Statistically Self-Similar
Signals

3.1 INTRODUCTION

Some of the most prevalent forms of fractal geometry in nature arise out of
statistical scaling behavior in the underlying physical phenomena. In this
chapter, we study an important class of statistically scale-invariant or self-
similar random processes known as 1/ f processes. These empirically defined -
processes, in particular, model a wide range of natural signals.

In the first half of this chapter we first review the empirical properties of
1/ f processes and a traditional mathematical model for 1 / f behavior based on
the fractional Brownian motion framework of Mandelbrot and Van Ness [39].
Wuce and study an alterpative mathematical characterization
for ‘1Z f Etrocesses. “The novelty and power of this characterization are its
basis in the frequency domain, which admits a broader range of Fourier
tools in the analysis of 1/f processes. In addition, we are able to show that

our characterization includes the models of Mandelbrot and Van Ness, yet
appears to avoid some of their limitations.

The latter half of the chapter develops models for a more broadly de-
@e'd class of nearly-1/ f models, which constitute equally useful models for
many natural signals. For completeness, we first review some well-known
ARMA-based constructions for nearly-1/ f processes. However, the principal
focus in this section is on developing some powerful and efficient wavelet-
based nearly-1/ f models. Using our frequency-based characterization of 1 /f
processes, we are able to show that a rather broad class of wavelet bases
yield Karhunen-Loéve-like expansions for nearly-1/ f processes. As a con-
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sequence, it is reasonable to model 1/f processes as orthonormal wavelet
basis expansions in terms of uncorrelated coefficients. This suggests that
wavelet-based analysis of 1/ f-type behavior is not only convenient, but, in
an appropriate sense, statistically optimal. In fact, in Chapter 4 we show
how these wavelet-based representations are extremely useful in addressing
problems of optijmum detection and estimation involving 1/ f-type signals.

Before proceeding with our development, we point out that a basic engi-
neering background in probability, random variables, and random processes
is assumed of the reader throughout this chapter. Useful treatments of this
background material can be found in, e.g., Papoulis [40] or Stark and Woods
f41].

We begin with a rather universally accepted definition. A random
process z(t) defined on —oo < t < oo is said to be statistically self-similar if
its statistics are invariant to dilations and compressions of the waveform in

time. More specifically, a random process z(t) is statisti -simi ith

arameter H if for any real a > 0 it obeys the scaling relation
= z(t) 2 a~Hz(at) (3.1)
where Z denotes equality in a statistical sense. For strict-sense self-similar
processes, this equality is in the sense of all finite-dimensional joint proba-
bility distributions. For wide-sense self-similar processes, the equality may
be interpreted in the sense of second-order statistics, i.e., mean and covari-
ance functions. In this latter case, the self-similarity relation (3.1) may be

alternately expressed as
M,(t) E[z(t)] = a ¥ M_(at) (3.2a)

R.(t,s) E[z(t)z(s)] = a ** R;(at, as). (3.2b)
We restrict our attention to Gaussian processes, for which the two definitions
are equivalent. Furthermore, we consider only zero-mean processes.

Even Gaussian processes satisfying (3.1) can exhibit great diversity in
behavior. Some are stationary, as is the case with the classical generalized
process w(t) corresponding to zero-mean, stationary, white Gaussian noise.
This process, whose autocorrelation function is an impulse, is self-similar
with parameter H = —1/2. More typically, though, self-similar processes
are nonstationary. For example, the Wiener process (Brownian motion) z(t)

related to w(Z) by

i

(t) 1/0 “w(r)dr, (3.3)

'Throughout this chapter, integrals with respect to the differential element w(t) dt,
where w(t) is a stationary white Gaussian noise, should be interpreted more precisely as
integrals with respect to the differential element dz(t), where z(t) is the corresponding
Wiener process. While it is customary to consider w(t) to be the derivative of z(t), recall that
the nondifferentiability of z(t) means that w(t) is its derivative only in a generalized sense.
It is for this reason that an ordinary Riemann integral is technically inadequate, and the



32 Statistically Self-Similar Signals Chap. 3

and extended to t < 0 through the convention

/Oté—/to, (3.4)

for. all ¢ is statistically self-similar with # = 1 /2 and nonstationary but
evidently, has a stationary derivative. As a final example, the Gaussian’
process

z(t) = |t~z (t) (3.5)
is self-similar with parameter f, for all values of Hy, is nonstationary, and
has a. nonstationary derivative except for Hy = 1/2. In fact, when xgt) in
(3.5) is .filtered by virtually any nontrivial linear time-invariant filter, the
output is a nonstationary process. However, while most physical procésses
that. exhibit self-similarity are fundamentally nonstationary, they retain a
stationary quality to them. For this reason, processes such as (3.5) generall
constitute rather poor models for such phenomena. By contrast, perhaps th)e,

most important class of models for such phenomena are the so-called “1/f
processes.”

3.2 1/f PROCESSES

The 1/f family of statistically self-similar random processes are generally

defined as processes having measured power spectra obevi
relationship of the form P P Obeying a power law

o2

for some spectral parameter v related to H according to
y=2H +1. (3.7)

Generally, the power law relationship (3.6) extends over several decades of
fr—eguencx. While data length typically Timits access to spectral information af
lowgr frequencies, data resolution typically limits access to spectral content
at higher frequencies. Nevertheless, there are many examples of phenomena
for which arbitrarily large data records justify a1/ f spectrum of the form (3.6)
over all accessible frequencies. However, (3.6) is not integrable and hem.:e
strictly speaking, does not constitute a valid power spectrum in the theor ;
of stationary random processes. As a consequence, there have been nurner}j
ous attempts to attach an interpretation to such spectra based on notions of
generalized spectra [39] [42] [43] [44].

Asa consequence of their inherent self-similarity, the sample paths of
1/ f processes are typically fractals [4]. In general, the graphs of sample paths

corresponding Riemann-Stieltjes integral is requi i
quired. Nevertheless, we reta i
w(t) dt for conceptual convenience. i the notation
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of random processes are gne-dimensional curves in the plane. This we re-
fer to as their “topological dimension.” However, fractal random processes
have sample paths that are so irregular that their graphs have an “effective”
dimension that exceeds their topological dimension of unity. It is this ef-
fective dimension that is usually referred to as the “fractal” dimension of
the graph. However, it is important to note that the notion of fractal di-
mension is not uniquely defined. There are several different definitions of
fractal dimension—each with subtle but important differences—from which
to choose for a given application [45]. Nevertheless, regardless of the partic-
ular definition, the fractal dimension D of the graph of an ordinary function
typically ranges between D = 1 and D = 2. Larger values of D correspond
to functions whose graphs are increasingly rough in appearance and, in an
appropriate sense, fill the plane in which the graph resides to a greater extent.

