Wavelet Transformations

2.1 INTRODUCTION

Wavelet transformations play a central role in the study of self-similar signals
and systems. As we will see, the wavelet transform constitutes as natural

a tool for the manipulation of self-similar or scale-invariant signals as the

Fourier transform does for translation-invariant signals such as stationary,
cyclostationary, and periodic signals. Furthermore, just as the discovery of
fast Fourier transform (FFT) algorithms dramatically increased the viability
of Fourier-based processing of translation-invariant signals in real systems,
the existence of fast discrete wavelet transform (DWT) algorithms for imple-
menting wavelet transformations means that wavelet-based representations
for self-similar signals are also of great practical significance.

In terms of history, the theory of wavelet transformations dates back to
the work of Grossmann and Morlet [5], and was motivated by applications
in seismic data analysis [6]. This inspired much subsequent work by several
individuals over the next several years on a general mathematical theory.
For example, several key results in the theory of nonorthogonal wavelet ex-
pansions are described by Daubechies [7] [8]. In this book, however, we are
primarily interested in orthonormal wavelet bases. The development of such
bases, and their interpretation in the context of multiresolution signal analy-
sis, is generally attributed to Meyer [9] and Mallat [10] [11]. However, it was
Daubechies who introduced the first highly practical families of orthonormal
wavelet bases in her landmark paper [12].
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Yet although wavelet theory is rather new, it is important to note at
the outset that many of the ideas underlying wavelets are not new. Indeed,
wavelet theory can be viewed as a convenient and useful mathematical frame-
work for formalizing and relating some well-established methodologies from
anumber of diverse areas within mathematics, physics, and engineering. Ex-
amples include:

- pyramidal image decompositions in computer vision [13],

-~ multigrid methods in the solution of partial-differential and integral
equations [14],

- spectrogram methods in speech recognition [15},

- progressive transmission algorithms and embedded coding in commu-
nications [16] [17] [18], and

~ multirate filtering algorithms in digital audio [19] [20], speech and im-
age coding [21] [22], voice scrambling [23], frequency division data
multiplexing [24], and time/ frequency division data cross-multiplexing
[20].

In fact, wavelet transformations are closely associated with a number of topics
that have been extensively explored in the signal processing literature in
particular, including constant-Q) filter banks and time-frequency analysis [25],
and quadrature mirror, conjugate quadrature, and other related multirate
filter banks [20]. Vetterli and Kovacevi¢ [22], for example, explore such
connections in detail.

This chapter is designed as a self-contained overview of wavelet trans-
formations in general and of orthonormal wavelet transformations in par-
ticular. Its primary purpose is to establish some notational conventions for
wavelets and to summarize the key results from wavelet theory we exploit in
the applications in subsequent chapters. In introducing the theory of wavelet
transformations, we adopt a rather tutorial style and emphasize a strongly
signal processing perspective. While a number of excellent introductions to
wavelet theory can be found in the literature (see, e.g., [7] [11] [26] [27]) we
stress that the one presented here emphasizes a perspective that is particularly
important in light of the applications that are the focus of this book.

2.2 WAVELET BASES

Most generally, the wavelet transformation of a signal z(¢)

z(t) +— X*

is defined in terms of projections of z(t) onto a family of functions that are
all normalized dilations and translations of a prototype “wavelet” function
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In this notation, 1 and v are the continuous dilation and translation param-
eters, respectively, and take values in the range —oo < p, v < 00, 4 # 0. A
necessary and sufficient condition for this transformation to be invertible is
that ¢(7) satisfy the admissibility condition

[ 1@l do = Gy < o, 22)
where ¥(w) is the wavelet’s Fourier transform, defined as [1]

W(w) = /_ () et g,

Provided w(t) has reasonable decay at infinity and smoothness, as is usually
the case in practice, (2.2) is equivalent to the admissibility condition

/_ Z P(t)dt = 0. (2.3)

For any admissible y(¢), the synthesis formula corresponding to the analysis
formula (2.1) is then

5(t) = W {X#} = 53; Lo xewsyu duas. 24

Under certain circumstances, it is also possible to reconstruct z(t) solely
from samples of X# on a hyperbolic lattice defined by

—-m

./j,:a

v = nba™

where —00 < m < 00 and ~00 < 1 < oo are the integer dilation and trans-
lation indices, respectively, and a and b are the corresponding dilation and
translation increments; In such cases, the corresponding countably infinite
collection of functions ¥%(¢) is said to constitute a frame. A general theory
and some iterative reconstruction algorithms are presented by Daubechies [7]
[8]. However, it is also possible to construct wavelets and lattices such that
the resulting transformation is not only invertible, but orthonormal as well. In
general, orthonormal transformations are extremely convenient analytically,
and possess very nice numerical properties. Consequently, it is this class
of wavelet transformations that is of primary interest in this work, and the
theory is summarized in the sequel.
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2.3 ORTHONORMAL WAVELET BASES

Our focus in this section is on the particular case of dyadic orthonormal
wavelet bases, corresponding to the case ¢ = 2 and = 1 for which the
theory is comparatively more fully developed. In Section 2.3.7, however,
we construct a simple family of orthonormal wavelet bases corresponding to
lattices defined by a = (L + 1)/L and b = L where L > 1 is an integer.

