Fractal Modulation

6.1 INTRODUCTION

There are a number of interesting potential applications for the homogeneous
signal theory developed in the Chapter 5. In this chapter, we focus on a
particular example as an indication of the direction that some applications
may take. In particular, we explore the use of homogeneous signals as
modulating waveforms in a communication system [91]. Beginning with
an idealized but general channel model, we demonstrate that the use of
homogeneous waveforms in such channels is both natural and efficient, and
leads to a novel multirate diversity strategy in which data is transmitted
simultaneously at multiple rates.

Our problem involves the design of a communication system for trans-
mitting a continuous- or discrete-valued data sequence over a noisy and
unreliable continuous-amplitude, continuous-time channel. We must there-
fore design a modulator at the transmitter that embeds the data sequence q[n]
into a signal z(t) to be sent over the channel. At the receiver, a demodulator
must be designed for processing the distorted signal r(¢) from the channel to
extract an optimal estimate of the data sequence ¢[n]. The overall system is
depicted in Fig. 6.1.

The particular channel we consider has the characteristic that it is
“open” for some time interval T, during which it has a particular band-
width IV and signal-to-noise ratio (SNR). This rather basic channel model isa
useful one for a variety of settings, and in particular it can be used to capture
both characteristics of the transmission medium and constraints inherent in
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Figure 6.1. A communication system for transmitting a continuous- or
discrete-amplitude data sequence g[n] over a noisy and unreliable continuous-
amplitude, continuous-time channel.
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Figure 6.2. The channel model for a typical communications scenario.

one or more receivers. When the noise characteristics are additive, the over-
all channel model is as depicted in Fig. 6.2, where z(t) represents the noise
process.

When either the bandwidth or duration parameters of the channel are
known a priori, there are many well-established methodologies for designing
an efficient and reliable communication system. However, we restrict our
attention to the case in which both the bandwidth and duration parameters
are either unknown or not available to the transmitter. This case, by contrast,
has received comparatively less attention in the communications literature,
although it arises rather naturally in a range of both point-to-point and mul-
tiuser communication scenarios involving, for example, jammed and fading
channels, multiple access channels, covert and low probability of intercept
(LPI) communication, and broadcast communication to disparate receivers.

In designing a suitable communication system for such channels, we
require that the following key performance characteristics be satisfied:

1. Given a duration-bandwidth product T x W’ that exceeds some thresh-
old, we must be able to transmit g[n} without error in the absence of
noise, i.e., z(t) = 0.
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2. Given increasing duration-bandwidth product in excess of this thresh-
old, we must be able to transmit ¢{r] with increasing fidelity in the pres-
ence of noise. Furthermore, in the limit of infinite duration-bandwidth
product, perfect transmission should be achievable at any finite SNR.

The first of these requirements implies that, at least in principle, we ought
to be able to recover ¢[n] using arbitrarily narrow receiver bandwidth given
sufficient duration, or, alternatively, from an arbitrarily short duration seg-
ment given sufficient bandwidth. The second requirement implies that we
ought to be able to obtain better estimates of ¢[n] the longer a receiver is able
to listen, or the greater the bandwidth it has available. Consequently, the
modulation must contain redundancy or diversity of a type that can be ex-
ploited for the purposes of improving the reliability of the transmission. As
we demonstrate, the use of homogeneous signals for transmission appears to
be rather naturally suited to fulfilling both these system requirements.

The minimum achievable duration-bandwidth threshold in such a sys-
tem is a measure of the efficiency of the modulation. Actually, because the
duration-bandwidth threshold T' x ¥ is a function of the length L of the data
sequence, it is more convenient to transform the duration constraint 7" into
a symbol rate constraint B = L/T" and phrase the discussion in terms of a
rate-bandwidth threshold R/W that is independent of sequence length. Then
the maximum achievable rate-bandwidth threshold constitutes the spectral ef-
ficiency of the modulation, which we denote by 7. The spectral efficiency of a
transmission scheme using bandwidth W is, in fact, defined as

n= Rmax/W

where Rnmax is the maximum rate at which perfect communication is possi-
ble in the absence of noise. Hence, the higher the spectral efficiency of a
scheme, the higher the rate that can be achieved for a given bandwidth, or,
equivalently, the smaller the bandwidth that is required to support a given
rate.