For 1/f processes, there is a strong relationship between the fractal
dimension ) and the self-similarity parameter H of the process. In particular,
an increase in the parameter 4 yields a decrease in the dimension D. This
'imtuitively reasonable: an increase in H corresponds to an increase in =,
which, in turn, reflects a redistribution of power from high to low frequencies
and leads to sample functions that are increasingly smooth in appearance.
Fig. 3.1 illustrates some sample paths of 1/f processes corresponding to
various values of +. It is worth noting that what we have plotted are, in some
sense, bandpass filtered versions of the sample functions, since the finite data
length constrains the lowest accessible frequency and the discretization of
the time-axis constrains the highest accessible frequency. In Section 3.2.1 we
describe the quantitative relationship between a particular notion of fractal
dimension D and the self-similarity parameter /1 for the class of fractional
Brownian motion models for 1/ f processes.

A truly enormous and tremendously varied collection of natural phe-
nomena exhibit 1/ f-type spectral behavior over many decades of frequency.
A partial list includes (see, e.g., [4] [43] [46] [47] [48] [49] and the references

therein):

~ geophysical time series such as variation in temperature and rainfall
records, measurements of oceanic flows, flood level variation in the
Nile river, wobble in the Earth’s axis, frequency variation in the Earth’s
rotation, and sunspot variations;

~ economic time series such as the Dow Jones Industrial Average;

- physiological time series such as instantaneous heart rate records for
healthy patients, EEG variations under pleasing stimuli, and insulin
uptake rate data for diabetics;

— biological time series such as voltages across nerve and synthetic mem-
branes;
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b ple paths of 1/f processes corresponding to different values

- ctelect.rom?ig.netic fluctuations such as in galactic radiation noise, the in-
ensity of light sources, and flux flow in superconductors; ’

~ electronic device noises in field eff i
ect and bipolar transi
tubes, and Schottky, Zener, and tunnel diodes nistors, vacuum

- resistance fluctuations in metal film
germanium filaments in carbon and
concentrations cells;

, semiconductor films and contacts,
aqueous solution, thermocells, and

~ fre s
d q;:encydvanahon n hgurglasses, quartz crystal oscillators, atomic
0CKS, and superconducting cavity resonators; ,

- -induced phenomena including variations in traffic flow and am-

plitude and frequency variation in Wi i ]
' estern, Africa i i
music, both modern and traditional; " Asian and Indian

— generation of perceptually pleasi i i imuli
el ion of p breszes; Y pleasing physiological stimuli, such as arti-

~ patterns of burst errors on communication channels;
’
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— texture variation in natural terrain, landscapes, and cloud formations.

While v =~ 1 in many of these examples, more generally 0 < v < 2.
However, there are many examples of phenomena in which v lies well outside
this range. For v > 1, the lack of integrability of (3.6) in a neighborhood
of the spectral origin reflects the preponderance of low-frequency energy
in the corresponding processes. This phenomenon is termed the infrared
catastrophe. For many physical phenomena, measurements corresponding
to very small frequencies show no low-frequency roll off, which is usually
understood to reveal an inherent nonstationarity in the underlying process.
Such is the case for the Wiener process discussed earlier. For v < 1, the
lack of integrability in the tails of the spectrum reflects a preponderance
of high-frequency energy and is termed the ultraviolet catastrophe. Such
behavior is familiar for generalized Gaussian processes such as stationary
white Gaussian noise and its usual derivatives.

An important property of 1/f processes is their persistent statistical
dependence. Indeed, the generalized Fourier pair [50]

S L L (38)
2I'(y) cos(y7/2) |w|” '
valid for v > Obut v # 1,2,3, ..., suggests that the autocorrelation R.(7)

associated with the spectrum (3.6) for 0 < v < 1 is characterized by slow

decay of the form

Ry(r) ~ ™"

This power law decay in correlation structure distinguishes 1/ processes
from many traditional models for time series analysis. Indeed, the well-

studied family of autoregressive moving-average (ARMA) models have a
correlation structure invariably characterized by exponential decay. As a con-
sequence, ARMA models are generally inadequate for capturing long-term
dependence in data.

Perhaps the most important families of 1/ f processes are those that are
non-Gaussian. Indeed, a number of rich and interesting examples of non-
Gaussian self-similar behavior can be constructed by exploiting the theory
of stable distributions [39] [51] [52] [53]. Nevertheless, Gaussian models are
generally applicable in a broad range of contexts, and are analytically highly
tractable. For these reasons, we focus principally on Gaussian 1/f processes
in the sequel.

In the next section, we review what are perhaps the most popular math-
ematical models for Gaussian 1/f processes: fractional Brownian motion
and fractional Gaussian noise. Unavoidably, several mathematical subtleties
arise in the development of fractional Brownian motion, making this section
somewhat less accessible to the nonspecialist than others. However, while




36 Statistically Self-Similar Signals Chap. 3

insightful, a detailed understanding of these subtleties is not essential to ap-
preciating the main results of the chapter. For these reasons, the reader may
find it easier to skip over this section on a first reading, proceeding directly to
Section 3.2.2. There we develop a powerful but much simpler mathematical
characterization for 1/ f processes.

3.2.1 Fractional Brownian Motion and Fractional Gaussian Noise

It is generally agreed [4] [39] [53] that fractional Brownian motion (fBm) and
fractional Gaussian noise (fGn) models were first proposed by Kolmogorov,
although their current popularity is undoubtedly due to Mandelbrot who
independently derived the theory with Van Ness [39] and promoted their
use in numerous subsequent publications (see, e.g., the references in [4]).
An extensive bibliographic guide to various subsequent developments of the
theory, principally in the mathematics literature, is presented in Taqqu [53].

In this framework, processes corresponding to 1 < ¥ < 3, for which
there is infinite low-frequency power, are developed as nonstationary random
processes having finite-power in any finite time interval. These processes
are the fractional Brownian motions, and classical Brownian motion is a
special case corresponding to y = 2. By contrast, processes corresponding to
—1 <y <1, for which there is infinite high-frequency power, are developed
as generalized stationary Gaussian processes corresponding to the derivative
of a fractional Brownian motion. These processes are the fractional Gamssian
noises, and stationary white Gaussian noise is a special case corresponding
to v = 0. The theory does not directly accommodate the cases ¥ > 3 and
7 < -1, although extensions can be formulated. Furthermore, somewhat
disturbingly, the models are degenerate for the cases v=-1,v=1, and
v=3.

To develop the concept, we begin by exploring the possibility of devel-
oping 1/f models as the result of driving stationary white Gaussian noise
through a’suitable linear time-invariant system. In this case, a natural choice
would be the system with impulse response

1
T T(H+1/2)

where u(t) is the unit-step function

1130
””‘{0t<0*

v(t) tH=12 ), 3.9)

and where I'(-) is the gamma function. Indeed, (3.9) has the generalized
Laplace transform [54]

1

(s) = SHH1/2
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which suggests that if the input w(t) has spectral density o2, the outPut .Wlll
have a power spectrum, in some sense, of the form (3.6) where 7 is given
via (3.7). As we discuss in Chapter 7, (3.9) represents an example of a linear
jointly time- and scale-invariant system of degree H + 1/2. However, thze
system defined via (3.9) is unstable except for the degenerate case f{ = —1/2.
Consequently, the convolution

1 t ~
x(t) = vit) xw(t) = TH+1/2) /_oo(t — YA 1V2 () dr (3.10)

is not well defined.

