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Introduction and Overview

Signal processing plays a central role of a truly enormous range of modern
electronic systems. These include, for example, voice, data, and video com-
munication and storage systems; medical imaging and diagnostic systems;
radar, sonar and satellite remote sensing systems; and automated manufac-
turing systems. Signal processing algorithms required for these kinds of
applications take many forms. Efficient speech compression and recogni-
tion systems, for example, require sophisticated signal analysis algorithms.
By contrast, high-speed modems for data communication require not only
powerful signal detection algorithms at the receiver, but efficient signal syn-
thesis algorithms at the transmitter. And several other kinds of algorithms—
including signal restoration, enhancement, and manipulation—are also im-
portant in diverse applications.

Whenever we construct algorithms for signal synthesis, analysis or pro-
cessing, we invariably exploit some model for the signals of interest. In some
instances this model is implicit. For example, spline-based strategies are
often used in signal interpolation problems even when there is no quantita-
tive model for the signal. In such cases, there is an implicit assumption that
the signal is smooth at least in some qualitative sense. In other instances
the model is explicit. For example, bandlimited interpolation algorithms are
designed for a specific and well-defined class of signals whose frequency
content is zero except within some known bandwidth.

The signal model may arise out of a deterministic formulation (e.g., a

sinusoid of possibly unknown frequency and/or phase), or a stochastic one
(e.g., a first-order autoregressive process). It may encompass a particularly
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broad class of signals, or a relatively narrow one. The class of stationary
random processes, for instance, is much larger than the class of first-order
autoregressive processes. Not surprisingly, better performance can be ex-
pected of algorithms tuned to more narrowly defined classes of signals. This
of course inevitably comes at the expense of robustness and flexibility: we
cannot in general expect systems to behave well on signals for which they
have not been designed.

Choosing a signal model for a particular application involves many
factors in addition to those cited above. For example, naturally we seek
models that capture the important characteristics of the physical signals of
interest as closely as possible. On the other hand, an overly complex model
can lead to an essentially intractable framework for algorithm development.
Hence, the art and science of signal model selection invariably involves a

compromise.

Much of traditional signal processing has relied upon a relatively small
class of models for use in wide-ranging applications. These models include,
for example, periodic and bandlimited signals. They also include impor-
tant classes of stationary random signals derived from filtered white noise
processes such as the autoregressive moving-average (ARMA) models. And
certain cyclostationary signals turn out to be important models for many
signal processing applications involving digital communications.

It is worth noting that as a whole these models have tended to arise out
of signal processing’s deep traditional foundation in linear time-invariant
(LTI) system theory [1] [2] [3]. For example, periodic signals are charac-
terized by a form of translational invariance: the associated waveforms are
invariant to time translations by multiples of the period. Likewise, stationary
and cyclostationary signals are also characterized by a form of translational
invariance: the statistics of these processes are invariant to appropriate time
translations of the underlying waveforms. With the close connection to LTI
system theory, it is not surprising, then, that the Fourier transform plays
such a key role in the analysis and manipulation of these models, nor that
fast Fourier transform (FFT) plays such a key role in the implementation of
algorithms based on such models.

Interestingly, even the most sophisticated models that are used in signal
processing applications typically have evolved out of useful éxtensions of an
LTI framework. For example, the time-varying signal models required for
many applications often developed out of such extensions. Asa consequence
windowed Fourier transform generalizations such as the short-time Fourier

transform (STFT) frequently play an important role in such applications. -

Even state-space formulations, which can in principle accommodate a broad

range of behaviors, are firmly rooted in a time-invariant perspective.
However, a strong theme that runs throughout this book is that there are

many physical signals whose key characteristics are fundamentally different
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Figure 1.1. A sample waveform from a statistically scale-invariant random
process, depicted on three different scales.

than can be produced by many of these traditional model§ a.nd such genggl—
izations. In particular, there are many signals whose defmmggharactgnstxc
is their invariance not to translation but rather to scale. For example, in the
stochastic case, we mean that the statistics of the process do not cbange when
we stretch or shrink the time axis. Both qualitatively and quantltatlvely‘the
process lacks a characteristic scale: behavior of the process on short time
scales is the same as it is on long time scales. An example of a process with

this behavior is depicted in Fig. 1.1.
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Typically, an important consequence of this scale-invariance is that the
resulting waveforms are fractal and highly irregular in appearance [4]. In
general, fractals are geometric objects having nondegenerate structure on all
temporal or spatial scales.” For the fractals most frequently of interest, the
structure on different scales is related. The fractal processes on which we
focus in particular have the property that this structure at different scales is
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similar. This, in turn, has the important consequence that even well-separated

samples of the process end up being strongly correlated.

