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Throughout the chapter, a variety of properties and insightful interpre-
tations of the resulting algorithms were developed, and their performance
characteristics were explored both analytically and empirically.

Finally, it is important to appreciate that many other algorithms, such as
those for distinguishing among superimposed 1/ f signals and for detecting
1/ f signals with unknown parameters, can be similarly derived using the
methods developed in this chapter. In addition, straightforward generaliza-
tions of many of the algorithms to two- and higher-dimensional data such as
imagery can also be developed.

5

Deterministically
Self-Similar Signals

5.1 INTRODUCTION

Signals z(t) satisfying the deterministic scale-invariance property
z(t) = a Hz(at) (5.1)

for all a > 0, are generally referred to in mathematics as homogeneous func-
tions, in particular of degree H. Homogeneous functions can be regular or
nearly so, for example z(¢) = 1 or z(t) = u(t), or they can be generalized
functions, such as z(t) = 4(¢). In any case, as shown by Gel’fand [90], homo-
geneous functions can be parameterized with only a few constants. As such,
they constitute a rather limited class of signal models for many engineering
applications.

A comparatively richer class of signal models is obtained by considering
waveforms that are required to satisfy (5.1) only for values of a that are integer
powers of two. The homogeneous signals in this broader class then satisfy
the dyadic self-similarity property

z(t) = 27 g (2kt) (5.2)

for all integers k. It is this more general family of homogeneous signals of de-
gree H whose properties and characterizations we study in this chapter, and
our treatment follows that in Wornell and Oppenheim [91]. We will typically
use the generic term “homogeneous signal” to refer to signals satisfying (5.2).
However, when there is risk of confusion in our subsequent development we
will specifically refer to signals satisfying (5.2) as bihomogeneous.
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Homogeneous signals constitute an interesting and potentially valu-
able class of signals for use in, for example, a variety of communications-
based applications. As an illustration of potential, in Chapter 6 we explore
their use in developing a diversity strategy for embedding information into
a waveform “on all time scales.” As a consequence of their intrinsic self-
similarity, these waveforms have the property that an arbitrarily short dura-
tion time-segment is sufficient to recover the entire waveform, and hence the
embedded information, given adequate bandwidth. Likewise an arbitrarily
low-bandwidth approximation to the waveform is sufficient to recover the
undistorted waveform, and again the embedded information, given adequate
duration. Furthermore, we will see that these homogeneous waveforms have
spectral characteristics very much like those of 1/ processes, and, in fact,
have fractal properties as well.

Collectively, such properties make this modulation scheme an intrigu-
ing diversity paradigm for communication over highly unreliable channels
of uncertain duration, bandwidth, and SNR, as well as in a variety of other
contexts. We explore these and other issues, including implementation, in the
next chapter. In the meantime, we turn our attention to developing a conve-
nient and efficient mathematical framework for characterizing homogeneous
signals that we will exploit.

Some important classes of homogeneous signals have spectral char-
acteristics very much like those of 1/f processes, and, in fact, have fractal
properties as well. Specifically, while all nontrivial homogeneous signals
have infinite energy and many have infinite power, we will see that there are
in fact classes of these signals with which one can associate a generalized 1/ f-
like Fourier transform, and others with which one can associate a generalized
1/ f-like power spectrum. These are the homogeneous signals of interest in
this chapter. We distinguish between these two classes of such signals in our
subsequent treatment, denoting them energy-dominated and power-dominated
homogeneous signals, respectively.

We begin our theoretical development by formalizing our notion of
an energy-dominated homogeneous signal, and constructing vector space
characterizations. In turn, these lead to some powerful constructions of
orthonormal “self-similar” bases for homogeneous signals. In the process,
it will become apparent that, as in the case of statistically self-similar 1/ f-
type processes, orthonormal wavelet basis expansions constitute natural and
efficient representations for these signals as well.

