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CHAPTER 5

Fourier Transforms of Analog Signals

This chapter furnishes a detailed introduction to the theory and application of the
Fourier transform—the $rst of several transforms we shall encounter in this book.
Many readers, including engineers, scientists, and mathematicians, may already be
familiar with this widely used transform. The Fourier transform analyzes the fre-
quency content of a signal, and it has four variations, according to whether the
time-domain signal is analog or discrete, periodic or aperiodic. The present chapter
covers the two analog transforms: the Fourier series, for periodic signals, and the
Fourier transform proper, for aperiodic signals.

Technology involving $ltering, modulation, and wave propagation all rely
heavily upon frequency analysis accomplished by the Fourier transform operation.
But biological systems execute spectral analysis as well. Our senses, especially
hearing and sight, are living examples of signal processors based on signal fre-
quency spectra. The color response of the human eye is nothing more than the end
result of optical signal processing designed to convert solar electromagnetic waves
into the various hues of the visible electromagnetic spectrum. On a daily basis, we
are exposed to sounds which are easily classi$ed according to high and low pitch as
well as purity—we are all too aware of a tenor or soprano who wobbles into a note.
All instances of frequency-domain analysis, these life experiences beg the question
of how engineered systems might achieve like results.

This chapter develops the $rst of several practical frequency-domain analysis
tools. Indeed we already have practical motivations:

• Experiments in $nding the period of apparently periodic phenomena, such as
example of sunspot counts in the $rst chapter

• Attempts to characterize texture patterns in the previous chapter

Our actual theoretical development relies heavily upon the general notions of
Hilbert space and orthogonal functions developed in Chapter 3. For the mathemati-
cian, who may already have a thorough understanding of the Fourier series as a
complete orthonormal expansion, Chapters 5 and 6 present an opportunity to get
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down to the business of calculating the coef$cients and functions which shed so
much information about the physical world.

The transform consists of two complementary operations. The $rst is the analy-
sis—that is, the breaking down of the signal into constituent parts. In the case of
Fourier analysis, this involves generation and interpretation of coef$cients whose
magnitude and phase contain vital information pertaining to the frequency content
of a signal. In the case of the continuous Fourier transform studied in this chapter,
these coef$cients are a continuous function of frequency as represented by the Fou-
rier transform . The Fourier series, which is applicable to periodic waveforms,
is actually a special case of this continuous Fourier transform, and it represents
spectral data as a discrete set of coef$cients at selected frequencies. 

The second operation involves synthesis, a mathematical picking up of pieces, to
reconstruct the original signal from  (or from the set of discrete Fourier
coef$cients, if appropriate), as faithfully as possible. Not all waveforms readily sub-
mit to Fourier operations, but a large set of practical signals lends itself quite readily
to Fourier analysis and synthesis. Information obtained via Fourier analysis and
synthesis remains by far the most popular vehicle for storing, transmitting, and ana-
lyzing signals. In some cases the analysis itself cannot be performed, leaving syn-
thesis out of the question, while in others the physically valid analysis is available,
but a reconstruction via Fourier synthesis may not converge. We will consider these
issues in some detail as Chapter 5 develops. Some waveforms amenable to Fourier
analysis may be better suited to more advanced transform methods such as time-
frequency (windowed) Fourier transforms or time-scale (wavelet) transforms con-
sidered in later chapters. However, the basic notion of ‘frequency content’ derived
from Fourier analysis remains an important foundation for each of these more
advanced transforms.

Communication and data storage systems have a $nite capacity, so the storage of
an entire spectrum represented by a continuous function  is impractical. To
accommodate the combined requirements of ef$ciency, #exibility, and economy, a
discrete form of the Fourier transform is almost always used in practice. This
discrete Fourier transform (DFT) is best known in the widely used fast Fourier
transform (FFT) algorithm, whose development revolutionized data storage and
communication. These algorithms are discussed in Chapter 7, but their foundations
lie in the concepts developed in Chapters 5 and 6. 

Introductory signal processing [1–5] and specialized mathematics texts [6–9]
cover continuous domain Fourier analysis. Advanced texts include Refs. [10–12].
Indeed, the topic is almost ubiquitous in applied mathematics. Fourier himself devel-
oped the Fourier series, for analog periodic signals, in connection with his study of
heat conduction.1 This chapter presupposes some knowledge of Riemann integrals,
ideas of continuity, and limit operations [13]. Familiarity with Lebesgue integration,
covered brie#y in Chapter 3, remains handy, but de$nitely not essential [14].

1Jean-Baptiste Joseph Fourier (1768–1830). The French mathematical physicist developed the idea with-
out rigorous justi$cation and amid harsh criticism, to solve the equation for the #ow of heat along a wire
[J. Fourier, The Analytical Theory of Heat, New York: Dover, 1955].
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Essential indeed are the fundamentals of analog Lp and abstract function spaces [15,
16]. We use a few unrigorous arguments with the Dirac delta. Chapter 6 covers
the generalized Fourier transform and distribution theory [17, 18]. Hopefully this
addresses any misgivings the reader might harbor about informally applying Diracs
in this chapter. 

5.1 FOURIER SERIES

Consider the problem of constructing a synthesis operation for periodic signals
based on complete orthonormal expansions considered in Chapter 3. More pre-
cisely, we seek a series

(5.1)

which converges to  a function with period T, as n approaches in$nity. Equation
(5.1) is a statement of the synthesis problem: Given a set of coef$cients ck and an
appropriate set of orthonormal basis functions , we
expect a good facsimile of  to emerge when we include a suf$cient number of
terms in the series. Since the linear superposition (5.1) will represent a periodic func-
tion, it is not unreasonable to stipulate that the   exhibit periodicity; we will use
simple sinusoids of various frequencies, whose relative contributions to  are
determined by the phase and amplitude of the ck.  We will stipulate that the basis func-
tions be orthonormal over some fundamental interval [a, b]; intuitively one might
consider the period T of the original waveform  to be suf$ciently “fundamental,”
and thus one might think that the length of this fundamental interval is b − a = T. At
this point, it is not obvious where the interval should lie relative to the origin t = 0 (or
whether it really matters). But let us designate an arbitrary point a = t0, requiring that
the set of  is a complete orthonormal basis in L2[t0, t0 + T]:

 , (5.2)

where  is the Kronecker2 delta.
We need to be more speci$c about the form of the basis functions. Since period-

icity requires x(t) = x(t + T), an examination of (5.1) suggests that it is desirable to
select a basis with similar qualities: . This affords us the prospect
of a basis set which involves harmonics of the fundamental frequency 1/T. Consider

 , (5.3)

2This simple δ function takes its name from Leopold Kronecker (1823–1891), mathematics professor at
the University of Berlin. The German algebraist was an intransigent foe of in$nitary mathematics—such
as developed by his pupil, Georg Cantor—and is thus a precursor of the later intuitionists in mathemati-
cal philosophy.
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where F = 1/T cycles per second (the frequency common unit is the hertz, abbrevi-
ated Hz; one hertz is a single signal cycle per second). We select the constant A0 so
as to normalize the inner product as follows. Since

 , (5.4a)

if  , then

. (5.4b)

Setting  then establishes normalization. Orthogonality is easily
veri$ed for  ,  since 

(5.5a)

This establishes orthonormality of the set

(5.5b)

for integer .
When the set of complex exponentials is used as a basis, all negative and positive

integer  must be included in the orthonormal expansion to ensure completeness
and convergence to  (We can readily see that restricting ourselves to just posi-
tive or negative integers in the basis, for example, would leave a countably in$nite
set of functions which are orthogonal to each function in the basis, in gross violation
of the notion of completeness.) 

Relabeling of the basis functions provides the desired partial series expansion for
both negative and positive integers :

. (5.6)

Completeness will be assured in the limit as :

 , (5.7)

where the expansion coef$cients are determined by the inner product,

 . (5.8)
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Remark. The ck in (5.8) are in fact independent of t0, which can be shown by the
following heuristic argument. Note that all the constituent functions in (5.8)—
namely , as well as  and , which make up the complex
exponential—are (at least) T-periodic. As an exercise, we suggest the reader draw
an arbitrary function which has period T: f(t + T) = f(t). First, assume that t0 = 0 and
note the area under  in the interval ; this is, of course, the integral of

 Next, do the same for some nonzero t0, noting that the area under  in the
interval  is unchanged from the previous result; the area over 
which was lost in the limit shift is compensated for by an equivalent gain between

. This holds true for any $nite t0, either positive or negative, but is
clearly a direct consequence of the periodicity of  and the orthogonal harmon-
ics constituting the integral (5.8). Unless otherwise noted, we will set t0 = 0,
although there are some instances where another choice is more appropriate. 

5.1.1 Exponential Fourier Series

We can now formalize these concepts. There are two forms of the Fourier series:

• For exponential basis functions of the form 

• For sinusoidal basis functions of the form  or 

The exponential expansion is easiest to use in signal theory, so with it we begin our
treatment.

5.1.1.1 Definition and Examples. The Fourier series attempts to analyze a
signal in terms of exponentials. In the sequel we shall show that broad classes of
signals can be expanded in such a series. We have the following de$nition.

De$nition (Exponential Fourier Series). The exponential Fourier series for 
is the expansion

, (5.9)

whose basis functions are the complete orthonormal set,

 , (5.10)

and whose expansion coef$cients take the form (5.8). 

According to the principles governing complete orthonormal expansions, (5.9)
predicts that the right-hand side converges to  provided that the in$nite sum-
mation is performed. In practice, of course, an in$nite expansion is a theoretical
ideal, and a cutoff must be imposed after a selected number of terms. This results in
a partial series de$ned thusly:
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De$nition (Partial Series Expansion). A partial Fourier series for  is the
expansion 

 (5.11)

for some integer 0 < N < ∞.

The quality of a synthesis always boils down to how many terms (5.11) should
include. Typically, this judgment is based upon how much error can be tolerated in a
particular application. In practice, every synthesis is a partial series expansion, since
it is impossible to implement (in a $nite time) an in$nite summation. 

Example (Sine Wave). Consider the pure sine wave . The analysis
calculates the coef$cients

 . (5.12)

Orthogonality of the sine and cosine functions dictates that all ck vanish except for
k = ±1:

 . (5.13)

Synthesis follows straightforwardly:

 . (5.14)

Example (Cosine Wave). For  there are two equal nonzero Fourier
coef$cients:

 . (5.15)

Remark. Fourier analysis predicts that each simple sinusoid is composed of fre-
quencies of magnitude Ω , which corresponds to the intuitive notion of a pure
oscillation. In these examples, the analysis and synthesis were almost trivial, which
stems from the fact that  was projected along the real (in the case of a cosine) or
imaginary (in the case of a sine) part of the complex exponentials comprising the
orthonormal basis. This property—namely a tendency toward large coef$cients
when the signal  and the analyzing basis match—is a general property of
orthonormal expansions. When data pertaining to a given signal is stored or trans-
mitted, it is often in the form of these coef$cients, so both disk space and bandwidth
can be reduced by a judicious choice of analyzing basis. In this simple example of
Fourier analysis applied to sines and cosines, only two coef$cients are required to
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perform an exact synthesis of  But Fourier methods do not always yield such
economies, particularly in the neighborhood of transients (spikes) or jump disconti-
nuities. We will demonstrate this shortly. Finally, note that the two Fourier
coef$cients are equal (and real) in the case of the cosine, but of opposite sign (and
purely imaginary) in the case of the sine wave. This results directly from symme-
tries present in the sinusoids, a point we now address in more detail.

5.1.1.2 Symmetry Properties. The Fourier coef$cients acquire special prop-
erties if  exhibits even or odd symmetry. Recall that if  is odd, x(−t) = −x(t)
for all t, and by extension it follows that the integral of an odd periodic function,
over any time interval equal to the period T, is identically zero. The sine and cosine
harmonics constituting the Fourier series are odd and even, respectively. If we
expand the complex exponential in the integral for ck,

 , (5.16)

then some special properties are apparent:

• If  is real and even, then the ck are also real and even, respectively, in
k-space; that is, ck = c−k.

• If  is real and odd, then the coef$cients are purely imaginary and odd
in k-space: c−k = −ck.

The $rst property above follows since the second term in (5.16) vanishes identically
and since  is an even function of the discrete index k. If even–odd symme-
tries are present in the signal, they can be exploited in numerically intensive appli-
cations, since the number of independent calculations is effectively halved. Most
practical  are real-valued functions, but certain $ltering operations may trans-
form a real-valued input into a complex function. In the exercises, we explore the
implications of symmetry involving complex waveforms.

Example (Rectangular Pulse Train). Consider a series of rectangular pulses,
each of width t and amplitude A0, spaced at intervals T, as shown in Figure 5.1. This
waveform is piecewise continuous according to the de$nition of Chapter 3, and in
due course it will become clear this has enormous implications for synthesis. The
inner product of this waveform with the discrete set of basis functions leads to a
straightforward integral for the expansion coef$cients:

(5.17)
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Some algebra reduces this to the succinct expression

 . (5.18)

Example (Synthesis of Rectangular Pulse). In Figure 5.2 we illustrate the synthe-
sis of periodic rectangular pulses for several partial series, using (5.10) and (5.16).

Fig. 5.1. A train of rectangular pulses. Shown for pulse width τ = 1, amplitude A0 = 1, and
period T = 2.
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Fig. 5.2. Synthesis of the rectangular pulse train. (a) Partial series N = 10, (b) N = 50, (c) N =
100. The number of terms in the series is 2N + 1. 
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5.1.2 Fourier Series Convergence

We are now in a position to prove the convergence of the exponential Fourier series
for a signal . We shall consider two cases separately:

• At points where  is continuous;

• At points where  has a jump discontinuity.

5.1.2.1 Convergence at Points of Continuity. It turns out that the Fourier
series does converge to the original signal at points of continuity. We have the fol-
lowing theorem.

Theorem (Fourier Series Convergence). Suppose  is a partial series sum-
mation of the form

 , (5.19a)

Fig. 5.2  (Continued)
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where N is a positive integer. If  is continuous at s (including points of continu-
ity within piecewise continuous functions), then

 . (5.19b)

Proof: Consider the partial series summation:

 . (5.20)

Writing the inner product term (in brackets) as an explicit integral, we have

 , (5.21)

where

 . (5.22)

The function  reduces—if we continue to exploit the algebraic properties of
the exponential function for all they are worth—to the following:

 . (5.23a)

This reduces to the more suggestive form,

 . (5.23b)

Returning to the partial series expansion (5.21), the change of integration variable
 gives

 . (5.24)

The quantity in brackets is the Dirichlet kernel3,

 , (5.25)

3P. G. Legeune Dirichlet (1805–1859) was Kronecker’s professor at the University of Berlin and the $rst
to rigorously justify the Fourier series expansion. His name is more properly pronounced “Dear-ah-klet.”
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whose integral exhibits the convenient property

(5.26)

Equation (5.26) is easily demonstrated with a substitution of variables, ,
which brings the integral into a common tabular form:

(5.27)

The beauty of this result lies in the fact that we can construct the identity

(5.28)

so that the difference between the partial summation  and the original signal
x(s) is an integral of the form

 , (5.29)
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 (5.30)

In the limit of large , (5.29) predicts that the partial series summation converges
pointwise to  by simple application of the Riemann–Lebesgue lemma (Chap-
ter 3):

 (5.31)

thus concluding the proof. ■

The pointwise convergence of the Fourier series demonstrated in (5.31) is conceptu-
ally reassuring, but does not address the issue of how rapidly the partial series
expansion actually approaches the original waveform. In practice, the Fourier series
is slower to convergence in the vicinity of sharp peaks or spikes in  This aspect
of the Fourier series summation is vividly illustrated in the vicinity of a step discon-
tinuity—of the type exhibited by rectangular pulse trains and the family of sawtooth
waves, for example. We now consider this problem in detail.
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5.1.2.2 Convergence at a Step Discontinuity. It is possible to describe and
quantify the quality of convergence at a jump discontinuity such as those exhibited by
the class of piecewise continuous waveforms described in Chapter 3. We represent
such an  as the sum of a continuous part  and a series of unit steps, each
term of which represents a step discontinuity with amplitude Ak = x(tk

+) − x(tk
−)

located at t = tk:

 (5.32)

In the previous section, convergence of the Fourier series was established for con-
tinuous waveforms and that result applies to the  constituting part of the piece-
wise continuous function in (5.32). Here we turn to the issue of convergence in the
vicinity of the step discontinuities represented by the second term in that equation.
We will demonstrate that

• The Fourier series converges pointwise at each 

• The discontinuity imposes oscillations or ripples in the synthesis, which are
most pronounced in the vicinity of each step. This artifact, known as the Gibbs
phenomenon,4 is present in all partial series syntheses of piecewise continuous

 however, its effects can be minimized by taking a suf$ciently large num-
ber of terms in the synthesis. 

The issue of Gibbs oscillations might well be dismissed as a mere mathematical
curiosity were it not for the fact that so many practical periodic waveforms are
piecewise continuous. Furthermore, similar oscillations occur in other transforms as
well as in $lter design, where ripple or overshoot (which are typically detrimental)
arise from similar mathematics. 

Theorem (Fourier Series Convergence: Step Discontinuity). Suppose  exhibits
a step discontinuity at some time t about which  and its derivative have well-
behaved limits from the left and right, t(l) and t(r), respectively. Then  converges
pointwise to the value

 . (5.33)

Proof: For simplicity, we will consider a single-step discontinuity and examine the
synthesis

 , (5.34)

4The Yale University chemist, Josiah Willard Gibbs (1839–1903), was the $rst American scientist of
international renown.
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where the step height is As = x(ts+) − x(ts−). We begin by reconsidering (5.24):

 (5.35)

For convenience, we have elected to shift the limits of integration to a symmetric
interval . Furthermore, let us assume that the discontinuity occurs at
the point . (These assumptions simplify the calculations enormously
and do not affect the $nal result. The general proof adds complexity which does not
lead to any further insights into Fourier series convergence.) It is convenient to
break up the integral into two segments along the t axis:

 , (5.36)

where A0 = x(0(r)) − x(0(l)) is the magnitude of the jump at the origin. In the limit
, the $rst term in (5.36) converges to , relegating the discontinuity’s

effect to the second integral, which we denote eN (s):

 . (5.37)

The task at hand is to evaluate this integral. This can be done through several
changes of variable. Substituting for the Dirichlet kernel provides
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Finally, we de$ne a variable  which brings (5.39) into a more streamlined
form

 . (5.40)

This is as close as we can bring eN(s) to an analytic solution, but it contains a wealth
of information. We emphasize that s appears explicitly as an upper limit in each
integral. Tabulation of (5.40) produces an oscillatory function of s in the neighbor-
hood of ; this accounts for the ripple—Gibbs oscillations—in the partial
series synthesis near the step discontinuity. As we approach the point of discontinu-
ity at the origin, (5.40) can be evaluated analytically:

(5.41)

(Note that in going from (5.40) to (5.41), a sign change can be made in the upper
limit, since the integrand is an even function of the variable v.) Accounting for both
the continuous portion —which approaches x(0(l)) as  and as —
and the discontinuity’s effects described in (5.41), we $nd

 . (5.42)

A similar argument works for a step located at an arbitrary  this provides the
general result

 , (5.43)

and the proof is complete. ■

Figure 5.3 illustrates the convergence of eN (s) near a step discontinuity in a rect-
angular pulse train. Note the smoothing of the Gibbs oscillations with increasing N.

As  approaches in$nity and at points t where  is continuous, the Gibbs
oscillations get in$nitesimally small. At the point of discontinuity, they contribute
an amount equal to one-half the difference between the left and right limits of ,
as dictated by (5.42).

When approaching this subject for the $rst time, it is easy to form misconcep-
tions about the nature of the convergence of the Fourier series at step discontinuties,
due to the manner in which the Gibbs oscillations (almost) literally cloud the issue.
We complete this section by emphasizing the following points:

• The Gibbs oscillations do not imply a failure of the Fourier synthesis to con-
verge. Rather, they describe how the convergence behaves.
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• The Fourier series synthesis converges to an exact, predictable value at the
point of discontinuity, namely the arithmetic mean of the left and right limits
of  , as dictated by (5.43).

• In the vicinity of the discontinuity, at points for which  is indeed continu-
ous, the Gibbs oscillations disappear in the limit as  becomes in$nite. That
is, the synthesis converges to  with no residual error. It is exact.

5.1.3 Trigonometric Fourier Series

Calculations with the exponential basis functions make such liberal use of the
orthogonality properties of the constituent sine and cosine waves that one is tempted
to reformulate the entire Fourier series in a set of sine and cosine functions. Such a
development results in the trigonometric Fourier series, an alternative to the expo-
nential form considered in the previous section.

Expanding the complex exponential basis functions leads to a synthesis of the
form

 . (5.44)

Since  and  are even and odd, respectively, in the variable ,
and since for k = 0 there is no contribution from the sine wave, we can rearrange
the summation and regroup the coef$cients. Note that the summations now involve
only the positive integers:

 (5.45)

Fig. 5.3. Convergence of the Fourier series near a step, showing Gibbs oscillations for N =
10, 50, 100. For all N, the partial series expansion converges to 1/2 at the discontinuity.
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The zeroth coef$cient has the particularly simple form:

 , (5.46)

where 1 is the unit constant signal on . Regrouping terms gives an expansion
in sine and cosine:

, (5.47)

where

, (5.48a)

, (5.48b)

and

. (5.48c)

Under circumstances where we have a set of exponential Fourier series coef$cients
ck at our disposal, (5.47) is a valid de$nition of the trigonometric Fourier series. In
general, this luxury will not be available. Then a more general de$nition gives
explicit intergrals for the expansion coef$cients, ak and bk, based on the inner prod-
ucts , where  or  and  and 
are normalization constants. 

The   are determined by expanding the cosine inner product:

(5.49)

Consider each term above. The $rst one vanishes for all , since integrating cosine
over one period  gives zero. The third term also vanishes for all , due to the
orthogonality of sine and cosine. The summands of the second term are zero, except
for the bracket

. (5.50)
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To normalize this inner product, we set

 (5.51)

for all . Consequently, the inner product de$ning the cosine Fourier expansion
coef$cients ak is

 . (5.52)

The sine-related coef$cients are derived from a similar chain of reasoning:

 . (5.53)

Taking stock of the above leads us to de$ne a Fourier series based on sinusoids:

De$nition (Trigonometric Fourier Series). The trigonometric Fourier series for
 is the orthonormal expansion

 , (5.54)

where

 (5.55a)

and

 . (5.55b)

Remark. Having established both the exponential and trigonometric forms of the
Fourier series, note that it is a simple matter to transform from one coef$cient space
to the other. Beginning in (5.48a), we derived expressions for the trigonometric
series coef$cients in terms of their exponential series counterparts. But these
relations are easy to invert. For , we have

(5.56a)

and

. (5.56b)
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Finally, for , we see

 . (5.57)

5.1.3.1 Symmetry and the Fourier Coefficients. As in the case of the
exponential Fourier coef$cients, the ak and bk acquire special properties if 
exhibits even or odd symmetry in the time variable. These follow directly from
(5.52) and (5.53), or by the application of the previously derived ck symmetries to
(5.45). Indeed, we see that

• If  is real and odd, then the ak vanish identically, and the bk are purely
imaginary.

• On the other hand, if  is real and even, the bk vanish and the ak are real
quantities.

The even/odd coef$cient symmetry with respect to  is not an issue with the trigo-
nometric Fourier series, since the index  is restricted to the positive integers.

5.1.3.2  Example: Sawtooth Wave. We conclude with a study of the trigono-
metric Fourier series for the case of a sawtooth signal. Consider the piecewise
continuous function shown in Figure 5.4a. In the fundamental interval ,

 consists of two segments, each of slope µ. For  :

 , (5.58a)

and for :

. (5.58b)

The coef$cients follow straightforwardly. We have

 . (5.59)

The $rst integral on the right in (5.59) is evaluated through integration by parts:

 . (5.60)

The second integral is nonzero only for n = 1, 3, 5, ...,

 . (5.61)
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Fig. 5.4. Synthesis of the sawtooth wave using the trigonometric Fourier series. (a) The orig-
inal waveform. (b) Partial series, N = 20. (c) For N = 100. (d) For N = 200. There are N + 1
terms in the partial series. (e) Details illustrating Gibbs oscillation near a discontinuity, for N =
20, 100, and 200. Note that all partial series converge to xN (t) = 0 at the discontinuity.
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Therefore, for n = 1, 3, 5, ...,

 , (5.62a)

while for n = 2, 4, 6, ...,

. (5.62b)

Since  exhibits odd symmetry in  the coef$cients for the cosine basis are
identically zero for all n:

 . (5.63)

Fig. 5.4 (Continued)
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Example (Sawtooth Wave Synthesis). Figure 5.4 illustrates several partial series
syntheses of this signal using the coef$cients (5.62a). The Gibbs oscillations are
clearly in evidence. The convergence properties follow the principles outlined
earlier and illustrated in connection with the rectangular pulse train.

Remark. From the standpoint of physical correctness, the exponential and trigono-
metric series are equally valid. Even and odd symmetries—if they exist—are more
easily visualized for the trigonometric series, but mathematically inclined analysts
$nd appeal in the exponential Fourier series. The latter’s formalism more closely
relates to the Fourier transform operation considered in the next section, and it
forms the basis for common numerical algorithms such as the fast Fourier transform
(FFT) discussed in Chapter 7.

5.2 FOURIER TRANSFORM

In the case of periodic waveforms considered in the previous section, the notion of
“frequency content” is relatively intuitive. However, many signals of practical
importance exhibit no periodicity whatsoever. An isolated pulse or disturbance, or
an exponentially damped sinusoid, such as that produced by a resistor–capacitor
(RC) circuit, would defy analysis using the Fourier series expansion. In many prac-
tical systems, the waveform consists of a periodic sinusoidal carrier wave whose
envelope is modulated in some manner; the result is a composite signal having an
underlying sinusoidal structure, but without overall periodicity. Since the informa-
tion content or the “message,” which could range from a simple analog sound signal
to a stream of digital pulses, is represented by the modulation, an effective means of
signal analysis for such waves is of enormous practical value. Furthermore, all com-
munications systems are subject to random #uctuations in the form of noise, which
is rarely obliging enough to be periodic.

5.2.1 Motivation and Definition

In this section, we develop a form of Fourier analysis applicable to many practical
aperiodic signals. In fact, we will eventually demonstrate that the Fourier series is a
special case of the theory we are about to develop; we will need to equip ourselves,
however, with a mathematical arsenal appropriate to the task. Many notions will
carry over from the Fourier series. The transformation to frequency space—result-
ing in an analysis of the waveform in terms of its frequency content—will remain
intact. Similarly, the synthesis, whereby the original signal is reconstructed based
on the frequency spectrum, will be examined in detail. We will develop the criteria
by which a given waveform will admit a transform to frequency space and by which
the resulting spectra will admit a viable synthesis, or inverse transform.

Since our nascent Fourier transform involves integrals, analysis and synthesis
relations lean heavily on the notion of absolute integrability. Not surprisingly, the
analog Lp signal spaces—in particular, L1(R) and L2(R)—will $gure prominently.
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We recall these abstract function spaces from Chapter 3: Lp(K) = {x(t) | ||x||p < ∞}.
Here

 (5.64)

is the Lp norm of  and K is either the real numbers R or the complex numbers C.
We de$ne the set of bounded signals to be L∞. These signal classes turn out to be
Banach spaces, since Cauchy sequences of signals in Lp converge to a limit signal
also in Lp. L1 is also called the space of absolutely integrable signals, and L2 is called
the space of square-integrable signals. The case of  is special: L2 is a Hilbert
space. That is, there is an inner product relation on square-integrable signals

, which extends the idea of the vector space dot product to analog signals.
In the case of the Fourier series, the frequency content was represented by a set

of discrete coef$cients, culled from the signal by means of an inner product involv-
ing the signal and a discrete orthonormal basis:

 . (5.65)

One might well ask whether a similar integral can be constructed to handle nonperi-
odic signals  A few required modi$cations are readily apparent. Without the
convenience of a fundamental frequency or period, let us replace the discrete har-
monics  with a continuous angular frequency variable , in radians per second.
Furthermore, all values of the time variable  potentially contain information regard-
ing the frequency content; this suggests integrating over the entire time axis,

. The issue of multiplicative constants, such as the normalization con-
stant , appears in a different guise as well. Taking all of these issues into
account, we propose the following de$nition of the Fourier transform:

De$nition (Radial Fourier Transform). The radial Fourier transform of a signal
 is de$ned by the integral,

 (5.66a)

It is common to write a signal with a lowercase letter and its Fourier transform with
the corresponding uppercase letter. Where there may be confusion, we also write

, with a “fancy F” notation.

Remark. Note that the Fourier transform operation F is an analog system that
accepts time domain signals  as inputs and produces frequency-domain signals
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 as outputs. One must be cautious while reading the signal processing litera-
ture, because two other de$nitions for F frequently appear:

• The normalized radial Fourier transform;

• The Hertz Fourier transform.

Each one has its convenient aspects. Some authors express a strong preference for
one form. Other signal analysts slip casually among them. We will mainly use the
radial Fourier transform, but we want to provide clear de$nitions and introduce spe-
cial names that distinguish the alternatives, even if our terminology is not standard.
When we change de$nitional forms to suit some particular analytical endeavor,
example, or application, we can then alert the reader to the switch.

De$nition (Normalized Radial Fourier Transform). The normalized radial Fou-
rier transform of a signal  is de$ned by the integral,

 . (5.66b)

The  factor plays the role of a normalization constant for the Fourier trans-
form much as the factor  did for the Fourier series development. Finally, we
have the Hertz Fourier transform:

De$nition (Hertz Fourier Transform). The Hertz Fourier transform of a signal
 is de$ned by the integral

 . (5.66c)

Remark. The units of  in both the radial and normalized Fourier transforms are in
radians per second, assuming that the time variable  is counted in seconds. The
units of the Hertz Fourier transform are in hertz (units of inverse seconds or cycles
per second). A laboratory spectrum analyzer displays the Hertz Fourier transform—
or, at least, it shows a reasonably close approximation. So this form is most conve-
nient when dealing with signal processing equipment. The other two forms are more
convenient for analytical work. It is common practice to use  (or ) as a radians
per second frequency variable and use f (or F) for a Hertz frequency variable. But
we dare to emphasize once again that Greek or Latin letters do no more than hint of
the frequency measurement units; it is rather the particular form of the Fourier
transform de$nition in use that tells us what the frequency units must be.

The value of the Fourier transform at ω = 0, F(0), is often called, in accord with
electrical engineering parlance, the direct current or DC term. It represents that
portion of the signal which contains no oscillatory, or alternating current (AC),
component. 
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Now if we inspect the radial Fourier transform’s de$nition (5.66a), it is tempting
to write it as the inner product . Indeed, the Fourier integral has precisely
this form. However, we have not indicated the signal space to which  may belong.
Suppose we were to assume that . This space supports an inner product,
but that will not guarantee the existence of the inner product, because, quite plainly,
the exponential signal,  is not square-integrable. Thus, we immediately confront
a theoretical question of the Fourier transform’s existence. Assuming that we can jus-
tify this integration for a wide class of analog signals, the Fourier transform does
appear to provide a measure of the amount of radial frequency  in signal 
According to this de$nition, the frequency content of  is represented by a func-
tion  which is clearly analogous to the discrete set of Fourier series coef$cients,
but is—as we will show— a continuous function of angular frequency . 

Example (Rectangular Pulse). We illustrate the radial Fourier transform with a
rectangular pulse of width  where

(5.67)

for , and vanishes elsewhere. This function has compact support on this
interval and its properties under integration are straightforward when the Fourier
transform is applied:

 . (5.68)

The most noteworthy feature of the illustrated frequency spectrum, Figure 5.5, is
that the pulse width depends upon the parameter .

Note that most of the spectrum concentrates in the region . For
small values of , this region is relatively broad, and the maximum at  (i.e.,
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the DC contribution) is, relatively speaking, low. This is an indication that a larger
proportion of higher frequencies are needed to account for the relatively rapid jumps
in the rectangular pulse. Conversely, as the pulse width increases, a larger proportion
of the spectrum resides near the DC frequency. In fact, as the width of the pulse
approaches in$nity, its spectrum approaches the Dirac delta function , the gen-
eralized function introduced in Chapter 3. This scaling feature generalizes to all Fou-
rier spectra, and the inverse relationship between the spread in time and the spread in
frequency can be formalized in one of several uncertainty relations, the most famous
of which is attributed to Heisenberg. This topic is covered in Chapter 10.

Example (Decaying Exponential). By their very nature, transient phenomena are
short-lived and often associated with exponential decay. Let  and consider

(5.69)

which represents a damped exponential for all . This signal is integrable, and
the spectrum is easily calculated:

. (5.70)

Remark.  is characterized by a singularity at . This pole is purely
imaginary—which is typical of an exponentially decaying (but nonoscillatory)
response . In the event of decaying oscillations, the pole has both real and imag-
inary parts. This situation is discussed in Chapter 6 in connection with the modula-
tion theorem. In the limit , note that , but (it turns out)

 does not approach 1/jω. In this limit,  is no longer integrable, and
the Fourier transform as developed so far does not apply. We will rectify this situa-
tion with a generalized Fourier transform developed in Chapter 6.

TABLE 5.1. Radial Fourier Transforms of Elementary Signals

Signal Expression Radial Fourier Transform

f(t)

Square pulse: u(t + a) − u(t − a)

Decaying exponential:  α > 0    

Gaussian:  α > 0
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5.2.2  Inverse Fourier Transform

The integral Fourier transform admits an inversion formula, analogous to the syn-
thesis for Fourier series. One might propose a Fourier synthesis analogous to the
discrete series (5.9):

 (5.71)

In fact, this is complete up to a factor, encapsulated in the following de$nition:

De$nition (Inverse Radial Fourier Transform). The inverse radial Fourier
transform of  is de$ned by the integral

 (5.72)

The Fourier transform and its inverse are referred to as a Fourier transform pair.

The inverses for the normalized and Hertz variants take slightly different forms.

De$nition (Inverse Normalized Fourier Transform). If  is the normalized
Fourier transform of , then the inverse normalized Fourier transform of 
is the integral

 (5.73a)

Definition (Inverse Hertz Fourier Transform). If  is the Hertz Fourier
transform of , then the inverse Hertz Fourier transform of  is

 (5.73b)

Naturally, the utility of this pair is constrained by our ability to carry out the inte-
grals de$ning the forward and inverse transforms. At this point in the development
one might consider the following:

• Does the radial Fourier transform  exist for all continuous or piecewise
continuous functions?

• If  exists for some , is it always possible to invert the resulting spec-
trum to synthesize 

The answer to both these questions is no, but the set of functions which are suitable
is vast enough to have made the Fourier transform the stock and trade of signal anal-
ysis. It should come as no surprise that the integrability of , and of its spectrum,

f t( ) F ω( )e
jωt ω.d

∞–

∞

∫≈

F ω( )

f t( ) 1
2π
------ F ω( )e

jωt ω.d
∞–

∞

∫=

F ω( )
f t( ) F ω( )

f t( ) 1

2π
---------- F ω( )e

jωt ω.d
∞–

∞

∫=

X f( )
x t( ) X f( )

x t( ) X f( )e
j2πft

f.d
∞–

∞

∫=

F ω( )

F ω( ) f t( )
f t( )?

f t( )



FOURIER TRANSFORM 409

can be a deciding factor. On the other hand, a small but very important set of com-
mon signals do not meet the integrability criteria we are about to develop, and for
these we will have to extend the de$nition of the Fourier transform to include a
class of generalized Fourier transform, treated in Chapter 6.

We state and prove the following theorem for the radial Fourier transforms;
proofs for the normalized and Hertz cases are similar.

Theorem (Existence). If  is absolutely integrable—that is, if —
then the Fourier transform  exists.

Proof: This follows directly from the transform’s de$nition. Note that

 . (5.74)

So  exists if

 ; (5.75)

that is, .  ■

Theorem (Existence of Inverse). If  is absolutely integrable, then the
inverse Fourier transform  exists.

Proof: The proof is similar and is left as an exercise. ■

Taken together, these existence theorems imply that if  and its Fourier spectrum
 belong to , then both the analysis and synthesis of f(t) can be per-

formed. Unfortunately, if  is integrable, there is no guarantee that  follows
suit. Of course, it can and often does.  In those cases where synthesis (inversion) is
impossible because  not integrable, the spectrum is still a physically valid rep-
resentation of frequency content and can be subjected to many of the common oper-
ations ($ltering, band-limiting, and frequency translation) employed in practical
systems. In order to guarantee both analysis and synthesis, we need a stronger con-
dition on , which we will explore in due course. For the time being, we will fur-
ther investigate the convergence of the Fourier transform and its inverse, as applied
to continuous and piecewise continuous functions.

Theorem (Convergence of Inverse). Suppose  and  are absolutely inte-
grable and continuous. Then the inverse Fourier transform exists and converges to

.

Proof: De$ne a band-limited inverse Fourier transform as follows:

 (5.76)
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In the limit , (5.76) should approximate . (There is an obvious analogy
between the band-limited Fourier transform and the partial Fourier series expan-
sion.) Replacing  with its Fourier integral representation (5.66a) and inter-
changing the limits of integration, (5.76) becomes

 , (5.77a)

where

. (5.77b)

There are subtle aspects involved in the interchange of integration limits carried out
in the preceding equations. We apply Fubini’s theorem [13, 14] and the assumption
that both f(t) and  are in . This theorem, which we reviewed in Chapter
3, states that if a function of two variables is absolutely integrable over a region,
then its iterated integrals and its double integral over the region are all equal. In
other words, if  ,  then:

• For all , the function  is absolutely integrable (except—
if we are stepping up to Lebesgue integration—on a set of measure zero).

• For all , the function  (again, except perhaps
on a measure zero set).

• And we may freely interchange the order of integration:

 (5.78)

So we apply Fubini here to the function of two variables, ,
with t $xed, which appears in the $rst iterated integral in (5.77a). Now, the function

 (5.79)

is the Fourier kernel. In Chapter 3 we showed that it is one of a class of generalized
functions which approximates a Dirac delta function in the limit of large . Thus,

 (5.80)

completing the proof. ■
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5.2.3  Properties

In this section we consider the convergence and algebraic properties of the Fourier
transform. Many of these results correspond closely to those we developed for the
Fourier series. We will apply these properties often—for instance, in developing
analog $lters, or frequency-selective convolutional systems, in Chapter 9.

5.2.3.1 Convergence and Discontinuities. Let us $rst investigate how well
the Fourier transform’s synthesis relation reproduces the original time-domain sig-
nal. Our $rst result concerns time-domain discontinuities, and the result is quite
reminiscent of the case of the Fourier series.

Theorem (Convergence at Step Discontinuities). Suppose  has a
step discontinuity at some time t. Let  be the radial Fourier
transform of  with . Assume that, in some neighborhood of
t,  and its derivative have well-de$ned limits from the left and from the right:

 and , respectively. Then the inverse Fourier transform,  ,
converges pointwise to the value,

 (5.81)

Proof: The situation is clearly analogous to Fourier series convergence at a step
discontinuity. We leave it as an exercise to show that the step discontinuity
(assumed to lie at  for simplicity) gives a residual Gibbs oscillation described
by

 (5.82a)

where the amplitude of the step is

. (5.82b)

Therefore in the limit as ,

 . (5.83)

Hence the inverse Fourier transform converges to the average of the left- and right-
hand limits at the origin,

. (5.84)
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For a step located at an arbitrary  the result generalizes so that

, (5.85)

and the proof is complete. ■

The Gibbs oscillations are an important consideration when evaluating Fourier
transforms numerically, since numerical integration over an in$nite interval always
involves approximating in$nity with a suitably large number. Effectively, they are
band-limited Fourier transforms; and in analogy to the Fourier series, the Gibbs
oscillations are an artifact of truncating the integration.

