental results, and tentative
solutions. This section presents three basic for pattern detection approaches: corre-
lation methods, structural methods, and statistical methods.

4.6.1 Signal Correlation

Correlating two signals seems to be the natural approach to pattern detection. Its
ultimate foundation is a dot product relation of similarity between vectors, which
generalizes to the inner product operation for Hilbert spaces. Some care in the for-
mulation is essential, however. Thus, we $rst explore the method of normalized
cross-correlation in Section 4.6.1.1. There is a subsequent result, called the Matched
Filtering Theorem, which indicates that this approach is in fact optimal. We do not,
however, yet possess the theoretical tools with which to prove the matched $ltering
result; so we simply state it herein and postpone the proof until Chapter 7.

4.6.1.1 Normalized Cross-Correlation. The Cauchy–Schwarz Inequality,
covered in Chapters 2 and 3, provides a mathematically sound approach to the sig-
nal matching problem. Let’s suppose that we are dealing with an unknown, candi-
date signal x and a prototype signal p, which may come from a collection of model
signals. The application may require a comparison of x with each prototype in the
collection. Prototype signals represent patterns that we expect to $nd in the input to
the signal analysis application; thus, it is reasonable to stipulate that the patterns are
$nitely supported on an interval I = [a, b].

For this discussion, let us assume that we are working in the discrete realm, so
that the signal space tools from Chapter 2 apply. It is useful to have a measure of
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match, or distance, between two signals, d(x, y), that is a metric; that is, it statis$es
the following:

• The positive de$nite property: d(x, y) ≥ 0 for all x, y.

• The identity property: d(x, y) = 0 if and only if x = y.

• The symmetry property: d(x, y) = d(y, x) for all x, y.

• The triangle inequality: For any z, d(x, y) ≤ d(x, z) + d(z, y).

If we take the signals to be square-summable, then the l2 norm is a comparison mea-
sure which is a metric, d(x, y) = ||x − y||2. Assuming that we work with l2 signals, a
measure of the mismatch between two square-summable signals is the l2 norm; in
other words, if x is an unknown signal, then we need to minimize ||x − p||2 among all
prototype signals p from a family of models our application attempts to detect. If the
registration of pattern p(n) within candidate x(n) must be found, then we seek the
offset k that provides the smallest ||x(n+ k) − p(n)||2 for all appropriate offsets k of
p(n) relative to x(n).

Choosing d(x, y) = ||x − y||2 as a match measure on real-valued signals is equiva-
lent to using the inner product 〈x, y〉. To see this, suppose we compare a square-
summable candidate signal x(n) to a square-summable prototype y(n). Then, 

(4.89)

Thus, we see that d(x, y) depends on both ||y||2 and the inner product 〈x, y〉. If we
require that all prototype vectors have unit norm, ||y|| = 1, then the equivalence
between minimizing d(x, y) and maximizing 〈x, y〉 is clear.

The inner product relation inspires an important method of matching signals:
normalized cross-correlation. We introduced cross-correlation for discrete signals in
Chapter 2, where it was noted to be a kind of backwards convolution. Suppose that
we have a real-valued pattern signal p(n), supported on the interval [0, N]: p(n) =
[p0, p1, ... , pN]. We search for the best match of p(n) at offset location k in real-
valued signal x(n). A measure of the match between the two at offset k is the inner
product, y(k) = 〈p(n−k), x(n)〉. When y(k) is at a maximum value, then we have
found the offset k at which the prototype pattern p(n) best matches the source signal
x(n). This operation, in effect, correlates the shifted pattern p(n− k) with a window
of the signal x(n); this windowed function is just x(n)[u(n−k)−u(n−k−N−1)], which
is zero outside of the interval [k, k+ N]. To evaluate y(k), notice that 

(4.90)
The inequality in (4.90) follows from the Cauchy–Schwarz Inequality for discrete
signals applied to p(n−k) and the windowed signal x(n)[u(n−k)−u(n−k−N−1)].
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Recall from Chapter 2 that the Cauchy–Schwarz Inequality states that if x(n) and
p(n) are in l2, then the product x(n)p(n) is in l1, and ||xp||1 ≤ ||x||2 ||p||2. Recall that
equality holds if and only if x = cp for some constant c. Thus, in (4.90) there is
equality if and only if p(n−k) = cx(n)[u(n−k)−u(n−k−N−1)], where c is a constant.
The problem with using y(k) as a measure of the match between p(n−k) and x(n)
over the region [k, k + N] is that the second term on the right in (4.90) depends on
the registration value k. Thus, we take as the measure of match between the pattern
p(n− k) and the signal x(n) on [k, k+ N] to be the normalized cross-correlation,

 (4.91)

The match measure (4.91) assumes its maximum value Cp(n−k),x(n) = 1 when the
pattern is an exact multiple of the windowed input signal x(n). Thus as a pattern
recognition measure, normalized cross-correlation $nds patterns that match our
prototypes up to an ampli$cation or attenuation factor.

Matching by normalized cross-correlation, dependent as it is on the inner product
notion, is quite intuitive. The inner product operation is closed in our Hilbert spaces
of square-summable discrete and square-integrable analog signals; we thus have a
rich variety of signals with which to work. The inner product generalizes the dot
product relation of $nite-dimensional vector spaces, which is a geometrically satis-
fying relation of similarity between two vectors. Without a doubt, these factors rec-
ommend normalized cross-correlation as one of the $rst strategies to be employed
in a signal analysis application. It is not the only method, however. Depending upon
the application, it may suffer from a couple of problems:

• Computing the sums of squares in to arrive at the l2 norms is time-consuming.

• There may be a lot of near-misses to the optimal registration of the pattern p(n)
in the unknown candidate signal x(n).

To avoid the $rst problem, it may be feasible to apply the l∞ norm, taking d(p(n−k),
x(n)) = ||p(n−k) − x(n)[u(n−k)−u(n−k−N−1)]||∞ as a match measure on real-valued
signals instead. Computing this distance measure involves only a comparison of the
N+1 values of p(n−k) with those of x(n) on the window [k, k + N]. In real-time
applications, using digital signal processors, for example, this tactic can often help
to meet critical time constraints. The second arises when there are a number of
structures present in x(n) that resemble the model pattern p(n). An example of this
situation arises during electrocardiogram analysis. Suppose a model QRS complex
pulse has been extracted. Normalized cross-correlation produces many close
responses. Thus, it may be necessary to search for certain critical signal features—
other than raw signal values—around which more robust pattern detection methods
might be constructed. This leads to the structural techniqes we consider next.
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It is also possible to develop normalized cross-correlation for analog signals.
Following the derivation of discrete normalized cross-correlation very closely,
along with using the Cauchy–Schwarz inequality from Chapter 3, we obtain

(4.92)

where s is the offset of prototype signal p(t) into input signal x(t), and I is the inter-
val that contains the support of p(t). Deriving this result is left as an exercise.

The next section sheds some light on the importance of cross-correlation for the
detection of patterns that are embedded in noise. 

4.6.1.2 Matched Filtering: A Glimpse. Understanding that real-life signals
contain noise, it is natural to wonder what is the best way to match a signal against a
pattern. If the detection process is a linear, translation-invariant system, H, and the
input signal, x(t), is corrupted by additive white noise, s(t), then there is an answer
to this intriguing question. It turns out that the impulse response of the system H,
h(t), is—up to a scaling (amplifying or attenuating) factor—none other than a
re#ected and translated version of the input signal x(t). The impulse response h(t) is
called the matched $lter for the signal x(t). Let us state this as a theorem for analog
signals, but postpone the proof until we have covered the Fourier transform theory.

Theorem (Matched Filter). Suppose x(t) = f(t) + n(t), where f(t) is a signal of
known shape, and n(t) is a zero mean white noise process. Then the optimal LTI
system H for detecting f(t) within x(t) has impulse response h(t) = cf(t0 − t) for some
constants c and t0.

Proof: Chapter 5 prepares the foundation in analog Fourier theory. Chapter 7
proves the Matched Filter Theorem as an application of Fourier methods. ■

In developing the normalized cross-correlation method for signal matching, we
found that the best possible match occurs when the pattern is identical to the source
signal up to a constant scale factor on the shifted support interval of the prototype.
Note that the convolution implied by the Matched Filter Theorem is the same as a
cross-correlation with a re#ected version of the source. Thus, matched $ltering the-
ory formulates an important converse to normalized cross-correlation, namely, that
the best $lter—for reasonable noise assumptions—is in fact just the target source
pattern itself. Many communication theory texts cover matched $ltering [81, 82],
there are full reviews in the engineering literature [83], and Chapter 7 points out
additional resources in print.

If matched $ltering is both the obvious and optimal approach, why study anything
else? One answer, as with “optimal” thresholding and “optimal” noise removal, is
that the conditions that validate the optimality do not always hold. Furthermore, the
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optimal methods for such problems are often computationally burdensome, even
untractable. Convolution, at the heart of matched $ltering, can be expensive for signals,
and on images may require special-purpose computing hardware. Thus, reasonably
fast suboptimal techniques are desirable; a lot of these methods arise in conference pre-
sentations, appear in print, and become the basis for practical applications.

4.6.2 Structural Pattern Recognition

A structural pattern recognition application discovers the physical relationships
between labeled signal regions and unites the regions into a graph structure. Then
the application compares the graph structures that it derives from candidate signals
against those from prototype patterns. The structural analysis application estimates
the degree of match or mismatch between these graphs. If the match measure
exceeds a theoretically or empirically derived threshold, then the candidate signal
matches the prototype pattern; recognition is complete.

In signal analysis, structural descriptions derived from signals tend, like their
source data, to be one-dimensional entities. Commonly the structure is just a vector,
and the components of the vector are numerical weights that indicate the relative
presence of some expected characteristic of the signal over a time interval. In com-
puter vision, the structural descriptions are often two-dimensional, like the images
they come from. Not unexpectedly, the feature relationships are more intriguing,
more varied, and more dif$cult to analyze. Sometimes it is important to extract fea-
tures at a range of scales of the signal’s domain. Then there is a family of feature
vectors, and a feature at a coarse scale may resolve into a set of $ner scale charac-
teristics. This forms a two-dimensional structural description of the signal: There
are large-scale or low-resolution features at the top; features of intermediate size in
the middle; and high-resolution, small-scale features at the bottom. For instance, we
might $nd a texture region when segmenting a signal into wide regions and then
resolve it into small curves, edges, and #ats. At the $nest scale, discrete signal fea-
tures are just the signal values. The discrete world limits signal resolution. With
analog signals, resolution re$nment need never stop. This is called a pyramid repre-
sentation. Pyramidal structural descriptions for signals are an important and widely
studied analysis tool. However, with their introduction into the signal analysis appli-
cation, the problems become as intricate as they are in computer vision.