When the available channel bandwidth is known a priori, a reasonably
spectrally efficient, if impractical, modulation of a data sequence ¢[n] involves
expanding the sequence in terms of an ideally bandlimited orthonormal basis.
Specifically, with W, denoting the channel bandwidth, a transmitter produces

2(t) = Y q[n] \/Wp sinc(Wot — n)

where
1 t=0
sinc(t) = ¢ sinnt
s

otherwise
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In the absence of noise, a (coherent) receiver can, in principle, recover g[n]
from the projections

gln] = /i x(t) VWO sinc(Wot — n) dt

which can be implemented as a sequence of filter-and-sample operations.
Since this scheme achieves a rate of R = 1 symbols/sec using the double-
sided bandwidth of W = W} Hz, it is characterized by a spectral efficiency
of

no = 1 symbol/sec/Hz. 6.1)

Because the transmitter is assumed to have perfect knowledge of the
rate-bandwidth characteristics of the channel, this approach is viable only
for those point-to-point channels in which there exists a feedback path from
receiver to transmitter. However, we consider a more general case in which
we have either a broadcast channel (i.e., a scenario with a single transmitter
and multiple receivers), or a point-to-point channel in which no such feedback
path is available. In these cases, the approach outlined above does not
constitute a viable solution to our communications problem. Indeed, in order
to accommodate a decrease in available channel bandwidth, the transmitter
would have to be accordingly reconfigured by decreasing the parameter
Wy. Similarly, for the system to maintain a spectral efficiency of 7 = 1
when the available channel bandwidth increases, the transmitter must be
reconfigured by correspondingly increasing the parameter . Nevertheless,
while not a solution to the problem of communication without a feedback
path, the perfect-feedback solution provides a useful performance baseline
in evaluating the solution we ultimately develop for this problem. In the
sequel, we therefore refer to this as our benchmark modulation scheme.

A viable solution to the problem of interest requires a modulation strat-
egy that maintains its spectral efficiency over a broad range of rate-bandwidth
combinations using a fixed transmitter configuration. A rather natural strat-
egy of this type arises out of the concept of embedding the data to be transmit-
ted into a homogeneous signal. Due to the fractal properties of the transmitted
signals, we refer to the resulting scheme as “fractal modulation.”

6.2 TRANSMITTER DESIGN: MODULATION

To embed a finite-power sequence g[n} into a bihomogeneous waveform z(t)
of degree H, it suffices to consider using g[n] as the coefficients of an expansion
in terms of a wavelet-based orthonormal self-similar basis of degree f, i.e.,

z(t) =3 qln] 67 (t)

where the basis functions §/(t) are constructed according to (5.21). When
the basis is derived from the ideal bandpass wavelet, as we will generally
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assume in our analysis, the resulting wavetorm z(t) is a power-dominated
homogeneous signal whose idealized time-frequency portrait has the form
depicted in Fig. 5.3. Consequently, we may view this as a multirate modulation
of q[n] where in the mth frequency band ¢{r] is modulated at rate 2™ using a
double-sided bandwidth of 2™ Hz. Furthermore, the energy per symbol used
in successively higher bands scales by 3 = 2*#*1. Using a suitably designed
receiver, g[n] can, in principle, be recovered from z(¢) at an arbitrary rate 2™
using a baseband bandwidth of 2™+! Hz. Consequently, this modulation has
a spectral efficiency of

1
= symbol/sec/Hz.

We emphasize that in accordance with our channel model of Fig. 6.2, it is
the baseband bandwidth that is important in defining the spectral efficiency
since it defines the highest frequency available at the receiver.