Before proceeding, we point out that our development relies heavily-on
arather natural and efficient vector space perspective. In addition to facilitat-
ing the derivation of key results, this approach leads to powerful geometrical
interpretations. Accessible treatments of the appropriate mathematical back-
ground can be found in, e.g., portions of Naylor and Sell {28] or Reed and
Simon [29].
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5.2 ENERGY-DOMINATED HOMOGENEOUS SIGNALS

Our definition of an energy-dominated homogeneous signal is reminiscent of
the one we proposed for 1/ f processes in Section 3.2. Specifically, we choose
the following.

Definition 5.1 A bihomogeneous signal z(t) is said to be energy-dominated if when
x(t) is filtered by an ideal bandpass filter with frequency response

By(w) = {
the resulting signal Zo(t) has finite-energy, i.e.,
/°° (1) dt < oo.

1 n<|w <27

0 otherwise (53)

Some preliminary remarks regarding this definition are worthwhile at
this point. First, we note that the choice of passband edges at 7 and 2r
in our definition is, in fact, somewhat arbitrary. In particular, substituting
in the definition any passband that does not include w = 0 or w = oo but
includes one entire frequency octave leads to precisely the same class of
signals. Nevertheless, our particular choice is both sufficient and convenient.

It is also worth noting that the class of energy-dominated homogeneous
signals includes both reasonably regular functions, such as the constant z(f) =
1, the ramp z(t) = t, the time-warped sinusoid z(t) = cos[2r log, t], and the
unit step function z(t) = u(t), as well as singular functions, such as z(t) = d(t)
and its derivatives. However, although we are not always able to actually
“plot” signals of this class, we are able to suitably characterize such functions
in some useful ways. We begin by using E# to denote the collection of all
energy-dominated homogeneous signals of degree H. The following theorem
allows us to interpret the notion of spectra for such signals. A straightforward
but detailed proof is provided in Appendix D.1.

Theorem 5.2 When an energy-dominated homogeneous signal z(t) is filtered by an
ideal bandpass filter with frequency response

_ 1 wr < |(.d| < wy
Blw) = { 0 otherwise (54)

for arbitrary 0 < wy, < wy < 0o, the resulting signal y(t) has finite energy and a
Fourier transform of the form
0oy Xw) wi < |w| Swy
Py = { 0 otherwise (5-5)
where X (w) is some function that is independent of wy and wy and has octave-spaced
ripple; ie., for all integers k,
o[ X () = [2kw]#H X (2Fw). (5.6)
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Since in this theorem .X (w) does not depend on wy, or wy,, this function
may be interpreted as the generalized Fourier transform of the infinite-energy
signal z(t). Furthermore, (5.6) implies that the generalized Fourier transform
of signals in E obeys a 1/ f-like (power-law) relationship, viz.,

. 1
[ X(w)] ~ T[T

However, we continue to reserve the term “1/ f process” or “1/ f signal” for
the statistically self-similar random processes defined in Chapter 3.

We also remark that because (5.5) excludesw = 0and w = oo, knowledge
of X{w) does not uniquely specify z(t) € Ef; i.e., the mapping

z(t) — X(w)

is not one to one. As an example, z(t) = 1 and z(t) = 2 are both in Ef
for H = 0, yet both have X{w) = 0 for w > 0. In order to accommodate
this behavior in our subsequent theoretical development, all signals having
a common X (w) are be combined into an equivalence class. For example,
two homogeneous functions f(t) and g(t) are equivalent if they differ by a
homogeneous function whose frequency content is concentrated at the origin,
such as t¥ in the case that H is an integer.

Because the dyadic self-similarity property (5.2) of bihomogeneous sig-
nals is very similar to the dyadic scaling relationship between basis functions
in an orthonormal wavelet basis, wavelets provide a particularly nice rep-
resentation for this family of signals. Specifically, with z(¢) denoting an
energy-dominated homogeneous signal, the expansion in an orthonormal
wavelet basis is

z(t) = ZZI‘ Yt (5.7a)

Iy = /oo r(HU(t). (5.7b)

—00

Since z(t) satisfies (5.2) and since «7*(t) satisfies (2.6), it easily follows from
(5.7b) that for homogeneous signals

=37 (58)

where
3 =220+ = 97, (5.9)

Denoting z° by g[n], (5.7a) then becomes
x(t) = N3 37 2 qnlun(t), (5.10)

from which we see that z(t) is completely specified in terms of g[n]. We term
q[n] a generating sequence for x(t) since, as we will see, this representation
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leads to techniques for synthesizing useful approximations to homogeneous
signals in practice.