5.2.3.2 Continuity and High- and Low-Frequency Behavior of Fourier 
Spectra. The continuity of the Fourier spectrum is one of its most remarkable
properties. While Fourier analysis can be applied to both uniform and piecewise
continuous signals, the resulting spectrum is always uniformly continuous, as we
now demonstrate.

Theorem (Continuity). Let . Then  is a uniformly continuous
function of  .

Proof: We need to show that for any , there is a , such that |
implies that |. This follows by noting

 . (5.86)

Since  is bounded above by  we may apply the Lebesgu-
dominated convergence theorem (Chapter 3). We take the limit, as , of

 and the last integral in (5.86). But since  as ,
this limit is zero:

 (5.87)

and  is continuous. Inspecting this argument carefully, we see that the limit of
the last integrand of (5.86) does not depend on , establishing uniform continuity
as well. ■

Remark. This theorem shows that absolutely integrable signals—which includes
every practical signal available to a real-world processing and analysis system—can
have no sudden jumps in their frequency content. That is, we cannot have  very
near one value as  increases toward  and  approaches a different value
as  decreases toward . If a signal is in , then its spectra are smooth. This
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is an interesting situation, given the abundance of piecewise continuous waveforms
(such as the rectangular pulse) which are clearly in  and, according to this the-
orem, exhibit continuous (note, not piecewise continuous) spectra. Moreover, the uni-
form continuity assures us that we should $nd no cusps in our plots of | | versus .

Now let us consider the high-frequency behavior of the Fourier spectrum. In the
limit of in$nite frequency, we shall show . This general result is easily
demonstrated by the Riemann–Lebesgue lemma, a form of which was examined in
Chapter 3 in connection with the high-frequency behavior of simple sinusoids (as
distributions generated by the space of testing functions with compact support).
Here the lemma assumes a form that suits the Fourier transform.

Proposition (Riemann–Lebesgue Lemma, Revisited). If  is integrable, then

. (5.88)

Proof: The proof follows easily from a convenient trick. Note that 

. (5.89)

Thus, the Fourier integral can be written

. (5.90)

Expressing the fact that  by utilizing the standard and
revised representations (as given in (5.90)) of , we have

, (5.91)

so that 

. (5.92)

Taking the high-frequency limit, we have

, (5.93)

and the lemma is proven. ■
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Taken in conjunction with continuity, the Riemann–Lebesgue lemma indicates that
the spectra associated with integrable functions are well-behaved across all frequen-
cies. But we emphasize that despite the decay to zero indicated by (5.93), this does
not guarantee that the spectra decay rapidly enough to be integrable. Note that the
Fourier transform F(ω) of f(t) ∈ L1(R) is bounded. In fact, we can easily estimate
that ||F||∞ ≤ || f ||1 (exercise).

5.2.3.3 Algebraic Properties. These properties concern the behavior of the
Fourier transform integral under certain algebraic operations on the transformed
signals. The Fourier transform is an analog system, mapping (some) time-domain
signals to frequency-domain signals. Thus, these algebraic properties include such
operations that we are familiar with from Chapter 3: scaling (ampli$cation and
attenuation), summation, time shifting, and time dilation.

Proposition (Linearity). The integral Fourier transform is linear; that is,

 . (5.94)

Proof: This follows from the linearity of the integral. ■

From a practical standpoint, the result is of enormous value in analyzing composite
signals and signals plus noise, indicating that the spectra of the individual compo-
nents can be analyzed and (very often) processed separately.

Proposition (Time Shift). .

Proof: A simple substitution of variables, , applied to the de$nition of
the Fourier transform leads to

(5.95)

completing the proof. ■

Remark. Linear systems often impose a time shift of this type. Implicit in this prop-
erty is the physically reasonable notion that a change in the time origin of a signal

 does not affect the magnitude spectrum . If the same signal arises ear-
lier or later, then the relative strengths of its frequency components remain the same
since the energy  is invariant.
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Proposition (Frequency Shift). .

Proof: Writing out the Fourier transform explicitly, we $nd

 (5.96)

completing the proof. ■

Remark. This is another result which is central to spectral analysis and linear sys-
tems. Note the ease with which spectra can be translated throughout the frequency
domain by simple multiplication with a complex sinusoidal phase factor in the time
domain. Indeed, (5.96) illustrates exactly how radio communication and broadcast
frequency bands can be established [19–21]. Note that the Fourier transform itself is
not translation invariant. The effect of a frequency shift is shown in Figure 5.6. Note
that  can be positive or negative.

The simplicity of the proof belies the enormous practical value of this result.
Fundamentally, it implies that by multiplying a waveform  by a sinusoid of
known frequency, the spectrum can be shifted to another frequency range. This idea
makes multichannel communication and broadcasting possible and will be explored
more fully in Chapter 6.

Proposition (Scaling). Suppose . Then

(5.97)
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Fig. 5.6. Frequency translation. A “sinc” spectrum (solid line) and same spectrum shifted in
frequency space by an increment ω0 = 2 × 1010.
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Proof: Consider the cases of the scale parameter,  and , separately.
First, suppose . With the substitution, , it follows that

 (5.98)

Following a similar argument for , carefully noting the signs on variables and
the limits of integration, we $nd

 . (5.99)

In either case, the desired result (5.97) follows. ■

Scaling in the time domain is a central feature of the wavelet transform, which
we develop in Chapter 11. For example, (5.97) can be used to describe the spectral
properties of the crucial ‘mother’ wavelet, affording the proper normalization and
calculation of wavelet coef$cients (analogous to Fourier coef$cients).

The qualitative properties previously observed in connection with the rectangular
pulse and its spectrum are made manifest by these relations: The multiplicative
scale  in the time-domain scales as  in the spectrum. A Gaussian pulse serves
as an excellent illustration of scaling.

Example (Gaussian). The Gaussian function

 (5.100)

and its Fourier transform are shown in Figure 5.7. Of course, we assume 
Panel (a) shows Gaussian pulses in the time domain for α = 1011 and α = 1111.
Panel (b) shows the corresponding Fourier transforms.

We will turn to the Gaussian quite frequently when the effects of noise on signal
transmission are considered. Although noise is a nondeterministic process, its statis-
tics—the spread of noise amplitude—often take the form of a Gaussian. Noise is
considered a corruption whose effects are deleterious, so an understanding of its
spectrum, and how to process noise so as to minimize its effects, plays an important
role in signal analysis. Let us work out the calculations. In this example, we have
built in a time scale, , and we will trace its effects in frequency space:

 . (5.101)
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If we informally assume that the integration limits in (5.101) approach in$nity in
perfect symmetry, then—since sine is an odd signal—we can argue that the contri-
bution from  vanishes identically. This leaves a common tabulated integral,

 . (5.102)

Note several features: 

• The Fourier transform of a Gaussian is again a Gaussian.

• Furthermore, the general effects of scaling, quanti$ed in (5.97), are clearly in
evidence in Figure 5.7 where the Gaussian spectra are illustrated.
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Fig. 5.7. (a) Gaussian pulses in the time domain, for α = 1011 and α = 1111 (solid lines).
(b) Corresponding Fourier transforms.
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Corollary (Time Reversal)

 . (5.103)

Proof: This is an instance of the scaling property. ■

Proposition (Symmetry)

 (5.104)

Proof: A relationship of this sort is hardly surprising, given the symmetric nature
of the Fourier transform pair. Since

 (5.105a)

it follows that

. (5.105b)

With a simple change of variables, we obtain

 , (5.106)

concluding the proof. ■

From a practical standpoint, this symmetry property is a convenient trick, allow-
ing a list of Fourier transform pairs to be doubled in size without evaluating a single
integral.

5.2.3.4  Calculus Properties. Several straightforward but useful properties
are exhibited by the Fourier transform pair under differentiation. These are easily
proven.

Proposition (Time Differentiation). Let  and  be integrable functions, and

suppose  for all . Then

(5.107)
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Proof: We establish this result for the $rst derivative; higher orders follow by
induction. Representing the Fourier integral by parts gives

. (5.108)

Under the expressed conditions, the result for the $rst derivative follows immedi-
ately:

. (5.109)

Repeated application of this process lead to (5.107). ■

Proposition (Frequency Differentiation)

. (5.110)

Proof: The proof is similar to time differentiation. Note that the derivatives of the
spectrum must exist in order to make sense of this propostion. ■

The differentiation theorems are useful when established  or spectra are mul-
tiplied by polynomials in their respective domains. For example, consider the case
of a Gaussian time signal as in (5.100), multiplied by an arbitrary time-dependent
polynomial. According to the frequency differentiation property, 

(5.111)

so that the act of taking a Fourier transform has been reduced to the application of a
simple differential operator. The treatment of spectra corresponding to pure polyno-
mials de$ned over all time or activated at some time  will be deferred until Chap-
ter 6, where the generalized Fourier transform of unity and  are developed.

Now let us study the low-frequency behavior of Fourier spectra. The Riemann–
Lebesgue lemma made some speci$c predictions about Fourier spectra in the limit
of in$nite frequency. At low frequencies, in the limit as , we can formally
expand  in a Maclaurin series,

(5.112)
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The Fourier integral representation of  can be subjected to a Maclaurin series
for the frequency-dependent exponential:

(5.113)

The last integral on the right is the kth moment of , de$ned as

(5.114)

If the moments of a function are $nite, we then have the following proposition.

Proposition (Moments)

(5.115)

which follows directly on comparing (5.112) and (5.113). 

The moment theorem allows one to predict the low-frequency behavior of
from an integrability condition in time. This is often useful, particularly in the case
of the wavelet transform. In order to qualify as a wavelet, there are necessary condi-
tions on certain moments of a signal. This matter is taken up in Chapter 11.

Table 5.2 lists radial Fourier transformation properties. Some of these will be
shown in the sequel.

5.2.4 Symmetry Properties

The even and odd symmetry of a signal  can have a profound effect on the
nature of its frequency spectrum. Naturally, the impact of even–odd symmetry in
transform analysis comes about through its effect on integrals. If  is odd, then
its integral over symmetric limits  vanishes identically; if  is even,
this integral may be nonzero. In fact, this property was already put to use when dis-
cussing the Gaussian and its spectrum.

Not all functions f(t) exhibit even or odd symmetry. But an arbitrary  may be
expressed as the sum of even and odd parts: , where

 (5.116a)

and
. (5.116b)

For example, in the case of the unit step,
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and

. (5.117b)

where  is the signum function. These are illustrated in Figure 5.8 using the
unit step as an example. 

TABLE 5.2. Summary of Radial Fourier Transform Properties

Signal Expression Radial Fourier Transform or Property

f(t)

(Analysis equation)

F(ω)
(Inverse, synthesis equation)

af(t) + bg(t) aF(ω) + bG(ω)
(Linearity)

f(t − a) e−jωaF(ω)
(Time shift)

f(t)exp(jθt) F(ω − θ)
(Frequency shift, modulation)

f(at), a ≠ 0
(Scaling, dilation)

f(−t)
F(−ω)
(Time reversal)

(Time differentiation)

(Frequency differentiation)

Plancherel’s theorem
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Whether the symmetry is endemic to the  at hand, or imposed by breaking it
into even and odd parts, an awareness of its effects on the Fourier transform can
often simplify calculations or serve as a check. Consider the spectrum of an arbi-
trary f(t) written as the sum of even and odd constituents,  :

Fig. 5.8. (a) The unit step. (b) Its even-symmetry portion, a DC level of amplitude 1/2. (c)
Its odd-symmetry portion, a signum of amplitude 1/2.
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Elimination of the integrals with odd integrands reduces (5.110) to the elegant form

 . (5.119)

This is a general result, applicable to an arbitrary  which may be real, complex,
or purely imaginary. We consider these in turn.

5.2.4.1 Real f(t). A Fourier spectrum will, in general, have real and imaginary
parts:

 , (5.120a)

which is an even function of  (since  is even in this variable) and 

 , (5.120b)

which inherits the odd  symmetry of .
According to (5.120a), if  is even in addition to being real, then  is also

real and even in . The Gaussian is a prime example, and many “mother wavelets”
considered in Chapter 11 are real-valued, even functions of time. On the other hand,
(5.120b) implies that if  is real but of odd symmetry, its spectrum is real and odd
in  .

5.2.4.2 Complex f(t). An arbitrary complex  can be broken into complex
even and odd constituents  and  in a manner similar to the real case.
When an expansion similar to (5.118) is carried out, it becomes apparent that 
is, in general, complex, and it will consist of even and odd parts, which we denote

 and  It is straightforward to show that the transforms break down as
follows:

 , (5.121a)

, (5.121b)
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and

. (5.121d)

The reader may easily verify that the earlier results for real  can be derived as
special cases of (5.121a)–(5.121d).

5.2.4.3 Imaginary f(t). This is also a special case of the above, derived by set-
ting  In particular, note that if  is imaginary and
odd, then  is odd but real. If  is imaginary and even, then the spectrum is
also even but imaginary. 

Most signals  are real-valued, but there are notable cases where a signal may
be modi$ed, intentionally or as a by-product of transmission and processing, to
become complex or even purely imaginary. Examples include exponential carrier
modulation and $ltering. Either operation may impose a phase shift that is not
present in the original signal.

5.2.4.4 Summary. Familiarity with the symmetry properties of the Fourier
transform can reduce unnecessary calculations and serve as a check of the $nal
results. In the event that a waveform is not intrinsically odd or even, it is not always
necessary, or even advisable, to break it into even and odd constituents, but doing so
may be helpful when one is calculating transforms by hand and has access to a lim-
ited set of tabulated integrals. In most practical situations, numerical implementa-
tion of the Fourier transform, such as the fast Fourier transform (FFT) considered in
Chapter 7, will handle the symmetries automatically.

5.3 EXTENSION TO L2(R)

This section extends the Fourier transform to square-integrable signals. The formal
de$nition of the Fourier transform resembles an inner-product integral of a signal
f(t) with the exponential exp(jωt). The inner product in  works as a measure
of similarity between two signals, so F(ω), when it exists, indicates how much of
radial frequency ω we $nd in f(t). This is intuitive, simple, and attractive.

There are some fundamental dif$culties, however, with this quite informal reason-
ing. We have shown that the Fourier transform of a signal f(t) exists when f(t) is abso-
lutely integrable, but   signals are not the best realm for signal theorizing.
In Chapter 3, for example, we found that they do not comprise an inner product space;
that alone immediately breaks our intuitive concept of the Fourier integral as an inner
product. Moreover, the Fourier transform of an  signal is not necessarily
integrable, so we cannot assume to take its inverse transform. An example is the
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square pulse, x(t) = u(t + 1) − u(t − 1) whose radial Fourier transform is a sinc func-
tion, .

Several approaches exist for developing a Fourier transform for .
These methods include:

(i) De$ning F(ω) as an in$nite series expansion using special Hermite func-
tions [22]; 

(ii) Writing square-integrable signals as limits of elements of the Schwarz class
S of in$nitely differentiable, rapidly decreasing signals (Chapter 3) [10];

(iii) Using the familiar Lp spaces, in particular the intersection of L1 and L2,
which is dense in L2, as the seed for a general Fourier transform for square-
integrable signals [23, 24]. 

We follow the last approach above.

5.3.1 Fourier Transforms in L1(R) ∩ L2(R)

Toward de$ning a Fourier transform for $nite-energy signals, the main ideas are to:

• Show the validity of the forward transforms for a narrow signal class: L1 ∩ L2

•  Argue that this is a dense set within L2, so we can write any general square-
integrable f(t) as a limit of integrable, $nite-energy signals: f(t) = limn→∞fn(t)
where {fn(t) ∈ L1 ∩ L2 | n ∈ N};

• Then extend the transform to square-integrable by de$ning the transform as a
limit F(ω) = limn→∞Fn(ω), where Fn(ω) = F [fn(t)].

Theorem. If f(t) ∈ L1 ∩ L2, then its Fourier transform  is square-integrable.

Proof: Consider a rectangular pulse of width  in the frequency domain. For

 (5.122)

and vanishes outside this interval. Our strategy is to incorporate one such pulse
inside the spectral energy integral and consider the limit as the pulse width becomes
in$nite. We claim

 . (5.123)

Let us verify that this integral is $nite: . Inserting the explicit integrals
for  and its complex conjugate into (5.123) gives

(5.124)
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The integral in curly brackets is proportional to the Fourier kernel,

 , (5.125)

so  thereby takes the streamlined form,

 . (5.126)

A substitution of variables, , provides

 (5.127)

where

 . (5.128)

Taking the limit as , the kernel behaves like a Dirac:

 (5.129)

Since || f ||2 < ∞, so too is ||F||2 < ∞. ■

An interesting and valuable corollary from the above proof is the following result
showing the proportionality of the energy of a signal and its Fourier transform.

Corollary (Plancherel’s Theorem). If , then ||F ||2 = (2π)1/2

|| f ||2.

Proof: Evident from the theorem’s proof (5.129). ■

Corollary. The radial Fourier transform F: L1 ∩ L2 → L2 is a bounded linear oper-
ator with .

Proof: Recall from Chapter 3 that a bounded linear operator T is a linear map T:
N → K of normed spaces when there is a constant 0 ≤ M such that ||x||N ≤ M||Tx||K
for all x ∈ N. The Fourier transform is linear, which follows from the linearity of
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the integral. Also, the norm of T is ||T|| = sup{||x||N / ||Tx||K | x ∈ N, x ≠ 0}; as long as
T is bounded, this set is nonempty, and so it must have a least upper bound. From
Plancherel’s theorem, the ratio between the norms in N and K is always (2π)1/2,
giving the bound condition. ■

Corollary. If {fn(t) | n ∈ N} is a Cauchy sequence in L1 ∩ L2, then the sequence of
Fourier transforms {Fn(ω) | n ∈ N} is also Cauchy in L2.

Proof: The Fourier transform is linear, so Plancherel’s theorem implies ||Fm − Fn||2
= (2π)1/2||fm − fn||2. ■

5.3.2 Definition

Now we are in a position to de$ne the Fourier transform for L2(R). We can write
any general square-integrable f(t) as a limit of integrable, $nite-energy signals: f(t) =
limn→∞ fn(t). It is easy to $nd the requisite sequence by setting fn(t) ∈ L1 ∩ L2 to be
f(t) restricted to [−n, n] and zero otherwise. In Chapter 3, we noted that L1 ∩ L2 is
dense in L2, and by the last corollary the Fourier transforms {Fn(ω) | n ∈ N} also
comprise a Cauchy sequence in L2.

De$nition (Fourier Transform for L2(R)). If f(t) ∈ L2(R), then we de$ne the
Fourier transform of f(t) by F(ω) = limn→∞Fn(ω) = F + [f(t)](ω), where {fn(t) | n ∈
N} is any Cauchy sequence in L1 ∩ L2 that converges to f(t), and Fn(ω) =
F [fn(t)](ω).

Remark. F(ω) must exist because L2(R) is complete and {Fn(ω) | n ∈ N} is
Cauchy. In order for the de$nition to make sense, we need to show the following:

• The designation of limn→∞Fn(ω) to be the Fourier transform of f(t) must be
shown independent of what particular sequence {fn(t) | n ∈ N} is taken as
having f(t) as its limit.

• The de$nition of F(ω) should match the conventional de$nition in terms of the
Fourier transform analysis equation when f(t) ∈ L1(R) too.

We introduce a very temporary notation F+ for the extension. Once we show that
the extension of the Fourier transform from L1 ∩ L2 to all of L2 makes mathematical
sense, then we can forget the superscript “+” sign. This next proposition shows that
the Fourier transform on L2(R) is in fact well-de$ned and agrees with our previous
de$nition for absolutely integrable signals.

Proposition (Well-De$ned). The Fourier transform of f(t) ∈ L2(R), F(ω) =
limn→∞Fn(ω), where Fn(ω) = F [fn(t)](ω) and limn→∞fn(t) = f(t). Then:

(i) F(ω) is well-de$ned; that is, it does not depend on the choise of limit
sequence.
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(ii) If f(t) ∈ L1(R), and F(ω) is given by the radial Fourier transform analysis
equation (5.66a), then F(ω) = limn→∞Fn(ω).

(iii) F +: L2 → L2 is a norm-preserving extension of the map F: L1 ∩ L2 → L2

de$ned in Section 5.3.1.

Proof: That the limit F(ω) does not depend on the particular sequence whose limit
is f(t) follows from Plancherel’s theorem. For the second claim, let fn(t) be f(t)
restricted to [−n, n]. Note that the Fn(ω) = F [fn(t)](ω) in fact converge pointwise to
F(ω) given by (5.66a), and any other Cauchy sequence {gn(t) | n ∈ N} in L1 ∩ L2

which converges to f(t) must converge to F(ω) almost everywhere as well [24]. The
third point follows immediately. ■

The next result shows inner products are preserved by F+.

Corollary (Parseval’s Theorem). If f(t), g(t) ∈ L2(R) with radial Fourier trans-
forms F(ω) and G(ω), respectively, then .

Proof: This follows because we can de$ne the inner product in terms of the norm
by the polarization identity (Chapter 2) for inner product spaces [15]:

. (5.130)

■

Corollary (Plancherel’s Theorem). If f(t) ∈ L2(R) with radial Fourier transform
F(ω), then || f ||2 = (2π)−1/2||F||2.

Proof: By Parseval’s relation for L2(R) signals above.  ■

Now that we have successfully extended the Fourier transform to all $nite-
energy signals, let us agree to drop the special notation F + for the extension and
consider Domain(F ) = L2(R). Now that we have enough machinery, we can build a
theory of analog signal frequency quite rapidly. For example, signals with almost
everywhere identical spectra must themselves be identical almost everywhere.

Corollary (Uniqueness). Let f(t), g(t) ∈ L2(R) with radial Fourier transforms F(ω)
and G(ω), respectively. Suppose F(ω) = G(ω) for almost all ω ∈ R. Then f(t) = g(t)
for almost all t ∈ R.

Proof: If F(ω) = G(ω) for almost all ω ∈ R, then ||F − G||2 = 0. But by Plancherel’s
theorem for L2(R), we then know ||f − g||2 = 0, whence f(t) = g(t) for almost all t ∈ R

by the properties of the Lebesgue integral (Chapter 3). ■

Theorem (Convolution). Let f(t), h(t) ∈ L2(R) with radial Fourier transforms F(ω)
and H(ω), respectively, and let g(t) = (f * h)(t) be the convolution of f and h. Then
G(ω) = F(ω)H(ω).
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Proof: By the Schwarz inequality, g = (f * h) ∈ L1(R), and it has a Fourier trans-
form G(ω). Let us expand the convolution integral inside the Fourier transform
analysis equation for g(t):

. (5.131)

Since g ∈ L1(R), we can apply Fubini’s theorem (Section 3.4.2.4) to the integrand
of the Fourier analysis equation for g(t). Interchanging the order of integration gives

. (5.132)

The iterated integrals on the right we recognize as F(ω)H(ω). ■

The convolution theorem lies at the heart of analog $lter design, which we cover
in Chapter 9.

Finally, we observe that the normalized and Hertz Fourier transforms, which are
a scaling and a dilation of the radial transform, respectively, can also be extended
precisely as above. 

5.3.3 Isometry 

The normalized radial Fourier transform, extended as above to $nite enery signals,
in fact constitutes an isometry of L2(R) with itself. We recall that an isometry T
between Hilbert spaces, H and K, is a linear map that is one-to-one and onto and
preserves inner products. Since , T also preserves norms, and
so it must be bounded; in fact, ||T|| = 1. Conceptually, if two Hilbert spaces are iso-
metric, then they are essentially identical.We continue working out the special prop-
erties of the radial Fourier transform F and, as the last step, scale it to (2π)−1/2F, and
thereby get the isometry.

The following result is a variant of our previous Plancherel and Parseval for-
mulas. 

Theorem. Let f(t), g(t) ∈ L2(R) with radial Fourier transforms F(ω) and G(ω),
respectively. Then,

 . (5.133)

Proof: We prove the result in two steps:

(i) First for f(t), g(t) ∈ (L1 ∩ L2)(R);

(ii) For all of L2(R), again using the density of L1 ∩ L2 within L2.
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Let us make the assumption (i) and note that this stronger condition implies that
F(ω) and G(ω) are bounded (exercises). Then, since F(ω) ∈ L∞(R), the Hölder
inequality gives ||Fg||1 ≤ ||F||∞||g||1. Because the integrand F(ω)g(ω) is absolutely
integrable, Fubini’s theorem allows us to interchange the order of integration:

(5.134)

Notice that the integral in parentheses on the right-hand side of (5.134) is precisely
G(t), from which the result for the special case of L1 ∩ L2 follows. 

For (ii), let us assume that limn→∞ fn(t) = f(t) and limn→∞ gn(t) = g(t), where fn,
gn ∈ (L1 ∩ L2)(R). Then F(ω) = limn→∞ Fn(ω), where Fn(ω) = F [fn(t)](ω) and G(ω)
= limn→∞Gn(ω), where Gn(ω) = F [gn(t)](ω). Then, fn, gn, Fn, and Gn ∈ L2(R), so
that by the Schwarz inequality, Fngn and fnGn ∈ L1(R). The Lebesgue Dominated
Convergence theorem applies (Section 3.4.2.3). By part (i) of the proof, for all n ∈
N, . Taking limits of both sides gives

(5.135)

as required. ■

We know that every f ∈ L2(R) has a radial Fourier transform F ∈ L2(R) and that sig-
nals with (almost everywhere) equal Fourier transforms are themselves (almost
everywhere) equal. Now we can show another result—an essential condition for the
isometry, in fact—that the Fourier transform is onto.

Theorem. If G ∈ L2(R), then there is a g ∈ L2(R) such that F(g)(ω) = G(ω) for
almost all ω ∈ R.

Proof: If G(ω) ∈ L2(R), we might well guess that the synthesis formula for the
case G(ω) ∈ (L1 ∩ L2)(R) will give us a de$nition of g(t):

. (5.136)

We need to show that the above integral is de$ned for a general G(ω), however. If
we let H(ω) = G(-ω) be the re#ection of G(ω), then H ∈ L2(R). We can take its
radial Fourier transform, F [H]:

 . (5.137)
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A change of integration variable in (5.137) shows that (2π)−1F [H](t) has precisely
the form of the radial Fourier synthesis equation (5.136). We therefore propose
g(t) = (2π)−1F [H](t) ∈ L2(R). Now we need to show that the Fourier transform of
g(t) is equal to G(ω) almost everywhere. We calculate

. (5.138)

We manipulate the middle inner product in (5.138), 

, (5.139a)

applying the previous Parseval result to obtain the last equality above. Using the
de$nition of g(t), we $nd

(5.139b)

By Parseval’s theorem,  and , which
is real. Thus, putting (5.138), (5.139a), and  together implies 

(5.140)

But ||F G||2 = ||F [G(−ω)]||2, so the last term in (5.140) is zero: 
almost everywhere, and the theorem is proven. ■

Corollary (Isometry of Time and Frequency Domains). The normalized radial
Fourier transform (2π)−1/2F, where F is the radial Fourier transform on L2(R), is an
isometry from L2(R) onto L2(R).

Proof: Linearity follows from the properties of the integral. We have shown that F
on L2(R) is one-to-one; this is a consequence of the Parseval relation. The map F is
also onto, as shown in the previous theorem. Since , we now
see clearly that (2π)−1/2F  preserves inner products and constitutes an isometry. ■

Remark. The uniqueness implied by this relationship assures that a given Fourier
spectrum is a true signature of a given time-domain signal . This property is a
valuable asset, but we emphasize that two signals are equivalent if their spectra are
identical across the entire frequency spectrum. Deviations between spectra, even if
they are small in magnitude or restricted to a small range of frequencies, can result
in large discrepancies between the respective . This is a legacy of the complex
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exponentials which form a basis of the Fourier transform. They are de$ned across
the entire line (both in frequency and time), so small perturbations run the risk of
infecting the entire Fourier synthesis. In practical situations, where spectral infor-
mation is stored and transmitted in the form of discrete Fourier coef$cients, errors
or glitches can wreak havoc on the reconstruction of . This inherent sensitivity
to error is one of the least appealing attributes of Fourier analysis. 

The time-domain and frequency-domain representations of a square-integrable
signal are equivalent. Neither provides more information. And Fourier transforma-
tion, for all its complexities, serves only to reveal some aspects of a signal at the
possible risk of concealing others. 

5.4 SUMMARY

The Fourier series and transform apply to analog periodic and aperiodic signals,
respectively.

The Fourier series $nds a set of discrete coef$cients associated with a periodic
analog signal. These coef$cients represent the expansion of the signal on the expo-
nential or sinusoidal basis sets for the Hilbert space L2[0, T]. We shall have more to
say about the Fourier series in Chapter 7, which is on discrete Fourier transforms.

For absolutely integrable or square-integrable aperiodic signals, we can $nd a
frequency-domain representation, but it is an analog, not discrete, signal. We have
had to consider three different Banach spaces in our quest for a frequency-domain
description of a such a signal: L1(R), (L1 ∩ L2)(R), and L2(R). We began by
de$ning the Fourier transform over the space of absolutely integrable signals. Then
we considered the restricted transform on L1 ∩ L2, but noted that this transform’s
range is in L2. Applying the limit theorems available with the modern (Lebesgue)
integral to this restricted signal class, we were able to extend the transform to the
full space of square-integrable signals. Ultimately, we found an isometry between
the time and frequency domain representations of a $nite energy signal. 

5.4.1 Historical Notes

Prior to Fourier, there were a number of attempts by other mathematicians to formu-
late a decomposition of general waves into trigonometric functions. D’Alembert,
Euler, Lagrange, and Daniel Bernoulli used sinusoidal expansions to account for the
vibrations of a string [4]. Evidently, ancient Babylonian astronomers based their
predictions on a rudimetary Fourier series [10]. Fourier applied trigonometric series
to the heat equation, presented his results to the French Academy of Sciences, and
published his result in a book [25]. Criticism was severe, however, and the method
was regarded with suspicion until Poisson, Cauchy, and especially Dirichlet (1829)
provided theoretical substantiation of the Fourier series.

Plancherel proved that L2 signals have L2 Fourier transforms in 1910. The basis
for so doing, as we have seen in Section 5.3, is the modern Lebesgue integral and
the powerful limit properties which it supports. The L2 theory of the Fourier integral
is often called the Plancherel theory.

f t( )
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5.4.2 Looking Forward

The next chapter generalizes the Fourier transform to include even signals that are nei-
ther absolutely integrable nor square-integrable. This so-called generalized Fourier
transform encompasses the theory of the Dirac delta, which we introduced in Chapter
3. Chapters 7 and 8 consider the frequency-domain representation for discrete signals.
Chapter 9 covers applications of analog and discrete Fourier transforms.
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PROBLEMS

1. Find the exponential Fourier series coef$cients (5.9) for the following signals.

(a) x(t) = cos(2πt).

(b) y(t) = sin(2πt).

(c) s(t) = cos(2πt) + sin(2πt).

(d) z(t) = x(t − π/4).

(e) w(t) = 5y(−2t).

2. Find the exponential Fourier series coef$cients for the following signals:

(a) Signal b(t) has period T = 4 and for 0 ≤ t < 4, b(t) = u(t) − u(t − 2), where
u(t) is the analog unit step signal.

(b) r(t) = tb(t), where b(t) is given in (a).

3. Let x(t) = 7sin(1600t − 300), where t is a (real) time value in seconds. Give:

(a) The amplitude of x.

(b) The phase of x.

(c) The frequency of x in radians/second.

(d) The frequency of x in Hz (cycles/second).

(e) The period of x.

(f) Find the exponential Fourier series coef$cients for x(t).

4. Suppose x(t) has period T = 1 and x(t) = t2 for 0 ≤ t < 1.

(a) Find the exponential Fourier series coef$cients for x(t).

(b) Sketch and label the signal y(t) to which x’s Fourier series synthesis equa-
tion converges.

5. Find the exponential Fourier series coef$cients for the periodic sawtooth signal
x(t) (Figure 5.9).

Fig. 5.9.  Sawtooth signal x(t).
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6.  Consider the signal s(t) shown in Figure 5.10.

(a)  Find the exponential Fourier series for the signal s(t).

(b) Consider the signal y(t) to which the Fourier series synthesis equation for
s(t) converges. Sketch y(t) and label the graph to show the exact values of
y(t) at places where it is the same and where it differs from s(t).

7. The impulse response of an analog linear time invariant (LTI) system H is h(t) =
u(t + 50) − u(t), where u(t) is the unit step signal.

(a) What is the response of the system to the signal x(t) = u(t)e−t?

(b) Find the radial Fourier transform of h(t).

(c) Does x(t) have a radial Fourier transform? If so, $nd it; otherwise, give a
reason why X(ω) does not exist; and, in any case, explain your answer.

8. Consider the analog signal x(t) = [u(t + 1) − u(t − 1)], where u(t) is the unit step
signal.

(a) Find the radial Fourier transform of x(t), X(ω) = F [x(t)](ω).

(b) Let y(t) = x(t − 2); $nd Y(ω).

(c) Find F [x(2t)].

(d) Find F [x(t/5)].

(e) Find F [sin(t)x(t)].

9. Let H be a linear time-invariant (LTI) analog system; y = Hx; h = Hδ; and X(ω),
Y(ω), and H(ω) are their respective radial Fourier transforms. Which of the fol-
lowing are true? Explain.

(a) Y(ω)/X(ω) is the Fourier transform of h.

(b) y(t)/h(t) = x(t).

(c) y(t) = x(t)*h(t), where * is the analog convolution operation.

10. Prove or disprove the following statement: If an periodic analog signal x(t) is
represented by a Fourier series, but this series does not converge to x(t) for all t,
then x(t) is not continuous.

-1-2 0 1 2 3

s(t)

t

Fig. 5.10. Another sawtooth signal s(t).
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11. Prove or disprove the following statement: If x(t) ∈ L2(R) is an odd signal (i.e.,
x(t) = −x(−t)), and X(ω) is the radial Fourier transform of x, then X(0) = 0.

12. Suppose the analog signals x(t) and h(t) have radial Fourier transforms X(ω) =
u(ω + 1) − u(ω − 1) and H(ω) = exp(−ω2), respectively. Let the signal y = x * h.

(a) Find x(t).

(b) Find h(t).

(c) Find Y(ω).

(d) Find y(t).

13. Suppose that X(ω) and Y(ω) are the radial Fourier transforms of x(t) and y(t),
respectively, and let h(n) be a discrete signal with

. (5.141)

(a)  Find an expression for X(ω).

(b) What kind of conditions should be imposed upon the discrete signal h(n) so
that your answer in (a) is mathematically justi$able? Explain.

14. Show that the radial Fourier transform for analog signals is a linear operation. Is
it also translation invariant? Explain.

15. Show that if  is absolutely integrable, then the inverse Fourier trans-
form  exists.

16. Suppose that analog periodic signal x(t) has exponential Fourier series
coef$cients ck:

. (5.142)

Prove the following symmetry properties:

(a) If x(t) is real-valued and even, then the ck are also real and even: ck = c−k.

(b) If x(t) is real and odd, then the ck are purely imaginary and odd: c−k = −ck.

17. For analog signals x(t) and y(t) = x(t − a), show that the magnitudes of their
radial Fourier transforms are equal, |X(ω)| = |Y(ω)|.

18. Prove or disprove: For all analog signals x(t) ∈ L2(R), if x(t) is real-valued, then
X(ω) is real-valued.

19. Let x(t) ∈ L1(R) be a real-valued analog signal and let X(ω) be its radial Fourier
transform. Which of the following are true? Explain.

(a) X(ω) is bounded: X(ω) ∈ L∞(R).

(b) |X(ω)| → 0 as |ω| → ∞.

(c) X(ω) is unbounded.

x t( ) h n( )y t n–( )
n ∞–=

∞

∑=

F ω( )
F

1–
F ω( )[ ] t( )

ck x t( ) φk t )( ),〈 〉 x t( ) 1

T
-------e

jkΩt–
td

t0

t0 T+
∫= =
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(d) X(0) = 0.

(e) X(ω) has a Fourier transform.

(f) X(ω) has an inverse Fourier transform.

(g) X(ω) has an inverse Fourier transform and it is identical to x(t).

(h) X(ω) ∈ L1(R) also.

20. Let x(t) ∈ L2(R) be a real-valued analog signal and let X(ω) be its radial Fourier
transform. Which of the following are true? Explain.

(a) X(ω) is bounded: X(ω) ∈ L∞(R).

(b) |X(ω)| → 0 as |ω| → ∞.

(c) X(ω) is unbounded.

(d) X(0) = 0.

(e) X(ω) has a Fourier transform.

(f) X(ω) has an inverse Fourier transform.

(g) X(ω) has an inverse Fourier transform and it is identical to x(t).

(h) X(ω) ∈ L2(R) also.

21. Let x(t) ∈ L1(R). Show that:

(a) Fourier transform X(ω) of x(t) is bounded.

(b) ||X||∞ ≤ ||x||1.

22. Loosely speaking, an analog low-pass $lter H is a linear, translation-invariant
system that passes low frequencies and suppresses high frequencies. We can
specify such a system more precisely with the aid of the Fourier transform. Let
h(t) be the impulse response of H and let H(ω) = F (h(t))(ω) be its Fourier trans-
form. For a low-pass $lter we require |H(0)| = 1 and |H(ω)| → 0 as |ω| → ∞. 
(a) Show that if |H(0)| ≠ 1 but still |H(0)| ≠ 0 and |H(ω)| → 0 as |ω| → ∞, then

we can convert H into a low-pass $lter by a simple normalization;

(b) Show that, with an appropriate normalization, the Gaussian signal is a low-
pass $lter (sometimes we say that any system whose impulse response can
be so normalized is a low-pass $lter).

23. An analog high-pass $lter H is a linear, translation-invariant system that sup-
presses low frequencies and passes high frequencies. Again, if h(t) is the
impulse response of H and H(ω) = F (h(t))(ω), then we stipulate that |H(0)| = 0
and |H(ω)| → 1 as |ω| → ∞. Explain why our Fourier theory might not accept
analog high-pass $lters.

24. An analog bandpass $lter H passes a range of frequencies, suppressing both
low and high frequencies. 

(a) Formalize the idea of a bandpass $lter using the spectrum of the impulse
response of H.

(b) Give an example of a $nite-energy bandpass $lter.

(c) Let h(t) be an analog low-pass $lter and let g(t) be an analog bandpass $lter.
What kind of $lters are h * h, g * h, and g * g? Explain your answer. 
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(d) Why would we not consider the case that g(t) is an analog high-pass $lter?
Explain this too.

(e) Formulate and formalize the concept of an analog bandstop (also ban-
dreject or notch) $lter. Can these be absolutely integrable signals? Finite-
energy signals? Explain.

25. Suppose h(t) is the impulse response for an analog $lter H that happens to be a
perfect low-pass $lter. That is, for some ωc > 0, |H(ω)| = 1 for |ω| ≤ ωc, and
|H(ω)| = 0 for all |ω| > ωc.

(a) Show that as a time-domain $lter, H is noncausal.

(b) Explain why, in some sense, H is impossible to implement.

(c) Show that h(t) ∈ L2(R), but h(t) ∉ L1(R).

26. Suppose an analog signal, x(t), has radial Fourier transform, X(ω), given by
Figure 5.11 

Without attempting to compute x(t), sketch Y(ω) for the following signals y(t):

(a) y(t) = x(2t).