This section $rst explains how to reduce the amount of signal data subject to
analysis by the pervasive strategy of feature extraction. Section 4.6.2.2 follows with
some basic measures for signal matching by comparing feature vectors. The vectors
contain fewer numbers than the signals, so comparisons are quick—a happy con-
trast to correlation-based approaches. Next, we develop some formal theory for
structural descriptions of signals. The last subsection explains a comparison mea-
sure for structural descriptions. This measure turns out to be a metric, one of our
fundamental theoretical results in structural pattern recognition.

4.6.2.1 Feature Extraction. Extraction of feature vectors reduces the dimen-
sionality of the matching problem. The expense of computing the normalized
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cross-correlation match measure is a drawback in its application. This is all the
more the case when a candidate signal must be compared against many prototype
signals.

Structural pattern recognition attempts to place input signals {f1, f2, ... , fN} into
categories {C1, C2, ... , CK} by forming an intermediate, structural description of the
signal and then using the structural description as the basis for classi$cation. The
simplest form of structural description is the feature vector, v = (v1, v2, ..., vM).
Components of the feature vector are numerical, usually real but sometimes com-
plex numbers. By thresholding the magnitude of the feature vector components,
labels can be assigned to the features to build an abstract or symbolic description of
the signal. Selecting the right feature vector is both quite open to design and quite
critical to the recognition application’s success.

Let’s consider how we might extract a feature vector from a signal. First, suppose
that we have a candidate signal, x(n), and a set of model or prototype signals {ei(n) |
1 ≤ i ≤ N} de$ned on some interval [a, b]. The plan is to develop a vector v = (v1, v2,
..., vN) such that its components, vi, are a measure of the similarity between x(n) and
prototype ei. Any of the norms we know from the theory of normed linear spaces in
Chapter 2 are suitable; we may choose vi = ||x − ei||p, the lp norm of the difference
between the candidate signal and prototype ei. This measures the mismatch between
x and ei. The lp norm is a metric and is suitable for pattern detection applications.

But the results on normalized cross-correlation and matched $ltering in Section
4.6 inspire us to use the inner product vi = 〈x, ei〉. Since the inner product 〈x, ei〉
depends on the magnitude of ei, the prototypes should all have the same magnitude;
otherwise a large-magnitude prototype will skew all of the matches toward itself.
Orthogonality of prototypes is important also. Suppose that 〈e1, e2〉 ≠ 0. Without
orthogonality, a signal which is a scalar multiple of e1, say y = ce1 on [a, b], will have
a similarity measure to e2 of 〈y, e2〉 ≠ 0. Thus, although it is a perfect scaled (ampli$ed
or attenuated) replica of prototype e1, y shows a similarity to e2. The solution to this
identi$cation conundrum is to simply stipulate that the prototypes be orthogonal and
of unit length. Hence, orthonomal bases—such as we developed in Chapters 2 and 3
for Hilbert spaces—play an important role in pattern recognition theory. An important
problem is how to choose the basis for pattern recognition applications. Of course, we
can orthogonalize any linearly independent set of signals on [a, b], using, for instance,
the Gram–Schmidt procedure sketched in our re#ections on Hilbert space. However,
the resulting basis set, {ei}, may not resemble the original patterns. One way to ensure
the construction of a pattern recognition basis set that preserves the features of input
signals is to build the basis set according to candidate signal statistics. A classical
technique, the Karhunen–Loève transform, can be applied to select the best possible
basis [84, 85]—for instance, when the problem is a simple edge shape [65].

There are many other ways to extract feature vectors from signals. We can study
a single signal region with basis functions, as above. The basis function inner prod-
ucts can also be applied to a series of intervals. But other processing steps are possi-
ble. The presence of a given signal level can be used as a feature vector component.
The presence of a texture parameter—roughness or waviness—is a common tech-
nique in feature vector designs. Often the signal features have $xed registrations,
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assigned as part of the signal analysis application’s design. In other situations, an
input signal is subject to an initial segmentation, perhaps by signal level (threshold-
ing), texture analysis, or edge detection. This determines the presence and registra-
tion of useful signal content. Then the feature vector is extracted from a set of
intervals that derive from the preliminary segmentation. It is common, too, to gener-
ate a single large feature vector, v = {vi, j | 1 ≤ i ≤ N, 1 ≤ j ≤ M}, where the compo-
nents vi, j for 1 ≤ j ≤ M, represent M different feature values, each applied to the
same region of interest of the signal, Si, 1 ≤ i ≤ N. Statisitcal analysis of feature vec-
tors may reveal correlations, and some of them can be deleted from the $nal appli-
cation. Optimal selection of features is possible and explored fully in pattern
recognition treatises [85]. Feature vector components can also be labeled. Compo-
nents that exceed certain thresholds that exceed certain thersholds receive an appro-
priate label, and the vectors of labels are processed by higher-level, goal-directed
arti$cial intelligence algorithms.

Let’s consider some examples of feature extraction to see some of the alternatives.

Example (Plasma Etch Reactor Endpoint Detection). The semiconductor manu-
facturing industry uses plasma reactors to selectively remove materials from the sur-
face of silcon or gallium arsenide wafers [70]. Plasma chemistry is notoriously
complex. It is dif$cult to know how fast etching proceeds and when to halt the pro-
cess. A popular technique for ending a plasma etch process is to monitor the optical
emissions from reaction species for gross changes. The sudden disappearance of an
etching byproduct emission indicates the endpoint of the etch cycle. Alternatively,
the appearance of optical spectra characteristic of an underlying layer that should be
preserved means that the reaction should halt. If a spectrograph monitors the appro-
priate emissions, its output is digitized, and a computer processes this digital signal,
then this at $rst appears to be a simple real-time edge detection task. However, dif-
ferences in plasma chemistry across runs, reactor chambers, and semiconductor
wafer patterns combine to make this control strategy quite problematic. Moreover,
as the semiconductor industry continues to reduce the scale of integrated circuits,
etched areas get very small, targeted emission species diminish, and distinct end-
points become increasingly harder to identify.  Feature extraction methods in com-
mon use for recognizing plasma etch endpoint include the following:

• Estimates of the $rst or second derivatives of the endpoint trace

• Approxmiations of the signal level within $xed regions of the trace

• Estimates of the departure of the endpoint signal from expected models of the
optical emission trace

• Estimates of the endpoint trace curvature in $xed regions of the endpoint trace

Example (Internal Combustion Engine Knock Detection). In automobile engines
there is an especially noticeable and harmful abnormal combustion situation known
as knock. Knock occurs after the spark plug $res and results from a spontaneous
combustion of unburned gasoline vapors in the cylinder. It produces a sharp, metal-
lic, clanking sound, and is very harmful to engine components. By mounting an
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accelerometer on the engine block and recording the engine vibration signal, Molin-
aro and Castanié were able to digitally analyze engine knock [86]. From a vibration
signal xa(t), the researchers acquired digital samples x(n), 1 ≤ n ≤ N, and extracted
feature vectors v = (v1, v2, ..., vp). The researchers studied a large variety of possible
features, vi, including the signal energy averaged over N samples,

(4.93)

Another set of features was derived from the histogram values of |x(n)|,

(4.94)

where K = {k0, k1, ..., kq −1}, 0 ≤ i < q, determines a set of intervals within the range
of |x(n)|. Another set of parameters, designed to capture the signi$cant periodicities
in the x(n) values, are given by |X(k)|2, where, as in our study of texture segmenta-
tion in Section 4.3.2, we have

(4.95)

Molinaro and Castanié keep |X(k)|2 for k = 1, 2, ..., N/2 as feature vector elements.
Two other families of feature vector components are more exotic: Prony and ceps-
tral coef$cients. The investigators model the trend of x(n) values with a Prony
model of order P:

(4.96)

The construction of the model is outside the present scope, but related to the z-trans-
form construction of Chapter 8 [87]. The cepstral coef$cients, ci, are Fourier
coef$cients of the Fourier transform of |the logarithm of X(k)|, given in (4.95):

(4.97)

Both Prony model parameters and cepstral expansion coef$cients are useful for
compactly encoding the frequency and stability information within a signal. Prony
parameters $gure in time series analysis studies [88] and cepstral expansions have
been widely used in speech detection applications [89]. The Prony model parame-
ters of Ak, θk, αk, and fk and the cepstral coef$cients ck become feature vector ele-
ments. The point of this discussion is not to erode the reader’s con$dence is
selecting feature vectors, but, rather, to show some of the possibilities and variety of
feature vector components used in a modern application. In fact, Molinaro and
Castanié reduce the number of feature vectors by statistical techniques before
invoking their ultimate detection criteria.
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4.6.2.2 Distance Measures for Feature Vectors. Let’s consider two basic
methods for comparing feature vectors. In a typical signal analysis application, fea-
ture vectors for a library of prototype signals, or models, may be archived in a data-
base. Feature vectors are similarly extracted from input signals—candidates or
unknowns—and compared to the library of prototype vectors.

Once the data reduction from time-series signal to $nite feature vector is
$nished, it is possible to apply the Euclidean norm, from $nite-dimensional vector
spaces, to match prototype signals to candidates. This is called the minimum dis-
tance classi$er.

De$nition (Minimum Distance Classi$er). Suppose v is a feature vector extracted
from a application input signal, x(n), and {em | 1 ≤ m ≤ M} is the set of feature vectors
of prototype patterns. Then the minimum distance classi$er recognizes x(n) as being
of type k if ||v − ek|| ≤ ||v − em|| for all m, 1 ≤ m ≤ M.

Another popular classi$er works on labeled feature vector components. Suppose
that signal feature vector components are derived from a partition of the domain of
signal x(n); that is, each feature vector component represents a particular subset of
Dom(x). Let Π = {S1, S2, ...} be the partition of Dom(x). Suppose also that Λ is
labeling of x for Π, Λ: Π → {Λ1, Λ2, ... }. Typically, labels are applied to feature
vector components if the component’s magnitude exceeds a threshold associated
with the feature. If feature vectors have been extracted from library prototypes as
well, then candidate signals can be matched against library prototypes by compar-
ing the labelings. One such method of comparing vectors of labels and labels
applied to the vector components is the Hamming distance.

De$nition (Hamming Distance Classi$er). The Hamming distance between a
candidate signal label vector u = (α1, α2, ..., αN} and a prototype vector w = (β1,
β2, ..., βN} is the number of positions in which u and w differ. We write the Ham-
ming distance between label vectors u and w as H(u, w).

It is easy, and left as an exercise, to show that the Hamming distance is a metric. 

4.6.3 Statistical Pattern Recognition

The third approach to pattern recognition that we will consider is statistical pattern
recognition. It is possible to resort once again to a least-squares approach. The least-
squares coef$cient matrix derives from a large number of samples and represents
the known knowledge of input signals to the analysis application [89, 90]. We con-
sidered this very general and very powerful approach to the problem of $nding an
optimal noise-removal $lter in Section 4.3. The extension of the method to pattern
recognition is straightforward. Of the many statistical approaches, we will examine
one of the most important: the Bayes classi$er.