An orthonormal wavelet transformation of a signal z(¢)

z(t) +—
can be described in terms of the synthesis/analysis equations!

z(t) = Wit {z?} =32 a7 yR(t) (2.5a)

= Walz(t)} = /_:z(t)zp;;*(t)dt (2.5b)

and has the special property that the orthogonal basis functions are all dila-
tions and translations of a single function referred to as the basic wavelet (or
“mother” wavelet) ¢(t). In particular,

P (t) = 22 p(2™t — n) (2.6)

where m and n are the dilation and translation indices, respectively.

An important example of a wavelet basis, and one to which we refer
on numerous occasions throughout the book, is that derived from the ideal
bandpass wavelet, which we specifically denote by ¢(t). This wavelet is the
impulse response of an ideal bandpass filter with frequency response

= |1 m<jw|<2r
Ylw) = { 0 otherwise ) 27)

It is straightforward to verify that the dilations and translations of 9(t) consti-
tute an orthonormal basis for the vector space? of finite-energy signals L(R).
However, there are many other examples of orthonormal wavelet bases.
The basic wavelet ¥(t) typically has a Fourier transform ¥(w) that satis-
fies several more general properties. First, because for a fixed m the {¢™(t)}

!For notational brevity, summations are over all integers, i.e., unless otherwise speci-

-x

n==2c

fied,

?A detailed treatment of the notation, concepts, and geometry of vector spaces that
provides a background for this chapter can be found in, for example, Naylor and Sell [28] or
Reed and Simon [29].
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constitute an orthonormal set we get the Poisson formula

Y ¥ (w-27k))* =1
;

and, in turn, the bound
[¥(w)l < 1. (2.8a)

Moreover, from (2.3) we have immediately

¥(0) = 0. (2.8b)

Finally, we are generally interested in regular bases, i.e., bases comprised
of regular basis functions. Regularity is a measure of the smoothness of a
function. In particular, a function f(t) is said to be Rth-order regular if its
Fourier transform F(w) decays according to’®

F)~0(w[™®), |u|- .

We use the term “regular” to denote a function that is at least first-order regu-
lar, and note that an Rth-order regular function has R — 1 regular derivatives.
Consequently, in order for our wavelet basis to be regular we require that

Yw) ~ O (W),  |wl - oo (2.8¢)

As implied by (2.8a)-(2.8¢), ¥(t) is often the impulse response of an at
least roughly bandpass filter. Consequently, the wavelet transformation can
usually be interpreted either in terms of a generalized constant-Q (specifically,
octave-band) filter bank, or, as we will see later, in terms of a multiresolution
signal analysis. While we restrict our attention to this class of wavelet bases,
it is important to remark, however, that wavelets need not correspond to
either an octave-band filter bank or a multiresolution analysis. For example,
the following wavelet due to Mallat [30]

1 if 4n/7<|w|<7 or 4n<|w|<327/7
0 otherwise

W) = {

generates a perfectly valid orthonormal wavelet basis, but does not corre-
spond to a multiresolution analysis.

*The order notation ¢ (-) has the following interpretation: if
Flw)=0GWw)), w-x
then
F(w)

Jm G <

PR S e rp——-

2R A i b e

T

g

Sec. 2.3 Orthonormal Wavelet Bases 13

m 1=2"n m
— Vo (1) j Xn= 1012,

=..-1,0.1.2,..

0 7} 1=n 0

1 ¥, (=) Tz L0412
-] t=2n )

— Y, () j Xns 1012

1
M) — Y, (-1) x

Figure 2.1. Critically sampled filter bank interpretation of an orthonormal
wavelet decomposition.