(b) y(t) = x(t/3).

(c) y(t) = (x * g)(t), where g(t) = exp(−t2).

(d) y(t) = cos(t)x(t).

(e) y(t) = sin(t)x(t).

(f) y(t) = exp(j5t)x(t).

27. Let f(t), h(t) ∈ L2(R) and F(ω), H(ω) be their radial Fourier transforms.

(a) If g(t) = f(t)h(t), show that g(t) ∈ L2(R).

(b) Show that G(ω) = (2π)−1F(ω) * H(ω).

28. Develop an alternative approach to showing that signals with identical spectra
must be the same. Let  and  have identical Fourier transforms; that
is,  

-1-2 0 1 2 3

X(ω)

ω

1

2

Fig. 5.11. Radial Fourier transform of signal x(t).

f1 t( ) f2 t( )
F f1 t( )[ ] F f2 t( )[ ] G ω( ).= =



PROBLEMS 439

(a) For an arbitrary  show that an alternative formulation of Parseval’s
relation holds:

 (5.143)

(b) Show that the above leads to

 (5.144)

(c) Explain why it follows that  for almost all .
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CHAPTER 6

Generalized Fourier Transforms 
of Analog Signals

This chapter extends Fourier analysis to common signals that lie outside of the
spaces L1(R) and L2(R). 

The theory of L1(R) and L2(R) Fourier transforms is broad enough to encompass
a large body of signal processing and analysis. The foundation provided for the
transform allows us to discover the frequency content of analog signals. One might
be content with the situation as it stands, but several common and practical func-
tions are neither absolutely integrable nor of finite energy. For example:

• The simple sinusoids  and . It is difficult to
imagine functions for which the notion of frequency content is any more
straightforward, yet the radial Fourier transform 

 (6.1)

does not converge. Similar comments clearly apply to the complex exponential.

• The function f(t) = c0, where c0 is a positive or negative constant. Constant
electrical signals are called direct current (DC) signals in engineering. Again,
the notion of frequency content for this DC signal could hardly be more intui-
tive, but convergence of the Fourier integral fails.

• The unit step u(t) and its close relative the signum,  (see Figure 5.8), which
clearly do not belong to the class of integrable or square-integrable functions.

Texts devoted to distributions and generalized Fourier transforms are Refs. 1–3.
Mathematical analysis texts that also introduce the theory include Refs. 4–6.  

6.1 DISTRIBUTION THEORY AND FOURIER TRANSFORMS 

Our first encounter with useful integrals that defy solution using classical methods
of calculus arose in Chapter 3, where integration of classically troublesome entities,

f t( ) ω0t( )sin= f t( ) ω0t( )cos=

F ω( ) f t( )e
jωt–

td
∞–

∞

∫ F f t )( )[ ] ω( )= =

tsgn
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such as the derivative of the unit step, were elegantly handled through distributions.
The theoretical framework employed test functions of rapid descent which were
classically well-behaved and generated a calculus of distributions simply because
the classical notions of derivatives could be applied directly to the test functions
themselves. These developments suggest that if the troublesome signals listed above
are treated as distributions, and the test functions have traditional Fourier trans-
forms, then a theory of generalized Fourier transforms, embracing the selected dis-
tributions, can be formulated. 

Consider replacing the complex exponential with some function  which is
sufficiently well-behaved to allow the integral over time, namely

 (6.2)

to converge. Intuitively, one needs a  which decays rapidly enough to counter
the lack of integrability inherent in f(t). Two key points follow:

• Each of the nonintegrable signals f(t) under consideration is a function of slow
growth (Chapter 3) and therefore represents a regular distribution of slow
growth when set in the context of generalized integrals.

• The class of testing functions is Fourier transformable in the “regular” sense of
Section 5.2; this is our link to frequency space.

The study of distributions in the time domain was based on the classical concept of
integration by parts. Similarly, the classically derived Parseval relations extend the
theory of distributions into the frequency domain. We propose the following:

Definition (Generalized Fourier Transform). Let f(t) be a distribution of slow
growth. Note that if  is a testing function of rapid descent, we can define a Fou-
rier transform,

 (6.3)

By Parseval’s theorem

 (6.4)

The function  is the generalized Fourier transform of 

Remark. In the event that  is integrable, the generalized Fourier transform is
merely an expression of Parseval’s theorem for such functions. Consequently, 
is a bona fide generalized Fourier transform encompassing both the integrable
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functions (which are also covered by the Paresval relation) and the distributions of
slow growth.

In the generalized Fourier transform, note that  and  within the integrals (6.4)
are merely continuous variables; the simple form of the generalized Fourier trans-
form may be extended so that 

(6.5)

This is of more than academic interest and allows for greater dexterity when deriv-
ing the properties of the generalized Fourier transform.

6.1.1 Examples

How does our formulation of the generalized Fourier transform perform for the
important, simple signals? Let us investigate the case of constant (DC) signals and
impulses.

Example (DC Waveform). Let  for all . This signal represents a
constant DC level for all values of  and is a function of slow growth. The general-
ized Fourier transform takes the form

 (6.6)

The quantity following the last equality is simply  which can be written in
terms of the Dirac delta:

(6.7)

Comparing both sides of (6.7), it is readily apparent that

 (6.8)

represents the spectrum of the constant DC signal. This result supports the
intuitively appealing notion that a constant DC level represents clusters its entire
frequency content at the origin. We have already hinted at this in connection with
the Fourier transform of the rectangular pulse in the limit of large width; in a sense,
(6.8) is the ultimate expression of the scaling law for a rectangular pulse.
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The time-dependent Dirac delta represents the converse:

Example (Impulse Function). Consider a Dirac delta impulse, . The
generalized Fourier transform now reads

 (6.9)

From a comparison both sides,

 (6.10)

for all . The Dirac delta function’s spectrum therefore contains equal contri-
butions from all frequencies. Intuitively, this result is expected.

6.1.2 The Generalized Inverse Fourier Transform

The reciprocity in the time and frequency variables in (6.4) leads to a definition of a
generalized inverse Fourier transform.

Definition (Generalized Inverse Fourier Transform). Let  be a distribu-
tion of slow growth. If  is a testing function of rapid descent, then it generates
an inverse Fourier transform:

(6.11)

Once again, by Parseval’s theorem

 , (6.12)

and f(t) is called the generalized inverse Fourier transform of . This definition
is so intuitive it hardly needs to be written down. 

No discussion of the generalized Fourier transform would be complete without
tackling the remaining functions of slow growth which are central to many aspects
of signal generation and analysis. These include the sinusoids and the appropriate
piecewise continuous functions such as the unit step and signum functions. Their
generalized spectra are most easily determined by judicious application of selected
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properties of the generalized Fourier transform. Prior to completing that discus-
sion, it is useful to illustrate some general properties of the generalized Fourier
transform.

6.1.3 Generalized Transform Properties

In the previous examples we have emphasized that the generalized Fourier trans-
form  is an umbrella which encompasses standard, classical Fourier-integrable as
well as slow growth functions considered as regular distributions. The properties of
the classically defined Fourier transform demonstrated in Chapter 5 apply with little
or no modification to the generalized transform. Naturally, the methods for proving
them involve the nuances specific to the use of generalized functions. A general
strategy when considering properties of the generalized Fourier transform is to
begin with integrals (6.5) and allow the desired parameter (scale, time shift) or oper-
ator (differential) to migrate to the classical Fourier transform of the test function,
where its effects are easily quantified. The reader should study the following exam-
ples carefully.  The generalized Fourier transform is elegant but seductive; a com-
mon pitfall is to rearrange the generalized transform so it resembles the  familiar
classical integral and then “declare” a transform when in fact the classical integral
will not coverge because the integrand is not integrable. 

Proposition (Linearity). Let  represent the linear combination of arbitrary
distributions of slow growth,

 . (6.13)

Then,

(6.14)

The expected result follows:

  (6.15)

Proposition (Time Shift or Translation). Let  be a distribution of slow
growth subjected to a time shift  such that  Then,

. (6.16)
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Use of the defining generalized Fourier transform relations leads to the following
equalities (we reduce clutter in the integral by suppressing the (ω) suffix in F ):

 (6.17)

The change of variable, , in the last integral of (6.17) places the time shift
conveniently within the classical Fourier transform of the test function. From here,
matters are straightforward:

 (6.18)

so that 

, (6.19)

and the property is proven:

. (6.20)

We leave the remaining significant properties of the generalized Fourier trans-
form to the exercises. As we have noted, they are identical to the properties of the
standard integral transform, and the proofs are straightforward.

Remark. In the case of regular functions  considered in Chapter 5, the validity
of time differentiation property,

, (6.21)

was conditioned upon . No such restriction applies to distributions of

slow growth, since the convergence of the generalized Fourier transform is assured
by the decay of the testing functions of rapid descent.

Using the properties of the generalized transform, we can resume calculating
spectra for the remaining functions of slow growth. These are central to much of
signal analysis. We cover the signum function, the unit step, and the sinusoids.
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Example (Signum). Consider the case . The differentiation prop-
erty implies

 , (6.22)

where we have used the recently derived transform of the Dirac delta function. From

here, one is tempted to conclude that the desired spectrum . However,  a

certain amount of care is required since in general  does not
imply . This is another instance of unusual algebra resulting from
the Dirac delta property, derived in Chapter 3: . Under the circumstances,
this allows for the possibility of an additional term involving an impulse function, so
that

 (6.23)

where  is a constant to be determined. Returning to the example, with
 and , we obtain a complete and correct solution:

 . (6.24)

A determination of  can be made by appealing to symmetry. Since  is a
real, odd function of , its transform must be purely imaginary and odd in the fre-
quency variable . Hence, we conclude that . The spectrum is shown in
Figure 6.1.

Based on this result, we can proceed to the unit step.

Example (Unit Step). Let  Then,

 . (6.25)

This proof is left as an exercise. Note that the two terms above,  and ,
represent even and odd portions of the frequency spectrum. These may be obtained
directly from even and odd components of , , and , respectively, in
accordance with symmetries developed in Chapter 5. The Dirac delta impulse is a
legacy of , which is not present in the signum function. The resulting spectrum
Figure 6.1b is complex.   
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Examples (Powers of t). The frequency differentiation property 

(6.26)

leads to several useful Fourier transforms involving powers of and generalized
functions. For integer 

, (6.27)

Fig. 6.1. (a) The Fourier transform of sgn(t) is purely imaginary and inversely proportional
to . (b) The transform of the unit step consists of real Dirac delta function and an imagi-
nary part, as shown.
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(6.28)

. (6.29)

The derivations are straightforward an left as an exercise. As expected, each of the
above spectra contain singularities at  on account of the discontinuity in . 

Integral powers of  are easily handled. For even ,

, (6.30)

so (6.27) applies. For odd  note the convenient relation

(6.31)

Remark. Treatment of fractional exponents  and the theory of general-
ized Fourier transforms for  exhibiting logarithmic divergences is possible, but
outside our scope.

Inverse integral powers of  which are clearly neither integrable nor square integra-
ble, readily yield generalized Fourier spectra. For example,

(6.32)

follows from the application of the symmetry property to . Repeated
application of time differentiation leads to a more general result for integer 

(6.33)

Example (Complex Exponential). Let  represent a complex expo-
nential with oscillations at a selected frequency  According to the frequency
shift property of the generalized Fourier transform, 

 (6.34)
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the simple substitution g(t) = 1— the constant DC signal—provides the desired result:

(6.35)

An example of this transform is shown in Figure 6.2a. Not surprisingly, the spec-
trum consists of an oscillation at a single frequency. In the limit , the spec-
trum reverts to  as fully expected.

Proposition (General Periodic Signal). Let  represent a periodic distribution
of slow growth with period T. Then 

, (6.36)

where the  represent the exponential Fourier series coefficients for  and
.

This is almost trivial to prove using the linearity property as applied to an expo-
nential Fourier series representation of the periodic signal:

 . (6.37)

This leads immediately to 

(6.38)

from which the desired result (6.36) follows. 

This is an important conclusion, demonstrating that the Fourier series is nothing
more than a special case of the generalized Fourier transform. Furthermore, upon
application of the Fourier inversion, the sifting property of the Dirac delta readily
provides the desired synthesis of f (t):

 (6.39)

which trivially reduces to the series representation of  as given in (6.37).
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Fig. 6.2.  Fourier transforms of (a) the complex exponential with fundamental frequency
rad/s, (b) a cosine of the same frequency, and (c) the corresponding sine

wave.
ω0 2 1015×=
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Example (Cosine and Sine Oscillations). Let . From the Euler
relation—linking the sinusoids to the complex exponential—and the linearity prop-
erty, we obtain

. (6.40)

Hence, the cosine exhibits a two-sided spectrum with contributions at  as
Figure 6.2b illustrates. Note that in the process of forming a sinusoid, the spectral
amplitude  inherent in the complex exponential has been redistributed equally
amongst the positive and negative frequencies.

In the case of the sinusoid , similar arguments demonstrate that

. (6.41)

The sine spectrum, shown in Figure 6.2c, is similar in form to the cosine but is,
according to symmetry arguments, an odd function in frequency space. We will
make use of both of the previous examples in the sequel. In particular, when we
develop transforms that combine time- and frequency-domain information, the cal-
culations of sinusoidal spectra will play an important role.

Generalized functions, particularly the Dirac delta function, arise repeatedly in
applications and theoretical development of signal analysis tools. Far from being
fringe elements in our mathematical lexicon, generalized functions provide the only
mathematically consistent avenue for addressing the Fourier transform of several
important waveforms. And, as we have just demonstrated, they link two analysis
tools (the discrete Fourier series and the continuous Fourier transform) which
initially appeared to be fundamentally distinct.

6.2 GENERALIZED FUNCTIONS AND 
FOURIER SERIES COEFFICIENTS

In this section, we apply generalized functions to develop an alternative technique
for evaluating the Fourier coefficients of selected piecewise continuous periodic
signals. We have encountered a number of such waveforms in earlier chapters,
including the sawtooth wave and the train of rectangular pulses. In Chapter 5 we
analyzed such waveforms by application of the the Fourier series expansion of peri-
odic signals in terms of a sinusoidal orthonormal basis. There are no calculations
performed in this section which could not, in principle, be performed using the
well-established methods previously covered in this chapter and in Chapter 5, so
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casual readers can safely skip this section without a loss of the essentials.  Nonethe-
less, readers who master this section will emerge with the following:

• A method that affords the determination of Fourier series coefficients—for a
certain class of periodic functions—without the use of integrals;

• Further experience applying generalized functions to Fourier analysis, includ-
ing the Fourier expansion of a periodic train of impulse functions known as the
Dirac comb; and

• An introduction to linear differential equations as they apply to Fourier analysis.

The central theme of these developments is the Dirac delta function and its role
as the derivative of a step discontinuity. This discontinuity may appear in one or
more of the derivatives of  (including the zeroth-order derivative), and this is
the tie-in to differential equations. Our discussion is heuristic and begins with the
Fourier series expansion of an impulse train. This forms the analytical basis for
the other piecewise continuous functions considered in this section.

6.2.1 Dirac Comb: A Fourier Series Expansion

The term “Dirac comb” is a picturesque moniker for a periodic train of Dirac delta
functions (Figure 6.3). The Dirac comb is a periodic generalized function, and it is
natural to inquire into its Fourier series representations. The discussion had been
deliberately slanted to emphasize the role of differential equations in selected prob-
lems where the Dirac comb is applicable. We derive the trigonometric and exponen-
tial Fourier series representations of the Dirac comb prior to examining some
practical problems in the next section.

f t( )

Fig. 6.3. A Dirac comb. By definition, the comb has unit amplitude. The version illustrated
here has a unit period and is phase-shifted relative to the origin by an increment of 0.3.
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6.2.1.1  Dirac Comb: Trigonometric Fourier Series. Let us revisit the peri-
odic sawtooth wave discussed in Chapter 5. There is nothing sacred about our selec-
tion of the sawtooth wave to demonstrate the desired results other than the fact that
its step transitions are such that a Dirac comb structure appear in the derivatives of the
sawtooth wave. The Dirac comb is an odd function of period  with a sine Fourier
series expansion:

 , (6.42)

where , and

 . (6.43)

The signal  consists of a continuous portion  separated by periodically
spaced steps of magnitude 

, (6.44)

whose derivative is

 . (6.45)

Substituting the sine Fourier series representation for x(t) into the left-hand side of
(6.45) gives

 . (6.46)

Therefore,

 . (6.47)

This is one form of the Dirac comb whose teeth are arranged along the  axis
according to the sawtooth wave used in the derivation. A cleaner and more general
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form of the Dirac comb may be obtained through a time shift of T/2, giving the
basic series representation for a canonical Dirac comb with impulses placed at inte-
ger values of 

 (6.48)

Note that the series representation for a Dirac comb of arbitrary phase shift relative
to the origin can always be obtained from the canonical representation in (6.48) .

6.2.1.2 Dirac Comb: Exponential Fourier Series. The exponential Fourier
series representation,

 , (6.49a)

can be derived directly from first principles or from the trigonometric form using
the conversion derived in Chapter 5. The result is elegant:

 (6.49b)

for all integer n. Therefore,

 . (6.50)

6.2.2 Evaluating the Fourier Coefficients: Examples

The problem of finding Fourier series expansion coefficients for piecewise continu-
ous functions from first principles, using the Fourier basis and integration, can be
tedious. The application of a Dirac comb (particularly its Fourier series representa-
tions), to this class of functions replaces the integration operation with simpler
differentiation. 

We will proceed by example, considering first the case of a rectified sine wave
and selected classes of rectangular pulse waveforms. In each case, we develop a dif-
ferential equation that can then be solved for the Fourier expansion coefficients. As
we proceed, the convenience as well as the limitations of the method will become
apparent. Mastery of these two examples will provide the reader with sufficient
understanding to apply the method to other piecewise continuous waveforms.
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6.2.2.1 Rectified Sine Wave. Consider a signal

 , (6.51)

where , as in Figure 6.4. Now,  is piecewise continuous with
discontinuities in its derivative at intervals of  (not ). The derivative consists
of continuous portions equal to the first derivative of the rectified sine wave, sepa-
rated by step discontinuities of magnitude :

 , (6.52)

where . Taking a further derivative,

 , (6.53)

brings in a train of impulses and—equally important—a term proportional to the
original waveform. Substituting the trigonometric series representation of the
impulse train and rearranging terms, we have the differential equation

 , (6.54)

where
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Fig. 6.4. A rectified sine wave. There is a discontinuity in the first derivative.
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Remark. This is a second-order, linear differential equation for  whose presence
in physical science is almost ubiquitous. The order refers to the highest derivative in
the equation. Linearity implies no powers of  (or its derivative), greater than one.
Due to the oscillatory nature of its solutions  it is termed the wave equation. In
the form above, it contains a separate time-dependent term (in this case, representing
the Dirac comb) on the right-hand side of (6.54). Depending on the physical context,
this is referred to as the source term (in electromagnetic theory) or a forcing function
(in circuit analysis and the study of dynamical systems). This equation is a major
player in a number of disciplines. When no forcing function is present, the right-hand
side vanishes, leaving the homogeneous wave equation

(6.55)

whose solutions are the simple sinusoids of period T:  and , or
linear combinations thereof. 

Returning to the problem at hand, we can obtain expressions for the trigonomet-
ric Fourier series coefficients of   by substituting a trigonometric series repre-
sentation,

 (6.56)

and the second derivative

 (6.57)

into (6.54). Then we solve the two resulting equations for  and  by equating
the  and  components. So,

 , (6.58)

giving

 , (6.59)

and for ,

 . (6.60)
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Thus,

(6.61)

The  vanish identically, as would be expected considering the even symmetry of
 and this is confirmed by the governing equation:

. (6.62)

The exponential Fourier series representation can be obtained through these trigo-
nometric coefficients or by direct substitution of the exponential Fourier series rep-
resentation of the Dirac comb (6.50) into (6.54).

6.2.2.2  Periodic- ‘‘Shaped’’ Rectangular Pulse. Another problem we
investigated in Section 5.1 is the periodic rectangular pulse train. Now let us con-
sider a more general version of this waveform, consisting of a piecewise continuous
portion denoted p(t), with steps of magnitude A and B:

. (6.63)

In this notation, the pulse width is d = q – p.   For the moment, we defer specifica-
tion of a particular form for p(t), but our experience with the previous example sug-
gests that some restrictions will apply if we are to solve for the Fourier coefficients
via a linear differential equation. Experience also suggests that the differential equa-
tion governing this situation will be of first order, since the Dirac comb appears
when the first derivative is taken:

 . (6.64)

Substituting the appropriate trigonometric Fourier series (6.48) for the impulse
trains and expanding the cosines within the series leads to 

, (6.65)
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where

(6.66)

 and

. (6.67)

Notice that for arbitrary choice of  and q,  is neither even nor odd; the expan-
sion involves both sine and cosine components, as it should.

To complete this problem,  needs to be specified. If we are going to apply
this technique successfully, we will have to restrict  so that the first-order dif-
ferential equation governing  will be linear. One reasonable option is to specify
that  is a linear function of t. Thus,

. (6.68)

In this instance, the differential equation (6.65) is linear because  returns a con-
stant upon differentiation. (From the previous example involving the rectified sine
wave, it is obvious that  itself does not have to be a linear function of its inde-
pendent variable in order to generate a linear governing differential equation for

 but a recursion—as exhibited by the sinusoids—is necessary.) Returning to
the problem at hand, we substitute the general Fourier series expansion for the
derivative of  into (6.65) and solve for the Fourier coefficients,

 (6.69)

and

. (6.70)

As a check, notice that in the limit ,  we generate the special case
of a flat (zero-slope) rectangular pulse train of even symmetry, which was treated in
Chapter 5. In this case, (6.69) predicts , as the even symmetry of 
would dictate, and 

 . (6.71)

This is consistent with our previous derivation in Chapter 5 using the standard inner
product with the Fourier basis.
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Remarks. The problems associated with applying Fourier analysis to nonlinear dif-
ferential equations can be appreciated in this example. Instead of equaling a con-
stant, suppose that the derivative of  is proportional to some power, .
Substituting the Fourier series for  would result in multiple powers of the Fou-
rier coefficients, in various combinations, whose determination would be difficult, if
not impossible. Furthermore, the example involving the rectified sine wave high-
lights the convenience associated with the fact that derivatives of the sinusoids are
recursive: Up to multiplicative constants, one returns to the original function upon
differentiating twice. These observations illustrate why the sinusoids (and their
close relatives) figure so prominently in the solution of second-order linear differen-
tial equations.

6.3 LINEAR SYSTEMS IN THE FREQUENCY DOMAIN

Communication is the business of passing information from a source to a receiver as
faithfully as possible. This entails preparation or encoding of the message, which is
then impressed upon a waveform suitable for transmission across a channel to the
receiver. At the receiver end, the signal must be decoded and distributed to the
intended recipients. If all has gone well, they are provided with an accurate repro-
duction of the original information. The technical ramifications of each step are vast
and involve the questions of analog versus digital encoding, the suitability of the
transmission channel, and the design of suitable decoding apparatus—all of which
are impacted in some way by the techniques described throughout this book.

This section is intended to provide a basic introduction to filtering and modula-
tion, with an emphasis on the time and frequency domains implied by Fourier anal-
ysis. Filtering implies conditioning in the frequency domain; typically a given filter
is designed to highlight or suppress portions of the spectrum. Filtering, in its ideal
form, is conceptually simple, but in practice involves nuances and tradeoff due to
restrictions imposed by the real world. 

Modulation is an operation that inhabits the time domain; it is here that we
connect the information-bearing message and a carrier signal, whose role is to aid
in transporting the information across the designated channel. From the stand-
point of our present knowledge base, the details of modulation are quite user-
friendly, and we will present a somewhat detailed account of amplitude and
frequency modulation—AM and FM—whose practical role in communications
needs no introduction [7–9].

Since filtering and modulation involve the interaction of waveforms with linear
systems, we rely extensively on the linear systems principles introduced in Chapter 3.

Two relatively simple theorems involving the Fourier transform  establish the
foundations of filtering and modulation. These are the convolution theorem and the
modulation theorem, which we prove below. There are few electronic communica-
tion devices that do not, in some way, make use of the analytical mileage they
provide.

p t( ) p
n
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p t( )
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6.3.1 Convolution Theorem

A filter is a linear system designed to suppress or enhance selected portions of a sig-
nal spectrum. In Chapter 3 we established an input–output relation for a linear,
time-invariant system based on the system impulse response, denoted  and the
input signal :

 . (6.72)

The convolution theorem relates the spectrum of the output  to those of the
input and the system impulse response:

Theorem (Convolution). Let  and  be two functions for which radial
Fourier transforms  and  exist and let  Then the
Fourier spectrum of  is

 (6.73)

Proof: By definition,

. (6.74)

Interchanging the order of integration gives

 . (6.75)

The time-shift property of the Fourier transform  takes care of the integral with
respect to , so that

 , (6.76)

completing the proof. ■

It is hard to imagine a simpler relationship between spectra. Set in the context of
linear systems, the input and output spectra are linked:

 , (6.77)

so that  can be shaped or modified by an appropriately designed and imple-
mented system transfer function . This forms the backbone of filter design. It
will be considered in more detail following a proof of the modulation theorem,
which is effectively a converse to the convolution theorem.

h t( ),
f t( )

g t( ) f τ( )h t τ–( ) τd
∞–

∞

∫=

g t( )

f1 t( ) f2 t( )
F1 ω( ) F1 ω( ) f t( ) f1∗f2( ) t( ).=
f t( )

F ω( ) F1 ω( )F2 ω( ).=

F ω( ) e
jωt–

f1 τ( )f2 t τ–( ) τd
∞–

∞

∫ td
∞–

∞

∫=

F ω( ) f1 τ( ) e
jωt–

f2 t τ–( ) td
∞–

∞

∫ τd
∞–

∞

∫=

t

F ω( ) f1 τ( )e
jωτ–

F2 ω( ) τ F1 ω( )F2 ω( )=d
∞–

∞

∫=

G ω( ) F ω( )H ω( )=

G ω( )
H ω( )



LINEAR SYSTEMS IN THE FREQUENCY DOMAIN 461

6.3.2 Modulation Theorem

Modulation is an operation whereby two or more waveforms, typically an information-
bearing modulating signal  and a sinusoidal carrier , are multiplied to form a
composite.  The termwise product signal  is appropriate for transmission across a
communication channel:

 (6.78)

The modulation theorem relates the spectrum of the composite to those of the con-
stituent modulating wave and carrier:

Theorem (Modulation). Let  and  be two functions for which Fourier
transforms  and  exist. Let  Then the Fourier trans-
form  of  is a convolution in the frequency domain:

 . (6.79)

Proof: The Fourier transform of the time product,

(6.80)

can be rearranged by substitution of the inverse Fourier transform of 

 . (6.81)

A change of variables, , gives (noting carefully the signs and integration
limits),

(6.82)

and the proof is complete. ■

The exact form of this spectrum depends heavily upon the nature of  and
 and, in the framework of a modulated carrier signal, gives

(6.83)
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The  relationship is one of the most elegant and useful
aspects of the Fourier transform. It forms the basis for the design and application of
linear filters considered in the next section.

Example (Damped Oscillations). When pure sinusoids are applied to a damped
exponential (whose spectrum contained a pole along the imaginary axis; see
Chapter 5), the pole acquires a real part. Consider

, (6.84)

where  is a positive definite constant. Designating  and 
 then (6.79) gives

(6.85)

This reduces, after some algebra, to

. (6.86)

There are  poles in the complex plane located at

(6.87)

whose real parts are proportional to the frequency of oscillation. The imaginary part
remains  proportional to the decay. For , the spectrum is similar,

(6.88)

but exhibits a zero at . Note that it is impossible to distinguish the spectra
of the sine and cosine on the basis of the poles alone.

6.4 INTRODUCTION TO FILTERS

To design a filter, it is necessary to specify a  system transfer function  that
will pass frequencies in a selected range while suppressing other portions of the
input spectrum. A filter design is a specification of , including the frequency
bands to be passed, those to be stopped, and the nature of the transition between
these regions. In general,  is a complex-valued function of frequency,

 (6.89)
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composed of a real-valued amplitude spectrum  and a phase spectrum
. In this chapter, we will work with the class of so-called ideal filters, whose

transitions between the stop bands and the pass bands are unit steps:

Definition (Ideal Filter). An ideal filter is a linear, translation-invariant system
with a transfer function of the form

 (6.90)

and a zero phase spectrum across all frequencies: .

The amplitude spectrum of an ideal filter is characterized by an integer number
 transitions, each of which is a unit step of amplitude an at specified frequencies

 The idealization is twofold:

• The unit step transitions are abrupt and perfectly clean. In practice, the transi-
tion exhibits rolloff—that is, it is gradual—and overshoot, which is signal
processing parlance for oscillations or ripple near the corners of the step transi-
tions, similar to Gibbs’s oscillations.

• It is impossible to design and implement a filter whose phase spectrum is iden-
tically zero across all frequencies.

The nuisance imposed by a nonzero phase spectrum can be readily appreciated by
the following simple illustration. Suppose an audio waveform f(t) acts as an input to
a linear system representing a filter with a transfer function ; for the purposes
of illustration we will assume that the amplitude spectrum is unity across all fre-
quencies. The output signal  is characterized by a spectrum,

 (6.91)

so that when  is inverted back to the time domain, the nonzero phase intro-
duces time shifts in  If the input  were an audio signal, for example, 
would sound distorted, because each nonzero phase would introduce a time shift
that is a function of . (Such phasing introduces a reverberation and was deli-
berately applied to audio entertainment during the so-called psychedelic era in the
late 1960s. In more serious communication systems, such effects are not conducive
to faithful and accurate data transmission.) In practice, there are ways to minimize
phase distortion, but for the present discussion we will continue to inhabit the ideal
world with zero phase.

Filter types are classified according to the frequency bands they pass, and the
user makes a selection based upon the spectral characteristics of the signal he
intends to modify via application of the filter. A signal  whose spectrum is
clustered around  is termed baseband. In audio signals, for example, the
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power resides in the under-20-kHz range, and visual inspection of the spectrum
shows a spread in the frequency domain whose nominal width is termed the band-
width. The precise measure of bandwidth may depend upon the context, although a
common measure of spectral spread is the 3-dB bandwidth:

Definition (3-dB Bandwidth). The 3-dB bandwidth occupied by a spectrum 
is the frequency range occupied by the signal as measured at the point at which the
squared magnitude  is equal to one-half its maximum value.

The use of the squared magnitude allows the definition to encompass complex-
valued spectra and eliminates any issues with +/– signs in the amplitude, which
have no bearing on frequency spread. This definition of bandwidth applies equally
well to baseband and bandpass spectra, but will be illustrated here with a Gaussian
at baseband.  

Example (3-dB Bandwidth of a Gaussian). In the previous chapter we noted that

the spectrum of a Gaussian pulse  was a Gaussian of the form

. (6.92)

According to the definition, the 3-dB bandwidth is the spread in frequency between
the points defined by the condition

(6.93)

or

. (6.94)

These points are  so that the total 3-dB bandwidth is 

(6.95)

As expected, large values of  result in a greater spectral spread. In communica-
tions systems it is common to describe performance in Hz (cycles/s), which scales
the bandwidth accordingly,

(6.96)

The typical baseband audio signal is not exactly Gaussian, but occupies approxi-
mately 40 kHz (i.e., 2 � 20 kHz), a relatively small increment in (Hertz) frequency
space. Television picture signals carry more information—including audio and
visual signals—and occupy approximately 9 MHz.
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There are other definitions of frequency spread which will be introduced when
appropriate.

Much of analog and digital communication involves translating baseband signals
in frequency space and filtering to suit the needs of a given system. Frequency
translation will be discussed in the next subsection. Prior to that, we turn to an illus-
tration of three common filter types and their uses.

6.4.1 Ideal Low-pass Filter

A low-pass filter is characterized by transitions  and  with
associated transition amplitudes , as illustrated in Figure 6.5a. The ideal
filter has created a passband in the interval , while suppressing all other
frequencies by creating a stopband in those regions. The effect of low-pass filtering
is to rid a signal of unwanted high frequencies, which can occur in several contexts.
If we plan to sample and digitize a baseband signal, for example, frequencies above
a certain limit will end up contaminating the reconstructed waveform since informa-
tion from the high frequencies will be spuriously thrown into the lower frequency
range. This phenomenon is known as aliasing—high frequencies are falsely identi-
fied with the lower—and the best course of action is to rid the signal of the offend-
ing spectral content prior to sampling.

Low-pass filters are useful when a baseband signal needs to be isolated from
other signals present in the received waveform. In selected modulation schemes, the
process in which a baseband signal is recovered at the receiver introduces an addi-
tional waveform residing near a higher frequency. This waveform is useless and the
baseband signal can be isolated from it with a suitable low-pass filter.

6.4.2 Ideal High-pass Filter

A high-pass filter passes all frequencies . As with the low-pass filter, we
locate transitions at  and  but the associated transition ampli-
tudes are , , as illustrated in Figure 6.5b. A primary application
of high-pass filtering involves cutting out redundant portions of a signal spectrum to
reduce overhead associated with bandwidth. In the forthcoming discussion on mod-
ulation, we will consider this in further detail.

6.4.3 Ideal Bandpass Filter

A bandpass filter is characterized by four transitions , ,

, and , with associated transition amplitudes ,

. As illustrated in Figure 6.5c, two passbands have been created which

effectively isolate a band in the middle region of the spectrum.

Example (Shannon Function). The Shannon function 

(6.97)
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Fig. 6.5. (a) Ideal filter types. (a) Ideal low-pass filter, shown with a transition frequency ft =
1 kHz. (b) Ideal high-pass filter. (c) Ideal bandpass filter, illustrated with passband widths of 1 kHz.
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has the remarkable property of exhibiting and ideal two-sided bandpass spectrum.
This is easily demonstrated. Note that the Shannon function is the difference of two
sinc terms,

(6.98)

and

, (6.99)

each of which is integrable, so that one can evaluate the Fourier integral directly.
Alternatively, we can apply the symmetry property

(6.100)

to the problem of the unit rectangular pulse supported on the interval ,
whose spectrum was (see Chapter 5)

. (6.101)

It follows immediately that the spectra of  and  are unit amplitude rectan-
gular pulses of width  and , respectively:

, (6.102)

(6.103)

The composite spectrum of the Shannon function is the difference 
 of two nested rectangular pulses, forming a perfect two-sided

bandpass spectrum with transition frequencies ,
. In terms of the unit step function,

(6.104)

As expected given the properties of the Shannon function, the spectrum is a real
function of even symmetry.

In general, bandpass filters are useful for isolating non-baseband spectra. For
example, consider a multiuser communication link in which several operators are
simultaneously transmitting information over several channels, each allocated to a
given frequency range.  Tuning in to a particular user typically involves some form
of  bandpass filter to isolate the desired channel. 

Example (Derivative of a Gaussian). The Gaussian

(6.105)
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exhibited a low-pass spectrum

. (6.106)

Multiplying the time-domain Gaussian by a pure sinusoid is one method of translat-
ing the bulk of the signal energy to higher frequencies to create a spectrum that
approximates a bandpass filter (as we consider in the next section). Alternatively,
one can induce the necessary waviness by taking  the second derivative,

. (6.107)

Its spectrum,

(6.108)

demonstrates bandpass characteristics in the form of two quasi-Gaussian pass bands
centered about 

. (6.109)

The characteristic is hardly ideal, because it passes portions of all finite frequencies
except at DC ( ), but as such could be used to eliminate any unwanted DC
portion of a waveform. Note that the lobes are not perfect Gaussians due to the
effect of the quadratic factor;  thus the use of the term “centered” in connection with
(6.109) is only approximate. This also complicates the calculation of 3-dB band-
width, a matter that is taken up in the exercises.

Remark. Both the Shannon function and the second derivative of the Gaussian are
localized atoms in the time domain and make suitable wavelets (Chapter 11). In
wavelet applications, their bandpass characteristics are used to advantage to select
out features in the neighborhood of specific frequency. 

6.5 MODULATION

The implications of the modulation theorem are far-reaching and quite useful. Most
audio and video information begins as a baseband signal  whose frequency
range is typically inappropriate for long-distance radio, TV, satellite, and optical
fiber links. (Most often, a basic problem is attenuation in the channel, due to absorp-
tion in the transmission medium, at frequencies in the kHz regime.) There is also
the question of multiple users. Whatever the medium, hundreds of audio and video
programs are communicated simultaneously and must be so transferred without
interference. Since the bandwidth of an individual audio or video signal is relatively
small compared to the total bandwidth available in a given transmission medium, it
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is convenient to allocate a slot in frequency space for each baseband signal. This
allocation is called frequency division multiplexing (FDM). The modulation theo-
rem makes this multichannel scheme possible.

Modulation theory is treated in standard communications theory books [7–9].

6.5.1 Frequency Translation and Amplitude Modulation

Let us reconsider the notion of modulation, where by our baseband signal  is
multiplied by an auxiliary signal , to form a composite waveform f(t). The
composite is intended for transmission and eventual demodulation at the receiver
end. Thus,

 , (6.110)

where  is a sinusoidal carrier wave,

 . (6.111)

As this scheme unfolds, we will find that the carrier effectively translates the base-
band information to a spectral region centered around the carrier frequency . Mul-
tiplication by a sinusoid is quite common in various technologies.  In various parts
of the literature, the carrier signal is also referred to as the local oscillator signal,
mixing signal, or heterodyning signal, depending upon the context.

The modulation theorem describes the Fourier transform of the composite signal.
Let  and . Then

 (6.112)

where we used the exponential Fourier series with . Designating
the Fourier transform of  by , the spectrum of the composite signal is,
according to the modulation theorem,

 (6.113)

Using simple algebra to rearrange the arguments of the delta functionals and making
use of their even symmetry, we can reduce the above to straightforward integrals:

 (6.114)

Equation (6.114) evaluates easily, resulting in

 . (6.115)
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The composite spectrum consists of two facsimiles of the baseband spectra, trans-
lated in frequency so that they are centered around . The power in the
original signal has been equally split between the two portions of the frequency-
translated spectrum. The situation is illustrated in Figure 6.6 for a hypothetical
Gaussian baseband spectrum.

6.5.2 Baseband Signal Recovery

Our emerging picture of multiuser communications systems consists of multiple
baseband signals. Each baseband signal centers around a given carrier frequency,
which is broadcast and available to end users. Each end user, in turn, can recover the
desired information-bearing baseband signal in a number of ways.

One method of recovery requires the receiver to multiply the incoming compos-
ite signal by a local oscillator with frequency , giving

 (6.116)

Let us assume that the carrier and local oscillator frequencies differ by some amount
:

. (6.117)

Then,

 . (6.118)
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Fig. 6.6. Frequency translation resulting from carrier modulation of a baseband Gaussian
spectrum of amplitude 4. For purposes of illustration, fc was set at 100 kHz, but most broad-
cast systems utilize carrier frequencies up to several orders of magnitude higher.
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If the frequency deviation  is identically zero, this reduces to

 . (6.119)

This is the sum of a half-amplitude baseband signal centered around  and a
similar contribution residing at baseband. 

Since systems are designed so that the carrier frequency is much larger than the
highest frequency present in the baseband signal, these two contributions are well-
separated in the frequency domain. The simple application of a low-pass filter to
output described by (6.119) allows the user to eliminate the unwanted power near
the frequency , leaving the half-amplitude baseband waveform intact. In the
case of a multiuser channel, all of these double-frequency waves can be eliminated
by a low-pass filter.