In developing their 1/f model, Barnes and Allan |5§ .| addr'es.sed th;:g
dilemma by keying the integration in (3.10) to the time origin, defining their
self-similar process by

N e - 71# V2 w(r) d 3.11)
Z(t)—m/o |t — 7] w(r)dr (

where this definition is extended for ¢ < 0 through the cqnvention (3.4). Itis
interesting to remark that (3.11) is familiar in mathematics as .the Riemann-
Liouville integral of w(r) over the interval 0 < 7 < L. In fractional calculus
theory [56], it often is used to define the fractional integral of w(t) of order
A= H +1/2 > 0, usually denoted

-A

The resulting process is well defined, satisfies z(0) = 0, and is statisti-
cally self-similar with parameter 4, ie., with¢.s.a >0,

Ra(t,s) = o2 / M V2 (s = ) EV2 gr = 0B R (gt as5)  (3.12)

0
However, the Barnes-Allan process constitutes a rather poor mpdel for 1/f
behavior. In fact, it lacks any kind of stationary quality. For instance, the

increment process

A z{t + &) — z(t) (3.13)

Az(t;e)

while statistically self-similar, satisfying
Az(t;e) £ a D Az(at; ac) (3.14)

for every ¢ > 0, is nonstationary. Consequently, one cannot associatg a
stationary generalized derivative with the process. In effect, the un'derlyullg
problem 1s that the Barnes-Allan process places too much emphasis on the
time origin [39].

Fractional Brownian motion represents a very useful rgﬁnement of the
Barnes-Allan process. Specifically, fractional Brgmm motion is a nox?staci
t?nary Gaussian sell-similar process z(¢) also satisfying (0) = 0, but define
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len ;mt:h away that its corresponding increment process Az(t;¢) is self-similar
nd stationary for every ¢ > 0. Imposing these constraints on increments of

fractional Brownian motion leads t :
oa
behavior. comparatively better model for 1/ f

A convenient though specialized definition i i
. A of fracti -
tion is given by Barton and Poor [57] ctional Brownian mo

1

e

z(t)

+/0 [t — r|f-1/2 w(T) dT} (5.15)

for0 < H : <1, Where w(t) is a zero-mean, stationary white Gaussian noise
process w1th unit spectral density. Again, for t < 0, z(¢) is defined through
the convention (3.4). Note that with H = 1 /2, (3.15) specializes to the Wi :

process (3.3), i.e., classical Brownian motion. —

As suggested earlier, fractional Brownian i i

A ge rlier, motions are, in fact, fractals.
Sfic1ﬁ§ally, it is pos§1ble to ghow (see, e.g., T4] or [45]) that sample functions
of fractional Browfman motions whose self-similarity parameters lie in the
range 0.< H <1(i.e, 1<y < 3)have a fractal dimension (in the Hausdorff-
Besicovitch sense) given by

D=2-H
that again gives a quantitative measure of their roughness.

The correlation function for fracti :
. actional Brow; i .
derived as nian motion can be readily
T

Ralt;s) = E(e(0(s)] = T (s + 2% ~ o~ s1) (216

where
cos(mH)
- , (3.17)

. PN . . . e
II()II[ Wlll(ll]tls StIalghthIwaId tO Ve]liy ”lat the p O y
TrOCess 1S Statlstlcall Self

It is likewise straightforward to verify that the normalized increments

()' “a( tic )]lal BI()Wlllall motion are StathIlaIy a. d =
N Self Sllllllar, ar ld lla\/e the

of = varz(l) = (1 - 2H)

RAI(T;E)

E[Az(t;e)Az(t - 7;¢)]

0% =2 /|7 H 7\ T H '
—Hz—[(?u) —2<'?|> +<'?'—1) J (3.18)

At large lags (|7] > <), the correlation is asymptotically given by
Raz(T) = of H(2H ~ 1)|72H-2, (3.19)

0
MH+1/2) [/_oo (== ) wiryar | LBy
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Letting ¢ — 0, and defining

H = H—1. (3.20)

we can reason from (3.15) that fractional Brownian motion has the generalized
derivative [57]

1 t )

'(t) = %z(t) = EIL% Az(te) = —fm /_Oo [t — 1] 12y(r)dr (3.21)
which is termed fractional Gaussian noise. Note that (3.21) is precisely a
convolution of the form (3.10), for which we now have an interpretation.
Furthermore, from this observation we deduce that the derivative process
2'(t) is stationary and statistically self-similar with parameter '

From (3.18) it is apparent that the character of z'(t) depends strongly on
the value of H. Note that the right side of (3.19) has the same algebraic sign
as H —1/2. Hence, for 1/2 < H < 1 this derivative process exhibits long-term
dependence, i.e., persistent correlation structure. For H = 1/2, this derivative
is the usual stationary white Gaussian noise, which has no correlation, while
for 0 < H < 1/2, the derivative exhibits persistent anti-correlation. Fﬂ
1/2 < H < 1, 2/(t) is zero-mean and stationary with covariance

Ry(7) = E[2'()2'(t = )] = o4 (H' + 1)2H' + 1)|7|** (3.22)

and we note that the generalized Fourier pair (3.8) suggests that the corre-
sponding power spectral density of the derivative process can be expressed,

forw # 0, as

1
() = 3.23
Suw) = (323)
where
v =2H"+1

The preceding development suggests the conceptually useful synthesis
for fractional Brownian motion depicted in Fig. 3.2. In particular, driving a
linear time-invariant system with impulse response

1
T(H-1/2)
with stationary white Gaussian noise w(t) generates a fractional Gaussian
noise z'(t), from which fractional Brownian motion z(t) is obtained by routine
integration:

v(t) = £ 2u(t)

z(t) = /0‘ z'(t) dt.

The fractional Brownian motion framework provides a useful construc-
tion for some models of 1/ f-type spectral behavior corresponding to spectral
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Figure 3.2. _Syntlhesis of fractional Brownian motion z(t) in terms of fractional
Gaussian noise z'(t) and stationary white Gaussian noise w(¢).

exponents in the range ~1 < » < land 1 < 7 < 3. In fact, they uniquely
model certain classes of 1/f behavior. One can show, for instance, that
for 0 < H <1, fractional Brownian motion consfitutes the only statist’ically
self-similar, zero-mean. mean-square continuous, finite-variance, Gaussian
random process satisfying z(0) = 0 and having stationary increments. While
these are somewhat restrictive conditions, this framework has, in general
becqme a popular one for modeling a variety of phenomena with 1/f be:
havior (see, e.g., [4] [47] [57] [58]). However, fractional Brownian motion
and fractional Gaussian noise are not the only models for 1/7 behavior, even
within the respective parameter ranges -1 <y<land1 <~y <3. In f;ct in
some cases they constitute rather poor models for 1 /f behavior. ,

One fmsatis.fying characteristic of fractional Brownian motion is its pro-
nounced time origin, Indeed, fractional Brownian motion satisfies not only

z(0) = 0, but also power law growth in variance as a function of time, ie.,

varz(t) = o [t)?H.