Collectively, these features are, of course, extremely common in many
types of physical signals, imagery, and other natural phenomena. In fact,
as we discuss in Chapter 3, fractal geometry abounds in nature. Fractal
structure can be found, for example, in natural landscapes, in the distribution
of earthquakes, in ocean waves, in turbulent flow, in the pattern of errors and
data traffic on communication channels, in the bronchi of the human lung,
and even in fluctuations of the stock market.

Itis worth emphasizing that random process models traditionally used
in signal processing, by contrast, typically do not exhibit this kind of be-
havior. Fig. 1.2, for example, depicts the behavior of a simple, first-order
autoregressive process on different time scales. Hence, in order to use fractal
signal models with statistical scale-invariance characteristics in applications,
we require techniques for detecfing, identifying, classifying, and estimating
such signals in the presence of both other signals and various forms of ad-
ditional distortion. In Chapter 4, we therefore develop a variety of such
signal processing algorithms. As an example, we develop robust and effi-
cient algorithms for estimating the fractal dimension of signals from noisy
measurements, and for optimally restoring such signals.

In the deterministic case, scale-invariance means that the actual wave-
form is repeatedly embedded within itself, so that temporal dilations and
compressions simply reproduce the signal. An example of a “self-similar”
waveform of this type is depicted in Fig. 1.3 on different time scales. As
we develop in Chapter 6, such-signals have a potentially important role to
play as modulating waveforms in, for example, secure communication ap-
plications, where they provide a novel and powerful form of transmission
diversity. In particular, the resulting waveforms have the property that the
transmitted information can be reliably recovered given either severe time-
or band-limiting in the communication channel. In light of the geometric
properties of the resulting transmitted waveforms, we refer to this diversity
strategy as “fractal modulation.”

At one time it was believed that relatively complicated signal models”

were necessary to produce the kind of special behavior we have described.
However, as will become apparent in subsequent chapters, while fundamen-
tally new model structures are required, they are in fact no more complex
than (and in many respects at least as tractable as) many traditional signal

~'%0 225 230

Figure 1.2. A sample waveform from a simple first-order autoregressive pro-
cess, depicted on three different scales.

processing models. In particular, remarkably simple charac.terizations that
are useful both conceptually and analytically are developed in Chapter 3 for
the case of statistically scale-invariant signals, and in Chapter 5 for the case
of deterministically scale-invariant signals.

In addition, while the Fourier transform plays a central role in the
analysis and manipulation of both statistically and deterministically trans-
lation-invariant signals, as we will see it is the wavelet transform that Elazs
an analogous role for the kinds of scale-invariant signal models_that are th.e
focus of this book. Wavelet representations are expansions in which the basis
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Figure 1.3. Dilated self-similar waveform.

signals are all dilations and translations of a suitable prototype function. In
Chapter 3, for example, we develop the role of such wavelet representations
as Karhunen-Logve type expansions for stochastically scale-invariant random-
processes: when projected onto wavelet bases, the resulting expansion coeffi-
cients are effectively uncorrelated. In Chapter 5, we show how wavelet bases
can be used to construct orthonormal bases of self-similar waveforms that

§rovide efficient representations for deterministically scale-invariant wave-
orms.
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Yet wavelet representations are not merely a conceptual tool in the
manipulation of fractal signals. In fact, just as the FFT plays an important
role in practical algorithms for processing translation-invariant signals, it is
the discrete wavelet transform (DWT) that is frequently a key component of
practical algorithms for processing scale-invariant signals. In Chapter 4, for
example, we see how fast algorithms for estimating the fractal dimension
of signals rely heavily on the DWT. Similarly, in Chapter 6, we see how the
DWT algorithmn is critical to efficient implementations of fractal modulation
transmitters and receivers.

Finally, in Chapter 7 we explore some system theoretic foundations for
the classes of signals developed in earlier chapters. We discuss the duality
between time-invariant and scale-invariant systems, and show how Mellin,
Laplace, and wavelet transforms arise rather naturally in the representation
of the latter class of systems. In the process, some interesting and unifying
themes are introduced.

Given the central role that the wavelet transform plays in the effi-
cient representation of scale-invariant signals, we begin with a self-contained
overview of the relevant aspects of wavelet theory in Chapter 2.