When  , the local oscillator is said to be synchornized with the carrier. In
practice, such precise tuning is not always possible, and a familiar problem with this
technique is signal distortion and fading. This occurs, for instance, when the local
oscillator drifts from the desired frequency. The source of this fading is evident in
(6.118). A small amount of mistuning has little effect on the first term, since it is
usually easy to maintain ; filtering removes this term. On the other hand, the
second term is more sensitive to frequency adjustment.  Any frequency deviation is
going to cause distortion and undesired fading as  periodically nears
zero. Naturally, as  increases, the recovered baseband signal fades with greater
frequency. Furthermore, the second term in (6.118) is effectively a baseband signal
translated to an carrier frequency . If this value gets too large—even a fraction of
the typical baseband frequencies in —there is the possibility of translating a
portion of the spectrum outside the passband of the low-pass filter used to retrieve

. This is not a trivial matter, because frequency deviations are usually speci-
fied as a percentage of the carrier frequency; so even a few percent can be a problem
if the carrier frequency is relatively large. 

6.5.3 Angle Modulation

Angle modulation is a method whereby the phase of the carrier wave is modulated
by the baseband signal . That is,

 , (6.120)

where the phase deviation

 (6.121)

is a function to be specified according to the application. The term angle modulation
refers to the time-varying angle between the fixed carrier oscillation and the added
phase . In practice, two functional relationships (6.121) are common. The first
is a direct proportionality between the phase and the baseband modulation:
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 (6.122)

which is referred to simply as phase modulation (PM). Another common arrange-
ment makes the phase offset proportional to the integral of the baseband signal:

 , (6.123)

which is called frequency modulation (FM), for reasons that will emerge as we
proceed.

This classification scheme can seem confusing at first glance. Bear in mind that
both phase modulation and frequency modulation do, in their respective ways, mod-
ulate the phase of the carrier signal. Furthermore, the astute reader has probably
wondered how it is possible to distinguish between a PM and an FM waveform by
inspection. And, as a matter of fact, you cannot distinguish between them visually.
Indeed, for most purposes in this book, the distinction is academic, since in either
case  is simply some function of t. The distinction between PM and FM arises
in the implementation. Without explicit knowledge as to how the phase offset 
was constructed, FM and PM are effectively identical. For this reason, it is often
sufficient to lapse into the generic label angle modulation to describe these wave-
forms. Of course, the end user, whose task it is to extract information (i.e., the base-
band signal ) from a given signal will find it of inestimable value to know
whether a PM- or FM-style implementation was actually used in the transmission. 

Example (Angle Modulation). Much of this can be clarified by looking at a typi-
cal angle modulated signal. Consider a quadratic phase offset of the form

 . (6.124)

We illustrate the resulting angle modulated waveform (6.120) in Figure 6.7
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Fig. 6.7. Angle modulation. The illustrated waveform has a carrier frequency fc = 1 MHz,
amplitude Ac = 3, and  = 1012. The chirp induced by time-varying frequency is clearly in
evidence.
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Note the constant envelope (equal to ), which makes the class of  single-
frequency angle-modulated signals readily distinguishable from their amplitude-
modulated counterparts (on the other hand, the superposition of multiple carriers
can result in a time-varying envelope, as we will see). Furthermore, observe the
apparent variation in frequency over time. This phenomenon, known as chirp, for its
resemblance to the sound made by inhabitants of the avian world, is the most dis-
tinctive feature of angle modulated waveforms.

This motivates the following definition:

Definition (Instantaneous Frequency). Intuitively, the instantaneous frequency of
a cosine-based angle modulated waveform (6.120) is defined

 (6.125)

From this perspective, in which both carrier and time-varying phase effects are
lumped into a general phase offset, the term frequency modulation makes sense. In
the limit of vanishing or constant phase, the instantaneous frequency defaults to that
of the carrier, as expected.  According to (6.123), when employing an FM system,
the baseband signal  is proportional to the second term in the instantaneous
frequency defined in (6.125). 

For the example in (6.124), the instantaneous frequency is a linear function of
time, equal to . This linear chirp is one of several common modulation
schemes that involve higher-order polynomial or inverse powers of  and that are
considered in the exercises.

More complicated signals, which may involve multiple frequency components,
require the extra degree of freedom afforded by the complex exponential representa-
tion

. (6.126)

Taking the real part gives

, (6.127)

leading to a general definition of instantaneous frequency:

. (6.128)

6.5.3.1 Multiple Frequencies. The time-varying amplitude  is a natural
occurrence in signals that consist of multiple oscillations. For example, consider  a
simple composite signal consisting of two equal-amplitude pure oscillations
represented by  and . Representing the composite as a sum of
complex exponentials, it is easy to show that

, (6.129)
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where  is the difference,

, (6.130)

and the sum 

(6.131)

is the average of the two pure oscillations. For this simple case, it is also the instan-
taneous frequency according to (6.128). 

6.5.3.2 Instantaneous Frequency versus the Fourier Spectrum. The in-
stantaneous frequency should not be confused with the Fourier spectrum. This is gen-
eral, but we will illustrate the point by examining the instantaneous and Fourier spectra
of FM signals with sinusoidal phase deviation,

. (6.132)

This is a useful analysis, since arbitrary information  can be decomposed into a
spectrum of sinusoids. The spread of instantaneous frequencies is quantified by the
frequency deviation  defined as the maximum difference between the carrier fre-
quency and the instantaneous frequency (6.128),

(6.133)

The derivation of (6.133) is straightforward and left as an exercise. It is common to
express the amplitude k as the ratio  and call it the modulation index. Equation
(6.133) implies that the range of instantaneous frequency occupies a range 
implying a nominal bandwidth of instantaneous frequencies . This is intuitively
appealing since it is directly proportional to the amplitude and frequency of the phase
deviation. In the limit that either of these vanish, the signal reverts to a pure carrier wave. 

We now turn to the Fourier spectrum. It can be shown that 

(6.134)

can be elegantly expressed as a superposition a carrier wave and an infinite set of
discrete oscillations in multiples (harmonics) of :

, (6.135)
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and

. (6.137)

In the exercises we lead the reader through the steps necessary to arrive at (6.135).
The coefficients  are pth-order Bessel functions of the first kind and arise in a
number of disciplines, notably the analysis of optical fibers, where good engineer-
ing treatments of the Bessel functions may be found [10].  Most scripted analysis
tools make also them available as predefined functions. In general, they take the
form of damped oscillations along the k axis [11]; by inspection of (6.135), they act
as weights for the various discrete spectral components present in the signal. The
carrier is weighted by the zeroth-order Bessel function, which is unity at the origin
and, for  much smaller than unity, can be approximated by the polynomial,

. (6.138)

The first sideband  is represented by

. (6.139)

The remaining sidebands, weighted by the higher-order Bessel functions for which
, can be approximated as a single term,

(6.140)

for small .  In the limit of zero phase deviation, the representation (6.135) reverts
to a pure carrier wave , as expected. For  sufficiently small, but
nonzero, the signal power consists mainly of the carrier wave and a single pair of
sidebands oscillating at . Operation in this regime is termed narrowband FM.

In closing, we highlight the salient difference between Fourier spectral compo-
nents and the instantaneous frequency:  The spectrum of an FM signal with sinusoi-
dal phase deviation is a superposition of Dirac impulses  for all
integers p.  On the other hand, the instantaneous frequency is continuous and oscil-
lates through the range . 

The general case, in which information  is applied to the phase deviation, as
given by (6.121), leads to analytically complex spectra that are beyond the scope of
this discussion. But an appropriately behaved  can be naturally decomposed
into pure Fourier oscillations similar to the sinusoids. So the simple case presented
here is a foundation for the more general problem.

6.6 SUMMARY

This chapter has provided tools for studying the frequency content of important
signals—sinusoids, constants, the unit step, and the like—for which the standard
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Fourier analysis in Chapter 5 does not work. This generalized Fourier transform
rests on the theory of distributions, which we covered in Chapter 3. The properties
of the new transform are direct generalizations of those for the standard Fourier
transform. An inverse transform exists as well. Further more, the generalized trans-
form is equal to the standard transform for signals in the spaces L1(R) and L2(R). 

The transform theory for generalized functions draws the links between the Fou-
rier series and transform.

We applied the generalized transform to the study of communication systems.
Understanding modulation schemes, for example, depends on spectral analysis of
sinusoidal signals, and for this purpose the generalized transform makes the calcula-
tions particularly simple. We also considered the design of basic frequency selective
linear, translation-invariant systems—filters. Chapter 9 will delve deeper into the
theoretical and practical aspects of filter design using traditional Fourier analysis
techniques.

Our next step is to develop the frequency theory task for the realm of discrete
signals. Now, as we observed in the interplay between the ideas in Chapters 2 and 3,
it is easier to justify a discrete summation (even if it has infinite limits) than an inte-
gration. Therefore, Chapter 7’s mathematical work turns out to be much more con-
crete. With a discrete signal Fourier theory, computer implementations of frequency
domain signal analysis becomes possible. We shall also build a link between analog
and discrete signals through the famous Sampling Theorem, so our continuous
domain results will appear once again.
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PROBLEMS

1. Assume that  is a distribution of slow growth and prove the Fourier trans-
form properties listed in Chapter 5.

2. Show that

(a)

 , (6.141)

(b)

. (6.142)

3. Show that

(a)

, (6.143)

(b)

. (6.144)

4. Demonstrate the following generalized Fourier transforms, where  is the
unit step.

(a)

 , (6.145)

(b)

, (6.146)

(c)

, (6.147)

(d)

, (6.148)
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(e)

. (6.149)

5. A cosine-modulated signal  is recovered by multiplying
it by , where  is a constant. (a) If this product is subjected to a
low-pass filter designed to reject the contribution at , write the expression
for the resulting waveform. (b) If the baseband signal  occupies a range

 Hz, what is the minimum value of the carrier frequency 
for which it is possible to recover   according to the scheme in part a)?
(c) What is the maximum value of the phase  if the recovered signal is to be
95% of the maximum possible value?

6. The AM cosine-modulated signal  is recovered by mul-
tiplying by a periodic signal  with period , where  is an integer.
(a) Show that  may be recovered by suitably filtering the product

. (b) What is the largest value of  for which it is possible to recover
 if the baseband signal  occupies a range  Hz and the

carrier frequency  is 1 MHz?

7. Consider two signals with quadratic chirp:

, (6.150)

(6.151)

(a) Derive expressions for the instantaneous frequency of each. Comparing
these, what purpose is served by the constant ? 

(b) For convenience let  and plot  over a reasonable
interval (say, 10 to 30 s). Qualitatively, how is this plot consistent with the
instantaneous frequency derived in part (a)?

(c) Let  and plot the composite signal  over a 30-s
interval.  Are the effects of the instantaneous frequencies from part (a) still
evident? Compared to the single waveform of part (b), what is the most
noteworthy feature induced by superposing  and ?

8.  A signal exhibits hyperbolic chirp:

(6.152)

(a) Let  and  and plot  over a sufficiently large
interval, say . 

(b) What qualitative effects are controlled by the parameters  and ? Let
 and  and replot .

F t
n

t( )sgn[ ] ω( ) 2–( )j
n 1+ 1–( )n

n!

ωn 1+
-------------------=

s t( ) m t( ) ωct( )cos=
ωct θ+( )cos θ

2ωc
m t( )

f 300 3000,[ ]∈ ωc
m t( )

θ

s t( ) m t( ) ωct( )cos=
ρ t( ) k fc⁄ k

m t( )
s t( )ρ t( ) k
m t( ) m t( ) f 0 9000,[ ]∈

fc

f1 t( ) a1 bt
2

ct+( )cos=

f2 t( ) a2 bt
2( ).cos=

c

a1 b c 1= = = f1 t( )

a2 1= f t( ) f1 t( ) f2 t( )+=

f1 t( ) f2 t( )

f t( ) a α
β t–
---------- 

  .cos=

α1 1000= β1 900,= f t( )
t 0 3500[ , ]∈

α β
α1 500= β1 740= f t( )



PROBLEMS 479

(c) Derive an expression for the instantaneous frequency of  and plot your
result using the signal parameters in part (a). 

9. Consider an FM signal modulated by multiple cosines,

(6.153)

For N = 1, 2, derive expressions for

(a) The instantaneous frequency of .

(b) The frequency deviation. 

10. Derive the Bessel function expansion for the sinusoidally modulated FM signal,
(6.135). Hint: Make use of the identities

, (6.154)

 (6.155)

and the trigonometric relations

, (6.156)

. (6.157)

11. A carrier wave is angle modulated sinusoidally. 

(a) In principle, how many values of the modulation index k result in a com-
pletely suppressed (i.e., zero) carrier wave? List the first five of these
values.

(b) On the basis of your answer in (a), is the zeroth-order Bessel function per-
fectly periodic?

(c) Let  and plot the ratio  as a function of the order p, for
. Qualitatively, what is the effect of increasing p? (Of course,

for our purposes, only integer values of p are relevant.)

(d) For , plot the ratios  and . What is
happening to the amplitudes of the sidebands relative to the carrier as k is
increased? Is this true for the remaining sidebands as well?  Outside of
the narrowband FM operating regime, can such behavior be expected for
arbitrary k?

12. Consider a unit-amplitude FM carrier signal which is modulated by two
sinusoids,

(6.158)
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(a) Demonstrate the existence of sidebands at harmonics of the sum and differ-
ence frequencies  and  as well as at harmonics of   and

.

(b) Show that in the limit of small  and  we may approximate  as a
linear superposition of cosine and sine carrier waves,

(6.159)

Hint: Apply the approximations, valid for small 

, (6.160)

. (6.161)

13. As an application of Fourier transforms and their generalized extensions, this
problem develops part of Schoenberg’s Theorem on spline functions [12, 13].
We stated the theorem in Chapter 3:  If x(t) is a spline function of degree n hav-
ing integral knots K = {m = km : m ∈ Z}, then there are constants cm such that

 . (6.162)

In (6.162) the B-spline of order zero is

(6.163)

and higher-order B-splines are defined as

. (6.164)

(a) Explain why βn(t) has a Fourier transform.

(b) Let Βn(ω) = F(βn)(ω) be the Fourier transform of βn(t).  Following Ref. 13,
show that

. (6.165)

(c) Let  be the one-sided polynomial of degree n. Show that
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(6.166)

where δ(t) is the Dirac delta.

(d) Conclude that Yn(ω) = n!/( jω)n+1.

(e) Next, show that

. (6.167)

(f) Use the binomial expansion from high-school algebra to get

. (6.168)

(g) Infer that

(6.169)

and that βn(t) is a piecewise polynomial of degree n.

(h) Show that  is a sum of shifted Diracs.

(i) Show that an nth-order spline function on uniform knots is a sum of scaled,
shifted B-splines.
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CHAPTER 7

Discrete Fourier Transforms

We have already discovered a rich theory of frequency transforms for analog sig-
nals, and this chapter extends the theory to discrete signals. In fact, the discrete
world presents fewer mathematical subtleties. Several reasons compel us to cover
the difficult theory first. It was historically prior, for one thing. Fourier developed
his techniques for the practical solution of the heat equation long before engineers
worried about pen-and-pencil computations for the frequency content of a sampled
signal. Beginning with the treatment of analog frequency transforms furnishes—
especially in the case of the classic Fourier series—a very clear foundation for com-
prehending the idea of the frequency content of a signal. A general periodic signal
becomes a sum of familiar sinusoids, each with its well-known frequency value.
Finally, it is easy to relate the discrete theory to analog notions and thereby justify
the claims that such and such a value does represent the discrete signal spectral con-
tent at some frequency.

We begin frequency transforms for discrete signals by covering the discrete
Fourier transform (DFT), which Chapters 2 and 4 have already introduced. Chapter
2 covered the DFT only very briefly, in the context of providing an example of an
orthonormal subset of the discrete Hilbert space l2. In studying the analysis of signal
textures in Chapter 4, our statistical methods proved inadequate for characterizing
certain periodic trends within signals. An example is separating the fine-scale
roughness from the coarse-scale waviness of a signal. Although statistical tech-
niques tend to obscure the repetitive appearance of signal features, there is no such
problem with spectral texture measures. We found that the magnitude of the inner
product of a discrete signal with an exponential provided a translation invariant
measure of the presence of a discrete frequency component. Thus, two very differ-
ent motivations already exist for our pursuit of discrete frequency theory, and the
DFT in particular: The complex exponentials upon which it is based are orthogonal
on finite intervals [0, N − 1] ⊂ Z, and it is very useful for signal texture analysis.

The discrete world’s DFT is analogous to the analog Fourier series. It works with
discrete periodic signals. The discovery of a fast algorithm for computing the DFT,
called the fast Fourier transform (FFT), coincided with the phenomenal devel-
opment of computing technology in the middle part of the twentieth century. The
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FFT completely changed the nature of the signal processing discipline and the work
habits—indeed the consciousness—of signal analysts [1]. By reducing the com-
plexity of the computation from an O(N2) algorithm to an O(Nlog2N) problem, the
FFT makes real-time frequency analysis of signals practical on digital computers.

Another discrete transform must be used when studying the frequencies within
discrete aperiodic signals. It has a terrible name: the discrete-time Fourier transform
(DTFT). Like the DFT, it extracts the frequency content of discrete signals. But
unlike the DFT, the DTFT outputs a continuous range of frequencies from an aperi-
odic input signal. So similar are the acronyms that it is easily confused with the
DFT, and, while its appellation boasts “discrete time,” this is only a half-truth,
because it in fact produces an analog result. Nevertheless, the awful moniker has
stuck. We live with it. We repeat it. The DTFT is the discrete world’s mirror image
of the Fourier transform.

The next chapter covers a generalization of the DTFT, called the z-transform. It
has applications in the stability analysis of discrete systems, solutions for discrete-
time difference equations, and subsampling and upsampling operations.

This chapter’s last sections develop the principles underlying the famous sampl-
ing theorem of Shannon1 and Nyquist.2 This result effectively builds a frequency
analysis bridge between the world of analog signals and the world of discrete
signals [2, 3].

7.1 DISCRETE FOURIER TRANSFORM

We have already made acquaintance with the discrete Fourier transform in Chapters
2 and 4. Now we seek a more formal foundation for the theory of the frequency con-
tent of discrete signals. All signal frequency analysis applications that rely on digi-
tal computers use the DFT, so we will have regular opportunities to refer back to
this groundwork and even extend it in the later chapters of this book.

We first took note of the DFT in Chapter 2. The discrete complex exponentials,
restricted to a finite interval, are an orthogonal set within the space of square-
summable signals, l2. Thus, if we consider the subspace of l2 consisting of signals
that are zero outside [0, N − 1], then the signals 

[u(n) − u(n − N)], (7.1)

1Claude E. Shannon (1916−2001) first detailed the affinity between Boolean logic and electrical circuits
in his 1937 Master’s thesis at the Massachusetts Institute of Technology. Later, at Bell Laboratories, he
developed much of theory of reliable communication, of which the sampling theorem is a cornerstone.
2Harry Nyquist (1887−1976) left Sweden at age 18 for the United States. As a Bell Laboratories scien-
tist, he provided a mathematical explanation for thermal noise in an electrical resistance, discovered the
relation between analog signal frequency and digital sampling rate that now bears his name, and acquired
138 patents.
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form an orthogonal set on [0, N − 1]. We can normalize the family {uk(n) | k = 0, 1,
2, ..., N − 1} by dividing each signal in (7.1) by N1/2. We don’t need to consider k >
N − 1, because these signals repeat themselves; this is due to the 2π-periodicity of
the exponentials: exp(−j2πkn/N) = exp[−j2π(k + N)/N].

Chapter 4 further acquainted us to the discrete Fourier transform through our
study of signal texture. In particular, signals may have different periodic compo-
nents within them: short-term variations, called roughness (in the parlance of sur-
face metrology), and the long-term variations, called waviness. One way to
distinguish and measure the two degrees of repetitiveness is to take the inner prod-
uct over [0, N − 1] of x(n) with exponentials of the form (7.1). Any relatively large
magnitude of the resulting inner product, 〈x(n), exp(2πnk/N)〉 on [0, N − 1] indicates
a correspondingly large presence of a periodic component of discrete frequency ω =
2πk/N. This idea could be augmented by performing a normalized cross-correlation
of x(n) with prototype signals exp(2πnk/N) as in Section 4.6.1.

7.1.1 Introduction

Our interest in the discrete Fourier transform is twofold. From the viewpoint of
Hilbert spaces—where it furnishes a particularly elegant example of an orthogonal
basis—we have a theoretical interest in exploring the discrete Fourier transform.
From texture interpretation—the rich, seemingly endless field from which so many
research endeavors arise—we acquire a practical interest in better understanding
and applying the DFT. Let us then formally define the DFT, prove that it forms a
complete representation of discrete periodic signals, and consider some examples.

Definition (Discrete Fourier Transform). Suppose x(n) is a discrete signal and
N > 0. Then the discrete signal X(k) defined by

(7.2)

where 0 ≤ k ≤ N − 1, is the discrete Fourier transform of x(n) on the interval
[0, N − 1]. Equation (7.2) is called the analysis equation for the DFT. In general,
X(k) is complex; the complex norm, |X(k)|, and complex phase, arg(X(k)), for 0 ≤ k <
N, are called the discrete magnitude spectrum and discrete phase spectrum, respec-
tively, of x(n).

DFT conventions vary widely. A popular notation is to use lowercase Latin let-
ters for the time-domain discrete signal, s(n), and the corresponding uppercase letter
for the DFT, S(k). Some authors like to use the hat mark: The DFT of x(n) is X(k)
Also, the systems theory notation, S = Fs, is handy; F is the discrete system that
accepts a signal s(n) with period N and produces its DFT, S(k). Note that the defini-
tion of the system F in this case depends on N. Different values for the period of the
discrete input signals produce different discrete systems. We must register yet
another warning about the varieties of DFT definitions in the literature. Equation

1

0

2
( ) ( )exp ,

N

n

jnk
X k x n

N

−

=

− π =   
∑



DISCRETE FOURIER TRANSFORM 485

(7.2) is the most common definition of the DFT in the engineering research litera-
ture. There is also a discrete Fourier series (DFS) which multiplies each X(k) in
(7.2) by N−1. We introduce the DFS in Section 7.1.2, and there it becomes clear that
its particular formulation helps draw a link between analog and discrete frequency
transforms. Scientists often define the DFT with a positive exponent. Some authors
prefer to normalize the DFT coefficients by a factor of N−1/2. Finally, when using
mathematical software packages, one must always be alert to the possibility that the
package indexes arrays beginning with one, not zero. In such a situation the DC
term of the DFT is associated with k = 1, the smallest periodic component with
k = 2 and k = N, and so on.

Example (Discrete Delta Signal). Consider the signal x(n) = [1, 0, 0, 0, 0, 0, 0, 0]
on the interval [0, 7]. We have X(k) = 1, for 0 ≤ k < 8. So the computation of
the delta signal’s transform is quite uncomplicated, unlike the case of the analog
Fourier series.

Example (Discrete Square Pulse). Consider the signal x(n) = [1, 1, 1, 1, 0, 0, 0, 0].
Its DFT is X(k) = [4, 1−(1 + √2)j, 0, 1 − (√2 − 1)j, 0, 1 + (√2 − 1)j, 0, 1 + (1 + √2)j].
Note the symmetry: X(k) and X(8 − k) are complex conjugates for 0 < k ≤ 7. If we
shift the square pulse so that y(n) = [0, 0, 1, 1, 1, 1, 0, 0], then Y(k) = [4, −(1 + √2)−
j, 0, (√2 − 1) + j, 0, (√2 − 1) − j, 0, −(1 + √2) + j]. Although the time-domain pulse
has translated, the zeros of the frequency-domain coefficients are in the same loca-
tions for both X(k) and Y(k). Indeed, there is a time shift property for the DFT, just
as we found for the analog Fourier transform and Fourier series. Since x(n) = y(n −
m), where m = 2, we have X(k) = Y(k)exp(−2πjkm/8). The DFT can be visualized by
plotting the coefficients as points in the complex plane, or as separate plots of the
magnitude and the phase (Figure 7.1). Since the magnitude of the DFT coefficients
do not change with translation of the time-domain signal, it is most convenient to
plot the magnitude or the energy components of X(k)—|X(k)| or |X(k)|2, respectively.

Example (Ramp Pulse). Consider the signal x(n) = [1, 2, 3, 0, 0, 0] on [0, 5], with
period N = 6. We find X(k) = 1 + 2exp(−πjk/3) + 3exp(−πjk).

7.1.1.1 Inversion Formula. There is an inversion theorem for the DFT, and, as
we found in studying analog transforms, it is the key to understanding the basic
properties.

Theorem (DFT Inverse). Suppose x(n) is a discrete signal and X(k) is the DFT of
x(n) on [0, N − 1]. Then

(7.3)
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Proof: We substitute the expression X(k), given by (7.2) into the right-hand side of
(7.3) and work through the exponential function algebra. This brute force attack gives

(7.4)
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Fig. 7.1. Some examples of the DFT computation. Panel (a) shows a single period of a sim-
ple square wave, x(n). In panel (b), the DFT of x(n), X(k) is shown; note that there are only
six distinct values, so the circled point at the origin represents three values: X(2) = X(4) =
X(6) = 0. More revealing is the magnitude of the DFT, |X(k)|, shown in panel (c).  The phase
of X(k) is shown in panel (d); note the linear progression of the phases of the nonzero X(k)
values. This clue indicates that DFT coefficients may be visualized as magnitudes associ-
ated with points on the unit circle of the complex plane.
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and it appears that we have quite a mess on our hands! However, the following lemma
shows that the bracketed expression in (7.4) has a gratifying, simple form.

Lemma. Let N > 0, and let p and k be integers. Then, if for some m ∈ Z, we have
p = mN, then

(7.5a)

otherwise

(7.5b)

Proof of lemma: Let a = exp(2πjp/N). Then, expanding the summation, for
instance in (7.5a), gives

(7.6)

But if p = mN, then a = exp(2πjmN/N) = exp(2πjm) = 1. In this case, the right-hand
side of (7.6) is unity. If p/N ∉ Z, then a ≠ 1 and 1 − a ≠ 0. This implies 1 + a + a2 +
· · · + aN − 1 = (1 − aN)/(1 − a). However, aN = 0, and in this case the right-hand side
of (7.6) is zero, proving the lemma. ■

Let us then continue proving the theorem. The term (n − r) in the bracketed expres-
sion in (7.4) is either an integral multiple of N or it is not. Suppose p = (n − r) = mN
for some m ∈ Z; by the lemma, therefore, the bracketed expression is unity. But since
0 ≤ n, r ≤ N − 1, we know that p = n − r is a multiple of N only if n − r = 0, that is,
n = r. So the bracketed sum in (7.4) is zero unless n = r:

(7.7)

Thus, the whole expression in (7.4) reduces to x(n), and the proof of the theorem is
complete. ■

Definition (Inverse DFT). Equation (7.3) is called the synthesis equation for the
DFT. The expression (7.3) is also called the inverse discrete Fourier transform
(IDFT).

The first term, X(0), is often called the DC (direct current) component of the
DFT for x(n), since it contains no periodic (i.e., alternating current) component.
This whispers of Fourier analysis’s electrical engineering heritage, although
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nowadays everyone—engineers, scientists, even university business school profes-
sors running trend analyses—uses the term. Note that when x(n) is reconstructed
from its DFT, the synthesis equation summation begins with the factor X(0)/N,
which is the average value of x(n) on the interval [0, N − 1].

Corollary (Discrete Fourier Basis). Let K be the set of discrete signals supported
on the interval [0, N − 1], and let u(n) be the unit step signal. Then K is a Hilbert
subspace of l2, and the windowed exponential signals, {uk(n) | 0 ≤ k ≤ N − 1}, where

(7.8)

form an orthonormal basis for K.

Proof: Recall from Section 2.7.1 that a Hilbert subspace is an inner product sub-
space that is complete in the sense that every Cauchy sequence of elements con-
verges to a subspace element. This is easy to show for K. So let us consider the
windowed exponentials (7.8). Note that if 0 ≤ k, l ≤ N − 1, then

(7.9)

The theorem’s lemma shows that the sum on the right-hand side of (7.9) is zero
unless k = l, in which case it is unity. But this is precisely the orthonormality condi-
tion. We must show too that the orthonormal set is complete; that is, we need to
show the other sense of completeness, which specifies that every element of the
subspace K is arbitrarily close to a linear combination of elements of {uk(n) | 0 ≤ k ≤
N − 1}. Let X(k) be given by (7.2). For 0 ≤ n ≤ N − 1, the theorem implies

(7.10)

This shows that x(n) is a linear combination of the {uk(n)}. ■

Corollary (DFT for Discrete Periodic Signals). Suppose x(n) is a discrete signal
with period N > 0: x(n) = x(n + N) for all n. Then,

(7.11)

for all n.
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Proof: Note that on the finite interval [0, N − 1], the theorem implies (7.11). But
x(n) = x(n + N), and the right-hand side of (7.11) is also periodic with period N, so
the corollary holds.  ■

Corollary (DFT Uniqueness). Suppose x(n) and y(n) are discrete signals, and X(k)
and Y(k) are their respective DFTs on [0, N − 1]. If X = Y on [0, N − 1], then x(n) =
y(n) on [0, N − 1].

Proof: If X(k) = Y(k) for all 0 ≤ k ≤ N − 1, then both x(n) and y(n) are given by the
same inversion formula (7.3). So x(n) = y(n) for all 0 ≤ n ≤ N − 1. ■

So the transform’s uniqueness on an interval follows from the inversion equation.
We followed a similar roundabout route toward showing transform uniqueness with
the analog Fourier series and Fourier transform. In the analog world, the integration
of signals, possibly containing discontinuities, complicates the uniqueness proposi-
tions, of course. Supposing Riemann integration, we can claim uniqueness only up
to a finite number of impulse discontinuities. And, allowing the more robust Leb-
esgue integration, we can only claim that signals that are equal, except perhaps on a
set of measure zero, have identical transforms. However, with discrete signals,
owing to the finite sums used in computing the DFT, the transform values are truly
unique.

Corollary (DFT Uniqueness). Suppose x(n) and y(n) discrete signals, both with
period equal to N. If their DFTs are equal, X(k) = Y(k) for all 0 ≤ k ≤ N − 1, then
x(n) = y(n) for all n.

Proof: Combine the proofs of the previous two corollaries. ■

If X(k) = Y(k) for all 0 ≤ k ≤ N − 1, then both x(n) and y(n) are given by the same
inversion formula (7.3). So x(n) = y(n) for all 0 ≤ n ≤ N − 1. 

The DFT Uniqueness Corollary encourages us to characterize the DFT as the
appropriate transform for periodic discrete signals. If a signal x(n) has period N > 0,
then, indeed, the synthesis equation provides a complete breakdown of x(n) in terms
of a finite number of exponential components. But, the DFT is also applied to the
restriction of aperiodic discrete signals to an interval, say s(n) on [a, b], with b − a =
N − 1. In this case, the analysis equation (7.2) is used with x(n) = s(a − n).
Of course, the synthesis equation does not give s(n); rather, it produces the periodic
extension of s(n) on [a, b].

7.1.1.2 Further Examples and Some Useful Visualization Techniques.
Therefore, let us explore a few examples of the DFT’s analysis and synthesis equa-
tions before proceeding to link the DFT to the frequency analysis of analog signals.
These examples show that it is quite straightforward to compute the DFT analysis
equations coefficients X(k) for a trigonometric signal x(n). It is not necessary, for
instance, to explicitly perform the sum of products in the DFT analysis equation (7.2).
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Example (Discrete Sinusoids). Consider the discrete sinusoid x(n) = cos(ωn).
Note that x(n) is periodic if and only if ω is a rational multiple of 2π: ω = 2πp/q for
some p, q ∈ Z. If p = 1 and q = N, then ω = 2π/N, and x(n) is periodic on [0, N − 1]
with fundamental period N. Signals of the form cos(2πkn/N) are also periodic on [0,
N − 1], but since cos(2πkn/N) = cos(2π(N − k)n/N), they are different only for k = 1,
2, ..., N/2. We recall these facts from the first chapter and note that a like result
holds for discrete signals y(n) = sin(ωn), except that sin(2πkn/N) = −sin(2π(N − k)n/
N). We can explicitly write out the DFT synthesis equations for the discrete sinuso-
ids by observing that

(7.12a)

(7.12b)

for 0 ≤ k ≤ N/2. Equations (7.12a) and (7.12b) thereby imply that X(k) =
X(N − k) = N/2 with X(m) = 0, for 0 ≤ m ≤ N − 1, m ≠ k; and Y(k) = −Y(N − k) =
(−jN/2), with Y(m) = 0, for 0 ≤ m ≤ N − 1, m ≠ k. The factor of N in the expressions
for X(k) and Y(k) ensures that the DFT synthesis equation (7.3) holds for x(n) and
y(n), respectively.

Example (Linear Combinations of Discrete Sinusoids). If we multiply a discrete
sinusoid by a constant scale factor, v(n) = Ax(n) = Acos(ωn), then the DFT coeffi-
cients for v(n) are V(k) = AX(k). This is a scaling property of the DFT. This is clear
from the analysis (7.2) and synthesis (7.3) equations. Furthermore, if v(n) = x(n) +
y(n), then V(k) = X(k) + Y(k), where V(k), X(k), and Y(k) are the DFT coefficients of
v(n), x(n), and y(n), respectively. This is a superposition property of the DFT. Thus,
it is easy to find the DFT synthesis equation for a linear combinations of discrete
sinusoids from this linearity property and the previous example.

Example (Phase of Discrete Sinusoids). If the sinusoid x(n) = cos(ωn) has period
N > 0, then so does y(n) = cos(ωn + φ). Since y(n) = [exp(jωn + jφ) + exp(−jωn −
jφ)]/2 = [exp(jφ)exp(jωn) + exp(−jφ)exp(−jωn)]/2, we can use the scaling and super-
position properties of the previous example to find the DFT coefficients of Y(k) in
terms of X(k). Notice also that the sinusoidal signal’s phase shift, φ, does not change
the complex magnitude of the DFT coefficients. This property we noted in our study
of textured signal periodicity in Chapter 4.

A common and useful notation allows us to write the DFT is a more compact form.

Definition (Phase Factor). For N > 0, the Nth root of unity, WN = e−2πj/N, is called
the phase factor of order N.
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The fast Fourier transform algorithms in Section 7.1.4 exploit the symmetries of
the phase factor that appear in the DFT analysis and synthesis equations.

Now, the powers of WN, (WN)k = e−2πjk/N, 0 ≤ k < N, all lie on the unit circle in
the complex plane: (WN)k = e−2πjk/N = cos(2πk/N) − jsin(2πk/N). Then we can
rewrite the DFT analysis and synthesis equations as follows:

(7.13)

(7.14)

Thus, X(k) is a polynomial of degree N − 1 in (WN)k, and x(n) is a polynomial of
degree N − 1 in (WN)−n.  That is, if we define the complex polynomials, P(z) =
x(0) + x(1)z + x(2)z2 + ·· · + x(N − 1)zN − 1 and p(z) = (1/N)[X(0) + X(1)z + X(2)z2 +
·· · + X(N − 1)zN − 1], then X(k) = P((WN)k), and x(n) = p((WN)−n). The DFT of x(n) is
just the complex polynomial P(z) evaluated at specific points on the unit circle,
namely (WN)k = e−2πjk/N, 0 ≤ k < N. Similarly, the IDFT is the complex polynomial
p(z) evaluated at points (WN)−n on the unit circle, 0 ≤ n < N. In fact, these are the
same points, just iterated in the opposite order.  We will extend this idea of repre-
senting the DFT as a complex polynomial restricted to a set of discrete points in the
next chapter; in fact, the concept of the z-transform carries it to the extreme.  For
now we just want to clarify that the DFT coefficients can be thought of as functions
of an integer variable k or of points on the unit circle z = cos(2πk/N) − jsin(2πk/N).
This idea enables us to better visualize some of the behavior of the transform for
specific signals.  For example, we may study the transforms of square pulse signals
for various periods N and various duty cycles (percent of non zero coefficients) as in
Figure 7.2.

For square pulse signals, such as in Figure 7.2, there is a closed-form expression
for the DFT coefficients.  Suppose x(n) has period N > 0, and x(n) is zero except for
the first M values, x(0) = x(1) = ⋅⋅⋅ = x(M − 1) = 1, with 0 < M < N − 1.  Then X(k) is
a partial geometric series in (WN)k: X(k) = 1 + (WN)k + (WN)2k + ⋅⋅⋅ + (WN)k(M − 1).
Assuming that (WN)k ≠ 1, we calculate

Thus, for k = 0, X(k) = M, and for 0 < k < M − 1, the DFT coefficient X(k) is given by
the product of a complex 2Nth root of unity and a ratio of sinusoids:  sin(πkM/N) and
sin(πk/N).  Since sin(πkM/N) oscillates M times faster than sin(πk/N), there are
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M lobes in the discrete magnitude spectrum |X(k)|, if we count the big lobe around
k = 0 twice (Figure 7.2).

7.1.1.3 Simple Applications. Let us briefly show how to use the DFT in
applications on real sampled signal data. This section shows how the magnitudes of
DFT coefficients indicate significant periodic trends in the original analog signal.
As an example, we perform a discrete Fourier analysis of the solar disturbances
associated with sunspots. Most people are aware that sunspot numbers increase dra-
matically during these solar disturbances, affect high-frequency radio communica-
tion on earth, and tend to occur in approximately 11-year cycles.

Fig. 7.2. Visualizing the DFT around the unit circle of the complex plane.  We set ω = 2πk/
N and plot the DFT magnitudes of some signals relative to cos(ω) and sin(ω) around the unit
circle in the complex plane.  In part (a), |X(k)| for x(n) = [1, 1, 1, 1, 0, 0, 0, 0].  In part (b),
|Y(k)| for y(n) = [ 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0].  In part (c), |Z(k)| for z(n) = [1, 1,
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0].  In part (d), w(n) has period N = 64, with w(n) = 1 for 0 ≤
n ≤ 7, and w(n) = 0 otherwise.  Note that the size of the square pulse within the signal’s
period determines the number of lobes, and the number of analysis equation summands
determines the detail within the lobes.
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Since discrete signals arise from sampling analog signals, the first step is to sup-
pose x(n) = xa(nT), where xa(t) is an analog signal, T > 0 is the sampling interval,
and xa(t) has period NT. If we write x(n) in terms of its DFT synthesis equation
(7.3), then we see that the sinusoidal components of smallest frequency are for k = 1
and k = N − 1: cos(2πn/N), sin(2πn/N), cos(2π(N − 1)n/N), and sin(2π(N − 1)n/N).
These discrete sinusoids come from sampling analog sinusoids with fundamental
period NT, for example, sin(2πn/N) = sin(2πt/(NT))|t=Tn. But this is precisely the
analog sinusoid with fundamental frequency 1/NT Hz.