Let us now specifically choose the ideal bandpass wavelet basis, whose
basis functions we denote by

CI(E) = 2™ (2™ — n) (5.11)

where u](t) is the ideal bandpass wavelet whose Fourier transform is given
by (2.7). 1f we sample the output Zo(t) of the filter in Definition 5.1 at unit
rate, we obtain the sequence §[n] = 7%, where £™ denotes the coefficients of
expansion of z(t) in terms of the ideal bandpass wavelet basis. Since Zo(t)
has the orthonormal expansion

=Y gnlud(e) (5.12)

we have

/' F(t)dt = Zq (5.13)

Consequently, a homogeneous function is energy-dominated if and only if its
generating sequence in terms of the ideal bandpass wavelet basis has finite
energy, i.e., ,
§’[n] < .
n
A convenient inner product between two energy-dominated homoge-
neous signals f(t) and g(t) can be defined as

i= [ folt) goit) e

where the signals fo(t) and go(t) are the responses of the bandpass filter (5.3)
to f(t) and g(t), respectively. Exploiting (5.12) we may more conveniently
express this inner product in terms of a[n] and b[n), the respective generating
sequences of f(t) and g(t) under the bandpass wavelet basis, as

(f.9); = 3 aln] bln] (5.14)

With this inner product, E# constitutes a Hilbert space and the induced norm
on Ef is o .

lalft = [ Bty dt = ¥ ). (5.15)

One can readily construct “self-similar” bases for E. Indeed, the ideal
bandpass wavelet basis (5.11) immediately provides an orthonormal basis
for E#. In particular, for any z(t ) € Ef, we have the synthesis/analysis pair

Z qn] 68 (1) (5.16a)

qgn] = (z, 0,5{)1;} (5.16b)
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where N )

0ty =S 37y, (5.17)
One can readily verify that the basis functions (5.17) are self-similar, orthog-
onal, and have unit norm.

The fact that the ideal bandpass basis is unrealizable means that (5.16)
is not a practical mechanism for synthesizing or analyzing homogeneous sig-
nals. However, more practical wavelet bases are equally suitable for defining
an inner product for the Hilbert space Ef. In fact, we now show that a broad
class of wavelet bases can be used to construct such inner products, and
that as a consequence some highly efficient algorithms arise for processing
homogeneous signals.

We begin by noting that not every orthonormal wavelet basis can be
used to define inner products for E. In order to determine which ortho-
normal wavelet bases can be used for this purpose, we must determine for
which wavelets v(t)

gln] = /_Z () un(t)dt € C(Z) & z(f) =33 3™ 2qnju(t) € EX.

m n

That is, we seek conditions on a wavelet basis such that the sequence

dn) = [ 20y ule) de

-0

has finite energy whenever the homogeneous signal x(t) is energy-domina-
ted, and simultaneously such that the homogeneous signal

2ty =33 37T 2 qlnJu(¢)

m n

is energy-dominated whenever the sequence ¢[n] has finite energy. Our main
result is presented in terms of the following theorem. A proof of this theorem
is provided in Appendix D.2.

Theorem 5.3 Consider an orthonormal wavelet basis such that v(¢) has R vanishing
moments for some integer R > 1, ie.,

w0y = 0. r=0.1..... R-1 (5.18)

and let
2ty =33 37 2]l (1)

m n

be a bihomogeneous signal whose degree H is such that v = log, .3 = 211 +1 satisfies
0 <~ <2R-1. Then x(t) is energy-dominated if and only if q[n) has finite cnergy.