2.3.1 An Octave-Band Filter Bank Interpretation

The filter bank interpretation of the wavelet transform arises by viewing the
analysis equation (2.5b) as a filter-and-sample operation, viz.,
oy = {z(t) * v7" (=) Hemp-mn -

Although the interpretation applies more generally, it is often convenient to
visualize the basis associated with the ideal bandpass wavelet (2.7). In this
case, the output of each filter in the bank is sampled at the corresponding
Nyquist rate. More generally, we say that the filter bank is critically sampled
[25], in that reconstruction is not possible if any of the sampling rates are
reduced regardless of the choice of wavelet. The critically sampled filter
bank corresponding to the wavelet decomposition is depicted in Fig. 2.1.

For a particular choice of wavelet basis, the magnitude of the frequency
response of the filters in such a filter bank is portrayed in Fig. 2.2. As this
figure illustrates, there can be significant spectral overlap in the magnitude re-
sponses while preserving the orthogonality of the decomposition. In essence,
while the Trequency response magnitudes are not supported on disjoint fre-
quency intervals, perfect reconstruction and orthogonality are achieved due
to the characteristics of the phase in the filters, which leads to cancellation of
aliasing effects in the reconstruction. However, it is important to emphasize
that it is possible to construct wavelet bases such that the spectral overlap
between channels is much smaller in applications where this is important.
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frequency ®

Figure 2.2. The octave band filters corresponding to an orthonormal wavelet
decomposition. The wavelet basis in this example is one due to Daubechies
[12].

A filter bank decomposition is closely related to the notion of a local

time-frequency analysis. Provided the filters are reasonably bandpass in
character, the output of each filter in the bank is an estimate of the frequency
content in the signal localized to the corresponding frequency band. Like-
wise, provided the filter impulse responses are localized in time, the sequence
of output samples from each filter gives a picture of the time-evolution of fre-
quency content within the corresponding frequency band. In the case of
the wavelet decomposition, (z7)? represents an estimate of the energy of the
signal z(t) in the vicinity of t ~ 2-"n, and for a band of frequencies in the
neighborhood of w & 2™r, This s graphically depicted in the time-frequency
plane of Fig. 2.3(a). Note that the octave-band frequency partitioning leads to
a partitioning of the time axis that is finer in the higher (and wider) frequency
bands. We emphasize that the partitioning in this figure is idealized: in ac-

— . . . . . T
cordance with the Fourier transform uncertainty principle, one cannot have

pertfect Tocalization in both time and tfrequency. Nevertheless, one can con-
struct wavelet bases whose basis functions have their energy concentrated at
least roughly according to this partitioning.

In contrast to the wavelet transform, the familiar short-time Fourier
transform representation of a signal corresponds to a filter bank in which
the filters are modulated versions of one another and, hence, have equal
bandwidth. Asa consequence, the outputs are sampled at identical rates, and
the corresponding time-frequency analysis is one in which there is uniform
partitioning of both the time and frequency axes in the time-frequency plane,
as depicted in Fig. 2.3(b).

While the wavelet transform analysis equation (2.5b) can be interpreted
in terms of a filter bank decomposition, the corresponding synthesis equation
(2.5a) may be interpreted, as depicted in Fig. 2.4, as multirate modulation

ot SN
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(a)

Figure 2.3. Tune-frequgncy portraits

(b) corresponding to two signal analyses.
(a) Wavelet transformation. (b) Short-
time Fourier transformation.

in which for a given m each sequence of coefficients z7' is modulated onto
the corresponding wavelet dilate ¥§*(t) at rate 2?". For the case of the 1dea"{
bandpass wavelet, this corresponds to modulating each such sequence z7
into the distinct octave frequency band 2™ < w < 2™*r,

The filter bank interpretation allows us to readily derive the following

useful identigy

YW =1 (29)

valid for all orthonormal wavelet bases and any w # 0. To see this, con.sidgr
an arbitrary finite-energy signal z(t) with Fourier transform X{w), wl}mh is
decomposed into an orthonormal wavelet basis via the filter bank of Fig. 2.1,
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Figure 24. Interpretation of an orthonormal wavelet expansion as a multirate
modulation scheme.

.then immediately re-synthesized according to the filter bank of Fig. 24. Tt
is a straightforward application of sampling theory to show that the Fourier
transform of the output of this cascade can be expressed as

X(w) Y w2 mw)* + Z Z X(w = 2mk 2™ (27" W)W (27w — 21k).
m k#0 m
Since this must be equal to X (w), the terms on the right must all be zero,

while the factor multiplying X (w) must be unity, yielding the identity (2.9)
as desired.

While the filter bank interpretation provides a natural, convenient, and
familiar framework in which to view orthonormal wavelet transformations, it
is also possible to view the transformation in the context of a multiresolution
signal analysis framework [9] [11] [12). This perspective, which we consider
next, provides a number of rich new insights into orthonormal wavelet bases.