Application (Wolf Sunspot Numbers). The first chapter introduced the Wolf sun-
spot numbers as an example of a naturally occurring, somewhat irregular, but
largely periodic signal. From simple time-domain probing of local signal extrema,
we can estimate the period of the sunspots. The DFT is a more powerful tool for
such analyses, however. Given the Wolf sunspot numbers over some 300 years, a
good estimate of the period of the phenomenon is possible. Figure 7.3 shows the
time-domain sunspot data from 1700 to 1996. The sampling interval T is 1 year (T =
1), and we declare 1700 to be year zero for Wolf sunspot number data. Thus, we
perform a frequency analysis of the signal, using the DFT on w(n) over the interval
[1700−1700, 1996−1700] = [0, N − 1]. Figure 7.3 shows the DFT, W(k), and its
magnitude; there is a huge peak, and for that the rest of the analysis is straight-
forward. Brute force search finds the maximum magnitude |W(k)| for 0 < k < (1996−
1700 + 1)/2 at time instant k = k0. We do not need to consider higher k values, since
the terms above k = 148 = 297/2 represent discrete frequencies already counted
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Wolf Sunspot Numbers:  1700 - 1996

Fig. 7.3. Wolf sunspot numbers. Signal w(n) is the Wolf sunspot number, a composite figure
equal to 10G + S, where G is the average number of sunspot groups and S is the average
number of spots reported by a team of international observers. In panel (a), the time-domain
plot of w(n) from 1700 to 1996 is shown; note the periodicity. Panel (b) plots the DFT coeffi-
cients W(k) in the complex plane but this representation does not aid interpretation. The
power of the DFT signal, P(k) = |W(k)|2, appears in panel (c), with the DC term zeroed. The
maximum power value occurs at k = 27, which represents a sinusoidal component with a
period of 297/27 = 11 years.
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among the lower k values. The frequency resolution of the DFT on N = 297 sam-
ples, each separated by T = 1 year, is 1/NT. Therefore, the biggest periodic compo-
nent in the sunspot cycle is k0/NT cycles/year, and this corresponds to a sunspot
period of NT/k0 years.

This same analysis serves other oscillatory signal analysis applications consid-
ered already: electrocardiology, manufactured surface waviness analysis, and tone
detection. We will consider its further practical uses, strengths, and weaknesses in
Chapter 9.

Note that the theoretical presentation of the DFT proceeds in a completely
formal manner. A modest amount of algebra, along with the nice properties of
the complex exponential signal, are just enough to develop a complete theory.
There are no subtleties concerning discontinuities such as we had to overcome
with the analog Fourier series. The discrete nature of the signals and the decompo-
sition of a discrete periodic signal into a finite set of discrete exponentials demand
no exotic tools such as distributions or Dirac delta functions. The complex expo-
nential signal’s elegance and a little algebra are sufficient to develop the entire
theory. We could now prove a bunch of theorems about properties of the DFT. But
our goal is develop the tools, the understanding, and the fundamental insights of
signal analysis; we should not think to just throw the theory at the reader. Before
proceeding to a lengthy list of the DFT’s properties, let’s explore the links that the
DFT shares with the tools we already know for the frequency analysis of analog
signals. In particular, we shall show that a discrete signal’s DFT coefficients
approximate certain of the Fourier series coefficients for an analog periodic source
signal.

7.1.2 The DFT’s Analog Frequency-Domain Roots

Perhaps the clearest insight into how the discrete Fourier transform reveals the fre-
quency content of a discrete signal is to explore its relationship to the Fourier series
for analog periodic signals. We begin by defining a variant of the DFT that takes a
form very similar to the analog Fourier series.

Definition (Discrete Fourier Series). Suppose x(n) is a discrete signal and N > 0.
Then the discrete signal c(k) = ck, defined by

(7.16)

where 0 ≤ k ≤ N − 1, is the discrete Fourier series (DFS) of x(n) on the interval [0,
N − 1]. Equation (7.16) is called the DFS analysis equation for x(n).

Note that if x(n) has DFT coefficients X(k) and DFS coefficients c(k) on [0,
N − 1], then X(k) = c(k)/N. Except for the factor N, the DFT and the DFS share an
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identical theory. Corresponding to the DFT’s synthesis equation, there is a DFS
synthesis equation:

(7.17)

where c(k) are the DFS analysis equation coefficients for x(n) on [0, N − 1].
Equation (7.17) also defines the inverse discrete Fourier series (IDFS). The two
concepts are so similar that in the literature one must pay close attention to the par-
ticular form of the definitions of the DFT and DFS.

The next theorem clarifies the relationship between the DFS and the analog
Fourier series. This shows that these discrete transforms are in fact simple
approximations to the FS coefficients that we know from analog signal frequency
theory. We are indeed justified in claiming that the DFS and DFT provide a
frequency-domain description of discrete signals.

Theorem (Relation Between DFS and FS). Let xa(t) be an analog signal with
period T > 0. Suppose N > 0, ∆t = T/N, F = 1/T, and x(n) = xa(n∆t) is a discrete sig-
nal that samples xa(t) at intervals ∆t. Finally, let c(k) be the kth DFS coefficient
(7.16) for x(n), and let ca(k) is the kth analog Fourier series coefficient for xa(t) on
[0, T]. That is,

(7.18)

where 0 < k < N − 1. Then, c(k) is the trapezoidal rule approximation to the FS inte-
gral (7.18) for ca(k), using the intervals [0, ∆t], [∆t, 2∆t], ..., [(N−1)∆t, N∆t].

Proof: The integrand in (7.18) is complex, but the trapezoidal rule can be applied
to both its real and imaginary parts. Suppose we let y(t) = xa(t)exp(−j2πkFt) be the
integrand. Recalling the trapezoidal rule from calculus (Figure 7.4), we can see that
a typical trapezoid has a base of width ∆t and average height [y(n∆t) + y((n + 1)∆t)]/
2. In other words, an approximation to ca(k) is

(7.19)

Collecting terms inside the braces of (7.18) and observing that y(0) = y(N∆t) = y(T)
gives
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(7.20)

This shows that the trapezoidal rule approximation to the FS integral is precisely the
DFS coefficient c(k) and completes the proof. ■

Thus, the DFS is a straightforward approximation of the analog Fourier series
components. And the DFT is just the DFS scaled by the period of the discrete signal.
Again, these transforms are appropriate for discrete periodic signals. Of course, one
may take any discrete signal, x(n), restrict it to a finite interval, [0, N − 1], where
N > 0, and then perform the DFT analysis equation computation for the x(n) values
for 0 ≤ n < N. The result is N complex numbers, X(0), X(1), ... , X(N − 1). This is like
computing the DFT for the periodic extension of x(n). The result of computing the
IDFT on X(0), X(1), . . . , X(N − 1), is not the original signal x(n); it is xp(n) = (1/N)
[X(0) + X(1)e2πjkn/N + · · · + X(N − 1)e2πj(N − 1)n/N, which is periodic with period N.
Another transform is necessary for the study of frequency in aperiodic signals—the
discrete-time Fourier transform (DTFT). As the DFT is the discrete world’s replica
of the Fourier series, so the counterpart to Fourier transform for discrete signals is
the DTFT. Before considering the aperiodic case, however, let us explain some of the
properties of the DFT and how these lead to efficient algorithms for its computation.

7.1.3 Properties

This section explains the many elegant properties of the discrete Fourier transform.
Generally speaking, these theorems on linearity, symmetry, and conservation of signal
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Fig. 7.4. Approximating the Fourier series integral by the trapezoidal rule. The signal xa(t)
has period T > 0. The trapezoidal rule applies to the real and imaginary parts of the integrand
in the Fourier series analysis equation, y(t) = xa(t)exp(−j2πkFt). It is necessary to include suf-
ficient trapezoids to span an entire period of the analog signal x(t); in this illustration T = 10.
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energy result from the special algebraic characteristics of the complex exponential
function. Interesting in themselves, they are useful as well in analyzing signals. As an
example, the energy in DFT coefficients does not change as the underlying periodic
signal is translated. This property we noted in Chapter 4, and its motivation was our
search for a translation-invariant, spatial-frequency-based texture indicator. Our fur-
ther studies of the properties of DFT, especially its computational symmetries, will
lead to the fast Fourier transform (FFT) algorithm. For signals with certain periods—
especially powers of two—the FFT offers a dramatic reduction in the computational
burden of computing discrete frequency components with the DFT.

Let us begin with some basic properties of the DFT. We have already noted that
the DFT of a signal x(n) on [0, N − 1], N > 0, has period N.

Proposition (Linearity, Time Shift, and Frequency Shift). Let x(n) and y(n) be
periodic signals with period N > 0, let a and b be constants, and let X(k) and Y(k) be
their DFTs, respectively. Then:

(a) (Linearity) The DFT of ax(n) + by(n) is aX(k) + bY(k).

(b) (Time Shift) The DFT of x(n − m) is (WN)kmX(k).

(c) (Frequency Shift) The IDFT of X(k − m) is (WN)−nmx(n).

In other words, delaying a time-domain signal by m samples is equivalent to multi-
plying each DFT coefficient in the frequency domain, X(k), by the factor (WN)km =
e−2πjkm/N. And delaying the frequency-domain signal X(k) by m samples reflects a
time-domain multiplication of each value x(n) by (WN)−nm.

Proof: Linearity is easy and left as an exercise. Let z(n) = x(n − m) and let r =
n − m. Let’s apply the DFT analysis equation directly to z(n):

Since x(r) and exp(−2πjkr/N) both have period N, the summation over r in (7.21)
may start at any index; in particular, if we start the summation at r = 0, we have pre-
cisely the DFT analysis formula for X(k). The proof of the frequency shift property
is similar and is left as an exercise. ■

Definition (Discrete Convolution). Let x(n) and y(n) be periodic signals with
period N > 0. Then the signal z(n) defined by
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is called the discrete convolution of x and y: z = x ∗ y.

Note that the definition of discrete convolution can be extended to the case where
one of the signals (or both) is not periodic. The expression (7.22) is computed for
the periodic extension of the signals over [0, N − 1]. We then have the following the-
orem that relates convolutions of discrete signals to the termwise products of their
DFTs. Although we are working with frequency transforms of a greatly different
formal nature, the comparison to the analog Fourier transform’s Convolution Theo-
rem is striking.

Theorem (Convolution in Time). Let x(n) and y(n) be periodic signals with period
N > 0, X(k) and Y(k) their DFTs, and z(n) = x ∗ y. Then the DFT of z(n) is Z(k) = X(k)Y(k).

Proof: A direct attack is fruitful. We write out the expression for Z(k) according to
the DFT analysis equation, insert the convolution formula for z in terms of x and y,
and then separate the terms.

(7.23)

Interchanging the order of summation in (7.23) is the key step. This permits us to
collect m-summation terms associated with x and n-summation terms associated
with y together and expose the product of their DFTs.

(7.24)

We let r = n − m for a change of summation variable in the penultimate summation
of (7.24). Since y(n) is periodic with period N, the summation from r = −m to N − 1−
m is the same as the summation from r = 0 to N − 1. ■

Theorem (Convolution in Frequency). That is, let x(n) and y(n) be periodic sig-
nals with period N > 0; let X(k) and Y(k) be their DFTs, and let z(n) = x(n)y(n) be the
termwise product of x and y. Then the DFT of z(n) is Z(k) = (1/N)X(k)∗Y(k), where
X(k)∗Y(k) is the discrete convolution of X(k) and Y(k).

Proof: Similar to the Convolution in Time Theorem. ■
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Proposition (Symmetry). Let signal x(n) have period N > 0 and X(k) be its DFT. Then:

(a) The DFT of x*(n), the complex conjugate of x(n), is X*(N − k), and the DFT
of x*(N − n) = x*(−n) is X*(k).

(b) The DFT of xe(n) = (1/2)(x(n) + x*(N − n)), the even part of x(n), is
Re[X(k)], the real part of X(k).

(c) The DFT of xo(n) = (1/2)(x(n) − x*(N − n)), the odd part of x(n), is jIm[X(k)],
where Im[X(k)] is the imaginary part of X(k).

(d) The DFT of Re[x(n)] is Xe(k) = (1/2)(X(k) + X*(N − k)), the even part of X(k).

(e) The DFT of jIm[x(n)] is Xo(k) = (1/2)(X(k) − X*(N − k)), the odd part of X(k).

Proof: Easy. ■

Proposition (Real Signals).  Let signal x(n) be real-valued with period N > 0, and
let X(k) be its DFT. Then:

(a) X(k) = X*(N − k).

(b) The DFT of xe(n) is Re[X(k)].

(c) The DFT of xo(n) is jIm[X(k)].

Proof: Also easy.  ■

Theorem (Parseval’s). Let x(n) have period N > 0 and let X(k) be its DFT. Then

(7.25)

Proof: Although it seems to lead into a messy triple summation, here again a stub-
born computation of the frequency-domain energy for X(k) on the interval [0, N − 1]
bears fruit. Indeed,

(7.26)
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The last summation at the bottom in (7.26) contains a familiar expression: the par-
tial geometric series in (WN)m-n of length N. Recall from the lemma within the proof
of the DFT Inverse Theorem (Section 7.1.1.1) that this term is either N or 0, accord-
ing to whether m = n or not, respectively. Thus, the only products x(m)x*(n) that
will contribute to the triple sum in (7.26) are those where m = n, and these are scaled
by the factor N. Therefore,

(7.27)

and the proof is complete. ■

We have explored some of the theory of the DFT, noted its specific relation to the
analog Fourier series, and considered its application for finding the significant peri-
odicities in naturally occurring signals. In particular, we presented an example that
uncovered the period of the sunspot cycle by taking the DFT of the discrete signal giv-
ing Wolf sunspot numbers over several centuries. We know from Chapter 4’s attempts
to analyze signals containing significant periodicities (textures, speech, tone detection,
and the like) that pure time-domain methods—such as statistical approaches—can
prove quite awkward. We do need the DFT for computer implementation, and the next
section explores, therefore, the efficient computation of the DFT on digital computers.

7.1.4 Fast Fourier Transform

The fast Fourier transform (FFT) has been known, it turns out, since the time of
Gauss.3 Only recently, however, has it been widely recognized and utilized in signal
processing and analysis. Indeed, its original rediscovery in the 1960s marks the
beginning of an era in which digital methods supplanted analog methods in signal
theory and applications.

7.1.4.1 Computational Cost. Let us begin by studying the computational
costs incurred in the DFT analysis and synthesis equations. Clearly, if the time-
domain signal, x(n) on [0, N − 1], is complex-valued, then the operations are nearly
identical. The IDFT computation requires an additional multiplication of a complex
value by the factor (1/N), as an inspection of the equations shows:

(7.28a)

(7.28b)

3Gauss, writing in a medieval form of Latin, made progress toward the algorithm in his notebooks of
1805. [M. T. Heideman, D. H. Johnson, and C. S. Burrus, ‘Gauss and the history of the fast Fourier trans-
form,’ IEEE ASSP Magazine, vol. 1, no. 4, pp. 14−21, October 1984.]
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But the principal computational burden lies in computing the complex sum of com-
plex products in (7.28a) and (7.28b).

Consider the computation of X(k) in (7.28a).  For 0 ≤ k ≤ N − 1, the calculation of
X(k) in (7.28a) requires N complex multiplications and N − 1 complex sums. Com-
puting all N of the X(k) values demands N2 complex multiplications and N2 − N com-
plex additions. Digital computers implement complex arithmetic as floating point
operations on pairs of floating point values. Each complex multiplication, therefore,
requires four floating point multiplications and two floating point additions; and each
complex addition requires two floating point additions.  So the total floating
point computation of an N-point FFT computation costs 4N2 multiplications and
2(N2 − N) + 2N2 additions.  Other factors to consider in an FFT implementation are:

• Storage space and memory access time for the x(n) and X(k) coefficients;

• Storage space and memory access time for the (WN)kn values;

• Loop counting and termination checking overheads.

Ultimately, as N becomes large, however, the number of floating point additions and
multiplications weighs most significantly on the time to finish the analysis equation.
Since the number of such operations—whether they are complex operations or
floating point (real) operations—is proportional to N2, we deem the DFT an order-
N2, or O(N2) operation.

FFT algorithms economize on floating point operations by eliminating duplicate
steps in the DFT and IDFT computations. Two properties of the phase factor, WN,
reveal the redundancies in the complex sums of complex products (7.28a) and
(7.28b) and make this reduction in steps possible:

• Phase factor periodicity: (WN)kn = (WN)k(n + N);

• Phase factor symmetry: [(WN)kn]* = (WN)k(N − n).

Two fundamental approaches are decimation-in-time and decimation-in-
frequency.

7.1.4.2 Decimation-in-Time. Decimation-in-time FFT algorithms reduce the
DFT into a succession of smaller and smaller DFT analysis equation calculations.
This works best when N = 2p for some p ∈ Z. The N-point DFT computation resolves
into two (N/2)-point, each of which resolves into two (N/4)-point DFTs, and so on.

Consider, then, separating the computation of X(k) in (7.28a) into even and odd n
within [0, N − 1]:

(7.29)
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Note the common (WN)2km phase factor in both terms on the bottom of (7.29). This
leads to the key idea for the DFT’s time-domain decimation:

(7.30)

We set y(m) = x(2m) and z(m) = x(2m + 1). Then y(m) and z(m) both have period
N/2. Also, (7.30) allows us to write (7.29) as a sum of the N/2-point DFTs of y(m)
and z(m):

(7.31)

From (7.31) it is clear that an N-point DFT is the computational equivalent of two N/
2-point DFTs, plus N/2 complex multiplications, plus N/2 complex additions. Figure
7.5 illustrates the process of decomposing an 8-point DFT into two 4-point DFTs.

Does this constitute a reduction in computational complexity? The total cost in
complex operations is therefore 2(N/2)2 + 2(N/2) = N + N2/2 complex operations.
For large N, the N2/2 term, representing the DFT calculations, dominates. But the
division by two is important! Splitting the Y(k) and Z(k) computations in the
same way reduces the computation of the two DFTs to four N/4-point DFTs, plus
2(N/4) complex multiplications, plus 2(N/4) complex additions. The grand total cost
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Fig. 7.5. The time domain decimation of an 8-point DFT. An 8-point analysis problem
decomposes into two preliminary 4-point problems, followed by a scalar multiplication and
a summation. This is only the first stage, but it effectively halves the number of complex
operations necessary for computing the DFT of x(n) on [0, 7].
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N + [N + 4(N/4)2] = N + N + N2/4 = 2N + N2/4. The next iteration trims the cost to
3N + N2/8. And this can continue as long as N contains factors of two—log2N times.
Thus, the fully executed decimation-in-time reduces the computational burden of an
N-point DFT from O(N2) to O(Nlog2N).

Figure 7.6 illustrates the process of decomposing an 8-point DFT down to the
final 2-point problem.

It turns out that a single basic operation underlies the entire FFT algorithm.
Consider the 8-point problem in Figure 7.6. It contains three DFT computation
stages. Four two-point problems comprise the first stage. Let us examine the
structure of the first stage’s operation. Pairs of the original signal elements are
multiplied by either (W8)0 = 1 or (W8)4 = −1, as shown in Figure 7.7a. Thereafter,
pairs of the two-point DFT coefficients are similarly multiplied by either of two
possible powers of W8: (W8)0 = 1 or (W8)4 = −1 again, or, (W8)2 and (W8)6.
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Fig. 7.6. Fully decimated 8-point DFT. Further decomposition steps expose an elementary
operation that recurs throughout the computation. Notice also that the original data elements
must be sorted in bit-reversed order at the beginning of the algorithm. Binary index numbers
are used; that is, x(000) is followed by x(100), instead of x(001), with which it swaps places.
Next comes x(010), since its bit-reversed index stays the same. But the next signal value
must be x(110), which swaps places with x(011). This computational trick allows the in-
place computation of DFT coefficients.
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Indeed, at any of the later stages of computation, the multiplying phase
factors always assume the form (W8)m and (W8)m + 4. Because their ratio is
(W8)m + 4 − m =   (W8)4 = −1, we may further simplify the rudimentary operation
(Figure 7.7b), eliminating one complex multiplication. The resulting crisscross
operation is called a butterfly, which the flow graph vaguely resembles. Some
aesthetically pleasing term does seem appropriate: The butterfly operation reveals
an elegant structure to the DFT operation, and the algorithms in Section 7.1.4.4
make efficient use of this elegance.

Now let us consider the rearrangement of the original signal values x(0), x(1),
x(2), x(3), x(4), x(5), x(6), x(7) into the proper order for the four initial butterflies:
x(0), x(4), x(2), x(6), x(1), x(5), x(3), x(7). This represents a bit-reversed reading of
the indices of the data, because we observe that if the indices of the signal values are
written in binary form, that is, x(0) = x(000), x(1) = x(001), and so on, then the nec-
essary rearrangement comes from reading the binary indices backwards: x(000),
x(100), x(010), x(110), x(001), x(101), x(011), x(111). At each of the three stages of
the computation, we maintain eight complex values, beginning with the original sig-
nal data in bit-reversed order. Then we perform butterfly operations, with the index
difference between value pairs doubling at each stage. 

Now let us consider another approach to the efficient computation of the DFT by
splitting the frequency domain values X(k) into smaller and smaller groups.

7.1.4.3 Decimation-in-Frequency. Suppose again that we are faced with the
problem of computing the DFT coefficients X(k) for a signal x(n) on [0, N − 1]. In
the previous section, we split the DFT analysis equation sum over 0 ≤ n ≤ N − 1
into two sums: for n even and for n odd. Now we divide the frequency-domain
values X(k) for 0 ≤ k ≤ N − 1 into even k and odd k. The result is an alternative,
efficient algorithm for computing DFT coefficients called the decimation-in-
frequency FFT.
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Fig. 7.7. (a), The butterfly operation or its equivalent, simpler form (b), occurs throughout
the FFT computation.
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Again, suppose that N is a power of 2, and let us consider DFT coefficients X(k)
where k = 2m. We have

(7.32)

Not unexpectedly, phase factor properties fortuitously apply. We observe that
(WN)2m(n + N/2) = (WN)2mn(WN)mN = (WN)2mn (WN/2)mn. Hence, for 0 ≤ m < N/2, we
have

(7.33)

This last result shows that the X(k) coefficients, for k even, can be calculated by an
(N/2)-point DFT. Turning to the remaining X(k), for k = 2m + 1 odd, we find

(7.34)

Now it is time to invoke the phase factor properties: (WN)(2m + 1)(n + N/2) =
(WN)2mn(WN)m(N/2) = −1. Therefore, (7.34) simplifies to
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(7.35)

This shows that we can calculate X(k) for k odd by an (N/2)-point DFT of the complex
signal y(n) = (WN)n[x(n) − x(n + (N/2))]. Together (7.33) and (7.35) demonstrate that
an N-point DFT computation can be replaced by two (N/2)-point DFT computations.
As in the decimation-in-time strategy, we can iterate this divide-and-compute strategy
as many times as N is divisible by two. The decimation-in-frequency result is an
O(Nlog2N) algorithm too.

7.1.4.4 Implementation. This section considers FFT implementation in a
modern high-level language, C++, and in assembly language on a representative
digital signal processor, the Motorola 56000/56001.

Let’s examine a C++ implementation of a radix-2 decimation-in-time algorithm,
drawn from a classic FORTRAN coding of the FFT [4]. This algorithm uses the
new standard template library contained in the header file <complex>. It replaces
the traditional C++ complex arithmentic library, <complex.h>, which defines
complex numbers as instances of a class whose member variables are two double-
precision floating point numbers. The new template library allows us to construct
complex numbers using the C++ float data type, for example, by declaring:

complex<float> x;

Specifying the float data type in the template conserves memory space.
Figure 7.8 shows the C++ implementation of the FFT.
Most references present FFT algorithms in FORTRAN [6−8], but also in C [9,

10]. The FFT can be implemented on a special computer architecture—called a
shuffle-exchange network—that interconnects multiple processors in a manner sim-
ilar to the FFT’s butterfly flow diagram. This facilitates either the butterfly opera-
tion or the bit-reversed ordering of data, but not both at once, because interprocessor
communication bottlenecks occur. Nevertheless, it is still possible to improve the
FFT algorithm by an additional O(N1/2) [11].

( / 2) 1 ( / 2) 1
(2 1) (2 1)

0 0

( / 2) 1
(2 1)

0

( / 2) 1
2

0

( / 2) 1

/ 2
0

(2 1) ( )
2

( )
2

( )
2

( )
2

( )

N N
m n m n

N N
n n

N
m n

N
n

N
mn n

N N
n

N
mn n
N N

n

n
N

N
X m x n W x n W

N
x n x n W

N
x n x n W W

N
x n x n W W

W x n

− −
+ +

= =

−
+

=

−

=

−

=

 + = − +  

  = − +    

  = − +    

  = − +    

=

∑ ∑

∑

∑

∑

( / 2) 1

/ 2
0

.
2

N
mn
N

n

N
x n W

−

=

   − +      
∑



508 DISCRETE FOURIER TRANSFORMS

#include <math.h>

#include <stdlib.h>

#define PI 3.14159265358979

#include <use_ansi.h>

#include <complex>     //ISO/ANSI std template library

using namespace std;

int fft(complex<double> *x, int nu)

{ // sanity check to begin with:

if (x == NULL || nu <= 0)

return 0;

int N = 1 << nu;          //N=2**nu

int halfN = N >> 1;       //N/2

complex<double> temp, u, v;

int i, j, k;

for (i = 1, j = 1; i < N; I++){  //bit-reversing data:

if (i < j){ temp = x[j-1]; x[j-1] = x[i-1]; x[i-1] = temp;}

k = halfN;

while (k < j){j -= k; k >>= 1;}

j += k;

}

int mu, M, halfM, ip;

double omega;

for (mu = 1; mu <= nu; mu++) {

M = 1 << mu;      // M = 2**mu

halfM = M >> 1;   // M/2

u = complex<double>(1.0, 0.0);

omega = PI/(double)halfM;

w = complex<double>(cos(omega), -sin(omega));

for (j = 0; j < halfM;j++){

for (i = j; i < N; i += M){

ip = i + halfM;

temp = x[ip]*u;

x[ip] = x[i] - temp;

x[i] += temp;

}

u  * = w;

}

u  * = w;

}

return 1;

}

Fig. 7.8. A C++ implementation of the FFT. This algorithm uses the complex data type in
the ISO/ANSI standard template library [5].
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;Radix-2 decimation in time FFT macro call

fftr2a macro points, data, coeff

move #points/2, n0

move #1,n2

move #points/4, n6

move #-1,m0

move m0,m1

move m0,m4

move m0,m5

move #0,m6 ; addr mod for bit-rev addr

do #@cvi (@log (points)/@log(2)+0.5),_end_pass

move #data,r0

move r0,r4

1ua (r0)+n0,r1

move #coef,r6

lua (r1)-,r5

move n0,n1

move n0,n4

move n0,n5

do n2,_end_grp

move x:(r1),x1 y:(r6),y0 ;sin and cos tables

move x:(r5),a y:(r6),b ;load data values

move x:(r6)+n6,x0

do n0,_end_bfy

mac x1,y0,b y:(r1)+,y1 ;decim in time begins

macr -x0,y1,b a:x:(r5)+ y:(r0),a

subl b,a x:(r0),b b,y: (r4)

mac -x1,x0,b x:(r0)+,a a,y: (r5)

macr -y1,y0,b x:(r1),x1

subl b,a b,x:(r4)+ y:(r0),b

_end_bfy

move a,x:(r5)+n5 y:(r1)+n1,y1

move x:(r0)+n0,x1 y:(r1)+n1,y1

_end_grp

move n0,b1 ; div bfys/group by 2

lsr b n2,a1

lsl a b1,n0

move a1,n2

_end_pass

endm

Fig. 7.9. An Assembly language implementation of the FFT on the Motorala 56001 DSP
chip [12]. The X and Y memory banks contain the input data’s real and imaginary compo-
nents, respectively. The X and Y memory banks also hold the cosine and sine tables for the
exponential function implementation. The algorithm bit-reverses the output data stream.
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It is interesting to examine the implementation of the FFT on a DSP processor
(Figure 7.9). Let us now briefly describe some architectural features of this proces-
sor that support the implementation of digital signal processing algorithms. These
features include:

• Multiple memory areas (X and Y) and data paths for two sets of signal data.

• No-overhead loop counting.

• A multiply-accumulate operation that runs in parallel with X and Y data move-
ments.

• Built-in sine and cosine tables (in the case of the 56001) to avoid trigonometric
function library calls.

• Addressing modes that support memory indexing needed for convolution oper-
ations.

The FFT code in Figure 7.9 explois these processing features for a compact imple-
mentation of decimation-in-time algorithm.

There are also FFT algorithms for N ≠ 2n. These general radix algorithms are more
complicated, consume more memory space, and are less speedy than the dyadic dec-
imation-in-time and decimation-in-frequency computations. Nevertheless, they are
superior to the DFT and useful when the success of an application depends on fast fre-
quency component computations. Another method, Goertzal’s algorithm, uses a con-
volutional representation of the DFT’s analysis equation as the basis for a fast
computation. This algorithm is attractive for digital signal processors, because of
their special hardware. Some of the exercises explore these FFT algorithms.

7.2 DISCRETE-TIME FOURIER TRANSFORM

In our study of signals and their frequency-domain representations, we have yet to
cover one possibility: the class of discrete aperiodic signals. The frequency transform
tool that applies to this case is the discrete-time Fourier transform (DTFT). It turns out
that not all aperiodic discrete signals have DTFTs. We demonstrate that the transform
exists for the important classes of absolutely summable and square-summable signals.

There is a generalization of the DTFT—the z-transform—which provides addi-
tional analytical capabilities suitable for those signals for which there is no DTFT.
We cover the z-transform in Chapter 8. Chapter 9 explains a variety of applications
of both the DTFT and the z-transform.

7.2.1 Introduction

We start the discussion with a formal definition—the mathematician’s style at work
once again. The definition involves an infinite sum, and so, as with the Fourier
transform’s infinite integral, for a given signal there are questions of the validity of
the transform operation. We momentarily set these concerns aside to review a few
examples. Then we turn to the important question of when the DTFT sum converges
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and prove an inversion result. The DTFT is an important theoretical tool, since it
provides the frequency domain characterization of discrete signals from the most
important signal spaces we know from Chapter 2: the absolutely summable (l1) sig-
nals and the square summable (l2) signals.

7.2.1.1 Definition and Examples. Let us begin with the abstract definition of
the DTFT and follow it with some simple examples. These provide some indication
of the transform’s nature and make the subsequent theorems more intuitive. The
DTFT’s definition does involve an infinite sum; for a given signal, therefore, we
must eventually provide answers to existential questions about this operation.

Definition (Discrete-Time Fourier Transform). If x(n) is a discrete signal, then
the analog signal discrete signal X(ω) defined by

(7.36)

where ω ∈ R, is the radial discrete-time Fourier transform (DTFT) of x(n). The
units of ω are radians/second. We often refer to (7.36) as the DTFT analysis equa-
tion for x(n). If we take ω = 2πf, then we can define the (Hertz) DTFT also:

(7.37)

Generally, here, and in most texts, the DTFT takes the form (7.36) and, unless
otherwise specified, we use the radial form of the transform.

Like the analog Fourier series, the DTFT is a transform that knows not what
world it belongs in. The Fourier series, we recall from Chapter 4, transforms a
periodic analog signal, x(t), into a discrete signal: the Fourier coefficients c(k) =
ck. And the DTFT maps a discrete signal, x(n), to an analog signal, X(ω). This pre-
vents the FS and the DTFT from being considered bona fide systems. Both the
Fourier transform and the DFT, however, can be viewed as systems. The FT maps
analog signals to analog signals, and it may be considered a partial function on the
class of analog signals. We know from Chapter 4’s study of the FT that the abso-
lutely integrable (L1) signals, for example, are in the domain of the the FT sys-
tem. Also, the DFT maps discrete signals of period N to discrete signals of period
N. We surmise (rightly, it turns out) that, owing to the doubly infinite sum in the
analysis equation, the study of the DTFT will involve much more mathematical
subtlety than the DFT.

Clearly, the DTFT sum exists whenever the signal x(n) is finitely supported; that
is, it is zero outside some finite interval. So for a wide—and important—class of
signals, the DTFT exists. Without worrying right now about the convergence of the
analysis equation (7.36) for general signals, we proceed to some examples of the
radial DTFT.
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Example (Discrete Delta Signal). Consider the signal δ(n), the discrete delta
function. This signal is unity at n = 0, and it is zero for n ≠ 0. For any ω ∈ R, all of
the summands in (7.36) are zero, save the n = 0 term, and so we have X(ω) = 1 for
all ω ∈ R.

Example (Discrete Square Pulse). Consider the signal h(n) = [1, 1, 1, 1, 1], which
is unity for −2 ≤ n ≤ 2 and zero otherwise. We recognize this signal as the impulse
response of a Moving Average System. If y = Hx = h ∗ x, then the system H averages
the five values around x(n) to produce y(n). We calculate 

(7.38)

The notation might cause confusion, but we will use H(ω) for the DTFT of discrete
signal h(n) and simply H for the system with impulse response h(n). Figure 7.10
plots H(ω).

Example (Exponential Signal). Consider the signal x(n) = 2−nu(n), and its DTFT
analysis equation,

2
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Fig. 7.10.  Graph of H(ω) where h(n) = [1, 1, 1, 1, 1]. H(ω) is a 2π-periodic analog signal,
and it assumes a maximum value at ω = 0. In general, H(ω) is complex, and in such cases
we prefer to plot |H(ω)| and arg(H(ω)) on one period: [0, 2π] or [−π, π].
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(7.39)

Signal x(n) is a geometric series of the form 1 + a + a2 + ⋅⋅⋅, where a = (1/2)exp(−jω).
Since |a| = 1/2 < 1, the step from an infinite sum to the simple quotient 1/(1 − a) on
the bottom left side of (7.39) is justified. Figure 7.11 shows the magnitude and phase
of the DTFT of x(n).

Notice that the DTFT (7.36) appears to be in the form of an l2 inner product.
Given x(n), we can informally write X(ω) = 〈x(n), exp(jωn)〉, because the l2 inner
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Fig. 7.11. DTFT of x(n) = 2−nu(n). Panel (a) shows |X(ω)| on [−π, π]. Panel (b) plots arg(X(ω)).
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product, like the DTFT analysis equation, is precisely the sum of all products of
terms x(n)exp(−jωn). Conceptually (and still informally), then, for each ω the DTFT
X(ω) measures the similarity between x(n) and exp( jωn). So X(ω) is the spectral
content of the discrete signal x(n) for radial frequency ω. We cannot formalize this
intuition unless we know more about the convergence of the analysis equation sum.
The signal exp(jωn) is not square-summable, so we do not know, without more
investigation, whether the inner product-like sum converges. The convergence of
the DTFT analysis equation is a question that we must therefore address, and fortu-
nately, there are satisfactory answers.

7.2.1.2 Existence. Let us consider two of the most important classes of dis-
crete signals: absolutely-summable signals and square-summable signals. Do repre-
sentatives of these function spaces always have discrete-time Fourier transforms?
Guaranteeing a transform for l2 signals, like the case of the analog L2 Fourier trans-
forms in Chapter 5, requires some care. There is, however, a very easy existence
proof for the DTFT of l1 signals. 

Theorem (DTFT Existence for Absolutely Summable Signals). Suppose x(n) ∈
l1. Then the DTFT of x(n), X(ω), exists and converges absolutely and uniformly
for all ω ∈ R.

Proof: To show absolute convergence of the analysis equation, we need to show that

(7.40)

But the last term in (7.40) is precisely the l1 norm of x(n), and this must be finite,
since x(n) ∈ l1. So the analysis equation formula for X(ω) does indeed converge to a
limit for any ω. We recall from real and complex analysis [13, 14] that the uniform
convergence of the series (7.36), means that for every ε > 0 there is an N > 0 such
that if m, n > N, then for all ω:

(7.41)

The main point of uniform convergence is that the Cauchy criterion (7.41) applies to
all ω, independent of N, which depends only on the choice of ε. If N must vary with
ε, then ordinary, but not uniform, convergence exists. Now, (7.40) shows conver-
gence for all ω; the interval [−π, π] is closed and bounded, hence it is compact; and
a convergent series on a compact subset of the real line is uniformly convergent on
that subset. Therefore, since we know that X(ω) is periodic with period [−π, π], the
DTFT analysis equation series converges uniformly to X(ω) for all ω. ■

Corollary (Continuity of DTFT). Suppose x(n) ∈ l1. Then the DTFT of x(n),
X(ω), is continuous.
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Proof: It is the sum of a uniformly convergent series, and each partial sum in the
series,

(7.42)

is a continuous function of ω. ■

Now consider a signal x(n) ∈ l2. We are familiar with the signal space l2 from
Chapter 2: It is the Hilbert space of square-summable discrete signals. It has an
inner product, 〈x, y〉, which measures how alike are two l2 signals; a norm, ||x||2,
which derives from the inner product, ||x||2,= (〈x, x〉)1/2; and orthonormal bases, {ei :
i ∈ N}, which allow us to decompose signals according to their similarity to the
basis elements, 〈ei, x〉. Thus, Hilbert spaces extend the convenient analytical tools
(which one finds, for example, in finite-dimensional vector spaces), to the doubly
infinite “vectors” of signal processing and analysis—discrete signals. Let us next
show that for square-summable signals the DTFT exists.

Theorem (DTFT Existence for Square-Summable Signals).  Suppose x(n) ∈ l2.
Then the DTFT of x(n), X(ω), exists for all ω ∈ R.

Proof: Let ω ∈ R and consider the partial DTFT analysis equations sums,

(7.43)

where N ∈ N, the natural numbers. (We shall use the notation XN(ω) for DTFT par-
tial sums quite a bit.) Let H be the Hilbert space of square-integrable analog signals
(cf. Chapter 3) on [−π, π]: H = L2[−π, π]. For each N, XN(ω) has period 2π and is
square-integrable on [−π, π]:

(7.44)

hence, XN(ω) ∈ L2[−π, π]. Let us denote the L2-norm on H of a square-integrable
signal, s(t), by ||s(t)||H. We wish to show that (XN(ω): N ∈ N) is an L2[−π, π] Cauchy
sequence; that is, given ε > 0, we can choose N > M both sufficiently large so that
||XN − XM||H < ε. This would imply that the limit of the sequence (XN(ω)), which is the
series sum of the analysis equation for x(n), does in fact converge to an element of H:
X(ω). Note that

(7.45)

Thus, using the orthogonality of signals exp(−jwn) on [−π, π] and the properties of
the inner product on H, we find
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We have used 〈exp(-jωn), exp(-jωm)〉 = 2πδn,m, where δn,m is the Kronecker delta, to
simplify the first and last double summations and to discard the two middle double
summations in (7.46). Now, since x(n) ∈ l2, it has a finite l2-norm; in other words,

(7.47)

This means that for ε > 0, we can find N > M sufficiently large so that

(7.48a)

and

(7.48b)
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Together, (7.48a) and (7.48b) imply that (7.46) can be made arbitrarily small. Thus
the sequence (XN (ω): N ∈ N) is Cauchy in H = L2[−π, π]. Since H is a Hilbert space,
this Cauchy sequence converges to a signal, the DTFT of x(n), X(ω) ∈ H. ■

7.2.1.3 Inversion. This section studies the problem of finding an inverse for the
DTFT. Those frequency transforms covered so far—the Fourier series, the Fourier
transform, and the discrete Fourier transform—all have inverses, assuming, in the
case of the FS and FT that our signals belong to certain function spaces. So we expect
no exceptions from the frequency transform for discrete aperiodic signals. Now, the
DTFT of a discrete signal x(n) is a periodic function X:R → C, so the inverse must
transform a periodic analog signal into a discrete signal. One transform, familiar from
Chapter 5, does precisely this—the Fourier series. For an analog periodic signal, the
FS finds a discrete set of frequency coefficients. We shall see that there is in fact a
very close relationship between the inverse relation for the DTFT and the analog FS.

Our first theorem provides a simple criterion for the existence of an inverse.