4.6.3.1 Bayes Classifier. The Bayes classi$er is a fundamental tool in pattern
recognition. It is a parametric approach, in that statistical parameters associated
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with the source patterns (signals or images) are assumed or approximated by the
application. As the $rst chapter already hinted, this pattern classi$cation method
relies on Bayes’s formula for conditional probabilities.

Statistical pattern recognition, like correlation-based matching and structural rec-
ognition, attempts to associate a class or category, {C1, C2, ..., CK}, with each input
signal {f1, f2, ..., fN}. In order to develop statistics for each input signal, the signal is
decomposed into a feature vector, v = (v1, v2, ..., vM). Each component of the feature
vector is numerical, in order to develop statistics for the likelihood of features,
classes, and for features within signal classes.  Selecting the right feature vector is
both quite open to design and quite critical to the recognition application’s success.

Standard pattern recognition texts cover the Bayes classi$er [91–93]. One of the
earliest applications of Bayes classi$ers to the design of a character recognition sys-
tem was by Chow and dates from the 1950s [94].

4.6.3.2 Statistical Decision Rules. This section explains how statistical
decision rules for deciding class membership can be made based on the likelihood
of each class of signal occurring and on the probability distributions of feature vec-
tors among classes. We examine the problem in several ways. First we frame the
problem as a search for a set of discriminant functions that indicate the resemblance
of a signal to members of a class. Then we consider the problem of $nding risk
functions. That is, we seek functions that measure the risk of misclassi$cation, and
our problem transposes to one of minimizing the risk of a mistaken classi$cation of
a signal. Finally, we pose the problem in terms of the Bayes rule for conditional
probabilities. We $nd that this provides a reasonable statistical tool for building dis-
criminant and risk functions, although there are a number of probability density
functions that must be determined.

Discriminant and risk functions are closely related. Suppose that we assigning
signals {f1, f2, ...} to classes C = {C1, C2, ..., CK}. For each signal, f ∈ {f1, f2, ...}, a
feature vector, v = (v1, v2, ..., vM), is generated. We desire a set of discriminant func-
tions, D1, D2, ..., DK, one for each signal class. The idea is that Dk(v) tells us how
strongly signals with features v resemble signals from class Ck. A discriminant-
based classi$er assigns signal f with feature vector v to class Ck if Dk(v) > Di(v) for
all i ≠ k. The complementary idea is the risk function. Now we seek functions, R1,
R2, ..., RK, such that Rk(v) tells us the risk of classifying f with features v as belong-
ing to class Ck. How strongly do signals with features v resemble signals from
class Ck? A risk-based classi$er places signal f with feature vector v into class Ck if
Rk(v) < Ri(v) for all i ≠ k. Taking Rk(v) = −Dk(v) makes an easy transition from a
discriminant-based classi$er to a risk-based classi$er.

Now let’s consider how to use statistical information about feature vectors and
classes to develop statistical discriminant functions. Suppose that we know the a
priori probability of occurrence of each of the classes Ck, P(Ck).  Suppose further
that for each class, Ck, we know the probability density function for the feature vec-
tor v, p(v |Ck). The conditional probability, P(Ck |v), provides the likelihood that
class k is present, given that the input signal has feature vector v. If we could com-
pute P(Ck |v) for each Ck and v, then this would constitute a statistical basis for
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selecting one class over another for categorizing the input signal f. But the Bayes
formula for conditional probabilities (Chapter 1) provides a tool for calculating this
a posteriori probability:

(4.98)

where p(v) is the probability density function for feature vector v. This inspires the
Bayes decision rule:

De$nition (Bayes Decision Rule). Given a signal f and a feature vector v derived
from f, the Bayes Decision Rule is to classify f as belonging to class Ck ∈ C = {C1,
C2, ..., CK} if P(Ck |v) > P(Ci |v) for all i ≠ k; otherwise, classify f as belonging to
some Ck where P(Ck |v) is maximal.

We can also improve upon our concept of risk by incorporating the probabilistic
ideas. Suppose that the cost of assigning signal f with feature vector v to class Ck,
when it really belongs to class Ci is r(k, i), where r(k, i) = 0 if k = i. Typically, r(k, i)
is a 1 or 0, for the cost of an error or the cost of no error, respectively. Then, the total
cost simply counts the number of misclassi$cations. In a real application, it may be
necessary to provide more informative risk estimates and cost counters. For exam-
ple, in a character recognition system, the cost might be the time estimate for human
assistance to the application. Then, incorporating the a posteriori probabilities from
Bayes’s formula, the risk of placing f in class k, R(Ck, v), is the sum of the individual
misclassi$cation risks, 

(4.99)

Classifying signal f with feature vector v as belonging to class Ck according to
whether R(Ck, v) ≤ R(Ci, v) for all i ≠ k implements the Bayes decision rule (4.99).

Now let us consider possible discriminant functions based on the Bayes formula
(4.98). We may begin by assigning the discriminants Dk(v) = P(Ck|v), but noting
that, given feature vector v, for each such k, 1 ≤ k ≤ K, the denominator in (4–6.1) is
identical, we can simplify the discriminants to have

(4.100)

And it will be convenient in a moment to take the natural logarithm of (4.100) to
obtain the alternative discriminant function

(4.101)

Indeed, any constant can be added to each of a family of discriminant functions
without changing their characterization capability. Each of the family of discrimi-
nants may be multiplied by any positive constant. Finally, a monotonic increasing
function, such as the logarithm, may be be applied to all of the discriminants
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without affecting the classi$cation results. These operations are often useful for
simplifying the evaluation of discriminants.

4.6.3.3 Estimating Probabilities. Let us now turn to the practical problem of
how to estimate the probabilities that are necessary for applying the Bayes rule for
pattern recognition. Upon examinination of (4.98), we see that applying the Bayes
formula assumes that we have knowledge of:

• The a priori probability of class occurrence Ck, P(Ck)

• The probability density function for the feature vector v, given the presence of
a signal of class Ck, p(v|Ck)

How are we to estimate these probabilities?
It may be possible to know the class probabilities, P(Ck), from the nature of the

application. For example, in a character recognition application, the class probabili-
ties come from known probabilities of the presence of characters in text. This could
come from a broad scienti$c study of the problem area. To wit, the development of
classi$ers for the optical character recognition systems used by the United States
Postal Service required the collection and analysis of hundreds of thousands of
character samples [95–97]. And lacking the luxury of a broad scienti$c study, the
character recognition classi$er designer can perform a sampling of representative
texts. In the case of speech phoneme recognition, these probabilities are known, but
if the application concerns a special application area (i.e., spoken numbers for a
telephone dialing application utilizing voice recognition), then more uniform proba-
bilities apply. There are some subtleties, to be sure. In a spoken number recognition
system, one must be alert to common alternative pronunciations for numbers. The
system designer might assume that P(C1) =  = P(C9) = .1, with Cn signifying the
utterance of a nonzero number. But two common alternatives exist for saying
“zero”: “zero” and “oh.” Thus, the design might posit two classes for this utterance;
thus, P(C0) = P(Cz) = 0.05, for saying “oh” or “zero,” respectively.

The class conditional feature probabilities are a further problem. If we conduct a
thorough statistical study of a large number of samples from each class, then it is pos-
sible to arrive at rough ideas of the distribution functions. But when a signal f arrives
at the input to the system, and the front-end processing modules derive its feature vec-
tor v, how are we to compute the probability density functions p(v|Ck) for each class
Ck? If we answer that we should once more adopt a parametric stance—that is, we
assume a particular probability density function for the conditional densities required
by (4.98)—then there is a elegant and practical resolution to this problem.

It should come as no surprise that the distribution of choice is the Gaussian. Not
only is it justi$ed by the Central Limit Theorem, but it provides the most tractable
mathematical theory. Since we are dealing with feature vectors, we must consider
the multivariate normal distribution. For the probability density function p(v|Ck),
this parametric assumption is

(4.102)
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where v = (v1, v2, ..., vM) is the feature vector of length M extracted from signal f; µk
is the mean for feature vectors from signals of class Ck, µk = E[v|C=Ck]; (v − µk)

T is
the transpose of v − µk; and Σk is the M × M covariance matrix for feature vectors of
Ck signals, det(Σk) is its determinant, and Σk

−1 is its inverse.
The parametric assumption allows us to estimate the conditional probabilities,

p(v|Ck). This requires a preliminary classi$er training step in order to establish the
statistical parameters that the analysis application uses to classify incoming signals.
Data from a large number of signals for each of the different classes {C1, C2, ...,
CK} is collected. For each such signal, its feature vector v is derived. The average of
the feature vectors from class Ck is µk. Once we have computed the means for all of
the feature vectors from signals in a class Ck, then we can compute the covariance
matrices, Σk = E[(v−µk)(v−µk)

T. Once the covariance matrix is computed for a class
Ck, its determinant and inverse can be calculated (this is problematic when the num-
ber of features is large). The feature vector averages, {µ1, µ2, …, µK}, and the cova-
riance matrices, {Σ1, Σ2, …, ΣK}, are stored for analyzing the signals that the
classi$er accepts as inputs. This completes the training of the classi$er.

The steps in running the classi$er are as follows. For every signal f with feature
vector v, the Bayes classi$er

• Computes (4.102) for each class Ck;

• Calculates the a posteriori probability P(Ck |v) for each k, 1 ≤ k ≤ K;

• Classi$es signal f as belonging to class Ck where P(Ck|v) is maximal.

4.6.3.4 Discriminants. Now let us consider different discriminant functions
that support a Bayes classi$er. Different discriminants arise from the statistics of the
feature vectors of input signals to the classi$er. In particular, special cases of the
covariance matrix Σk in (4.102) result in signi$cant simpli$cations to the classi$er’s
computations.

Let us $rst look at an alternative discriminant function for (4.98), namely the nat-
ural logarithm. Since the natural logarithm is monotone increasing, taking
log(P(Ck |v)) provides the same recognition decision as P(Ck |v) itself. Thus, if we
assume normally distributed feature vectors (4.102), then we have 

(4.103)

The term m log(2π)/2 does not depend on Ck, so it can be ignored; thus, we may set

(4.104)

In (4.104), det(Σk) and P(Ck) can be calculated from the training data, so only the
vector product (v − µk)Σk

−1(v − µk)
T needs to be calculated for the feature vector v of

every input signal f.
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Three simplifying assumptions make the discriminants (4.104) easier to compute:

• The a priori probabilities P(Ck) of the signal classes are all equal.

• The features vectors are statistically independent and have the same variance.

• The convariance matrices are all the same.

In the $rst case, we may drop the log(P(Ck)) term from (4.104). This helps, but
the inversion and determinant of the covariance matrix pose a greater threat to com-
putational tractability.