232 Multiresolution Signal Analysis Interpretation

In general, a multiresolution signal analysis is a framework for analyzing
signals based on isolating variations in the signal that occur on different tem-
poral or spatial scales. This strategy underlies a variety of diverse signal
processing algorithms including pyramidal methods used in the solution of
computer vision problems [31} and multigrid methods used in the solution of
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boundary value problems [14]. The basic analysis algorithm involves approx-
imating the signal at successively coarser scales through repeated application
of a smoothing or averaging operator. At each stage, a differencing operation
is used to extract a detail signal capturing the information between consecu-
tive approximations. The matching synthesis algorithm involves a successive
refinement procedure in which, starting from some coarsest scale approxi-
mation, detail signals are accumulated in order to generate successively finer
scale signal approximations.

Orthonormal wavelet bases can be interpreted in the context of a par-
ticular class of linear multiresolution signal analyses in which signal approx-
imations at all resolutions of the form 2™ (for m an integer) are defined. In
describing this class, we begin formally by restricting our attention to the
vector space of finite-energy signals V = L*(R). A multiresolution signal
analysis is then defined as a decomposition of this signal space V into a
sequence of subspaces

Vo Vg ViV,

such that each V,, contains signal approximations at a resolution 2™. Asso-
ciated with each V,, is a linear operator A,,{-} that defines projections from
anywhere in V onto V,,. That is, for each signal z(t) € V, the projection
Am{z(t)} € V,, defines the closest signal of resolution 2™ to z(t),
Am{z(t)} = argmin [|z(t) — v(2)]].
v(t)EV

Central to the concept of multiresolution signal analysis is the notion
of being able to construct successively coarser resolution approximations by
repeated application of a smoothing operator. Mathematically, this charac-
teristic is obtained by imposing the nesting or causality relation

Vi C Vi, (2.10a)
which specifically ensures that the approximation of a signal at resolution

2™+ contains all the information necessary to approximate the signal at the
coarser resolution 2™, i.e.,

Am {Am1{z(t)}} = Am{z(t)}-

The relations

fj vV, = V (2.10b)

ﬁ V. = {0} (2.10¢)

ensure that a complete range of approximations is defined by the analysis.
In the process, these completeness relations define arbitrarily good and arbi-
trarily poor approximations that are consistent with any intuitive notion of
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resolution, i.e.,

Jim An{z(t)} = (1)
Jim A fz(t)} = 0.

An additional relation is required to fully define the notion of resolu-
tion: signals in V,, must be characterized by 2™ samples per unit length.
Mathematically, this can be interpreted as requiring that there exist a one-to-
one correspondence or “isometry” between each subspace of signals V., and
the vector space of finite-energy sequences I = ¢*(Z)

V,, &% (2.10d)

such that each sequence represents samples of the corresponding signal fol-
lowing some potentially rather arbitrary linear processing:

Z(t) € Vin = om{z(t)};op-mn € 1 (2.10e)

where ¢, {-} is a linear operator.

In general, egs. (2.10a)—(2.10e) are adequate to define a multiresolution
signal analysis. However, imposing two additional constraints leads to an
analysis with some convenient structure. The first is a translation-invariance
constraint, viz.,

z(t) €V, & z(t—2"™n) €V, (2.10f)

which ensures that the nature of the approximation of the signal z(t) is the
same for any time interval. It is this condition that leads to the translational
relationships among basis functions in the corresponding wavelet expansion.
The second is a scale-invariance constraint

z(t) €V, & 2(2t) € Vg (2.10g)

which ensures that the nature of the approximation at each resolution is the
same. In turn, it is this condition that gives rise to the dilational relationships
among basis functions in the corresponding wavelet expansion.

It can be shown [30] that every such multiresolution analysis, i.e., every
collection of subspaces V,, defined in accordance with (2.10a)~(2.10g), is com-
pletely characterized in terms of a scaling function (or “father” wavelet) o(t).
Consequently, from the scaling function one can construct an orthonormal
basis for each V,,, and, hence, the approximation operator A,,{-} for each of
these subspaces. In particular, for each m,

0T (), 0 (), #7(), 85°(2), -

constitutes an orthonormal basis for V,,, where the basis functions, as a
consequence of the invariance constraints (2.10f) and (2.10g) imposed on the
multiresolution analysis, are all dilations and translations of one another, ie.,

PR (t) = 22p(2™t — n). (2.11)

[T
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The corresponding resolution-2™ approximation of a signal z(t) is then
obtained as the projection of z(¢) onto V,,, which, exploiting the convenience
of an orthonormal basis expansion, is expressed as