Theorem (Inverse DTFT). Suppose that x(n) has a DTFT, X(ω), and that the anal-
ysis equation for X(ω) converges uniformly on [−π, π]. Then, for all n ∈ Z,

. (7.49)

Proof: The stipulation that the analysis equation’s convergence be uniform is criti-
cal to the proof. The DTFT analysis equation for x(n) is a limit of partial sums:

(7.50)

After changing the dummy summation variable, we insert (7.50) directly into the
integrand of (7.49):

(7.51)

The uniform convergence of the limit in (7.51) permits us to interchange the inte-
gration and summation operations [13]:

(7.52)

where δn,m is the Kronecker delta.  ■
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Corollary (Inverse DTFT for Absolutely Summable Signals). If x(n) ∈ l1, then
for all n ∈ Z,

(7.53)

where X(ω) is the DTFT of x(n).

Proof: The analysis equation sum for X(ω) converges uniformly by the DTFT
Existence Theorem for Absolutely Summable Signals in the previous section.
Hence the Inverse Theorem above implies that the formula (7.53) is valid.  ■

Definition (Inverse Discrete-Time Fourier Transform). If X(ω) is a 2π-periodic
analog signal and x(n), as defined by (7.53), exists, then x(n) is the inverse discrete-
time Fourier transform (IDTFT) of X(ω). Equation (7.53) is also called the DTFT
synthesis equation.

This last result (7.53) highlights an intriguing aspect of the DTFT. Equation
(7.53) says that if x(n) is absolutely summable, then x(n) is the nth Fourier series
coefficient for X(ω). To understand this, recall that if the analog signal y(s) ∈ L1[0,
T] has period T > 0, then the Fourier series analysis equation gives (unnormalized)
Fourier coefficients,

(7.54)

where F = 1/T. The companion synthesis equation reconstructs y(s) from the ck:

(7.55)

The reconstruction is not perfect, however. When y(s) contains a discontinuity at s =
s0, then the synthesis equation converges to a value midway between the left- and
right-hand limits of y(s) at s = s0. We can easily transpose (7.55) to the form of the
DTFT analysis equation. We need only set x(k) = ck, ω = −2πFs, and X(ω) = y(s) =
y(−ω/(2πF )). Therefore, analog periodic signals have discrete spectral components
given by the Fourier series coefficients. And discrete aperiodic signals have contin-
uous periodic spectra given by their 2π-periodic DTFTs. There is more than an
affinity between the discrete aperiodic signals and the analog periodic signals; there
is, as we shall see in a moment, a Hilbert space isomorphism.

Now, we have found an inversion relation for the DTFT and defined the synthesis
equation for absolutely summable signals, but what about l2 signals? This is our
most important lp space, since it supports an inner product relation. Is there an
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inverse relation similar to (7.53) for square-summable discrete signals? The follow-
ing theorem helps to answer this question in the affirmative, and it is one step
toward showing the essential sameness of l2 and L2[−π, π].

Theorem (DTFT Existence for Square-Summable Signals). If x(n) ∈ l2, then
there is an analog signal y(s) ∈ L2[−π, π] such that

(7.56a)

 for all n ∈ Z, and 

(7.56b)

Proof: Recall the Riesz–Fischer Theorem from Chapter 2. Suppose we take H =
L2[−π, π] as the Hilbert space and {en(s): n ∈ Z} = {(2π)−1/2exp(−jsn): n ∈ Z} as
the orthonormal set in H which Riesz–Fischer presupposes. Then the Riesz–Fischer
result states that if x(n) ∈ l2, then there is a w(s) ∈ H such that 〈w, en(s)〉 = x(n), and
w = Σx(n)en(s). Furthermore, w is unique in the following sense: Any other h ∈ H
for which this holds can differ from w only on a set of measure zero; in other words,
||w − h||2 = 0, where || · ||2 is the norm on L2[−π, π]:

. (7.57)

Continuing to apply this previous abstract theorem to our present concrete problem,
we must have a w(s) ∈ H such that

(7.58)

and

. (7.59)

Setting y(s) = (2π)1/2w(s) completes the proof. ■

How exactly does this help us answer the question of whether square-summable
discrete signals have DTFTs? Briefly, x(n) ∈ l2 does have a DTFT: We take X(ω) =
y(ω), where y is the L2[−π, π] signal guaranteed by the theorem. The problem is that
X(ω) need not be continuous; therefore, there are many possible choices for X(ω) in
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L2[−π, π] that obey the DTFT synthesis equation. The various choices may differ on
a set of measure zero, so that the norm of their difference, computed with an integral
of adequate power (such as the Lebesgue integral) is zero. This should be no surprise.
We recall Chapter 5’s lesson, for example, that the Fourier series sum of a signal con-
verges to the midpoint of a signal discontinuity. The FS imperfectly recovers the orig-
inal periodic analog signal. If x(n) ∈ l1, on the other hand, then the convergence of the
DTFT analysis equation (or, alternatively, the convergence of the Fourier series sum)
is uniform, so that X(ω) is continuous and pointwise unique on [−π, π].

Corollary (Embedding of l2 into L2[−π, π]). For x(n) ∈ l2, then set F (x) =
(2π)−1/2X(ω) ∈ L2[−π, π]. Then F  is a Hilbert space isomorphism between l2

and (the equivalence classes of signals that are equal almost everywhere) its
image F [l2].

Proof: The theorem guarantees that a unique (up to a set of measure zero) X(ω)
exists, so F is well-defined. It is also clear that the DTFT is a linear mapping from
l2 to L2[−π, π], and so too is F  (exercise). We need to show as well that 〈x, y〉 = 〈F x,
F y〉, for all x, y ∈ l2. Let Y(ω) be the DTFT of y(n). Working from within the realm
of L2[−π, π], we find

Since x, y ∈ l2, the partial sums XN (ω) and YN (ω) converge absolutely; for exam-
ple, we have |x(n)exp(−jωn)| = |x(n)|, and Σ|x(n)|2 = (||x||2)2 < ∞. This justifies the
step to a double summation of products [13]. And, because the double sum on the
bottom of (7.60) converges on the closed set [−π, π], it converges uniformly. This
allows us to interchange the summation and integration operations, obtaining

(7.61)

Only the terms with n = k in the integral of (7.61) are nonzero. Finally, since F (x) =
(2π)−1/2X(ω), 〈Fx, Fy〉 = 〈x, y〉. ■

An embedding therefore exists from the discrete Hilbert space l2 into the contin-
uous Hilbert space L2[−π, π]. This Hilbert subspace of L2[−π, π], the image of l2

under F, F [l2], is essentially just like l2. Is it the case, perhaps owing to the intricacies
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of its analog signal elements, that the full Hilbert space, L2[−π, π], is fundamentally
more complex than l2? The requisite tools of formal analog theory—Dirac delta func-
tions, Lebesgue integration, questions of separability, and so on—make it tempting to
conclude that L2[−π, π] ought to be a richer mathematical object than the drab, dis-
crete l2. Moreover, the embedding that we have given is a straightforward application
of the abstract Riesz–Fischer theorem; no technical arguments using the specific
characteristics of L2[−π, π] signals are necessary. So it might well be concluded that
the orthogonal complement, F [l2]⊥, is indeed nontrivial.

No, the truth is quite the opposite: The mapping F (x(n)) = (2π)−1/2X(ω) from l2

into L2[−π, π] is indeed a Hilbert space isomorphism. We can show this if we can find
a set of signals in the image of l2 under the embedding relation, F, that is dense in L2[−
π, π]. In general, questions of orthogonality and finding embeddings (also called
injections) of one Hilbert space into another tend to admit easier answers. But show-
ing that one or another set of orthogonal elements spans the entire Hilbert space—the
question of completeness—is quite often a daunting problem. Fortunately, we
already have the crucial tool in hand, and the next corollary explains the result.

Corollary (Isomorphism of l2 and L2(−π, π)). Let x(n) ∈ l2, let X(ω) be the
DTFT of x(n), and set F (x) = (2π)−1/2X(ω) ∈ L2[−π, π]. Then F is a Hilbert space
isomorphism.

Proof: Consider some Y(ω) ∈ L2[−π, π]. We need to show that Y is arbitrarily close
to some element of the image of F, F [l2]. From Chapter 5, Y has a Fourier series
representation,

(7.62)

where

(7.63)

Since T = π − (−π) = 2π and F = 1/T = 1/(2π), (7.62) shows that see that Y(ω) is
really the limit of the YK(ω). But each YK(ω) is a linear combination of exponen-
tials, exp(jkω), which are in the image, F [l2]. Since Y was arbitrary, this implies that
the span of the exponentials is dense in L2[−π, π], or, equivalently, that its closure is
all of L2[−π, π]. ■

The next section contains an extended study of a single example that illustrates
some of the convergence problems that arise when taking the DTFT of a signal that
is not absolutely summable.
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7.2.1.4 Vagaries of X(ω) convergence in L2[−π, π]. The search for those
classes of discrete signals, x(n), that have a DTFT leads to difficulties with the con-
vergence of the analysis equation sum. We have just shown that absolutely summa-
ble and square-summable discrete signals have DTFTs; if x(n) ∈ l2, however, we
cannot guarantee that the DTFT, X(ω), is unique. Now we explore in some detail an
example of a square-summable signal that is not in l1. Its DTFT is not unique, due
to the presence of discontinuities in X(ω). Moreover, its convergence is tainted by
spikes near the points of discontinuity that persist even as the partial analysis
equation sums converge (in the l2 norm) to X(ω).

Example (Discrete Sinc Signal). Consider the signal x(n) defined as follows:

(7.64)

Although x(n) ∉ l1, since its absolute value decays like n−1, we do find x(n) ∈ l2,
because |x(n)|2 is dominated by (πn)−2, which does converge. If we let (ω) = 1 for
|ω| ≤ 1 and (ω) = 0 otherwise, then

. (7.65)

Thus, the IDTFT of (ω) is x(n). Figure 7.12 shows (ω) and the discrete signal
that results from its IDTFT. 

Is (ω) the DTFT of x(n)? Not exactly, but let us study the situation further. Since
(7.65) is a Fourier series analysis equation, and x(n) is a FS coefficient for (ω),
we can consider the limit of the corresponding Fourier series sum, X(ω). Then X(ω)
converges for ±ω = 1 to X(ω) = 1/2, the midpoint between the discontinuities:

(7.66)

This is an unlucky result: for each ω ∈ [−π, π] the partial sums in (7.66) have a limit,
but it is X(ω), not (ω). The convergence of the partial sums in (7.66) is not uniform,
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as it would be if x(n) were absolutely summable. Instead, the convergence is in the
L2[−π, π] norm, || · ||2, and it allows the limit of the DTFT analysis equation, X(ω), to
differ from the signal from which we derived x(n) in the first place, (ω).

Example (Gibbs Phenomenon). Examining the partial sums of (7.62) exposes a
further feature of convergence under || · ||2, namely the Gibbs4 phenomenon. Spikes
appear near the step edges in (ω) and do not diminish with increasingly long
partial sums (Figure 7.13).

4Josiah W Gibbs (1839–1903), an American chemist, physicist, and professor at yale University. Gibbs
devised the vector dot product, v ⋅ w, and the cross product, v × w, and investigated the famous spike in
Fourier series convergence. Although he was the first scientist of international stature from the United
States, Yale neither appreciated his capabilities nor remunerated him for his service. Gibbs supported
himself on an inheritance over the cource of a decade at Yale.

Fig. 7.12. Panel (a) shows a square pulse signal on [−π, π]. The result of applying the
IDTFT to this pulse is shown in panel (b).

X�

X�
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(a)  Partial DTFT sum, XN(ω), N = 5;
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Fig. 7.13.  A study of partial DTFT analysis equation sums for the square-summable signal
x(n) = π−1sin(n). Panel (a) shows X5(ω); panel (b) shows X10(ω); panel (c) shows X20(ω);
and panel (d), X50(ω), shows a persistent ringing effect at the discontinuities.
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(b)  XN(ω), N = 10;
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Although its name has a supernatural resonance, there are specific, clearly defin-
able reasons for the Gibbs phenomenon. In fact, it occurs whenever there is a dis-
continuity in a square integrable signal on [−π, π]. To more clearly grasp the reasons
for the phenomenon, let us consider the partial DTFT sums, XN(ω):

The IDTFT of X(ω) replaces x(n) in the finite summation of (7.67). X(ω) itself is the
limit of these partial DTFT sums as N → ∞. (We already know the definition of
X(ω): It is the step function equal to unity on [−1, 1] and zero elsewhere on [−π, +π].
It is thus possible to simplify the integral in (7.67), but we resist in order to show how
the following development does not depend on the specific nature of X(ω).) Next, we
set θ = Ω − ω toward a change of the integration variable, thereby giving

(7.68)
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Fig. 7.13 (Continued)
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Note that the integrand is 2π-periodic, which permits us to take the limits of integra-
tion from [−π, +π] instead of [−π − ω, π − ω]. Let us now interchange the finite sum-
mation and integration operations in (7.68) to obtain

(7.69)

Therefore, the partial DTFT synthesis equation sums, XN(ω), are given by the cross-
correlation on [−π, +π] of X and the Dirichlet5 kernel of order N, DN(θ). Chapter 5
introduced the Dirichlet kernel in connection with the problem of the Fourier series
sum’s convergence . It is an algebraic exercise to show that

(7.70)

and therefore, for any N > 0,

. (7.71)

Now, from (7.70) the Dirichlet kernel is an even function. So changing the variable
of integration in (7.69) shows XN(ω) to be a convolution of X and DN(θ):

. (7.72)

Now we understand the root cause of the Gibbs phenomenon. Because X(θ) in
(7.72) is zero for |θ| > 1, has discontinuities at θ = ±1, and is unity for |θ| < 1, the
convolution integral produces a response that has a spike near the discontinuity.
The spike’s height is roughly the sum of the area of DN(θ) under its main hump
(Figure 7.14) plus the tail of the Dirichlet kernel that overlaps with the nonzero
part of X.

The crux of the problem is how the first peak in the evaluation of the convolu-
tion integral behaves as N → ∞. Empirically, as evidenced by Figure 7.13, the con-
volution generates a spike that shrinks in width but does not diminish in height.
Clearly, the height of DN(θ) does increase as θ → 0. Hence, it would appear that
the area under the Dirichlet kernel between the first two zero crossings, ±θN,
where θN = π/(N + 1/2), does not fall below some positive value. In fact, this area

5Peter Gustav Lejeune Dirichlet (1805–1859) studied convergence kernels for the Fourier series and
problems in potential theory. He provided a proof of Fermat’s Last Theorem for the case n = 5.
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remains constant! As N → ∞, its decreasing width is perfectly balanced by the
increasing height. Let us investigate: 

(7.73)

Making the change of integration variable Ω = Nθ + θ/2, we find

(7.74)

As N → ∞, Ω/(2N + 1) → 0; taking the limit of (7.74) as N → ∞ and interchanging
the limit and integration operations on the right-hand side of (7.74) gives 

(7.75)

showing that the between the first zero crossings of DN(θ) is constant. The area
under sinc(Ω) from 0 to π is approximately 1.85194, so the convolution integral
(7.72) for the partial DTFT summation, XN(ω), evaluates to approximately
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Fig. 7.14. Convolution with DN(θ) at a discontinuity. A convolution integral of the analog
signal X with the Dirichlet kernel of order N (here, N  = 12) gives the partial DTFT summa-
tion for X, XN(ω). The output is equal to the area under DN(θ) that overlaps the nonzero area
of the square pulse signal X.
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(2/π)(1.85194) = 1.17898. To find the approximate value of the convolution integral
(7.72) at one of the Gibbs spikes, we must add the main hump’s contribution to the
area under the small oscillations in the tail of DN(θ). What is this latter value?
Figure. 7.14 shows the situation; these small osciallations overlap with the nonzero
part of X(ω) and affect the convolution result. We know from (7.71) that the entire
integral of DN(θ) over [−π, π] is unity. Thus, the integral over [−1, 1] is also near
unity, since (exercise) the areas of the oscillations decrease like 1/n. So, we have

(7.76)

and therefore the maximum of the convolution, XN(ωmax), approximates to

(7.77)

A careful review of this analysis should convince the reader that 

• Any step discontinuity in X(ω) will produce the same result.

• The amount of overshoot around the discontinuity is approximately 9% of the
step height of the discontinuity.

The first point follows from the fact that for sufficiently high N values, the Dirichlet
kernel’s main peak will be so narrow that X(ω) will appear flat before and after the
jump. That is, DN(θ) localizes the discontinuity of X(ω). The second point is per-
haps easier to witness from the present example. The size of the Gibbs phenome-
non’s spike is given by an integral, which is a linear operation, and so scaling the
step height causes the convolution’s output to scale accordingly. The rich Fourier
analysis literature provides further explanations and generalizations of the Gibbs
phenomenon [15–17].

7.2.1.5 Some Final Points. This section concludes our preliminary study of
the DTFT by stating two theoretical results.

Not all of our abstract l p signal spaces support a DTFT; however, we have the
following result [18]:

Theorem (DTFT Existence for p-Summable Signals). Suppose x(n) ∈ l p, for 1 <
p < 2. Then there exists an X(ω) ∈ Lq[−π, π], where p and q are conjugate expo-
nents (that is, p−1 + q−1 = 1), such that the values x(n) are the Fourier series coeffi-
cients for X(ω).
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Thus, we have a rich variety of signal spaces whose members have DTFTs. In
signal analysis, the limiting cases—l1 and l2—are the most important. For x(n) ∈ l1,
the partial sums, XN(ω), converge uniformly on [−π, π] to a continuous signal, X(ω).
Because X(ω) is continuous on a closed interval, [−π, π], it is also bounded: X(ω) ∈
L∞. The partial DTFT sums, XN(ω), converge pointwise when x(n) is absolutely
summable. This is not the case for square-summable signals; we have seen that
pointwise convergence does not necessarily occur for x(n) ∈ l2. A long-standing
problem has been to characterize the set of points for which the Fourier series of an
L2[−π, π] signal converges. Many mathematicians supposed that convergence
occurs almost everywhere, and in 1966 Carleson finally proved [19] the following
theorem:

Theorem (Carleson’s). If X(ω) ∈ L2[−π, π], then the Fourier series for X con-
verges almost everywhere to X(ω).

This result was soon generalized by Hunt to any Lp[−π, π], 1 < p < ∞  [20]. The
exceptional case is L1[−π, π]. And what a exception it is: In 1926, Kolmogorov6

found an unbounded, discontinuous function, f ∈ L1[−π, π], whose Fourier series
diverges everywhere from f [21, 22].

7.2.2 Properties

Let us enumerate the properties of the discrete-time Fourier transform. We assume
throughout that discrete signals, say x(n), belong to some signal space that supports
a DTFT operation. Many of these are similar in flavor to the properties of previ-
ously covered transforms: the Fourier series, Fourier transform, and discrete Fourier
transform. Consequently, we leave several of the proofs as exercises.

Proposition (Linearity, Time-Shift, and Frequency Shift). Let x(n) and y(n) be
discrete signals and let X(ω) and Y(ω) be their DTFTs, respectively. Then

(a) (Linearity) The DTFT of ax(n) + by(n) is aX(ω) + bY(ω).

(b) (Time Shift) The DTFT of x(n − m) is exp(−jωm)X(ω).

(c) (Frequency Shift) The IDTFT of X(ω − θ) is exp(−jθn)x(n).

Proof: Exercise.  ■

6A. N. Kolmogorov (1903−1987), professor of mathematics at Moscow State University, investigated
problems of topology and analysis and established the axiomatic approach to probability theory.
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Proposition (Frequency Differentiation). Suppose x(n) is a discrete signal, X(ω)
is its DTFT, and the partial sums XN(ω) converge uniformly on [−π, π] to X(ω).
Then the DTFT of nx(n) is jdX(ω)/dω.

Proof: To prove transform properties, one may work from either end of a proposed
equality; in this case, it is easier to manipulate the derivative of the DTFT. To wit,

(7.78)

The interchange of the differentiation and infinite summation operations is valid
because the DTFT analysis equation is uniformly convergent. Taking the deriva-
tive of the summand in (7.78) and pulling the constants through the summation
gives

(7.79)

This is precisely the DTFT analysis equation for the signal nx(n). ■

Without a doubt, the most important property of the DTFT is the Convolution-in-
Time Theorem. This result shows that convolving two signals in the time domain is
equivalent to multiplying their frequency domain representations. Since we are
dealing with aperiodic signals, there is no need to redefine convolution for a finite
interval, as we did with the DFT in (7.22). The convolution-in-time property is
the key to understanding signal filtering—the selective suppression of frequency
bands within a signal. We shall resort to this theorem many times in the chapters
that follow.

Theorem (Convolution in Time). Let x(n) and y(n) be signals, let X(ω) and Y(ω)
be their DTFTs, and let z = x ∗ y. If the convolution sum for z(n) converges abso-
lutely for each integer n, then the DTFT of z(n) is Z(ω) = X(ω)Y(ω).

Proof: Among all of the theoretical investigations into all of the transforms studied
so far, we should note a distinct computational compatibility between the transform
integral (or summation) and the convolution operation. The DTFT is no exception.
We substitute the expression for the convolution, z = x ∗ y, directly into the DTFT
analysis equation for Z(ω):
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(7.80)

We use the absolute convergence of the convolution sum to justify writing the iter-
ated summation as a double summation and to subsequently switch the order to the
summation. A routine change of summation variable, m = n − k, occurs in the last
line of (7.80).  ■

There is an important link back to our results on linear, translation-invariant sys-
tems. Recall from Chapter 2 that the convolution relation characterizes LTI systems.
If H is LTI, then the output, y = Hx, is the convolution of h = Hδ with x: y = h ∗ x.
Thus we have the following corollary.

Corollary (Convolution in Time). If H is an LTI system, h is the impulse response
of H, and y = Hx, then Y(ω) = X(ω)H(ω), assuming their DTFTs exist.

Proof: Note that y = h ∗ x and apply the theorem.  ■

We shall establish yet another transform Convolution Theorem when we study
the z-transform in Chapter 8. The next theorem is a companion result. It establishes
for the DTFT a familiar link: Multiplication in the time domain equates with con-
volution in the frequency domain. This theorem has a z-transform variant, too.

Theorem (Convolution in Frequency). Suppose x(n) and y(n) are discrete signals;
X(ω), Y(ω) ∈ L2[−π, π] are their respective DTFTs; and z(n) = x(n)y(n) is their
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termwise product. Then the DTFT of z(n), Z(ω), is given by the scaled convolution
of X(ω) and Y(ω) in L2[−π, π]:

(7.81)

Proof: The right-hand side of (7.81) is the integral of the product of infinite sum-
mations whose terms contain the complex exponential—for instance, exp(−jθn). We
have already witnessed numerous cases where the summands cancel owing to the
2π-periodicity of the exponential. Therefore, let us work from the L2[−π, π] side of
(7.81). Indeed, we compute,

(7.82)

Once again the last integral is zero, unless n = k; in this case it evaluates to 2π. Thus,
all of the terms of the double summation on the bottom of (7.82) are zero, save those
where n = k. Our strategy works, and we find

(7.83)

which completes the proof.  ■

Note that the above proof allows for the case that the signal y(n) may be
complex-valued. This observation gives us the following corollary.

Corollary. Again let x(n) and y(n) be discrete signals, and let X(ω), Y(ω) ∈ L2[ −π, π]
be their respective DTFTs. Then,

(7.84)
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Proof: Before commencing with the proof, let us observe that the left-hand side of
(7.84) is the l2 inner product of x(n) and y(n), and the right-hand side is just the
inner product of X(ω) and Y(ω) scaled by the factor (2π)−1. Well, in the course of
establishing the embedding isomorphism from l2 into L2[−π, π] as Hilbert spaces,
we already proved this result. Nonetheless, we can convey some of the symmetry
properties and computational mechanics of the DTFT by offering another argument.
So set w(n) = (n) and z(n) = x(n)w(n) = x(n) (n). By the theorem, then, the DTFT
of z(n) is

(7.85)

Therefore,

(7.86)

What is W(−θ) in the integral on the right-hand side of (7.86)? By the algebra of
complex conjugates, however, we find

(7.87)

Putting (7.86) and (7.87) together establishes the theorem’s result. ■

Corollary (Parseval’s Theorem). If x(n) ∈ l2, then ||x(n)||2 = (2π)−1||X(ω)||2.

Proof: Take x(n) = y(n) in the previous corollary. (Observe that the two norms in
the statement of Parseval’s theorem are taken in two different Hilbert spaces: l2 and
L2[−π, π].)  ■

Note that Parseval’s theorem too follows from our earlier Hilbert space isomor-
phism. Many frequency transform theorems at first glance appear to be almost mirac-
ulous consequences of the properties of the exponential function, or its sinusoidal
parts, or the definition of the particular discrete or analog transform. But in fact they
are mere instances of Hilbert space results. That very general, very abstract, partly
algebraic, partly geometric theory that we studied in Chapters 2 and 3 provides us with
many of the basic tools for the frequency domain processing and analysis of signals.

Parseval’s theorem shows that signal energy in the time domain is proportional to
signal energy in the frequency domain. This has some practical applications. In Chap-
ter 9 we shall consider frequency-domain analysis of signals. We sought methods
for discovering the periodicities of signals in Chapter 4, and to some extent we were
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successful in applying statistical and structural methods toward this end. Using dis-
crete Fourier transforms, such as the DFT or the DTFT, we can obtain a description
of the signal in terms of its frequency content. Then, in order to decide whether one
or another frequency is present in the time-domain signal, we examine the frequency-
domain representation for significant values at certain frequencies. But what consti-
tutes a significant value? We can threshold signals in the frequency domain, just as we
did in the time domain in Chapter 4. But, again, how do we set the threshold for what
constitutes a significant frequency component? Parseval’s theorem tells us that we
can look for a sufficient portion of the signal’s energy within a frequency range. We
know that the overall frequency-domain energy is proportional to the overall time-
domain energy, and the time-domain energy is computable from the signal values.
Thus, we can select a threshold for the frequency domain based on some percentage
of time-domain energy. Since we know that the total frequency domain energy is pro-
portional to time-domain energy, we do not even have to examine other bands once
the threshold is exceeded in some range of frequencies.

As with the DFT, there are a variety of DTFT symmetry properties. At this stage
in our exposition, these are routine, and we leave them as exercises. The next sec-
tion covers a property of the DTFT that applies to linear, translation-invariant sys-
tems. It turns out that with the DTFT, we can show that LTI systems have a very
benign effect on exponential signals.

7.2.3 LTI Systems and the DTFT

Let us return to the idea of a discrete, linear, translation-invariant system. We intro-
duced discrete LTI systems in the second chapter, and there we showed that LTI sys-
tems are characterized by the convolution relation. The system output, y = Hx, is the
convolution of the input with a fixed signal, y = h ∗ x, where h = Hδ. The discrete
signal h(n) is called the impulse response of the LTI system H. There is a close,
important relationship between LTI systems and the DTFT.

Recall that an eigenvector for a finite-dimensional linear map, T, is a vector v for
which Tv = av, for some constant a. Similarly, we can define an eigenfunction for a
system, to be a signal for which y = Hx = ax, for some constant value a.

Theorem (Eigenfunctions of LTI Systems). If H is an LTI system, y = Hx, where
x(n) = exp( jωn), then x(n) is an eigenfunction of the system H.

Proof: By the Convolution Theorem for LTI systems, we have

(7.88)

where H(ω) is the DTFT of h(n). ■
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The theorem inspires the following definition.

Definition (Frequency Response of LTI Systems). If H is an LTI system, and
h = Hδ, is the impulse response of H, then H(ω), the DTFT of h(n), is called the
frequency response of H.

Note that we have a notational conflict, in that we are using the uppercase H to
denote both the LTI system and its frequency response. Of course, writing the fre-
quency response as a function of ω helps to distinguish the two. The context usually
makes clear which is the system and which is the frequency-domain representation
of the impulse response. So we persist in using the notation, which is a widespread
signal theory convention.

It is the behavior of H(ω) as a function of ω that determines how an LTI
system, H, affects the frequencies within a discrete signal. The Eigenfunctions
Theorem showed that if x(n) = exp( jωn) is an exponential signal, and y = Hx, then
y(n) = x(n)H(ω). So the magnitude of the output, |y(n)|, is proportional to the mag-
nitude of the input, |x(n)|, and the constant of proportionality is |H(ω)|. Thus, if
|H(ω)| is small, then the system suppresses exponential signals of radial frequency
w. And if |H(ω)| is large, then H passes exponentials exp( jωn). What is meant,
however, by the “frequencies within a discrete signal?” If the input signal consists
of a pure exponential, x(n) = exp( jωn) = cos(ωn) + jsin(ωn), of frequency ω radi-
ans/second, then the frequency component within the signal is the exponential. It
consists of a real and an imaginary sinusoidal component. And, by the theorem,
the system’s frequency response determines how the system affects the frequency
components of x(n). Furthermore, suppose the input signal consists of a sum of
scaled exponentials,

(7.89)

By linearity we have

(7.90)

Thus, the output consists of the sum of x(n)’s frequency components, each further
attenuated or amplified by its corresponding value, H(ωk). But is it still correct to
refer to a general signal’s frequency components?
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Within certain classes of aperiodic signals, it is indeed possible to approximate
them arbitrarily well with sums of exponentials, such as in (7.89). If we can show
this, then this justifies the above characterization of the frequency response as
admitting and suppressing the various frequency components within a signal (7.90).
Let us state our desired result as a theorem.

Theorem (Frequency Components of Aperiodic Signals). Let the signal x(n)
have DTFT X(ω). If x(n) is absolutely summable or square-summable, then it can be
approximated arbitrarily well by linear combinations of exponential signals of the
form {exp( jnω) : ω = π(2m − M)/M for some m, 0 < m < M − 1, 1 < M}.

Proof: The key idea is to approximate the synthesis equation integral representa-
tion for x(n) in terms of X(ω):

(7.91)

The trapezoidal rule approximates x(n) by dividing the interval [−π, π] into N > 0 seg-
ments of equal width, 2π/N, and summing the areas of the trapezoidal regions. Let
y(n, ω) = X(ω)exp(jωn). Then, y(n, −π) = y(n, π), and after some simplification, we get

Since (7.92) is a linear combination of terms of the form Amexp(jnω), where Am is a
constant, and ω = π(2m − M)/M, the proof is complete. ■

Now, it is possible to investigate the effect an LTI system H, where h = Hδ, has on
an aperiodic input signal x(n). We first closely approximate x(n) by a linear combi-
nation of exponential terms, exp( jnω), ω = π(2m − M)/M, as given by the Frequency
Components Theorem. By the Eigenfunctions Theorem, the various component expo-
nential terms scale according to the value of the DTFT of h(n), H(ω):

(7.93)
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Depending on the value of H(ωm) at various values of ωm, then, the frequency com-
ponents of x(n) are attenuated or amplified by the LTI system H.

Example (Perfect High-Frequency Attenuation System). Let us explore a sys-
tem H that removes all frequency components above a certain fixed radial frequency,
ωc, from a discrete aperiodic signal, x(n). There is a practical need for such systems.
They remove noise from signals prior to segmentation and classification, as we noted
in Chapter 4. If the time-domain filter h(n) removes all frequency components above
ωc, the DTFT of h(n), H(ω), must be zero for |ω| > |ωc|, as Figure 7.15 shows. We can
compute h(n) for the square pulse in Fig. 7.15(a) as follows.

(7.94)

However flawless it may be in the frequency domain, as a time-domain noise
removal filter, h(n) is quite imperfect. Two fundamental problems render it physi-
cally impossible to implement:

• It has infinite support.

• The system H is non causal: h(n) = 0 for n < 0.

The first point means that we can never finish the convolution sum necessary to cal-
culate the output y = Hx. Of course, we can come very close to approximating the

Fig. 7.15. Perfect high-frequency removal. The system with impulse response h(n) and
DTFT H(ω) will remove all frequencies above ωc if H(ω) = 0 for |ω| > ωc. We also expect
that H will perfectly preserve frequencies within the range [−ωc, ωc]; in other words, if |ω| ≤
ωc, then H(ω) = 1. Thus, H(ω) resembles a square pulse centered in [−π, π], as in panel (a).
Here, ωc = π/2. The time-domain sinc signal in (b) gives rise to such a frequency-domain
representation.
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perfect filter output by prolonging the summation until further terms are negligible.
But worse is the non causality. This implies that computing the convolution y = h ∗
x requires future values of the input signal x(n). In the next chapter we shall uncover
filter design techniques that avoid these problems.

7.3 THE SAMPLING THEOREM

Presentations of signal theory throughout the text have alternated between analog
developments and discrete developments. We have worked either in the analog
world or in the discrete world. Sampling an analog signal at regular intervals pro-
duces a discrete signal, but so far nothing has been proffered as an interconnection
between the analog source and the discrete result. However, now have the theoreti-
cal tools in hand to effect a unification of the two realms of signal theory. The unifi-
cation takes place using not time domain methods, but rather frequency-domain
methods. Perhaps this is not so unexpected. After all, we noted that the discrete-
time Fourier transform very much resembles the analog Fourier series and that there
is a Hilbert space isomorphism between the analog space L2[−π, π] (or, more pre-
cisely, its equivalence classes of signals equal almost everywhere) and the discrete
space l2.

7.3.1 Band-Limited Signals

One of the key ideas in linking the analog and discrete worlds is the notion of a
bandlimited analog signal. This means, informally, that the frequency-domain rep-
resentation of the signal has finite support. Physically, this is a realistic assumption,
as no physical signal can have frequency components that go arbitrarily high in fre-
quency. Nature can only shake so fast.

Definition (Band-Limited Signal). An analog signal x(t) is band-limited if its
Fourier transform, X(ω), exists and has finite support.

To discover the connection to band-limited signals, let us consider anew the
operation of sampling an analog signal. If x(t) is a continuous, absolutely integrable
analog signal and T > 0, then it may be sampled at intervals T to produce the
discrete signal s(n) = x(nT). Let us suppose that s(n) ∈ l1 so that the DTFT
sum converges uniformly to S(ω),

(7.95)

and, hence, that s(n) is represented by the DTFT synthesis equation,

(7.96)
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Because x(t) ∈ L1, x(t) is represented by the FT’s synthesis equation,

(7.97)

where X(ω) is the radial Fourier transform of x(t). Since s(n) = x(nT), we get another
representation of s(n):

(7.98)

Now we have a derivation of the discrete signal values from both a discrete fre-
quency representation (7.96) and from an analog frequency representation (7.98).
The observation is both easy and important. (The reason that we did not take note of
this earlier is that only now do we have Fourier and inverse Fourier transforms for
both analog and discrete signals!) The key to discovering the hidden bond between
the analog and discrete signal domains lies in finding mathematical similarities in
the integrands of the DTFT and FT synthesis equations.

Connecting the two integrands in (7.96) and (7.98) involves both the sampling
interval, T, and the bandwidth of the original analog signal, x(t). Since the IFT inte-
gral (7.98) has infinite limits, and the IDTFT integral has finite limits, the prospects
for relating the two integrands seem dim. Note, however, that if the FT of x(t) is
band-limited, then the nonzero values of X(ω) are confined to an interval, [−b, +b],
where b > 0. The FT integral representation of s(n) becomes

(7.99)

A change of integration variable, θ = ωT, converts (7.99) into the form

(7.100)

Now, if the interval [−bT, bT] ⊆ [−π, π], then the integrals (7.96) and (7.100)
are comparable. Suppose we choose T small enough so that this is true; we space
the discrete samples of x(t) so close together that bT < π. Since X(θ/T) is zero out-
side [−bT, bT],

(7.101)

(Observe carefully that none of this analysis would be valid without x(t) being band-
limited.) Now there are two different representations of the discrete signal x(n): one
(7.96) dependent on S(ω), the DTFT of s(n), and another (7.101) dependent on a
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scaled, amplified portion of the FT of x(t): T −1X(θ/T ). We know that the DTFT is
unique, since it is invertible, and therefore we have S(ω) = T −1X(ω/T).

Let us summarize. If the analog signal, x(t), is band-limited, then a sufficiently
high sampling rate, T, guarantees that the DTFT of s(n) = x(nT) and the (scaled,
amplified) FT of x(t) are equal.

In principle, this fact allows us to reconstruct x(t) from its discrete samples. Sup-
pose, again, that s(n) = x(nT) and that T is so small that bT < π, where X(ω) is zero
outside [−b, b]. From the samples, s(n), we compute the DTFT, S(ω). Now, by the
preceding considerations, S(ω) = T −1X(ω/T); in other words, TS(ωΤ) = X(ω). Now
we can compute x(t) as the IFT of X(ω). So, indeed, the samples of a band-limited
analog signal can be chosen close enough together that the original signal can be
recovered from the samples.

The next section we will give this abstract observation some practical value.

7.3.2 Recovering Analog Signals from Their Samples

Now let us work toward a precise characterization of the conditions under which an
analog signal is recoverable by discrete samples. One outcome of this will be an elu-
cidation of the concept of aliasing, which occurs when the conditions for ideal
reconstruction are not completely met.

In the previous section we studied the relationship between the DTFT and the FT
for band-limited signals x(t) and discrete signals s(n) = x(nT), T > 0. The next theo-
rem relaxes the assumption that x(t) is band-limited.

Theorem (DTFT and FT). Suppose that x(t) ∈ L1 is an analog signal, T > 0, and
s(n) = x(nT). If s(n) ∈ l1 so that the DTFT sum converges uniformly to S(ω), then

. (7.102)

Proof: Continuing the development of the previous section, we set θ = ωT for a
change of integration variable:

(7.103)

Let Y(θ) = T −1X(θ/T). Then,

(7.104)

If we assume that x(t) is band-limited, then X—and hence Y—have finite support;
this reduces (7.104) to a finite integral as in the previous section. Let us not assume
here that x(t) is band-limited and instead investigate how (7.104) can be written as a

1 2
( )

k

k
S X

T T

+∞

= −∞

ω + π ω =   
∑

1 1
( ) ( ) ( )exp( ) exp( ) .

2 2
s n x nT X j nT d X j n d

T T

+∞ +∞

−∞ −∞

θ = = ω ω ω = θ θ π π  
∫ ∫

1 1
( ) ( ) ( )exp( ) ( )exp( ) .

2 2
s n x nT X j nT d Y j n d

+∞ +∞

−∞ −∞
= = ω ω ω = θ θ θ

π π∫ ∫



THE SAMPLING THEOREM 541

sum of finite integrals. Indeed, we can break (7.104) up into 2π-wide chunks as
follows:

(7.105)

The insight behind this is that the chunk of Y(θ) corresponding to k = 0 should look
like S(ω) on [−π, π], and the others, corresponding to k = 0, should be negligible if T
is small and x(t) is approximately band-limited. Now set φ = θ − 2πk to get

(7.106)

The interchange of the order of the summation and the integration is allowable,
because the sum converges uniformly to Y(θ) on R. Now we have (7.106) in the
form of the DTFT synthesis equation (7.96) for s(n):

(7.107)

Since the DTFT is invertible, together (7.107) entails

(7.108)

as desired. ■

Equation (7.108) shows that S(ω), the DTFT of s(n), is the sum of an infinite
number of copies of Y(ω), each translated by 2πk (Figure 7.16). Note that the sum of
shifted copies of Y(ω) is 2π-periodic. The situation of interest is when there is no
overlap in the shifted Y(ω) components in Figure 7.16. In this case, Y(ω) resembles
a single period of the DTFT of s(n), S(ω). We may recover x(t) from the discrete
samples, because we then know that X(ω) = TY(Tω), and x(t) derives from X(ω) via
the FT synthesis equation. What criteria are necessary for there to be no overlap of
the shifted versions of Y(ω)? The famous Shannon–Nyquist theorem answers this
question.