In the second of these special cases we $nd Σk = σ2I, where I is the M×M iden-
tity matrix. Then Σk

−1 = σ−2I, which is independent of class. This allows us to trim
the discriminant functions further, so that now, having removed all class-indepen-
dent terms, we arrive at

(4.105)

Making the additional assumption that class membership likelihood is the same for
all Ck, we $nd that maximizing Dk(v) in (4.105) is the same as minimizing (v−
µk)(v − µk)

T = ||v−µk||
2. This classi$er we are already familiar with from Section

4.6.2.2. It is the minimum distance match between features drawn from the input
signal f and the mean feature vectors. In other words, a Bayes classi$er with statisti-
cally independent features of equal variance reduces to a minimum distance
classi$er. The class Ck for which feature vector v is closest to µk is the class to
which we assign input signal f.

The Bayes classi$er is optimal; and when the feature vectors obey a Gaussian dis-
tribution, the discriminant functions (4.103) are the proper tool for separating input
signals into classes. There are nevertheless some important dif$culties with the
Bayes classi$er, and we must note them. The feature vectors may not, in point of fact,
be normally distributed. This makes the computation of the discriminant problematic.
Sometimes, alternative features that more closely follow a Gaussian distribution can
be selected. Furthermore, if the number of features is large, the computation of the
determinant and inversion of the covariance matrix become intractable. There are,
$nally, some philosophical reasons for objecting to the Bayes classi$er [98].

4.7 SCALE SPACE

This section studies a signal analysis technique known as scale-space decomposi-
tion. From our $rst studies of representative signal interpretation problems, we
noted that the determination of the size of a signal component is a critical step in
analyzing the signal. One task in automated electrocardiography, to recall an exam-
ple from the $rst chapter, is to distinguish between splintered and normal contrac-
tions of the heart’s left ventricle. It is the time-domain extent of the signal’s jump
that determines whether there is a normal contraction or an abnormal, spasmodic
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contraction. And in edge detection, we noted that understanding scale is a necessary
part of simple edge detection. For an edge at a $ne scale could just as well be con-
sidered an insigni$cant signal aberration at a coarse scale.

Soon after researchers began examining the magnitude of signal derivatives in
study of edges, their interest extended to signal curvature, which is a local measure
of signal shape. There are several quite natural reasons for this transition. Psycho-
logical experiments revealed that a few curved line fragments suf$ce to impart
object shape information—Attneave’s famous example is a sleeping cat—to a
human subject [99]. Also, from calculus, the sign of the second derivative deter-
mines the curvature of a signal: Where the second derivative is positive de$nes a
concave up region, where it is negative de$nes a concave down region, and where it
is zero an in#ection point exists. The problem is that the second derivative informa-
tion is very noisy in real signals and images, resulting in erratic segmentation in
regions of different curvatures. Researchers turned increasingly toward multiple res-
olution methods that would support the precious information content from curva-
ture. Hierarchical methods for image processing and recognition within natural
scenes were disclosed, for example [100, 101].

We have already noted Marr’s contribution to multiscale edge detection, which
formed the cornerstone of a very important trend in signal and image analysis [77].
Marr oriented the attention of the scienti$c and engineering communities to the
links between the algorithms of engineered systems and the processes within bio-
logical systems—for example, animals [102]. Marr’s strategy was to study animal
sensory systems, especially vision, and from them derive the inspiration for
machine vision system designs. Researchers in the new $eld of psychophysics,
which studies the brain’s sensory processes at a stage where they are still indepen-
dent of consciousness, had found evidence of multiple resolution, orientation-
sensitive processing channels in animal vision systems [103–105]. Aware of the
biological vision system research, recognizing its link to the multiple resolution
image analysis efforts, and building upon their earlier work in edge detection, Marr
and his coworkers proposed a three-stage architecture for vision systems:

• The raw primal sketch, which segments the signal into edges and concavity
regions;

• The extraction of geometric information relative to the observer;

• The determination of geometric information independent of the observer.

While Marr’s scheme is a vision system formulation, we wish to focus on signal
interpretation and shall reduce his architecture into one dimension. Let’s replace
Marr’s visual terms with auditory terms. Thus, we ought to look not for a raw pri-
mal sketch so much, perhaps, as a raw primal listen. And we ought to think of signal
or sound content rather than think of geometric information, with its planar and spa-
tial connotations. An example should help. When you hear a whistle at a railroad
crossing, the raw primal sketch consists of the auditory edge at the onset of train’s
whistle and the increasing intensity thereafter. The sudden realization that a train is
coming closer to you constitutes the observer–relative signal content. The re#ection
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that a train is about to cross through the intersection makes up the observer-indepen-
dent information in the experience.

Computationally, the raw primal sketch begins by convolution of the signal with
the second derivative of the Gaussian. If f(t) is a signal and g(t, σ) is the Gaussian of
standard deviation σ and zero mean, then we let F(t, σ) be de$ned by 

(4.106)

We recognize this as the edge detection operation of Marr and Hildreth [62]. The
next raw primal step is to link the edges together and segment the signal into regions
of concavity (concave down) and convexity (concave up). The remaining steps in
Marr’s schema, the development of signal information relative to the observer and
signal information independent of the observer, then follow.

Note that there does not seem to be any clear direction within Marr’s algorithm to
decide at what scales σ the edge detection operation (4.106) should be developed.
The second two steps in the algorithm are less clear than the $rst, and they contain a
number of thresholds and parameters whose values are dif$cult determine without
extensive experimentation. Finally, there is no clear relation between the primal
sketch information in the different channels. How does the content of a large σ chan-
nel affect the processing of the conent of a small σ channel? Does processing occur
from large to small or from small to large σ channels? These dif$culties with the
conception brought some researchers to critique Marr’s architecture. Prominent
among the skeptics, Pentland, deemed it to be too data-driven and lacking in its qual-
itative aspects [106]. Soon enough, however, in the early 1980s—beginning what
would turn out to be a decade of signal analysis research breakthroughs—an impor-
tant step in demonstrating qualitative computer vision strategies was taken by Witkin
[107] and by Koenderink [108] with the concept of scale-space representation.

Like Marr’s theory, the scale-space representation smoothes an image with a fam-
ily of Gaussian $lters. There are two substantive differences, however: A full set of
smoothed images is maintained, and there is a critical interconnection between the
regions of concavity at different scales, σ. We shall see that a complete description of
the signal’s shape results. The description proceeds from the smallest to the largest
scale, and each concavity feature of the signal ranked according to its signi$cance.6

Scale space decomposition thus furnishes a useful signal analysis paradigm. It
identi$es concavity as a critical feature of signals. It highlights the link that this fea-
ture shares with biological vision systems, as, for instance, a scattering of curved
lines immediately suggests a shape. It shows how the features at one scale affect
those at another scale. We shall soon see how to derive a complete graphical or

6Interestingly, the $rst exploration of scale-space decomposition was in the area of theoretical econom-
ics. James L. Stans$eld, working at the Arti$cial Intelligence Laboratory at the Massachusetts Institute
of Technology in the late 1970s, studied zero crossings under Gaussian smoothing while tracking com-
modity trends [“Conclusions from the commodity expert project,” MIT AI Laboratory Memo, No. 601,
November 1980]. 
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structural description of the signal from this multiscale concavity information.
Furthermore, this structural description enables us to readily build pattern recogni-
tion or object matching applications. We can nevertheless use it to perform a time-
domain analysis of a signal, identify signal features of different scale, and derive a
nonsignal structure that is useful for interpreting the signal. That is the goal of sig-
nal analysis, and scale space decomposition is the methodological exemplar.

We will $rst examine scale space as originally conceived—in analog form. We
will consider the type of nonsignal structures that the scale space decomposition
produces for a signal. We will state and prove (for simple, but important classes of
signals) the theorems that give the method its power. And we shall highlight some
of the drawbacks of the classic continuous-time form of scale-space decomposition.
Interestingly enough, it was not until some years after the development of the ana-
log scale-space theory that discrete versions of the theory were discovered. We will
look at some approaches to discrete scale-space decomposition and close this
section with some applications.

4.7.1 Signal Shape, Concavity, and Scale

Scale-space decomposition of a signal begins by smoothing the signal with a family
of Gaussian $lters. The smoothing operation is a convolution, so it is linear and
translation invariant (Chapter 3). Furthermore, all of the smoothing kernels are the
same, except for the standard deviation of the Gaussian, σ, which increases with the
amount of smoothing performed.  This procedure, quite familiar after our experi-
ments with edge detection, produces a series of representations of the signal at dif-
ferent scales or resolutions. The highest resolution (and hence the smallest scale)
occurs with the original signal, and we may derive coarser resolution representa-
tions of the signal by increasing σ. This collection of smoothed versions constitutes
a scale space decomposition of the signal.

The next idea is to look for regions of curvature in the scale space decomposi-
tion’s signals. The signal derivative remains the principal tool for recovering signal
shape. Recall from calculus that the extrema of the nth derivative of a signal dnf/dtn

are the zeros of its next higher derivative, d(n+1)f/dt(n+1). Consider in particular the
sign of the second derivative of a signal. (Withhold for a moment the objection,
drawn from general intuition and practical edge detection endeavors, that this deriv-
ative is noisy and misleading.) Where d2f/dt2 < 0, the signal is concave down; where
d2f/dt2 = 0 and d3f/dt3 ≠ 0 there is a zero crossing of the second derivative, or a point
of in#ection, using calculus parlance; and regions where d2f/dt2 > 0 are concave up,
or convex. Thus, the sign of the second derivative is the basis for signal segmenta-
tion (Section 4.1).

De$nition (Curvature). Curvature is a measure of how rapidly the graph of a sig-
nal, G = {(t, f(t)): t ∈ Dom( f )} is turning in on itself. More formally, the osculating
circle to the graph G at a point (t0, f (t0)) ∈ G is the circle that is tangent to the curve
at (t0, f(t0)). And the curvature κ equals 1/ρ, where ρ is the radius of the osculating
circle to the graph G.
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Note that curvature can be obtained by $tting a polynomial to the signal values
and computing the derivative of the polynomial model. Alternatively, a circle can be
$tted to the signal data. A least-squares formulation of the problem exists and is
widely used in the analysis of machined surfaces [33].

Proposition. The curvature has an analog signal representation as well; letting
y = f(t) and denoting differentiation by y′(t), it is given by

(4.107)

Proof: Calculus; also Ref. 109. ■

From the proposition, we can classify concave-up and concave-down regions of
the signal not only by the sign of the curvature (positive and negative, respectively),
but also by the magnitude of the curvature. For a candidate signal analysis method,
this is an attractive concept for signal structure. It has considerable descriptive
power. There is a link with animal vision systems. There is an important geometric
connotation as well, via the idea of the osculating circle. The problem with curva-
ture is that, despite its descriptive power and its link with biological vision systems,
in the presence of signal noise it is quite problematic. This objection has likely
occurred to many readers, and we need to address the issue now. Gaussian smooth-
ing removes the local bumpiness of the signal. At larger scales, when the smoothing
Gaussian kernel has a larger variance, the concave and convex regions of the signal
that persist must be more signi$cant.