This theorem implies that for our Hilbert space E¥ we may choose
from among a large number of inner products whose induced norms are
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all equivalent. In particular, for any wavelet v(¢) with sufficiently many
vanishing moments, we may define the inner product between two functions
f(t)and g(t) in E# whose generating sequences are a[n] and b[n], respectively,

as
(f.g)e = 3 alnlblnl. (5.19)

n

Of course, this collection of inner products is almost surely not exhaustive.
Even for wavelet-based inner products, Theorem 5.3 asserts only that the
vanishing moment condition is sufficient to ensure that the inner product
generates an equivalent norm. It seems unlikely that the vanishing moment
condition is a necessary condition.

The wavelet-based norms for E constitute a highly convenient and
practical collection from which to choose in applications involving the use of
homogeneous signals. Indeed, each associated wavelet-based inner product
leads immediately to an orthonormal self-similar basis for Ef: if z(t) € E#,
then

(t) = Zq[n]()ﬁ[(t) (5.20a)

qin) = (2.0, (5.200)
where, again, the basis functions

Py =37 37Ut (5.21)

are all self-similar, mutually orthogonal, and have unit norm.

As an example for the case H = 0, Fig. 5.1 depicts the self-similar basis
functions 64(t), 62(t), 62(t), and #3(t) corresponding to the Daubechies 5th-
order compactly supported wavelet basis. These functions were generated
by evaluating the summation (5.21) over a large but finite range of scales
m. We emphasize that ¢[n] is only a unique characterization of z{t) when we
associate it with a particular choice of wavelet ¥/(t). In general, every different
wavelet decomposition of z(t) yields a different g[n], though all have finite
energy.

It is useful to note that for an arbitrary nonhomogeneous signal z(t),
the sequence

qln] = <I~05>w

defines the projections of z(t) onto E#, so that

Mt) = / aln] 62 (t) dt
—C
represents the closest homogeneous signal to z(t) with respect to the induced
norm || - ||, i.e.,
E(t) = argmin |y — x},.
y(t)EEH
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Figure 5.1. The self-similar basis functions 6f (1), 62 (t), 8 (t), and 67’ (¢) of
an orthonormal basis for E¥, H = 0.

In Chapter 6, it will be apparent how such projections arise rather naturally
in treating problems of estimation with homogeneous signals.

Finally, we remark that wavelet-based characterizations also give rise to
a convenient expression for the generalized Fourier transform of an energy-
dominated homogeneous signal, z(t). In particular, if we take the Fourier
transform of (5.10) we get, via some routine algebra,

X(w) = S 27 HH Mg (27m)Q(27 ™) (5.22)

m

where Q(w) is the discrete-time Fourier transform of ¢[n]. This spectrum is
to be interpreted in the sense of Theorem 5.2, i.e., X(w) defines the spectral

Y
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content of the output of a bandpass filter at every frequency w within the
passband.

In summary, we have shown that a broad class of wavelet-based norms
are equivalent for E¥ in a mathematical sense, and that each of these norms is
associated with a particular inner product. An interesting open question con-
cerns whether every equivalent norm for E¥ can be associated with a wavelet
basis, in which case the basis functions associated with every orthonormal
basis for E” could be expressed in terms of some wavelet according to (5.21).
In any case, regardless of whether the collection of inner products we con-
struct is exhaustive or not, they at least constitute a highly convenient and
practical collection from which to choose in any given application involving
the use of homogeneous signals.

5.3 POWER-DOMINATED HOMOGENEOUS SIGNALS

Energy-dominated homogeneous signals have infinite energy. In fact, most
have infinite power as well. However, there are other infinite-power homo-
geneous signals that are not energy-dominated. In this section, we consider
a more general class of infinite-power homogeneous signals that find appli-
cation as information-bearing waveforms in Chapter 6. The definition and
properties closely parallel those for energy-dominated homogeneous signals.

Definition 5.4 A bihomogeneous signal z(t) is said to be power-dominated if when
r(t) is filtered by an ideal bandpass filter with frequency response (5.3) the resulting
signal To(t) has finite power, i.e.,
im - /T F2(1) dt <
Nim o | %o 0.
The notation P¥ is used to designate the class of power-dominated
homogeneous signals of degree H. Moreover, while our definition necessarily

includes the energy-dominated signals, which have zero power, insofar as
our discussion is concerned they constitute a degenerate case.