Theorem (Shannon–Nyquist Sampling Theorem). Suppose that x(t) ∈ L1 is an
analog signal, T > 0, and s(n) = x(nT). If s(n) ∈ l1, so that the DTFT sum converges
uniformly to S(ω), then x(t) may be recovered from the samples s(n) if 
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• x(t) is band-limited. 

• The sampling frequency F = T −1 > 2Fmax, where |X(ω)| = 0 for ω > 2πFmax.

Proof: We deduce a series of equivalent criteria that prevent overlap. Now, since the
difference between two translates is 2π, no overlap occurs when all of the nonzero val-
ues of Y(ω) lie within [−π, π]. Thus, Y(ω) = 0 for |ω| > b > 0, for some b < π. This means
that X(ω) = 0 for |ω| > |b/T|, since Y(ω) = T −1X(ω/T). Equivalently, for no overlap, it
must be the case that x(t) is band-limited, and its nonzero spectral values within [−π/
T, π/T]. Let 0 < B be the least upper bound of {ω : X(ω) > 0 or X(−ω) > 0}. Then B <
π/T. But, B is measured in radians per second, and to give it in hertz we need to use
the radians-to-hertz conversion formula, ω = 2πf. Thus, the criterion for no overlap
becomes 2πFmax < π/T, where Fmax is the maximum frequency component of x(t) in
hertz, and T is the sampling period s(n) = x(nT). Finally, this means precisely that
2Fmax < 1/T = F. ■

 When the analog signal x(t) is not band-limited, aliasing is inevitable, because
the shifted versions of Y(ω) must overlap. When x(t) is band-limited and the sam-
pling interval is too large, the shifted versions of Y(ω) overlap with one another and
in their summation produce artifacts that are not part of the shape of the true analog
spectrum of x(t). Figure 7.17 illustrates a situation with aliasing.

These results motivate the following definition [3].

Definition (Nyquist Rate). If a signal x(t) is band-limited, then its Nyquist rate is
F = 2Fmax, where Fmax is the least upper bound of values ω, where |X(ω)| ≠ 0.

Thus, sampling at intervals T such that 1/T is above the Nyquist rate permits per-
fect reconstruction of the analog signal x(t) from its discrete samples, s(n) = x(nT).

2π

S(ω)

ω

ω

Y(ω)

Fig. 7.16. S(ω) is the sum of shifted copies of Y(ω). If Y decays quickly in the frequency
domain, then its translated copies overlap only slightly or not at all.
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We now know, in principle, the conditions under which an analog signal may be
reconstructed from its discrete samples. The next two sections limn out the theory
of sampling. Section 7.3.3 provides an elegant reconstruction formula; it shows how
to rebuild the analog signal from a simple set of interpolating signals. Section 7.3.4
casts a shadow on all these proceedings, however. A central result, the Uncertainty
Principle, informs us that a signal with good frequency-domain behavior (as regards
sampling and reconstruction) must have poor time-domain characteristics.

7.3.3 Reconstruction

The next theorem gives a formula for reconstructing, or interpolating, an analog sig-
nal from its samples. The conditions discovered above for ideal reconstruction must
apply, of course. And there are some qualifications to this result that should be kept
in mind:

• It assumes that perfect discrete samples are obtained in the sampling operation.

• The interpolating signals are not finitely supported.

• There are an infinite number of signals that must be summed to achieve perfect
reconstruction.

Clearly, there are practical concerns with implementing analog signal reconstruc-
tion using this method. The reconstruction derives from evaluating the Fourier
transform synthesis equation integral over a single period of the DTFT of s(n), the
signal samples. 

2π ω

ω

S(ω)

Y(ω)

Fig. 7.17. Aliasing occurs when the shifted copies of Y(ω) overlap. In this situation, a single
period of the spectrum of s(n), S(ω), is not an exact replica of X(ω). High frequency compo-
nents are added into some of the low frequency components. The result is that the recon-
structed analog signal does not equal the original time domain signal, x(t).
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Theorem (Shannon–Nyquist Interpolation Formula). Suppose that x(t) ∈ L1 is
an analog signal, T > 0, and s(n) = x(nT). Let s(n) ∈ l1 so that the DTFT sum con-
verges uniformly to S(ω). Also, let 2Fmax < F = 1/T, where Fmax is the maximum
frequency component of x(t) in hertz. Then x(t) may be recovered from s(n) by the
following sum:

(7.109)

Proof: The criterion for reconstruction applies, x(t) is band-limited, and we find
x(t) from the IFT integral:

(7.110)

Now, the DTFT of s(n) is given by (7.108) for all ω ∈ R, and (because there is no
overlap of the shifted versions of the Fourier transform) for ω ∈ [−π/T, π/T], we
have TS(ω) = X(ω/T), whence

(7.111)

Inserting the DTFT analysis equation sum for S(Tω) in (7.111) and interchanging
integration and summation gives

 (7.112)

The last definite integral evaluates to a sinc signal:

 (7.113)

and the proof is complete. ■
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Another way to interpret this result is to note that, for a given sampling interval
T, the set of the analog sinc functions, sinc(πt/T − πn), span the space of band-
limited signals.

7.3.4 Uncertainty Principle

The concept of a band-limited signal demands further scrutiny. If it was not at the
beginning of this discussion, it is certainly clear now how important band-limited
signals are for signal processing. Whenever the motivation is to cast an analog sig-
nal in digital form and reproduce it—perhaps with some intermediate processing
steps applied—then a major consideration is how well discrete samples can repre-
sent the original signal. Technologies such as compact disc players succeed or fail
based on whether they can sample signals fast enough to beat the Nyquist rate. In
analyzing a signal, we also begin with a real-world—analog—signal; then we sam-
ple it, process it, and load it into a computer. In the computer, software algorithms
build a structural description of the signal and then attempt to classify, identify, and
recognize the signal or its fragments. Admittedly, the algorithms may destroy the
original form of the signal. But the representation by the interpolation formula is
useful, since the coefficients of the expansion indicate a certain signal similarity to
the interpolating sinc functions. These may be a basis for classification. And this
whole classification procedure gets started with an observation that the source ana-
log signals enjoy a strict limitation on the extent of their frequency content.

This does beg the question, How common are band-limited signals? A signal,
x(t), is band-limited when X(ω) = F [x(t)] has finite support. If the signal is band-
limited, but still has high-frequency components, then a proportionately higher sam-
pling frequency is necessary for ideal signal reconstruction. So, in general, we seek
signals whose spectral values are concentrated, or localized, about the origin, ω = 0.
We confess that real signals—be they analog or discrete—do not continue unabated
forever in the time domain; they must eventually die out. And for practical reasons,
such as available memory in a signal analysis system, this time-domain locality is
an important consideration. But can we also expect good frequency-domain behav-
ior from finitely supported analog signals?

It is easy to see that a nonzero signal cannot be finitely supported in both
domains, because if x(t) and X(ω) have finite support, then x(t) = x(t)[u(t + a) − u(t −
a)] for some a > 0. The FT of x(t) is therefore the convolution of the FT of x(t) and
the analog boxcar signal b(t) = u(t + a) − u(t − a). But B(ω) is a sinc-type function,
and since X(ω) is nonzero, the convolution of the two in the frequency domain does
not have finite support, a contradiction.

Let us state and prove another famous result, the Uncertainty Principle, which
shows that there is an insurmountable tradeoff between frequency-domain locality
and time-domain locality. First, however, we need to define the concept of the local-
ity of a signal in the time and frequency domains. We invoke concepts from statis-
tics; namely, the locality of a signal is associated with the second moment, or the
variance, of its values.



546 DISCRETE FOURIER TRANSFORMS

Definition (Time- and Frequency-Domain Locality). The time-domain locality
of a signal x(t) is

(7.114a)

and its frequency-domain locality is

(7.114b)

The uncertainty principle holds for signals that decay faster than the reciprocal
square root signal. This is necessary for the convergence of the second-order
moment integral.

Theorem (Uncertainty Principle). Suppose that x(t) is an analog signal, ||x||2 = 1,
and x2(t)t → 0 as t → ∞. Then

(7.115)

Proof: The idea is to apply the analog Cauchy–Schwarz inequality to tx(t)x′(t):

(7.116)

Now, x′(t) has radial FT jωX(ω), so the analog version of Parseval’s formula
(Chapter 5) implies that

(7.117)

Hence,

(7.118)
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The integral in (7.118) is our focus; using the chain rule on its integrand and then
integrating it by parts gives

(7.119)

Now, x2(t)t → 0 as t → ∞ and ||x||2 = 1 imply

(7.120)

Hence, from (7.118),

(7.121)

from which (7.115) follows. ■

In the exercises, it is shown that the Gaussian signal achieves this lower bound in
the product of joint time- and frequency- domain locality.

Thinking about the Fourier transform and the Uncertainty Principle, we can
understand how poor is its joint locality. Allowing that we may Fourier transform
signals of slow decay (Chapter 6) using the generalized FT, the FT of a sinusoid is a
pair of pulses in the frequency domain. Also, the FT of a pulse δ(t) is the constant
ω = 1. Thus, signals with extreme locality in one domain transform into signals with
no locality whatsoever in the other domain. We will discover the problems that this
lack of joint locality causes when we work through frequency-domain applications
in Chapter 9. Chapters 10 and 11 develop transformation theories—very modern
theories, it turns out—that furnish good local time and frequency decompositions of
signals. Finally, in the last chapter, we apply these short-time Fourier and wavelet
transforms to signal analysis problems.

7.4 SUMMARY

The detailed investigation and intense interest in discrete frequency transforms is a
relatively recent phenomenon, and this is an altogether curious circumstance in
view of the very tractable nature of the mathematical underpinnings. Analog
theory—as some readers now just catching their breath would doubtlessly urge—is
much more difficult. Historically, discrete frequency transforms have been explored
since the time of Gauss, but it is only with the development of digital computers that
the fast computational methods have attracted wide interest and investigation.
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Most of the exercises are basic problems that reinforce the concepts developed in
the text. The next chapter considers an extension of the DTFT, called the z-trans-
form. Chapter 9 considers applications of frequency-domain analysis to signal
interpretation problems.
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PROBLEMS

1. 1.For each of the following signals, x(n), and intervals, [0, N − 1], find the
discrete Fourier transform (DFT), X(k):

(a) x(n) = cos(πn/3) on [0, 5]

(b) x(n) = sin(πn/3) on [0, 5]

(c) x(n) = cos(πn/3) on [0, 11]

(d) x(n) = 3sin(πn/3) + cos(4πn/3) on [0, 11]

(e) x(n) = exp(4πn/5) on [0, 9]

(f) x(n) = cos(2πn/5 + π/4) on [0, 4]

2. Let X = Fx be the system that accepts a signal of period N > 0 at its input and
outputs the DFT of x.

(a) Show that the system F  is linear.  That is, suppose that discrete signals x(n)
and y(n) both have period N > 0.  Show that the DFT of s(n) = x(n) + y(n) is
S(k) = X(k) + Y(k), where X(k) and Y(k) are the DFTs of x(n) and y(n),
respectively.

(b) Show that the system F  is not translation-invariant.

3. We may apply either the DFT or IDFT equation to transform a signal x(n).
Suppose that x(n) has period N > 0.

(a) Show that the DFT and the IDFT of x(n) both have period N.

(b) Show that if X(k) is the DFT of x(n), then the DFT of X(k) is Nx(−k).

4. Suppose the discrete signal, x(n), has support on the finite interval, [0, N −1],
where N > 0.  

(a) Show that the signal xp(n) defined by

(7.122)

is periodic with period N and is identical to x(n) on [0, N − 1].

(b) Suppose we perform the DFT analysis equation calculation for x(n)’s val-
ues on [0, N − 1], giving X(0), X(1), ... , X(N − 1).  Then define y(n) = (1/
N)[X(0) + X(1)e2πjkn/N + ⋅⋅⋅ + X(N − 1)e2πj(N−1)n/N.  Show that y(n) = xp(n)
for all n.

5. Some of the first examples in this chapter showed that the delta signal δ(n) has
DFT ∆(k) = 1, and the signal signal x(n) = [1, 1, 1, 1, 0, 0, 0, 0] has DFT X(k) =
[4, 1 − (1 + √2)j, 0, 1 − ( √2 − 1)j, 0, 1 + (√2 − 1)j, 0, 1 + (1 + √2)j] on the inter-
val [0, 7]. Find the DFT of the following signals, using only the properties of
the DFT and without explicitly computing the DFT analysis equation’s summa-
tion of products.

(a) y(n) = x(n − 1) = [0, 1, 1, 1, 1, 0, 0, 0]

(b) y(n − k) for some 0 < k < 8

( ) ( )p
k

x n x n kN
∞

= −∞
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(c) y(n) = x(n) + δ(n) = [2, 1, 1, 1, 0, 0, 0, 0]

(d) y(n) = x(n) + δ(n − 3)

6. Prove the Convolution in Frequency Theorem. That is, let x(n) and y(n) be peri-
odic signals with period N > 0; let X(k) and Y(k) be their DFTs; and let z(n) =
x(n)y(n), the termwise product of x and y. Show that the DFT of z(n) is Z(k) =
(1/N)X(k)∗Y(k), where X(k)∗Y(k) is the discrete convolution of X(k) and Y(k).

7. Let signal x(n) be real-valued with period N > 0, and let X(k) be its DFT. Prove
the following symmetry properties:

(a) Re[X(k)] = Re[X*(N − k)] = Re[X*(−k)]

(b) Im[X(k)] = −Im[X*(N − k)]

(c) |X(k)| = |X(N − k)|

(d) arg(X(k)) = −arg(X(n − k)).

8. Suppose the DTFT, X(ω), of the signal x(n) exists. Show that X(ω) is periodic
with period 2π.

9. Suppose that H is a linear, translation-invariant (LTI) system, and let h(n) be its
impulse response.

(a) Suppose H is a finite impulse response (FIR) system. Show that the DTFT
of h(n), H(ω), exists.

(b) Suppose H is stable: if x(n) is bounded, then y = Hx is also bounded. Show
that H(ω) exists.

10. Consider the two Hilbert spaces, l2 and L2[a, b], where a < b. (Consider two
signals in L2[a, b] to be the same if they are equal except on a set of Lebesgue
measure zero.)

(a) Show that there is an isomorphism between the discrete Hilbert space l2

and the analog Hilbert space L2[a, b].

(b) Give an explicit definition of a mapping, G, between them that effects the
isomorphism.

(c) The shifted impulses {u(n − k): k ∈ Z} constitute an orthogonal basis set for
l2; find, therefore, their image under G and show that it is an orthogonal
basis as well.

(d) Are the exponential signals {exp( jωn): k ∈ Z} an orthogonal basis set for
L2[a, b]? Explain.

11. Derive the following properties of the Dirichlet kernel, DN(θ).

(a) Use the properties of the exponential function exp( jθn) to show

(b) Use the closed-form expression for the partial geometric series summation
to show

1
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(c) Use (a) to prove

(d) From (b), show that DN(θ) has its first two zero crossings at the points θN =
±π/(N + 1/2). What is DN(0)?

(e) Use (b) to sketch DN(θ) for various values of N. Explain how DN(θ) may be
considered as the high-frequency sinusoid sin(Nθ + θ/2) bounded above by
the cosecant envelope [csc(θ/2)]/(2π) and below by −[csc(θ/2)]/(2π).

12. Consider the mapping F that takes x(n) ∈ l2 to X(ω) ∈ L2[−π, π], where X(ω) is
the DTFT of x(n). Show that F is linear, but not quite an isomorphism. Explain
how to modify F so that it becomes a Hilbert space isomorphism.

13. Find the DTFT of the following signals.

(a) ek(n) = δ(n − k)

(b) b(n) = [1, 1, 1, 1, 1, 1, 1]

(c) a(n) = b(n) + e2(n) + 4e−3(n)

(d) s(n) = (1/3)nu(n)

(e) x(n) = (5)nu(2 − n)

(f) h(n) = s(n) + 4b(n)

(g) y(n) = (x∗h)(n)

14. Find the IDTFT of the following signals.

(a) Ek(ω) = exp(jωk)

(b) S(ω) = 3sin(−7jω)

(c) C(ω) = 2cos(3jω)

(d) P(ω) = S(ω)C(ω)

15. Let x(n) and y(n) be discrete signals and X(ω) and Y(ω) be their respective
DTFTs. Then show the following linearity, time shift, frequency shift, and time
reverse properties:

(a) The DTFT of ax(n) + by(n) is aX(ω) + bY(ω).

(b) The DTFT of x(n − m) is exp(−jωm)X(ω).

(c) The IDTFT of X(ω − θ) is exp(−jθn)x(n).

(d) The DTFT of x(−n) is X(−ω).
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16. Let the signal x(n) be real-valued and let X(ω) be its DTFT. If z ∈ C, then let z*
be the complex conjugate of z, let Real(z) be its real part, let Imag(z) be its
imaginary part, and let arg(z) = tan−1[Imag(z)/Real(z)] be the argument of z.
Prove the following symmetry properties:

(a) Real(X(ω)) = Real(X(−ω))

(b) −Imag(X(ω)) = Imag(X(−ω))

(c) X(ω) = X*(−ω)

(d) |X(ω)| = |X(−ω)|

(e) arg(X(ω)) = −arg(X(−ω))

17. Let the signal x(n) be real-valued and X(ω) be its DTFT. If xe(n) = [x(n) +
x(−n)]/2 is the even part of x(n), and xo(n) = [x(n) − x(−n)]/2 is the odd part
of x(n), then find

(a) The DTFT of xe(n)

(b) The DTFT of xo(n)

18. Let the signal x(n) be real-valued and let X(ω) be its DTFT. Show the following
symmetry properties, which use the notation of the previous two problems:

(a) The DTFT of x*(n) is X*(−ω), and the DTFT of x*(−n) is X*(ω).

(b) The DTFT of xe(n) is Real(X(ω)), and the DTFT of xo(n) is j[Imag(X(ω))].

(c) The DTFT of Real(X(n)) is Xe(ω), and the DTFT of j[Imag(X(n))] is Xo(ω).

19. We know that the perfect high-frequency removal (low-pass) filter has impulse
response

(a) Consider the discrete system whose frequency response, G(ω), is unity for
|ω| > ωc and zero otherwise. Explain why G may be considered a perfect
high-pass filter. Find the time-domain filter, g(n), corresponding to G(ω). Is
g(n) physically implementable? Explain.

(b) Consider the discrete system whose frequency response, P(ω), is unity for
ωh ≥ |ω| ≥ ωl and zero otherwise. Explain the description of P as being an
ideal bandpass filter. Find the time-domain filter, g(n), corresponding to
G(ω). Is g(n) physically implementable? Explain.

(c) If h(n) is an ideal time-domain low-pass filter, it is possible to approximate
it by a finitely supported filter by zeroing terms above n = N > 0. In signal
analysis applications, such as Chapter 4 considered, explain the possible
uses of such a filter. For what types of applications is this filter useful?
What applications are not served by this filter?

(d) Consider the questions in part (c) for perfect high-pass and bandpass filters.
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20. Analog signal x(t) has radial FT X(ω) shown below.

(a) What is the Nyquist rate for this signal in hertz?

(b) If s(n) = x(nT), where 1/T = F = 15 hertz, sketch the DTFT of s, S(ω).

(c) Sketch the radial FT of an ideal low-pass filter H such y = Hs is not aliased
when sampled at Fs = 15 hertz.

The remaining problems extend some of the ideas in the text.

21. Suppose we are given a formula for the DTFT of a discrete signal h(n): H(ω) =
P(ω)/Q(ω), where P and Q are both polynomials in ω. Develop two methods to
find h(n).

22. Show that a nonzero signal x(n) cannot be finitely supported in both the time
and frequency domains.

(a) Show that there is a k > 0 such that x(n) = x(n)[u(n + k) − u(n − k)] = x(n)b(n),
where u(n) is the discrete unit step signal.

(b) Find the discrete-time Fourier transform of b(n): B(ω).

(c) Apply the Convolution-in-Frequency Theorem to the product x(n)b(n) to
find an equivalent expression for X(ω).

(d) Derive a contradiction from the two expressions for X(ω).

23. Let g(t) = Aexp(−σt2). Use the conditions for equality in the analog Schwarz
inequality, and find constants A and σ so that

10π

2.0

|X(ω)|

ω
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CHAPTER 8

The z-Transform

The z-transform generalizes the discrete-time Fourier transform. It extends the
domain of the DTFT of x(n), the periodic analog signal X(ω), which is defined for
ω ∈ R, to a function defined on z ∈ C, the complex plane.

The motivations for introducing the z-transform are diverse:

• It puts the powerful tools of complex analysis at our disposal.

• There are possibilities for analyzing signals for which the DTFT analysis
equation does not converge.

• It allows us to study linear, translation-invariant systems for which the frequency
response does not exist.

• Some specialized operations such as signal subsampling and upsampling are
amenable to z-transform techniques.

• It provides a compact notation, convenient for describing a variety of systems
and their properties.

Having listed these z-transform benefits, we hasten to add that very often a series of
z-transform manipulations concludes with a simple restriction of the transform to
the DTFT. So we will not be forgetting the DTFT; on the contrary, it is the basic tool
that we will be using for the spectral analysis of aperiodic discrete signals for the
remainder of the book.

The development of z-transform theory proceeds along lines similar to those
used in Chapter 7 for the DTFT. Many of the proofs of z-transform properties, for
example, are very like the corresponding derivations for the DTFT. We often leave
these results as exercises, and by now the reader should find them straightforward.
This is a short chapter. It serves as a bridge between the previous chapter’s theoreti-
cal treatment of discrete Fourier transforms and the diverse applications—espe-
cially filter design techniques—covered in Chapter 9.

Texts on systems theory introduce the z-transform and its analog world cousin,
the Laplace transform [1, 2]. Books on digital signal processing [3–7] cover the
z-transform in more detail. Explanations of the transform as a discrete filter design
tool may also be found in treatments oriented to specific applications [8–10]. The
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z-transform was applied in control theory [11–13] long before it was considered for
the design of digital filters [14]. Specialized treatises include Refs. 15 and 16.

8.1 CONCEPTUAL FOUNDATIONS

The z-transform has a very elegant, abstract definition as a power series in a com-
plex variable. This power series is two-sided; it has both positive and negative
powers of z, in general. Furthermore, there may be an infinite number of terms in
the series in either the positive or negative direction. Like the DTFT, the theory of
the z-transform begins with an investigation of when this doubly-infinite summation
converges. Unlike the DTFT, however, the z-transform enlists a number of concepts
from complex analysis in order to develop its existence and inversion results. This
section introduces the z-transform, beginning with its abstract definition and then
considering some simple examples.

Readers may find it helpful to review the complex variables tutorial in Chapter 1
(Section 1.7) before proceeding with the z-transform. 

8.1.1 Definition and Basic Examples

The z-transform generalizes the DTFT to a function defined on complex numbers.
To do this, we replace the complex exponential in the DTFT’s definition with z ∈ C.
A simple change it is, but we shall nevertheless face some interesting convergence
issues. For our effort, we will find that many of the properties of the DTFT carry
through to the extended transform, and they provide us with tools for analyzing
signals and systems for which the DTFT is not well-suited.

Definition (z-Transform). If x(n) is a discrete signal and z ∈ C, then its z-transform,
X(z), is defined by

(8.1)

To avoid some notation conflicts, the fancy-z notation, X = Z(x), is often convenient
for writing the z-transform of x(n). The signal x(n) and the complex function X(z) are
called a z-transform pair. We also call (8.1) the z-transform analysis equation. Asso-
ciated with a z-transform pair is a region of convergence (the standard acronym is ROC):
ROCX = {z ∈ C: X(z) exists}. Sometimes as |z| gets large, the value X(z) approaches
a limit. In this case, it is convenient to indicate that ∞ ∈ ROCX. The notation C+ is useful
for the so-called extended complex plane: C augmented with a special element, ∞.

Let us postpone, for a moment, convergence questions pertaining to the z-transform
sum. Note that taking the restriction of complex variable z to the unit circle, z =
exp( jω), and inserting this in (8.1), gives the DTFT. The DTFT is the restriction of the
z-transform to the unit circle of the complex plane, |z| = 1: X[exp( jω)] = X(ω), where
the first ‘‘X’’ is the z-transform, and the second ‘‘X’’ is the DTFT of x(n), respectively.

There is another form of the z-transform that uses only the causal portion of a signal.
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Definition (One-sided z-Transform). If x(n) is a discrete signal and z ∈ C, then its
one sided z-transform, X+(z), is defined by

(8.2)

The one-sided, or unilateral, z-transform is important for the specialized problem of
solving linear, constant-coefficient difference equations. Typically, one is given dif-
ference equations and initial conditions at certain time instants. The task is to find
all the discrete signal solutions. The one-sided z-transform agrees with the standard
two-sided transform on signals x(n) = 0 for n < 0. The linearity property is the same,
but the shifting property differs. These ideas and an application are considered in
the problems at the end of the chapter. 

As with the DTFT, the infinite sum in the z-transform summation (8.1) poses
convergence questions. Of course, the sum exists whenever the signal x(n) has finite
support; the corresponding z-transform X(z) is a sum of powers (positive, zero, and
negative) of the complex variable z. Let us consider some elementary examples of
finding the z-transforms of discrete signals. Finding such z-transform pairs, x(n) and
X(z), is typically a matter of finding the z-transform of a signal y(n) which is similar
to x(n) and then applying the z-transform properties to arrive at X(z) from Y(z).

Example (Discrete Delta). Let us start simple by considering the discrete delta
signal, δ(n). For any z ∈ C, only the summand corresponding to n = 0 is nonzero in
(8.1), and thus ∆(z) = Z(δ)(z) = 1 for all z ∈ C.

Example (Square Pulse). Again, let us consider the impulse response of the mov-
ing average system, H. It has impulse response h(n) = [1, 1, 1, 1, 1]; in other words,
h(n) = 1 for −2 ≤ n ≤ 2, and h(n) = 0 otherwise. We write immediately

(8.3)

Note that H(z) exists for all z ∈ C, z ≠ 0. Thus, a signal, x(n), whose DTFT converges
for all ω ∈ R may have a z-transform, X(z), which does not converge for all z ∈ C. In
general, a finitely supported signal, x(n), that is nonzero for positive time instants will
not have a z-transform, X(z), which exists for z = 0.

Example (Causal Exponential Signal). Consider the signal x(n) = anu(n). We
calculate

(8.4)

where the geometric series sums in (8.4) to z/(z − a) provided that |a/z| < 1. Thus, we
have ROCX = {z ∈ C: |a/z| < 1} = {z ∈ C: |a| < |z|}. In other words, the region of
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convergence of the z-transform of x(n) = anu(n) is all complex numbers lying outside
the circle |z| = a. In particular, the unit step signal, u(n), has a z-transform, U(z) =
1/(1 − z−1). We may take a = 1 above and find thereby that ROCU = {z ∈ C: 1 < |z|}.

This example shows that a z-transform can exist for a signal that has no DTFT. If
|a| > 1 in the previous example, for instance, then the analysis equation for x(n) does
not converge. But the z-transform, X(z), does exist, as long as z lies outside the circle
|z| = a in the complex plane. Also, the ROC for this example was easy to discover,
thanks to the geometric series form taken by the z-transform sum. There is a com-
panion example, which we need to cover next. It illustrates the very important point
that the ROC can be the only distinguishing feature between the z-transforms of two
completely different signals.

Example (Anti-causal Exponential Signal). Consider the signal y(n) = −anu(−n −
1). Now we find

(8.5)

with the convergence criterion |z/a| < 1. In this case, we have ROCY = {z ∈ C: |z/a| <
1} = {z ∈ C: |z| < |a|}. The region of convergence of the z-transform of y(n) =
−anu(−n − 1) is all complex numbers lying inside the circle |z| = a.

The upshot is that we must always be careful to specify the region of conver-
gence of a signal’s z-transform. In other words, given one algebraic expression for
X(z), there may be multiple signals for which it is the z-transform; the deciding
factor then becomes the region of convergence.

8.1.2 Existence

Demonstrating the convergence of the z-transform for a particular signal makes use
of complex variable theory. In particular, the z-transform is a Laurent series [17, 18].

Definition (Power and Laurent Series). A complex power series is a sum of
scaled powers of the complex variable z:

(8.6)
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A Laurent series is a two-sided series of the form

(8.7)

where the an are (possibly complex) coefficients. (Most mathematics texts do not
use the negative exponent in the definition—their term zn has coefficient an; our
definition goes against the tradition so that its form more closely follows the defini-
tion of the z-transform.) One portion of the series consists of negative powers of z,
and the other part consists of non-negative powers of z. We say the Laurent series
(8.7) converges for some z ∈ C if both parts of the series converge.

Obviously, we are interested in the situation were the Laurent series coefficients
are the values of a discrete signal, x(n) = an. From complex variable theory, which
we introduced in the first chapter, the following results are relevant to Laurent series
convergence. We prove the first result for the special case where the z-transform of
x(n) contains only non-negative powers of z; that is, it is a conventional power series
in z. This will happen when x(n) = 0 for n > 0.

The next definition identifies upper and lower limit points within a sequence.

Definition (lim sup and lim inf). Let A = {an: 0 ≤ n < ∞}. Define AN = A \ {an: 0 ≤
n < N}, which is the set A after removing the first N elements. Let κN be the least
upper bound of AN. Then the limit, κ, of the sequence {κN: N > 0} is called the lim sup
of A, written

(8.8)

Similarly, if we let λN be the greatest lower bound of AN, then the limit of the
sequence {λN: N > 0} is called the lim inf 1 of A:

(8.9)

Sometimes a sequence of numbers does not have a limit, but there are convergent
subsequences within it. The lim sup is the largest limit of a convergent subsequence,
and the lim inf is the smallest limit of a convergent subsequence, respectively. The
sequence has a limit if the lim sup and the lim inf are equal. Readers with advanced
calculus and mathematical analysis background will find these ideas familiar [19–21].
We need the concept of the lim sup to state the next theorem. Offering a convergence
criterion for a power series, it is a step toward finding the ROC of a z-transform.

Theorem (Power Series Absolute Convergence). Suppose x(n) is a discrete
signal; its z-transform, X(z), has only non-negative powers of z,

(8.10)

1These are indeed the mathematical community’s standard terms. The lim sup of a sequence is pro-
nounced “lim soup,” and lim inf sounds just like its spelling.
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and

(8.11)

Then X(z) converges absolutely for all z with |z| < κ−1 and diverges for all |z| > κ−1.
(This allows A to be unbounded, in which case κ = ∞ and, loosely speaking, κ−1 = 0.)

Proof: Consider some z such that |z| < κ−1, and choose λ > κ so that λ−1 lies
between these two values: |z| < λ−1 < κ−1. Because κ = lim sup A, there is an N
such that |an|1/n < λ for all n > N. But this implies that |anzn| < |zλ|n for n > N. Since
|zλ| < 1 by the choice of λ, the power series (8.10) is bounded above by a convergent
geometric series. The series must therefore converge absolutely. We leave the
divergence case as an exercise. ■

Definition (Radius of Convergence). Let ρ = κ−1, where κ is given by (8.11) in
the Power Series Absolute Convergence Theorem. Then ρ is called the radius of
convergence of the complex power series (8.10).

Corollary (Power Series Uniform Convergence). Suppose x(n) is a discrete sig-
nal; its z-transform, X(z), has only non-negative powers of z as in the theorem
(8.10); and κ is defined as in (8.11). Then for any 0 < R < ρ = κ−1, X(z) converges
uniformly in the complex disk {z ∈ C: |z| < R < ρ = κ−1}.

Proof: For any disk of radius R, 0 < R < ρ , the proof of the theorem implies that
there is a convergent geometric series that bounds the power series (8.10). Since the
convergence of the dominating geometric series does not depend on z, the sum of
the series in z (8.10) can be made arbitrarily close to its limit independent of z. The
convergence is therefore uniform. ■

Corollary (Analyticity of the Power Series Limit). Again, if x(n) is a discrete
signal; its z-transform, X(z), has the form (8.10); and ρ = κ−1 is given by (8.11), then
X(z) is an analytic function, the derivative X'(z) = dX(z)/dz can be obtained by term-
wise differentiation of the power series (8.10), and ROCX = ROCdX/dz.

Proof: This proof was given already in Section 1.7, where we assumed the uniform
convergence of the power series. From the Uniform Convergence Corollary, we
know this to be the case within the radius of convergence, ρ; the result follows. ■

Finally, we consider the situation that most interests us, the Laurent series. The z-
transform assumes the form of a Laurent series. We have, in fact, already developed
the machinery we need to discover the region of convergence of a z-transform. We
apply the Power Series Convergence Theorems above for both parts of the Laurent
series: the negative and non-negative powers of z.

Theorem (z-Transform Region of Convergence). Let x(n) be a discrete signal
and let X(z) = X1(z) + X2(z) be its z-transform (which may be two-sided). Suppose
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X(z) = X1(z) + X2(z), where X2(z) consists on non-negative powers of z, and X1(z)
contains only negative powers of z. Then X(z) converges absolutely within an annu-
lus of the complex plane, ROCX = {z ∈ C: ρ1 < |z| < ρ2}, where ρ1 and ρ2 are the
radii of convergence of X1(z) and X2(z), respectively. The convergence of the
z-transform Laurent series is uniform within any closed annulus contained in
ROCX, and its limit, X(z) is analytic within this same closed annulus.

Proof: X(z)’s true power series portion, X2(z), converges inside some circle |z| = ρ2,
where ρ2 is the radius of convergence. The X1(z) portion of X(z) converts to power
series form by setting w = z−1. Then the radius of convergence may be found for the
power series Y(w) = X1(w−1) = X1(z). Y(w) converges inside some circle of radius
R1, say, which means X1(z) converges outside the circle ρ1 = 1/R1. The region
formed by intersecting the exterior of the circle |z| = ρ1 and the interior of the circle
|z| = ρ2 is the annulus we seek. ■

Example. Suppose x(n) is given as follows:

(8.12)

Let x1(n) = anu(n), where a = 1/3, and x2(n) = −bnu(−n − 1), where b = 4. Then
x(n) = x1(n) + x2(n). We have computed the z-transforms of signals of this form in
earlier examples. We have X(z) = X1(z) + X2(z), where X1(z) converges outside the
circle |z| = 1/3, and X2(z) converges inside the circle |z| = 4 (Figure 8.1).
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Fig. 8.1. The region of convergence of the z-transform of x(n) = 3−nu(n) − 4nu(−n−1) is an open
annulus in the complex plane. The causal portion of x(n) produces a power series in z−1, which
converges outside the circle |z| = 1/3. The anti-causal part of x(n) produces a power series in z,
which converges inside the circle |z|= 4.
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Let us now turn to the basic properties of the z-transform. The above example
made tacit use of the linearity property. The z-transform properties we cover resem-
ble very closely those of our previously studied transforms, especially the DTFT.
One subtlety is the region of convergence, which we must account for during alge-
braic and analytic operations on the transformed signals.

8.1.3 Properties

The properties of the z-transform closely resemble those of the discrete transform
that it generalizes—the discrete-time Fourier transform. With the z-transform, there
is a twist, however; now the region of convergence of the transform figures promi-
nently in validating the properties. We divide this section’s results into two catego-
ries: basic properties and those that rely on the principles of contour integration in
the complex plane.

8.1.3.1 Basic Properties. This theorems herein are much like those we devel-
oped for the DTFT. Their proofs are also similar, involve familiar methods, and we
leave them as exercises for the most part. One caveat in dealing with the z-transform
is the region of convergence; one must always be careful to specify this annulus and
to consider the special cases of z = 0 and z = ∞.

Proposition (Linearity, Time Shift, Frequency Shift, and Time Reversal). Let
x(n) and y(n) be discrete signals and let X(z) and Y(z) be their z-transforms,
respectively. Then

(a) (Linearity) The z-transform of ax(n) + by(n) is aX(z) + bY(z), and its region
of convergence contains ROCX ∩ ROCY .

(b) (Time Shift) The z-transform of x(n − m) is z−mX(z), and its region of con-
vergence is ROCX, except, perhaps, that it may include or exclude the ori-
gin, z = 0, or the point at infinity, z = ∞;

(c) (Frequency Shift, or Time Modulation) Let a ∈ C. Then the z-transform of
anx(n) is Y(z) = X(z/a) with ROCY = |a|ROCX.

(d) (Time Reversal) If Z[x(n)] = X(z), and y(n) = x(−n), then Z[y(n)] = Y(z) =
X(z−1), with ROCY = {z ∈ C: z−1 ∈ ROCX}.

Proof: In (a), the formal linearity is clear, but it is only valid where both transforms
exist. If a ≠ 0, then the ROC of aX(z) is ROCX, and a similar condition applies to Y(z).
However, when the two transforms are added, cancellations of their respective terms
may occur. This expands the sum’s ROC beyond the simple intersection of ROCX and
ROCY. Also in (b), multiplication of X(z) by zk for k > 0 may remove from ROCX.
However, if X(z) contains only powers z−|n|, for n > k, then multiplication by zk will
have no effect on ROCX. Similarly, multiplication of X(z) by zk for k < 0 may remove
0 from ROCX, and so on. The other cases are just as straightforward to list. Toward
proving (c), let us remark that the power series expansion for X(z/a) will have a new
region of convergence that is scaled by |a| as follows: If ROCX =  {z: r1 < |z| < r2}, then
ROCY = {z: |a|r1 < |z| < |a|r2}. Time reversal is an exercise. ■
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Proposition (Frequency Differentiation). Suppose x(n) is a discrete signal, and
X(z) is its z-transform. Then the z-transform of nx(n) is −zdX(z)/dz. The region of
convergence remains the same, except that ∞ may be deleted or 0 may be inserted.

Proof: Similar to the Frequency Differentiation Property of the DTFT. Note that
within the region of convergence, the z-transform Laurent series is differentiable.
Since we multiply by a positive power of z, will be deleted from the ROC if the
highest power of z in X(z) is z0. Similarly, 0 may be inserted into the ROC if the
lowest power of z in X(z) is z−1. ■

Example. Suppose x(n) = −nanu(−n − 1). Find X(z). We already know from the
example of the anti-causal exponential signal in Section 8.1.1 that the z-transform of
−anu(−n − 1) is (1 − a/z)−1, with ROC = {z ∈ C: |z| < |a|}. Thus, the frequency dif-
ferentiation property applies and we have

(8.13)

Also, ROCX = {z ∈ C: |z| < |a|}. The properties are useful in finding the z-transforms
of new signals.

The z-transform is not without a convolution theorem. Sometimes signal pro-
cessing systems must deal with signals or system impulse responses for which the
DTFT does not converge. A useful tool in this instance is the z-transform. And (not
unexpectedly by this point!) there is a convolution result for the z-transform; it finds
use in studying LTI systems, questions of stability, subsampling, and interpolation
operations for discrete signals.

Theorem (Convolution in Time). Let x(n) and y(n) be signals; let X(z) and Y(z)
their z-transforms, respectively; and let w = x ∗ y. Then the z-transform of w(n) is
W(z) = X(z)Y(z), and ROCW ⊇ ROCX ∩ ROCY .

Proof: The proof of the DTFT Convolution-in-Time Theorem extends readily to
the z-transform:

(8.14)
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If x ∈ ROCX ∩ ROCY, then the z-transform’s Laurent series converges absolutely.
This justifies the step from an iterated summation to a double summation as well as
the interchange in the order of summation in (8.14). Hence, ROCW ⊇ ROCX ∩
ROCY. ■

Corollary (LTI System Function). Suppose H is a discrete LTI system y = Hx; its
impulse response is h = Hδ; and X(x), Y(z), and H(z) are the z-transforms of x(n),
y(n), and h(n), respectively. Then, Y(z) = H(z)X(z).