Suppose f(t) is an analog signal and G(t, σ, µ) = σ−1(2π)−1/2exp(−(x − µ)2/(2σ2))
is the Gaussian with standard deviation σ and mean µ. Let g(t, σ) = G(t, σ, 0). Con-
volution of f(t) with g(t, σ) gives F(t, σ):

(4.108)

We are concerned with the behavior of concavity regions as we vary σ in (4.108).
But the regions where the signal is concave down and concave up are separated by
those where the second derivative of F(t, σ) is zero:

(4.109)

Thus, we can track the concavity regions of a signal by simply keeping track of the
zero crossings of the second derivative (4.109). Notice that derivatives of F(t, σ) can
be computed by the convolution of f(t) with the Gaussian’s derivative of the same
order:

( )3/22

( )
( ) .

1 ( ( ))

y t
t

y t

′′
κ =

′+

2

2

1 ( )
( , ) ( ) ( , ) ( )exp .

2 2

x u
F t f t g t f u du

+∞

−∞

 −σ = ∗ σ = −  σ π σ 
∫

2

2
( , ) ( , ) 0.ttF t F t

t

∂ σ = σ =
∂



356 TIME-DOMAIN SIGNAL ANALYSIS

Proposition. Let f(t) be an analog signal and let g(t, σ) be the zero mean Gaussian
with variance σ2. Then

(4.110)

Proof: Write out the convolution integral for (4.110) and interchange the order of
the differentiation and integration. ■

Before this gets too abstract, let us consider an example. Consider a fourth-degree
polynomial with two concave-up regions surrounding a narrow concave-down
region. At each scale σ we determine the zero crossings of the second derivative
(4.109), and over a range of scales we can draw a contour plot of the zero crossings.
Notice that with suf$cient smoothing the concave-down region disappears. As σ
increases, the locations of the two zero crossings get closer together, eventually
meet, and then there is only a convex region. For this example, once we mark the
regions as concave or convex, this marking remains; a concave region does not
merge with a convex region.

If this behavior is general, then we have a very great simpli$cation in our task of
segmenting the various smoothed versions of f(t). All we have to do is follow the
zero crossings. Where a pair meet, we know that smoothing has obliterated a con-
vex (or concave) region and two surrounding concave (or convex, respectively)
regions will merge. We can use this simplifying assumption if we know that Gauss-
ian smoothing never creates new zero crossings, but may only destroy them as the
scale of the smoothing increases. Let’s pursue this line of thinking. Consider how
the contour plot of zero crossings might look were the smoothing at some scale σ0
to create a new zero crossing located at time t0. In this case, we know that for
coarser scales, σ > σ0, there are regions of opposite concavity on either side of time
t0. On which side of t0 does the concave-up region lie? We have to reexamine
the signal smoothed at scale σ each time such a new zero crossing appears during
the smoothing process. Depending on the complexity of the signal, this could be
quite a chore! Could a large number of zero crossings abruptly appear at some
scale? Could the number of regions we have to type according to concavity
increase forever as we continue to convolve with Gaussians of ever-wider support?
Indeed, what kind of “smoothing” do we have here that puts new wrinkles in our
signal as we proceed?

Fortunately, there is a deep theoretical result for scale space decomposition that
relieves us of all of these worries. The theorem is that Gaussian smoothing (4.108)
never introduces additional structure as the scale parameter s increases. That is, new
zero crossings of the second derivative of F(t, σ) do not appear with increasing σ.
There is a converse too: If a convolution kernel never introduces additional struc-
ture, then it must be the Gaussian. Together, these two results are the foundation of
scale space theory.
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4.7.2 Gaussian Smoothing

A variety of factors motivates the use of the Gaussian signal for smoothing a signal.
Of course, tradition among signal analysts is one reason for using it. It was one of
the smoothing operators used in some of the earliest edge detection efforts, and we
found in Section 4.5.3 that the derivative of the Gaussian is an optimal step edge
$nder. But the Gaussian and its derivatives have a number of attractive properties,
and these properties motivate its use for edge detection as well as for the more gen-
eral scale space approach to signal analysis.

For scale-space decomposition the Gaussian is well-behaved. In particular, it has
the following properties:

• (Symmetry Property) It is symmetric and strictly decreasing about its mean.

• As σ → 0, F(t, σ) → f(t); that is, for small scales σ, the smoothed signal
resembles the original.

• As σ → ∞, F(t, s) → E( f(t)); that is, for large scales σ, the smoothed signal
approaches the mean of f (t).

• The Gaussian is an L1(R) signal (absolutely integrable), and it is C∞ (in$nitely
differentiable).

• (Causality Property) As σ increases, zero crossings of Ftt(t, σ) may disappear,
but new ones cannot arise.

While the $rst four of the above properties are quite nice, the Causality Property
is so important that it elevates Gaussian smoothing, in a speci$c sense, to the status
of the only possible choice for a scale-space smoothing kernel. And as indicated
in the previous section, this property has an important converse, namely, that the
Gaussian is unique in this regard.

The following Scale-Space Kernel Conditions formalize the above properties.
We need to state these conditions for a general, candidate smoothing kernel k(t, σ).
We shall invoke these conditions later, in the course of proving our theorems. These
are basic properties that we require for the $ltering kernel of any scale-based signal
decomposition, and so we state the conditions as a de$nition.

De$nition (Scale-Space Kernel Conditions). A function k(t, σ) is a scale-space
kernel if it satis$es the following $ve conditions:

1. k(t, σ) is the impulse of a linear, translation-invariant system: If f(t) is
an analog signal, then the smoothed version of f(t) at scale σ is given by
F(t, σ) = f(t)*k(t, σ).

2. For different values of σ, k(t, σ) should always maintain the same funda-
mental shape: k(t, σ) = (1/σ2)m(t/σ) for some one-dimensional signal m(u).

3. As σ decreases, k(t, σ) approaches the Dirac delta δ(t), so that F(t, σ)
approaches f(t): as σ → 0, we have k(t, σ) → δ(t).
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4. k(t, σ) is an even signal; as σ → ∞, or as t → ∞, we have k(t, σ) → 0.

5. The Causality Property holds for k(t, σ).

While they might appear much too speci$c and technical upon $rst inspection,
the Scale-Space Kernel Conditions are quite well-motivated. By requiring that the
decomposition be linear and translation-invariant, the Convolution Theorem for
Analog LTI Systems (Chapter 3) allows us to write the smoothing operation as a
convolution.

4.7.2.1 Sufficiency of the Gaussian. Let us prove that the Gaussian is
suf$cient to produce a scale-space decomposition of a signal which does not create
zero crossings in the smoothed second derivatives of F(t, σ). Again, suppose G(t, σ,
µ) = σ−1(2π)−1/2exp(−(x− µ)2/(2σ2)) is the Gaussian with standard deviation σ and
mean µ, and set g(t, σ) = G(t, σ, 0). Suppose that the smoothed signal F(t, σ) is
given by the convolution of signal f(t) with g(t, σ):

(4.111)

Our $ve-step proof relies on concepts from calculus:

• We consider the zero crossings of the second derivative Ftt(t, σ) in (4.111) as
curves in the (t, σ) plane.

• This allows us to invoke the implicit function theorem and second derivative
conditions for a local maximum along the (t, σ) plane curves.

• We develop some straightforward characterizations of the Causality Property
in a proposition.

• Any signal k(t, σ) that is a solution of a particular form of the heat diffusion
equation also satis$es one of the proposition’s equivalent conditions for the
Causality Property.

• Finally, since the Gaussian does solve the diffusion equation, we know that it
provides a scale-based decomposition that eliminates structure as the scale of
the signal smoothing increases. 

To begin with, let us vary σ and observe the behavior of zero crossings of the
second derivative of F(t, σ). Let E(t, σ) = Ftt(t, σ) = (∂2/∂t2)F(t, σ). Zero crossings
are solutions of E(t, σ) = 0, and such pairs form curves in the (t, σ) plane. The
curves may extend over the entire range of scales for which smoothing is per-
formed, say from 0 ≤ σ ≤ σmax. Possibly, the curve has a local minimum or maxi-
mum at a certain time value, t = t0. This situation allows us to write σ as a function
of t along the curve: σ = σ(t). Our structural description for f(t) at scale σ is its seg-
mentation into regions that are concave-up and concave-down, bounded by the zero
crossings where E(t, σ) = 0. The desired Causality Property tells us that such zero
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crossings cannot increase with scale. Equivalently, this means that as smoothing
proceeds, it continues to remove structure from the signal. This is the crucial idea:
We can formulate the condition that zero crossings diminish as the scale of smooth-
ing enlarges by examining the behavior of the curves σ(t) where E(t, σ) = 0 is an
extremum in (t, σ) space. The next result provides some elementary facts about zero
crossing curves. The next proposition provides some basic results, useful for show-
ing that when the scale of Gaussian $ltering increases, the structural detail of a
signal diminishes.

Proposition (Zero Crossing Conditions). Consider the curve E(t, σ) = 0 in the (t,
σ) plane. Let the time variable t parameterize the curve σ = σ(t), so that E(t, σ) =
Ftt(t, σ) = Ftt(t, σ(t)) is parameterized by t as well. Then:

• The Causality Property holds if and only if each local extremum of σ(t) is a
local maximum: σ ′(t0) = 0 implies σ ′′(t0) < 0.

• Along the curve E, σ ′ = dσ/dt = −Et /Eσ = − (∂E/∂t)/( ∂E/∂σ).

• The Causality Property holds if and only if whenever σ′(t0) = 0, then 

(4.112)

Proof: Condition (i) is a differential calculus formulation of our observation that an
arch-shaped curve E(t, σ) = 0 is acceptable, while a trough-shaped curve is not.

To see the second condition, $rst note that we can parameterize the curve
E(t, σ) = 0 with some parameter, say u. By the chain rule for vector-valued
functions, 

(4.113)

Since E(t, σ) = 0 along the curve, the derivative dE/du in (4.113) is also zero along
the curve. Next, we may choose the parameterizing variable, u = t, the time variable.
This little ruse produces

(4.114)

which gives condition (ii).
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Condition (iii) follows from the $rst two. Indeed, applying the quotient rule for
derivatives to condition (ii), we $nd

(4.115)

From (4.114), note that σ ′(t0) = 0 if and only if Et = 0 at t = t0. Thus, (4.115)
ensures yet another equivalent condition: σ ′′(t0) = −(Ett/Eσ) at t = t0. The inequality
in condition (iii) follows from condition (i), completing the proof. ■

This next theorem is a basic theoretical result in scale-space decomposition. It
shows that a Gaussian $ltering kernel can be the foundation for a scale-based signal
decomposition method, which removes signal structure as the scale of the smooth-
ing increases.

Theorem (Suf$ciency). Suppose that convolution with the Gaussian, g(t, σ) = G(t,
σ, 0) = 2−1/2σ−1exp(−t2/(2σ2)), smoothes the signal f(t) at scale σ to produce
F(t, σ):

(4.116)

Then the Causality Property holds; that is, Ftt(t, σ) zero crossings may disappear—
but can never appear—as σ increases.