Analogous to Theorem 5.2 for the energy-dominated case, we can es-
tablish the following theorem describing the spectral properties of power-
dominated homogeneous signals.

Theorem 5.5 When a power-dominated homogeneous signal z(t) is filtered by an
ideal bandpass filter with frequency response (5.4), the resulting signal y(t) has finite
power and a power spectrum of the form

Selw) wp < |w] <wy

- . 1 r —jwt [2
Sylw) = lim —]/Ty(t)e dt‘ ={ 0 otherwise

Jim 51/ (5.23)
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where S, (w) is some function that is independent of w;, and wy and has octave-spaced
ripple; i.e., for all integers k,

‘u}|2H+lSz(uJ) — |2kw|2H+1SZ(2kw). (524)

The details of the proof of this theorem are contained in Appendix D.3,
although the approach is directly analogous to the proof of its counterpart,
Theorem 5.2. Note that since S,(w) in the theorem does not depend on wy,
or wy, this function may be interpreted as the generalized power spectrum
of z(t). Furthermore, the relation (5.24) implies that signals in PH have a
generalized time-averaged power spectrum that is 1/ f-like, i.e.,

1

~
|l

Selw) (5.25)

where, via (5.9), vy = 2H + 1.

Theorem 5.5 directly implies that a homogeneous signal z(¢) is power-
dominated if and only if its generating sequence §[n] in the ideal bandpass
wavelet basis has finite power, i.e.,

N S -
E%EL—H n:Z_Lq [n] < 0.

Similarly we can readily deduce from the results of Section 5.2 that, in fact,
for any orthonormal wavelet basis with R > H + 1 vanishing moments,
the generating sequence for a homogeneous signal of degree H in that basis
has finite power if and only if the signal is power-dominated. This implies
that when we use (5.20a) with such wavelets to synthesize a homogeneous
signal z(t) using an arbitrary finite power sequence ¢[n}, we are assured that
z(t) € PH. Likewise, when we use (5.20b) to analyze any signal x({) € PH,
we are assured that ¢[n] has finite power.

Some general remarks are appropriate at this point in the discussion.
Energy-dominated homogeneous signals of arbitrary degree H can be highly
regular, at least away from ¢ = 0. In contrast, power-dominated homoge-
neous signals typically have a fractal structure similar to the statistically self-
similar 1/ f processes of corresponding degree H, whose power spectra are
also of the form (5.25) with v = 2H + 1 [cf. (3.6)]. In turn, this suggests that,
when defined, power-dominated homogeneous signals and 1/ processes
of the same degree also have identical Hausdorff-Besicovitch dimensions
[4]. Indeed, despite their obvious structural differences, power-dominated
homogeneous signals and 1/ f processes “look” remarkably similar in a qual-
itative sense. This is apparent in Fig. 5.2, where we depict the sample path
of a 1/f process alongside a power-dominated homogeneous signal of the
same degree whose generating sequence has been taken from a white ran-
dom process. We stress, however, that in Fig. 5.2(a), the self-similarity of the
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1/f process is statistical; i.e., a typical sample function does not satisty (5.2)
but its autocorrelation function does. In Fig. 5.2(b), the self-similarity of the
homogeneous signal is deterministic. In fact, while the wavelet coefficients of
homogeneous signals are identical from scale to scale to within an amplitude
factor, i.e.,

7= 872q[n],

recall from Chapter 3 that the wavelet coefficients of 1/ f processes have only
the same second-order statistics from scale to scale to within an amplitude
factor, i.e.,

Elzlz = 3""pln—1]

for some function p[n] that is independent of m.

We can quantify the apparent similarity between the two types of signals
through an observation about their spectra. In general, we remarked that
for a given H, both exhibit power law spectral relationships with the same
parameter . The following theorem further substantiates this for the case of
randomly generated power-dominated homogeneous signals. The details of
the proof are contained in Appendix D.4.