While the spectral efficiency of this modulation is half that of the bench-
mark scheme (6.1), this loss in efficiency is, in effect, the price paid to enable
a receiver to use any of a range of rate-bandwidth combinations in demodu-
lating the data. Fig. 6.3 illustrates the rate-bandwidth tradeoffs available to
the receiver. In the absence of noise the receiver can, in principle, perfectly
recover g[n] using rate-bandwidth combinations lying on or below the solid
curve. The stepped character of this curve reflects the fact that only rates of
the form 2™ can be accommodated, and that full octave increases in band-
width are required to enable ¢[n] to be demodulated at successively higher
rates. For reference, the performance of the benchmark modulation is super-
imposed on this plot using a dashed line. We emphasize that in contrast to
fractal modulation, the transmitter in the benchmark scheme requires perfect
knowledge of the rate-bandwidth characteristics of the channel.

Although it considerably simplifies our analysis, the use of the ideal
bandpass wavelet to synthesize the orthonormal self-similar basis in our
modulation strategy is impractical due to the poor temporal localization in
this wavelet. However, we may, in practice, replace the ideal bandpass wave-
let with one having not only comparable frequency domain characteristics
and better temporal localization, but sufficiently many vanishing moments
to ensure that the transmitted waveform is power-dominated as well. Fortu-
nately, there are many suitable wavelets from which to choose, among which
are those due to Daubechies [12]. When such wavelets are used, the exact
spectral efficiency of the modulation depends on the particular definition
of bandwidth employed. Nevertheless, using any reasonable definition of
bandwidth, we would expect to be able to achieve, in practice, a spectral effi-
ciency close to (1/2) symbols/sec/Hz with this modulation, and, as a result,
we assume 7p & 1/2 in subsequent analysis.

Another apparent problem with fractal modulation as initially proposed
is that it requires infinite transmitter power. Indeed, as Fig. 5.3 illustrates,
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Figure 6.3. Spectral efficiency of fractal modulation. At each bandwidth B,
the solid curve indicates the maximum rate at which transmitted data can be
recovered in the absence of noise. The dashed curveindicates the corresponding
performance of benchmark scheme.

q[n] is modulated into an infinite number of octave-width frequency bands.
However, it should be appreciated that in a practical implementation only
a finite collection of contiguous bands M would, in fact, be used by the
transmitter. As a result, the transmitted waveform

2(t)=3qln] 3 37D (6.2)
n meM

would exhibit self-similarity only over a range of scales, and demodulation

of the data would be possible at one of only a finite number of rates. In terms

of Fig. 6.3, the rate-bandwidth characteristic of the modulation would extend

over a finite range of bandwidths chosen to cover extremes anticipated for

the system.

The fractal modulation transmitter can be implemented in a computa-
tionally highly efficient manner, since much of the processing can be per-
formed using the discrete-time algorithms of Section 54. For example,
synthesizing the waveform z(t) given by (6.2) for M = {0,1, ..., M — 1}
involves two stages. In the first stage, which involves only discrete-time pro-
cessing, ¢[n] is mapped into M consecutive octave-width frequency bands to
obtain the sequence pl*![n]. This sequence is obtained using M iterations of
the synthesis algorithm (5.32) with the QMF filter pair h[n], g[n] appropriate to
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the wavelet basis. The second stage then consists of a discrete- to continuous-
time transformation in which p!*![n] is modulated into the continuous-time
frequency spectrum via the appropriate scaling function according to

2(t) =Y pMnj o () = Y pMn) 2¥ (2t - n).

It is important to point out that because a batch-iterative algorithm is em-
ployed, potentially large amounts of data buffering may be required. Hence,
while the algorithm may be computationally efficient, it may be considerably
less so in terms of storage requirements. However, in the event that g[n]
is finite length, it is possible that memory-efficient implementations may be
constructed as well.