Proof: Consider the partial differential equation

(4.117)

This is a form of the heat or diffusion equation from physics, introduced already in
Chapter 1. We can easily check that the Gaussian g(t, σ) solves (4.117) by calculat-
ing:

(4.118)

and

(4.119)
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so that (4.117) holds for U(t, σ) = g(t, σ). However, we can show that F(t, σ) and
hence E(t, σ) satisfy the diffusion equation as well. In fact, since

we have Ett = Ftttt = (1/σ)Fσtt = (1/σ)Fttσ = (1/σ)Eσ. This shows that E(t, σ) satis$es
the diffusion equation (4.117) and the weaker inequality (4.112). A Gaussian kernel
thereby guarantees that increasing the scale of smoothing creates no new signal
structure. This completes the suf$ciency proof.  ■

4.7.2.2 Necessity of the Gaussian. It is quite a bit harder to show that the
Gaussian is the only kernel that never allows new signal structure to arise as the
scale of smoothing increases. The necessity proof involves several steps:

• We consider a candidate $ltering kernel k(t, σ) and represent the signal to be
analyzed, f(t), as a sum of Dirac delta functions.

• Because of the Sifting Property of the Dirac delta (Chapter 3), this transposes
the convolution integral into a discrete sum, and, using the Zero Crossing Con-
ditions Proposition above, there arises a set of simultaneous linear equations,
Ax = b.

• If these simultaneous equations have a solution, then we can $nd a signal f(t)
for which the proposed kernel k(t, σ) creates new structure as σ increases.

• We show that we can always solve the simultaneous equations unless the pro-
posed kernel k(t, σ) satis$es a special differential equation, which is a general
form of the diffusion equation.

• We prove that the only kernel that satis$es this differential equation is the
Gaussian.

• Thus, if the $ltering kernel k(t, σ) is not Gaussian, it cannot be a solution to the
special differential equation; this implies that we can solve the simultaneous
linear equations; and this solution at long last reveals a signal, f(t), for which
our proposed k(t, σ) creates at least one new in#ection point during smoothing. 

Let’s follow the above plan, beginning with some technical lemmas. We show
how to derive a set of simultaneous equations by representing f(t) as a sum of Dirac
delta functions and using the Zero Crossing Conditions. From the discussion of the
Dirac delta’s Sifting Property (Chapter 3), f(t) can be represented as the limit of
such a sum.
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Lemma (Zero Crossing Conditions for Dirac Sum Signals). Suppose that k(t, σ)
satis$es the Scale-Space Kernel Conditions and that the signal f(t) has the following
representation as a sum of Dirac delta functions:

(4.121)

As before we de$ne

(4.122)

and we set E(t, σ) = Ftt(t, σ). To avoid excess subscript clutter, we also de$ne

M(t, σ) = ktt(t, σ) = (∂2/∂t2)k(t, σ). If E(t0, σ) = 0 for some t = t0, then

(4.123)

and at an extremum (t0, σ) of the curve E(t, σ) = 0 the following equations hold:

(4.124)

and

(4.125)

Proof: Since f(t) is a sum of Dirac delta functions (4.121), the Sifting Property of
the delta function implies

(4.126)

At a point (t0, σ) on a zero crossing curve, E(t0, σ) = 0, so (4.123) follows from
(4.126). Furthermore, the Zero Crossing Conditions Proposition showed that at an
extreme point (t0, σ) on the zero crossing curve we must have Et(t0, σ) = 0, and by
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(4.126) this entails (4.124). Finally, note that (4.125) follows from equation (4.112)
of the same proposition, and the proof is complete. ■

Corollary (Necessary Linear Equations). Let the lemma’s assumptions still hold
and let t0, t1, t2, …, tn be arbitrary. Then, for P < 0, the following four simultaneous
equations,

(4.127)

have no solution (c1, c2, ..., cn).

Proof: The existence of (c1, c2, ..., cn) satisfying (4.127) with P < 0 violates
(4.125). ■

Once we assume that f(t) is a sum of Dirac delta functions, the lemma and its cor-
ollary show that the Causality Property imposes extremely strong conditions on the
$ltering kernel. In (4.127), $nding (c1, c2, ..., cn) is equivalent to $nding f(t), and it
would appear that solutions for such an underdetermined set of linear equations
should be plentiful. If for some t0, t1, t2, …, tn, P, with P < 0, we could discover a
solution (c1, c2, ..., cn), then this would give us a signal f(t) and a location in scale
space (t0, σ) at which the kernel k(t, σ) fails the Causality Property: New structure
unfolds when σ increases at (t0, σ). The matrix of second-, third-, and fourth-order
partial derivatives in (4.127) must be very special indeed if a candidate smoothing
kernel is to support the Causality Property. Our goal must be to show that the Cau-
sality Property guarantees that for any t0, t1, t2, …, tn, P < 0, (4.127) de$es solution.
The next proposition recalls a linear algebra result that helps bring the peculiarities
of (4.127) to light.

Proposition. Let M be an m × n matrix, let b be an m × 1 vector, and let [M | b] be
the m × (n+1) matrix whose $rst n columns are the same as M and whose last col-
umn is b.  Then the following are equivalent:

(i) The equation Mx = b has a solution.

(ii) Rank M = rank [M | b]; that is,

(4.128)

(iii) For all vectors y = (y1, y2, ..., ym): If 〈y, b〉 = 0, then y1(M1,1, M1,2, ..., M1,n)
+ y2(M2,1, M2,2, ..., M2,n) +  + ym(Mm,1, Mm,2, ..., Mm,n) = 0.
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Proof: Recall that the column space of the matrix M is the set of vectors spanned
by the column vectors of M, and the row space of is the set of vectors spanned by
rows of M. From linear algebra, the dimensions of these two spaces are the same—
the rank of M. Now, (i) is clearly equivalent to (ii), because (i) is true if and only if b
is in M’s column space. Also note that the row space of M must have the same
dimension as the row space of [M | b]. So if vector y = (y1, y2, ..., ym) is such that the
linear combination of rows of M, y1(M1,1, M1,2, ..., M1,n) + y2(M2,1, M2,2, ...,
M2,n) +  + ym(Mm,1, Mm,2, ..., Mm,n) = 0, and also y1(M1,1, M1,2, ..., M1,n, b1) +
y2(M2,1, M2,2, ..., M2,n, b2) + ... + ym(Mm,1, Mm,2, ..., Mm,n, bm) is nonzero in the last
component (that is, 〈y, b〉 ≠ 0), then the dimension of the row space of [M | b] would
exceed the dimension of the row space of M, a contradiction. Thus, (ii) entails (iii).
Finally, (iii) says that any vector y ⊥ b must also be orthogonal to every column of
M. This means that b is in the column space of M, Mx = b is solvable, and the proof
is complete. ■

The next proposition reveals a differential equation that scale space kernels must
satisfy.

Proposition (Necessary Differential Equation). Suppose that k(t, σ) satis$es the
Scale-Space Kernel Conditions and that the signal f(t) has a representation as a sum
of Dirac delta functions (4.121), as in the lemma. Then there are constants, A, B, C,
and D, with D/C > 0, such that

(4.129)

Proof: Consider the vector b, where b = (0, 0, P, 1) and P > 0. Note that it is easy to
$nd a vector y = (y1, y2, y3, y4) such that 〈y, b〉 = 0. Applying the previous proposi-
tion and the Necessary Linear Equations Corollary, it follows that y1M1,1(t0 − t1) +
y2Mt(t0 − t1) + y3Mtt(t0 − t1) + y4Mσ(t0 − t1) = 0. Since (4.127) has a solution for any
t0, t1, t2, …, tn we may write this as y1M1,1(t) + y2Mt(t) + y3Mtt(t) + y4Mσ(t) = 0. Let
A = y1σ2, B = y2σ, C = y3, and D = −y4σ. Then,

(4.130)

Observe that D/C = (−y4σ)/y3 = Pσ > 0. We require, however, that k(t, σ), not just its
second derivative, M(t, σ), satisfy the differential equation. Any two $lters with sec-
ond derivatives satisfying (4.130) must differ by a function with zero second deriva-
tive. That is, their difference is a linear term. Since the Scale-Space Kernel
Conditions require that as t → ∞, we have k(t, σ) → 0, this linear term must be iden-
tically zero. Thus, k(t, σ) satis$es (4.129). ■
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Equation (4.129) is a general form of the heat or diffusion equation. We have
come a long way and have taken nearly all the steps toward proving that a $ltering
kernel which obeys the Scale-Space Kernel Conditions is necessarily Gaussian. The
next theorem solves the generalized heat equation. To accomplish this, we must
make use of the analog Fourier transform, the formal presentation of which will not
be given until the next chapter. We fancy that many readers are already familiar with
this technique for solving differential equations. We apologize to the rest for asking
them to see into the future and all the more so for suggesting a premonition of the
Fourier transform!

Some readers may wish to skip the proofs of the next two theorems, perhaps
because the heat equation’s solution through Fourier transformation is already
familiar, or perhaps to return to them after assimilating Chapter 5’s material. The
$rst result solves the generalized heat equation. Because the solution involves an
integration, it is less than satisfying, however. The second theorem remedies this.
We apply the Scale-Space Kernel Conditions to our general solution and derive a
result that clearly shows the Gaussian nature of all structure reducing scale-space
$ltering kernels.

Theorem (Generalized Heat Equation). If k(t, σ) is a solution to the differential
equation (4.129), then k(t, σ) is the Gaussian

(4.131)

Proof: Let us $rst simplify (4.129) with the substitution k(t, σ) = σa/dq(t, σ). This
provides a heat equation in more familiar form,

(4.132)

which we must solve for q(t, σ). Further simpli$cations are possible, but we need to
reach into the next chapter for the representation of a signal by the analog Fourier
transform. The normalized radial Fourier transform of a signal x(t) is given by

(4.133)

where j2 = −1. Here we adopt a widely used convention that lowercase letters stand
for time-domain signals and that uppercase letters stand for their Fourier transform
counterpart. In the near future, we shall verify that if x(t) is absolutely integrable or
has $nite energy, then its Fourier transform X(ω) exists (4.133). Likewise, if X(ω) ∈
l1(R) or X(ω) ∈ l2(R), then an inverse normalized radial Fourier transform exists,
which is given by

(4.134)
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The key idea is to insert the representation of q(t, σ) by its transform from Q(ω, σ)
into the simpli$ed heat equation (4.132). Then, after removing (2π)−1 from each
term, (4.132) becomes

(4.135)

Interchanging the order of integration and differentiation in (4.135) gives

(4.136)

By the existence of the inverse Fourier transform, the integrands on either side of
(4.136) must be equal. After a bit of algebra, the differential equation simpli$es
considerably:

(4.137)

Let us now separate the variables in (4.137), to obtain

(4.138)

We integrate both sides from 0 to r,

(4.139)

where r > 0 is an integration limit, and remove the logarithms arising from the inte-
gration on the right-hand side of (4.139) by exponentiation. Letting r = σ then gives

(4.140)