.In modeling many physical phenomena having empirical spectra correspond-
Ing to v in this range, the notion of such a time origin is not only rarely
observed, but rather unnatural as well.

Additionally, the fractional Brownian motion framework has a number
of limitations. In particular, it does not lead to useful models for1/f processes
c&r.res.ponding to v £ —1, v > 3, and perhaps the most important and
ubiquitous case, v = 1. Indeed, for v =3 (H = 1), fractional Brownian

mot.ion as defined by (3.15) degenerates to a process whose sample paths are
all lines through the origin, viz.,

x(t) = |tz (1).

For v = 1 (H = 0), fractional Brownian motion de enerates to the trivial
process

Morg genera.lly, choosing H < 0 in (3.15) leads to processes that are not
continuous (in the mean-square sense), while choosing // > 1 in (3.15) leads
to processes whose increments (and, hence, generalized derivatives) are not
stationary [39] [52].
\—
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In the next section, we consider a more general but nonconstructive
model for 1/ f processes that includes both fractional Brownian motions and
fractional Gaussian noises, yet appears to avoid some of the restrictions im-
posed by the fractional Brownian motion framework. This mathematical
characterization for 1/ processes was originally developed in Wornell [59]

[60].
3.2.2 A Mathematical Characterization in the Frequency Domain

The notion that measurements of spectra for physical processes can only be
obtained over a range of frequencies governed by data length and resolution
limitations suggests a potentially useful approach for defining 1/ f processes.
In particular, let us consider defining 1/ f processes in terms of their charac-
teristics under bandpass filtering specifically as follows.

Definition 3.1 A wide-sense statistically self-similar zero-mean random process
z(t) is said to be a 1/ f process if there exist wy and wy satisfying 0 < wy < w; < 0
such that when z(t) is filtered by an ideal bandpass filter with frequency response

Vo1 w<|wl €w
Bi(w) = { 0 otherwise (3.24)

the resulting process y1(t) is wide-sense stationary and has finite variance.

Before exploring the implications and insights that arise from this def-
inition, it is useful to point out that choosing an ideal bandpass filter in this
definition may, in fact, not be critical. It might suffice, for example, to choose
any filter whose frequency response B(w) has sufficient decay as w — 0 and
w — 00. Whether this leads to an equivalent definition remains an open
question. Nevertheless, the use of ideal filters is certainly rather convenient.
Indeed, the fundamental appeal of Definition 3.1 as a characterization for 1/ f
processes is its basis in the frequency-domain. As a consequence, this allows
us to extend the well-established tools of Fourier analysis to this important
class of nonstationary processes. In turn, we are able to derive a number of
new properties of 1/ f processes in a highly efficient manner.

The following theorem justifies designating processes satisfying Defi-
nition 3.1 as 1/ f processes, and leads to an important interpretation of the
spectrum (3.6) for these processes. A detailed but straightforward proof is
provided in Appendix B.1.

Theorem 3.2 A 1/ f process x(t), when filtered by an ideal bandpass filter with
frequency response

Vo) 1T w<|wlswy
Blw) = { 0 otherwise (3.2)
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for arbitrary 0 < Wi < wy < 00, yields a wide-sense stationary random process y(2)
with finite variance and having power spectrum

otherwise (3.26)

for some o2 > 0, and where the spectral exponent v is related to the self-simz@y
parameter H according toy = 2H + 1.

2 L
Syw) = { T/l i <[] < wy

Of course, an important question that must be addressed concerns
whether there exist any nontrivial random processes satisfying Definition 3.1.
Fortunately, the answer is yes, and the following theorem constitutes an
existence proof, verifying that Definition 3.1 is nondegenerate for at least
some values of . In particular, the theorem establishes that it is possible
to construct families of Gaussian processes that satisfy this definition. A
straightforward proof is provided in Appendix B.2.

Theorem 3.3 Fractional Brownian motions corresponding t0 0 < H < 1 and the
associated fractional Gaussian noises are 1 [ processes in the sense of Definition 3.1.

We remark that, based on our discussion of Section 3.2.1, an immediate
corollary is that the Wiener process and stationary white Gaussian noise are
also 1/F processes. In contrast, the Darnes-Allan process we described at
the outset of Section 3.2.1 is not a 1 |/ f process in the sense of Definition 3.1.
This is to be expected, given the shortcomings of the Barnes-Allan process in
modeling 1/ f-type behavior.

Another question that naturally arises concerns whether there are any
other Gaussian 1/ f processes besides those of Theorem 3.3. For instance, is it
possible to construct nontrivial Gaussian processes that satisfy Definition 3.1
for values of H outside 0 < H < 1? And, are there other Gaussian processes
satisfying this definition for 0 < H < 1? Recent work [61] indirectly suggests
that the answer to this last question may be negative, although such a result is
not explicitly proved. In effect, this paper shows that if we were to replace the
bandpeass filter (3.24) in Definition 3.1 with a roughly bandpass filter whose
frequency response is differentiable, has a simple zero at w = 0, and decays
sufficiently quickly as w — oo, then the definition uniquely characterizes
fractional Brownian motion., However, the constraints on the filter they
consider are overly restrictive to answer our specific questions. Furthermore,
it may be that the technical definition of a random process they consider is
too narrowly chosen to accommodate 1 / f behavior.

Inany event, a practical difficulty with both the fractional Brownian mo-
tion framework and the frequency-based characterization for 1/ f processes
just described 1s that while mathematically well defined, neither is analvyti-
cally convenient in many contexts. In fact, there are many very basic signal
processing problems that are effectively intractable using these models,
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To address this limitation, we next consider some more zgneral classes
of 1/ f-like models. While these models typically do not give rise to e?;izctly-
1/ f spectra, they give rise to spectra that are nearly-1/f. As we wi fie/?
many of these processes retain most of the fundamental charactenshcs o
processes, yef are considerably more amenable to analysis.

3.3 NEARLY-1/f PROCESSES

Perhaps the best-known class of nearly-1/ f processes h_ave been those basid
upon a generalized, infinite-order autoregressive moving-average (ARN{ )
framework. We review two such formulations before developing a wavelet-
based model for 1/ f-type behavior that is the focus of the chapter.