An{z(t)} = 3 a7 ¢7(1) (212)
with the coefficients a7} computed according to the individual projections
= / * 2(t) 672 dt. (2.13)

In general, ¢(¢) has a Fourier transform ®(w) that is at least roughly low-
pass. Using an argument similar to that which led to (2.8a), orthonormality
of the basis {¢7}(¢)} implies that

|B(w)] < 1. (2.14a)

Additionally, because this basis for V., is asymptotically complete in V [cf.
(2.10b)] we have
[®(0)] = 1. (2.14b)

Finally, since we are, again, generally interested in regular bases, we must
have

W)~ O (™), w— oo (2.14¢)
Collectively, the properties (2.14a)—(2.14c) describe a scaling function that
is consistent with the notion that A,,{-} is an approximation or smoothing
operator. Consequently, we may interpret the projection (2.13) as a lowpass-
like filter-and-sample operation, viz.,

ag' = {2(t) * () Hyg-mn - (2.15)

Moreover, (2.12) can be interpreted as a modulation of these samples onto a
lowpass-like waveform.

In fact, one example of a multiresolution analysis is generated from the
ideal lowpass scaling function ¢(t), whose Fourier transform is the frequence
response of an ideal lowpass filter, i.e.,

é(w):{l ol < .

0 Il>n (2.16)

In this case, the corresponding multiresolution analysis is based upon per-
fectly bandlimited signal approximations. Specifically, for a signal z(t),
An{z(t)} represents z(t) bandlimited to w = 2™r. Furthermore, we may
interpret (2.15) and (2.12) in the context of classical sampling theory [32]. In
particular, ¢(t) in (2.15) plays the role of an anti-aliasing filter [3], while (2.12)
is the interpolation formula associated with the sampling theorem.

Of course, there are practical difficulties associated with the implemen-
tation of a multiresolution analysis based upon perfectly bandlimited approx-
imations, foremost of which is that the sampling and reconstruction filters,
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Le., the ¢7*(t), are unrealizable. For this reason, this analysis is primarily of
interest for its conceptual rather than practical value.

To derive the wavelet basis associated with each multiresolution anal-
ysis defined via (2.10), we now shift our attention from the sequence of
increasingly coarse scale approximation signals Am{z(t)} to the detail signals
representing the information lost at each stage as the resolution is halved. The
collection of resolution-limited signal approximations constitutes a highly re-
dundant representation of the signal. By contrast, the collection of detail sig-
nals constitutes a much more efficient representation. Formally, we proceed
by decomposing each space V,,,,; into the subspace V., and its orthogonal
complement subspace O,,, i.e., O,, satisfies

O, 1L V, (2.17a)

Om 7] Vm = Vm+1v (217b)
where we recognize that it is in this orthogonal complement subspace that
the detail signal resides.

Associated with every multiresolution analysis is a basic wavelet 1 (t)
which yields the following orthonormal basis for each O,,

RTOR T GREHGRTEC R

where y7\(2) is as defined in terms of dilations and translations of ¥(t) as per
(2.6). In turn, this leads to a convenient description of the projection operator
Dp{-} from anywhere in V onto O,, as

Dm{z(t)} = Y eq 7 (t)
in terms of the individual projections [cf. (2.5b)]

o= [ xyup at

Hence, we have the interpretation that the wavelet coefficients z, for a fixed
m correspond to the detail signal D,, {z(t)} at scale 2™, or, more specifically, to
the information in the signal z(t) between the resolution-2" and resolution-
2™+ approximations, i.e.,

Drn{z(t)} = Amni{2(t)} ~ An{z(t)}.

At this point, we recognize the wavelet associated with the bandlimited
multiresolution analysis defined via (2.16) to be the ideal bandpass wavelet
(2.7); it suffices to consider a frequency domain perspective. To complete
the discussion, we observe that via (2.17) we can recursively decompose any
of the approximation subspaces V,,, for some M, into the direct sum of a
sequence of orthogonal subspaces, i.e.,

Vu=0u-1©Vy-1=0x_16(Oy28Vy_a)= - = P O,. (218)

m<M
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from which we see that for every z(t)

Au{z(t)} = Y Dafz(t)} = 3 S zlyR(t). (2.19)

m<M m<M n

This leads naturally to the interpretation of Ay {z(¢)} as an approximatiqn
in which details on scales smaller than 2 are discarded. Letting M — oo in

(2.19) yields
z(t) =Y Y e n(t),

the synthesis formula (2.5a), and corresponds to the subspace decomposition

Our interpretation of an orthonormal wavelet basis as a multiresolution signal
analysis is then complete.