Theorem 5.6 For any orthonormal wavelet basis in which ¥(t) has Rth order reg-
ularity for some R > 1, the random process z(t) synthesized according to

x(t) = 335 qlnlu T (0) (5.26)

m n
using a correlation-ergodic (e.g., Gaussian), zero-mean, stationary white random
sequence q{n] of variance o has a generalized time-averaged power spectrum of the

form
Splw) = 0?3 27 (27 w) A (5.27)

Note that the time-averaged spectrum (5.27) is identical to the time-
averaged spectrum (3.36) for the wavelet-based synthesis of 1/ f processes
described in Section 3.3.2. However, we must be careful not to misinterpret
this result. It does not suggest that (5.26) is a reasonable approach for syn-
thesizing 1/ f processes. Indeed, it would constitute a very poor model for
1/ f-type behavior based on the analysis results of Section 3.3.2: when 1/f
processes are decomposed into wavelet bases we get statistical rather than
deterministic similarity from scale to scale. Instead, the theorem remarks
that the time-averaged second order statistics of the two types of signals are
the same. Consequently, one would anticipate that distinguishing 1/f pro-
cesses from power-dominated homogeneous signals based on spectral anal-
ysis alone would be rather difficult. Nevertheless, the tremendous structural
differences between the two means that they may be readily distinguished
using other techniques such as, for example, wavelet-based analysis.
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Figure 5.2. Comparison between the sample path of a 1/f process and a
power-dominated homogeneous signal. Both correspond toy = 1(i.e., #f = 0).
(a) A sample function of a 1/ f process. (b) A power-dominated homogeneous

signal.

Note, too, that {5.27) corresponds to the superposition of the spectra
associated with each scale or octave-band in the wavelet-based synthesis.
In general, we would expect the spectrum of z(¢) to be the superposition
of the spectra of the individual channels together with their cross-spectra.
However, the time-averaged cross-spectra in this scenario are zero, which
is a consequence of the fact that the white sequence ¢[n] is modulated at
different rates in each channel. Indeed, the time-averaged correlation is zero
between q[n] and ¢[2™n] for any m > 1 and n # 0; that is, white noise is
uncorrelated with dilated and compressed versions of itself.

Finally, we note that because (5.27) and (3.36) are identical, we can use
Theorem 3.4 to conclude that the spectra of a class of randomly generated
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power-dominated homogeneous signals are bounded on any finite interval
of the frequency axis that does not include w = 0. However, it is impor-
tant to appreciate that not all power-dominated homogeneous signals have
spectra that are bounded on 7 < w < 27. An interesting subclass of power-
dominated homogeneous signals with such unbounded spectra arises, in
fact, in our application in Chapter 6. For these signals, Z(t) as defined in
Definition 5.4 is periodic, so we refer to this class of power-dominated ho-
mogeneous signals as periodicity-dominated. It is straightforward to establish
that these homogeneous signals have the property that when passed through
an arbitrary bandpass filter of the form (5.4) the output is periodic as well.
Furthermore, their power spectra consist of impulses whose areas decay ac-
cording to a 1/|w|" relationship. Animportant class of periodicity-dominated
homogeneous signals can be generated through a wavelet-based synthesis of
the form (5.10) in which the generating sequence g[n] is periodic.

5.4 DISCRETE-TIME ALGORITHMS FOR HOMOGENEOUS SIGNALS

Orthonormal wavelet representations provide some useful insights into ho-
mogeneous signals. For instance, because the sequence g[n] is replicated at
each scale in the representation (5.10) of a homogeneous signal z(t), the detail
signals

Dra(t) = 3723 qlnJur'(t)

representing g[n] modulated into a particular octave band are simply time-
dilated versions of one another, to within an amplitude factor. The corre-
sponding time-frequency portrait of a homogeneous signal is depicted in
Fig. 5.3, from which the scaling properties are apparent. For purposes of
illustration, the signal in this figure has degree H = -1 /2 (i.e., 3 = 1), which
corresponds to the case in which g[n] is scaled by the same amplitude fac-
tor in each octave band. As always, the partitioning in such time-frequency
portraits is idealized; in general, there is both spectral and temporal overlap
between cells.