The transmission of finite length sequences using fractal modulation
requires some basic modifications to the scheme. In fact, as initially pro-
posed, fractal modulation is rather inefficient in this case, in essence because
successively higher frequency bands are increasingly underutilized. In par-
ticular, we note from the time-frequency portrait in Fig. 5.3 that if ¢[n] has
finite length, e.g.,

q[n] = 0, n<0,n>L-1,

then the mth band completes its transmission of ¢[n] and goes idle in half the
time it takes the (m — 1)st band, and so forth. However, finite length messages
may be accommodated rather naturally and efficiently by modulating their
periodic extensions g[n mod L] thereby generating a transmitted waveform

2(t) = ¥ qln mod L] 0% (1)

which constitutes a periodicity-dominated homogeneous signal of the type
discussed in Section 5.3. If we let

q={q[0) g1] --- g[L - 1]}

denote the data vector, then the time-frequency portrait associated with this
signal is shown in Fig. 6.4. Using this enhancement of fractal modulation,
we not only maintain our ability to make various rate-bandwidth tradeoffs
at the receiver, but we acquire a certain flexibility in our choice of time origin
as well. Specifically, as is apparent from Fig. 6.4, the receiver need not begin
demodulating the data at ¢ = 0, but may more generally choose a time-origin
that is some multiple of LR when operating at rate R. Additionally, this
strategy can, in principle, be extended to accommodate data transmission on
a block-by-block basis.

The final aspect of fractal modulation that remains to be considered
in this section concerns the specification of the parameter /. While H has
no effect on the spectral efficiency of fractal modulation, it does affect the
power efficiency of the scheme. Indeed, it controls the relative power distri-
bution between frequency bands and, hence, the overall transmitted power
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Figure 6.4. A portion of the time-frequency portrait of the transmitted signal
for fractal modulation of a finite-length data vector q. The case H = —1/2is
shown for convenience.

spectrum, which takes the form (5.25) where v = 2H + 1. Consequently, the
selection of H is important when we consider the presence of additive noise
in the channel.

For traditional additive stationary Gaussian noise channels of known
bandwidth, the appropriate spectral shaping of the transmitted signal is
governed by a “water-filling” procedure [24] [94], which is also the method by
which the capacity of such channels is computed [95]. Using this procedure,
the available signal power is distributed in such a way that proportionally
more power is located at frequencies where the noise power is smaller.

When there is uncertainty in the available bandwidth, the water-filling
approach leads to poor worst-case performance. As an example, for a channel
in which the noise power is very small only in some fixed frequency band
wr < w < wy, where 0 < wy, < wy < oo, the water-filling recipe would locate
the signal power predominantly within this band. Asaresult, the overall SNR
in the channel would strongly depend on whether the channel bandwidth
is such that these frequencies are passed. By contrast, the distribution of
power according to a spectral-matching rule that maintains an SNR that is
independent of frequency leads to a system whose performance is uniform
with variations in bandwidth and, in addition, is potentially well-suited for
LPI communication. Since power-dominated homogeneous signals have a
power spectrum of the form of (5.25), the spectral-matching rule suggests
that fractal modulation may be naturally suited to channels with additive
1/f noise whose degree H is the same as that of the transmitted signal.
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As we discussed in Chapter 3, the class of 1/f processes includes not only
classical white Gaussian noise (H = —1/2) and Brownian motion (H = 1/2),
but, more generally, a range of rather prevalent nonstationary noises that
exhibit strong long-term statistical dependence.

In this section, we have developed a modulation strategy that satisties
the first of the two system requirements described at the outset of Chapter 6.
We now turn our attention to the problem of designing optimal receivers for
fractal modulation, and, in the process, we will see that fractal modulation
also satisfies the second of our key system requirements.