2.3.3 Discrete Wavelet Transform

The discrete wavelet transform (DWT) refers to a discrete-time framework for
implementing the orthonormal wavelet transform. The basic notioq is that
rather than implementing the analysis directly as a sequence of continuous-
time filter-and-sample operations according to (2.3.1), the analysis can be
reformulated into a single continuous-to-discrete conversion procedure fo.l-
lowed by some iterative discrete-time processing. Likewise, the synthesis
can be reformulated from a series of conventional modulations (2.5a) into an
iterative discrete-time procedure followed by a single discrete-to-continuous
conversion.

The implementation is based upon the discrete-time filters

hin] = /_ °:° SL() B3(t) dt (2.20a)
/ B0 vl dt. (2.20b)

9ln]
Typically, h[n] and g{n] have discrete-time Fourier transforms [3]
5™ Al e
Xn: gln] e
that have roughly halfband lowpass and highpass characteristics, respec-

tively. In fact, for the particular case of bandlimited multiresolution sxgpal
analysis, the corresponding filters, which we distinguish using the notation

=
&
]

S
&
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h[n] and §[n], are ideal lowpass and highpass filters; specifically

- 1 0<w|<w/2
Hw) = {0 T2 <|wl <7
= _ J 0 O<ijw <n/2
Glw) = {1 rj2< |l <

More generally, as we will see, the filters A[n] and g[n] form a conjugate
quadrature filter pair.

The analysis algorithm is structured as follows. Given a signal z(t) € V
from which we would like to extract 2™ for m < M , we can obtain the
approximation coefficients a¥*! via the filter-and-sample procedure of (2.15),
then recursively apply the following filter-downsample algorithm

m
a"l

3" hll - 2n] a**? (2.21a)
]

m
zn

> gll - 2n) ! (2.21b)
i

to extract the transform coefficients z™ corresponding to successively coarser
scales m. A detailed derivation of this algorithm is presented in Appendix A.

The synthesis algorithm is structured in a complementary fashion. In
particular, to reconstruct z(t) to resolution 2*! from z™ for m < M, we can

recursively apply the upsample-filter-merge algorithm

aptt = Y {hln - 200 + g[n - 2] 2"} (2.21¢)
1

to compute the coefficients o of successively finer scale approximations
until level m = M is reached, after which 4,/,1{z(¢)} may be constructed by
modulating o}/ according to (2.12). A detailed derivation of this algorithm is
also left to Appendix A.

Fig. 2.5 depicts the discrete-time relationships between approximation
and detail coefficients corresponding to adjacent scales. The complete al-
gorithm for computing wavelet coefficients based on the discrete wavelet
transform is depicted in Fig. 2.6.

The DWT may be computed extremely efficiently using polyphase
forms. Indeed, if the filters hfn] and g[n] have length L, an implementa-
tion of the DWT via an FFT-based algorithm generally has an asymptotic
computational complexity of O(log L) per input sample [33]. However, as
also discussed in [33] this figure can be somewhat misleading as there are
many subtle issues associated with measuring complexity of the algorithm;
a thorough treatment can be found in, e.g., Vetterli and Kovacevié [22].
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Figure 2.5. A single stage of discrete-wavelet transform algorithm. (a) The
analysis step: filter-downsample. (b) The synthesis step: upsample-filter-
merge.

2.3.4 Finite Data Length and Resolution Effects

In most applications, the data consists of a finite collection of samples

z[n}, n=0,1, ... ,N.

While it is usually assumed that the z[n] correspond to samples of a resolution-
limited approximation of a continuous-time signal z(t), i.e.,

zln] = o+ = {gM (=t) x 2(O)H _,_srruy,

for some M, this cannot always be? ju.stified. ' Neve@eless, if tl.1e signal
z(t) was processed by a typical anti-aliasing filter prior to sampling, then
it is often a useful approximation, particularly if the anti-aliasing filter has
characteristics similar to that of the smoothing filter ¢/ *!(t) associated with
the approximation operator.

Note that while the discrete-time nature of the data limits access to
the finer scales of detail, the length of the observations limits access to the

coarser scales of detail. Hence, in practice we typically have access to wavelet
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Figure 2.6. An efficient implementation of the orthonormal wav
1 ! elet transfor-
mation based on the discrete wavelet transform. (a) The analysis algorithm.

g?g Tgise synthesis algorithm. The processing on each branch is as defined in

coefficients over a finite range of scales for a given signal. Moreover, because
the effective width of the wavelet basis Functions halves at each fir’1er scale
we expect roughly a doubling of the number of available coefficients at eac}{
successively finer scale. In a typical scenario, for a data record of N — Ny 2M
samples, we would expect to be able to extract zy corresponding to

m = 12 ... M
n = 0,1,...,N02m_l-—1

l\)zia .the DWT, where M, is a constant that depends on the particular wavelet
asis.
2asig

. NoFe that while there are a number of ways to handle the unusual data
windowing p'robler.n inherent in the wavelet decomposition, an assumption
that the data is periodic outside the observation window leads to a compu-

t:fltionally convenient implementation. This is the method we adopt in the
simulations described in this book.