Wavelet representations also lead to some highly efficient algorithms
for synthesizing, analyzing, and processing homogeneous signals just as
they do for 1/f processes as discussed in Chapters 3 and 4. The signal
processing structures we develop in this section are a consequence of applying
the DWT algorithm to the highly structured form of the wavelet coefficients
of homogeneous signals.

We have already encountered one discrete-time representation for a
homogeneous signal z(t), namely that in terms of a generating sequence
q[n] which corresponds to the coefficients of the expansion of z(t) in an
orthonormal basis {02 (t)} for EZ. When the 67 (¢) are derived from a wavelet
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Figure 5.3. The time-frequency portrait of a homogeneous signal of degree
H=-1/2.

basis according to (5.21), another useful discrete-time representation for z(t)
is available, which we now discuss.

Consider the coefficients a characterizing the resolution-limited ap-
proximation -, {z(t)} of a homogeneous signal x{t) with respect to a partic-
ular wavelet-based multiresolution signal analysis. Since these coefficients
are the projections of z(t) onto dilations and translations of the scaling func-
tion o(t) according to (2.13), it is straightforward to verify that they, too, are
identical at all scales to within an amplitude factor, i.e.,

a™ = 3720, (5.28)

Consequently, the sequence a) is an alternative discrete-time characterization
of z(t), since knowledge of it is sufficient to reconstruct x(t) to arbitrary accu-
racy. For convenience, we refer to ), as the characteristic sequence and denote
itas p[n]. As is true for the generating sequence, the characteristic sequence
associated with z(t) depends upon the particular multiresolution analysis
used; distinct multiresolution signal analyses generally yield different char-
acteristic sequences for any given homogeneous signal. In what follows, we
restrict our attention to multiresolution analyses whose basic wavelet meets
the vanishing moment conditions of Theorem 5.3.

The characteristic sequence p[n] is associated with a resolution-limited
approximation to the corresponding homogeneous signal (/). Specifically,
p[n) represents unit-rate samples of the output of the filter, driven by r{¢),
whose frequency response is ®"(w), the complex conjugate of the Fourier
transform of the scaling function. Because frequencies in a neighborhood of
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Figure 5.4. The discrete-time self-similarity identity for a characteristic se-
quence pn).

the spectral origin, where the spectrum of r(¢) diverges, are passed by such
a filter, p{n] often has infinite energy or, worse, infinite power, even when the
generating sequence ¢[n] has finite energy.

The characteristic sequence can, in fact, be viewed as a discrete-time
homogeneous signal, and a theory can be developed following an approach
directly analogous to that used in Sections 5.2 and 5.3 for the case of con-
tinuous-time homogeneous signals. The characteristic sequence satisfies the
discrete-time self-similarity relation!

3pln) = Z hlk = 2n]p[k], (5.29)

which is readily obtained by substituting for o}’ in the DWT analysis equation
(2.21a) using (5.28). Indeed, as depicted in Fig. 5.4, (5.29) is a statement that
when p[n] is lowpass filtered with the conjugate filter whose unit-sample re-
sponse is h[—n] and then downsampled, we recover an amplitude-scaled ver-
sion of p[n]. Although characteristic sequences are, in an appropriate sense,
“generalized sequences,” when highpass filtered with the corresponding con-
jugate highpass filter whose unit-sample response is g[—n], the output is a fi-
nite energy or finite power sequence, depending on whether p[n] corresponds
to a homogeneous signal z(t) that is energy-dominated or power-dominated,
respectively. Consequently, we can analogously classify the sequence p{n]
as energy-dominated in the former case, and power-dominated in the latter
case. In fact, when the output of such a highpass filter is downsampled
at rate two, we recover the characteristic sequence ¢{n] associated with the
expansion of x(¢) in the corresponding wavelet basis, i.e.,

3'2q[n] = 2_ glk = 2njplk] (5.30)

This can be readily verified by substituting for o] and z7 in the DWT analysis
equation (2.21b) using (5.28) and (5.8), and by recognizing that af* = p[n] and
ot = qn].