3.3.1 ARMA Models

There have been a variety of attempts to exploit a generalized autoregreslsilve
moving-average framework in modeling 1/ f processes. Perha”ps the ear iest
such framework, based on a “distribution of time constants formulatlon;
arose in the physics literature and dates back at least to the yvork of Bernam;md
[62]. However, it was really the seminal paper of van der Ziel {63] that sparke
substantial interest in this approach, and much subsequent developm(.ent.

Van der Ziel's basic approach was tomodel a 1/ f process as the wexghtgﬁ
superposition of an infinite number of uncorrelated random processe?, ;ag_
governed by a distinct characteristic ti{ne-constant 1/a > 0. Each of these
random processes has correlation function

Ro(r) = &=
corresponding to a Lorenzian spectra of the form
Sale) = o
and can be modeled as the output of a causal LTI filter with system function
Tals) = v2a
s+a

driven by an independent stationary white noise soulf?g. 'The weighted su-
rpositi i f such processes has an effective spectrum
perposition of a continuum o:

S:w) = [ Salw) (@) da (3.27)

i p ity of poles or, equivalently,
where the weights f(a) correspond to the densﬁy. of poles
relaxation timegs. If an unnormalizable, scale-invariant density of the form

flo)=a™ (3.28)
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for 0 < v < 2 s chosen, the resulting spectrum (3.27) is 1/f,ie,

Se(w) W

This mathematical identity suggests a useful and _practical approach
to modeling 1/ f-type behavior using the superposition of a countable col-
lection of single time-constant processes whose poles are appropriately dis-
tributed. In fact, the density (3.28) implies that the poles should be uniformly
distributed along a logarithmic frequency axis. The resulting process r(¢)

synthesized in this manner then has a nearly-1/f spectrum in the Tollowing
sense: when z(t) is filtered by any bandpass filter of the form (3.25) the re-
sult is a stationary process whose spectrum within the passband is 1/ f with
superimposed ripple that is uniform-spaced and of uniform amplitude on a
log-log frequency plot.

As an example, consider exponentially spaced poles according to

am =A™, —00 < m < 00, (3.29)

for some 1 < A < co. Then the limiting spectrum

AC2=7)m
Sp(w) = %_j g (3.30)
is bounded according to
% < Sw) < fj,’ (3.31)
for some 0 < ¢} < 0, < oo, and has ripple such that for all integers &
WSz (w) = [A%w]7 S, (Akw). (3.32)

As A is chosen closer to unity, the pole spacing decreases, which results in a
decrease in both the amplitude and spacing of the spectral ripple on a log-log
plot.

Note that we may interpret the 1// model that results from this dis-
cretization as an infinite-order ARMA process. That is, z(¢) can be viewed as
the output of a rational LTI system with a countably infinite number of both
poles and zeros driven by a stationary white noise source. There has been a
substantial body of literature that has attempted to exploit this distribution-
of-time-constants model in an effort to explain the ubiquity of 1/ f spectra in
nature. In essence, studies [64] [65] [66] construct mathematical arguments
to the effect that 1/ f spectra are the result of large, complex systems in nature
favoring scale-invariant time-constant distributions of the form (3.28).

Somewhat more recently, Keshner [43] [46] developed an alternative

ARMA-based model for 1/ f-like behavior from an engineering perspective,
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This approach, which has also received considerable attention in the lit-
erature, is based on the observation that an infinite-length continuous RC
transmission line when driven with a stationary white noise current i(¢)
yields a measured voltage v(t) whose power spectrum is of the form .(3.6) for
0 < v < 2. That is, in some sense, the impedance function of the line is of the
form

V{(s) 1
o) < o

By considering an infinite-length, lumped-parameter RC line as an ap-
proximation, Keshner showed that this gave rise to nearly-1/f behavior in
much the same manner as was obtained in the van der Ziel model. [t is
mgsible to interpret 1/ f processes obtained in this manner as the result of
driving stationary white noise through an LTI system with a rational system

o Tg + AmH/2
T(s)= mgm -——-—————s AR (3.33)
which, in turn, leads to a spectrum of the form
00 'wz +A2m+7

This nearly-1/f spectrum has the same properties as the van der Ziel spec-
trum, satisfying both (3.31) and (3.32). In fact, comparing the spectra (3.34)
and (3.30), we see that the pole placement strategy for both is identical. How-
ever, the zeros in the two models are, in general, distributed much differently.
This, in turn, leads to differing degrees of ripple amplitude for a given pole
spacing for the two different models [67].

It is interesting to remark that the idea of using infinite lumped RC
line to realize such systems was independently developed in the context of
fractional calculus. Indeed, Oldham and Spanier [56] describe precisely such
an implementation for fractional integration operators of the type used in the
construction of the Barnes-Allan process (3.11).

The structure of the system function (3.33) of Keshner’s synthesis fil.ter
provides additional insights into 1/ f-like behavior. For example, the in-
finity of poles suggests that a state space characterization of 1/ f processes
would generally require uncountably many state variables, consistent with
the notion of long-term correlation structure in such processes.

Also, this system function lends useful insight into the limiting behavior
of 1/ f processes as v — 0 and v — 2. Note that the poles ar.td zeros of (3.33)
lie along the negative real axis in the s-plane. On a logarithmic scale, the
poles and zeros are each spaced uniformly along this half-line. Fgrthermore,
in general, to the left of each pole in the s-plane lies a matching zero, s0
that poles and zeros are alternating along the half-line. However, for certain
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values of v, pole-zero cancellation takes place. In particular, as v — 2, the
zero pattern shifts left canceling all poles except the limiting pole at s = 0.
The resulting system is therefore an integrator, characterized by a single state
variable, and generates a Wiener process as anticipated. By contrast, as
7 = 0, the zero pattern shifts right canceling all poles. The resulting system
is therefore a multiple of the identity system, requires no state variables, and
generates stationary white noise as anticipated.

Finally, note that the model may be interpreted in terms of a Bode
plot. In general, stable, rational system functions comprised of real poles
and zeros are only capable of generating transfer functions whose Bode plots
have slopes that are integer multiples of

20log,,2~6  dB/octave.
However, a 1/f synthesis filter must fall off at
10vlog,,2 ~ 3y dB/octave

where 0 < v < 2 is generally not an integer.? To accommodate such slopes
using rational system functions requires an alternating sequence of poles and
zeros to generate a stepped approximation to a —3y dB/octave slope from
segments that alternate between slopes of —6 dB/octave and 0 dB/octave.

Unfortunately, neither of the ARMA-based models have been particu-
larly useful in addressing basic problems of detection and estimation involv-
ing 1/ f processes. However, both have been used extensively as 1/ noise
simulators. A discrete-time implementation of the van der Ziel model is
described by Pellegrini et al. [68], while details of a discrete-time implemen-
tation of Keshner’s model appears in Corsini and Saletti [69]. A comparison
of the two approaches is presented in Saletti [67]. In virtually all the sim-
ulations we present, the Corsini-Saletti implementation of Keshner’s model
is used to synthesize 1/f processes. In particular, the 1/f sample paths of
Fig. 3.1 are obtained via this algorithm.