Sec. 2.3 Orthonormal Wavelet Bases 25
2.3.5 Orthonormal Wavelet Basis Constructions

As we have indicated, for every multiresolution analysis characterized by a
scaling function, there exists an associated wavelet basis. In fact, it is possible
to exploit the structure of the discrete wavelet transform to show how the
wavelet 9(t) may always be derived directly from the scaling function ¢(t).
In this section we describe how this is accomplished. More generally, we
show how one can construct a family of orthonormal wavelet bases directly
from a class of discrete-time filters.

We begin by observing that there are a number of properties that the
discrete-time filters h[n] and g[n] corresponding to a multiresolution signal
must satisfy. For instance, as a consequence of the orthogonality constraints
between the {/7(t)} and {¢™(¢)}, one can show [30] that h[n] and g{n] must
be related by

glnl = (-1)* A1 = n]

which, expressed in the frequency domain, is

Glw) = e H* (w + ). (2.22)

Furthermore, orthonormality of the {¢[?(t)} requires that H(w) satisfy
|HO)? = 2 (2.23a)
[Hw)?+ |Hw+m)]? = 2. (2.23b)

Filter pairs that satisfy both (2.22) and (2.23) are termed conjugate quadrature
filters (CQFs), and have been discussed extensively in the signal processing
literature; see, e.g., Vaidyanathan [20].

We note that (2.22) leads immediately to an algorithm for constructing
the wavelet corresponding to a particular scaling function: one can generate
h[n] from ¢(t) via (2.20a), g[n} from h[n] via (2.22), then ¥(t) from g[n] and
#(t) via (A.1b). However, even more significantly, we note that k[n] alone is
also sufficient to fully characterize a wavelet basis through a multiresolution
analysis. Indeed, given h[n], the dilation equation* (A.la) can be solved
for the corresponding scaling function ¢(t). In particular, ¢(t) has Fourier
transform

dw) = [] 272H(2"w)] (2.24)
m=1
which is intuitively reasonable from a recursive decomposition of the corre-
sponding frequency domain equation, viz., (A.2a).

In fact, the conditions (2.23) on h[n] are necessary but not sufficient for

(2.24) to generate a regular wavelet basis. However, choosing h[n] to satisfy

4For a further discussion of dilation equations, see, e.g,, Strang [26].
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both (2.23) and to have a Fourier transform H (w) with R zerosat w = 7, i.e.5
H"(r) =0, r=0,1,...,R—1

?s sui.’ﬁcient to generate a wavelet basis with Rth-order regularity. Moreover,
in this case, we find, via (A.2a), that the wavelet has R vanishing moments:

/ Cp(t)dt = (GUI0) =0, r=01, .. R-1 (2.25)

It ig importanF to note, however, that the vanishing moment condition (2.25),
whll.e convenient and sufficient, is not necessary for regularity. For a more
E?l;;t]aﬂed discussion of necessary and sufficient conditions, see, e.g., Lawton
A v'ariety of gseful wavelet bases have been constructed from CQF pair
‘formu‘latl'ons of this type. In fact, this approach has been extremely useful
in designing orthonormal wavelets with compact support, i.e., wavelets for
which
v(A)=0, [>T
forsome 0 < T' < oco. This is a consequence of the natural correspondence be-
twe.er.l Cc?mpactly supported wavelets and the extensively developed theory
of finite impulse response (FIR) digital filters. A more comprehensive devel-
opment of the relationships between wavelet theory and filter bank theory
can be found in, e.g., Vetterli and Kovatevi¢ [22].

23.6 Examples

In this section, we briefly review some standard examples of wavelet bases.
Tf'hus far, we have discussed only one example, the wavelet basis correspond-
ing to the ideal bandpass wavelet (2.7). This basis has excellent frequency
locahzatlon‘ properties, but very poor time-domain localization. Indeed, the
corresponding wavelet 9(t) decays only like 1/t for large ¢, and the CQF
filters h{n] and g[n] decay only like 1/n for large n. More serious still, this
basis is unrealizable. ’

. At another extreme, consider a Haar-based multiresolution analysis in
which the approximations at resolution 2™ are piecewise constant on intervals
of length 2™, Here the scaling function is given by

1 0<t<«1
t) = =
8(t) {O otherwise

and the corresponding wavelet is

1 0<t<1/2
Y(t)={ -1 1/2<t<1 .