Thus we have found the Fourier transform of q(t, σ) = σ−a/dk(t, σ). We can $nd q(t,
σ) by once again applying the inverse Fourier transform operation,

(4.141)
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which is very close to the form we need. To continue simplifying, we utilize some
further properties of the Fourier transform. Notice two things about the integrand in
(4.141): It is a product of frequency-domain signals (i.e., their independent variable
is ω), and one of the frequency-domain terms is a frequency-domain Gaussian,
namely exp(−Cω2σ2/2D). Therefore, one of the properties that we can now apply is
the Convolution Theorem for Fourier Transforms. It says that the Fourier transform
of a convolution, s = x*y, is the attenuated product of the Fourier Transforms;
speci$cally, S(ω) = (2π)−1/2X(ω)Y(ω). The second property that comes to mind
from inspecting the integrand in (4.141) is the formula for the Fourier transform of
the Gaussian signal. This states that if λ > 0, then the Fourier Transform of the
Gaussian g(t) = exp(−λt2) is G(ω) = (2λ)−1/2exp(−ω2/4λ). We let X(ω) = Q(ω, 0)
and Y(ω, σ) = exp( jBωσ/D)exp(−Cω2σ2/2D). Then q(t, σ) is the inverse Fourier
transform of X(ω)Y(ω, σ), so we have q(t, σ) = (2π)−1/2x*y. That is,

(4.142)

where the Fourier transforms of x(t) and y(t, σ) are X(ω) and Y(ω, σ), respectively.
Let us set aside the mysterious signal x(t) for a moment and consider the y(t, σ) fac-
tor in (4.142). Since the Fourier transform of s(t, σ) = σ(D/C)1/2exp(−Dt2/(2Cσ2)) is
exp(−Cσ2ω2/2D), it can easily be shown that the Fourier transform of y(t) =
s(t +Bσ/D) is Y(ω, σ). Thus,

(4.143)

and, recalling that k(t, σ) = σa/dq(t, σ), there follows (4.131), completing the proof
of the theorem. ■

Now, the next theorem applies the Scale-Space Kernel Conditions to (4.131).

Theorem (Necessity of the Gaussian). Suppose that k(t, σ) satis$es the Scale-
Space Kernel Conditions and that the signal f(t) has a representation as a sum of
Dirac delta functions (4.121), as in the lemma. Then k(t, σ) is a Gaussian of the
form

(4.144)

Proof: Recall the time-delayed Gaussian y(t) = s(t +Bσ/D) from the previous proof.
Since the smoothing $lter must not permit zero crossings to shift as the scale of
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smoothing varies, this Gaussian must be centered at the origin; in other words, Bσ/
D = 0, and hence B = 0. Thus,

(4.145)

As the scale of smoothing decreases, the smoothed signal must resemble the origi-
nal, f(t), and so in the limit, as σ → 0, the Scale-Space Kernel Conditions demand
that k(t, σ) → δ(t), the Dirac delta. The consequence of this condition is

(4.146)

This completes the proof. ■

This proof contains a valuable lesson: A judicious application of the Fourier inte-
gral representation removes the differential equation’s partial time derivatives.
Higher powers of the frequency variable, ω, replace the derivatives, but this is toler-
able because it leads to a simpler differential equation overall. This is a powerful—
and quite typical—application of the Fourier transform. Applied mathematicians
usually resort to the Fourier transformation for precisely this purpose and no others.
For our own purposes, however, the Fourier transform does much more than expe-
dite computations; it is the principal tool for studying the frequency content of ana-
log signals. The next three chapters, no less, explore Fourier theory in detail: analog
signal frequency in Chapter 5, discrete signal frequency in Chapter 7, and fre-
quency-domain signal analysis in Chapter 9.

The efforts of many researchers have helped to elucidate the theory of scale-
space decompositions. Our treatment here follows most closely the presentation of
one-dimensional scale-space decomposition by Yuille and Poggio [110]. Other the-
oretical studies of scale-space decomposition include Ref. 111. Applications of
scale space $ltering include the recognition of two-dimensional shapes by extract-
ing object boundaries, formulating the boundary as a curvature signal, and deriving
the scale-space representation of the boundary curvature [112]. There results a
graph structure, which can be matched against model graphs using arti$cial intelli-
gence techniques, or matched level-by-level using the structural pattern detection
techniques of Section 4.6.2.

Now, when an image is represented in its scale-space decomposition, no arbi-
trary preferred scale for the objects represented in the decomposed is used. Instead,
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the set of scales at which distinct regions of different curvature sign arise and disap-
pear is found. Then the changes in the curvature are related to one another in a
structure called an interval tree by Witkin. This further abstracts the structural
description of the signal from its actual value, f(x), by de$ning an interval of scales,
and an interval of space, x, over which the salient curvature features of the signal are
to be found. The signal is segmented in both scale and spatial coordinates.

4.8 SUMMARY

In the introduction to this chapter, we re#ected on the distinction, sometimes subtle
and sometimes profound, between signal processing and signal analysis. This chap-
ter’s methods work primarily with operations on the signal values in the time
domain. In some cases, such as the problem of extracting periodicities from the sig-
nal values, statistics on signal levels proved to be inadequate. We resorted to com-
parisons, in the form of inner products, of the given signal to sinusoidal or
exponential models. This makes the break with time-domain methods into the realm
of frequency-domain methods. Now, we need to look deeper into the theory of ana-
log signal frequency, discrete signal frequency, and the applications that arise from
these studies. This task will occupy us for the next five chapters. Then we will con-
sider the combination of the methods of both domains: Time-frequency transforms
are the subject of Chapter 10, and time-scale transforms are covered in Chapter 11.
This chapter is preparation, with a time-domain perspective, for Chapter 9 on
frequency-domain signal analysis and for Chapter 12 on mixed-domain analysis.
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 PROBLEMS

1. Consider the analog Gaussian kernel h(t) = exp(−t2).

(a) Show that h(t) contains a concave up portion for t < 0, a concave-down sec-
tion symmetric about t = 0, a concave up portion for t > 0, and exactly two
points of in#ection where the second derivative of h(t) is zero. 

(b) Find a logical predicate, applied to subsets of Dom(h), that segments h(t)
into the regions described in (a).

(c) Suppose that a system designer elects to pre$lter discrete signals by an
approximate, discrete version of h(t) and wishes to maintain the aspects of
concavity of h(t) in the $lter h(n). What is the minimal support of the $lter
h(n)?

(d) Show that if the analog signal f(t) is segmented according to whether d2f/
dt2 is negative, zero, or positive and d3f/dt3 exists, then segments with d2f/
dt2 < 0 cannot be adjacent to segments with d2f/dt2 > 0.

2. Consider a system y = Hx that should remove impulse noise from x(n) to pro-
duce y(n).

(a) If H is LTI, show that the moving average, or box $lter h(n) = [1/3, 1/3, 1/3]
can fail to do an adequate job as the impulse response of H.

(b) Show that any LTI $lter can fail to do an adequate job as h = Hδ.

3. Suppose we $lter out impulse noise by a median $lter, y = Hx.

(a) Show that H is translation invariant.

(b) Show that H is nonlinear.

(c) Show that the median $lter (Hx)(n) = median{x(n−1), x(n), x(n+1)} can
remove impulse noise.

(d) Show that when performing preliminary smoothing of a signal before
thresholding, a median $lter y(n) = median{x(n−1), x(n), x(n+1)} preserves
signal edges better than box $lters.

4. Consider a morphological $lter, y = Hx.

(a) Show that if H is a dilation, then H is translation invariant but not linear.

(b) Show that if H is an erosion, then H is translation invariant but not linear.

5. Suppose f(n) is a discrete signal and T > 0. Let M = {n: |f(n)| > T}, N = {n:
|f(n)| ≤ T}, Π = {M, N}, and L be the logical predicate “(1) For all n, |f(n)| > T;
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or (2) for all n, |f(n)| < T; or for all n, |f(n)| = T.” Prove that Σ = (Π, L) is a seg-
mentation of f(n).

6. Let f(t) be an analog signal which is twice differentiable. Show that the sign of
the second derivative is the basis for a segmentation of f(t) into concave-down
regions, concave-up regions, and zeros of the second derivative.

7. Consider the discrete signal x(n) = [..., 0, 2, −1, 3, 1, 8, 10, 9, 11, 5, 2, −1, 1,
0, . . .]. 

(a) Suppose values |x(n)| ≥ T are labeled  Object  and values |x(n)| < T are
labeled Background. Consider the effect of thresholding this signal for T =
5 with and without preliminary $ltering by the moving average $lter of
width N = 3:

(b) What happens to the segmentation as the $lter width increases? Does
changing the threshold help?

(c) What happens to the segmentation if a causal box $lter performs the pre-
liminary $ltering operation? Does this affect the registration of the blob?

(d) Examine the effect of a high-magnitude noise impulse several time samples
apart from the blob; suppose, therefore, that x(−10) = 12. Consider the
effect of preliminary box $ltering and threshold changes on segmentation
and blob registration.

(e) Can a top-down rule be applied to correct the labeling of impulse noise?
Does the width of the smoothing $lter affect the success of the rule?

8. Prove that a discrete signal edge detector which locates edges from the maximal
responses of a convolutional operator, H, satis$es the following:

(i) The impulse response of H, h(n), must be odd.

(ii) h(n) can only have one zero, at n = 0.

9. Consider the estimator  found in the Unbiased Minimal Variance Estimator
Theorem (Section 4.3.2). Suppose that x is a random vector, representing a win-
dow [m − p, m + p] of the noisy source signal x(n), and that b is the unit vector
of all ones of length 2p + 1. If the estimator  is unbiased and has minimal vari-
ance, show that

where Σ = E[(x − µ1), (x − µ1)] is the covariance matrix of the random vector x.
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10. Develop the analog version of normalized cross-correlation. Consider an analog
signal x(t) input in which a pattern p(t) must be found at an unknown offset s.
Suppose that p(t) has $nite support contained in the real interval I. Show the
following: 

(a) The normalized cross-correlation,

where s is the offset of prototype signal p(t) into input signal x(t) and where
I is the interval that contains the support of p(t), is a measure of match.

(b) The cross-correlation, Cp(t−s),x(t), assumes a unity maximum when x(t) =
cp(t−s) on the interval I for some constant c.

11. Check that all signals in the family of exponentials B = {(2π)−1exp(2πjnt/T):
n ∈ Z} have ||(2π)−1exp(2πjnt/T)||1 = 1 in the Hilbert space L1[0, T].

12. Let g(t, σ, µ) = σ−1(2π)−1/2exp(−(x−µ)2/(2σ2)) be the Gaussian with standard
deviation σ and mean µ. Show that g(t, σ, µ) is symmetric and strictly decreas-
ing about its mean, µ.

13. Let F(t, σ) be de$ned as in Equation (4−5c) for analog signal f(t). Show that for
small scales σ, the smoothed signal F(t, σ) resembles the original as σ → 0; that
is, we have F(t, σ) → f(t).