6.3 RECEIVER DESIGN: DEMODULATION

Consider the problem of recovering a finite length message ¢[n] from band-
limited, time-limited, and noisy observations 7(t) of the transmitted wave-
form z(t) consistent with our channel model of Fig. 6.2. We assume that
the noise z(t) is a Gaussian 1/ f process of degree H, = H, and that the de-
gree H, of the homogeneous signal z(t) has been chosen according to our
spectral-matching rule, i.e.,

H,=H.=H. (6.3)

We remark at the outset that if it is necessary that the transmitter measure H.
in order to perform this spectral matching, the robust and efficient parame-
ter estimation algorithms for 1/ processes developed in Chapter 4 may be
conveniently exploited.

Depending on the nature of the message being transmitted, there are a
variety of different optimization criteria from which to choose in designing
a suitable receiver. As representative examples, we consider two cases. In
the first, the transmitted message is a digital data stream and we focus on the
design of minimum probability-of-error receivers. In the second, the trans-
mitted message is an analog data sequence for which we design minimum
mean-square eITor receivers.

6.3.1 Demoduiation of Digital Data

In this case, our transmitted message is a random bit stream of length L
represented by a binary-valued sequence

aln) € {+Eo. —/Eo}

where Ej is the energy per bit. For this data, we develop in this section
a receiver that demodulates g[n] so as to minimize the bit-error probability.
We remark in advance that efficient demodulation of more general real- or
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complex-valued M-ary sequences for M > 2is possible using straightforward
extensions of the results we develop in this section.

We begin by noting that an efficient implementation of the optimum
receiver processes the observations 7(t) in the wavelet domain by first ex-
tracting the wavelet coefficients r}* using the DWT (2.21). These coefficients
take the form
rm =3 ™?gln mod L] + 277, (6.4)

n

where the z™ are the wavelet coefficients of the noise process, and where
we have assumed that in accordance with our discussion in Section 6.2 the
periodic replication of the finite length sequence ¢[n] has been modulated. To
simplify our analysis, we further assume that the ideal bandpass wavelet is
used in the transmitter and receiver, although we reiterate that comparable
performance can be achieved when more practical wavelets are used.

The duration-bandwidth characteristics of the channel in general af-
fect which observation coefficients #* may be accessed. In particular, if the
channel is bandlimited to 2 Hz for some integer My, this precludes access
to the coefficients at scales corresponding to m > My. Simultaneously, the
duration-constraint in the channel results in a minimum allowable decoding
rate of 2M= symbols/sec for some integer A, which precludes access to the
coefficients at scales corresponding to m < M. As a result, the collection of
coefficients available at the receiver is

r={r",me M,n € N(m)}

where

M {Mp, My +1,.... My} (6.5a)
N(m) = {0,1..... L2m—Me 1}, (6.5b)

This means that we have available
My
K = Z Zm—ML — 21\/[U—AWL+1 -1 (66)

m=Mjy

noisy measurements of each of the L non-zero samples of the sequence g[n].
The specific relationship between decoding rate R, bandwidth W, and re-
dundancy A can, therefore, be expressed in terms of the spectral efficiency
of the modulation 7nr as

R _ 277}7
W OK+1 6.7)
where, as discussed earlier, nr ~ 1/2. Note that when My = A we have

A =1, and (6.7) attains its maximum value, 7g.

The optimal decoding of each bit can be described in terms of a binary
hypothesis test on the set of available observation coefficients r. Denoting by
Hy the hypothesis in which ¢[n] = ++/Ey, and by Hy the hypothesis in which
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q[n] = —+/Ey, we may construct the likelihood ratio test for the optimal
decoding of each symbol g[n]. The derivation is particularly straightforward
because of the fact that, in accordance with the wavelet-based models for
1/ f processes developed in Chapter 3, under each hypothesis the =" in (6.4)
may be modeled as independent zero-mean Gaussian random variables with
variances

varz" = o237 (6.8)

for some variance parameter o2 > 0. Consequently, given equally likel
p z q V. 8 qually y

hypotheses (i.e., a random bit stream) the likelihood ratio test readily reduces
to the test

Hy
(20
Hy
where
My am=Mp _q
(=Y 8™ Y ok (6.9)
m=M, =0

is a sufficient statistic.