0  otherwise

We use the notation f(™)(.) for the nth derivative of a function £(.).
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This analysis is realizable and exhibits excellent time localization but very
poor frequency localization due to the abrupt time-domain transitions of the
approximations. Indeed, ¥(w) falls off only like 1/w for w — oo.

Between these extremes lie a number of wavelet families. Consider, for
example, the family of Battle-Lemarie wavelet bases [30] [12]. These bases
may be derived from a multiresolution analysis based upon orthogonalized
Pth-order spline functions. For these bases, the corresponding scaling func-
tion is given by

1 1 ~1/2

d(w) = ~FT Xk: (w + 27k )2P+D)

For example, the first-order (P = 1) Battle-Lemarie multiresolution analysis
corresponds to piecewise-linear but continuous signal approximations. In
this context, it is trivial to show that the Haar-based wavelet basis we have
discussed corresponds to the case P = 0. Similarly, using a Central Limit
Theorem argument it is possible to show that the bandpass wavelet basis
corresponds to P —+ co. In general, the Battle-Lemarie bases have very
reasonable localization properties: they are characterized by exponential
decay in the time domain and decay like 1/|w|"*! in the frequency domain.
Hence while they are, strictly-speaking, unrealizable, the exponential decay
property ensures that good approximations may be realized via truncation.

As another family of examples, Daubechies has designed an important
class of compactly supported wavelet bases [12] based upon discrete-time
FIR filters. In addition to fulfilling a practical requirement of having finite-
extent basis functions, these bases exhibit good localization in both time
and frequency. The Rth-order Daubechies basis is characterized by CQF
filters h[n] and g{n] of length 2R for R = 1,2,..., where the case R = 1
corresponds to the Haar-based wavelet basis. Moreover, the basis functions
are maximally regular, in the sense that they have the maximum number of
vanishing moments (R) for a given order.

In general, the development of other families of wavelet-based multires-
olution analyses continues to receive considerable attention in the literature.
For example, some with particularly attractive computational implementa-
tions are described in [35].

2.3.7 Nondyadic Orthonormal Wavelet Bases

While we have focused largely upon dyadic wavelet bases, for which the
dilation and translation increments are a = 2 and b = 1, there are many other
nondyadic choices. In many applications, including those within the context
of this book, such generalizations are potentially very useful particularly
for 1 < a < 2. This is because these correspond to an analysis with finer
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frequency resolution on the logarithmic frequency scale. For instance, it
would be highly convenient to have the flexibility of choosing from among a
family of bases corresponding to the lattice

(L+1)/L
b = L,
where L = 1,2, ... is a parameter. An at least conceptually useful class of

such bases arises out of a generalization of the ideal bandpass basis defined

by
L+1

™

\Il(w)z{ VL 7T < jw| <
0 otherwise

where the case L = 1 corresponds to the usual (dyadic) bandpass basis. Itis a
straightforward exercise in analysis to verify that for each L the corresponding
set {y(t)}, for which

() = (#)ma " ((#)mt—nL) ,

is complete and orthonormal. Unfortunately, however, these basis functions
have have tails that decay very slowly due to their ideal frequency character-
istics. This leads to comparatively poor time-domain localization properties
which considerably reduces the practical value of these particular bases. Con-
structions for more practical nondyadic wavelet basis have been pursued by,
e.g., Auscher [36], Blu [37], and Kova&evié¢ and Vetterli [38].

2.4 SUMMARY

In this chapter, we presented those aspects of wavelet theory that will be
important in the developments throughout the remainder of the book. Two
interpretations of the orthonormal wavelet transform were discussed: one
based on an octave-band filter bank framework; the other on a multireso-
lution signal analysis framework. Each provided rich and complementary
insights into wavelet theory. Our treatment of the topic emphasized a signal
processing perspective, and developed strong intuition in both the time and
frequency domains.

The chapter also discussed several aspects of the implementation of the
wavelet transform in practice, since these will be important when wavelets are
exploited in the development of actual fractal signal processing algorithms
in subsequent chapters. In particular, we discussed the discrete wavelet
transform, a discrete-time algorithm for synthesizing and analyzing signals
via the orthonormal wavelet transform. Related issues including the effects
of finite data length and limited data resolution on the computation were

s st s o—
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also discussed. The chapter concluded with several examplgs of families of
wavelet bases that are important both conceptually and practically.