3.3.2 Wavelet-Based Models

In this section, we explore the relationship between orthonormal wavelet
bases and nearly-1/f models. In particular, we show that wavelet basis
expansions are both natural and convenient representations for processes ex-
hibiting T/7-Tike behavior. Our main result is that orthonormal wavelet basis’
expansions play the role of Karhunen-Loéve-type expansions for 1/ f-type
processes [59] [60]. That is, wavelet basis expansions in terms of uncorre-

lated random variables constitute very good models for 1/ f-type behavior.

*Noise that falls off at 3dB/octave, which corresponds to y = 1, is often referred to
as “pink” noise. It arises in a variety of applications. For example, in professional audio
systems, room equalization is often performed with a pink noise source.
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Synthesis

In this section, we demonstrate that nearly-1/f behavior may bg generated
from orthonormal wavelet basis expansions in terms of a collectlon§ of un-
correlated wavelet coefficients. In particular, we establish the following the-
orem, an earlier version of which appears in Wornell [70], and whose proof
is provided in Appendix B.3.

Theorem 3.4 Consider any orthonormal wavelet basis with Rth-or.der regularity
for some R > 1. Then the random process constructed via the expansion

z(t) =Y S YR (t), (3.35)

i 1 rrelated, zero-mean random variables
where the x]* are a collection of mutually unco
with variances
With variances

varz® = g?2° "™

for some parameter 0 < y < 2R, has a time-averaged spectrum

Sp(w) = 0?3272 "w) (3.36)
that is nearlz—l[ f, ie., , ,
IL <5, (w) < T (3.37)
wlr — |w]?

for some 0 < 02 < o} < oo, and has octave-spaced ripple, i.e., for any integer k
|w]|7Se(w) = |25w|7S, (25 w). (3.38)

In Fig. 3.3 we illustrate the time-averaged spectrum qf a process con-
structed in the manner of this theorem for v = 1 using the first order Battle-
Lemarie wavelet basis. Note the characteristic octave-spaced ripple. The
bounding constants in this case correspond to o7 /o7 = 1.103. .

The result established by this theorem is certainly an intuitively reason-
able orEi'f, for example, we view the orthonormal wgvelet fiecompgsmon as
a generalized octave-band filter bank as described in Sectlon.2.3.1. In fact,
for the case of the ideal bandpass wavelet basis, it can be Feadlly established
from simple geometric arguments that the tightest bounding constants are

ot = oin"
3 = o).

Note, too, the special interpretation that may be derived from the model
for the case v = 1, arguably the most prevalent of the 1/ f-type processes.
Here the choice of the variance progression

varz® = g?27™
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Figure 3.3. The time-averaged spectrum of a process synthesized from the
first-order Battle-Lemarie orthonormal wavelet basis. The parameters of the
nearly-1/f spectrum are ¥ = 1and ¢% /02 = 1.103 in this case.

correggonds to distributing power equally among the detail signals at all
resolution scales, since we have for each m

1 e -m 2
E/_w Ba(w)[(27"0) dw = 1. (3.39)

There are two aspects of this theorem that warrant further discussion.
First, the nearly-1/f spectrum (3.36) is to be interpreted in the same manner
that the T/7 spectrum (3.6) is for exactly-1 /[ processes. That is, if r(¢) is
filtered by an ideal bandpass filter with frequency response of the form (3.25)
the output of the filter will have finite-power and correspond to a spectrum,
of the form (3.36) over the passband w; < fwl < wy. However, it is important
to emphasize that this spectrum is a time-averaged one. Indeed, the output of
§uch a bandpass filter will nof, in general, be stationary in any sense, which
is a consequence of the discrete nature of the synthesis. This behavior is in
contrast to the ARMA-based nearly-1/ f processes discussed in Section 3.3.1,

which, when bandpass filtered, yield stationary processes with nearly-1/f
spectra. '

Qne approach to extending this model so as to incorporate this proper
of stationarity is to add phase jitter in the synthesis process. Specifically, we
may consider randomizing the time-origin of our processes generated via
(3.35) by applying a random (positive or negative) delay to the process. In
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fact, this is one way of interpreting (3.36) as the generalized spectrum of a
stationary process. However, the random process Z(t) constructed in this
way is no longer ergodic. Furthermore, if the coefficients z7' in Theorem 3.4
are chosen to be Gaussian, z(t) will be necessarily a Gaussian process, but
2(t) will not. For these reasons, the phase-jittered process, while perhaps
useful for synthesizing 1/ f-like behavior, is difficult to exploit in analyzing
1/ f-like behavior.

Some remarks concerning the conditions on the wavelet basis are also
appropriate. We begin by noting that to_generate 1/f-like behavior for
0 < v < 2, it suffices to use a wavelet basis for which the corresponding
multiresolution analysis is at least reqular. Again, virtually any practical
wavelet basis satisfies this condition, even the Haar basis. However, the
theorem implies that to generate 1/ f-like behavior for v > 2, higher regu-
larity (R > 1) is required. This can be veritied experimentally as well. We
find, for instance, that when we attempt to synthesize 1/ f-like behavior for
+ = 5 using bases with R > 3, the sample functions are characterized by a
smoothness consistent with the decay in their spectra. However, when bases
corresponding to R < 3 are used in the synthesis, the sample functions lose
their characteristic smoothness. Specifically, using a Haar-based synthesis
(R = 1), the sample functions exhibit abrupt discontinuities, while using a
second-order (R = 2) Daubechies basis leads to sample functions exhibiting
abrupt discontinuities in their derivatives. In effect, unless there is sufficient
regularity, the characteristics of the basis functions manifest themselves in
the sample functions generated by the expansion. However, at least in this
context, there would appear to be no benefit to using bases that have more
regularity than required by the theorem.

We also remark that a much stronger theorem holds for the case y = 0in
which the coefficients are not only uncorrelated but have identical variances.
In this case, constructing an expansion from such a collection of random vari-
ables in any orthonormal basis yields stationary white noise whose spectral
density is the variance of the coefficients. In particular, for any wavelet basis
we have

Se(w) =0 =0} ¥ (2™

when v = 0 where the last equality is a restatement of the identity (2.9) and
demonstrates the consistency of this case with (3.36).

Finally, we remark that Theorem 3.4 may, in principle, be extended to
v < 0 provided the wavelet basis used in the synthesis has a sufficient number
of vanishing moments. This can be deduced from the proof in Appendix B.3.
However, we do not discuss this extension to the theorem primarily because
there would appear to be relatively few, if any, physical processes of interest
corresponding to negative .
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Analysis

In this section, we derive a collection of complementary results to suggest
that wavelet bases are equally useful in the analysis of 1/ f processes. In par-
ticular, we provide both theoretical and empirical evidence suggesting that
when 1/ f-like processes are expanded in terms of orthonormal wavelet bases,
the resulting wavelet coefficients are typically rather weakly correlated, par-
ticularly in contrast to the rather strong correlation present in the original
process. These results, combined with those of the last section, provide evi-
dence of that such wavelet-based representations are robust characterizations
of 1/ f-like behavior with Karhunen-Loéve-type properties.