Before turning to a discussion of the resulting performance, it should
be emphasized that, as in the case of the transmitter, the receiver has a con-
venient, computationally efficient, hierarchical implementation based on the
DWT. Specifically, assuming r(t) to be bandlimited to resolution 24 it may
be sampled at rate 2M7, then successively filtered and downsampled to level
m = My according to the wavelet decomposition tree of Fig. 2.6(a). To
produce the sufficient statistic ¢, at each level m the terms from the detail
sequence 7 corresponding to the same value of the g[n] are collected to-
gether, weighted by the factor 4™2, and accumulated with the weighted 777
from previous stages. Again, however, this is a batch algorithm, and while
computationally efficient, this implementation may be less efficient in terms
of storage requirements.

Performance

Since the statistic ¢ is Gaussian under each hypothesis, the performance as-
sociated with this optimal receiver is straightforward to derive. In particular,
since

E[¢|Hil = —E[0|H)] = EK

var[¢|H,] = var([¢| H) oK

and since
Pr(¢ > 0|Hp) = Pr(¢ < 01 Hy),
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the bit-error probability can be expressed as

Pr(s) = Pr(¢ > O|Ho) = Q (W) . (6.10)

where Q(-) is again defined by (4.32), and where o7 is the SNR in the channel,
i.e.,

E,
2 H0
g . = 0'_%
Substituting for K in (6.10) via (6.7) we can rewrite this error probability in
terms of the channel rate-bandwidth ratio as

Pr(e) = Q ( 72 [}?75» - 1}) : (6.11)

where, again, 7r ~ 1/2. Note that, as we would anticipate with the strategy,
the performance of fractal modulation is independent of the spectral exponent
of the noise process when we use our spectral matching procedure.

To establish a performance baseline, we also evaluate a modified version
of our benchmark modulation in which we incorporate repetition coding, i.e.,
in which we add redundancy by transmitting each sample of the message
sequence K times in succession. This comparison scheme is not particularly
power efficient both because signal power is distributed uniformly over the
available bandwidth irrespective of the noise spectrum, and because much
more effective coding schemes can be used with channels of known band-
width [96] [97]. Nevertheless, with these caveats in mind, such comparisons
do lend some insight into the relative power efficiency of fractal modulation.

In our modified benchmark modulation, incorporating redundancy re-
duces the effective decoding rate per unit bandwidth by a factor of K, i.e.,

R _m
where 1 is the efficiency of the modulation without coding, i.e., unity. When
the channel adds stationary white Gaussian noise, for which H = —1/2,

the optimum receiver for this scheme demodulates the received data and
averages together the K’ symbols associated with the transmitted bit, thereby
generating a sufficient statistic. When this statistic is positive, the receiver
decodes a 1-bit, and a 0-bit otherwise. The corresponding performance is,
therefore, given by [97]

prie) =@ (yKa?) = Q ( o? [R_%D , (6.13)

where the last equality results from substituting for K via (6.12).

Comparing (6.13) with (6.11), we note that since ny =~ 27r, the asymp-
totic bit-error performances of fractal modulation and the benchmark scheme
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are effectively equivalent for R/W < pp, as is illustrated in Fig. 6.5. In
Fig. 6.5(a), Pr(z) is shown as a function of R/1¥ at a fixed SNR of 0 dB
(0 = 1), while in Fig. 6.5(b), Pr(¢) is shown as a function of SNR at a fixed
/1 = 0.125 bits/sec/Hz. Both these plots reveal strong thresholding be-
havior whereby the error probability falls off dramatically at high SNR and
low R/W. Itis important to emphasize that comparisons between the two
schemes are meaningful only for the case in which the noise has parameter
H = ~1/2, corresponding to the case of stationary white Gaussian noise.
For other values of H, the performance of the benchmark modulation is not
only difficult to evaluate, but necessarily poor as well because of inefficient
distribution of power among frequencies.