From a different perspective, (5.30) provides a convenient mechanism
for obtaining the representation for a homogeneous signal z(¢) in terms of its

'Relations of this type may be considered discrete-time counterparts of the dilation
equations considered by Strang [26].



110 Deterministicalty Self-Similar Signals Chap. 5

generating sequence ¢[n] from one in terms of its corresponding characteristic
sequence p(n], ie.,
pln] — qln].

To obtain the reverse mapping
qin} — »ln]

is less straightforward. For an arbitrary sequence ¢[n], the associated charac-
teristic sequence p(n] is the solution to the linear equation

.3‘1/2p[n] - Z h[n — 2k]p[k] = Z g[n — 2klq[k]. {5.31)

as can be verified by specializing the DWT synthesis equation (2.21c¢) to the
case of homogeneous signals. There appears to be no direct method for
solving this equation. However, the DWT synthesis algorithm suggests a
convenient and efficient iterative algorithm for constructing p[n] from ¢[n].
In particular, denoting the estimate of p[n] on the ith iteration by p![n], the
algorithm is
PO = 0 (5.32a)
PR = 372 {hln - 2k)p K] + g[n — 2K]glk]} . (5.32b)
k
This recursive upsample-filter-merge algorithm, depicted in Fig. 5.5, can be
interpreted as repeatedly modulating ¢[n] with the appropriate gain into
successively lower octave bands of the frequency interval 0 < |w| < 7. Note
that the precomputable quantity

@.[n)= Z gln — 2K]q[k]

represents the sequence ¢[n] modulated into essentially the upper half band
of frequencies.

Any real application of homogeneous signals can ultimately exploit
scaling properties over only a finite range of scales, so that it suffices in prac-
tice to modulate g[n] into a finite range of contiguous octave bands. Conse-
quently, only a finite number of iterations of the algorithm (5.32) are required.
More generally, this also means that many of the theoretical issues associated
with homogeneous signals concerning singularities and convergence do not
present practical difficulties in the application of these signals, as will be
apparent in our developments of Chapter 6.

As we conclude this chapter, it is worth mentioning that there may
be useful connections to be explored between the self-similar signal theory
described here and the work of Barnsley [92] on deterministically self-affine
one-dimensional and multi-dimensional signals. Malassenet and Mersereau
[93], for example, suggest that these so-called “iterated function systems”
have efficient representations in terms of wavelet bases as well.

Sec. 5.5 Summary 111

b plin]—={ ¥ 2 == hln] B2 b pl i e

gln]—= 4 2 = g[n] q4ln]

Figure 5.5. lterative algorithm for the synthesis of the characteristic sequence
pln] of a homogeneous signal x(¢) from its generating sequence g[n]. The
notation pll[n] denotes the value of p[n] at the :th iteration.

5.5 SUMMARY

In this chapter we focussed on fractal signals characterized by a deterministic
scaling relation. We showed that these “homogeneous” signals, in contrast to
the fractal random processes described in Chapter 3, have the property that
the waveforms themselves remain invariant to within an amplitude factor
under arbitrary scaling of the time axis.

We then introduced and developed a new and richer generalized family
of homogeneous signals defined in terms of a dyadic scale-invariance property.
When necessary to avoid confusion with traditional homogeneous signals,
we specifically referred to this broader family as bihomogeneous signals.
Motivated by our interest in using these signals as modulating waveforms
in some communication applications in the next chapter, we proceeded to
develop some of their important properties and representations.

We began by distinguishing between two classes: energy-dominated
and power-dominated, and then developed their spectral properties. We
then showed that the use of wavelet basis expansions leads to constructions
of powerful orthonormal self-similar bases for homogeneous signals. From
this perspective, we saw that wavelet representations play as natural and
important a role in the representation of these signals as they did for the 1/ f
processes developed in Chapter 3.

In the latter portion of the chapter, we exploited the discrete wavelet
transform algorithm to derive highly efficient discrete-time algorithms for
both synthesizing and analyzing homogeneous signals using these repre-
sentations. As we will see, these algorithms play an important role in the
transmitters and receivers of the communication system we explore in the
next chapter.