Virtually all the results we obtain in this section are derived conve-
niently and efficiently in the frequency-domain. In anticipation of these
derivations, we first establish the following theorem, whose proof is outlined
in Appendix B.4.

Theorem 3.5 Let z(t) be a 1/ f process whose spectral parameters, in the sense of
Theorem 3.2, are o2 and v > 0. Furthermore, let the wavelet coefficients z™ be
the projections of x(t) onto some orthonormal wavelet basis. Then the correlation
between an arbitrary pair of such coefficients z™ and z™ is given by

, 2—-(m+m')/2 o 2 , —j(n2=m—pa-m'y
E [e7ar] =———/ T (2 e (2 ) o (P2 )
n 271' -0 ILUI‘Y
(3.40)

for any choice of y(t) and ~ such that this integral is convergent.

The principal shortcoming of this theorem is that it fails to establish
conditions on the wavelet basis and 7 under which (3.40) is defined. Nev-
ertheless, we may generally use Theorem 3.5 to derive properties of the
second-order statistics of wavelet coefficients of 1 / f processes for y > 0. For
instance, an immediate consequence of the theorem is that we can show the
variance of the z7 to be of the form

varzt = g2~
where
2 1 e 02 2
o | )P do.

" 27 e el
To obtain this result, it suffices to let m’ = m and n/ = n in (3.40) and effect a
change of variables.

Defining
& Ll (3.41)
" \/(var ) (varz7)
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as the normalized wavelet correlation, a second consequence is tha.t the wavelet

coefficients are wide-sense stationary at each scale, i.e., fqr a f1xed. scale m,

pr is a function only of n — n'. Specifically, we may readily establish that
n,n’

1 o o2 P
e — —Z ¥ =) gy (3.42)

pn,n’ 2ro? /;oo le‘y l ((U)l €

Again, this result may be obtained by specializing (3.40) to the case m' = m

and effecting a change of variables.

We can also show that the normalized wavelet coefficients possess a
kind of stationarity across scales as well. Recalling from Section 2.3..1 .the
critically sampled filter bank interpretation of the wavelet decomp_o"?mon,
whereby the output of the mth filter was sampled at rate ¢ = 2""n fgll'
n=...,—-1,0,1,2,.., we note that a pair of wavelet coefficients = and zh
at distinct scales m and m' correspond to synchronous time-instants precisely

hen
v 27" =2""n/. (3.43)

Our stationarity result in this case is that the normalized correlation among
time-synchronous wavelet coefficients corresponding to scales m and m’ is a
function only of m — m'. More precisely, we can show that whenever (3.43)
holds,

m,m’ 1 —(m—-m')/2 g _oé_ —(m-m’) » . 3.44
prt = sgzrimem [~ o Y)W ) d (3.44)
Again, this result follows from specializing (3.40) and effecting a change of
variables.

The above results verify that the wavelet coefficients qf 1/ f processes
obey the variance progression anticipated from the synthesis r'esult. More-
over, the stationarity results provide insight into tl‘*le correlation structure
among wavelet coefficients. However, what we seek 1deally are good bqunds
on the magnitude of the correlation among wavelet coefﬁc1en§ both ‘m‘the
case that they reside at the same scale, and in the case ?hey rgmde at distinct
scales. Certainly, as we will see, there is strong enTpmcal evidence th.at. the
correlation among coefficients is rather small and, in most cases, negl¥g1t.>le.
The following theorem provides some theoretical ev‘ldence by establishing
an asymptotic result. A proof is provided in Appendix B.5.

Theorem 3.6 Consider an orthonormal wavelet basis such that 1(t) has R vanishing
moments, i.e.,
¥(w)=0, r=01,---,R-1 (3.45)

for some integer R > 1. Then provided 0 < vy < 2R, the wavelet coeﬂicierlts obtained
by projecting a 1/ f process onto this basis have a correlation whose magnitude decays
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according to’ '
P |~ O (|27 — 27 71281 (3.46)

as
270 = 27 n/| - oo,

While this theorem makes an interesting statement about the relative cor-
relation among some wavelet coefficients well-separated in (m, n)-space, we
must avoid inferring some stronger statements. First, it says nothing about
the correlation among time-synchronous wavelet coefficients [i.e., those satis-
fying (3.43)], regardless of how well-separated they are. Furthermore, while
plausible, the theorem itself does not assert that choosing an analysis wave-
let with a larger number of vanishing moments can reduce the correlation
among wavelet coefficients in the analysis of 1/ f processes. Likewise, the
theorem does not actually validate the reasonable hypothesis that choosing
a wavelet with an insufficient number of vanishing moments leads to strong
correlation among the wavelet coefficients of 1 / f processes. In fact, the the-
orem identifies neither a range of m,m/,n,n’ over which (3.46) holds, nor
a leading multiplicative constant in (3.46). Consequently, this precludes us
from inferring anything about the absolute correlation between any particular
pair of coefficients.

For the case of the ideal bandpass wavelet basis, however, we may ob-
tain some more useful bounds on the correlation among wavelet coefficients.
In this case, the basis functions corresponding to distinct scales have non-
overlapping frequency support. Hence, carefully exploiting the stationarity
properties of 1/ f processes developed in Theorem 3.2, we conclude that the
wavelet coefficients corresponding to distinct scales are uncorrelated, How-
ever, at a given scale the correlation at integral lag I > 0is non-zero and may
be expressed as

2

2w
Pt = :;2 / w7 cos(wl) dw (3.47)

where

[ @7 =1/(m(1-7)) v £1
o2 { (In2)/(r) =1 (3.48)

While (3.47) cannot be evaluated in closed form, integrating by parts twice
and using the triangle inequality gives the useful closed-form bound

m.m 0'% Y 1 1+ Y 1
lpn.n—l S ;m {l + ey + T [1 - ZZTPV}} (349)

valid for v > 0 and integer-valued [ > 1.

3The ceiling function [z] denotes the smallest integer greater than or equal to r.
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Figure 3.4. Along-scale correlation between wavelet cqefﬁcients for ) ar;
exactly-1/f process for which v = 1. The squares U indicate a numerlcla
estimate of the exact magnitude of the normalized correlation between wavelet
coefficients as a function of the lag | between them. The ideal bandpass wavelet
was assumed in the analysis. The triangles A indicate the corresponding values
of the closed-form bound obtained in the text. The circles O) show the average
sample-correlation as computed from projections of a 1/f process generated
using Keshner’s synthesis onto a 5th-order Daubechies wavelet basis.