6.3.2 Demodulation of Analog Data

In this section, we assume that ¢[n] is a continuous-valued sequence of in-
dependent, identically distributed, zero-mean Gaussian random variables,
each with variance

var q[n] = o2,

and develop a receiver yielding the minimum mean-square error (MSE) esti-
mate of ¢[n] based on our corrupted observations 7(¢).

We proceed in a manner analogous to that described in Section 6.3.1 for
the case of digital data. In particular, we first project our observations onto
the ideal bandpass wavelet basis from which z(¢) was synthesized, so that
our observations may again be expressed in the form (6.4). Given the set of K
accessible observation coefficients 7' specified by (6.5) with (6.6), we readily
obtain that the optimum estimates of ¢[n] are of the form

(7

jln}=E =— 14
it} = Elll = 77 (614)
where ¢ is the sufficient statistic (6.9) and where ¢? is the SNR in the channel,

defined by

Evidently, the sufficient statistic ¢ defined in (6.9) plays a key role in the
demodulation of both digital and analog data, and in fact its calculation
dominates the computational complexity of the receiver. However, we em-
phasize that, as was discussed in Section 6.3.1, that ( can be obtained via a
computationally efficient algorithm by exploiting the DWT.

In general, and as we would expect, the optimum estimate represents
a blend of a priori information about ¢[n], and information obtained from the
observations. At high SNR (o7 > 1/K), the a priori information is essentially
ignored, and the resulting estimator specializes to the maximum likelihood
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Figure6.5. Bit-error performance of fractal modulation with digital data. Solid
lines indicate the performance of fractal modulation, while dashed lines indicate
the performance of the benchmark modulation with repetition coding. (a) Bit-
error probability Pr(e) as a function of Rate/Bandwidth ratio R/W at 0 dB
SNR. (b) Bit-error probability Pr(e) as a function of SNR at R/W = 0.125
symbols/sec/Hz.
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estimator. At low SNR (62 < 1/K), the observations are essentially ignored,
and the estimator approaches the a priori estimate

in] = E lqfnl] = 0.

Finally, we remark that the optimum receiver (6.14) with (6.9) is a linear
data processor, as would be anticipated since we have restricted the discus-
sion to Gaussian sequences and Gaussian noise. In non-Gaussian scenarios,
the receivers we have developed are the best linear data processors; i.e., no
other linear data processor is capable of generating an estimate of gjr} with a
smaller mean-square error.

Performance

The normalized MSE associated with the optimum receiver (6.14) can be
readily derived as

o Bl -dn)?]  Epvariginj] _ 1 6.15)
T T Bl T vargl 1+ Kol ‘
Generally, it is convenient to substitute for K in (6.15) via (6.7) to get
&= ; -, (6.16)
2| £llF
1+ 07 [———R W 1]

where nr ~ 1/2, and where R/W < np by virtue of our definition of . From
(6.16) we see, then, that for R/W < nr, the MSE is given asymptotically by

1
2
‘ o2 2np
‘R/W

Note that, as in the case of digital data, the performance (6.16) is independent
of the parameter H when we use spectral matching.

For the purposes of comparison, consider the MSE performance of our
benchmark modulation with repetition coding in the presence of stationary
white Gaussian noise. As in the case of digital data, incorporating redun-
dancy reduces the effective rate-bandwidth ratio by a factor of K, yielding
(6.12). The optimum Bayesian receiver for this scheme, using a minimum
MSE criterion, demodulates the repeated sequence, and averages the terms
corresponding to the same value of g[n] to generate g[n]. Hence this K-fold
redundancy leads to a normalized MSE of

, Elanl-dn)?] 1
T T Elqmy 1+ 0K

(6.17)

(6.18)
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where o2 is the SNR, i.e., the ratio of the power in g[n] to the density of the
white noise power spectrum. Combining (6.18) with (6.12) we get

2 1

e = T;:z_-’)_o— (6.19)
‘R/W

whenever R/W < . By comparison with (6.17) we see that when B/1V < 1,

1

2
€ ~ W, (6.20)
‘R/W

which is essentially (6.17) since the achievable 7y is unity and 77 = 1/2 as
discussed earlier. This means that, at least asymptotically, the performance
between the two schemes is comparable in the presence of white noise.

