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Preface

In recent years, the mathematics of fractal geometry has generated much
excitement within the engineering community among those seeking broad
new and more realistic classes of models for wide-ranging applications. This
optimism has arisen out of the perspective that many natural and man-made
ghenomena around which we engineer our world are much better described

oughan inherently irregular “fractal” geometry than by the traditional reg-
ular Euclidean geometry. However, despite the apparent promise of fractal
geometry in providing useful solutions to important engineering problems,
progress in applying these models in such applications has been slower than
expected. To a large degree, this has been due to the lack of an adequate
set of convenient and efficient engineering-oriented mathematical tools for
exploiting these ideas.

From this perspective, the recent emergence of powerful multiscale sig-
nal representations in general and wavelet basis representations in particular
has been particularly timely. Indeed, out of this theory arise highly natural
and extremely useful representations for a variety of important fractal phe-
nomena. This book presents both the development of these new techniques
as well as their application to a number of fundamental problems of interest
to signal processing and communications engineers.

In particular, this book develops a unified, wavelet-based framework

for efficiently synthesizing, analyzing, and processing several broad classes-

of fractal signals. For example, efficient and practical algorithms for solving
some important problems of optimal estimation, detection and classification
involving fractals are developed using this framework. As another example
novel and practical signal processing techniques for exploiting fractal signals’

X
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as information-bearing waveforms in efficient communication systems are
also developed.

In preparing this monograph, there has been an effort to make this
material as accessible as possible to graduate students and practicing profes-
sionals alike. In particular, no prior familiarity with either fractal geometry or
wavelets is assumed of the reader. In fact, Chapter 2 is a fully self-contained
primer on the relevant wavelet theory. However, to keep the treatment com-
pact, the reader is assumed to possess a basic familiarity with continuous-
and discrete-time signals and systems, with stochastic processes, detection
and estimation theory, and with the geometry of linear vector spaces and
linear algebra. Wherever possible, concepts and intuition are emphasized
over mathematical rigor. Nevertheless, unavoidably some measure of that
ill-defined but important quantity “mathematical sophistication” is also as-
sumed of the reader.

As a final remark, it should be emphasized that no attempt has been
made to describe many of the exciting parallel developments taking place
within this active field of research. While I have tried whenever possible to
point out those developments most closely related to the material covered,
this monograph should not be interpreted as a comprehensive treatise. In
fact, rather than a retrospective on a mature topic, it is hoped that this book
will serve as a catalyst, stimulating further development in both the theory
and applications of the exciting, powerful, and increasingly important ideas
in this area.

There are many people who contributed to this book becoming a reality,
and to them I am extremely grateful. Alan Oppenheim contributed gener-
ously to the development of the ideas in the original work, and strongly
encouraged and supported the book. Alan Willsky and William Siebert
also provided valuable technical input and suggestions during the devel-
opment of this material. Henrique Malvar, Jelena Kovacevic, and Jerome
Shapiro all read the complete manuscript very carefully and provided a
great deal of helpful and detailed feedback. Warren Lam and Haralabos
Papadopoulos also did an exceptional job proofreading and helping to de-
bug the manuscript. Jon Sjogren and his program at the Air Force Office

of Scientific Research played a critical role in supporting and encouraging
the research out of which this book grew. And finally, Karen Gettman at
Prentice-Hall was instrumental in steering the project to fruition.

Gregory W. Wornell
Cambridge, Massachusetts