In Fig. 3.4, we plot the exact magnitude of the normalized correlatipn
(3.47) obtained by numerical integration as a function of lag ! tggether. with
the bound (3.49). Note that correlation among wavelet c'o.efﬁc1ents is ex-
tremely small: adjacent coefficients have a correlation coefficient of !ess than
15 percent, and more widely separated coefficients have a correlatlgn cqef-
ficient less than 3 percent. Hence, it is not an unreasor.lable:‘ approximation
to neglect the intercoefficient correlation in any analysis using this wavelet

basis.

On the same plot we superimpose the average along-scale sample-
correlation between wavelet coefficients obtained from a 1/ f-type process
generated using Keshner’s synthesis. In this simulation, a 65, 536-sample
segment of a 1/f process was generated for v = 1 and ana.lyzed using
Daubechies Sth-order wavelet basis. Here the sample-correlation function



54 Statistically Self-Similar Signals Chap. 3

of the coefficients at each scale was computed and averaged appropriately
with the sample-correlation functions at the other scales. That the experi-
mental result so closely matches the exact result for the bandlimited basis
suggests that the analysis result for the bandlimited basis may, in fact, be
more broadly applicable.

Before concluding this analysis section, it is appropriate to point out
that several of the results we have described herein have been derived in-
dependently for the particular case of fractional Brownian motion using a
time-domain approach. For instance, the stationarity of the wavelet coeffi-
cients at a fixed scale was first established by Flandrin [44]; the interscale
stationarity property was described by Flandrin [71] (after Vergassola and
Frisch [72]). Likewise, the expression for the asymptotic rate-of-decay of
correlation among wavelet coefficients is essentially the same as that first
derived by Tewfik and Kim [73]. We also mention that Flandrin [71]is able to
provide stronger statements about the correlation among wavelet coefficients
of fractional Brownian motion for the specific case of the Haar wavelet basis.
Finally, we remark that it ought to be possible to interpret the decorrelation
results presented both here and in the works of the above authors in the
context of related results that have emerged concerning the effectiveness of
wavelet decompositions in decorrelating a broad class of smooth covariance
kernels [74].

Finally, it is useful to remark that through the octave-band filter bank in-
terpretation of wavelet bases we may view wavelet-based analysis as spectral
analysis on a logarithmic frequency scale. The results of this section, together
with our observations of the spectral characteristics of 1/f processes earlier
in the chapter, suggest that this kind of spectral analysis is, in some sense,
ideally matched to 1/ f-type behavior. In the final section of this chapter,
we undertake such a log-based spectral analysis of some real data sets using
wavelets and show additional evidence that such analysis is potentially both
useful and important in these cases.

Experiments

In this section, we undertake a very preliminary investigation of the prop-
erties of wavelet coefficients derived from some physical data sets. In the
process, we identify two instances of time series that would appear to be well
modeled as 1/ f processes. The first example involves economic data, and is
depicted in Fig. 3.5. The second example involves physiological data, and is
depicted in Fig. 3.6.

Focusing first on the economic data, Fig. 3.5 shows the time series
corresponding to raw weekly Dow Jones Industrial Average data accumu-
lated over the past approximately 80 years. As shown in Fig. 3.7(a), the
sample-variance of wavelet coefficients from scale to scale obeys a geometric
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Figure 3.5. Weekly Dow Jones Industrial Average data, to present.
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Figure 3.6. Heartbeat interarrival times for a healthy patient.

progression consistent with a 1/f process for Wth.h vy~ 2 In Flgl. ?.7(bz:
we see that the average along-scale sample-correlation among wavele c?e

ficients is rather weak. Since adjacent coefficien.ts.have a correlation qf esi
than 8 percent, and more widely separated coefficients have a correlaftfliop ot
less than 3 percent, it would appear reasonable to neglec.t thg intercoe .c1ent
correlation in the analysis of such data. While this behaylor. is also conastecelnl
with a 1/f-type model for the data, we note that to justify such aff;n'o i:s
more fully, it would be necessary to study the correlation among coefficien

between scales as well. . '
Turning our attention next to the physiological data, Fig. 3..6 shows a
record of heart beat interarrival times for a healthy human patient corre-
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Figure 3.7. Wave!et—based analysis of weekly Dow Jones Industrial Average
data. The time-series is analyzed using a 5th-order Daubechies wavelet basis.
(a) Scale-to-scale wavelet coefficient sample-variance progression. (b) Average
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spond.ing to approximately 11 hours of continuously acquired data. The
quantization levels of the interarrival times are spaced 4 milliseconds apart
In th.1s. example, as shown in Fig. 3.8(a), the sample-variances of wavelet.
coefficients from scale to scale obey a geometric progression consistent with
a 1/f process of v ~ 1. When viewing these progressions it is important
to note that the number of samples available to make a variance estimate
doubles at each successively finer scale. Hence, the standard deviation of
the §amPle-variance measurement decreases by a factor of v/2 for each suc-
cessive increase in m. As a result, 1/ f behavior manifests itself in the form
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of log-variance characteristic that must be asymptotically linear in the limit
of large m. In Fig. 3.8(b), we show the weak average along-scale sample-
correlation between wavelet coefficients. In this case, coefficients separated
by lags of two or more are correlated less than 2 percent, again suggesting
that it is reasonable to neglect such intercoefficient correlation in any wavelet-
based analysis. Again, we caution that no attempt was made to study the
correlation structure among coefficients between scales.

3.4 SUMMARY

In this chapter, we focused our attention on fractal random processes having
the key property that their statistics are invariant to temporal dilations and
contractions of the process, to within an amplitude factor. Of particular inter-
est were the 1/ f family of such statistically self-similar random processes, and
we developed some important new models for 1/ f-type behavior in signals.
After reviewing the traditional fractional Brownian motion model for 1/f
behavior, we developed a powerful alternative frequency-based characteri-
zation for 1/ f processes. Here we showed that, although they are generally
nonstationary, 1/ f processes have the special property that when bandpass
filtered they always produce stationary outputs.

In the second half of the chapter we relaxed our model constraints, and
considered nearly-1/ f processes. We began by reviewing traditional ARMA
models for nearly-1/f behavior, then turned our attention to developing
wavelet-based representations for 1/ f-type processes. As our main result
we demonstrated that orthonormal wavelet basis expansions are Karhunen-
Loeve-like expansions for 1/ f-type processes, i.e., when 1/f processes are
expanded in terms of orthonormal wavelet bases, the coefficients of the ex:
pansion are effectively uncorrelated. This result, which has powerful impli-
cations, was supported both theoretically and empirically, and we presented
examples involving both simulated and real data.

Collectively, our theoretical and empirical resuits suggest that the ortho-
normal wavelet transform is an extremely useful and convenient tool in the
synthesis and analysis of 1/ f-type processes. In the next chapter we explore
how the wavelet transform plays an equally valuable role in the processing of
such signals.