This behavior is reflected in the performance curves for both fractal
modulation and the benchmark modulation with repetition coding of Fig. 6.6.
In Fig. 6.6(a), MSE is shown as a function of R/W at a fixed SNR of 0 dB
(62 = 1), while in Fig. 6.6(b), MSE is shown as a function of SNR at a fixed
R/W = 0.125 symbols/sec/Hz. As we expect, the longer the channel is
open, or the greater the available bandwidth in the channel, the better the
performance of fractal modulation. Although comparisons between the two
modulation schemes are appropriate only for the special case of additive
white Gaussian noise channels, we reiterate that the performance of fractal
modulation (6.16) is independent of the spectral exponent of the 1/ f noise. By
contrast, we would not, in general, expect (6.19) to describe the performance
of the benchmark modulation with repetition coding in the presence 1/f
noise.

6.4 SUMMARY

In this chapter, we developed a novel and powerful diversity strategy that
we referred to as fractal modulation. As developed, fractal modulation con-
stitutes a compelling paradigm for communication over noisy channels of
simultaneously uncertain duration and bandwidth. As we discussed, this
channel is a rather realistic model for a variety of scenarios encountered in
point-to-point, broadcast, and multiple-access communications.

With fractal modulation, we used the orthonormal self-similar basis
expansions derived in Chapter 5 to develop an approach for modulating
discrete- or continuous-valued information sequences onto homogeneous
signals. The result was a modulation scheme in which information was
embedded in the transmitted waveform on all time scales.

We then considered the problem of optimum demodulation of such
transmissions. Two representative cases were considered. The first involved
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Figure 6.6. Tradeoffs between error, rate, and bandwidth for fractal modula-
tion with the optimum receiver for noisy analog data. The solid lines represent
the performance of fractal modulation, while the dashed lines correspond to
the performance of the benchmark modulation with repetition coding. (a) MSE
& as a function of Rate/Bandwidth ratio R/W at 0 dB SNR. (b) MSE ¢* as a
function of SNR at R/W = 0.125 symbols/sec/Hz.
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minimum probability-of-error demodulation of a digital data stream, while
the second involved minimum mean-square error demodulation of an analog
data stream.

Of considerable practical interest, we also showed that the use of self-
similar bases derived from wavelet bases as developed in Chapter 5 leads
directly to computationally efficient discrete-time implementations of the
resulting transmitters and receivers for fractal modulation systems.

Our development included an evaluation of several aspects of the per-
formance of this diversity strategy on the channel of interest. In order to
provide a performance baseline, our analysis included comparisons to more
traditional forms of modulation and diversity.

A number of interesting open questions were not addressed in our
development. For example, the extent to which fractal modulation is opti-
mum for the unknown duration-bandwidth channel remains to be explored.
Closely related is the issue of how to define useful notion of capacity for
such channels, since the usual Shannon capacity degenerates in this case. It
is also possible, though not obvious, that efficient coding techniques [98] can
be used in conjunction with fractal modulation to provide a more effective
diversity benefit on such channels.

As a final remark, we point out that fractal modulation and its general-
izations also have a potentially important role to play in secure communica-
tions. In such applications, considerations such as vulnerability to detection,
interception, and exploitation by various strategies naturally become im-
portant [99]. To meet the particular needs that arise in these scenarios, a
variety of basic extensions to fractal modulation can be developed. For ex-
ample, traditional direct-sequence spread-spectrum type techniques [97] can
be combined with fractal modulation in a relatively straightforward manner
to further enhance its suitability to such applications.