Proof: The output signal y = h ∗ x by the Convolution Theorem for LTI Systems,
and the result follows from the theorem. ■

Definition (System or Transfer Function). Let H be a discrete LTI system y = Hx
and h = Hδ its impulse response. Then the z-transform of h(n), H(z) is called the
system function or the transfer function for the system H.

Remark. For our multiple uses of the uppercase ‘‘H,’’ we once again ask the
reader’s indulgence. Here, both the system itself and its impulse response, a
complex-valued function of a complex variable, are both denoted ‘‘H.’’

8.1.3.2 Properties Involving Contour Integration. With the DTFT synthe-
sis equation, we can identify a time-domain signal x(n) with the analog Fourier Series
coefficients of its DTFT, X(ω). The interconnection is at once elegant and revealing.
The z-transform is like the DTFT, in that it is a discrete transform with an inversion
relation which involves a continuous domain integration operation. However, because
the domain of definition of the z-transform is a region in the complex plane, the inver-
sion formula becomes quite exotic: It depends on a complex contour integral.

Readers who skimmed the material in Section 1.7 may wish to review it more
carefully before proceeding with the next several theorems.

Theorem (Inversion). Suppose x(n) is a discrete signal and X(z) is its z-transform.
If C is any simple, counterclockwise, closed contour of the complex plane; the ori-
gin is in the interior of C; and C ⊆ ROCX, then

(8.15)

Proof: The integrand in (8.15) contains a power of z, and the contour is closed; this
suggests the Cauchy integral theorem from Section 1.7.3.

(8.16)
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Once again, inserting the analysis equation directly into the integral and then inter-
changing the order of summation and integration pays off. Since the z-transform is
absolutely and uniformly convergent within its ROC, the order of summation and
integration is unimportant in (8.16). Recall, from Section 1.7.3, the Cauchy integral
theorem:

(8.17)

As a consequence, all terms in the summation of  are zero except for the one where
n = k. This implies that

(8.18)

as desired. ■

Equation (8.18) is the z-transform synthesis equation.

Example (Unit Circle Contour). Suppose now that Z(x(n)) = X(z) and that ROCX
contains the unit circle: C = {z: |z| = 1} ⊆ ROCX. Then, z = exp(jω) on C, ω ∈ [−π,
+π]; dz = jexp(jω) dω; and evaluating the inverse z-transform contour integral gives

(8.19)

In (8.19), X(ejω) is the z-transform evaluated at z = exp(jω), and X(ω) is the DTFT of
x(n) evaluated at ω, −π ≤ ω ≤ π. This example thus shows that if C is the unit circle
and it lies within ROCX, then the inverse z-transform relation reduces to the IDTFT.

Prominent among the z-transform’s basic properties in the previous section, the
Convolution-in-Time Theorem linked convolution in time to simple multiplication
in the z-domain. The next theorem is its counterpart for z-domain convolutions.
Although this results lacks the aesthetic appeal of the DTFT’s Convolution-in-
Frequency Theorem, it will nevertheless prove useful for discrete filter design appli-
cations in the next chapter.

Theorem (Convolution in the z-Domain). Let s(n) = x(n)y(n) be the termwise
product of x(n) and y(n); Z(x(n)) = X(z), with ROCX = {z ∈ C: rX < |z| < RX}; and
Z(y(n)) = Y(z), where ROCY = {z ∈ C: rY < |z| < RY}. Then, ROCS ⊇ {z ∈ C: rXrY <
|z| < RXRY}. Furthermore, let C be a simple, closed contour of the complex plane
whose interior contains the origin. If ROCX(w) ∩ ROCY(z/w) contains C, then 

(8.20)

0    if    1,1

1     if    1.2
m

C

m
z dz

mj

≠ −
=  = −π 

∫�

11
( ) ( ) ,

2
n

C
x n X z z dz

j
−=

π ∫�

1 1 1
| | 1

1 1 1
( ) ( ) ( )( )

2 2 2

1 1
( )( ) ( )exp( ) .

2 2

n n j j n j
C z

j j n

X z z dz X z z dz X e e je d
j j j

X e e d X jn d

+π
− − ω ω − ω

=
−π

+π +π
ω ω

−π −π

= = ω
π π π

= ω = ω ω ω
π π

∫ ∫ ∫

∫ ∫

� �

11
( ) ( ) .

2 C
z

S z X w Y w dw
j w

− =  π  
∫�



CONCEPTUAL FOUNDATIONS 565

Proof: The z-transform analysis equation for S(z) is

(8.21)

where the z-transform synthesis equation (8.18), with dummy variable of integra-
tion w, replaces x(n) inside the sum. This substitution is valid for any simple, closed
path C, when C ⊆ ROCX. Summation and integration may change order in , so long
as z ∈ ROCS, where uniform convergence reigns:

(8.22)

When does S(z) exist? We need C ⊆ ROCX = {w ∈ C: rX < |w| < RX} and z/w ∈
ROCY = {z ∈ C: rY < |z| < RY}. The latter occurs if and only if rY < |z/w| < RY}; this
will be the case if |w|rY < |z| < |w|RY for w ∈ ROCX. Hence ROCS includes {z ∈ C:
rXrY < |z| < RXRY}. The contour integral in (8.22) will exist whenever w ∈ C and
z/w ∈ ROCY; in other words, C ⊆ ROCX ∩ ROCY(z/w), as stated. ■

Corollary (Parseval’s Theorem). Suppose that x(n), y(n) ∈ l2, Z(x(n)) = X(z), and
Z(y(n)) = Y(z). If C is a simple, closed contour whose interior contains the origin,
and C ⊆ ROCX ∩ ROCY*(1/w*), then

(8.23)

Proof: The inner product 〈x, y〉 exists, since x and y are square-summable, and if
s(n) = x(n)y*(n), then s(n) ∈ l1 (Cauchy–Schwarz). If Z(s(n)) = S(z), then

(8.24)

so that

(8.25)

It is an easy exercise to show that Z (y*(n)) = Y*(z*); and together with the Convo-
lution in z-Domain Theorem (8.22), this entails

(8.26)

completing the proof. ■
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8.2 INVERSION METHODS

Given a complex function of a complex variable, X(z), there are three methods for
finding the time domain signal, x(n), such that Z[x(n)] = X(z). These approaches are:

• Via the inverse z-transform relation, given by the contour integral (8.15).

• Through an expansion of X(z) into a Laurent series; then the x(n) values read
directly from the expansion’s coefficient of z−n.

• By way of algebraic manipulation (especially using partial fractions) of X(z)
into a form in which its various parts are readily identified as the z-transforms
of known discrete signals. This approach relies heavily on the z-transform’s
basic properties (Section 8.2.1).

Actually, the second two methods are the most useful, because the contour integrals
prove to be analytically awkward. This section considers some examples that illus-
trate each of these z-transform inversion tactics.

8.2.1 Contour Integration

Let us look first at the easiest nontrivial example using contour integration in the
complex plane to discover the discrete signal x(n) whose z-transform is the given
complex function X(z). On first reading, this section can be reviewed casually. But
those readers who accepted our invitation—several chapters back—to skip the
complex variables tutorial should note that those ideas are key to this approach for
z-transform inversion.

Example (Inversion by Contour Integration). Suppose X(z) = z/(z − a), a ≠ 0,
with ROCX = {z ∈ C: |a| < |z|}. Of course, we already know the signal whose
z-transform is X(z); it is the causal exponential signal anu(n) from the example in
Section 8.1.1. But, in order to learn the technique, let us proceed with pretenses
toward discovery. From the z-transform synthesis equation (8.15), we may choose
the contour C to be a circle outside z = |a| and immediately write

(8.27)

Is the contour integral (8.27) easy to evaluate? To the fore, from complex analysis,
comes a powerful tool: the Cauchy residue theorem (Section 1.7.3). Assume that C
is a simple, closed curve; am ∉ C, 1 < m < M; f(z) is a complex function, which is
analytic (has a derivative df/dz) on and within C, except for poles (|f(z)| → ∞ near a
pole) at each of the am. The residue theorem then states that

(8.28a)
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Recall that the residue of f(z) at the pole z = p is given by

(8.28b)

where k is the order of the pole, g(z) is the nonsingular part of f(z) near p, and g(k − 1)

(p) is the (k − 1)th derivative of g(z) evaluated at z = p. (Complex function f(z) has a
pole of order (k −1) at z = 0 if there exists g(z) such that f(z) = g(z)/(z − p)k, g(z) is
analytic near z = p, and g(p) ≠ 0.) Let us continue the example. To find x(n), n ≥ 0,
we set f(z) = zn/(z − a), as in (8.27). Note that f(z) is analytic within C, except for a
first-order pole at z = a. Therefore, g(z) = zn, and we have Res(f(z), a) = g(0)(a) =
x(n) = an. For non-negative values of n, computing the contour integral (8.27) is
generally quite tractable. Elated by this result, we might hope to deduce values x(n),
n < 0, so easily. When n < 0, however, there are multiple poles inside C: a pole at z =
a and a pole of order n at z = 0. Consider the case n = −1. We set f(z) = z−1/(z − a).
Thus, the pole at z = p = 0 is of order k = 1, since g(z) = (z − a)−1 is analytic around
the origin. Therefore, Res( f(z), z = 0) = g(0)(p) = g(0)(0) = (−a)−1. There is another
residue, and we must sum the two, according to (8.28b). We must select a different
analytic part of f(z) near the pole at z = a; we thus choose g(z) = z−1, so that g(z) is
analytic near z = a with f(z) = g(z)/(z − a)1. Consequently, this pole is also first
order. Since g(0)(a) = a−1 = Res(f(z), z = a), we have x(−1) = Res(f(z), z = 0) +
Res(f(z), z = a) = (−a)−1 + a−1 = 0. Now let us turn our attention to the case n = −2.
Now f(z) = z−2/(z − a), whence the pole at z = 0 is of order 2. Still, by (8.28b),
x(−2) = Res(f(z), z = 0) + Res(f(z), z = a), but now f(z) has a pole of order 2 at z = 0.
First, we set g(z) = (z − a)−1 as before, but now we find Res(f(z), z = 0) = g(1)(0) =
−1(0 − a)−2 = −a−2. For the pole at z = a, we put g(z) = z−2 and verify that Res(f(z),
z = a) = a−2. Thus, coincidentally, x(−2) = −a−2 + a−2 = 0. It is possible to show that,
indeed, x(n) = 0 for n < 0. Therefore, x(n) = anu(n) for all n.

The lesson of the example is that z-transform inversion by complex contour inte-
gration is sophisticated, easy, and fun for n > 0 where the integrand in (8.27) has first
order poles, but tedious when there are higher-order poles. We seek simpler methods.

8.2.2 Direct Laurent Series Computation

Let us now try to exploit the idea that the z-transform analysis equation is a two-
sided power, or Laurent, series in the complex variable z. Given by the z-transform
inversion problem are a complex function of z, X(z), and a region of convergence,
ROCX. The solution is to find x(n) so that Z(x(n)) = X(z). Direct Laurent series com-
putation solves the inversion problem by algebraically manipulating X(z) into a
form that resembles the z-transform analysis equation (8.1). Then the x(n) values
read off directly as the coefficients of the term z−n. Not just any algebraic fiddling
will do; the method can go awry if the algebraic manipulations do not stay in conso-
nance with the information furnished by ROCX.
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Once again, we consider a well-known example to learn the technique.

Example (Laurent Series Computation for Causal Discrete Signal). Suppose
X(z) = z/(z − a), a ≠ 0, with ROCX = {z ∈ C: |a| < |z|}. Of course, we already know
the signal whose z-transform is X(z); it is the causal exponential signal anu(n). Per-
forming long division on X(z) produces a Laurent series:

(8.29)

Using the z term in z − a as the principal divisor produces a quotient that is a Lau-
rent expansion. Since ROCX is the region outside the circle |z| = a, we see by inspec-
tion that x(n) = u(n)an.

Now we consider the same X(z), but allow that ROCX is inside the circle |z| = a.

Example (Laurent Series Computation for Anti-causal Discrete Signal). Sup-
pose X(z) = z/(z − a), a ≠ 0, with ROCX = {z ∈ C: |z| < |a|}. Performing long division
again, but this time using the −a term in z − a as the principal divisor, produces a
different Laurent series:

(8.30)

The algebraic manipulation takes into account the fact that ROCX is the region
inside the circle |z| = a, and the expansion is in positive powers of z. This means that
x(n) is anti-causal: x(n) = −u(−n − 1)an.

The next example complicates matters a bit more.

Example (Quadratic Denominator). Suppose X(z) = z(z − 2)−1(z − 1)−1, with
ROCX = {z ∈ C: |2| < |z|}. Attacking the problem directly with long division gives

(8.31)

We observe that x(n) = u(n)(2n − 1) from the derived form of the Laurent series (8.31).
We can check this result by using linearity. Note that X(z) = z(z − 2)−1 − z(z − 1)−1. The
first term is the z-transform of u(n)2n, and its radius of convergence is {z ∈ C: 2 < |z|}.
The second term is the z-transform of u(n)1n, with ROC = {z ∈ C: 1 < |z|}. Therefore,
their difference, u(n)(2n − 1n), has z-transform z(z − 2)−1 − z(z − 1)−1, whose radius of
convergence equals {z ∈ C: 2 < |z|} ∩ {z ∈ C: 1 < |z|} = {z ∈ C: 2 < |z|} = ROCX.

Our method of checking this last example leads to the table lookup technique of
the section.
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8.2.3 Properties and z-Transform Table Lookup

The last method for computing the inverse z-transform is perhaps the most common.
We tabulate a variety of z-transforms for standard signals and use the various prop-
erties of the transform to manipulate a given X(z) into a form whose components are
z-transforms of the known signals. Typically, then, x(n) is a linear combination of
these component signals. One standard trick that is useful here is to break up a com-
plicated rational function in z, X(x) = P(z)/Q(z), where P and Q are polynomials,
into a sum of simpler fractions that allows table lookup. This is called the partial
fractions method, and we will consider some examples of its use as well. 

Example. Suppose X(z) = (1 − az)−1, with ROCX = {z ∈ C: |z| < |a|−1}. From a
direct computation of the z-transform, we know that Z[anu(n)] = z/(z − a), with
ROC = {z ∈ C: |z| > |a|}. Let y(n) = anu(n) and x(n) = y(−n). The time-reversal
property implies

(8.32)

with ROCX = {z ∈ C: z−1 ∈ ROCY} = {z ∈ C: |z| < |a|−1}, as desired. 

Table 8.1 provides a list of common signals, their z-transforms, and the associ-
ated regions of convergence. These pairs derive from

TABLE 8.1. Signals, Their z-Transforms, and the Region of 
Convergence of the z-Transform

x(n) X(z) ROCX

δ(n − k) z−k k > 0 : {z ∈ C+: z ≠ 0}
k < 0 : {z ∈ C+ : z ≠ ∞}

anu(n) z/(z − a) {z ∈ C : |a| < |z|}
−anu(− n −1) z/(z − a) {z ∈ C : |z| < |a|}

a−nu(−n) {z ∈ C : |z| < |a|−1}

−a−nu(n−1) {z ∈ C+ : |z| > |a|−1}

nanu(n) az/(z2 − 2az + a2) {z ∈ C+ : |a| < |z|}
−nanu(−n − 1) az/(z2 − 2az + a2) {z ∈ C : |z| < |a|}

cos(an)u(n) {z ∈ C : 1 < |z|}

sin(an)u(n) {z ∈ C : 1 < |z|}

u(n)/(n!) exp(z) {z ∈ C}
n−1u(n −1)(−1)n+1an log(1 + az−1) {z ∈ C+ : |a| < |z|}
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• Basic computation using the z-transform analysis equation;

• Application of transform properties;

• Standard power series expansion from complex analysis.

Example. Suppose that

(8.33)

with ROCX = {z ∈ C: |z| > 1}. The table entry, cos(an)u(n), applies immediately.
Taking a = π/4 gives x(n) = cos(πn/4)u(n). Variants of a z-transform pair from
Table 8.1 can be handled using the transform properties. Thus, if

(8.34)

then Y(z) = z−2X(z), so that y(n) = x(n + 2) = cos[π(n + 2)/4]u(n + 2) by the time shift
property.

Example (Partial Fractions Method). Suppose that we are given a rational func-
tion in the complex variable z,

(8.35)

where ROCX = {z ∈ C: |z| > 1}. The partial fraction technique factors the denomina-
tor of (8.35), 2z2 − 3z + 1 = (2z − 1)(z − 1), with an eye toward expressing X(z) in
the form

(8.36)

where A and B are constants. Let us concentrate on finding the inverse z-transform
of Y(z) = X(z)/(2z), the bracketed expression in (8.36). Table 8.1 covers both of its
terms: they are of the form (1 − az)−1. The sum of these fractions must equal z(2z2 −
3z + 1)−1, so A(z − 1) + B(2z − 1) = z. Grouping terms involving like powers of z
produces two equations: A + 2B = 1, A + B = 0. Hence, 

(8.37)

Now, y(n) = −2−nu(n − 1) + u(n − 1) = (1 − 2−n)u(n − 1) by linearity and Table 8.1.
Also, ROCY = {z ∈ C+: |z| > 2−1} ∩ {z ∈ C+: |z| > 1} = {z ∈ C+: |z| > 1}.
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Therefore, the z-transform of x(n) = 2y(n + 1) = (2 − 2−n)u(n) is 2zY(z) by the time
shift property.

Example (Partial Fractions, Multiple Roots in Denominator). Now suppose that
the denominator of X(z) has multiple roots:

(8.38)

 It turns out that a partial fractions expansion of X(z)/z into, say, 

(8.39)

does not work, in general. Rather, the partial fractions arithmetic is satisfactory
when X(z)/z is broken down as follows:

(8.40)

The solutions are A = 1/7, B = 2/7, and C = −1/7. Applying linearity, time shift, and
Table 8.1 completes the example. This is left as an exercise.

8.2.4 Application: Systems Governed by Difference Equations

The above theory applies directly to the study of linear, translation-invariant sys-
tems where a difference equation defines the input–output relation. Chapter 2 intro-
duced this kind of system (Sections 2.4.2 and 2.10). We shall see here and in
Chapter 9 that:

• For such systems, the transfer function H(z) is a quotient of complex poly-
nomials. 

• Difference equations govern a wide variety of important signal processing
systems.

• Recursive algorithms very efficiently implement these systems on digital
computers.

• The filters that arise from difference equations can be derived straight-
forwardly from equivalent analog systems.

• For almost any type of filter—low-pass, high-pass, bandpass, or band-reject—
a difference equation governed system can be devised that very well approxi-
mates the required frequency selection behavior.

In fact, the filters within almost all signal analysis systems derive from difference
equations, and we describe them by the z-transform of their impulse response.
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Suppose that the difference equation for a system H is

(8.41)

We see that y(n) can be computed from its past N values, {y(n) | 1 ≤ n ≤ N}, the cur-
rent input value x(n), and the past M values of input signal {x(n) | 1 ≤ n ≤ M}. Col-
lecting output terms on the left-hand side and input terms on the right-hand side of
(8.41), taking the z-transform of both sides, and finally applying the shift property,
we have

(8.42)

Hence,

(8.43)

confirming that the system function for H is a rational function of a single complex
variable.

Now the methods of z-transform inversion come into play. The partial fractions
technique converts the rational function (8.43) into a sum of simpler terms to which
table lookup applies. Thus, we can find the impulse response h(n) of the LTI system
H. Finally, we can compute the response of H to an input signal x(n) by convolution
y(n) = (h * x)(n).

Example (Smoothing System). The system H smoothes input signals by weight-
ing the previous output value and adding it to the weighted input value as follows:

y(n) = Ay(n − 1) + Bx(n). (8.44)

By z-transforming both sides of (8.44), we get

(8.45)

so that

(8.46)

Assuming that the system is causal, so that h(n) = 0 for n < 0, we have

h(n) = BAnu(n), (8.47)

by Table 8.1.
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8.3  RELATED TRANSFORMS

This section introduces two other transforms: the chirp z-transform (CZT) and the
Zak transform (ZT). A short introduction to them gives the reader insight into recent
research efforts using combined analog and discrete signal transformation tools.

8.3.1 Chirp z-Transform

The CZT samples the z-transform on a spiral contour of the complex plane [7, 22].
The CZT transform has a number of applications [23]:

• It can efficiently compute the discrete Fourier transform (DFT) for a prime
number of points.

• It can be used to increase the frequency resolution of the DFT, zooming in on
frequency components (Chapter 9).

• It has been applied in speech [8, 24], sonar, and radar signal analysis [6, 25],
where chirp signals prevail and estimations of their parameters—starting
frequency, stopping frequency, and rate of frequency change—are crucial.

8.3.1.1 Definition. Recall that evaluating the z-transform X(z) of x(n) on the unit
circle z = exp(jω) gives the discrete-time Fourier transform: X(ω) = [Z(x)](ejω). If N
> 0 and x(n) is finitely supported on the discrete interval [0, N − 1], then X(z)
becomes

(8.48)

Furthermore, if ω = 2πk/N, 0 ≤ k < N, so that z = exp(2πjk/N), then the DTFT analy-
sis equation (8.48) becomes a discrete Fourier transform of x(n). So we are evaluat-
ing the z-transform X(z) on a discrete circular contour of the complex plane. The
idea behind the CZT is evaluate the z-transform on a discrete spiral—as distinct
from purely circular—contour. We use the notation and generally follow the presen-
tation of Ref. 7.

Definition (Chirp z-Transform). Let A = A0exp(2πjθ0); W = W0exp(2πjφ0); M,
N > 0 be natural numbers; x(n) = 0 outside [0, N − 1]; and set zk = AW−k for 0 ≤ k <
M. The chirp z-transform of x(n) with respect to A and W is

(8.49)

If A = 1, M = N, and W = exp(−2πj/Ν), then the CZT gives the DFT of order N for
the signal x(n) (exercise). Figure 8.2 shows a typical discrete spiral contour for a CZT.

Further note that if W0 > 1, then the contour spirals inward, whereas W0 < 1
means the contour winds outward (Figure 8.2).
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8.3.1.2 Algorithm. An efficient implementation of the CZT, as a weighted con-
volution of two special functions, is possible as follows. Using our earlier notation,
define the discrete signals v(n) and y(n) by 

(8.50a)

(8.50b)

Since

(8.51)

we calculate

(8.52)

Equation (8.52) gives XA,W(k) as the convolution of y(n) and v(n), but weighted
by the factor v(k). Now, thanks to the convolution theorem for the DFT, we can
compute discrete convolutions by Fourier transforming both signals, taking the
frequency-domain product term-by-term, and then inverse transforming the result.
Hence, if we have an efficient fast Fourier transform algorithm available, then
a CZT may much more efficiently compute the DFT for a problematic—even
prime—order N.

Fig. 8.2. Discrete spiral path for a CZT. Innermost point is A = (.25)exp(jπ/4). Ratio
between the M = 37 contour samples is W = (0.98)exp(−jπ/10). Unit circle |z| = 1 is shown
by dots.
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Here are the steps in the CZT algorithm [7]:

(i) First, we define y(n):

 (8.53)

(ii) Next, we determine the size of the FFT operation to perform. Inspecting the
convolution equation (8.52), where k ranges between 0 and M − 1, we see
that we need v(n) values for –N + 1 ≤ n ≤ M − N, for a total of M − N −
(−N + 1) + 1 = M samples. Since y(n) is supported on [0, N − 1], the convo-
lution result will be supported on [0, (M − 1) + (N − 1)] = [0, M + N − 2]. So
the full y*v requires (M + N − 2) + 1 = M + N − 1 samples (of which, for the
CZT, we only care about M of them). Thus, we pick a power 2P (or another
FFT-suitable composite integer L), so that M + N − 1 ≤ L. This will be the
order of the fast forward transforms and of the inverse transform after point-
wise multiplication in the frequency domain.

(iii) We set v(n) to be L-periodic such that

 (8.54)

(iv) Compute the FFTs, Y(k) and V(k), of y(n) and v(n), respectively.

(v) Compute G(k) = Y(k)V(k), for 0 ≤ k ≤ L – 1.

(vi) Compute the inverse FFT of G(k): g(n).

(vii) Set 

(8.55)

Evidently, the computational burden within the algorithm remains the three fast
transforms [7]. Each of these requires on the order of L log2(L) operations, depend-
ing, of course, on the particular FFT available. So we favor the CZT when Llog2(L)
is much less than the cost of a full-convolution MN operation.

8.3.2 Zak Transform

The Zak transform (ZT) is an important tool in Chapter 10 (time-frequency analysis).
The transform and its applications to signal theory are covered in Refs. 26 and 27.

8.3.2.1 Definition and Basic Properties. The Zak transform maps an ana-
log signal x(t) to a two-dimensional function having independent variables in both
time and frequency. We know that restricting the z-transform to the unit circle |z| = 1
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gives the discrete-time Fourier transform. The idea behind the Zak transform is that
discrete signals generally come from sampling analog signals x(n) = xa(nT), for
some T > 0, and that we can compute a DTFT for a continuum of such sampled ana-
log signals.

Definition (Zak Transform). Let a > 0 and x(t) be an analog signal. Then the Zak
transform with parameter a of x(t) is

(8.56)

Remark. We use a fancy Za for the map taking an analog signal to its Zak trans-
form: (Zax)(s, ω) = Xa(s, ω). Our transform notation uses the sign notation x(s − k)
following [28]. Generally, we take a = 1 and omit it from the notation: (Zx)(s, ω) =
X(s, ω); this is the form of the definition we use later in several parts of Chapter 10.

Proposition (Periodicity). If Xa(s, ω) is the ZT of x(t), then

(8.57a)

(8.57b)

Proof: Exercise. ■

Observe that with parameter s fixed y(−k) = x(s − k) is a discrete signal. If we
further set z = exp(2πjω), then the ZT summation with a = 1 becomes 

(8.58)

Equation (8.58) is the z-transform of y(k) evaluated on the unit circle. More pre-
cisely, it is the DTFT of y(k) with 2π frequency dilation.

8.3.2.2 An Isomorphism. We now show an interesting isomorphism between
the Hilbert space of finite-energy analog signals L2(R) and the square-integrable
two-dimensional analog signals on the unit square S = [0, 1] × [0, 1].

The Zak transform is in fact a unitary map from L2(R) to L2(S); that is, Z is a
Hilbert space map that takes an L2(R) orthonormal basis to an L2(S) orthonormal
basis in a one-to-one and onto fashion [27, 28].

Lemma. Let b(t) = u(t) − u(t − 1) be the unit square pulse, where u(t) is the analog
step function. Then {bm,n(t) = exp(2πjmt)b(t − n) | m, n ∈ Z} is a basis for L2(R).
Moreover, {em,n(s, t) = exp(2πjms)exp(2πjnt) | m, n ∈ Z} is a basis for L2(S). 
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Proof: Apply Fourier series arguments to the unit intervals on R. The extension of
Fourier series to functions of two variables is outside our one-dimensional perspec-
tive, but is straightforward, and can be found in advanced Fourier analysis texts
(e.g., Ref. 29.) ■

Theorem (Zak Isomorphism). The Zak transform Z: L2(R) → L2(S) is unitary.

Proof: Let’s apply the ZT to the Fourier basis on L2(R), {bm,n(t) | m, n ∈ Z} of the
lemma:

(8.59)

Let us reflect on the last term, (Zb)(s, ω) for (s, ω) ∈ S. We know that

(8.60)

On the interior of S, (0, 1) × (0, 1), we have b(s − k) = 0 for all k ≠ 0. So only one
term counts in the infinite sum (8.60), namely k = 0, and this means (Zb)(s, ω) = 1
on the unit square’s interior. On the boundary of S, we do not care what happens to
the ZT sum, because the boundary has (two-dimensional) Lebesgue measure zero; it
does not affect the L2(S) norm. Thus, Z sends L2(R) basis elements bm,n to L2(S)
basis elements em,_n, and is thus unitary. ■

8.4 SUMMARY

The z-transform extends the discrete-time Fourier transform from the unit circle to
annular regions complex plane, called regions of convergence. For signal frequency,
the DTFT is the right inspection tool, but system properties such as stability can be
investigated with the z-transform. Readers may recall the Laplace transform from
system theory and differential equations work; it bears precisely such a relationship
to the analog Fourier transform (Chapter 5). The Laplace transform extends the def-
inition of the Fourier transform, whose domain is the real numbers, to regions of the
complex plane.

The next chapter covers frequency-domain signal analysis, including both analog
and digital filter design. It most assuredly explores further z-transform techniques.

This chapter closed with an introduction to two related tools: the chirp z-trans-
form and the Zak transform. The CZT is a discretized z-transform computed on a
custom contour. If the contour follows the unit circle, then the CZT can be used to

, ,

,

( )( , ) ( )exp(2 )

exp(2 )exp( 2 ) ( )exp(2 ( ))

exp(2 )exp( 2 )( )( , ) ( , )( )( , ).

m n m n
k

k

m n

b s b s k j k

jms jn b s n k j n k

jms jn b s e s b s

∞

= −∞

∞

= −∞

−

ω = − π ω

= π − π ω − − π ω −

= π − π ω ω = ω ω

∑

∑

Z

Z Z

( )( , ) ( )exp(2 ).
k

b s b s k j k
∞

= −∞
ω = − π ω∑Z



578 THE z-TRANSFORM

save some computational steps that we would ordinarily suffer when computing a
DFT of difficult (prime) order. Or, careful contour selection with the CZT gives
more frequency coefficients in a narrow application range than the Fourier trans-
form. The Zak transform’s isomorphism property effectively converts questions
about L2(R) analog signals into questions about finite-energy signals on the unit
square. Analytically, the unit square, even though it is two-dimensional, is often
easier to deal with. This benefit of the ZT makes it especially powerful when we
study frames based on windowed Fourier atoms in Chapter 10.

8.4.1 Historical Notes

Kaiser [14] introduced the z-transform into the signal processing discipline from
control theory only in the early 1960s. At the time, digital computer applications
had stimulated interest in discrete transforms, filtering, and speech processing. Fil-
ters are systems that pass some frequency ranges while suppressing others, and they
are common at the front end of a signal analysis system that must interpret oscilla-
tory data streams. It turns out—as we shall see in the next chapter—that very good
filters can be built out of simple recursive structures based on difference equations.
The z-transform readily gives the system function for such difference equations as a
rational function of a single complex variable: H(z) = B(z)/A(z). We have developed
straightforward algebraic methods for inverting such rational functions, which in
turn reveals the system impulse response and allows us to calculate the system
response to various inputs.

In the late 1960s, Bluestein [30] first showed how to compute the DFT using a
chirped linear filtering operation. The formalization of CZT algorithm and many of
its original applications are due to Rabiner, Schafer, and Rader [22, 23].

The ZT arrives relatively late to signal theory from physics [31], where Zak
developed it independently for solid-state applications. Janssen introduced it into
the mainstream signal analysis literature [26]. The transform has been many
places—indeed, Gauss himself may have known of it [28].

8.4.2 Guide to Problems

Readers should find most problems straightforward. Problems 2 and 3 explore some
of the limit ideas and radius of converge concepts used in the chapter. There is a
z-transform characterization of stable systems, which is developed in the later
problems. Finally, some computer programming tasks are suggested.
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PROBLEMS

1. Find the z-transform and ROC for each of the following signals:

(a) x(n) = u(n − 5) − u(n + 2), where u(n) is the discrete unit step signal. Can one
simply apply the linearity and shift properties to x(n) for the right answer?

(b) δ(n − 4) + u(n), where δ(n) is the discrete impulse.

(c) x(n) = 3nu(−n) + n2−nu(n).

(d) x(n) = u(n)[n2n − 1].

(e) x(n) = u(n)[n2n − 1 + n].

(f) x(n) = 1/n!

(g) x(n) = u(−n − 1)(1/3)n.

(h) x(n) = u(n)(−1/5)n + u(−n − 1)(1/2)n.

2. Consider the lim sup and lim inf of a sequence, A = {an: 0 ≤ n < ∞}. Suppose
we have defined elements of the sequence as follows: a0 = 0; an = 1 + 1/n, if n is
even; and an = −1 − 1/n, if n is odd.

(a) Show that the sequence A has no limit.

(b) Show that the lim sup A is 1.

(c) Show that the lim inf of A is –1.

(d) Let AN = A \ {an: 0 ≤ n < N} and κN be the least upper bound of AN. Show
that κN ≤ κM if M < N.

(e) Show that a sequence B = {bn: 0 ≤ n < ∞} has a limit if and only if its lim
inf and its lim sup are equal. What about the cases where the limit is ± ∞ ?

(f) Show that

 (8.61)

3. Suppose Z(x(n)) = X(z) has only non-negative powers of z:

(8.62)

Let

(8.63)

so that ρ = κ−1 is the radius of convergence of X(z). Show that the radius of con-
vergence for the derivative,
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(8.64)

is also ρ.

4. Let Z(x(n)) = X(z). Show the following z-transform symmetry properties:

(a) Z[x*(n)] = X*(z*), where z* is the complex conjugate of z.

(b) (Time Reversal) If y(n) = x(−n), then Z[y(n)] = Y(z) = X(z−1), and ROCY =
{z ∈ C: z−1 ∈ ROCX}.

(c) If y(n) = Real[x(n)], then Y(z) = [X(z) + X*(z*)]/2.

(d) If y(n) = Imag[x(n)], then Y(z) = j[X*(z*) − X(z)]/2.

(e) Find the z-transform of xe(n), the even part of x(n).

(f) Find the z-transform of xo(n), the odd part of x(n).

5. Suppose X(z) = z/(z − a), a ≠ 0, with ROCX = {z ∈ C: |a| < |z|}. In the first exam-
ple of Section 8.1.1, we found that x(−1) = x(−2) = 0 and claimed that x(n) = 0
for n < −2. For the last case, n < −2, verify that

(a) Res(f(z), z = 0) = −a−n.

(b) Res(f(z), z = a) = a−n.

(c) x(n) = 0 for n < −2.

6. Suppose X(z) = z/(z − a), a ≠ 0, with ROCX = {z ∈ C: |z| < |a|}. Using the
method of contour integration, find x(n) for all n ∈ Z.

7. Suppose X(z) = z(z − 2)−1(z − 1)−1.

(a) Let ROCX = {z ∈ C: |z| < 1}. With the method of inverse z-transformation
by computation of the Laurent series, find x(n).

(b) Suppose now that ROCX = {z ∈ C: 2 > |z| > 1}. Is it possible to use the long
division method to find the Laurent series form of X(z) and thence find
x(n)? Explain.

8. Suppose that

(8.65)

and ROCX = {z ∈ C: 2 < |z|}.

(a) Find A, B, and C to derive the expansion of z−1X(z) into partial fractions:

(8.66)

(b) Find the discrete signal whose z-transform is z−1X(z).

(c) Find the discrete signal whose z-transform is X(z).

9. Again suppose

(8.67)

1

0

( )
( ) ,n

n
n

dX z
X z na z

dz

+∞
−

=
′ = = ∑

2
( ) ,

( 1)( 2)

z
X z

z z
=

− +

2 2

( ) 1
.

( 1) ( 2)( 1)( 2) ( 2)

X z A B C

z z zz z z
= = + +

− +− + +

2
( ) .

( 1)( 2)

z
X z

z z
=

− +



582 THE z-TRANSFORM

Find all of the discrete signals whose z-transforms are equal to X(z). For each
such signal,

(a) State the region of convergence.

(b) Sketch the region of convergence.

(c) State whether the signal is causal, anticausal, or neither.

10. Signal x(n) has z-transform X(z)/z = 1 / (z2 − 3z/2 − 1). Find three different pos-
sibilities for x(n) and give the ROC of X(z) for each.

11. If x(n) has z-transform X(z) = z / (z2 − 5z − 14), then find three different possi-
bilities for x(n) and give the ROC of X(z) for each.

12. Let X+(z) be the one-sided z-transform for x(n).

(a) Show that the one-sided z-transform is linear.

(b) Show that the one-sided z-transform is not invertible by giving examples of
different signals that have the same transform.

(c) Show that if x(n) = 0 for n < 0, then X+(z) = X(z).

(d) Let y(n) = x(n − k). If k > 0, show that the shift property becomes

(8.68)

13. A simple difference equation, 

(8.69)

describes a signal processing system. Some signed fraction 0 < |a| < 1 of the last
filtered value is added to the current input value x(n). One application of the
one-sided z-transform is to solve the difference equation associated with this
system [4, 6]. Find the unit step response of this system, given the initial condi-
tion y(−1) = 1, as follows.

(a) Take the one-sided z-transforms of both sides of (8.69):

(8.70)

(b) Use the initial condition to get 

(8.71)

(c) Apply the partial fractions method to get the inverse z-transform:

(8.72)
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14. The Fibonacci2 sequence is defined by f(−2) = 1, f(−1) = 0, and 

(8.73)

(a) Show that f(0) = f(1) = 1.

(b) Using the one-sided z-transform [4], show

 (8.74)

15. Consider the system H given by the following difference equation:

(8.75)

(a) Find the system function H(z).

(b) Assuming that H is a causal system, find h(n).

(c) Give ROCH for the causal system.

(d) What are the poles for the system function?

(e) Is the system stable? Explain.

16. Show that a discrete LTI system H is causal, h(n) = 0 for n < 0, if and only if
ROCH is {z: |z| > r} for some r > 0.

17. Show that a discrete LTI system H is stable (bounded input implies bounded
output signal) if and only if its z-transform ROC includes the unit circle |z| = 1.

18. Show that a causal LTI system H is stable if and only if all of the poles of H(z)
lie inside the unit circle |z| = 1.

19. Consider the causal system H given by the following difference equation:

(8.76)

(a) Find necessary and sufficient conditions on constants A and B so that H is
stable.

(b) Find the unit step response y = Hu, where u(n) is the unit step signal.

(c) Show that if A and B satisfy the stability criteria in (a), then the unit step
response in (b) is bounded.

(d) Find the poles and zeros of the system function H(z).

20. Assume the notation for chirp z-transform of Section (8.31).

(a) Show that if A = 1, M = N, and W = exp(−2πj/N) in (8.49), then XA,W(k) =
X(k), where X(k) is the DFT of order N for the signal x(n).

2Leonardo of Pisa (c. 1175–1250) is known from his father’s name. The algebraist and number theorist
asked a question about rabbits: If an adult pair produces a pair of offspring, which mature in one month,
reproduce just as their parents, and so on, then how many adult rabbits are there after N months? The
answer is FN, the Nth Fibonacci number.
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(b) Show that W0 > 1 implies an inward spiral and W0 < 1 produces an outward
spiral path.

21. Derive the periodicity relations for the Zak transform (8.57a, 8.57b).

The next few problems are computer programming projects.

22. As a programming project, implement the CZT algorithm of Section 8.3.1.2.
Compare the fast CZT algorithm performance to the brute-force convolution in
(8.52). Use the algorithm to compute some DFTs for large prime orders. Com-
pare the CZT-based algorithm to straight DFT computations.

23. Implement the z-transform for finitely supported discrete signals in a computer
program. Verify the convolution property of the z-transform by calculating the
z-transforms, X(z) and Y(z), of two nontrivial signals, x(n) and y(n), respec-
tively; their convolution z(n); and the z-transform Z(z). Finally, confirm that
Z(z) = X(z)Y(z) with negligible numerical error.

24. Consider the implementation of the inverse z-transform on a digital computer.
Which approach might be easiest to implement? Which is the most general?
Develop an application that handles some of possible forms of X(z). Explain the
strengths and limitations of the application. 