14. Show that as σ → ∞, F(t, s) → E(f(t)); that is, for large scales σ, the smoothed
signal approaches the mean of f(t).

15. Show that the Gaussian is an L1(R) signal (absolutely integrable), and it is C∞

(in$nitely differentiable).

16. Show that if f(t) is an analog signal and g(t, σ) is Gaussian with zero mean and
variance σ2, then

17. Consider the following region merging approach to real-time signal segmenta-
tion. The application receives a digitized signal, f(n), and segments it into Noise
and Signal regions, with labels ΛN and ΛS, respectively. Three thresholds are
provided: TN, TS, and ε. If x(n) < TN, then x(n) is marked as a ΛN value. If x(n) >
TS, then x(n) is labeled ΛS. If TN ≤ x(n) ≤ TS, then x(n) is labeled the same
as x(n−1) if |x(n) − x(n−1)| < ε, and x(n) is deemed the opposite of x(n−1)
otherwise.

(a) Show how this real-time segmentation works for f(n) = [..., 0, 2, 4, 3, 1, 8,
6, 9, 11, 7, 3, 5, 1, 0, ...], with TN = 4, TS = 7, and ε = 3.
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(b) What constraints should exist on TN, TS, and ε for a useful algorithm?

(c) What is the effect of impulse noise on the algorithm?

(d) Let Nn and Sn be the average of the ΛN and the ΛS values, respectively,
prior to time instant n. Suppose that the algorithm is changed so that when
TN ≤ x(n) ≤ TS, then x(n) is labeled ΛN when |x(n) − Nn| < ε, and then x(n) is
labeled ΛS when |x(n) − Sn| < ε. How does this twist affect the operation of
the algorithm?

(e) Critique this algorithm for real-time speech segmentation. Consider the
presence of velar fricatives, noise, and voiced and unvoiced consonants in
the digitized speech signal.

(f) Explain how a delay in making the labeling decision for a new signal value
x(n) might help improve the segmentation for the front-end of a speech rec-
ognition application.

(g) What characteristics of digitized speech signals should be taken into
account in order to size the labeling decision delay in (f)? Explain.

18. Critique the following region splitting algorithm. We begin with a region of
interest for a discrete signal f(n), S = [a, b], and a partition of S into (as closely
as possible) equal-length subintervals, S = S1 ∪ S2 ∪ ... ∪ SN. We $rst compute
the mean over the entire region S, µ. Then we begin with the region whose
mean is closest to µ; by renumbering the regions, if necessary, we may suppose
that it is S1. Then we compute all of the differences, d(1, i) = |µ1 − µi|, for i > 1,
and put R1 = S1 ∪ {Si | i > 1 and d(1, i) < ε}. We then perform this same opera-
tion with the remaining Si, which are disjoint from R1, to form R2, and so on.
The process eventually halts after M iterations, and S is split into M regions: S =
R1 ∪ R2 ∪ ⋅⋅⋅ ∪ RM.

19. Show that if x(n) is a digital signal, x: Z → [0, N], for some natural number N ≥
0, then x = T[Umbra(x)] = T[Graph(x)].

20. Consider Chow and Kaneko’s optimal threshold $nding method, where the qua-
dratic equation below must be solved for T:

(a) Suppose that the variances of the meaningful signal and the background
noise are the same. Show that there can be at most one threshold, T.

(b) Show that if the variances of the meaningful signal and the background
noise are the same and the a priori probabilities of signal and noise are the
same, then T = (mL + mH)/2.

(c) Can there be two solutions to the quadratic equation? Explain.

(d) If there is only one solution to the quadratic equation, is it necessarily a
valid threshold? Explain.

(e) Can there be no solution to the equation? Explain.
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21. Suppose a signal f(n) has regions of interest with high values above a relatively
low background noise level. Suppose also that a threshold T on the signal histo-
gram produces errors with probability E(T) = PHEL(T) + PLEH(T), where EL(T)
and EH(T) are the likelihoods of incorrectly labeling f(n) as noise and as mean-
ingful, respectively.

(a) Assume that the histogram modes obey a log-normal distribution, and, fol-
lowing the Chow–Kaneko method of the text in Section 4.2, use

to find T for a minimal labeling error.

(b) As in (a), $nd a T that minimizes labeling error if the histogram modes
obey a Rayleigh distribution.

22. Consider the valley-$nding algorithm for $nding a threshold using signal histo-
grams.

(a) Show that the search stops when the current threshold T is a local minimum.

(b) Show by example that the algorithm has a direction preference; that is, it
tends to select a threshold toward the noise mode or toward the meaningful
signal mode.

(c) Find and explicate a technique for resolving the direction preference of the
algorithm.

(d) Show by example that the algorithm may halt its search well within the
mode of the histogram’s noise mode or the true signal mode.

(e) Show that a gradient calculation based on a wider interval may alleviate
somewhat the problem exposed in part (d).

(f) For what types of signals does the algorithm $nd a threshold that is at the
limit of the domain of the histogram? Explain.

23. Let f be a discrete signal with a $nite domain with Ran(f) ⊆ [0, N−1].  For 0 ≤
k < N, de$ne

Show that pk is a discrete probability density function for f.

24. Let f and pk be as in the previous problem. Let µL, µH, and µ be the low-level,
high-level, and total mean of h(k), the histogram for f. Let σL, σH, and σ be the
low-level, high-level, and total standard deviations of h(k).

(a) Show

0L H
H L

dE dEdE
P P

dT dT dT
= + =

1#( ({ }))
.

#Dom( )k
f k

p
f

−
=

1 1

0
( ( ))( ( ) ) ( ( ))( ( ) ) 0.

t N

k L L k H H
k k t

p k t t p k t t
− −

= =
− µ µ − µ + − µ µ − µ =∑ ∑



380 TIME-DOMAIN SIGNAL ANALYSIS

(b) Following Otsu [18] de$ne the between-group variance to be 

and prove that

(Thus, minimizing within-group variance is equivalent to maximizing
between-group variance.)

(c) Show the following for 0 ≤ t < N−1:

(d) Explain how the relationships in (c) reduce the computational burden of
$nding an optimal threshold (R. M. Haralick and L. G. Shapiro, Computer
and Robot Vision, vol. 1, New York: Addison-Wesley, 1992).

25. Consider the likelihood ratio of the distribution qk with respect to pk,

(a) Show that L(p, q) ≥ 0 for all discrete probability distributions p and q.
(Hint: Note that ln(t) < t − 1 for all t > 0, where ln(t) is the natural loga-
rithm; ln(2)log2(t) = ln(t); and p0 + p1 +  + pN−1 = 1.)

(b) Show that L(p, q) = 0 if and only if p = q.

(c) Show that L is not symmetric; that is, $nd examples for pk and qk such that
pk and pk are discrete probability density functions, but L(p, q) ≠ L(q, p).

(d) Does the triangle inequality hold for the likelihood ratio?

26. Prove the following properties of dilation. Let A, B, C ⊆ Z2 and k ∈ Z.

(a) A ⊕ B = {a + b | a ∈ A and b ∈ B}.

(b) A ⊕ B = B ⊕ A.

(c) (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C). 

(d) If A ⊆ B, then A ⊕ C ⊆ B ⊕ C.

(e) A ⊕ (B ∪ C) = (A ⊕ B) ∪ (A ⊕ C). 

(f) A ⊕ (B + k) = (A ⊕ B) + k.

27. Prove the following properties of erosion. Suppose A, B, C ⊆ Z2 and k ∈ Z.

(a) A � B = {d ∈ Z2 | d + b ∈ A for all b ∈ B}.

(b) A � B = {d ∈ Z2 | Bd ⊆ A}.

(c) (A + k) � B = (A � B) + k.
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(d) A � (B + k) = (A � B) − k.

(e) If A ⊆ B, then A � C ⊆ B � C.

(f) (A ∩ B) � C = (A � B) ∩ (B � C). 

(g) If we de$ne −B to be the re#ection of the set B, −B = {−k | k ∈ B}, then we
have (A � B)c = Ac ⊕ (−B).

28. Consider the Bayes classi$er discriminant that we developed in (4.104):

The text considered the simpli$cations brought from assuming that the feature
vectors v are statistically independent and have equal variances. What
simpli$cation, if any, results from assuming simple statistical independence?
Explain.

29. Let x(n) = [..., 0, 1, 1, 2, 1, 2, 1, 0, 1, 2, 2, 1, 0, 1, 1, 0, ...] be a digital signal.

(a) Compute the co-occurrence matrices, P1, P2, and P3, within the interval 0 ≤
n ≤ 15.

(b) Compute the energy of values on the main diagonal of P1, P2, and P3, and
compare it to the energy of off-diagonal values. How do the two compare?
Explain.

(c) What should one expect from co-occurrence matrices P4, P5, and P6?

(d) What differences exist between the co-occurrence matrices computed for a
signal with sawtooth features versus a signal with square pulse features?

30. Suppose it is required that an analysis application detect signals containing
large-scale, high-magnitude regions of width N separated by low-magnitude
regions of width M.

(a) What co-occurrence matrices should be computed? Explain.

(b) Describe an algorithm using these co-occurrence matrices that meets the
application’s needs.

(c) How do different values of M and N affect the algorithm?

31. Suppose that f(n) = Acos(2πωn) + Bcos(2πΩn) + Cr(n) is a discrete signal with
A > B > C > 0, Ω > ω, and r(n) is uniformly distributed noise. Thus, f(n) consists
of a sinusoidal roughness component, Acos(2πωn), and a waviness component,
Bcos(2πΩn).

(a) Explore the feasibility of using a co-occurrence matrix method to detect
waviness versus roughness in f(n). Propose and explain such an algorithm.
For what time intervals, δ, does the algorithm calculate Pδ? How are the
entries of the Pδ used to discover the waviness and roughness within f(n)?

(b) How can the size of the Pδ matrices be kept small?

(c) Explain whatever assumptions you must make on ω, Ω, A, B, and C so that
the proposed algorithm works.
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32. Consider a discrete signal x(n) = xa(nT), where T > 0 is the sampling interval. 

(a) Expand x(1), x(2), x(−1), and x(−2) in terms of the Taylor series of xa(t),
and show that the system with impulse response h(n) = [−1/12, 2/3, 0, −2/3,
1/12] is a $rst-derivative operation on signals.

(b) Similarly, show that g(n) = [−1/12, 4/3, −5/2, 4/3, −1/12] is a second-
derivative operator on signals.

33. Consider an application that extracts and labels feature vectors of input signals,
then compares them to labeled feature vectors derived from a library of proto-
type signals.

(a) Show that the Hamming distance, H(u, v) between two vectors of labels u =
(α1, α2, ..., αN} and w = (β1, β2, ..., βN} is a metric.

(b) Consider the Levenshtein distance, L(u, v), de$ned as the total number of
substitutions into u and transpositions of components of u necessary to con-
vert u into v. Prove or disprove: L(u, v) is a metric.
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